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ABSTRACT
Inertial sensors can significantly increase the robustness of
an integrated navigation system by bridging gaps in the
coverage of other positioning technologies, such as GNSS
or Wi-Fi positioning [1]. A full set of chip-scale MEMS

accelerometers and gyros can now be bought for less than
$10, potentially opening up a wide range of new applica-
tions. However, these sensors require calibration before
they can be used for navigation[2].

Higher quality inertial sensors may be calibrated “in-
run” using Kalman filter-based estimation as part of their
integration with GNSS or other position-fixing techniques.
However, this approach can fail when applied to sensors
with larger errors which break the Kalman filter due to the
linearity and small-angle approximations within its system
model not being valid. Possible solutions include: replacing
the Kalman filter with a non-linear estimation algorithm, a
pre-calibration procedure and smart array [3]. But these all
have costs in terms of user effort, equipment or processing
load.

This paper makes two key contributions to knowl-
edge. Firstly, it determines the maximum tolerable sen-
sor errors for any in-run calibration technique using a ba-
sic Kalman filter by developing clear criteria for filter fail-
ure and performing Monte-Carlo simulations for a range of
different sensor specifications. Secondly, it assesses the ex-
tent to which pre-calibration and smart array techniques en-
able Kalman filter-based in-run calibration to be applied to
lower-quality sensors.

Armed with this knowledge of the Kalman filter’s lim-
its, the community can avoid both the unnecessary design
complexity and computational power consumption caused
by over-engineering the filter and the poor navigation per-
formance that arises from an inadequate filter. By establish-
ing realistic limits, one can determine whether real sensors
are suitable for in-run calibration with simple characteri-
zation tests, rather than having to perform time-consuming
empirical testing.

1 INTRODUCTION

Inertial sensors can significantly increase the robustness of
an integrated navigation system by bridging gaps in the cov-
erage of other positioning technologies, such as GNSS, Wi-
Fi and various environmental feature-matching techniques
[1]. A full set of chip-scale micro-electro-mechanical sen-
sors (MEMS) accelerometers and gyroscopes can now be



bought for less than $101, potentially bringing inertial nav-
igation to a wide range of new applications. However,
these sensors are uncalibrated, exhibiting large temperature-
dependent biases and scale factor errors. Before they can be
used for navigation, some form of calibration is required [2].

It is possible to calibrate an IMU which has rela-
tively small biases and other systematic errors during nor-
mal use by using a second navigation system, such as GNSS
with a very basic Kalman filter (KF) integration algorithm
[1, 4, 5, 6]. This is desirable as it allows the IMU’s cal-
ibration to be frequently updated without any effort or in-
put from the user whenever the other navigation technol-
ogy is available, which makes the inertial navigation sys-
tem (INS) more accurate when it is used to bridge signal
outages. However, when attempting to calibrate larger er-
rors the KF-integration starts to break because linearity and
small angle approximations made within its system model
are not valid, as is discussed later in this paper.

One solution is to replace the Kalman filter with a non-
linear estimation algorithm, such as an unscented Kalman
filter [7] or a particle filter [8]. However, these increase
the processing load. Other possible solutions include a pre-
calibration procedure and smart array. Pre-calibration re-
quires the user to perform a known series of manoeuvres
which enable a deterministic algorithm to perform a coarse
calibration of the sensor errors prior to the initialization
of the integration Kalman filter. A smart array is an iner-
tial measurement unit (IMU) comprising an array of inertial
sensors that have been arranged to exploit the design char-
acteristics of the sensors such that the errors exhibited are
smaller than those obtained by simple averaging [3].

In order to decide when these alternatives are neces-
sary, we need to determine the limits of the normal Kalman
filter. Armed with this knowledge, the community can avoid
both the unnecessary design complexity and computational
power consumption caused by over-engineering the filter
and the poor navigation performance that arises from an in-
adequate filter. By establishing realistic limits, one can de-
termine whether real sensors are suitable for in-run calibra-
tion with simple characterization tests, rather than having to
perform time-consuming empirical testing.

In this paper, we will establish where these limits are.
First, we present some background on inertial measurement
units, user-conducted calibration procedures and Kalman
filter based INS-GNSS integration (Section 2). Then we es-
tablish well-defined filter failure criteria (Section 3). These
are crucial for determining when the current filter is inade-
quate and a more complex filter is needed.

Having established suitable failure and success crite-
ria, Monte-Carlo simulations are performed with a range
of different sensor specifications in order to determine the
maximum tolerable sensor errors. The approach to com-
puting these simulations is presented in Section 4 and the
results of these simulations are presented and discussed in
Section 5. The conclusions and future work are discussed in

1Invensense MPU-9150 ‘9-axis’ IMU (+magnetometer) available from
www.digikey.co.uk from £4.40, MPU-6050 ‘6-axis’ IMU from £3.87
(based on complete reel price, approximately double that for single sensor).

Sections 7 and 8.

2 BACKGROUND
2.1 Inertial measurement units and their errors
An inertial measurement unit (IMU) is a set of (at least)
three accelerometers and three gyroscopes, which are ar-
ranged so that the sensitive axes of the sensors can measure
specific force and angular rate in all three dimensions. Typi-
cally the arrangement of the sensors is as a ‘triad’ where the
sensitive axes are mutually orthogonal (similar to the Carte-
sian X-,Y- and Z-axes). An inertial navigation system (INS)
uses the output of an IMU to calculate a dead-reckoning
navigation solution.

This solution uses the inertial navigation equations
where the attitude (3D orientation) solution computed by
integrating the angular rate measurements then this is used
to add the specific force due to the Earth’s gravity, which
transforms the specific force into acceleration. Then the ac-
celeration is integrated twice to calculate changes in the po-
sition solution. This double integration means that position
and velocity errors build up very quickly. Additionally the
reliance on the attitude solution to remove the large specific
force due to earth’s gravity means that only a few degrees of
error in the attitude solution can have a large effect on the
navigation system’s accuracy. Thus accurate measurement
of both specific force and angular rate are very important in
maintaining a good navigation solution.

Inertial sensors, like any real measurement devices do
not measure the specific force or angular rate perfectly. The
sensor’s errors can be split into two categories: stochastic
and systematic.

Stochastic errors are random in nature; the most sig-
nificant is usually the random noise is added to the signal.
If the noise is predominantly white then improvement can
only be made by sacrificing bandwidth, as white noise can-
not be removed by calibration. If the stochastic errors are
too high the only solution is to use more or better sensors.

Systematic errors are errors which vary in a way which
is fixed and/or a function of the sensors input and the envi-
ronmental conditions. If systematic errors can be measured
then their effect can be compensated for in the IMU’s out-
put. Systematic errors include (in approximate order of im-
portance): bias, scale factor error, cross-axis sensitivity, gy-
roscope g-dependent error. Bias is where an amount of spe-
cific force or angular rate is added to the output, analogously
to the ‘tare’ function on weighing scales. Scale factor error
is when the sensitivity of the sensor is incorrect, such as
measuring 98% or 101% of the true quantity. Cross-axis
sensitivity is when the sensor picks up inertial forces which
are not applied along its sensitive axis, this includes when
the axes of the triad are not aligned correctly. Gyroscope g-
dependent error is when a gyroscope mistakenly measures
a specific force as an angular rate. There are other higher
order errors such as sensor non-linearity, about which there
is more information in [1, 9, 10].

The magnitude of all of these errors will vary consid-
erably between individual sensors of a particular model, as
well as slightly from day-to-day and slowly during use. In



addition many of these errors also vary as a function of en-
vironmental conditions, particularly temperature. As such
the accuracy of an IMU calibration may reduce over time.

In this paper, we are considering whether ‘in-run’ cal-
ibration is possible for a model of sensor, rather than one
specific sensor. As such, rather than talking about a sen-
sor’s errors, which could be measured, we are considering
the distribution of errors exhibited by a model of sensor.
Which can only be measured by calibrating a large number
of sensors of the model in question.

2.2 User conducted calibration
There are two main ways in which end-user calibration can
be achieved. These are instruction-based, where the user is
given a specific set of manoeuvres to carry out, and “in-run”,
where the inertial sensors are calibrated during the normal
use of the navigation system.

The most important feature of instruction-based cali-
bration is that it requires the user to stop using the system
and to perform a series of manoeuvres accurately when in-
structed, which may not be practical for all applications.
The more complex this set of manoeuvres is the more of
the systematic error sources can be determined, potentially
allowing higher accuracy. However, as the manoeuvres be-
come more complex the chance that the user performs them
incorrectly increases. The most simple instruction-based
calibration that could be performed asks the user to ‘place
the IMU still on a table’, also known as a zero-velocity up-
date, this allows the gyroscope bias to be measured. More
complex sets of instructions could be used if the IMU is
in a precisely cuboid box where static measurements on
each of the six sides can be used to measure gyroscope
and accelerometer bias, accelerometer scale factor and gy-
roscope g-dependent error (details of this procedure are in
[3]). If the user can be relied upon to perform more com-
plex manoeuvres (e.g. rotating slowly about particular axes
in a specific order) or other equipment is available (e.g. rate-
tables or temperature controlled chambers) even more sys-
tematic errors could be determined.

In contrast calibrating an inertial sensor’s systematic
errors “in-run” relies on a second navigation system (e.g.
GNSS) to provide measurements which can be compared
with those of the IMU to determine the systematic errors
of the latter. This means that while the second system is
providing reliable measurements the calibration can be per-
formed continuously, so a much more recent calibration is
available than when the inertial system is being used alone.
In addition it is carried out with no effort from the user.
However, these advantages are set against one significant
disadvantage. A reasonably good initial estimate of the
value of the systematic errors is required for the in run es-
timation to remain stable and converge towards the correct
value, see Section 3.1. Further one needs to know how good
this initial estimate is so that the uncertainty is modelled
correctly.

Clearly one way to get around this problem is to have
a hybrid of a simple instruction-based pre-calibration fol-
lowed by “in-run” calibration or to use an old estimate to

initialise the “in-run” estimation, however to design such a
system it is necessary to determine how good an initial esti-
mate is required. This raises the question of how good the
pre-calibration must be in order to bring the residual errors
within the tolerance limits of the ‘in-run’ calibration.

2.3 INS-GNSS integration based on a
Kalman-filter-derivative

Many different navigation technologies could be used to
aid/calibrate the INS, maximum robustness is acheived by
combining many different sensors [11], but complex multi-
sensor navigation brings many challenges [12]. For the re-
mainder of this paper we assume that the navigation system
used for aiding/calibrating the INS is a global satellite navi-
gation system (GNSS). This is the method most commonly
used in practice due to the low cost of GNSS user equip-
ment, free infrastructure and fairly high accuracy and avail-
ability. INS-GNSS integration is a well-established tech-
nique whose advantages and disadvantages are already well
known [1, 5].

The Kalman filter (KF) [4] is an estimation algorithm
that is linear; if the system is not it must be linearised. It
works in state space, that is, each quantity estimated is a
state. For example 3 states are needed for each of position,
velocity and attitude (for 3D navigation). When measure-
ments are added to the filter these measurements are com-
pared with the measurements predicted by the current state
estimates, projected to the current epoch. The mean square
error (MSE) of the difference between these two quantities
is minimised. The filter is recursive, in that it does not store
the old measurements the state estimates aggregate this in-
formation in combination with the state covariance matrix
(often known as the ‘P’-matrix), this includes the filter’s es-
timate of state estimation error variances (the diagonal en-
tries of the P-matrix). The entries in this matrix store how
good the filter thinks its current state estimates are.

When a real systems, such as INS and GNSS, are mod-
elled with a Kalman filter, some basic assumptions need to
be made [13]:
• the state errors (residuals) have a Gaussian (nor-

mal) distribution, which makes the MSE optimisation
valid;

• the noise terms are ‘white’-noise (not correlated with
time), to get around this assumption the filter is told
the noise is greater than it really is (over-bounding);
and,

• most importantly, that the system propagation and
measurements are linear combinations of states. The
linearising approximations include the ‘small angle
approximation’ and that the products of state estimate
errors are negligible.
If the these assumptions are not met the Kalman filter

will not behave as expected, e.g. estimates will not con-
verge, there may even be numerical failure. In short: the
Kalman filter will ‘break’ if the errors are ‘too large’.

In order for the filter to behave correctly, the best
possible initial estimates of the states should be used and
also the filter’s covariance matrix should be correctly ini-



tialised with the ‘initial uncertainty’ associated with each
state. However, often this is not known, and even when it
is known the uncertainty is typically exaggerated to aid the
stability of the filter. Additionally the filter needs to know
how much (if at all) states are expected to change through
time, and how reliable and accurate the measurements pro-
vided are. Choosing the correct level for all these settings is
known as tuning, and doing it correctly is critical for proper
filter performance. Unfortunately the correct settings are
specific to individual applications, and often trial-and-error
is the method used.

More information about Kalman filtering can be found
in standard texts such as [13, 14].

3 KALMAN FILTER FAILURE
For the work presented here, where we examine the limits
of Kalman filter performance, we must have some idea of
when we judge a Kalman filter to be performing unaccept-
ably, inadequately or unstably, which we will from now on
call “failing”. Additionally, having decided what constitutes
failure we need some criteria for whether a particular distri-
bution passes or fails, that is, we need a test to which we can
subject a simulation giving a ‘pass’ or ‘fail’. We shall dis-
cuss these two points in Sections 3.1 and 3.2, respectively.

3.1 When has a Kalman filter failed
In order to decide when a particular Kalman filter (KF) fails
we first need to examine how it should behave; we can then
detect when failure has occurred.

Figure 1. An example of a typical well behaved filter’s state esti-
mate error. The filter estimates converge towards zero
and their error is well described by the state uncertainty.

A ‘well-behaved’ KF should start with state uncer-
tainties associated with its estimates of each of the states
which slightly exceed the real standard deviation (SD) of
the error distribution, tuned that way to aid filter stability
when the true stochastic behaviour of the states diverges
from the KF’s assumptions. Then as more aiding (GNSS)
measurements are added both the filters state uncertainty
and the real SD of the error in the state estimates should re-
duce together, particularly sharply when manoeuvres (such
as turns) take place, the KF’s state uncertainty appearing as
a slightly smoother line than the actual SD of the state es-
timate error. This is illustrated in Figure 1. An important

point to note is that, through time, as more data is added to
the filter, the errors in the estimates get smaller, although
the accuracy of the estimate will plateau at a level that de-
pends on both the GNSS accuracy, the IMU noise and time
variation of the systematic errors.

Figure 2. An example of a typical badly behaved filter’s estimate
errors in its position attitude and velocity solution. Note
how the filter starts fairly under control but as soon as
the attitude errors about North and East exceed a few
tens of degrees (around 30 seconds) then the variation
of all the states is becomes extremely erratic.

Figure 3. An example of a typical badly behaved filter’s state esti-
mate error. The filter estimates do not converge to zero
but vary erratically, additionally their variation is much
greater than the state uncertainty.

When the sensor errors are very large, the linearising
assumptions described in Section 2.3 break very quickly.
Consider the following situation. GNSS integration can
only correct attitude errors indirectly based on their effect
on the position/velocity solution. So when the gyro bias
is large, the attitude error, which started as a small angle,
grows more quickly than it can be corrected. Rapidly the
linear combinations of states that were valid when the at-
titude error was a ‘small angle’ cease to be valid, and for
instance the corrections from the measurements are applied
incorrectly. Additionally when the errors are ‘large’ then
other KF assumptions break such as product of two errors
being negligible. This kind of behaviour can be seen in Fig-
ure 2. This produces similarly erratic estimates for the IMU



error states, see Figure 3. Clearly, if we run a Monte Carlo
simulation and the results are as erratic as in that example
detecting this is a ‘failure’ is straightforward.

Figure 4. An example of an inconsistently behaved filter’s esti-
mate errors in its position attitude and velocity solution.
Note how the filter starts fairly under control but as soon
as the attitude errors about North and East remain under
2 degrees, making the small angle approximation rea-
sonable, although the heading error is larger.

Figure 5. An example of a typical inconsistent filter’s state esti-
mate error. Some of the filter estimates converge to-
wards zero but others do not. The spread of estimate
errors is not well described by the state uncertainty.

However, when the IMU errors are smaller the posi-
tion, attitude and velocity solution can remain fairly reason-
able (Figure 4) even though the IMU error estimates pro-
duced are inconsistent (Figure 5). This poor performance
cannot be explained by something as simple as the small
angle approximation being broken. In this situation decid-
ing to label this Monte Carlo simulation as failed is not so
straightforward.

We shall discuss the possible ways in which we could
decide whether a particular simulation has failed in Section
3.2.

3.2 Kalman filter failure criteria
To decide when INS-GNSS integration has failed the con-
text we wish to use that is is important. Here we wish to
calibrate the inertial sensors in the IMU so that the INS
can bridge a future GNSS signal outage. This means that

we require the KF states corresponding to the IMUs er-
rors (the IMU-error-states), here the accelerometer and gy-
roscope bias states, to end with a smaller distribution than
they started. We could make this the test: the simulation
must end with a smaller distribution of errors than it started
with. However, in the real context some short time later
the filter could became unstable and the error estimates go
wildly wrong. Also, the reduction in the errors’ distributions
would be expected to be different for sensors with different
stochastic errors for example.

Another possible approach could be ‘empirical’. We
could add a simulated signal outage and consider how well
it is bridged by the calibrated solution. However, we can
only simulate a short amount of time before the compu-
tational cost of running the Monte Carlo simulation be-
comes too high. For instance, in this paper we only simulate
three-minutes of motion (see Section 4.4) if the simulation
were longer perhaps the uncertainty in the IMU error states
would continue to decrease. We could choose some arbi-
trary amount of time and test whether the calibration result-
ing from the KF was ‘adequate’ after that amount of time.
However, in some application scenarios there may be tens of
minutes or even hours between outages. However, what is
‘adequate’ performance in bridging a GNSS outage? Con-
sider two INSs which have different amounts of measure-
ment noise and both have their systematic errors perfectly
calibrated. The less noisy INS would perform better, so we
would need to specify the ‘adequate’ performance carefully.
Perhaps the GNSS-calibrated INS could be compared to an
INS with identical noise parameters but zero systematic er-
rors, although it is not clear how much worse one should
expect an imperfectly calibrated INS to behave than a per-
fectly calibrated one, and still be judged ‘adequate’.

In this paper we take a different approach to deciding
whether a INS-GNSS integration Kalman filter is ‘success-
ful’, we look at filter stability. Consider an INS that has
high noise and extremely low bias, the KF integration may
not be able to improve the estimate of the bias, but if the
bias were to slowly change then, if the filter was stable, it
would be able to compensate for any change. However, this
situation does not occur within the parameter ranges tested.
Similarly if the bias is very high it may take many minutes
for the filter’s error state estimates to finish converging, but
if the filter is stable then eventually there will be a good es-
timate of the IMU errors.

In general, a Kalman filter will be stable if all of the
assumptions mentioned in Section 2.3 are valid and if the
variances and covariances stored in its state covariance ma-
trix (P-matrix) are an accurate reflection of the real errors of
the estimates. Fortunately, if the former condition breaks,
that latter tends to also. In a physical system the ‘real’ er-
rors in these state estimates are not known, at least not for
all the states. So this quantity cannot be tracked however,
in simulations the ‘truth’ from which the estimates differ is
known. This means that criteria based on the real error are
possible.

A necessary but not sufficient condition for the state
covariance matrix being correct is that the filter is tuned cor-



rectly, as otherwise it is either wrong from the start or will
quickly become so.

The specific condition that we test is the relationship
between that filter’s state uncertainty for every state at each
epoch (averaged across the runs in the Monte Carlo simu-
lation) and the root-mean-squared-error (RMSE) across the
set of simulations of the filter’s state estimate error2. This
is then compared with two different thresholds. First that
the worst state’s RMSE does not exceed 1.5σ for more than
10% of the simulation time, where σ2 is the corresponding
state variance from the state covariance matrix.

The second test is as follows. We check for every
state every epoch in every run of the Monte Carlo simu-
lation whether or not that state-estimate-error is within the
corresponding 1σ uncertainty estimate from zero, then we
calculate what proportion of the simulations that are outside
this 1σ for each epoch and each state and if this exceeds
the 32% of the simulations expected. We then count up the
proportion of the time that each state spends outside these
uncertainty bounds and if the worst state exceeds 25% of the
time, the Monte Carlo simulation for those inputs fails.

The reason we use the worst state (rather than aver-
aging over all states) is that we need all of the states to be
stable in order for all of the IMU error states to be estimated
correctly. We could have chosen thresholds that would fail
the distribution as soon as they were exceeded (or exceeded
1% of the time), for instance 4 or 5σ bounds. However as
the simulations are relatively short, these lower thresholds
with some tolerance of being exceeded were chosen.

4 SIMULATION APPROACH
In this section the approach taken to run simulations to de-
termine whether a particular IMU model is suitable for ‘in-
run’ calibration will be outlined. First, the general approach
will be outlined (Section 4.1), then the particular Kalman
filter variant used will be discussed (Section 4.2). This
is followed by details of the simulation algorithm’s design
(Section 4.3), then the motion scenario used (Section 4.4)
and the GNSS paramters (Section 4.5). Finally, the way in
which the set of inputs were searched is outlined in Section
4.6.

4.1 Simulation Philosophy
The first important point about how the simulations pre-
sented in this paper are carried out is that different IMUs
are modelled by how their measurements deviate from the
true angular rate and specific force measurements. That is,
we add errors to the output of a fictional ‘perfect IMU’ of
differing magnitudes to simulate IMUs of different grades.

Furthermore, the values for each of the different sys-
tematic errors are selected randomly for each run of the
Monte-Carlo simulation under the assumption that the er-
rors are normally distributed with a zero-mean. Thus the
only input needed to generate the set of systematic errors
for all the runs of the Monte-Carlo simulation is the standard
deviation for that systematic error. Thus the inputs for each

2This is used rather than SD to account for the fact that the real distri-
bution may become non-zero-mean.

Monte-Carlo simulation are standard deviations of system-
atic errors and noise power-spectral-densities (PSDs). This
assumption of zero-mean Gaussian distribution of errors is
not necessarily true in reality, the implications of it will be
discussed in Section 6.

In the Monte Carlo simulations for this paper we gen-
erate independent noise sequences for every one of the runs
for every test, and while the GNSS measurements are se-
lected from the same distribution each time they are se-
lected independently for each run of each Monte-Carlo sim-
ulation. This approach maximises the randomness of the
Monte Carlo simulation, which in the authors’ opinion is
better where we are aiming to find general rather than spe-
cific behaviour, assuming the number of Monte-Carlo sim-
ulations is sufficiently large.

4.2 Basic Kalman Filter
For the simulations discussed here the idea was to use the
most basic Kalman filter that might realistically be possible.
The idea being to see the limits of this basic filter and then
see when more complex filters were required. As such we
also use the minimum realistic number of states. This means
that it is both the most simple to programme and has the
lowest processing load.

The INS-GNSS integration Kalman filter is loosely-
coupled, which means that the GNSS information is given
to the filter in the form of GNSS position and veloc-
ity measurements, rather than as, for example, GNSS-
pseudoranges. It is also a standard Kalman filter rather
than an extended Kalman filter (EKF) [13, 15] or unscented
Kalman filter (UKF) [7]. This means that it has linear sys-
tem and measurement models. It also has closed-loop cor-
rection of the inertial sensor error states, which helps im-
prove the stability of the filter if the magnitude of these
states were to become large, because it is equivalent to an
EKF system propagation [1].

The states modelled by this ‘basic Kalman filter’ will
also be the minimum commonly used configuration. That is
position, attitude and velocity (3×3), accelerometer bias (3)
and gyroscope bias (3). This is a total of 15 states. If this
were being extended the next most significant IMU errors
that should be modelled would be either the accelerometer
and gyroscope scale factor errors (2× 3) or a full cross cou-
pling and scale factor matrices (2 × 9) followed by the gy-
roscope g-dependent error matrix (9). Modelling additional
states makes the filter significantly slower as the majority
of the simulation’s time is spent performing matrix multi-
plications and inversions both of which are approximately
O(n3), where the n is the number of states3.

This ‘basic’ Kalman filter is the one used for the sim-
ulations presented in this paper.

4.3 Algorithm Process
The process through which the algorithm runs for making
a Monte Carlo simulation of a single distribution is shown
in Figure 6. First the inputs to the code are specified, these

3Matrix inversion can in fact be reduced toO(n2.807) [16] and in some
cases to O(n2.376) [17].
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Figure 6. Flow Diagram of the Monte Carlo simulation algorithm. Inputs in yellow and Monte Carlo part in blue.

inputs and the ranges and valued used are given in Table
1, however the reason that particular ranges were chosen is
discussed in Section 4.6. Additionally the true motion pro-
file selected is an input, this will be discussed in Section
4.4. Next values for the systematic IMU errors for each of

Parameter Value or range used
size of MC simulation 100
attitude initialisation error SD 0.5 deg (all axes)
Accel. Bias mean 0 µ g
Accel. Bias SD 1000 to 100,000 µ g
Accel. Noise PSD 100 to 500 µg/

√
Hz

Accel. Scale factor error SD 0.06% to 3%
Accel. Cross axis sensitivity SD 0.025% to 1%
Accel. quantization level 0.01m/s2

Gyro Bias mean 0 deg/hr
Gyro Bias SD 10 deg/hr to 20 deg/s
Gyro Noise PSD 0.01 to 1.8 deg/

√
hour

Gyro. Scale factor error SD 0.03% to 3%
Gyro. Cross axis sensitivity SD 0.02% to 2%
Gyro. g-dependent error SD 1 to 100 deg/hour/g
Gyro. quantization level 0.0002 rad/s

Table 1. The inputs used to the Monte Carlo Simulation, which
generate the IMU errors and tune the filter. The value
chosen or the range of values tested is also shown

the 100 simulation runs are chosen from a Gaussian distri-
bution with the standard deviations (SDs) that were inputs,
for example 100 accelerometer biases are chosen and 100
3 × 3 g-dependent error matrices. Then the Kalman filter
tuning parameters are set using the input distribution SDs.
As we know the true error distribution we could tune the
KF precisely, but, in line with standard practice, the error
distributions and noise power spectral densities (PSDs) are
over-bounded in the KF integration [1]. This helps maintain
filter stability, as all unmodelled errors appear as noise to
the filter. Noise is input as double the actual noise PSD and
initial position, velocity and attitude states uncertainties are
overmodelled by a factor of 2.

The next step is to calculate the true specific force and
angular rate measurements from the true motion profile and
then use all the systematic and stochastic errors to create
simulated IMU outputs, and also create simulated GNSS po-
sitions and velocities from the true motion profile. Then in-
ertial navigation equations and the basic Kalman filter INS-

GNSS integration (discussed in Section 4.2) is run for each
of the 100 sets of simulated IMU and GNSS measurements.
The software that does this part is available open-source on
the CD accompanying [1]. The results of all of the simula-
tions are saved.

Finally summary statistics are calculated for all 100
simulation runs of that distribution and comparisons be-
tween the KFs estimate of the uncertainty that it has for each
state, in the manner discussed in Section 3.2, are made. This
gives the result of ‘pass’ or ‘fail’ for the particular error dis-
tribution.

4.4 Simulation Motion Scenario

Figure 7. 3D projection of the truth motion profile used to for the
Monte Carlo simulations.

In the research presented in this paper we chose to
use a truth motion profile for the Monte Carlo simulations
that consists of a typical car motion lasting three minutes
and containing three turns. It is shown in Figure 7. This
motion profile is fairly representative of the navigation sce-
nario that a typical consumer grade IMU might be used in.
However, as we do not wish to make the results specific to
cars or land vehicles we do not implement land-vehicle mo-
tion constraints [18], these would reduce the INS drift and
thus would make the calibration of the IMU systematic er-
rors easier, so we are testing the more challenging scenario.
Additionally the relatively limited number of different ma-
noeuvres make it relatively difficult to separately observe



the different IMU errors in this scenario.
The reason that a pedestrian motion scenario is not

used is two-fold. Firstly, realistic pedestrian motion is diffi-
cult to generate [19]. Additionally, if one was trying to use
a consumer grade IMU to navigate as a pedestrian then one
would much more likely use a pedestrian dead reckoning
(PDR) [20, 21] approach, so calibrating the sensors to use
the full inertial navigation equations does not make sense,
one would more likely calibrate the PDR parameters (e.g.
step-length) using the aiding navigation system.

4.5 GNSS parameters
The GNSS simulation settings are chosen to simulate the
operation of consumer-grade GNSS user equipment in a rel-
atively benign signal environment. This is reasonable as one
would only try to use GNSS to calibrate the INS when good
signals are available.

As the simulation is relatively short (3-minutes) the
variation in GNSS systematic errors has been neglected, and
so the measurements used for the Kalman filter are GNSS-
like generic position and velocity measurements, which are
the measurement type required by the loosely-coupled inte-
gration. The associated measurement noise SD parameters
are 2.5m and and 0.1 m/s on each axis for the position and
velocity respectively.

4.6 Restricting the Search Space
There are a large number of possible variables which could
be changed to run different Monte Carlo simulations which
were listed in Table 1. In order to be able to run enough
simulations on limited resources the Monte-Carlo simula-
tions contain 100 runs each.Given there are a vast number of
possible combinations of the 14 possible input parameters,
we made a few assumptions that could reduce the number of
potential combinations. Firstly, only error quantities that ex-
ist for real sensors from tactical to consumer MEMS grade
were tested. Thus, there were no ‘zero-bias’ or ‘zero-noise’
tests, nor were any sensors simulated with unrealistically
large errors. The ranges for each parameter chosen are given
in Table 1. Some real sensor specifications are provided in
Table 2 to demonstrate that the ranges tested encompass cur-
rently available sensors. Secondly, we have chosen to vary
some but not all of the possible inputs, for instance we are
fixing the sensor quantisation and the attitude initialisation
error. Also, it seems very unlikely that certain combina-
tions of errors exist, such as high cross-coupling with ex-
tremely accurate scale factor, particularly as both are par-
tially caused by misalignment of the triad’s sensitive axes.
For this reason, we vary some of the errors together, with
one parameter for accelerometer ‘unmodelled’ errors en-
compassing, accelerometer scale factor error and accelero-
meter cross-coupling, and a second parameter for gyroscope
unmodelled errors which combines: gyroscope scale factor
error, gyroscope cross coupling and gyroscope g-dependent
error. These two error parameter sets are split into three lev-
els for testing, ‘low’, ‘medium’ and ‘high’, which are given
in Table 3. We also consider all the error sources to be zero-
mean, although this is not always the case in real sensors

(see Section 6).
This leaves six different distribution parameters to

test. As we are trying to find the border between “success”
and “failure” we are looking for a five-dimensional subspace
in six dimensional space, analogously with how a surface is
a two-dimensional subspace of three-dimensional space. As
we had no idea of the expected structure of this subspace
initially we proceeded as follows:

First, we determine which are the most interesting ar-
eas of the search space by testing points over a coarse grid
(7(accel. bias)×9 (gyro bias) ×5 (accel noise) ×5 (gyro
noise)×3 (unmodelled accel)×3 (unmodelled gyro)). Then
having identified the general structure of the space, interest-
ing parts were re-searched on a much finer grid to find the
‘edge’, using a strategy that tests along one parameter until
adjacent points are found where one is a pass and the other a
fail, then incrementing a second parameter and returning to
varying the first. This finer grid has a geometrical spacing
where a point is 110% the value of the previous point, and
thus it appears to be equally spaced on a log-scale.

5 RESULTS AND DISCUSSION
Discussion of the results of the simulations shall be split
into two parts. These will be when the unmodelled error pa-
rameters (scale factor, cross coupling and gyro g-dependent
error) are ‘small’, that is to say insignificant; and when they
are large enough to have an effect on the results.

5.1 Results when the unmodelled IMU error
parameters are ‘small’

Figure 8. Three dimensional subspace of the search space show-
ing the where the KF fails for different values of
accelerometer and gyroscope bias and accelerometer
noise with gyroscope noise fixed at 0.01 deg per root
hour and both accelerometer and gyroscope unmodelled
errors fixed to ‘low’ (see Table 3).

When the unmodelled IMU error parameters are small
the assumptions we made by using a Kalman filter (KF) with
only 15 states is reasonable. That is, in relation to these
errors the filter should be fit for purpose, and if the filter
‘breaks’ it must be for another reason. However, there are



Sensor Manufacturer Bosch STMicroelectronics Invensense Xsens
Model BMA180 [22] L3G4200D [23] MPU-9150 [24] MTi-G [25]
Type accelerometer gyroscope single-chip IMU factory-calibrated IMU

Accelerometer Errors
Bias ±60 milli-g n/a ± 80(x&y) to 150(z) milli-g 0.02 m/s2

Noise 150 micro-g/
√
Hz n/a 400 micro-g/

√
Hz 0.002 to 0.004 m/s2/

√
Hz

Scale Factor Error ±1.5% to 3% n/a ± 3% ± 0.03%
Cross-Axis Sensitivity 1.75% n/a not specified aligned to ±0.1 degree
Non-Linearity 0.15 to 0.75 % FS n/a 0.5 % FS not specified

Gyroscope Errors
Bias n/a ± 10 to 75 dps ±20 dps ±1 dps
Noise n/a 0.03 dps/

√
Hz 0.005 dps/

√
Hz 0.05 to 0.1 dps/

√
Hz

Scale Factor Error n/a ±4% [26] ± 3% not calibrated
Cross-Axis Sensitivity n/a not specified ± 2% aligned to ±0.1 degree
Non-Linearity n/a 0.2% of FS 0.2 % FS not specified

Table 2. A selection of sensor error distributions derived from their datasheets, in the units given. The Bosch, ST and Invensense are consumer-
grade MEMS. The Xsens is a factory calibrated MEMS IMU, which costs around $2500. Where a range is given this parameter
depends on the full-scale measurement range selected.

Parameter ‘low’ ‘medium’ ‘high’
Accelerometer
Scale factor error SD 0.06% 1% 3%
Cross axis sensitivity SD 0.025% 0.5% 1%
Gyroscope
Scale factor error SD 0.03% 1% 3%
Cross axis sensitivity SD 0.02% 1% 2%
g-dependent error SD 1 10 100
(deg/hour/g)

Table 3. The three levels of unmodelled IMU errors tested

error distributions for which the KF fails even with ‘low’
unmodelled errors. These are illustrated in Figures 8, 9 and
10. As it is impractical to present 6-dimensional diagrams,
we present 3-dimensional diagrams which show the varia-
tions in 3 parameters when the 3 parameters are fixed.

Observing the border between ‘success’ and ‘failure’
in these figures, it is clear that the most important error pa-
rameter is gyroscope bias. All of the distributions tested
with under 0.6 degree per second (dps), equivalent to 2,210
degrees per hour (deg/hr), gyroscope bias standard devia-
tion (SD) were successful and all those tested above 3 dps
(10,800 deg/hr) were failures. This makes it clear that the
integrity of the attitude solution is key to INS-GNSS KF
stability. This is not surprising as while the GNSS updates
directly correct position and velocity errors, the attitude so-
lution corrections rely on indirect corrections from its ef-
fect on position and velocity, particularly its use to compen-
sate for the specific force due to gravity. Additionally the
small angle approximation required to linearise the KF is
not valid when the attitude solution is poor. It is interesting,
although not surprising, to see that this failure point is be-
tween the specified performance of factory calibrated IMUs
and consumer-grade MEMS gyroscopes (see Table 2).

Variation of the ‘border’ between success and failure

Figure 9. Three dimensional subspace of the search space show-
ing the where the KF fails for different values of
accelerometer and gyroscope bias and gyroscope noise
with accelerometer noise fixed at 100 µg/

√
Hz hour

and both accelerometer and gyroscope unmodelled er-
rors fixed to ‘low’ (see Table 3).

can also be observed, which depends on the other IMU er-
ror parameters. The most significant variation is shown to
be with accelerometer bias, having an effect of approxi-
mately factor 3.5 on the maximum possible gyroscope bias
(2210 - 7717 deg/hr) from one end of its range to the other
(1-100 milli-g), this effect is still small (see Figure 8). It
is perhaps surprising that worse accelerometer bias perfor-
mance allows the filter to cope with more gyroscope bias,
as one might perhaps have expected the effect to be the
other way around. A possible explanation is that the larger
accelerometer bias uncertainty in the Kalman filter allows
more scope to absorb the unmodelled errors.

The effect of the IMU’s two noise parameters on the
position of the boundary is even smaller. In Figure 8 one can



Figure 10. Three dimensional subspace of the search space
showing the where the KF fails for different values
of accelerometer and gyroscope bias and accelero-
meter and gyroscope noise varying together and both
accelerometer and gyroscope unmodelled errors fixed
to ‘low’ (see Table 3).

observe the slight change in the boundary as accelerometer
noise is increased (z-axis of Figure 8) of only a factor of
1.2-1.5 (at most) and the effect of the gyroscope noise (Fig-
ure 9) is less than the grid spacing (geometrically spaced at
110%), even varying both noise parameters together (Figure
10) does not show a more significant effect.

This leads to the conclusion that the gyroscope bias
SD really dominates the KF stability when the unmodelled
errors are ‘low’.

5.2 The effect of the un-modelled IMU error
parameters on the results

Figure 11. Three dimensional subspace of the search space show-
ing the where the KF fails for different values of
accelerometer and gyroscope bias and accelerometer
noise with gyroscope noise fixed at 0.01 deg per root
hour and both accelerometer and gyroscope unmod-
elled errors fixed to ‘medium’ and ‘low’, respectively
(see Table 3).

Figure 12. Three dimensional subspace of the search space show-
ing the where the KF fails for different values of
accelerometer and gyroscope bias and gyroscope noise
with accelerometer noise fixed at 100 µg/

√
Hz hour

and both accelerometer and gyroscope unmodelled er-
rors fixed to ‘medium’ and ‘low’, respectively (see Ta-
ble 3).

Figure 13. Three dimensional subspace of the search space show-
ing the where the KF fails for different values of
accelerometer and gyroscope bias and accelerometer
noise with gyroscope noise fixed at 0.01 deg per root
hour and both accelerometer and gyroscope unmod-
elled errors fixed to ‘low’ and ‘medium’, respectively
(see Table 3).

When we vary the parameters which are not modelled
as states in the Kalman filter, we know that the KF is only
suitable if these parameters are insignificant. Thus the ques-
tion we are asking is: ‘what size of error is insignificant?’.

As mentioned in Section 4.6, we only tested 3 lev-
els of un-modelled errors of the gyroscopes and accelero-
meters, and we varied them together so ‘low’ scale factor
errors were not combined with ‘high’ cross axis sensitiv-
ity. However, unmodelled errors of the gyroscopes and the
accelerometers were tested separately. These three levels
are shown in Table 3. In Section 5.1, the results for when



Figure 14. Three dimensional subspace of the search space show-
ing the where the KF fails for different values of
accelerometer and gyroscope bias and gyroscope noise
with accelerometer noise fixed at 100 µg/

√
Hz hour

and both accelerometer and gyroscope unmodelled er-
rors fixed to ‘low’ and ‘medium’, respectively (see Ta-
ble 3).

Figure 15. Three dimensional subspace of the search space show-
ing the where the KF fails for different values of
accelerometer and gyroscope bias and accelerometer
noise with gyroscope noise fixed at 0.01 deg per root
hour and both accelerometer and gyroscope unmod-
elled errors fixed to ‘medium’ (see Table 3).

both of these parameters were ‘low’ were presented. Here
we present the results when one or both of the gyroscopes
and accelerometers unmodelled error parameters were set to
‘medium’ or ‘high’.

Firstly, of the error distributions tested that had ‘high’
unmodelled gyroscope errors none ‘passed’, and there were
only a few successful distributions with ‘high’ unmodelled
accelerometer errors, and these all occur when the accelero-
meter bias is 100,000 µ-g and the gyroscope bias is 1 or 2
dps, that is when both are very high.

When the unmodelled errors are at the ‘medium’ level,
the results are more instructive. The results for when the

Figure 16. Three dimensional subspace of the search space show-
ing the where the KF fails for different values of
accelerometer and gyroscope bias and gyroscope noise
with accelerometer noise fixed at 100 µg/

√
Hz hour

and both accelerometer and gyroscope unmodelled er-
rors fixed to ‘medium’ (see Table 3).

accelerometer unmodelled errors are ‘medium’ and the gy-
roscope unmodelled errors ‘low’ are shown in Figures 11
and 12, with different quantities varying on the z-axis:
accelerometer noise and gyroscope noise respectively. Un-
surprisingly the ‘success-failure’ border when both unmod-
elled errors are ‘low’ (approximately gyroscope bias SD
< 2 dps) is repeated from Figure 8 and 9 but another bound-
ary is added on the other side where the gyroscope biases
must be greater than a certain amount and this amount de-
creases with increasing gyroscope or accelerometer noise.
This is particularly visible in Figure 12.

When the accelerometer unmodelled errors are ‘low’
and the gyroscope unmodelled errors ‘medium’ the results
are shown in Figures 13 and 14, with different quantities
varying on the z-axis: accelerometer noise and gyroscope
noise respectively. Similarly here there ‘success area’ is at
the high-bias corner of the equivalent area when both un-
modelled errors were ‘low’. The size of this area is notice-
ably smaller than the equivalent when the accelerometer er-
rors were ‘medium’, and similarly the size of the area grows
with increasing gyroscope or accelerometer noise. This is
particularly visible in Figure 13.

When both the accelerometer and gyroscope unmod-
elled errors are ‘medium’ the results are shown in Figures
15 and 16, with different quantities varying on the z-axis:
accelerometer noise and gyroscope noise respectively. In
this case the area is similar to the previous two cases but
even smaller, and it only grows slightly with more gyro-
scope or accelerometer noise.

We aim to explain this behaviour by considering two
things.

First, consider how the unmodelled errors appear to
the filter. While the angular rates and horizontal specific
forces (accelerations) roughly average to zero across the
whole simulation, the vertical (z) specific force averages in-



stead to roughly 9.8ms−2 due the earth gravity. Consider
the scale-factor-and-cross-coupling matrix, Ma, where, sa,i
is the scale factor error of the i-axis sensor and ma,ij is the
cross coupling error on the i-axis sensor of the j-axis spe-
cific force, so

Ma =

 1 + sa,x ma,xy ma,xz

ma,yx 1 + sa,y ma,yz

ma,zx ma,zy 1 + sa,z

 .

The unmodelled errors in the third column are those depend-
ing on the z-axis specific force. As a result these errors ap-
pear (on average) to the simplified IMU model used in the
basic Kalman filter (see Section 4.2) as an additional bias
and noise on the signal, whereas the other six errors only
appear as noise. In the equivalent M-matrix for the gyro-
scope all 9 errors must be absorbed by the measurement
noise. However, for the gyroscope g-dependent error ma-
trix, which is another 3× 3 matrix relating the effect of the
specific force in x, y and z on the angular rate readings in x,
y and z, 3 of the nine entries appear as an additional bias.

The second thing to consider is that during the KF tun-
ing additional measurement noise was not added to account
for this phenomenon. This was a deliberate choice as we
aimed to see when these states needed to be modelled.

In order to absorb the unmodelled IMU error param-
eters there needs to be both ‘enough’ overmodelling of the
bias states to cover the ‘extra bias’ from the unmodelled er-
rors and ‘enough’ overmodelling of the noise was needed to
cover the ‘extra noise’. Given that the automatic filter tuning
used here uses a constant multiple of the actual noise/bias to
configure the KF for the measurement noise/bias state un-
certainty (respectively), when the noise/bias is higher the
overmodelling is also higher in absolute terms, as it is fixed
in proportion of the noise/bias. This would explain why the
filter can cope with higher unmodelled errors when the bi-
ases/noise are higher.

It would be possible without having any significant ef-
fect on the computational or requirements or the difficulty of
writing the filter, to add both additional bias uncertainty and
increase the system noise to try to account for the unmod-
elled IMU error parameters, which is effectively modelling
their ‘average effect’. If this were done correctly then this
might have a positive effect on filter stability. This would
be an interesting extension of this research. However, it
should be noted that overmodelling error parameters has
drawbacks. Over-modelling the state uncertainties might in-
crease the convergence time as the state would ‘start’ further
from the truth estimate. It also might worsen the observabil-
ity of some error states. Over-modelling the system noise
parameter may also slow the convergence time as well as
reducing the accuracy of the estimate after convergence.

6 PRACTICAL APPLICATIONS OF THESE
RESULTS

6.1 Basic application
One of the aims of this research is to produce a resource
where navigation system designers can look up the speci-
fications of the IMU they are planning to use which deter-
mines whether a basic Kalman filter INS-GNSS integration

will be sufficient to calibrate the sensors in-run. This would
save them the time and effort of designing and building the
whole system only to find that the sensors’ errors are too
large for a standard KF to remain stable.

As an example of how this could be applied, the real
sensor models, whose specifications were given in Table 2,
are plotted in Figure 17 as different coloured circles. It
is clear that the two uncalibrated automotive MEMS sen-
sors are well outside the KF stability limit; and the Xsens
IMU, which is factory calibrated, is right on the boundary.
It is also noteworthy that the specification of the Xsens as
“aligned to 0.1 degree” [25], is very close to the ‘low’ un-
modelled errors tested here. As such these results suggest
that basic KF integration with the Xsens should be stable,
or at least it would be if the tuning was handled carefully.

6.2 Arrays and Smart Arrays
A sensor array is where the outputs of multiple inertial sen-
sor triads (accelerometers, gyroscopes or both) are com-
bined by ensemble averaging to a single angular rate and
specific force output. This can dramatically increase the
performance of the combined system by reducing the noise
and the distribution of the fixed errors. Consider a sensor
model where a particular systematic error is distributed nor-
mally with mean 0 and standard deviation σ. If one sensor
is used in the IMU then this systematic error will be dis-
tributed with standard deviation σ. However, if the output
of n sensors are combined in the IMU then that systematic
error will be distributed for the IMU with standard deviation
σ√
n

and mean zero4. This applies to all the systematic errors
and also the mean of the output noise will be divided by

√
n

and even the effect of quantisation noise 5

If the assumptions above such as zero-mean distri-
butions, Gaussian distributions and independence between
sensor triads are not met, then in a normal sensor array per-
formance will be reduced. However, a smart array can be
used instead. A smart array is an inertial measurement unit
(IMU) comprising an array of inertial sensors which have
been arranged to exploit the design characteristics of the
sensors such that the errors exhibited are smaller than those
obtained by simple averaging [3]. When the assumptions
mentioned are not met, a smart array will perform consid-
erably better than a standard array. For example, if the bias
does not have a zero-mean distribution then an anti-parallel
arrangement of the sensor triads that make up the IMU will
make the combined smart array’s bias zero mean [3] as well
as removing most of the temperature dependent bias varia-
tion [27]. If the sensor specification is symmetric about zero
(e.g. bias is ±50 milli-g) and it is not actually zero-mean it
must have a lower actual SD to fit within specifications than
if it were zero-mean, so the smart array would increase ac-

4This is because the expectation of a sum of zero mean random vari-
ables is zero, and also the variance of the sum of independent random vari-
ables is sum of their variances so the variance of their sum is nσ2. The
mean is the sum multiplied by 1

n
, so the variance of the mean is the vari-

ance of the sum multiplied by
(

1
n

)2
that is nσ2

n2 = σ2

n
so the standard

deviation of their mean is σ√
n

.
5Assuming the raw sensor bias SD>> quantisation level, but this will

always be the case in practice.



Figure 17. Three dimensional subspace of the search space showing the where the KF fails for different values of accelerometer and gyroscope
bias and gyroscope noise with accelerometer noise fixed at 100 µg/

√
Hz hour and both accelerometer and gyroscope unmodelled

errors fixed to ‘low’ (see Table 3). Also shown are the specifications of selected MEMS sensors: a tactical grade IMU, Xsens Mti-G,
Invensense MPU-9150, and an IMU comprising a STMicrotronics L3G4200D gyroscope and a Bosch BMA-180 accelerometer.
The circles denote the performance of a single sensor, the squares denote the theoretical performance of a small array of four
sensors, and the diamonds a large array of 64 sensors (not plotted for Xsens).

curacy.
Smart array techniques are important because real

sensors’ errors are not distributed with perfect zero-mean
normal distributions, for examples see [26] and [3]. By
modelling errors as zero-mean normal distributions, we are
forced to over-model the state uncertainty, which has nega-
tive implications as discussed at the end of Section 5.2.

There could be a number of reasons why sensors’ er-
rors are not distributed independently with zero-mean nor-
mal distributions. These could range from ‘cherry picking’
the sensors with the smallest errors to be sold as higher
grade sensors, effectively removing the middle of the dis-
tribution, to manufacturing or design flaws. It is also likely
that sensors from the same production batch will have more
correlated errors than others of the same design.

The effects of using a sensor array can be seen in Fig-
ure 17. The circles represent single sensors but a array of
4 of these would have half as great systematic errors and
half as great a noise PSD as illustrated by the squares, and
array of 16 would have a quarter the level of noise and sys-
tematic errors. There is a limit on the number of sensors
that can reasonably be combined into an array, so as an ex-
ample of a large, but still practical (for instance [28] has
an array of 100 sensors), array the performance of 64 sen-
sors are shown as diamonds. It can be seen that the effect
of even a small array moves the Xsens sensor well inside
the boundary, but even with the large array array of com-
bined Bosch accelerometers and ST gyroscopes has only

just made it to the boundary, and the Invensense MPU-9050
array is still far away. This implies that even when using a
large array some pre-calibration may be required of the raw
sensors. However, only gyroscope bias need be calibrated
(e.g. by static calibration) as the other errors are within the
area where GNSS-calibration is possible.

6.3 Other Implications
When considering the widest implications of the research
presented in this paper first we have to consider how it is
limited.

First, can one generalise results from a ‘car’ motion
profile to other uses of MEMS IMUs. Consider these two
points: higher average velocities during the simulation help
the GNSS-INS integration because GNSS position noise
(close to independent of speed) has less of an effect on the
overall profile when the distance travelled between GNSS
epochs is greater; and, second, higher peak accelerations
and angular speeds together with more variation in the true
specific force and angular rate profile will excite the un-
modelled error sources (Scale factor error, cross coupling
error) to a greater extent. The ‘car’ motion profile used for
this paper clearly has relatively high average speeds and rel-
atively low ‘dynamics’ in terms of angular rate particularly.

Considering these two points it should be clear that
applying these results to pedestrian navigation is not ap-
propriate, however as was discussed in Section 4.4, pedes-
trian navigation is commonly carried out with step-detection



rather than the inertial navigation equations. The other ma-
jor application of MEMS inertial navigation is low-cost au-
tonomous vehicles and unmanned aerial vehicles (UAVs),
land-based autonomous vehicles have motion characteris-
tics very similar to cars and low-cost UAVs also travel at
similar speeds but do exhibit more variation in their motion
profile. It seems reasonable to assume that for these uses the
results could be considered similar enough.

Secondly we have considered the simplest possible
INS-GNSS integration Kalman filter possible, as it is cur-
rently configured it is not appropriate for ‘medium’ un-
modelled error terms, and this ‘medium’ is pretty small in
MEMS terms, although it is possible that relaxing the filter
tuning may regain stability at the cost of convergence speed
and accuracy. However, with array techniques as mentioned
in Section 6.2, the un-modelled error parameters could be
reduced by at least one ‘level’, mitigating this effect. We
also might assume that if these unmodelled states were mod-
elled then the performance is quite similar to when they
were ‘insignificant’.

Bearing these limits in mind we can make a couple of
points that are important for in general. The first is that basic
KF integration can be sufficient to calibrate all the other INS
errors if the gyroscope bias SD is below the level of around
1-2 dps. This means that any pre-calibration should concen-
trate on the gyroscope bias, and estimating the other param-
eters can be left to the INS-GNSS integration. Fortunately,
gyroscope bias is also among the easiest of the IMU errors
to pre-calibrate, as it can be observed in a simple static test.

Secondly, a major issues for calibration of MEMS sen-
sors is that the calibration parameters vary with temperature.
For example, the L3G4200D claims performance bias vari-
ation with temperature of 0.03 dps/◦C. However, even with
a 30◦C operating range this is less than 1 dps. Thus if the
sensor were already calibrated before a change in tempera-
ture then simply increasing the state uncertainty in the KF
when the temperature changes would allow the INS-GNSS
integration to compute the new bias.

7 CONCLUSION
In this paper a new simulation approach to determine the
limit of ‘in run’ sensor calibration using a basic Kalman fil-
ter integration has been presented.

This approach uses criteria which are best suited to
determining Kalman filter failure in this context. These cri-
teria monitor filter stability rather than using simulated out-
ages or thresholds for the improvement of error states.

An approach to simulating INS calibration using a
basic INS-GNSS Kalman filter integration has been pre-
sented, which allows different IMU specification levels to
run through integration Kalman filters using a Monte Carlo
simulation method and then using the criteria mentioned
above a decision can be made about whether that sensor
specification is good enough for ‘in-run’ calibration. It is
important to note that this technique is not specific to GNSS
integration, another aiding technology could be used instead
or even Zero-velocity updates.

Experiments run using this technique have been able

to show that within the ranges of errors encountered by real
MEMS inertial sensors the most important error is the gy-
roscope bias. The maximum gyroscope bias standard devi-
ation that is acceptable varies between 0.6 and 2.5 dps de-
pending on the accelerometer noise level, gyroscope noise
level and accelerometer bias SD, the latter being the most
important.

Using this most basic Kalman filter integration, it is
clear that the errors which are not modelled (e.g. scale factor
and cross-coupling errors), are present at a level in MEMS
IMUs that is too significant to be neglected and they must
be taken into account at least during filter tuning.

This paper has presented at what point in terms of the
quality of the IMU a basic Kalman filter can be used. This
means that navigation system designers can determine for
which IMUs specification levels they need to use a more
complex non-linear Kalman filter variant.

As well as providing a design resource, the outputs
of this study can support the prioritization of research into
ultra-low-cost inertial navigation between non-linear esti-
mation, pre-calibration techniques, smart arrays and hard-
ware development. This will open up many new appli-
cations for inertial navigation, including smartphone apps,
intelligent transport systems, dismounted soldiers and au-
tonomous vehicles.

8 FUTURE WORK
There are a few extensions to this work that would have been
made if more time and computational resources were avail-
able (in increasing order of resources required). One would
have been to test more intermediate levels of the ‘unmod-
elled error’ parameters than ‘high’, ‘medium’, and ‘low’
accelerometer and ‘high’, ‘medium’, and ‘low’ gyroscope
unmodelled errors. This would have enabled us to deter-
mine more exactly when these needed to be accounted for.

Similarly it would be interesting to verify that filter
stability can be maintained with ‘medium’ and/or ‘high’ un-
modelled errors by altering the filter tuning. Finally it would
be good to test different levels of ‘overmodelling’ for all
states and its effect on stability, specifically to see how far
the .

In further research on a similar vein the stability lim-
its of unscented Kalman filter based INS-GNSS calibration
should be examined.
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