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Abstract

{/-Amphetamine inhibits neuronal uptake, and causes impulse-independent 

release of monoamines. There are several reports that {/-amphetamine increases 

glutamate efflux in the rat cerebral cortex, but this has not been investigated 

systematically. It is unclear whether this is direct or secondary to its effects on 

dopamine transmission. These experiments aimed to compare regulation of 

extracellular glutamate in two adjacent subregions of the rat anterior cingulate cortex 

using in vivo microdialysis: the rostral anterior cingulate cortex (rACC) and caudal 

anterior cingulate cortex (cACC), which are innervated by dopaminergic projections 

from different brainstem nuclei.

The first finding was that the glutamate response to {/-amphetamine depended 

on subregion and route of administration. Glutamate in the cACC but not the rACC 

was increased by systemic {/-amphetamine. Conversely, glutamate in the rACC but 

not the cACC was increased by local {/-amphetamine. Local infusion of dopamine in 

the rACC mimicked the effect of {/-amphetamine, suggesting the glutamate response 

is mediated by dopamine. This was confirmed by experiments where the glutamate 

response to local {/-amphetamine in the rACC was blocked by the D|-like receptor 

antagonist SCH23390 but not the D2-like receptor antagonist haloperidol.

Local infusion of dihydrokainate (DHK), which inhibits the glial GLT-1 

glutamate transporter, did not affect spontaneous efflux o f glutamate in either 

subregion. However, DHK increased glutamate efflux during local infusion o f 

{/-amphetamine in the cACC, indicating that GLT-1 normally contributes to clearance 

of glutamate released by {/-amphetamine. In contrast, infusion of DHK reduced 

glutamate efflux in the rACC of rats given systemic {/-amphetamine, suggesting that
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impairment o f GLT-1 function leads to reduced glutamate release (possibly through 

activation of inhibitory autoreceptors).

Such striking neurochemical asymmetries enable spatial focussing o f the 

response to ^-amphetamine in the ACC and could contribute to demarcation o f the 

role of each of its subregions in regulation o f mood and behaviour.
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Chapter 1

1.0/ General Introduction

Administration of the psychostimulant drug //-amphetamine is associated with 

increased motor arousal, psychosis and analgesia. Its influences on mood and 

behaviour are thought to be due to its effects on catecholamine transmission in the 

brain, especially the prefrontal cortex. In agreement with this, abnormal 

dopaminergic neurotransmission in the prefrontal cortex is associated with 

pathological brain states such as schizophrenia and depression.

Extensive evidence also points to disrupted glutamatergic neurotransmission 

in the prefrontal cortex as a potentially important factor in psychiatric disorders (e.g. 

Moghaddam, 2002). However, hardly any studies have investigated whether, or how, 

//-amphetamine modifies glutamate transmission in the prefrontal cortex.

//-Amphetamine has been a focus o f research for many years by this laboratory 

and its effects on monoamines have been widely studied. As will be discussed in 

detail in later sections, a few published studies found that //-amphetamine increased 

glutamate in the prefrontal cortex, while other laboratories reported no effect at all. 

The inconsistencies o f these reports could be due to the study o f different subregions 

o f the prefrontal cortex, broadly referred to as the ‘prefrontal cortex’. The anterior 

cingulate cortex (ACC) is a subdivision of the prefrontal cortex. The dorso-ventral 

aspect o f this subregion has been extensively studied. However, no systematic study 

of the rostro-caudal plane has been so far carried out, despite clear demarcation o f 

function between the rostral and caudal ACC. Here, I investigated the effects o f 

//-amphetamine on glutamate in more detail by comparing regulation of glutamatergic
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neurotransmission in two subregions o f the rat anterior cingulate cortex -  the rostral 

anterior cingulate cortex (rACC) and caudal anterior cingulate cortex (cACC). Since 

the source and density o f dopaminergic terminals varies in different regions o f the 

ACC, this could have a profound influence on the effects of d-amphetamine on 

glutamatergic transmission. I therefore characterised the role of dopamine in 

regulation o f glutamatergic transmission in these two subregions.

The majority o f published studies o f glutamate are concerned with changes in 

fast synaptic transmission (in the order of milliseconds). However, the changes in 

glutamatergic transmission associated with pathological brain states are long-lasting, 

and so prolonged, stable changes in glutamate are of interest also. It is now 

acknowledged that little, if any, extracellular glutamate is derived from neuronal 

release. In fact, d-amphetamine causes impulse-independent release of monoamines 

via retrotransport on neuronal transporters, which resemble glial glutamate 

transporters (EAAT1/GLT-1). A final objective of this study was to test whether the 

glutamate response to d-amphetamine in the rACC and cACC is modified by 

functional blockade o f GLT-1.

1.1/ THE PREFRONTAL CORTEX

The prefrontal cortex (Figure 1.1) is involved in a range of behavioural control 

processes but is particularly implicated in working memory processes. Working 

memory is defined as the ability to retain and manipulate mnemonic information to 

guide ongoing behaviour (Baddeley, 1986). Two key aspects of working memory 

have been characterised. One important component is the short-term storage of trial- 

unique information, whereby information about specific stimuli is retained briefly in a
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short-term memory buffer and discarded when the appropriate response has been 

executed. Another element of working memory involves ‘executive functions’, which 

include supervisory processes for the temporal organisation of behaviour and the use 

of short-term memory to plan a sequence of forthcoming responses.

1.1.11 Anatomical delineation o f the prefrontal cortex

The prefrontal cortex was originally defined as the region of the cortex with 

strong reciprocal connections with the mediodorsal nucleus (MD) of the thalamus 

(Kolb, 1984). However, in all species studied, the frontal cortical areas that receive 

mediodorsal inputs receive, in addition, fibres from other specific thalamic nuclei, in 

particular from the anterior parts of the ventral complex of the thalamus (Conde et al., 

1990; Musil and Olson, 1988). This anatomical feature alone cannot provide 

unequivocal criteria to distinguish the prefrontal cortex from the more posterior parts 

o f the frontal lobe. Another anatomical characteristic suggested to be unique to the 

prefrontal cortex is the input o f dopaminergic fibres from the ventral mesencephalon. 

However, this dopaminergic innervation does not appear to be restricted to the 

prefrontal cortex (Klitenick et al., 1992).

The prefrontal cortex comprises several cytoarchitectonic subdivisions. The 

first is the medial frontal division, which can be subdivided into a dorsal region that 

includes precentral (PrC) and anterior cingulate (ACC) cortices and a ventral 

component that includes the prelimbic (PrL, also known as Cg3), infralimbic (IL) and 

medial orbital (MO) cortices. The second is a lateral region that includes the dorsal 

and ventral agranular insular (AID, AIV) and lateral orbital (LO) cortices. Finally,
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there exists a ventral region, which encompasses the ventral orbital (VO) and ventral 

lateral orbital (VLO) cortices (Paxinos and Watson, 2005).

Prefrontal Cortex (PFC)

Medial PFC Lateral PFC

I— '— I I----- Ll--------1
Dorsal PFC Ventral PFC AID AIO LO

i----- “n rLi—i
PrC ACC PL IL MO

Figure 1.1 Anatomical delineation o f the prefrontal cortex. Abbreviations AID: 
dorsal agranular insular cortex; AIV: ventral agranular insular cortex; LO: lateral 
orbital cortex; VO: ventral orbital cortex; VLO: ventral lateral orbital cortex; PrC: 
precentral cortex; ACC: anterior cingulate cortex; PL; prelimbic cortex; IL: 
infralimbic cortex; MO: medial orbital cortex.

1.1.2/ The medial prefrontal cortex

The medial prefrontal cortex is a component of the motive circuit involved in 

reward-orienting behaviours, such as those associated with drug addiction. It can be 

further characterised as five subdivisions: the infralimbic, prelimbic (area Cg3 o f the 

anterior cingulate cortex), dorsal and ventral anterior cingulate (areas Cgl and Cg2 of 

the anterior cingulate cortex), medial precentral and medial orbital cortices (Paxinos 

and Watson, 2005, see Figure 1.1).

1.1.3/ The anterior cingulate cortex -  structure and function

In 2005, Jones et al. determined the topographical and laminar characteristics of 

intrinsic cingulate connections in the rat (see Figure 1.2). They found that the

Ventral PFC

VO VLO
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cingulate cortices can be subdivided into at least 13 regions on the basis o f the 

combination o f cytoarchitectonic characteristics and the pattern of the intrinsic 

connections.

Figure 1.2 Midsaggital view o f the rat cingulate cortex. Abbreviations ACd: dorsal 
anterior cingulate cortex; ACv: ventral anterior cingulate cortex; PL: Prelimbic 
cortex; 1L: inffalimbic cortex; RSd: dorsal retrosplenial cortex; RSv(a and b): ventral 
retrosplenial cortex (adapted from Jones et al., 2005).

Furthermore, imaging studies of the human brain suggest that the anterior cingulate 

cortex can be divided into three functional zones (Yucel et al., 2003) -

(1) A rostral affective/visceral region (aff-ACC), located inferior and anterior to 

the genu of the corpus callosum. This has extensive reciprocal connections 

with the orbitofrontal cortex and the amygdala. This region is responsible for 

the regulation of autonomic and endocrine functions and is also involved in 

higher-order functions, such as conditioned emotional learning, assessment of 

motivational content and assigning emotional valence to internal and external 

stimuli.

(2) A dorsal cognitive division (cog-ACC) lying superior to the callosum. This 

has extensive reciprocal connections with other frontal and temporal areas, 

especially the dorsolateral prefrontal cortex (equivalent to the medial
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prefrontal cortex of the rat) and hippocampus. This region is involved with 

response selection and cognitively-demanding information processing.

(3) A caudal motor region (mot-ACC) deep within the cingulate sulcus. This has 

extensive connections with the primary/supplementary motor and parietal 

regions and plays a role in premotor/skeletomotor function.

These observations in humans have been replicated in animal studies. In 

2001, Johansen et al. examined the effects o f excitotoxin-induced lesions o f the ACC 

on the expression of both formalin-induced nociceptive behaviours and formalin- 

induced conditioned place avoidance. Lesions were induced in either the rostral or 

caudal region of the ACC (rACC or cACC, respectively). The rACC preferentially 

receives nociceptive input, while the cACC receives comparatively little (Berendse 

and Groenewegen, 1991). Lesions o f neither the rACC nor the cACC affected the 

acute nociceptive response to formalin injection. When hind-paw injection of 

formalin was paired with a particular compartment in the place-conditioning 

apparatus, rats with sham lesions o f the ACC spent less time in this compartment on 

the post-conditioning test day as compared with the pre-conditioning test day i.e. 

formalin-induced conditioned place avoidance (F-CPA) was produced. F-CPA was 

reduced by lesions of the rACC, but not the cACC, suggesting that the rACC encodes, 

at least in part, the affective component of pain in rats. The more caudal regions of 

the ACC are involved in motor planning as a secondary response to nociceptor 

stimulation (Vogt et al., 1996).

These observations were confirmed in a subsequent study, where the effects of 

excitotoxic lesions of the rostral anterior cingulate cortex (rACC) or caudal anterior 

cingulate cortex (cACC) in rats on the expression of formalin-induced conditioned
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place avoidance were examined (Johansen et al., 2004). Destruction of neurones 

originating from the rACC (but not the cACC) reduced formalin-conditioned place 

avoidance (F-CPA) without reducing acute pain-related behaviours. Lesions o f the 

rACC decrease the aversive aspect of the response to a nociceptive-activating 

stimulus, therefore decreasing the animals’ motivation to avoid the compartment in 

which the stimulation was produced.

Recently, another study has investigated the involvement of the rACC in the 

consolidation of inhibitory avoidance memory (Malin et al., 2007). Animals were 

tested for active avoidance of a test environment in which they had previously 

experienced an unescapable footshock. Bilateral infusion of the mAChR agonist 

oxotremorine into the rACC post-training enhanced inhibitory avoidance retention, 

but not when administered into the immediately adjacent cACC. This study therefore 

suggested that the anterior cingulate cortex is involved in memory consolidation for 

inhibitory avoidance training, and that this involvement is restricted to the rACC.

Microdialysis studies in the rat also point at a role for the rACC in nociceptive 

processing. In one such study, the carrageenan model o f inflammatory pain in rats 

was used to study the effect of pain on the release of cholecystokinin-like 

immunoreactivity (CCK-LI) in the rACC. In animals with carrageenan-induced 

monoarthritis, both basal and potassium induced release o f CCK-LI were significantly 

increased compared to controls (Erel et al., 2004). This result was confirmed by a 

later study (Heilbom et al., 2007).

All these studies consistently point to a clear demarcation o f function of the 

rostral and caudal anterior cingulate cortices. To date, no authors have tried to 

elucidate the neurochemical processes underlying such differences, despite these
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being o f key importance when examining the role of the anterior cingulate cortex in 

mood and behaviour.

1.2/ GLUTAMATE IN THE ANTERIOR CINGULATE CORTEX

Glutamate is the main excitatory neurotransmitter in the brain, giving rise to 

excitatory postsynaptic potentials when it interacts with its receptors. This is in 

contrast to compounds such as the monoamines (dopamine and noradrenaline), which 

have a modulatory effect through their action on G-protein-coupled receptors, and do 

not cause inhibitory or excitatory postsynaptic potentials (Fillenz, 2005). Glutamate 

produces its effects in the brain through actions at both ionotropic and metabotropic 

receptors.

The ionotropic receptors include the N-methyl-D-aspartate (NMDA), a- 

amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainate receptors 

(Bigge, 1999). The ionotropic glutamate receptors are ligand-gated ion channels with 

a pentameric structure. NMDA receptors are assembled from 2 types o f subunit, NR1 

and NR2, which can exist in different isoforms and splice variants, giving rise to 

many receptor isoforms in the brain. The AMPA and kainate receptors are formed 

from G1uR]-7 and KAi.2 subunits, respectively, which are distinct from NMDA 

receptor subunits, despite being closely related.

The metabotropic glutamate receptors are classified into three groups (for 

review see Pin and Duvoisin, 1995). Group I metabotropic receptors (including 

mGluRl and mGluR5) are coupled to activation of phospholipase C, which 

hydrolyses phosphoinositide phospholipids in the cell plasma membrane. These 

receptors can either be excitatory, increasing conductance and causing more glutamate
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to be released from the presynaptic cell, or inhibitory. Groups II (mGluR2 and 

mGluR3) and III (mGluRs 4, 6 , 7, and 8 ) prevent the formation o f cyclic adenosine 

monophosphate (cAMP) by activating the G-protein Gi, which inhibits adenylate 

cyclase (AC). Receptors in groups II and III reduce the activity of synaptic potentials, 

both inhibitory and excitatory, in the cortex (Chu and Hablitz, 2000). The 

metabotropic glutamate receptors are monomeric G protein-coupled receptors, linked 

to second messengers.

1.2.1 / Regulation o f extracellular glutamate by glial cells

Glial cells are non-neuronal cells that provide support and nutrition, maintain 

homeostasis, form myelin, and participate in signal transmission within the central 

nervous system (for review, see Haydon, 2001). Astrocytes are the most abundant 

glial cells within the brain and have an important role in regulating the external 

environment o f the brain. For example, they participate in the removal of excess ions, 

such as potassium and recycle neurotransmitters during synaptic transmission 

(Volterra and Steinhauser, 2004).

One well-characterised function o f astrocytes is the uptake of glutamate 

released into the extracellular space during synaptic transmission, thus terminating its 

action and preventing the process o f excitotoxicity. Over-activation of NMDA 

receptors by excess exogenous glutamate leads to an increased influx of Na+ and Ca2+ 

ions into neurones (for review see Choi, 1992). Accumulation of intracellular Ca2+ 

ions leads to activation o f numerous enzymes, such as phospholipase C, leading to 

degradation of the cellular membrane and release of endonucleases, which break 

down DNA. The generation of reactive oxygen species (ROS), in combination with
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free radicals leads to lipid peroxidation, cellular lysis and eventual demise of the cell. 

ROS inhibit the activity o f glutamate transporters, therefore leading to increased 

extracellular levels o f glutamate, increased stimulation of NMDA receptors and 

further production of ROS. This feed-forward cycle accelerates cell death.

Since synapses do not possess the means for enzymatically degrading 

glutamate, glutamate transporters are crucial for the termination of glutamatergic 

neurotransmission and prevention o f excitotoxicity (Sonnewald et al., 2002). A 

family o f high-affinity glutamate transporters responsible for the clearance of 

glutamate from the synaptic cleft has evolved. These transporters are expressed by 

many cell types in the central nervous system, including astrocytes, neurons, 

oligodendrocytes, microglia and endothelia (Anderson and Swanson, 1999). Both 

Na+-dependent and -independent glutamate uptake systems exist, but Na+- 

independent transport accounts for only a small proportion of the total glutamate 

uptake (Anderson and Swanson, 2000). At least five Na+-dependent glutamate 

transporters have been cloned using different approaches (Kanai and Hediger, 2003). 

The standard nomenclature for these is EAATs 1-5, but many authors also use other 

names. EAAT1 is also known as GLAST, while EAAT2 is commonly called GLT-1 

(see Alexander et al., 2007 for review of nomenclature). EAAT1 (GLAST) and 

EAAT2 (GLT-1) are localized to astrocytes, with GLAST being predominantly a 

cerebellar transporter (Storck et al., 1992) and GLT-1 localised to the cortex (Pines et 

al., 1992). EAAT3 is localized to neurons throughout the CNS (Berger and Hediger, 

1998, Kanai et al., 1995a, Kanai et al., 1995b, Rothstein et al., 1994), whereas 

EAAT4 is largely restricted to cerebellar Purkinje cells (Nagao et al, 1997). EAAT5 

has been localized exclusively to the retina (Arriza et al., 1997). The transport of 

glutamate is driven by the electrochemical gradient of Na+ with a stoichiometry of
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three Na+ ions cotransported with one glutamate. There is also cotransport of a proton 

or the counter-transport of a hydroxyl ion (or HCO3 ). The existence of glutamate- 

activated Cl' flux distinct from excitatory amino acid (EAA) transport has been 

proposed to counteract Na+-induced cellular depolarization that would otherwise 

decrease EAA transport.

Rothstein et al., (1996) used chronic antisense oligonucleotide treatment to 

knock down the genes for the astrocytic glutamate transporters GLAST and GLT-1. 

Inactivation of the astrocytic glutamate transporters increased extracellular glutamate 

in the striatum, and was associated with neurodegeneration characteristic of 

excitotoxicity and progressive paralysis, demonstrating the importance o f astrocytic 

glutamate transporters in controlling extracellular glutamate. Tanaka et al., (1997) 

generated a GLT-1 knockout mouse, which shows spontaneous epileptic activity and 

increased susceptibility to cortical injury. Glutamate uptake in cortical crude 

synaptosomes of mutant mice was decreased to 5.8 % of that in synaptosomes from 

wild-type mice (Tanaka et al., 1997). This suggests that, of the glutamate 

transporters, GLT-1 accounts for greater than 90 % of glutamate transport activity in 

the forebrain, highlighting the key role for this transporter in the regulation of 

extracellular glutamate.

1.3/ MICRODIALYSIS OF GLUTAMATE

In 1910, Legendre and Pieron observed that a sleep factor could be collected 

from the cerebral ventricles and this led to a whole host of studies devoted to the 

analysis o f neurotransmitters released from the brain during a physiological event. 

Microdialysis is one such method used for monitoring the extracellular concentration
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of neurotransmitter in the brain. A concentric probe, originally modelled on a 

capillary, is implanted into a selected brain area. The microdialysis probe consists of 

a semipermeable membrane surrounding two fine cannulae, through which fluid flows 

into and out of the portion containing the semipermeable membrane. Compounds in 

the extracellular space reach the perfusion fluid by diffusion (see: Chapter 2 for more 

details). The most widely studied classes o f factors are the monoamines and their 

metabolites (e.g. Geranton et al., 2003, Wortley et al., 1999). The monoamines are 

released into the extracellular space and their actions are diffuse and prolonged. Their 

presence in the extracellular space makes them easily accessible to measurement by 

microdialysis. They are sensitive to Na+- and Ca2+-channel blockers, confirming that 

they are released from nerve terminals and represent overflow from the synaptic cleft 

(Westerink, 1995). The microdialysis technique has also been successfully applied to 

study glutamate in the brain extracellular fluid (e.g. see an early study by Benveniste 

et al., 1984). However, care must be taken when interpreting changes in extracellular 

glutamate as measured by microdialysis (see next section).

1.3.1/ Microdialysis o f glutamate -  what does it signify?

The source of both drug-evoked and basal glutamate efflux, as measured by 

microdialysis, has long been a matter o f contention. Unlike neuromodulators, such as 

dopamine, glutamate is released into the extracellular space by a variety of sources. 

In 2000, Zilberter used dual-cell recordings to measure the activity of neurones in 

layers 2 and 3 of the rat neocortex. They found that glutamate was released from 

pyramidal cell dendrites into the extracellular space. Other neuronal sources of 

glutamate include the terminals of cortico-cortical pyramical cells, thalamocortical 

neurones and contralateral (corticofugal) projections. Glutamate is also released into
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the extracellular space by non-neuronal sources, namely glial cells. This can either be 

via Ca2+-independent release, through the cystine-glutamate antiporter, present in the 

glial cell membrane (Baker et al., 2002) or via Ca2+-dependent release (Montana et 

al., 2006).

Microdialysis is frequently used to study changes in glutamate concentration in 

the extracellular space during pharmacological or behavioural activation. These 

fluctuations in glutamate concentration are often assumed to represent the synaptic 

release of glutamate, but the presence of glutamate in high concentrations doesn’t 

necessarily mean that it has been released from nerve terminals (Herrera-Marschitz et 

al., 1996, Timmerman and Westerink, 1997). This contrasts with neurotransmitters 

such as dopamine and noradrenaline (Del Arco et al., 2003). Monoamines can be 

distinguished from the ‘classical’ neurotransmitters (glutamate and GABA), since 

they do not give rise to excitatory and inhibitory postsynaptic potentials. Rather, they 

act on G-protein-coupled receptors, which activate enzymes that give rise to second 

messengers. The actions o f monoamines are diffuse and prolonged as they are 

released into the extracellular compartment, making them accessible to measurement 

by microdialysis. The extracellular levels of monoamines such as dopamine and 

noradrenaline, as measured by microdialysis, are reduced by the addition of drugs 

such as TTX and Ca2+ channel blockers, confirming that they are of neuronal origin 

(Westerink, 1995). Glutamate is present as a metabolic intermediate as well as being 

found in neurones and glial cells and greater than 60 % of extracellular glutamate 

found in the brain has a nontransmitter origin (Fonnum, 1984). The significance of 

changes in dialysate concentrations of glutamate is still controversial.

To investigate neuronal vs. non-neuronal sources of basal dialysate glutamate, two

24"criteria can be applied -  involvement o f nerve impulses and Ca -dependence (del
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Arco et al.y 2003, Timmerman and Westerink, 1997). In one such study, several 

criteria were applied to ascertain the neuronal origin of glutamate and other 

neurotransmitters quantified by microdialysis (Herrera-Marschitz et al., 1996). These 

were sensitivity to

• K+-depolarisation

• Na+-channel blockade

• Removal o f extracellular Ca2+

• Depletion o f synaptic vesicles by local administration of the selective 

neurotoxin of-latrotoxin.

Dopamine fulfilled all these criteria. However, glutamate levels in the brain 

regions o f interest (neostriatum, substantia nigra, frontoparietal cortex) were not 

greatly affected by K+-depolarisation, and were paradoxically increased by TTX 

infusion and removal o f Ca2+ from the infusion medium, arguing against a neuronal 

origin for basal extracellular glutamate. These data correlate well with 

neuroanatomical evidence showing that the neuronal compartment of dopamine (open 

synapse), but not glutamate (closed synapse), is linked to the extracellular space (Zoli 

and Agnati, 1996). Dopamine is released far from postsynaptic sites and there is a 

low density of dopamine transporters located close to the synaptic cleft so synaptic 

dopamine diffuses through the extracellular space to be sampled by the microdialysis 

probe. However, a significant diffusion of glutamate from the synaptic cleft to the 

extracellular space is unlikely due to the high density o f astrocytic glutamate 

transporters around the synapse (Del Arco et al., 2003). Therefore, a neuronal origin 

for basal extracellular glutamate cannot be assumed.
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Baker et al, (2002) investigated the origin and function o f in vivo non-synaptic 

glutamate in the striatum in more detail. The cystine-glutamate antiporter is a 

membrane-bound Na+-independent anionic amino acid transporter, which exchanges 

extracellular cystine for intracellular glutamate (Danbolt, 2001). The transporter is 

ubiquitously distributed on cells throughout the body, although, in the brain, it may be 

preferentially located on glia (Pow, 2001). Blockade of glutamate release from the 

cystine-glutamate antiporter (using homocysteic acid (0-50 /*M)) produced a decrease 

(60 %) in extrasynaptic glutamate levels in the striatum, whereas blockade of voltage-
I ^  |

dependent Na and Ca channels produced relatively minimal changes. These data 

indicate that the primary source of in vivo non-synaptic glutamate in the striatum 

arises from non-vesicular glutamate release by the cystine-glutamate antiporter. The 

activity o f the cystine-glutamate antiporter is negatively regulated by group II 

metabotropic glutamate receptors (mGluR2/3) via a cAMP-dependent protein kinase 

mechanism.

In contrast to subcortical structures (Baker et al., 2002, 2003), basal glutamate 

levels in the prefrontal cortex are not affected by blockade o f the cystine-glutamate 

antiporter (Melendez et al, 2005). However, Melendez et a l (2005) demonstrated 

that inhibition of the cystine-glutamate antiporter by (S)-4-carboxyphenylglycine 

(CPG) completely reversed the increase in glutamate efflux elicited by the Na+- 

dependent EAAT1-3 blocker DL-threo-/3-benzyloxyaspartate (TBOA). This suggests 

that normally, Na+-dependent transporters clear glutamate released by the cystine- 

glutamate antiporter. When EAATs 1-3 are blocked, glutamate released from the 

antiporter is immediately apparent, suggesting that it does indeed contribute to basal 

extracellular glutamate levels. The coordinates for prefrontal cortex used by
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Melendez et al. correspond closely to the coordinates used for the rostral part of the 

anterior cingulate cortex in my study (AP +2.7 ML +1.1 DV -2.0).

The origin of changes in glutamate efflux in response to physiological or 

pharmacological stimuli has also been a matter of contention. When an action 

potential reaches an excitatory synapse, glutamate is released with a latency of 

microseconds, reaches a high concentration in the synaptic cleft and gives rise to a 

synaptic potential with a duration o f three milliseconds. The action of glutamate is 

terminated by a very efficient uptake mechanism (Kanai and Hediger, 2003, Chapter 

1, section 1.2). The slow time course of stimulated glutamate release and its TTX 

insensitivity argue against a neuronal origin, suggesting that dialysate glutamate is not 

a measure of neuronal release.

A few previous microdialysis studies show increased extracellular glutamate 

concentrations produced by specific drugs, which can be prevented by TTX and are 

dependent on Ca2+ in the perfusion medium, although basal concentrations are not. In 

one such study, intracerebral microdialysis was used to study the effects of systemic 

cocaine (7.5 -  30 mg/kg) on glutamate efflux in the nucleus accumbens (Smith et al., 

1995). The highest dose of cocaine tested produced a 4-fold increase in dialysate 

glutamate levels, which was attenuated by local infusion of Ca2+-ffee buffer and TTX. 

These findings have been interpreted as reflecting the neuronal release of glutamate. 

Glutamate could be diffusing from the synaptic cleft to be sampled by the 

microdialysis probe (‘spill-over’; Del Arco et al., 2003).

Astroctyes are able to release glutamate into the extracellular space 

(Carmignoto, 2000). Furthermore, neuronal exocytotic glutamate release may induce 

an astrocytic glutamate release into the extracellular space, which is therefore TTX-
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and Ca2+-sensitive. The release o f glutamate from astrocytes is preceded by an 

increase o f intracellular Ca2+ that can be propagated through the astrocyte network via 

gap junctions, making up calcium waves (Carmignoto, 2000), suggesting that 

glutamate is released by astrocytes far away from the initial stimulation point. This 

amplifies the astrocytic release o f glutamate, and more glutamate accumulates in the 

extracellular compartment. The role of astrocytes in increased extracellular glutamate 

has been suggested by previous microdialysis studies. For example, Miele et al in 

1996, found an increase in glutamate efflux during induced grooming (initiated by 

dropping water from a pipette onto the rat’s nose). This increase was unaffected by 

local infusion of TTX. The authors speculated about the involvement of astrocytes in 

the changes in extracellular glutamate.

Recently, communication modes other than synaptic transmission have been 

proposed to exist in the central nervous system, suggesting that the classical view o f 

communication processes should be enlarged. The terms ‘wiring transmission’ and 

‘volume transmission’ were suggested as the primary conceptual categories o f a 

systematisation of intercellular communication in the CNS (Zoli and Agnati, 1996). 

Wiring transmission is the intercellular communication characterised by a single 

‘transmission channel’ made by cellular (neuronal or glial) structures and with a 

region of discontinuity not larger than a synaptic cleft. Conversely, volume 

transmission is the intercellular communication characterised by diffusion of chemical 

signals in a 3-dimensional fashion in the extracellular fluid (Zoli and Agnati, 1996).

Del Arco et al (2003) have suggested that the glutamate monitored in 

microdialysis studies could be acting as volume transmission signals. Glutamate 

diffuses from its release site to modulate the activity of neuronal-glial assemblies
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surrounding the microdialysis probe (see: Figure 1.3). Glutamate in the region of the 

probe could preferentially activate extrasynaptic receptors to play a role in 

neurotransmission. There is evidence for the existence of extrasynaptic glutamate 

receptors (Sattler et al., 2000). These receptors are localized on their own glutamate 

synapses (autoreceptors), on astrocytes (Gracy and Pickel, 1996) and other 

neurotransmitter system/ terminals such as GABAergic intemeurones (heteroceptors; 

Semyanov and Kullman, 2000). Much evidence has accumulated supporting the 

modulation o f neurotransmission by extracellular glutamate through extrasynaptic 

receptors. In one such study, the uptake of glutamate in the striatum and nucleus 

accumbens was blocked by infusion o f L-trans-pyrroloidine-3,4-dicarboxylic acid 

(PDC: a selective blocker of high-affinity glutamate uptake) through a microdialysis 

probe (Segovia et al., 1997, 1999). Perfusion o f PDC increased extracellular 

dopamine and these increases were correlated with an increase o f extracellular 

glutamate. Furthermore, the increased dopamine efflux was blocked by specific 

ionotropic glutamatergic antagonists. No synaptic contacts exist between 

glutamatergic and dopaminergic terminals in these areas (Sesack and Pickel, 1992). 

The stimulating effects of extracellular glutamate on dopamine could be mediated 

through extrasynaptic receptors located on dopaminergic terminals.

1.3.2/ Microdialysis studies in the prefrontal cortex

A few microdialysis studies have demonstrated increased glutamate in 

different subregions of the rat medial prefrontal cortex after both local and systemic 

administration of ̂ /-amphetamine (Del Arco et al., 1998, Reid et al., 1997). However, 

^/-amphetamine is also reported to have no effect on extracellular glutamate in the 

medial prefrontal cortex in other studies (Shoblock et al., 2003). These inconsistences
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could be due to the use of different coordinates for subregions broadly referred to as 

the ‘prefrontal cortex’. The rat medial prefrontal cortex extends over quite a large 

area of the brain and is comprised o f many distinct subregions (see section 1 .1 ). 

Table 1.1 summarises the wide variety of coordinates used by previous authors when 

referring to the medial prefrontal cortex. It is clear from this table that studies 

investigating the medial prefrontal cortex more systemically need to be undertaken.

Table 1.1 Summary o f microdialysis studies investigating glutamate efflux in the rat
‘medial prefrontal cortex ’

Reference Coordinates for mPFC

Reid et al, 1997 AP +2.5 ML +0.6 DV-4.6

Del Arco et al.. 1998 AP+3.6 ML+0.9 DV-0.5

Abekawa et al.y 2000 AP+2.7 ML+1.4 DV-6.5

Shoblock et al.y 2003 AP+3.2 ML+0.1 DV-6.1

Harte and O’Connor, 2004 AP+2.7 ML+0.8 DV-1.8
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Figure 1.3 Scheme depicting the position o f  the microdialysis probe in relation to the 
glutamatergic synapse.

Changes of extracellular glutamate are thought to be an index of the role these 
neurotransmitters play as volume transmission signals in the brain. Synaptic glutamate 
acts on extrasynaptic glutamatergic receptors located on neurones and astrocytes (•). 
The increase of Ca + in astrocytes causes them to release glutamate. Other 
neurotransmitters such as DA, NA and ACh could activate non-glutamatergic 
receptors (•) located on astrocytes and induce the release of glutamate. Glutamate 
then diffuses through the extracellular space to reach the microdialysis probe. This 
extracellular glutamate also modulates the activity of glial-neurone assemblies 
surrounding the microdialysis probe (adapted from Del Arco et al., 2003).



1.4/ DOPAMINE AFFERENTS TO THE MEDIAL PREFRONTAL CORTEX

1.4.1/ Neuroanatomy o f dopamine -  pathways in the rat brain

These have been mapped using the formaldehyde (Falck et al., 1962) and 

glycoxylic acid (Lindvall and Bjorklund, 1974) fluorescence techniques. Table 1.2 

illustrates the four main dopamine pathways in the rat brain -  the nigrostriatal 

pathway, the mesocortical pathway, the meso limbic pathway and the

tuberoinfundibular pathway.

Table 1.2 Dopamine pathways in the rat brain

Cells o f origin Projections

(1) Nigrostriatal pathway Substantia nigra Dorsal striatum

(2) Mesocortical pathway Ventral tegmental area Cortex (frontal lobes)

(3) Mesolimbic pathway Ventral tegmental area Ventral striatum (Nucleus 
Accumbens)

(4) Tubero infundibular 
pathway

Medio basal hypothalamus Infundibular region

The system o f interest to this thesis is the mesocortical dopamine pathway, projecting 

from the ventral tegmental area to the cortex (including the medial prefrontal cortex). 

This pathway is essential for the normal cognitive function of the dorsolateral

41



prefrontal cortex and is thought to be involved in motivation and the emotional

response.

Dopamine exerts its effects in the brain by acting through two families o f receptors. 

These include the Di-like (including the Di- and D5- receptors) and D2 -like (including 

the D2 -, D3- and D4 - receptors). All are metabotropic receptors, coupled to the 

stimulation (D|-like family) and inhibition (D2 -like family) of adenylyl cyclase 

activity. In addition, activation o f D2-like receptors opens K+-channels and blocks 

voltage-sensitive Ca -channels. Receptor binding studies have confirmed the 

presence of both Di- and D2 -like receptors in the medial prefrontal cortex of the rat 

(Vincent et al., 1993). Di-like receptors are thought to be located preferentially on 

nonpyramidal neurons (i.e. intemeurones) while D2-like receptors are localized on 

both pyramidal and nonpyramidal neurons.

Studies in the primate prefrontal cortex have revealed that the Di-like 

receptors are far more abundant in this brain region than D2 -like receptors 

(approximately 20-fold) (Lidow et al., 1991). The distal dendrites and spines of 

pyramidal cells are most prominently labeled by antisera against the Di-like receptor 

(Smiley et al., 1994). The Di-like receptor is also present postsynaptically to 

GABAergic intemeurones, particularly those neurons providing the strongest 

inhibitory input to the perisomatic region of cortical pyramidal cells (Muly et al., 

1998). Specific antibodies have been produced against individual D|-like receptors, 

allowing their distribution and subcellular localization in the primate prefrontal cortex 

to be mapped. Ultrastructural studies have revealed that Di-like immunoreactivity is 

prevalent in dendritic spines (Bergson et al., 1995) while the D5 receptor is localized 

on the dendritic shafts of pyramidal neurons (Bergson et al., 1995).
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The distribution of D2 -like receptors has also been extensively mapped in the 

primate prefrontal cortex. D2 -like receptors have been localized to both pre- and post

synaptic structures (Negyessy and Goldman-Rakic, 2005). Postsynaptic D2 -like 

receptors were detected in the spines of glutamatergic pyramidal neurons as well as 

GABAergic intemeurones o f the prefrontal cortex. The study also revealed the 

localization of D2 -like receptors in axon terminals, consistent with the autoreceptor 

function of D2 -like receptors in the prefrontal cortex. These studies indicate species 

differences in the distribution of dopamine receptors between rats and primates.

Both Di- and D2 -like receptors have also been localized to glial cells at least in 

the basal ganglia. The expression of dopamine receptors was examined in vitro using 

cultured astrocytes from the rat basal ganglia (Miyazaki et al., 2004). Dopamine 

receptors belonging to both families were found in the astrocyte membrane (including 

D|-, D3-, D4 - and Ds-receptors) and a D4 -mediated signal transduction in response to 

dopamine wras demonstrated.

1.4.2/ Dopaminergic innervation o f the prefrontal cortex

Three different projections systems to the prefrontal cortex can be 

distinguished: the anteromedial, suprarhinal and supragenual systems (Van Eden et 

al., 1987). The terminals o f the anteromedial and suprarhinal systems predominantly 

distribute in the basal layers of the medial and orbital prefrontal cortex, respectively, 

and originate in the ventral tegmental area (A10). The supragenual system gives rise 

to a terminal plexus in the superficial layers o f the supragenual part of the prefrontal 

cortex and originates in the substantia nigra (A9). Dopamine fibres are present in the
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frontal cortex extending from the rostral pole to the retrospenial cortex, the most 

caudal limit of the anterior cingulate cortex.

(1) The anteromedial system -  The fibres of the anteromedial system are contained 

within the prefrontal subareas: in the medial prefrontal, anterior cingulate and 

prelimbic areas. The density o f the dopaminergic innervation of the pregenual 

prefrontal cortex is much higher in the basal cortical layers (V and VI) compared to 

the more superficial layers (I, II and III). In addition to the laminar differences in 

dopamine fibre distribution, there are also regional differences, correlating well with 

the cytoarchitectonic subareas in this part of the cortex. The highest density o f 

dopamine fibres is found within Cg3 (prelimbic area) of the prefrontal cortex. In 

comparison with this, the dorsal part o f the anterior cingulate cortex contains far 

fewer fibres in the superficial layers I and II, while the densities in layers V and VI 

are comparable to that of Cg3 (Lindvall et a l , 1978).

(2) The supragenual dopamine system -  This fine, superficial dopamine system is 

observed in the entire supragenual cingulate cortex, starting at a level immediately 

rostral to the genu of the corpus callosum and ending at a level within the transitional 

area between the anterior cingulate and retrosplenial cortices. The highest fibre 

density is observed in layer III of the ventral anterior cingulate area. The fibres of this 

system gradually become less dense in the dorsal direction to the border of the medial 

precentral area (Lindvall et al., 1978).

(3) The suprarhinal dopamine system -  The fibres of this system have a similar 

distribution to that of the anteromedial system, being rather homogeneously
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distributed over the cortical layers. However, a higher density is observed in the more 

basal cortical layers (Lindvall et al., 1978).

In general, the prelimbic and dorsal agranular insular areas contain the highest 

densities of dopamine fibres. Compared to the distribution of dopamine fibres in 

these two areas, the density of dopamine fibres in the pregenual part of the anterior 

cingulate and ventral agranular insular areas is less, especially in the more superficial 

layers. Febvret et al. (1991) used single- or double-immunocytochemical methods to 

provide further evidence that distinct subsets of dopaminergic neurones project to the 

rat cerebral cortex. They distinguished three classes of afferents with a distinct 

regional and laminar distribution. The first one was characterised by a dense 

meshwork of fine dotted neurotensin (NT)-positive varicosities, occupying restricted 

areas of the limbic system, namely the granular retrosplenial and the deep entorhinal 

cortices and subicular complex. Secondly, the mixed NT/DA projections identified in 

the prefrontal cortex extended rostrocaudally in layer VI of the whole cerebral cortex 

and formed cluster-like groupings in layers II-III of the medial and lateral entorhinal 

cortex. Thirdly, the dopamine projections to the superficial layers of the anterior 

cingulate, motor, retrosplenial and visual cortices were not colocalised with NT.

The mixed NT/dopaminergic fibres distribute to the deeper cortical layers V 

and VI and exhibit a striking rostrocaudal gradient of decreasing density from the 

prefrontal cortex to the visual cortex. The dopamine projections to the superficial 

layers o f the anterior cingulate reach their cortical targets only after birth, during the 

first and second postnatal weeks. They distribute to the superficial cortical layers I-III 

and are mainly concentrated in the anterior cingulate cortex but innervate also 

sparsely the premotor, retrosplenial and visual cortices. The two groups of fibres have
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a distinct morphology, different types o f collateralisation and a different medio lateral 

origin in the ventral mesencephalon: ventral tegemental area (group A 1 0 ) for the 

former, medial substantia nigra (A9) for the latter.

1.5/ GLUTAMATE-DOPAMINE INTERACTIONS

It has been well established that glutamate release in the prefrontal cortex 

affects the release o f other neurotransmitters in this brain region, for example GAB A 

and dopamine. Del Arco et al., in 1999, used microdialysis to investigate the 

interactions between glutamate, GAB A and dopamine in the rat prefrontal cortex. 

They found that intracortical infusions of the glutamate reuptake inhibitor L-trans- 

pyrrolidine-2,4-dicarboxilic acid (PDC: 0.5 -  32 mM) increased extracellular 

glutamate in the mPFC dose-dependently. This increase in glutamate was correlated 

with an increase in extracellular GABA and also a decrease in the extracellular 

concentrations of the dopamine metabolites DOPAC and HVA. The increase in 

extracellular GABA was blocked by co-infusion of the AMPA receptor antagonist 

6,7-dinitroquinoxaline-2,3-dione (DNQX: 0.5 mM), but not the NMDA receptor 

antagonist 3-[(R)-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid (CPP: 1 mM), 

while the decrease in dopamine metabolites was blocked by the NMDA receptor 

antagonist only. Direct connections exist between glutamate terminals and 

GABAergic intemeurones in the prefrontal cortex. The increase in GABA efflux 

produced by increased endogenous glutamate could be attributed to the effect of 

glutamate in these intemeurones. GABA could also participate in the effects of 

endogenous glutamate on dopaminergic neurotransmission (i.e. the decrease in 

dopamine metabolites seen in this study).
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Takahata and Moghaddam, in 1998, determined whether tonic activation o f 

glutamate receptors contributes to basal dopamine release in the rat prefrontal cortex. 

To investigate whether tonic activation of glutamate receptors contributes to basal 

dopamine release, they looked at the effects o f local administration of both NMDA 

(AP-5: 500 pM) and AMPA (LY293558: 100 pM) receptor antagonists on dopamine 

efflux. In awake rats, blockade of cortical AMPA receptors profoundly reduced 

dopamine efflux in the prefrontal cortex, suggesting that dopamine outflow in this 

area is under tonic excitatory control of AMPA receptors. Dopamine and excitatory 

terminals are in close apposition in the prefrontal cortex, suggesting possible 

presynaptic interactions between AMPA receptors and dopaminergic neurones. 

Blockade of cortical NMDA receptors increased dopamine efflux, suggesting that 

dopamine transmission is under tonic inhibitory control by NMDA receptors in this 

brain region. This could be an indirect effect. NMDA receptors are present on 

cortical GABAergic intemeurones, which inhibit dopamine release (Santiago et al., 

1993). Antagonists of both NMDA (AP-5: 500 pM) and AMPA (LY293558: 100 

pM) receptors, when applied into the ventral tegmental area (VTA), decreased 

dopamine efflux in the prefrontal cortex (Takahata and Moghaddam, 1998). This 

suggests an enhancement of dopaminergic neurotransmission in the prefrontal cortex 

by glutamate at the level of the cell bodies (see: Figure 1.4). Handling-induced 

increases in dopamine in the PFC were not altered by intracortical infusion of AP-5, 

but were blocked by LY293558, suggesting that glutamatergic transmission also 

regulates stimulus-induced increase of dopamine release in the PFC.

Feenstra et al., in 1995, investigated the effect of local infusion of the 

glutamate agonist, NMDA, in the prefrontal cortex of freely-moving rats on the 

extracellular concentration of dopamine. Local application o f NMDA (ImM)
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increased dopamine to 170-1500 %. However, application of a lower concentration of 

NMDA (0.1 mM) decreased extracellular dopamine to 61 %. These effects were 

blocked by co-infusion of the competitive NMDA receptor antagonist AP-5. This 

demonstrates a dual action of glutamate on dopamine release, depending on the 

concentration of glutamatergic agonist applied. Dopamine terminals on neurones in 

the prefrontal cortex are often in close apposition to excitatory afferents and increased 

activation of these glutamatergic projections results in increased dopamine release. 

With respect to the inhibitory action of glutamate on dopamine efflux in the prefrontal 

cortex, the authors suggested a circuit involving the ventral striatum, which receives 

direct projections from the prefrontal cortex, and the ventral tegmental area (VTA), 

the location of dopaminergic neurones projecting to the prefrontal cortex. The VTA 

receives both direct and indirect projections from the prefrontal cortex. Thierry et al. 

in 1979, showed that stimulation of the prefrontal cortex may produce an inhibition of 

activity in the majority o f those VTA neurones that project to the prefrontal cortex. 

Glutamatergic control o f dopamine transmission is not restricted to the prefrontal 

cortex. For example, infusions o f NMDA into the raphe nucleus decreased dopamine 

efflux, and this effect was reversed by the NMDA antagonist AP-5 (100 pM: Smith 

and Whitton, 2001).
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Figure 1.4 Schematic diagram summarising the interactions o f dopamine, glutamate 
and GABA in the rat medial prefrontal cortex (mPFC) and ventral tegmental area 
(VTA).

49



1.6/ DOPAM IN E-GLUTAMATE INTERACTIONS

It is clear that glutamate has a significant role in the influence o f dopaminergic 

transmission during microdialysis studies, but fewer studies have addressed the 

reciprocal situation i.e. the control o f glutamatergic neurotransmission by the 

dopamine system. Anatomical studies have consistently demonstrated the existence 

of a dopaminergic projection from the ventral tegmental area o f the midbrain to the 

prefrontal cortex in rats (Lindvall and Bjorklund, 1978), comprising a portion of the 

mesocortical dopamine system. These dopaminergic neurones synapse on two cell 

types within the prefrontal cortex -  pyramidal glutamatergic neurones and 

nonpyramidal GABAergic intemeurones.

1.6.1 Modulation o f prefrontocortical glutamate by the dopamine system -  

electrophysiological studies

Electrophysio logical studies have revealed a complex action of Dj-like and 

D2 -like receptors in the control of cortical pyramidal neuronal activity. Activation of 

D2 -like receptors inhibits cortical pyramidal cells, while activation o f Di-like 

receptors excites cortical pyramidal neurons. In one such study, the effects o f 

dopamine (0.1 -  30 /xM), on the passive and active membrane properties of layer V 

pyramidal cells from the rat prefrontal cortex was studied (Gulledge and Jaffe, 1998). 

Application o f dopamine produced a reversible decrease in the number of action 

potentials evoked by a given current step. Pharmacological analysis using Di-like and 

D2 -like receptor ligands suggested that decreases in the excitability o f the pyramidal
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cells was mediated by D2 -like receptor activation, while Di-like receptors had no 

effect.

1.6.2/ Modulation o f prefrontocortical glutamate by the dopamine system -  

microdialysis studies

To date, only a few microdialysis studies have been performed investigating 

the modulation of glutamatergic neurotransmission by dopamine in the prefrontal 

cortex. One study used dual-probe microdialysis to look at the effect of selective 

dopamine receptor ligands applied in the medial prefrontal cortex of rats on local and 

ventral tegemental area glutamate and GABA efflux (Harte and O’Connor, 2004). 

Intracortical infusion by reverse dialysis with the Di-like receptor agonist SKF38393 

(10 -  100 pM) decreased local extracellular glutamate and increased local 

extracellular GABA but had no effect on either transmitter in the ventral tegmental 

area. The decrease in local prefrontal glutamate efflux was reversed by co-infusion of 

the GABAa antagonist bicuculline (0 . 1  pM), suggesting that it occurs indirectly via 

activation of GABAergic intemeurones. Intracortical infusion with the selective 0 2 - 

like receptor agonist pergolide was associated with a decrease in local and VTA 

[GLU] and reversed in the presence of intracortical raclopride (10 pM). These results 

suggest that activation of Di-like receptors decreases local prefrontal cortex glutamate 

efflux via a feed-forward activation of local GABAergic intemeurones. Activation of 

D2 -like receptors in the medial prefrontal cortex directly decreases local glutamate 

efflux and inhibits the excitatory glutamatergic drive on the ventral tegmental area.

Another study investigated the effect of local infusion of the Di-like receptor 

agonist SKF38393 (2 -  200 pM) on glutamate and GABA efflux in the rat prefrontal
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cortex (Abekawa et al., 2000). They found a dose-related decrease in local 

concentrations o f both glutamate and GABA, which was prevented by co-infusion of 

the selective Di-like receptor antagonist SCH23390 (40 pM). These microdialysis 

studies suggest an inhibitory action of Di-like and D2 -like receptors on spontaneous 

glutamate efflux in the prefrontal cortex.

1.7/ THE PHARMACOLOGY OF </-AM PH ET AMINE

The main effects of ^/-amphetamine in the CNS are inhibition of reuptake 

(Table 1.3) of monoamines and promotion of their release out of the cell (Table 1.4). 

Although both actions are possible, they could happen under different conditions. 

However, it is difficult to distinguish between these two actions with in vivo 

experiments. The chemical structure of  ̂ /-amphetamine is illustrated in Figure 1.5.

Figure 1.5 The chemical structure o f d-amphetamine (adapted from Sulzer et al.,
2005).
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Table 1.3 In vitro Ki (nM) for the inhibition o f monoamine uptake by d-amphetamine

NA 5-HT DA

45(1) 39 (2) 1441 (1) 3830 (2) 132 (1) 34 (2) 78 (3)

Ki: inhibition constant (nM); (1) data from Heal et al., (1998); results obtained from 
fronto-cortical preparations for noradrenaline and 5-HT, and from striatum 
preparations for dopamine; (2) data from Rothman et al., (2002); results obtained 
from whole brain minus caudate and cerebellum for noradrenaline and dopamine, and 
from preparation of caudate for dopamine; (3) data from Rowley et al., (2000); results 
obtained from nucleus accumbens preparations.

Table 1.4 Effect o f d-amphetamine on [3HJ-NA, [3HJ-5-HT, and [3HJ-DA release 
from rat brain slices in vitro. Data show % release at different concentrations o f

d-amphetamine

100 nM rf-AMP 1000 nM </-AMP 10000 nM </-AMP
NA 5-HT DA NA 5-HT DA NA 5-HT DA

57 NS 56 135 NS 1 2 2 162 136 138

Data obtained from Heal and Cheetham, 1997.

1.7.1/ Sites o f action o f d-amphetamine - experimental evidence

In vitro and in vivo studies have implicated both vesicular and plasma 

membrane monoamine transporters as mediating the pharmacological effects of 

J-amphetamine. Secretory vesicles in neuronal and endocrine cells are important in 

the storage of classical neurotransmitters. At least two key components of the storage 

process have been identified. The first is vacuolar ATPase, which pumps protons 

from the cytoplasm to the inside o f secretory vesicles. The second is a transporter, 

which exchanges vesicular protons for cytoplasmic neurotransmitter. The vesicular
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monoamine transporter (VMAT) is responsible for transport of monoamines, 

including dopamine, noradrenaline and serotonin. Two major iso forms arising from 

different genes have been characterised (endocrine VMAT1 and neuronal VMAT2: 

for review see Parsons, 2000). The role o f synaptic vesicle pools in the action of d- 

amphetamine was long doubted, mainly due to results from reserpine experiments. 

Reserpine irreversibly binds to storage vesicles o f neurotransmitters such as 

dopamine, noradrenaline, and serotonin (i.e. VMAT-2), leading to depletion of 

monoamine transmitters. Results of in vivo microdialysis work investigating the 

effect of reserpine on d-amphetamine-induced dopamine release in the striatum are 

mixed. Some studies found little or no effect of reserpine (e.g. Callaway et al., 1990), 

while others reported a blockade (e.g. Sabol et al., 1998) of d-amphetamine-induced 

striatal dopamine release.

Several caveats should be taken into account when using reserpine as an 

experimental tool to investigate the pharmacology of d-amphetamine. For example, 

reserpine lowers core body temperature (Danielson et al., 1985), which could 

attenuate dopamine release by d-amphetamine and leading to false positive results. It 

also causes a delayed upregulation of tyrosine hydroxylase activity via enhanced 

transcription, and produces higher levels of cytosolic dopamine (Tissari, 1982). In 

most studies, reserpine was administered 24 h prior to d-amphetamine administration, 

therefore the increase in newly-synthesised dopamine available for release could 

counteract the decrease in dopamine available from synaptic vesicles, leading to false 

negative results.

Newer experimental approaches using genetic manipulations have made the 

use of reserpine redundant. In a study by Pifl et al. (1995), COS-7 cells were 

engineered to express the plasmalemmal dopamine transporter (DAT cells), the
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vesicular monoamine transporter (VAT cells) or both (DAT/VAT cells). Applying 

the superfusion technique, they found that a brief exposure to ^-amphetamine ( 1 - 1 0 0  

fiM for 4 min) caused a rapid and reversible increase in dopamine release from DAT 

cells and DAT/VAT cells but not VAT cells. The magnitude of this release was 

greater in DAT/VAT cells compared to DAT cells. During a prolonged exposure to 

J-amphetamine (1 /*M for 36 min), efflux from DAT cells reached a maximum after 

8  min and subsequently returned to baseline in spite of the continuing presence of 

^-amphetamine. In DAT/VAT cells, a sustained increase in dopamine release was 

observed. This was demonstrated by a peak-shaped curve for DAT cells and a step

shaped release in DAT/VAT cells. This experiment suggests two distinct mechanisms 

of ̂ -amphetamine-induced dopamine release. Firstly, reversal o f the transport action 

of plasmalemmal DAT and secondly, release of dopamine from the intracellular 

vesicular pool, possibly by dissipation of the transmembrane pH that drives biogenic 

amine uptake into synaptic vesicles or by direct interaction with the substrate site of 

the vesicular amine transporter. This latter effect occurs at higher concentrations of d- 

amphetamine.

Another study used the technique of fast-scan cyclic voltammetry and in vivo 

microdialysis to investigate dopamine function in genetically modified mice in which 

the DAT gene has been deleted (Jones et al., 1998). In striatal slices from wild-type 

mice, application of J-amphetamine (10 fiM) causes a gradual increase (~30 min) in 

extracellular dopamine, with a concomitant disappearance of the pool of dopamine 

available for depolarisation-evoked release as measured by cyclic voltammetry. In 

slices from mice lacking the dopamine transporter (DAT-/-), application of 

t/-amphetamine did not change baseline dopamine overflow. However, a decrease in 

electrically-stimulated dopamine release commenced approximately 15 min after
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d-amphetamine treatment and was eliminated after 45 min. The authors deduced that 

d-amphetamine entered dopaminergic terminals and decreased vesicular stores, but 

could not cause release of dopamine into the extracellular space in the absence of 

DAT. Similarly, microdialysis measurements of dopamine after systemic 

d-amphetamine ( 1 0  mg/kg) in freely-moving animals show no change in animals 

lacking the DAT, whereas a 10-fold increase is observed in wild type animals.

Application of the VMAT2 inhibitor Ro4-1284 (10 pM) to striatal slices from 

wild-type mice resulted in a gradual decrease in electrically-stimulated dopamine 

release over approximately 30 min with no accompanying increase in baseline 

dopamine overflow. After Ro4-1284 caused the disappearance of electrically 

stimulated dopamine in a slice from a wild type mouse, 1 0  pM d-amphetamine was 

applied to the slice, and baseline dopamine outflow increased rapidly. These 

experiments illustrate the central importance of both depletion of dopamine from 

secretory vesicles and reversal o f DAT-mediated transport in the releasing-effects of 

d-amphetamine. The plasmalemmal DAT is required for overflow of dopamine into 

the extracellular space, but not for vesicular depletion of vesicular dopamine by 

d-amphetamine. When endogenous, releasable dopamine was mobilised from the 

vesicles into the cytoplasm, the resulting increase in the dopamine concentration 

gradient across the plasma membrane was not sufficient to reverse DAT to a 

measurable degree.

1.7.2/ Mechanisms o f action o f d-amphetamine -  experimental evidence

As mentioned in the opening paragraph of section 1.7, the main effects of 

d-amphetamine in the CNS are thought to be inhibition of reuptake of monoamines 

and promotion of their release out of the cell. This section will discuss some of the
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experimental evidence underlying the proposed mechanisms of action of 

{/-amphetamine. In vitro evidence for both inhibition of reuptake and release of 

monoamines has been provided by studies performed in the laboratory of Rudnick. In 

1995, Wall et al. transfected LLC-PKi cells with cDNAs encoding the human 

noradrenaline transporter (NET), the rat dopamine transporter (DAT) and the rat 

serotonin transporter (SERT). Using these cell lines, the specificity of each 

transporter towards agents that inhibit substrate influx and stimulate substrate efflux 

across the plasma membrane was examined. MPP (l-methyl-4-phenylpyridinium) 

acts as a substrate for both the NET and the DAT. To measure the inhibition of 

monoamine transport, [3H] MPP+ was used as a substrate for LLC-NET and LLC- 

DAT cells, while [3 H] 5-HT was used with LLC-SERT cells. Infusion of 

{/-amphetamine (0.01 -  100 fiM) potently and concentration-dependently inhibited 

NET- and DAT-mediated transport, with a lesser effect on SERT-mediated transport. 

Infusion of 50 fiM {/-amphetamine increased efflux of [3H] MPP+ from LLC-DAT 

cells. This {/-amphetamine-induced efflux of [3H] MPP+ was attenuated by the 

presence o f the transport inhibitor mazindol (50 /xM) demonstrating that the 

{/-amphetamine-induced increase in efflux is mediated by the transport system. This 

study suggests that {/-amphetamine acts as a substrate for plasma membrane biogenic 

amine transporters, and, as a substrate, competes with other substrates for influx and 

also stimulates efflux of internal substrates by a transporter-mediated exchange. 

However, using this technique, the authors could only shed light on the interaction of 

{/-amphetamine with plasma membrane transporters, while the experiments outlined 

in section 1.7.1 have demonstrated evidence for an involvement of the vesicular 

monoamine transporter in the pharmacological effects of {/-amphetamine.
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Pifl et al. (1999) used the superfusion technique to study the effect of 

{/-amphetamine on the noradrenaline transporter (NAT). The cDNA of the 

noradrenaline transporter was transfected into COS-7 cells (NAT-cells) or 

cotransfected with the cDNA of the vesicular monoamine transporter (NAT/VMAT 

cells). As for the dopamine transporter, {/-amphetamine released noradrenaline by 2 

distinct mechanisms: reversal of the plasma membrane transporter to release 

cytoplasmic noradrenaline and, at higher concentrations, release o f noradrenaline 

from the vesicular pool. At higher concentrations of {/-amphetamine (10 and 

100 fiM), there was no release of noradrenaline from cells expressing only the plasma 

membrane transporter. However, on switching back to a {/-amphetamine-free buffer, 

a prompt increase of noradrenaline release was observed. The authors inferred that 

{/-amphetamine was blocking the plasma membrane transporter at high 

concentrations. This did not happen in cells coexpressing both transporters, where the 

concentration of noradrenaline, which is confined in storage vesicles, is much greater.

In vivo techniques have also been used to discriminate between uptake 

inhibition and release of monoamines. A study in this laboratory used in vivo 

microdialysis to investigate mechanisms by which {/-amphetamine releases 

noradrenaline in the frontal cortex and hypothalamus of freely-moving rats (Geranton 

et al., 2003). After systemic administration (10 mg/kg) or local infusion (10 /xM) of 

{/-amphetamine, the increase in noradrenaline efflux in the hypothalamus was greater 

than that in the frontal cortex. In the frontal cortex, the noradrenaline response to 

10 fiM {/-amphetamine was constrained by activation of ofe-adrenoceptors, since 

administration of the c$-adrenoceptor antagonist atipamezole (1 mg/kg i.p.) 

augmented noradrenaline efflux in this brain region. This suggests that, at this 

concentration of {/-amphetamine, inhibition of reuptake of noradrenaline, following its
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impulse-dependent release, is evident in the frontal cortex, but the noradrenaline 

response in the hypothalamus derives mostly from impulse-independent release 

(retrotransport). Blockade of o&-adrenoceptors by atipamezole (1 mg/kg i.p.) did not 

affect the noradrenaline response to 100 fiM d-amphetamine in either brain region, 

possibly because, at this higher concentration, retrotransport of noradrenaline masks 

any compensatory reduction in impulse-evoked release. Therefore, it seems that in 

the frontal cortex, the noradrenaline response to low concentrations of d-amphetamine 

seems to be constrained through activation of c$-adrenoceptors that blunt impulse- 

evoked transmitter release. No such compensatory mechanism is observed in the 

hypothalamus. At higher probe concentrations of d-amphetamine, noradrenaline 

efflux in both brain regions seems to derive from its impulse-independent release.

Another study in the laboratory of Kuczenski used microdialysis to 

characterise the hippocampal and prefrontal cortical noradrenaline responses to 

systemic administration of d-amphetamine (0.5 -  5 mg/kg i.p.; Florin et al., 1994). 

Noradrenaline was dose-dependently increased in each brain region to a similar 

extent. Pre-treatment with the c$-adrenoceptor agonist clonidine (50 /ig/kg i.p.) 

decreased the noradrenaline response to 0.5 mg/kg d-amphetamine by approximately 

75 %, but became progressively less effective as the dose of d-amphetamine was 

increased to 1.75 and 5 mg/kg. This result suggests that d-amphetamine increases 

extracellular noradrenaline through two consequences of its interaction with the 

neuronal transport carrier:

(1) reuptake blockade, which predominates at the lower doses

(2) release, which is prevalent at higher doses
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In summary, two scenarios have emerged from studies investigating the effects o f 

more than one dose of ̂ -amphetamine. Results o f in vitro studies (Pifl et al., 1999) 

suggested that J-amphetamine releases noradrenaline by retrotransport, but, with high 

doses (perfusion of 10 and 100 /zM) ^/-amphetamine accumulates outside the cell and 

blocks the transporter. Consequently, noradrenaline cannot leave the cell via the 

transporter, and there is no increase in noradrenaline efflux. In contrast, in vivo 

microdialysis studies from Florin et al. (1994) and Geranton et al., (2003), in the 

frontal cortex, suggested that low doses of ^-amphetamine increase noradrenaline 

efflux by reuptake inhibition, but retrotransport increases with the dose.

1.8/ THE PHARMACOLOGY OF DIHYDROKAINATE (DHK)

Dihydrokainate (DHK) is a selective, nontransportable inhibitor of the GLT-1 

glutamate transporter (Arriza et al., 1994; see section 1.2 for details about GLT-1). 

This pharmacological inactivation of GLT-1 by DHK distinguishes it from the other 

glutamate transporter subtypes. In 1991, Robinson et al. measured the transport of L- 

[3H]glutamate into crude synaptosomal fractions prepared from the rat forebrain. 

They showed that DHK inhibited transport of glutamate with an IC50 of 

approximately 100 fiM. It has also been reported that DHK has weak agonist actions 

at ionotropic glutamate receptors (AMPA and NMDA) in cultured hippocampal 

neurones (Maki et al., 1994).

1.9/ OBJECTIVES

The overall aim of the experiments performed in this thesis was to compare 

the regulation of glutamatergic neurotransmission in two areas of the rat anterior
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cingulate cortex: the rostral anterior cingulate cortex (rACC) and caudal anterior 

cingulate cortex (cACC).

• To determine whether the glutamate and dopamine responses to d-amphetamine 

differ in the cACC and rACC and to distinguish local vs. polysynaptic release 

mechanisms (Chapters 3 and 4).

• To determine the role of dopamine in the regulation of glutamatergic transmission 

in the cACC and rACC (Chapters 4 and 5).

• To determine the role of the glial glutamate transporter, GLT-1, in the regulation 

of glutamate transmission in the cACC and rACC (Chapters 6 and 7).
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Chapter 2

2.0 Methods

2.1/ IN VIVO NEUROCHEMICAL MONITORING TECHNIQUES

Four main techniques are used for the monitoring of neurotransmitter efflux in 

vivo. These can be classified as follows:

• Sampling techniques with ex situ analysis o f the samples:

1. The push-pull cannula, which can result in extensive damage o f 

the tissue in contact with the perfusate.

2. In vivo microdialysis.

• Monitoring techniques with in situ analysis of neurotransmitter efflux:

1. In vivo voltammetry (see Stamford, 1989)

2. In vivo functional brain imaging.

2.1.1/ The push-pull cannula

The earliest attempt to monitor chemical changes in the extracellular 

compartment of the brain of conscious animals was the push-pull technique developed 

by Gaddum (Gaddum, 1961). The push-pull cannula is composed of two concentric 

hollow fibres or steel cannulae, the inner for the delivery of perfusion medium, the 

outer for the collection of the fluid. Two pumps are required, one to push the fluid 

into the tissue and the other to pull the perfusate out into a collecting tube. 

Neurotransmitters and other substances are taken up by the flow of fluid from the 

cannula for subsequent analysis.
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Over the years, this design has evolved, which has eliminated some of the 

problems encountered during perfusion of an animal. An open flow system is a 

requirement for this type o f perfusion, so tissue damage or bacterial contamination at 

the site of perfusion is possible. A lesion can arise if the rate of flow in the push and 

pull lines are not calibrated precisely or if a particle of tissue blocks the pull tube.

2.1.2/ In vivo microdialysis

In 1966, Bito et al., published the first results obtained with a method that 

would later become in vivo microdialysis. By placing a permeable sack, containing 6 

% dextran in saline, into the brain of dogs, they managed to collect and analyse amino 

acids and ions. The sack was removed 10 weeks after implantation and one single 

sample obtained. The use of the sack enabled the integrity of brain tissue to be 

preserved and provided clean samples. Over the subsequent years, the method has 

been refined. Delgado et al., (1972) introduced the dialytrode, which made 

continuous sampling possible. It consisted of two cannulae (one shorter than the other 

one) arranged side-by-side and closed at the tips by a small porous bag. The 

perfusion system is the same as the one used for the push-pull cannula.

Brain microdialysis consists o f the continuous sampling of endogenous 

molecules in the brain, with minimal perturbation of the system under study. The 

samples are analysed ex situ, after collection. A concentric probe, originally modelled 

on a capillary is implanted into a selected brain region. The microdialysis probe 

consists of a semipermeable membrane surrounding two fine cannulae through which 

fluid flows into and out of the portion containing the semipermeable membrane. The 

perfusion rate varies from 0.5-3 pl/min and collection time varies from 1-20 min. 

Compounds reach the perfusion fluid by diffusion and the size of the solutes
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penetrating the probe is limited by the properties of the dialysis membrane. The 

concentration of solute in the dialysate is not the same as its extracellular 

concentration, but depends on probe recovery. The recovery of a probe in vivo is a 

measure of the rate at which a substance is delivered to the perfusate. This depends 

on perfusion barriers in the brain (the ‘tortuosity’ of the tissue), properties o f the 

dialysis membrane and the rate of perfusion. The probe can also be used for the local 

application of drugs by ‘reverse dialysis’.

2.1.3/ In vivo voltammetry

For in vivo voltammetry, a voltage is applied to an electrode immersed in a 

solution/tissue. The electroactive species, with a suitable oxidation potential, are 

oxidised and a current generated, which enables detection and quantification of the 

electroactive species. This technique is only suitable for the measurement of 

catecholamines and serotonin, as these readily diffuse from the synaptic cleft. In vivo 

voltammetry offers better spatial resolution than in vivo microdialysis and excellent 

temporal resolution. However, it is difficult to detect separately the different 

catecholamines and other electroactive solutes and therefore impossible to study the 

interactions between different neurotransmitter systems.

2.1.4/ In vivo brain imaging

In vivo brain imaging techniques exploit a property of molecules called 

nuclear magnetic resonance (NMR) to obtain information about the concentrations o f 

these molecules over time. In this way, the rates of change of concentration of 

specific metabolites can be determined. All nuclei, which contain odd numbers o f 

protons and neutrons, have an intrinsic magnetic moment and angular momentum. 

The most commonly measured nuclei are 'H and 13C and NMR resonant frequencies
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for a particular substance are directly proportional to the strength of the applied 

magnetic field. NMR aligns magnetic nuclei with an applied constant magnetic field 

and perturbing this alignment using an alternating magnetic field, the fields being 

orthogonal. The resulting response to the perturbing electromagnetic field is the 

phenomenon that is exploited in magnetic resonance spectroscopy (MRS) and 

magnetic resonance imaging (MRI).

In vivo MRS of the brain was first reported in the 1970s in animal models 

using systems adapted from high-resolution NMR spectroscopy (Chance et al., 1978). 

Since this paper, *H MRS has been used to provide valuable insights into glutamate- 

glutamine neurotransmission cycling, the GABA neuronal system, and the second 

messenger system by measuring the metabolite levels of N-acetylaspartate (NAA), 

glutamate, glutamine, GABA and wyo-inositol (for review see Stanley, 2002). The 

main advantage of in vivo brain imaging is that is completely non-invasive when 

compared to the other neurochemical monitoring techniques described above.

2.1.5 Composition o f the perfusate

In order to prevent fluid removal from the brain interstitial compartment, it is 

necessary to use a perfusion fluid o f composition and ionic strength as close as 

possible to the one of the interstitial fluid (Stenken, 1999). The composition of 

interstitial and cerebrospinal fluid is unknown and a variety of perfusion fluids can be 

used for microdialysis, which differ widely in their composition and pH. The 

perfusion solution used in this laboratory is based on a modified Ringer’s solution, 

with a composition close to that of plasma: (mM) NaCl 145, KC1 4, CaCI2 1.3 and pH 

6.8. It is important to maintain the composition of the perfusion fluid as close to that

65



of the interstitial fluid as possible. Infusion of a perfusate with a lower Ca2+ 

concentration than that in the extracellular fluid will induce a decrease in Ca2+ 

concentration around the probe resulting in a decrease in dialysate neurotransmitter 

concentration (Westerink and De Vries, 1988). Infusion of a perfusate with a Ca2+ 

concentration higher than that of the interstitial fluid increases dialysate 

neurotransmitter concentration (Moghaddam and Bunney, 1989). Small variations in 

the concentrations o f Mg2+ and K+ in the perfusate can affect basal dialysate 

dopamine in the striatum (Osborne, 1991).

2.1.6/ Neurotransmitter ‘efflux ’

There exist in brain tissue three fluid compartments: the intracellular fluid, the 

extracellular fluid and the vascular fluid. When neurotransmitters are released, they 

diffuse into the extracellular fluid. At the same time, these neurotransmitters are 

cleared from the extracellular fluid by reuptake and enzymatic degradation. 

Therefore, dialysis is sampling the net result o f these processes. It is not measuring 

release, but rather the concentration of substances that pass into the extracellular fluid, 

which is determined by the balance of release and reuptake/degradation. The term 

‘efflux’ is used to describe the amount of neurotransmitter reaching the probe.

2.2/ THE MICRODIALYSIS PROBE 

2.2.1/ Probe construction

Figure 2.1 illustrates the construction of a typical microdialysis probe used in this 

laboratory.
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Microdialvsis Probe Construction

polythene
tubing

INLET OUTLET

quick-set 
epoxy adhesive-

araldite rapid

dialysis
quick-set 
epoxy adhesive

quick-set 
epoxy adhesive 2 mm-

Figure 2.1. Schematic diagram showing the steps involved in constructing the microdialysis probes:
a) the stainless steel cannulae and silica glass tubing are secured using quick-set epoxy adhesive
b) polythene inlet and outlet tubing is attached to the ‘arm s’ o f  the probe using araldite rapid
c) dialysis tubing is slid over the silica glass tubing (trimmed to 1.5 mm) and sealed with the stainless steel cannula using

quick-set epoxy adhesive
d) the dialysis tubing is trimmed 1 mm from the end o f  the silica glass tubing and the end sealed with quick-set epoxy

adhesive.
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• Two 4cm lengths of silica tubing (i.d. 75 /an, o.d. 150 pm, Scientific Glass 

Engineering) are introduced into a 2 cm length of stainless steel tubing (i.d. 

380 /im, o.d 500 /an, Goodfellow). These are glued in place with epoxy resin 

(RS).

• Two 0.5 cm lengths of stainless steel tubing are placed over the fixed ends of 

the silica, which act as the inlet and outlet channels. The lengths o f stainless 

steel are secured in place with epoxy resin.

• Two 5 cm lengths of Portex fine bore tubing (i.d. 280 /an o.d. 610 /an) are 

fitted over the silica and glued in place.

• A length of dialysis membrane (i.d. 240 /an, o.d. 300 /im; molecular weight 

cut-off 20 KDa; Filtral 12, AN69; Hospal Industries) is placed over the end of 

the silica, which has been trimmed to 1.5 mm, and glued inside the steel 

cannula to leave a length of exposed membrane.

• The dialysis membrane is trimmed 1 mm from the end of the silica glass 

tubing and the end sealed with quick-set epoxy adhesive (RS). This presented 

a dialysis window of 2 mm to the rat cerebral cortex.

Subsequently, the probes were kept in an air-tight container to protect the 

membrane from contamination.

2.2.2/ Measurement o f probe recovery

The aim o f this study was to compare relative changes in glutamate efflux in 

the rat frontal cortex, following administration of various CNS agents. Moreover, 

previous work in this laboratory has shown that probe recovery is reasonably constant
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between probes and over the range of solute concentrations so that results are 

comparable across experiments. Therefore, measurements were not corrected for 

probe recovery. However, as glutamate has not been previously measured in this 

laboratory, it was necessary to determine probe recovery for a range of probe infusion 

rates. In the past, it was thought that the main factor limiting diffusion, during the 

draining of solutes from the brain, was the membrane. However, it is now known that 

the in vivo recovery of a solute strongly depends on the properties of the surrounding 

tissue. Evidence that the main factor limiting diffusion is not the membrane has been 

provided by Hsiao et al. (1990). They compared the recoveries for acid metabolites, 

in vitro and in vivo, in the striatum, of three membranes mounted on probes of 

concentric design: cuprophan, polycarbonate ether, and polyacrylonitrile membrane. 

They found major differences between the in vitro extraction fractions of the three 

types of probes, but no differences between the in vivo values. This supported the 

view that, in vitro, the membrane is the major limit to diffusion whereas, in vivo, the 

limiting factor is the diffusion in the tissue itself.

The water recovery method has been traditionally used to measure the 

extraction fraction of solutes in vitro (Zetterstrom et al., 1982). This involves 

measuring the recovery of a probe by inserting it into an aqueous solution containing 

a known concentration of the solute of interest, and perfusing the probe with a 

solution free of this solute. The in vitro recovery is the ratio between the 

concentration in the outflow and the concentration in the solution. To determine the 

probe perfusion rate which gave the optimum recovery of glutamate, the probes were 

immersed in a solution of 2 x 10'7 M glutamate and continuously perfused with 

Ringer’s solution devoid of glutamate. After the beginning of probe perfusion, 

successive 20 min samples were obtained for each probe. The effect of different flow
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rates on relative recoveries was determined at flow rates of 1, 2, 3, 4 and 5 pl/min. 

Samples o f the solution surrounding the probes were taken at intervals throughout the 

day to correct recoveries for any degradation of glutamate.

It was found that a flow rate of 1 pl/min gave the maximum recovery and this 

value decreased when the flow rate was increased to 2 pl/min and remained fairly 

constant across the higher flow rates (Figure 2.2). Diffusion of solutes in the brain 

tissue is a greater limiting factor than diffusion through the membrane. Therefore, in 

vitro recovery cannot be considered to be a true reflection of in vivo recovery. 

However, applying this method allowed determination of the optimal value for 

perfusion flow rate. From the results obtained in this study, I decided to use a flow 

rate of 2 pL/min. This provided a good in vitro recovery of glutamate and the volume 

of sample obtained was large enough for injection into the HPLC system. Other 

factors that can be determined from the water recovery method include membrane 

area and the composition of the perfusion fluid that yields optimal recovery.
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Figure 2.2 Probe recovery as a function offlow rate

Microdialysis probes were immersed in a solution of glutamate of 2 x 10'7 M (which 
gives a concentration of 50 pmol/50 pL glutamate on the HPLC column). N=12-16.
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Since in vitro calibration has little application in microdialysis in vivo, other in 

vivo methods can also be employed to calibrate the probe. The reverse dialysis 

method is commonly used to estimate the recovery of exogenous compounds. The 

probe is inserted in a drug-free environment and perfused with different 

concentrations of the test drug. By plotting mass transport (i.e. the difference between 

Cin, the perfusate, and Cout, collected in the dialysate) versus Cin, a straight line can 

be obtained by linear regression. Its slope is the recovery of the probe. The no net 

flux method is popular for calibrating probe recovery for endogenous substances 

(Lonnroth et al., 1987). It consists of perfusing the probe with solutions of different 

concentrations o f the substance of interest, greater and less than the expected one. By 

plotting mass transport versus Cin, a line is obtained by linear regression. Its slope is 

the extraction fraction and its intercept with the X-axis is the No Net Flux point. This 

point is an estimate of the concentration of unbound solute surrounding the 

membrane.

2.3/ MICRODIAL YSIS PROCEDURES 

2.3.1/ Surgical procedure

All procedures complied with the UK Scientific Procedures (Animals) Act 

1986. Male outbred Sprague-Dawley rats (250 -  300 g) were obtained from the 

colony at University College London. They were housed in groups of 4 at 21 °C and 

55 % humidity with a light-dark cycle of 12 h (lights on at 8.00 am). Animals had 

free access to food and water at all times.

Anaesthesia of rats was induced by inhalation of 5 % halothane in 

combination with 95% 02/5% CO2 delivered through an induction chamber at 2 1/min.
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Following loss of the righting reflex, rats were transferred to a stereotaxic frame 

(David Kopf, model 900) and the anaesthetic delivered via a face mask (2-2.5 % 

halothane in 95 % C>2/5% CO2 at 1 1/min). The head was set in the flat-skull position 

(incisor bar set at 3.3 mm below the interaural line) using blunted, non-rupture ear 

bars. Core body temperature was maintained at 37 °C using a homeothermic heating 

pad and rectal probe (Harvard Instruments).

A small incision was made in the skin and the skull surface exposed to reveal 

Bregma. A small hole was made through the skull using a trepanning drill burr where 

the probes were to be inserted: mm caudal anterior cingulate cortex (cACC): AP +1.0 

ML ±0.6, rostral anterior cingulate cortex (rACC): AP +2.5 ML ±0.6 according to the 

atlas o f Paxinos and Watson (2005). A screw was inserted into the skull in order to 

anchor the dental cement that would secure the probes after insertion.

The dura was carefully broken using a needle and a probe primed with 

Ringer’s solution slowly lowered vertically to its final position: mm cACC: DV -3.6, 

rACC: DV -4.6, according to the atlas o f Paxinos and Watson (2005). The probe was 

secured to the skull surface using acrylic dental cement. When the cement had dried, 

the inlet and outlet tubing of the probe were sealed with bone wax to prevent blockage 

prior to the beginning of the experiment. The rats were allowed to recover from the 

anaesthesia in an incubation chamber (about 30 to 45 min according to the surgery). 

They were then transferred into individual plastic cages overnight.
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2.3.2/ Collection o f dialysates.

On the day after probe implantation, rats were kept individually in their home 

cages and moved to the experimental laboratory. The probe inlet and outlet were 

connected via a length of Portex tubing (i.d. 580 pm o.d. 960 pm) to a gas-tight 

syringe (Terrumo) containing Ringer’s solution, fitted to an infusion pump. The 

probes were perfused with Ringer’s solution at a rate of 2 pVmin for the duration of 

the experiment. The inlet and outlet tubing were guided through a liquid swivel, held 

in a clamp, over the top of the cage, allowing the rat to move freely around the cage. 

Dialysis samples (40 p\) were collected every 20 min and derivatised with 20 p\ of 

complete o-pthaldehyde reagent (Sigma, UK) before injection into the HPLC system. 

Once three successive samples had established a stable base-line, a test drug was 

administered.

2.3.3/ Verification o f probe placement

At the end of the experiments, animals were deeply anaesthetised with 

halothane and sacrificed by cervical dislocation. The brains were removed and fixed 

in formalin solution overnight. The next day, probe placements were verified by 

cutting the brains and observing the probe tracts, which were clearly visible under a 

light microscope. The probe tracts were compared by eye with the atlas of Paxinos 

and Watson to confirm whether or not they were in the right place. Animals 

implanted with probes, which were obviously out of range of the desired coordinates, 

were excluded from the final analysis. Several animals were excluded as the probes 

were found to be located too lateral to the midline (see: Chapter 6 for more details).

73



2.3.4/ Measurement o f dialysate glutamate content

Dialysate samples are applied to a chromatography column that separates the 

various compounds according to their size, charge and lipophilicity. They are assayed 

electrochemically at a downstream electrode, where the sequentially eluted 

compounds are oxidised and give rise to a series of currents (see section 2.4).

2.4/ HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)

2.4.1/ Detection o f glutamate

Since the identification of a number of amino acids as neurotransmitters, their 

measurement in brain tissue and fluids is of increasing importance. Traditional 

approaches to amino acid analysis have included ion-exchange procedures using 

sulphonated cation exchange resins, post-column reaction with ninhydrin and 

detection with spectrophotometry (Moore and Stein, 1951) or colorimetry (Spackman 

et al, 1958). However, post-column derivitisation schemes are not suitable for the 

detection o f amino acids in brain samples as the sensitivity is too low and unable to 

detect micromolar concentrations. In the past 10 years, pre-separation derivatisation 

methods have dominated the field of amino acid analysis. Separation of derivatised 

amino acids is accomplished by high-performance liquid chromatography (HPLC), or 

more increasingly, capillary electrophoresis (CE). HPLC can be coupled to different 

modes of detection depending on the analytes to be measured and the sensitivity 

required e.g. UV absorbance, fluorescence, mass spectrometry and electrochemistry.
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Traditionally, HPLC has been coupled with fluorescence detection. Simple 

aliphatic amines such as glutamate lack a chromophore and cannot be readily 

analysed by HPLC using fluorescence detection. This problem can be overcome by 

derivatisation to introduce a chromophore or fluorophore. Several derivatisation 

methods exist for the conversion o f amines, such as glutamate, to detectable forms. 

Derivatisation schemes include those based on ninhydrin, o-phthaldehyde, 

fluorescamine, dansyl chloride, and dabsyl chloride. Fluorescence methods using 

o-pthaldehyde (OPA) as a derivatising reagent have become popular, although they 

face certain limitations, such as insensitivity o f the assay and the instability of the 

fluorescent derivatives of the reaction: 1-(alkythio-2-alkylisoindoles (see figure 2.3, 

Rowley et al, 1995). Attempts have been made to increase the stability of the 

derivatives by reacting them with either tert-butylthiol and also 2- or 3- 

mercaptoproprionic acid. The l-(alkylthio)-2-alkylisoindoles can also undergo anodic 

oxidation at moderate potential, permitting the use o f electrochemistry for their 

determination. The electrochemical properties o f the derivative are thought to be far 

less susceptible than fluorescence to changes in the derivative’s structure (Joseph and 

Davies, 1983). A popular alternative to the use o f HPLC-ECD method for amino acid 

analysis is the use of OPA derivatisation in conjunction with capillary electrophoresis 

(CE) and laser-induced fluorescence (LIF) detection. These systems provide 

extremely high sensitivity and excellent temporal resolution when coupled to 

microdialysis due to the low volume of sample required for analysis (Dawson et al., 

1995, Silva et al., 2000).
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2.4.2/ Theory o f HPLC

For the analysis of glutamate content in brain dialysates, HPLC coupled with 

ECD was used. This highly sensitive assay is used to separate the components of the 

dialysate prior to their measurement with electrochemical detection. Separation is 

achieved by exploiting differences in the relative affinities of the constituent 

compounds to a solid, non-polar phase (the ‘stationary phase’) and a polar, liquid 

phase (the ‘mobile phase’). In this ‘reversed phase’ chromatography, the stationary 

phase is a hydrocarbon-bonded surface, usually octadecyl silyl (ODS) bonded to 

silica. The particulate phase is densely packed within a length of stainless steel 

housing (the ‘column’). The mobile phase is a pH buffered water/methanol mixture. 

Samples are introduced into the flow of mobile phase and passed through the 

stationary phase at a constant flow rate. The most polar components of the sample 

will elute first, having lowest affinity for the non-polar stationary phase. By adjusting 

the pH of the buffer, the polarity of compounds within the sample can be adjusted, 

therefore determining their retention to the stationary phase. Individual components 

are identified by their ‘retention time’ i.e. the time taken to pass through the column 

and onto the electrochemical cell.

2.4.3/ Isocratic vs. gradient elution

Elution of solutes of interest can be achieved using either gradient or isocratic 

elution. The main purpose of gradient elution is to move strongly retained 

components o f the mixture more quickly, but having the least well retained 

component well resolved. The least concentration of the organic solvent in the eluent
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allows the least retained components to be separated. Strongly retained components 

will sit on the adsorbent surface on the top of the column, or will move very slowly. 

As the amount of the organic solvent (e.g. acetonitrile) is increased then strongly 

retained components start to move faster. When the solvent composition remains 

constant throughout the analysis, the elution is called isocratic. Gradient elution is 

necessary when the resolution of a number of amino acids in one sample is desired. 

This is because with isocratic elution, most of the amino acids elute quickly and are 

not resolved.

For the purpose of these studies, isocratic elution was employed, since there 

was only one solute of interest (glutamate). Isocratic elution removes the need for an 

intervening re-equilibration step, as found in gradient systems. Glutamate was 

derivatised with complete o-phthaldehyde (OPA; Sigma) reagent before injection onto 

an octadecylsilan (ODS) column. This stationary phase consists of silica derivatised 

with octadecyl groups. Rather than making up the OPA reagent from scratch every 

day, which is a lengthy and time-consuming procedure, ‘complete’ reagent purchased 

from Sigma UK was used. This requires no further preparation for use. Pilot 

experiments demonstrated that the amount of electroactive derivative increased with 

reaction time, and a peak was reached at 7-10 min. After 15 min of reaction time, the 

amount of electroactive derivative decreased and a smaller peak was obtained on the 

chromatogram. For my microdialysis experiments, I found that a reaction time of 8 

min produced the optimum amount of derivative on the column, while fitting in with 

the run-time of the chromatograms and the sampling time of the experiments. The 

reaction time was kept consistently at 8 min for each sample to prevent any variation 

in the concentration of electroactive derivative from day to day.
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Figure 2.3 Scheme depicting the reaction between glutamate and o-phthalaldehyde 
(OPA).

The structure of the (l-(alkylthio)-2-alkyliso indole is also shown.
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2.4.4/ Main components of the HPLC/ECD system

• LKB 2150 isocratic HPLC pump (delivering the mobile phase at a rate of lmL/min)

• Rheodyne injection valve (50 pL sampling loop)

• Electrochemical detector (ESA Coulochem 2.1)

• Microdialysis cell (ESA 5014A)

• Guard cell (ESA 5021)

• Pulse Damper

• Supercosil™LC-18 15cm x 4.6mm, 5pm reverse-phase column

2.4.5/ Choice o f the mobile phase

The retention time of solutes depends on the composition of the mobile phase: 

for example, the nature and concentration of the organic modifier, the pH, and also the 

end-capping of the column. Therefore, the correct conditions need to be chosen so 

that all the solutes are separated from one another and from the solvent front. The 

original mobile phase used in these studies was based on a modified version of the 

buffer used by Rowley et al in 1995. To assess the concentration of glutamate in a 

sample, a range of conditions in which the pH of the buffer was changed, were tested 

in order to determine the optimal conditions to detect glutamate. The results shown in 

Figure 2.4 were obtained by testing different pHs of the mobile phase within the range 

6.36 to 7.33. For a given concentration of glutamate injected onto the column, the 

mean detector response varied with the pH of the mobile phase. As the pH of the 

mobile phase increased, the mean detector response increased for a given 

concentration of glutamate. This would suggest that the highest pH tested would be 

optimal for the measurement of glutamate in samples. However, other features of the
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chromatograms obtained at this high pH meant that it was unsuitable for use in 

experiments (see table 2.1). For example, as the pH of the mobile phase was 

increased, the size of the solvent front also increased and sometimes it was hard to 

resolve the glutamate peak from the solvent front. Also, interfering reagent peaks 

were observed at a higher pH. As the pH of the mobile phase was decreased, the peak 

height of the chromatogram for glutamate decreased until, at a pH below 6.4, a 

response was no longer obtained. A late-eluting and saturating peak was consistently 

seen and, as the pH was lowered, the elution time of this peak increased dramatically. 

This caused it to interfere considerably with subsequent chromatograms. Therefore, a 

pH of 7.2 was regarded as optimal for the detection of glutamate. This gave desirable 

resolution of the analyte peak from the solvent front and a good detector response. 

Figure 2.5 (a) shows a typical chromatogram derived from injection of a glutamate 

standard solution containing 50 pMol/50 pL into the HPLC system. The peak 

corresponding to glutamate is indicated by the arrow. Figure 2.5 (b) shows a typical 

chromatogram obtained after injection of brain dialysate sample into the HPLC 

system. The glutamate peak is large and easily discemable from the solvent front. 

The contaminating peaks are thought to be due to the presence of the reagent in the 

system.
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(a)

GLU (4 min)

(b)

Figure 2.5 -  examples o f typical chromatograms obtained during experiments
a) A typical chromatogram obtained on injection of a glutamate standard solution containing 50 pmol/50 /d glutamate.
b) A typical chromatogram obtained on injection of a brain sample from the same experimental day

81a



Table 2.1 Characteristics o f chromatograms at different mobile phase pH

pH of mobile phase Retention time of 
glutamate peak

Comments

7.33 5 min 45 s Large solvent front, 
sometimes glutamate 
cannot be resolved.
Very large peak at 4-5 
min, sometimes interferes 
with glutamate peak.
Large late-eluting peak.

7.22 5 min 55 s Solvent front smaller, 
doesn’t interfere with 
glutamate peak.
Other peaks seen at 4 min 
30s and 7 min, but do not 
interfere with solvent 
front.
Large late-eluting peak.

6.86 6 min 05 s Small solvent front (only 
lasts 2 min 30s.
Other peaks seen at 4 min 
30 s and 5 min 30 s, which 
could interfere with 
glutamate peak.
Large late-eluting peak.

6.6 7 min 20 s Very small solvent front. 
Other peaks at 4 min (very 
narrow).
Large late-eluting peak.

6.4 7 min 30 s Very small solvent front. 
Other peaks at 4 min and 4 
min 30 s.
Large peak at 7 min, 
which sometimes 
interferes with glutamate 
peak.
Late-eluting peak 
interferes with subsequent 
chromatograms.

5.75 No discernible glutamate 
peak

Late-eluting peaks 
interfere with subsequent 
chromatograms.
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2.4.6/ Composition o f the mobile phase:

• 0.1 mM phosphate buffer

1. 64 mM Na2HP04 (99 %, Fischer)

2. 16 mM NaH2P04 (99 %, Fischer)

• 50 mg/L EDTA (99.5 %, AnalaR)

25 % methanol (99.8 %, Prolabo)

Adjust to pH 6.5 -  7.0 with phosphoric acid

The mobile phase was filtered through 0.45 pM Millipore filters and degassed to 

prevent bubbles forming in the system.

2.4.7/ Electrochemial detection (ECD)

Once the solutes have crossed the column, they are detected by an electrochemical 

cell. The cell consists of two glassy carbon electrodes in series. A negative potential 

is applied to the first one to condition the mobile phase containing the solutes. A 

positive potential is applied to the second cell where the reaction of detection takes 

place (an oxidation). The transfer of electrons at the electrode during the oxidation 

gives rise to a current measured by the detector and expressed as a peak on a 

chromatogram by the chart recorder. The current obtained is proportional to the 

difference between the rate of oxidation and reduction reactions at the electrode.
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2.4.8/ Choice of the potential of oxidation

According to work done previously, the conditioning electrode (El) located in 

the electrochemical cell was set at -280mV. To determine the optimal potential for 

the second electrode (E2), a current/potential calibration curve for GLU was 

constructed. A constant amount of GLU (10 pmol/50/zL) was injected into the system 

and the detector response recorded to E2 over the range 200 to 700mV whilst El was 

kept constant at -280mV. By changing the potential of the second electrode (E2), the 

rate of oxidation of solutes is altered, and therefore the current flowing across the 

electrode changes, giving rise to different size peaks on the chromatograms.

The voltammogram obtained (Figure 2.6) by oxidation of GLU was stable 

from 700mV down to about 400mV. At 400mV, the height of the peak on the 

chromatogram began to decrease severely in a linear relationship with the potential 

E2, until no response was detected when E2 fell below 250mV. Despite larger peaks 

being obtained at larger potentials, a value of 350mV was chosen for E2, since too 

many interfering peaks were seen at potentials above this, possibly caused by 

oxidation of the mobile phase.

84



250

200

2 150 -

100 -

TJ

100 200 300 400 500 600 700
Potential E2 (mV)

Figure 2.6 Voltammogram showing the detector response to a 10 pmol/50 pL 
glutamate standard as a function o f the electrode potential. N=3.

2.4.9/ Calibration o f the separation/detection system

Before application of the HPLC-ECD technique to measure glutamate in 

microdialysis samples, regular calibration of the system in a wide range of 

concentrations of glutamate was necessary, as well as determination of the detection 

limit of the assay. Solutions containing a range of concentrations of glutamate (0.5 to 

30 pmol/50 /xl) were injected into the system, under the conditions already described.

A typical calibration curve obtained is presented in figure 2.7. The 

relationship between the height of the peak and the concentration of glutamate was 

linear. The detection limit for glutamate using this assay was 0.5 pmol/50 /xl. At this
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concentration, the signal was more than twice as high as the basal noise. A calibration 

of the HPLC-ECD system was required every day prior to the microdialysis 

experiment. It was done within a range of glutamate concentrations close to those 

expected to be measured during the experiment (5 -  50 pmol/50 fiL).
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Figure 2.7 Calibration curve fo r the detection ofglutamate in a sample.

The height of the peak representing the oxidation of the o-pthaldialdehyde derivative 
was plotted against the concentration of glutamate in the sample. N=3.
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2.5/ DOPAMINE HPLC

Monoamines such as dopamine are readily oxidised without the need for a 

derivatisation step. Therefore, samples can be injected straight onto the column. 

After passing through the column, the mobile phase undergoes oxidation at the 

electrochemical cell. A positive potential is applied to the working electrode of the 

cell in contact with the mobile phase. The release of electrons creates a current, 

which is amplified and detected. The amount of current produced is directly 

proportional to the number of molecules of DA present in the sample, in accordance 

with Faraday’s Law.

2.5.1/ Composition o f the mobile phase

• NaH2P04 83 mM (99 %, Fischer)

• OSA 0.23 mM (98 %, Sigma)

• EDTA 0.84 mM (99.5 % AnalaR)

• Methanol 17% (99.8 %, Prolabo)

• Adjust to pH 4.0 with orthophosphoric acid

2.5.2/ Components o f the assay system -

The HPLC-ECD system consisted of:

• Shimadzu LC 6A isocratic dual piston pump ESA 582, delivering the mobile

phase at 1.15 ml/min

• Pulse dampener (ESA)

• 50 p\ stainless steel injection loop (Anachem) attached to a Rheodyne 7125 

injection port
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• Aquapore guard column (7 pM particle size, 30 x 4.6 mm, Brownlee, Perkin, 

Elmer)

• Column (Hypersil ODS; 5 /zM; 250 x 4.6 mm; Thermo Hypersil Ltd., UK), 

maintained at 26 °C by a column heater (Jones Chromatography, model 7955)

• An analytical cell: ESA 5014 electrochemical cell, with 2 electrodes in series; 

a conditioning electrode set at -280 mV and a measuring electrode set at +180 

mV

• An ESA model 5100A coulometric detector

• A Spectraphysics Chromjet integrator

2.5.3/ Calibration o f  the separation/detection system

As with the assay for measuring glutamate, regular calibration of the system in 

a range of concentrations of dopamine was necessary. Solutions of dopamine of 

concentrations 25 -  100 fmol/50 p\ sample were injected into the system, under the 

conditions already described.

A typical calibration curve is presented in figure 2.8. The relationship 

between the height of the peak and the concentration of dopamine in the sample was 

linear. A calibration of the HPLC-ECD system was required every day prior to the 

microdialysis experiment. It was done within a range of dopamine concentrations 

close to those expected to be measured during the experiment.
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Figure 2.8 Calibration curve for the detection o f dopamine in a sample.
The height of the peak representing the oxidation of dopamine was plotted versus the 
concentration of dopamine in the sample. N=5.

2.6/ DRUG ADMINISTRATION

In this study, 4 different drugs were used:

• ^/-amphetamine sulphate (Sigma, UK)

• haloperidol, 4-[4-(p-Chlorophenyl)-4-hydroxy-piperidino]-4’- 

fluorobutyrophenone (Sigma, UK)

• SCH23390 (Schering, UK)

• dihydrokainate (Tocris, UK)

When given by injection (i.p.), test drugs were dissolved in 0.9 % saline and 

administered in a volume of 1 ml/kg. When infused locally into the terminal field, via 

the dialysis probe, test drugs were diluted in the perfusate.
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Perfusate: Modified Ringers solution:

• NaCl 145 mM

• KC1 4 mM

• CaCl2 1.3 mM

2.7/ STATISTICAL ANALYSIS

Statistical analysis of the net change in glutamate efflux was carried out 

routinely. This was calculated by subtraction of the mean efflux in the 3 consecutive 

basal samples, collected immediately before drug administration, from all subsequent 

samples. When comparing drug-induced changes and basals, statistical analysis of the 

raw data was carried out. The significance o f any differences in glutamate efflux was 

assessed using analysis of variance (ANOVA) with repeated measures on SPSS. 

‘Time’ was considered as a ‘within subjects’ factor and when comparing the effect of 

drug treatments on a given brain area, ‘drug treatment’ was considered as a ‘between 

subjects’ factor.

When comparing the effect of a given treatment in the caudal anterior 

cingulate cortex and rostral anterior cingulate cortex, ‘brain area’ was considered as a 

second ‘within subjects’ factor. When necessary, the Greenhouse-Geisser ‘e’ 

correction was applied to compensate for any violation of sphericity of the variance- 

covariance matrix.
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When drug-induced glutamate efflux was compared with basal levels, the 

analysis was carried out on bins of three consecutive samples (see results Chapters for 

specific details o f analysis) so as to balance the number of samples in the ANOVA 

matrix. In all cases, the criterion for significance was set at P <0.05.

92



Chapter 3

3.0/ ^/-Amphetamine has contrasting effects in two subregions of the rat anterior 

cingulate cortex 

3.1/ INTRODUCTION

In vivo microdialysis studies have shown that ^-amphetamine increases the 

extracellular concentration of monoamine neurotransmitters in the brain by inhibition 

of reuptake and retrotransport (see: Chapter 1). Increased extracellular concentrations 

o f monoamines, particularly dopamine, are thought to be responsible for the 

behavioural effects o f ^/-amphetamine, with nigrostriatal and mesolimbic areas 

considered particularly important (Fuchs et al., 2005; Louis and Clarke, 1998). In an 

early paper, Kuczenski and Segal (1990) investigated the effects of systemic d- 

amphetamine (0.5-5.0 mg/kg i.p.) on dopamine release in the striatum. They found a 

rapid, dose-dependent increase in extracellular dopamine. There was also a 

relationship between ^/-amphetamine-induced increases in behavioural perseveration 

and the magnitude of the dopamine response.

The effect of ̂ /-amphetamine on dopamine efflux in different subregions o f the 

rat preffontal cortex has been systematically studied using microdialysis (Mazei et al., 

2002). Dopamine release in response to local infusion of d-amphetamine (100 fjiM) 

was found to depend on brain region, with a greater dopamine efflux observed in the 

prelimbic (Cg3) compared to the anterior cingulate cortex (Cgl and Cg2; Mazei et al., 

2002). The dopamine response to ^/-amphetamine correlated with the dopaminergic
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innervation of the preffontal cortex (a greater density of dopaminergic terminals is 

found in the deeper layers (i.e. Cg3) when compared to the more superficial layers 

(i.e. Cgl and Cg2)). The two subregions also receive dopaminergic inputs from 

different brain stem nuclei (Lindvall, 1978; Chapter 1). So far, one study has shown 

an increase in glutamate efflux in the rostral anterior cingulate cortex in response to 

systemic administration of {/-amphetamine (2 mg/kg i.p.; Reid et al., 1997). 

However, no studies to date have compared the effects of {/-amphetamine on 

glutamate efflux in subregions of the preffontal cortex. Given that the source and 

density o f dopaminergic innervation varies in different regions of the preffontal 

cortex, any modulation of glutamatergic neurotransmission by dopamine is likely to 

vary also. If there are subregional differences, this could help explain the various 

effects of {/-amphetamine on mood and behaviour.

The rostral anterior cingulate cortex (coordinates: AP +2.5 ML ±0.6 DV -4.6) 

was chosen for these studies as systemic {/-amphetamine has already been shown to 

increase glutamate efflux in this subregion (Reid et al., 1997). The neighbouring 

caudal anterior cingulate cortex (coordinates: AP +1.0 ML ±0.6 DV-3.6) was also 

studied. Figure 3.1 shows the positions of the two microdialysis probes used for these 

studies. As discussed in Chapter 1, these two subregions have very different functions 

and I was interested in exploring any variations in neurochemistry, which may 

underlie these.
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Figure 3.1 Location o f the two microdialysis probes in the anterior cingulate cortex 
in my microdialysis studies. Abbreviations: ACd, dorsal anterior cingulate cortex; 
ACv, ventral anterior cingulate cortex; PL, prelimbic cortex; IL, inffalimbic cortex; 
RSd, retrosplenial cortex (adapted from Jones et al., 2005).

Two routes of administration were used in these studies -  local infusion and 

systemic (intraperitoneal) injection. This allowed a comparison of whether glutamate 

efflux is regulated locally or by afferent inputs. Local infusion delivers the drug 

directly into the brain area of interest, enabling investigation of drug effects in the 

terminal fields. After systemic injection, the drug has the potential to affect targets all 

over the body. The doses o f  ̂ -amphetamine were based on previous studies in this 

and other laboratories. For local infusion, doses of 1-100 pM were used, which 

consistently increase noradrenaline efflux in the frontal cortex of freely-moving rats 

(Geranton et al., 2003, Wortley et al., 1999). For systemic administration, a dose of 3 

mg/kg i.p. was chosen. This dose was found to increase noradrenaline efflux in the 

frontal cortex of halothane-anaesthetised rats (Wortley et al., 1999) and was within 

the range of the dose of 2 mg/kg i.p. used in a previous study found to increase 

glutamate efflux in the rACC (Reid et al., 1997).
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3.2/ AIMS

• To compare whether extracellular glutamate ( ‘efflux j  in two adjacent areas 

o f the rat cerebral cortex differs in reponse to d-amphetamine -  the rostral 

anterior cingulate cortex and the caudal anterior cingulate cortex.

• To determine the extent to which the effects o f d-amphetamine depend on route 

o f administration.
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3.3/ METHODS

3.3.1/ In vivo microdialysis

Experiments were performed on freely-moving rats (250-300g on day of surgery).

Rats were implanted with microdialysis probes in either the cACC or rACC on the 

day before experimenting, d-Amphetamine was dissolved in 0.9 % saline to make a 3 

mg/ml solution. This was administered in a volume of 1 ml/kg (i.e. 3 mg/kg). For 

local infusion, d-amphetamine was dissolved in Ringer’s to make 1,10 and 100 fiM 

solutions. Rats were randomly assigned to one of four treatment groups (see: Table 

3.1 for treatment groups). Once stable basal glutamate efflux was established, 

d-amphetamine was administered systemically either, by i.p. injection, or locally 

infused via the dialysis probe by changing the perfusion solution for Ringer’s 

containing the drug. The last three basal samples were designated T-4 0 -T0 , with 

infusion or systemic injection of d-amphetamine starting immediately after To. 

Microdialysis sampling continued for a further 5 h. The two lowest concentrations of 

d-amphetamine were infused for 80 min each and the highest concentration infused 

for 160 min. At the end of each experiment animals were deeply anaesthetised using 

halothane and killed by cervical dislocation. Brains were removed and stored 

overnight in formalin solution. The next day, probe placement was verified under a 

light microscope. The concentration of glutamate in brain dialysates is expressed as 

pmol/20min without correction for recovery. In addition to analysing the raw data, 

net changes were calculated by subtracting the mean of the last 3 basal samples from 

all samples in the time course. The calculation of net changes in glutamate efflux
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allowed any differences between two groups to be shown clearly, if there were slight 

variations in basal glutamate efflux between the two groups i.e. the data were 

normalised. The calculation of net efflux also has less propensity to distort the data, 

when compared to percentage change.

Table 3.1 Treatment groups for d-amphetamine administration. Rats were randomly 
assigned to one of four treatment groups.

GROUP BRAIN REGION ROUTE OF 
ADMINISTRATION

cACC rACC Local
infusion

Sytemic

1 (N = 10) X X

2 (N = 10) X X

3 (N = 11) X X

©IIZ
X X

3.3.2/ Statistical analysis

All data were analysed for significance using two-way ANOVA with repeated 

measures. For each experiment, ‘time’ was a ‘within subjects’ factor and ‘route of 

drug administration’ and ‘brain region’ (i.e. local infusion vs. systemic administration 

and rACC vs.cACC ) were ‘between subjects’ factors.
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For systemic administration, data were divided into six ‘bins’ with three consecutive 

samples per bin. Therefore, each bin represents 1 h of sampling after injection of 

^/-amphetamine (Figure 3.2). ‘Bin’ was second ‘within subjects’ factor.

Figure 3.2 Time bins for statistical analysis o f changes in extracellular glutamate 
after systemic (i.p.) injection o f d-amphetamine.

*Bin1 ’ 'Bin2' ‘Bin3’ ‘Bin4’ ‘Bin5’ 'Bin6'

I I I I I

-60 0 60 120 180 240 300 sampling time (min)

For local infusion, data were divided into four ‘bins’ with four consecutive samples 

per bin (each bin therefore corresponded to infusion of one concentration of 

f/-amphetamine; Figure 3.3). ‘Bin 1’ represents basal efflux (i.e. T^o-To). For bins 

representing glutamate efflux during drug infusion, the last three samples during each 

concentration of drug were used. Therefore, bin 2 = 1 pM (T4 0-T80), bin 3 = 10 pM 

( T 1 2 0 - T 1 6 0 ) ,  bin 4 = 100 pM ( T 2 0 0 - T 2 4 0 )  and bin 5 = 100 pM ( T 2 8 0 - T 3 2 0 ) .  ‘Bin’ was a 

second ‘within subjects’ factor. The Greenhouse-Geisser ‘e’ correction was 

performed where Mauchley’s test of sphericity was significant.
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Figure 3.3 Time bins for statistical analysis o f changes in extracellular glutamate 
after local infusion o f d-amphetamine.



3.4/ RESULTS

3.4.1/ Basal glutamate efflux

Mean basal glutamate efflux in the rACC (across both treatment groups) was 12.7 ± 

1.4 pmol/20min and in the cACC was 10.2 ± 1.1 pmol/20min. For clarity, the effects 

of local infusion and systemic administration of f/-amphetamine will be discussed 

separately, despite rats being randomised to the 4 treatment groups.

3.4.2/ Effects o f local infusion (via retrodialysis) of increasing 

concentrations o f d-amphetamine on glutamate efflux.

There was no difference in basal glutamate efflux in the cACC and the rACC of 

animals destined for local infusion of J-amphetamine (i.e. between groups 1 and 2). 

Basal glutamate efflux obtained from the pooled data was 14.7 ± 1.3 pmol/20min for 

the rACC and 12.1 ± 1.5 pmol/20min for the cACC.

After infusion of 100 pM ^/-amphetamine, 3-way ANOVA revealed a significant 

BIN*SUBREGION interaction -  F(l,18)=4.600 P<0.05. At this concentration, there 

was also a main effect of BIN -  F(l,18)=4.274 P<0.05, and SUBREGION -  

F(1,18)=4.577P<0.05.

Local infusion of ^-amphetamine increased glutamate efflux in the rACC. This 

increase attained statistical significance after infusion of 1 pM ^-amphetamine and 

was dose-related (see: Table 3.2 for statistical analysis). A maximum net increase of 

14 ± 9 pmol/20 min was reached after infusion of the highest concentration of
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{/-amphetamine (100 /xM). However, the glutamate response to each concentration of 

^/-amphetamine was phasic in nature, and declined in amplitude during subsequent 

sampling. Infusion of a higher concentration of {/-amphetamine caused a resurgence 

of the glutamate response, which peaked after two samples and declined rapidly 

thereafter (Figure 3.4).

In the cACC, there was no increase in glutamate efflux after infusion of any 

concentration of {/-amphetamine (Figure 3.4 and see: Table 3.2 for statistical 

analysis).
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Figure 3.4 The effects o f local infusion (via retrodialysis) o f increasing 
concentrations o f d-amphetamine on glutamate ('GLU') efflux in the cACC or rACC 
o f freely-moving rats. The top graph shows raw data and the bottom graph net data 
set. * P<0.05.

</-Amphetamine infusion was initiated at To, as indicated by the line. GLU efflux is 
expressed as pmol/20min. Points show mean ± s.e. mean GLU efflux in the cACC 
(open circles) and the rACC (open triangles). N=10 in each group.
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Table 3.2 Statistics generated from split-plot ANOVA summarising the effect o f  local 
infusion o f d-amphetamine ( ‘d-AMP) on glutamate efflux, in the cACC and the 
rACC. Glutamate efflux after each treatment was compared, over 4-sample 
increments, with efflux in the cluster of basal samples. Significant differences are 
shown in bold.

Treatment rf-AMP (local infusion)

rACC cACC

[J-AMP] (pM)

1 pM F(l,9)=4.857 P<0.05 F(l,7)=0.209 P<0J
10 pM F(l,9)=5.155 P<0,05 F(l,8)=1.165 P<0.3
\00pM F(l,8)=3.783 /><0.1 F(l,9)=3.188 P<0.1
100 pM F(l,9)=5.770 / ><0.04 F(l,9)=0.006 P<0.9
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3.4.3/ Effects o f systemic injection o f d-amphetamine on glutamate efflux.

There was no difference in basal efflux between the cACC and the rACC of animals 

destined for intraperitoneal injection of J-amphetamine (i.e. between groups 3 and 4). 

Basal glutamate efflux obtained from the pooled data was 9.1 ± 0.9 pmol/20min for 

the cACC and 10.4 ± 1.0 pmol/20min for the rACC. To minimise suffering and 

reduce the number of animals used, saline controls were not included in all my 

experiments. Also, I was only interested in comparing subregional differences in the 

response to ^/-amphetamine, rather than comparing drug and saline effects. It would 

have been advantageous to include saline controls during these experiments to 

determine if the ^-amphetamine effect was real. In the cACC injection of saline did 

not affect glutamate efflux at any time (see: Chapter 6, Figure 6.3). In the rACC, 

injection of saline increased glutamate efflux during the first 2 h of sampling. 

However, this quickly returned to basal levels for the remainder of the sampling time 

(see: Chapter 6, Figure 6.5).

Intraperitoneal injection of 3 mg/kg ^/-amphetamine caused a gradual increase in 

glutamate efflux in the anterior cingulate cortex with a maximum net increase (at Tso), 

of 11.1 ± 7 pmol/20min (Figure 3.5). Efflux remained greater than basal for the 

remainder of the sampling time (see: Table 3.3 for statistical analysis). In contrast, 

there was no increase in glutamate efflux in the rACC at any time (see: Table 3.3 for 

statistical analysis). Despite the lack of any effect on glutamate efflux in the rACC, it 

is notable that there were frequent fluctuations in extracellular glutamate (Figure 3.5).
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Figure 3.5 The effects o f intraperitoneal (3 mg/kg) administration o f d-amphetamine 
on glutamate ( ‘GLU’) efflux in the cACC or rACC o f freely-moving rats. The top 
graph shows raw data and the bottom graph net data set. * P<0.05.

^-Amphetamine was administered at TO, as indicated by the arrow. GLU efflux is 
expressed as pmol/20min. Points show mean ± s.e. mean GLU efflux in the cACC 
and the rACC. N=l0/l l in each group.
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Table 3.3 Statistics generated from split-plot ANOVA summarising the effects o f 
administration o f d-amphetamine ( ‘d-AMP) 3 mg/kg i.p. on glutamate efflux in the 
cACC and rACC (main effect o f ‘BIN’). Glutamate efflux after each treatment was 
compared, over 1-h increments, with efflux in the cluster of basal samples. 
Significant differences are in bold.

Treatment cf-AMP 3 mg/kg N=10/l 1

rACC cACC

Time
T2 0-T60 F(l,7)=0.759 P<0.4 F(l,9)=8.591 /><0.02
T8 0-T120 F(l,9)=2.298 P<0.2 F(l,8)=8.398/><0.02
T 140-T180 F(l,9)=3.908 F><0.08 F(l,10)=6.273 P<0.03
T2 0 0-T2 40 F(1,9)=2.804P<0.1 F(l,20)=5.896 / ><0.04
T2 6 0-T300 F( 1,9)= 1.160 P<0.3 F(l,20)=8.392 / ><0.02
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3.5/ DISCUSSION

One previous study has reported increases in glutamate efflux in the cingulate 

region of the rat preffontal cortex after systemic injection or local infusion of 

d-amphetamine (Reid et al., 1997). So far, none has investigated the effect of 

d-amphetamine on glutamate efflux in the cACC. Here, single-probe microdialysis 

was used to compare the effects of d-amphetamine in the rACC and cACC, providing 

a qualitative and quantitative comparison of the glutamate response to systemic and 

local d-amphetamine in different areas of the rat cortex. The results of this study 

reveal marked regional differences in the glutamate response to d-amphetamine.

The first finding was that local infusion of d-amphetamine increased glutamate 

efflux in the rACC, but there was no response in the cACC. The second finding was 

that systemic d-amphetamine increased glutamate efflux in the cACC, but there was 

no response in the rACC. The effects of systemic d-amphetamine were investigated 

at a dose within the range of that reported to increase glutamate efflux in the cerebral 

cortex of awake rats (2 mg/kg i.p.; Reid et al., 1997). This result is not in agreement 

with the one previous study looking at the effect of systemic d-amphetamine on 

glutamate efflux in the rACC (Reid et al. 1997). However, this is the first time that 

such a variation in the glutamate response to d-amphetamine in these two adjacent 

subregions of the rat frontal cortex has been reported. The reasons for these 

reciprocal differences are as yet unclear but will be investigated in experiments in the 

following chapters.
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3.5.1/ Possible sources o f glutamate (where increased efflux is observed)

Glutamatergic pyramidal neurones are abundant in the frontal cortex, 

constituting approximately 80 % of the cell types in this brain region. There is also a 

dense glutamatergic projection to this region from the mediodorsal nucleus (MD) of 

the thalamus (Groenewegen et al., 1997). Glutamate is a fast excitatory 

neurotransmitter within the brain and is released from neurones with a latency of 

microseconds, reaches a high concentration within the synaptic cleft and gives rise to 

synaptic potentials with millisecond durations (Fillenz, 2005). The action of 

glutamate is terminated by the highly efficient uptake system surrounding the 

synapse, which means there is little overflow of glutamate from the synapse into the 

extracellular space (Kanai and Hediger, 2003).

A neuronal origin for the increased extracellular glutamate in the rACC, after 

local infusion of ^-amphetamine, and the cACC, after systemic administration of 

(/-amphetamine, cannot be ruled out. This could either be a direct effect of 

^/-amphetamine on neuronal glutamate transporters (causing impulse-independent 

release)/vesicular glutamate transporters (causing impulse-dependent release) or an 

indirect effect.

The indirect effect of (/-amphetamine could be mediated by monoamine 

neurotransmitters (see: Chapter 1 for pharmacology of ̂ /-amphetamine). The effect of 

monoamine neurotransmitters on glutamatergic neurotransmission has been widely 

studied (see: Chapter 1). For example, hallucinogenic drugs, such as lysergic acid 

diethylamide (LSD) increase glutamate efflux in the medial prefrontal cortex through 

the activation of postsynaptic 5-HT2A receptors on the terminals of glutamatergic 

pyramidal cells (Muschamp et al., 2004). (/-Amphetamine acts on the serotonin
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transporter to increase release of 5-HT in the brain. An involvement of dopamine in 

</-amphetamine-induced release of glutamate is also a possibility. The role of 

dopamine in the rACC is complex and electrophysio logical studies have demonstrated 

both inhibitory and excitatory effects of dopamine on glutamatergic pyramidal cell 

excitability (Gonzalez-Islas and Hablitz, 2003, Gulledge and Jaffe, 1998, see: Chapter 

1). Such studies show that the action of monoamine transmitters at their receptors can 

indirectly evoke increases in glutamatergic transmission.

Glial cells have been suggested as an alternative source of glutamate in the 

subcortical areas, such as the striatum (Baker et al., 2002) and a number of 

mechanisms for release, leading to increased extracellular glutamate, have been 

identified:

1. Reversal of uptake by glutamate transporters (Szatkowski et al., 1990)

2. Ca2+-dependent exocytosis (Parpura et al., 1994)

3. Anion channel opening induced by cell swelling (Kimelberg et al., 1990)

4. Glutamate exchange via the cystine-glutamate antiporter (Warr et al., 1999)

5. Diffusional release through ionotropic purinergic receptors (Duan et al., 2003)

6. Functional ‘hemichannels’ or unpaired connexons on the cell surface (Ye et 

al., 2003)

In subsequent experiments, I shall focus on the first two theories. Glutamate is 

released through the high-affinity Na+-dependent transporter, GLT-1, located in the 

astrocyte membrane, leading to increased extracellular concentrations. However, 

there is no alteration in the expression of the glutamate transporter subtypes GLT-1 

and EAAC1 (quantified by Western blotting) in the rat preffontal cortex after either

110



acute or chronic exposure to ^/-amphetamine (Sidiropoulou et al., 2001). There is no 

evidence in the literature that d-amphetamine binds directly to this transporter, 

although blockade of GLT-1 does lead to increased extracellular glutamate in the rat 

striatum (Fallgren and Paulsen, 1996). It is possible that d-amphetamine influences 

this transporter indirectly to increase release of glutamate.

Expression of a number of neurotransmitter receptors in the membrane of 

astrocytes renders them sensitive to changes in the extracellular concentrations of 

these neurotransmitters. There is evidence of glutamatergic, GABAergic, adrenergic, 

purinergic, serotonergic, muscarinic and peptidergic receptors on astrocytes in situ 

and in vivo (for review, see Porter and McCarthy, 1997). Stimulation of group I 

metabotropic glutamate receptors (mGluRs) can trigger an increase in intracellular 

Ca , which has complex temporal and spatial patterns (Cai et al., 2000). Astrocytes 

are connected by gap junctions, channels allowing the passage of ions between 

coupled cells, providing a pathway for direct, intercellular communication. These gap

junctions allow the propagation o f Ca waves, which lead to release of glutamate

2+from the astrocytes. Such Ca -mediated release of glutamate has been demonstrated 

in vitro with cultured cortical astrocytes (Parpura et al., 1994) and has many features 

common to vesicular exocytosis in nerve terminals. In fact astrocytes express the 

many of the proteins required for vesicular release of neurotransmitter (Wilhelm et 

al., 2004). The function of this astrocytic-derived glutamate is not yet clear. 

However, it may be involved in the spatial coordination and synchronisation of 

neuronal activity and synaptic networks (Fellin et al., 2004).
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3.5.2/ Possible explanations fo r  regional differences in the response to 

d-amphetamine

Since local infusion of d-amphetamine had no effect, actions upstream of the 

cACC must explain the increased glutamate efflux seen in this subregion. The 

differences in the two subregions suggest that the rACC and cACC may receive inputs 

from different subcortical nuclei, with different excitatory and inhibitory influences. 

The noradrenergic innervation (derived from the locus coeruleus) of the rat cerebral 

cortex is known to be homogeneous to all cortical subregions (Lindvall et al., 1978, 

Audet et al., 1988). Therefore, regional variation in noradrenergic innervation is 

unlikely to explain the differential glutamate response to d-amphetamine. The 

different subregions of the prefrontal cortex receive dopaminergic innervation from 

different parts of the A10 cell group (Lindvall et al, 1978). This regional variation in 

dopamine innervation is a strong candidate for investigation when attempting to 

explain the differences in the glutamate response to d-amphetamine. Differences in 

the serotonergic innervation of the cerebral cortex have also been demonstrated with 

the highest densities observed in the Cg3, when compared to Cg2 (Audet et al., 1989). 

However, as discussed in Chapter 1, d-amphetamine has a much lower affinity for 

SERT compared to NET and DAT (see Tables 1.3 and 1.4).

Histochemical studies have demonstrated the presence of inhibitory 

heteroreceptors in glutamatergic nerve terminals. These include the D2 -like receptor 

and the 5-HTia receptor (Vincent et al., 1993, Kia et al., 1996): stimulation o f these 

receptors decreases terminal release of glutamate into the rACC, as measured by 

microdialysis. These receptors are also present on the cell bodies of pyramidal cells, 

where they decrease the firing rate of glutamatergic neurones (Arandeda and Andrade,
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1991, Gulledge and Jaffe, 1998). Where no increase in cortical glutamate efflux is 

seen after administration of d-amphetamine, this could be explained by activation of 

monoamine heteroreceptors by the increase in extracellular glutamate.

A final possibility is that there may be a more efficient transport system for 

clearance of glutamate in the cACC compared to the rACC. Indeed, regional 

differences in the glutamate response to local infusion of glutamate transport inhibitor 

have been demonstrated (Semba and Wakuta, 1998). Differential distributions of 

glutamate transporters in the two subregions could explain any differences in the 

glutamate response to d-amphetamine. Any or all of these possibilities may explain 

the regional difference in the glutamate response to d-amphetamine.

3.5.3/ Summary o f  key findings

• Systemic administration of d-amphetamine increases glutamate efflux in the 

caudal anterior cingulate cortex, but not the rostral anterior cingulate cortex.

• Local infusion of d-amphetamine increases glutamate efflux in the rostral 

anterior cingulate cortex, but not the caudal anterior cingulate cortex
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Chapter 4

4.0 Contrasting effects of (/-amphetamine on dopamine efflux and dopamine on 

glutamate efflux in two subregions of the anterior cingulate cortex 

4.1/ INTRODUCTION

In the previous experiments, the glutamate response to (/-amphetamine 

depended on both route of administration and subregion. Systemic administration of 

(/-amphetamine increased glutamate efflux in the cACC, but not the rACC, while 

local infusion of (/-amphetamine increased glutamate efflux in the rACC, but not the 

cACC (see: Chapter 3). Here, I explored in more detail the mechanisms underlying 

the glutamate response in the anterior cingulate cortex. One of the main 

pharmacological effects of (/-amphetamine is to increase impulse-independent release 

of dopamine in various brain regions by reversal o f the dopamine reuptake transporter 

(DAT). Therefore, any effects of (/-amphetamine on the glutamatergic system could 

be secondary to an increase in dopaminergic neurotransmission.

To explore this possibility, I first investigated the effect of (/-amphetamine on 

dopamine efflux in the cACC and the rACC. A lack of increase of dopamine efflux 

by (/-amphetamine would invalidate the hypothesis outlined above. The effects of 

both local infusion (10 and 100 /xM) and systemic injection (3 mg/kg i.p.) o f 

(/-amphetamine on dopamine efflux in the cACC and the rACC were investigated. 

These doses/concentrations were based on our previous experiments, which 

demonstrated a clear increase in glutamate efflux at these concentrations (see: Chapter 

3).
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Finally, we explored the effect of dopamine on glutamate efflux in the cACC 

and the rACC. The simplest way to achieve this is to infuse a solution of dopamine 

directly down the microdialysis probe into the cortex. One previous microdialysis 

study has investigated the effect of infusion of dopamine on noradrenaline efflux in 

the prefrontal cortex (Pan et al., 2004). This demonstrated an increase in extracellular 

noradrenaline on infusion of 12, 20 and 40 nM dopamine. Similar concentrations o f 

dopamine were chosen for this study, including solutions with two-fold higher 

concentrations.

4.2/ AIMS

• To discover whether local infusion o f d-amphetamine affects dopamine efflux 

in the cACC and/or the rACC.

• To discover whether systemic injection o f d-amphetamine affects dopamine 

efflux in the cACC and/or the rACC.

• To discover whether local infusion o f dopamine increases glutamate efflux in 

the cACC and/or the rACC.
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4.3/ METHODS

4.3.1/ Experiment 1 -  Effects o f local infusion of d-amphetamine on

dopamine efflux in the cACC and rACC

Rats were implanted with microdialysis probes in both the cACC and the rACC on the 

day before experimenting i.e. dual-probe microdialysis was performed. For local 

infusion, d-amphetamine was dissolved in Ringer’s solution to make 10 and 100 pM 

concentrations. Once stable basal dopamine efflux was established, 10 pM 

d-amphetamine was locally infused via the probe for 2 h, followed by Ringer’s 

solution for 1 h and finally 100 pM d-amphetamine for 2 h.

4.3.2/ Experiment 2 -  Effects o f  systemic injection o f  d-amphetamine 

on dopamine efflux in the cACC and rACC

Rats were implanted with microdialysis probes in both the cACC and the rACC on the 

day before experimenting i.e. dual-probe microdialysis was performed. This allows a 

direct, simultaneous comparison of the effects of d-amphetamine on dopamine efflux 

in both brain regions. For systemic injection, d-amphetamine was dissolved in 0.9 % 

saline to make a 3 mg/ml solution. This was administered in a volume of 1 ml/kg (i.e. 

3 mg/kg). Once stable basal dopamine efflux was established, d-amphetamine was 

administered systemically by intraperitoneal injection. Microdialysis sampling 

continued for a further 5 h.
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4.3.3/ Experiment 3 -  Effects o f local infusion of increasing

concentrations o f dopamine on glutamate efflux in the cACC and rACC

Rats were implanted with microdialysis probes in both the cACC and the rACC on the 

day before experimenting i.e. dual-probe microdialysis was employed. Dopamine 

was dissolved in Ringer’s solution to make concentrations of 0.05, 0.5, 5 and 50 pM. 

These concentrations were based on a previous microdialysis study where an increase 

in noradrenaline efflux was seen after infusion of dopamine concentrations within this 

range (Pan et al., 2004). Once basal glutamate efflux was established and at least 

three stable basal samples taken, dopamine was infused locally via the dialysis probe 

by substituting the perfusion solution for Ringer’s containing dopamine. Four 

successive concentrations from 0.05-50 pM were infused for 80 min each.

4.3.4/ Statistical analysis

For experiment 1 (local infusion of ^-amphetamine) both ‘time’ and ‘brain region’ 

were ‘within subjects’ factors. The data were divided into five ‘bins’ with three 

consecutive samples per bin (each bin corresponded to one hour of infusion of 

d-amphetamine or Ringer’s solution; Figure 4.1) and ‘bin’ was a ‘within subjects’ 

factor.
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1 pM 10 pM 100 pM 100 pM [cf-AMP]

-80 80 160 240 320 Sampling time (min)

Figure 4.1 Time bins for statistical analysis o f changes in extracellular dopamine 
after local infusion o f d-amphetamine.

For experiment 2 (systemic d-amphetamine), ‘time’ was a ‘within subjects’ factor and 

‘treatment’ was a ‘between subjects’ factor. The data were divided into six ‘bins’ 

with three consecutive samples per bin (each bin therefore corresponded to one hour 

of sampling after injection of d-amphetamine; Figure 4.2) and ‘bin’ was a ‘within 

subjects’ factor.

Bin1' ‘Bin6’*Bin2' Bin3’ ‘Bin4’ Bin5’

120 300180 240-60 600 Sampling time (min)

Figure 4.2 Time bins for statistical analysis o f changes in extracellular dopamine 
after systemic (i.p.) injection o f d-amphetamine.

For experiment 3 (dopamine infusion), both ‘time’ and ‘brain region’ (i.e. cACC or 

rACC) were ‘within subjects’ factors. The data were divided into five ‘bins’ with four 

consecutive samples per bin (each bin therefore corresponded to infusion of one 

concentration of dopamine; Figure 4.3 and ‘bin’ was a ‘within subjects’ factor. ‘Bin 

1 ’ represents basal efflux (i.e. T . 4 0 - T 0 ) .  For the purposes of the statistical analysis, the
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last three samples during infusion of each concentration of dopamine were used. 

Therefore, ‘bin 2’ = 0.05fiM (T4 0-T80), ‘bin 3’ = 0.5/zM (T120-T160), ‘bin 4’ = 5fiM 

(T2 0 0-T2 4 0) and ‘bin 5’ = 50/iM (T28o-T32o)-

0.05 jiM 0.5 nM 5 nM 50

‘Bin3’ ‘Bin4’ ‘Bin5’

-80 0 80 160 240 320 Sampling time (min)

Figure 4.3 Time bins for statistical analysis o f changes in extracellular glutamate 
after local infusion o f dopamine solution.

The Greenhouse-Geisser e-correction was performed where Mauchley’s test of 

Sphericity was significant.
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4.4/ RESULTS

4.4.1/ Experiment 1 -  Effects o f local infusion of d-amphetamine on

dopamine efflux in the cACC and rACC

There was no difference in basal efflux of dopamine in the cACC and the rACC of 

animals destined for local infusion of d-amphetamine. Basal efflux of dopamine of 

the pooled data (from the group given local d-amphetamine only) was 13.6 ± 4.5 

fmol/20min for the cACC and 15.7 ±1.5 fmol/20min for the rACC.

Infusion of 10 pM d-amphetamine, via the microdialysis probe, starting at To, caused 

an immediate increase in dopamine efflux in the rACC (see Figure 4.4). The 

maximum increase was reached at T4 0 (33 ± 11 fmol/20min) and this was sustained 

for the remainder of the infusion (2 h). Subsequent infusion of Ringer’s, starting at 

T 140 for 1 h, led to a progressive decrease in dopamine efflux. On infusion o f 100 pM  

d-amphetamine, an immediate resurgence of the dopamine response was seen, with a 

maximum increase seen at T2 60 (63 ± 21 fmol/20min) i.e. the amplitude of the 

dopamine response was dose-related. Again, this increase in extracellular dopamine 

was sustained for the remainder of the d-amphetamine infusion (Figure 4.4 and see: 

Table 4.1 for statistical analysis).

No significant increase in dopamine efflux was observed in the cACC at any time 

(Figure 4.4 and see: Table 4.1 for statistical analysis).
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Figure 4.4 Effects o f local infusion (via retrodialysis) o f increasing concentrations o f  
d-amphetamine on dopamine (‘DA ’) efflux in cACC and rACC o f freely-moving rats.

The top graph shows raw data and the bottom graph shows net data set. 
d-Amphetamine infusion was initiated at To as indicated by the line. Points show 
mean ± s.e. mean DA efflux in the cACC (open triangles) and rACC (open circles). 
R=Ringer’s. N=7. * - /*<0.05.

121



Table 4.1 Statistics generated from split-plot ANOVA summarising the effects o f  local
infusion o f d-amphetamine on dopamine efflux in the cACC and rACC.

Treatment d-Amphetamine (local infusion)

cACC rACC

[J-AMP] pM

10 (1st hour)
10 (2nd hour) 
Ringers 
100 (1st hour) 
100 (2nd hour)

F(l,6)=0.550 P<0.5 
F(l,6)=0.001 P< 0.9 
F(l,6)=4.094 P<0.1 
F(l,5)=0.663 P<0.5 
F(l,4)=0.076/><0.8

F(l,6)=9.124 P<0.02 
F(l,6)=6.320i><0.05 
F(1,5)=0.513F<0.5 
F(l,6)=l 1.044 P<0.02 
F(l,6)=58.180 P<0.000

Dopamine efflux after each treatment was compared, over 1 -h increments with efflux in 
the cluster of basal samples. Significant differences are highlighted in bold.

Significant BIN*SUBREGION interactions were seen at both concentrations of 

^-amphetamine -  T2 0-T60 F(l,6)=6.293 P<0.046, Tgo-T^o F(l,6)=5.699 P<0.05, T2 6 0- 

T30o F(l,4)=l4.430 P<0.02.
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4.4.2/ Experiment 2 -  Effects o f systemic administration of d-amphetamine on

dopamine efflux in the cACC and the rACC

There was no difference in basal dopamine efflux in the cACC and the rACC of 

animals destined for intraperitoneal injection of ^-amphetamine. Basal efflux of 

dopamine obtained from the pooled data (for the group given systemic 

J-amphetamine only) was 5.7 ± 0.8 fmol/20min for the cACC and 4.4 ± 0.4 

fmol/20min for the rACC.

4.4.2.1/ The rostral anterior cingulate cortex

Systemic injection of saline did not alter dopamine efflux in the rACC (see Figure

4.5). Injection of ̂ /-amphetamine caused an immediate increase in dopamine efflux, 

which reached a maximum of 27 ± 8 fmol/20min at T4 0 . Efflux remained greater than 

that in the basal samples for the next 2 h at least (Figure 4.5 and see: Table 4.2 for 

statistical details). There was a significant BIN*DRUG interaction during the first 

and second hours after injection -  T2 0-T60 F(l,7)=8.366 P<0.02, Tgo-T 120 F(l,5)=7.946 

P< 0.04.
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Figure 4.5 Effects o f intraperitoneal (3 mg/kg) administration o f d-amphetamine or 
saline (1 ml/kg) on dopamine ( ‘DA ’) efflux in the rACC o f freely-moving rats.

The top graph shows raw data and the bottom graph net data set. J-Amphetamine was 
administered at To, as indicated by the arrow. DA efflux is expressed as ftnol/20min. 
Points show mean ± s.e. mean DA efflux in the rACC after administration of saline 
(closed circles) or ^-amphetamine (open circles). N=5-6 in each group. * - P<0.05.
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Table 4.2 Statistics generated from split-plot AN OVA summarising the effects o f
administration o f d-amphetamine ( ‘d-AMP’: 3 mg/kg) and saline (1 ml/kg) on
dopamine efflux in the rACC.

Brain region Rostral anterior cingulate cortex

Saline d-AMP

Time
T2 0-T60 F(l,3)=0.320
T80-T120 F(l,2)=0.917
T 140-T180 F(l,2)=4.837
T2 0 0-T2 40 F(1,3)=1.508
T2 6 0-T300 F(l,3)=2.101

P< 0.611 F(l,4)=10.352 /><0.03
P<0.439 F(l,3)=9.970 /><0.05
P<0.159 F(l,4)=4.463 P<0.10
P<0.307 F(l,4)=0.007 P<0.9
P<0.243 F(l,4)=9.966 P<0.03

Dopamine efflux after each treatment was compared, over 1 -h increments, with efflux 
in the cluster of basal samples. Significant differences are highlighted in bold.
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4.4.2.2/ The caudal anterior cingulate cortex

Systemic injection of saline did not alter dopamine efflux in the cACC (see Figure

4.6). On injection of ̂ -amphetamine there was no statistically significant increase in 

dopamine efflux in the cACC at any time as indicated by the statistical analysis 

(Figure 4.6 and see Table 4.3 for statistical details). This response is in marked 

contrast to the glutamate response in the cACC, which was consistently increased 

after injection of c/-amphetamine (see: Chapter 3).
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Figure 4.6 Effects o f intraperitoneal administration o f d-amphetamine (3 mg/kg) or 
saline (1 ml/kg) on dopamine ( ‘DA ) efflux in the cACC o f freely-moving rats.

The top graph shows raw data and the bottom graph net data set. ^/-Amphetamine was 
administered at To, as indicated by the arrow. DA efflux is expressed as fmol/20min. 
Points show mean ± s.e. mean DA efflux in the cACC on administration of saline 
(open triangles) or ^-amphetamine (closed triangles). N=5-6 in each group.
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Table 4.3 Statistics generated from split-plot ANOVA summarising the effects o f
administration o f d-amphetamine ( ‘d-AMP’: 3 mg/kg) or saline (1 ml/kg) on
dopamine efflux in the cACC.

Brain region Caudal anterior cingulate cortex

i/-AMP Saline

Time
T20-T60 F(l,3)=2.913 P<0.2 F(l,4)=0.566 P<0.5
T80-T120 F(l,3)=5.271 P<0.1 F(l,4)=1.577 P<0.3
T140-T180 F(l,3)=0.006 P<0.9 F(l,4)=0.398 P<0.6
T200-T240 F(l,3)=6.022/><0.1 F(l,4)=0.001 ^<0.9
T260-T300 F(l,3)=2.199 P<0.2 F(l,4)=0.261 P< 0.6

Dopamine efflux after each treatment was compared, over 1 -h increments, with efflux 
in the cluster of basal samples.
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4.4.3/ Experiment 3 -  Effects o f local infusion of increasing

concentrations of dopamine on glutamate efflux in the cACC and the rACC

There was no difference in basal glutamate efflux in the cACC and the rACC of 

animals destined for local infusion of dopamine. Basal efflux of glutamate obtained 

from the pooled data was 10.0 ± 1.3 pmol/20min for the cACC and 10.7 ± 0.9 

pmol/20min for the rACC.

A significant BIN*SUBREGION interaction was seen after infusion of 50 fiM 

dopamine -  F(i,9)=5.135 P<0.05. Local infusion of dopamine solution caused an 

increase in glutamate efflux in the rACC, while no effect on glutamate efflux was 

seen in the cACC at any time (Figure 4.7 and see: Table 4.4 for statistical details).
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Figure 4.7 Effects o f local infusion o f increasing concentrations o f dopamine (via 
retrodialysis) on glutamate ( lGLU’) efflux in the cACC and rACC o f freely-moving 
rats.

Top graph shows raw data and bottom graph net data set. Dopamine infusion was 
initiated at To as indicated by the line. GLU efflux is expressed as pmol/20min. Points 
show mean ± s.e. mean GLU efflux in the cACC (open triangles) and rACC (open 
circles). N=12/14. * - P<0.05
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Table 4.4 Statistics generated from split-plot ANOVA summarising the effects o f local
infusion o f dopamine solution in the cACC and the rACC.

Treatment Dopamine (local infusion)

cACC rACC

[DA] pM

0.05 F( 1,11 )= 1.193 P<0.2 F( 1,13)= 1.834 P<0.1
0.5 F(l,7)=0.742 P<0.4 F(l,12)=5.850 /><0.03
5 F(l,10)=0.165 P<0.7 F(l,12)=6.819 P<0.02
50 F(l,l 1)=0.063 P<0.8 F(1,H)=10.911 P<0.001

Glutamate efflux was compared, for each concentration of dopamine, with efflux in 
the cluster of basal samples. Significant differences are highlighted in bold.
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4.5/ DISCUSSION

In my previous experiments, there was a regional difference in the glutamate 

response to J-amphetamine (see: Chapter 3). J-Amphetamine is translocated inside 

the cell via the plasma membrane dopamine transporter. Once inside the cell, 

^-amphetamine disrupts storage of dopamine within the vesicles, which causes 

leakage of dopamine into the cytoplasm (see: Chapter 1). Therefore, it was proposed 

that an increase in extracellular dopamine could underlie the glutamate response to 

^/-amphetamine. In this chapter, the experiments explored the effects of both local 

infusion and systemic administration of ^/-amphetamine on dopamine efflux in the 

cACC and rACC. I also investigated the effects of local infusion of dopamine on 

glutamate efflux in both subregions.

4.5.1/ Effects o f d-amphetamine on dopamine efflux

Systemic administration of ^/-amphetamine increased dopamine efflux in the rACC 

relative to saline. Systemic administration of ^/-amphetamine did not increase 

dopamine efflux in the cACC relative to saline. To date, no studies have looked at the 

effect of systemic ^-amphetamine on dopamine efflux in this brain area and directly 

compared it to the rACC by using dual-probe microdialysis. Since systemic 

^/-amphetamine did not affect dopamine efflux in this brain region, it can be inferred 

that an increase in dopamine efflux in the terminal field does not underlie the increase 

in extracellular glutamate in this subregion.

Table 4.5 summarises the results of previous microdialysis studies investigating 

dopamine efflux in various subregions of the medial prefrontal cortex after systemic
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administration of d-amphetamine. In most subregions, an increase in dopamine efflux 

was seen. However, Hedou et al. (2001) reported a decrease in dopamine efflux on 

administration of 1.5 mg/kg d-amphetamine. This discrepancy could be caused by the 

use of anaesthetised animals by Hedou et al. rather than conscious, freely-moving rats 

as used in my experiments. They were also studying a different subregion o f the rat 

prefrontal cortex.

Table 4.5 Summary o f microdialysis studies investigating the effect o f systemic 
d-amphetamine on dopamine efflux in the prefrontal cortex.

Reference Dose of 
d-amphetamine

Effect on dopamine 
efflux

Coordinates

Hedou et al., 2001 1.5 mg/kg i.p. Decreased Dorsal mPFC 
AP+2.7 
ML+0.5 
DV -4.0 
Ventral mPFC 
AP+3.2 
ML+0.5 
DV -6.0

Berridge et al, 2002 0.15 and 0.25 

mg/kg s.c.

Increased (+125 % cf. 
basals)

AP +3.2 
M L+1.0 
DV -5.0

Shoblock et al., 2003 2  mg/kg i.p. Increased AP+3.2 
ML+0.1 
DV -6.1

Local infusion of (/-amphetamine dose-dependently increased dopamine efflux in the 

rACC. However, no change was observed in the cACC at any concentration tested. 

The regional dopamine response to local infusion of d-amphetamine mirrored that of 

the glutamate response in both subregions and so the increase in extracellular 

glutamate seen in the rACC after local infusion of d-amphetamine could be occurring 

secondary to increased dopaminergic neurotransmission. Table 4.6 summarises the
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results of previous microdialysis experiments investigating dopamine efflux in various

subregions of the medial prefrontal cortex after local infusion of d-amphetamine. In

both studies, an increase in dopamine efflux was seen after d-amphetamine infusion.

Table 4.6 The results o f previous microdialysis studies investigating the effects o f  
local infusion o f d-amphetamine on dopamine efflux in the prefrontal cortex.

Reference Dose of 

d-amphetamine

Effect on dopamine 

efflux

Coordinates

Mazei et al., 2002 10, 50, 100 pM Increased Cingulate 
AP +3.2 
ML +0.8 
DV 0.0 to -2.5 
Prelimbic 
AP +3.2 
ML +0.8 
DV -2.5 to -5.0

Balia et al., 2001 10 pM Increased AP+4.1
ML+1.0
DV-1.0

The mechanisms by which d-amphetamine causes increased extracellular 

dopamine in the rACC have been outlined in the introduction (see: Chapter 1). It is 

less clear why there should be no such increase in the cACC after either systemic or 

local administration of d-amphetamine. Dopamine transporters (DAT) are present in 

the prefrontal cortex, albeit in lower numbers than in the striatum (Sesack et al., 

1998). There is subregional variation in DAT density in the prefrontal cortex, with 

higher numbers being present in the more superficial areas, such as the anterior 

cingulate cortex, than the deeper layers, such as the prelimbic cortex (Sesack et al., 

1998). Therefore, if the main effect of d-amphetamine is to cause impulse- 

independent release of dopamine through DAT, one would expect to see increased 

dopamine efflux in the cACC, where the probes were located in the more superficial 

laminae of the cortex. The variation in the subregional response to d-amphetamine
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seen in the present study seems to correlate more closely with their dopamine 

innervation densities (see later paragraphs).

In terms of dopaminergic connectivity, the prefrontal cortex receives a dense 

dopaminergic innervation from the ventral tegemental area (VTA or A10) of the 

midbrain (Lindvall et al., 1978). As discussed in Chapter One, the two subregions of 

study receive dopaminergic afferent input from different brainstem nuclei. The 

dopaminergic projection to the medial prefrontal cortex and the superficial layers o f 

the anterior cingulate cortex (i.e. the cACC) originates in the medial part of the A10 

cell group, while the projection to the deeper layers of the anterior cingulate subregion 

(i.e. the rACC) originates in the ventrolateral part and also the mediolateral substantia 

nigra (A9: Emson and Koob, 1977). This could explain the differences in the 

dopamine response to d-amphetamine between the two subregions.

Mazei et al., (2002) investigated the effect of local infusion of d-amphetamine 

on dopamine efflux in different subregions of the rat prefrontal cortex (the dorsally 

localised anterior cingulate cortex and the more ventrally localised prelimbic cortex). 

They found that local infusion of 100 pM d-amphetamine differentially increased 

dopamine efflux in the two subregions of the prefrontal cortex. Thus d-amphetamine- 

induced dopamine efflux was significantly greater in the prelimbic area compared to 

the anterior cingulate subregion. These results correspond to the dopamine 

innervation density of these two subregions, with the prelimbic area demonstrating a 

greater dopamine innervation density than the anterior cingulate area. Studies using 

tritiated dopamine or proline have found that the prelimbic area has a denser 

dopamine innervation compared to the more dorsal anterior cingulate area (Descarries 

et al., 1987, Javitch et al., 1985). Thus the dopamine response to d-amphetamine in 

this study is correlated with dopamine innervation densities.
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More recent anatomical studies have confirmed a greater density of 

dopaminergic innervation in the deep layers o f the medial prefrontal cortex compared 

to the more superficial layers (Ciliax et al., 1995). Therefore, in the rostral anterior 

cingulate cortex (as investigated during this study), the high dopamine innervation 

density compared to the caudal anterior cingulate cortex could contribute to the 

differential dopamine response to d-amphetamine. The presence o f fewer 

dopaminergic terminals in the caudal anterior cingulate cortex means that there would 

be less dopamine available for extrusion by the transporter when compared to the 

rostral anterior cingulate cortex. The reason for the differential dopamine innervation 

densities between the two brain regions could be explained in terms of their afferent 

inputs. As explained earlier in the discussion, the dopaminergic projection to the 

deeper layers of the prefrontal cortex originates in the medial part of the A10 cell 

group. The projection to the more superficially-located anterior cingulate cortex 

originates in the ventromedial part/A9 (Lindvall et al., 1978).

^/-Amphetamine also acts on the noradrenaline transporter (NET) to increase 

release of noradrenaline (Pifl et al., 1999). The NET is responsible for the clearance 

of the majority of the extracellular dopamine from the prefrontal cortex (Wayment et 

al., 2001). Therefore, d-amphetamine could be releasing dopamine from the NET. 

However, unlike the dopamine innervation density, the noradrenergic innervation of 

different subregions of the prefrontal cortex is homogeneous and derived from the 

same brain region (the locus coeruleus; Lindvall et al., 1978). Therefore, the 

differential dopamine response to d-amphetamine in subregions of the prefrontal 

cortex is unlikely to be due to any action of d-amphetamine on the NET.

To summarise, there were subregional differences in the dopamine response to 

d-amphetamine. Both systemic injection and retrodialysis of d-amphetamine
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increased dopamine efflux in the rACC, but neither route had any appreciable effect 

in the cACC. The dopamine response to d-amphetamine in the rACC was similar, 

regardless of the route of administration. Therefore, the dopamine response to local 

d-amphetamine is not confounded by afferent inputs.

4.5.2/ Effects o f local infusion of dopamine on glutamate efflux

Local infusion of dopamine dose-dependently increased glutamate efflux in 

the rACC, while no effect in the cACC was seen at any concentration tested. This 

response profile mimics the effects of local infusion of d-amphetamine in these 

subregions. Therefore, an increase in dopaminergic neurotransmission could underlie 

the glutamate response to local infusion of d-amphetamine in the rACC. These results 

are in contention with some previous microdialysis studies investigating the effects of 

dopaminergic agents on extracellular glutamate. The selective Di-like receptor 

agonist SKF38393 and pergolide (which has actions on Di, D2 and D3-like receptors) 

both decreased spontaneous glutamate efflux in the rACC of freely-moving rats 

(Harte and O’Connor, 2004). Electrophysio logical studies have demonstrated both 

increased and decreased excitability of glutamatergic pyramidal cells after application 

of dopamine and dopamine receptor ligands (Gonzalez-Islas and Hablitz, 2003, 

Gulledge and Jaffe, 1998). These studies suggest a complex role of dopamine in the 

modulation of glutamatergic neurotransmission in the rACC.

The explanation for the differing glutamate response to local infusion of 

dopamine in the rACC and cACC is unclear. As mentioned in section 4.1, there is a 

differential dopaminergic innervation of different subregions of the prefrontal cortex. 

Dopamine has a greater propensity to affect glutamate efflux in the rACC when
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compared to the cACC due to the greater dopaminergic innervation of the prefrontal 

cortex (Ciliax et al., 1995). A differential distribution of dopamine receptors has also 

been demonstrated in the two subregions. The Di-like receptor in the rat cortex has a 

relatively homogeneous pattern in most regions except the deeper laminae (V and VI), 

which contain more receptors than the superficial layers. D2 -like receptors are 

distributed in all regions of the cerebral cortex in rats and are very homogeneous in 

their regional distribution and laminar pattern compared to the Dj-like receptor 

(Richfield et al., 1989). The pattern of the glutamate response to local infusion of 

dopamine therefore correlates with the density of Di -like receptors in the cortex.

4.5.3/ SUMMARY OF KEY FINDINGS

• Both local infusion and systemic administration of d-amphetamine increased 

dopamine efflux in the rACC, suggesting that dopamine efflux is not 

constrained by afferent inputs.

• In the cACC, dopamine efflux was not affected by either local infusion or 

systemic administration of d-amphetamine, suggesting that an increase in 

dopamine efflux does not underlie the glutamate response to systemic 

d-amphetamine in this subregion.

• Local infusion of dopamine solution increased glutamate efflux in the rACC 

but not the cACC. This gives more credence to the idea that an increase in 

dopaminergic neurotransmission underlies the glutamate response to 

d-amphetamine.
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Chapter 5

5.0/ The effect of pre-treatment with dopaminergic antagonists on the glutamate 

response to local infusion of ̂ /-amphetamine in the rostral anterior cingulate

cortex

5.1/ INTRODUCTION

In Chapter 3, local infusion of ^/-amphetamine produced a dose-related 

increase in extracellular glutamate in the rACC, while no change in glutamate efflux 

was observed in the cACC. It was hypothesised that an increase in dopaminergic 

neurotransmission could underlie the ^-amphetamine-induced increase in glutamate 

efflux in the rACC. This proposal was supported by subsequent experiments (see: 

Chapter 4). These experiments demonstrated that local infusion of ^-amphetamine 

increased dopamine efflux in the rACC, but not the cACC. Local infusion of 

dopamine also increased glutamate efflux in the rACC, but not the cACC. Therefore, 

it is a possibility that the ^/-amphetamine-induced increase in glutamate efflux in the 

rACC is occurring secondary to an increase in dopaminergic neurotransmission.

The aim of these experiments was to investigate further the possibility that an 

increase in dopaminergic neurotransmission underlies the glutamate response to 

d-amphetamine in the rACC and to characterise the subtype(s) of dopamine receptors 

involved. The rACC was chosen for study as local infusion of (/-amphetamine into 

this brain region gave a reliable, dose-related increase in glutamate efflux. No change 

in extracellular glutamate was observed in the cACC in response to (/-amphetamine. 

To further investigate the possibility of a dopaminergic involvement in the glutamate
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response to local infusion of d-amphetamine in the rACC, two dopaminergic 

antagonists were chosen: the D2 -like receptor antagonist haloperidol and the Di-like 

receptor antagonist SCH23390. Both these drugs have been well characterised using 

radioligand binding. The ED50 for receptor occupancy in the rat brain (striatum and 

cerebellum) by haloperidol is 0.2 mg/kg (Barth et al ,  2006). To the best of my 

knowledge, the ED50 for SCH23390 is not readily available. Doses of haloperidol 

were chosen, which, according to these radioligand binding assays, should block 

D2 -like receptors in vivo: 0.1 and 1 mg/kg. The doses of SCH23390 were based on 

previous microdialysis studies, which show an effect on pharmacologically-evoked 

glutamate release in the ventral tegmental area (Wolf and Xue, 1999). To date, no 

study has looked at the effect of pre-treatment with dopaminergic antagonists on the 

glutamate response to d-amphetamine in the rACC. However, one previous study 

found that pre-treatment with SCH23390 (0.1 mg/kg i.p.) completely prevented the 

increased extracellular glutamate in the ventral tegmental area in response to systemic 

administration of d-amphetamine (5 mg/kg i.p., Wolf and Xue, 1999). Another study 

looked at glutamate efflux in the rACC in response to another pyschostimlant, cocaine 

(Reid et al ,  1997). The authors found that the increased glutamate efflux in response 

to systemic cocaine (30 mg/kg) was completely blocked by pre-treatment with 

systemic SCH23390 (0.02 mg/kg i.p.), but not by haloperidol (0.2 mg/kg i.p.). 

Cocaine and d-amphetamine have some common pharmacological characteristics. 

They both increase extracellular dopamine levels by actions on the plasma membrane 

dopamine transporter (Pifl et al ,  1995). Therefore, the data obtained by Reid et al. 

may be comparable with the results of the experiments performed in Chapter 5.

d-Amphetamine was administered into the rACC by local infusion at doses of 

10 and 100 (JiM. These doses were based on the experiments performed in chapters 3
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and 4, which produced a measurable increase in glutamate efflux. Local infusion 

delivers the drug directly into the brain area of interest. It therefore enables 

investigation of drug effects in the terminal fields. Limited diffusion of 

J-amphetamine from the probe has been demonstrated in microdialysis studies 

(Westerink and De Vries, 2001).

The dopaminergic antagonists were administered 2 h before local infusion of 

{/-amphetamine. This time period was chosen to allow glutamate efflux to stabilize 

before {/-amphetamine treatment. The pharmacokinetics of haloperidol have been 

examined in young and aged male Fischer-344 rats (Kapetanovic et al., 1982). The 

elimination half-life of a bolus (0.5 mg/kg i.p.) dose of haloperidol in young (3-4 

month) rats was found to be 2.62 h, while in aged (32-34 month) rats, it was 3.50 h. 

The concentration of haloperidol in the brain would have declined by nearly half 

when {/-amphetamine infusion was initiated. However, in rodents, D2-like receptor 

occupancy by haloperidol, in the striatum at least, is in excess of 80 % at doses of 

haloperidol of 0.1 mg/kg or greater (Mukherjee et al, 2001). In the present 

experiments, both dopaminergic antagonists were administered systemically in order 

to be distributed throughout the body. Local infusion of {/-amphetamine delivers the 

drug directly into the rACC and therefore enables investigation of drug effects in the 

terminal fields. These two routes of drug administration were chosen to avoid 

pharmacokinetic artefacts created by giving two drugs simultaneously down the 

probe. If a compound is locally infused into the brain, it is impossible to predict its 

exact concentration in the terminal fields. This situation would be complicated by the 

addition of two drugs to the perfusion fluid, as the concentration of each drug 

accessing the brain extracellular fluid could vary from experiment to experiment.
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There is also the possibility o f chemical interaction between the two compounds in the 

perfusion fluid.

5.2/ AIM

• To determine i f  the glutamate response to d-amphetamine in the rACC can be 

prevented by pre-treatment with either the D2-like receptor antagonist 

haloperidol or the Dl-like receptor antagonist SCH23390
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5.3/ METHODS

Experiments were performed on freely-moving rats (250-300 g on the day of surgery).

5.3.1/ Experiment 1 -  Effects o f pre-treatment with the D2-like receptor 

antagonist haloperidol on the glutamate response to local infusion o f  

d-amphetamine in the rostral anterior cingulate cortex

Rats were implanted with microdialysis probes in the rACC on the day before 

experimenting. Haloperidol was dissolved in 0.9 % saline to make a 0.1 mg/ml 

solution. This was administered at a volume of 1 ml/kg (i.e. 0.1 mg/kg). This dose of 

haloperidol was based on previous in vivo studies where blockade of D2 -like receptors 

has been reported. For local infusion, d-amphetamine was dissolved in Ringer’s 

solution to make 10 and 100 pM solutions. These doses were based on the studies 

carried out in chapter 3, which demonstrated measurable increases in glutamate efflux 

in the rACC at these concentrations. Rats were randomly assigned to one of three 

treatment groups (Table 5.1, Experiment 1). Once stable basal glutamate efflux was 

established, 0 . 1  mg/kg haloperidol or 1 ml/kg saline were administered by i.p. 

injection. The last three basal samples were designated T^o-To, with injection of 

haloperidol or saline immediately after To. Sampling continued for a further 2 h after 

haloperidol or saline injection. After the 2 h stabilisation period, d-amphetamine was 

locally infused via the probe by changing the perfusion solution for Ringer’s 

containing d-amphetamine in two groups only. Two successive concentrations o f 

d-amphetamine were infused for 80 min each. For the haloperido 1-Ringer’s groups, 

sampling continued for a further 280 min without the addition of d-amphetamine.
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The concentration of glutamate in dialysates was expressed as pmol/20 min without 

correction for recovery.

This experiment was then repeated with a higher dose of haloperidol (1 mg/kg

i.p., Table 5.1 Experiment 2).

5.3.2/ Experiment 2 -  Effects o f pre-treatment with the Dl-like receptor 

antagonist SCH23390 on the glutamate response to local infusion of  

d-amphetamine in the rostral anterior cingulate cortex

Rats were implanted with microdialysis probes on the day before experimenting and 

Experiment 1 was repeated, substituting SCH23390 (0.1 and 1 mg/kg) for haloperidol 

(see: Table 5.2, experiments 1 and 2).

5.3.3/ Statistical analysis

All data were analysed for significance using three- and two-way analysis o f variance 

with repeated measures. In addition to raw data, net changes were calculated by 

subtracting the mean of the last three basal samples from all the samples in the time 

course. Data for each treatment group were pooled and the mean and s.e.m. 

calculated.

‘Time’ was a ‘within subjects’ factor and ‘pre-treatment’ (i.e. dopamine antagonist 

treatment vs. saline) was a ‘between subjects’ factor. The data were divided in three 

‘bins’ with four consecutive samples per bin (each bin therefore corresponded to 

infusion of one concentration of J-amphetamine or Ringer’s solution; Figure 5.1).
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‘Bin’ was a ‘within subjects’ factor. ‘Bin 1 ’ represents basal efflux (i.e. T^o-To). The 

last three samples during infusion of each concentration of ̂ /-amphetamine were used 

for the analysis.

10 uM 100 uM

0 120 200 280

Figure 5.1 Time bins for statistical analysis o f changes in extracellular glutamate 
after local infusion o f d-amphetamine.

Therefore, ‘bin 2’=10 pM ( T 1 6 0 - T 2 0 0 )  and ‘bin 3’=100 pM ( T 2 4 0 - T 2 8 0 ) .  The 

Greenhouse-Geisser €-correction was performed where Mauchley’s test of Sphericity 

was significant.

Table 5.1 Treatment groups for haloperidol/saline administration. Rats were 
randomly assigned to one o f three treatment groups for each experiment.

Group

Number

Experiment 1 Experiment 2

1 Saline—J-amphetamine Saline—̂ -amphetamine

2 Haloperidol (0.1)—̂ -amphetamine Haloperidol (1)—d-amphetamine

3 Haloperidol (0.1)—Ringers Haloperidol (1)—Ringers
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Table 5.2 Treatment groups for SCH23390/saline administration. Rats were 
randomly assigned to one o f three treatment groups for each experiment.

Group

Number

Experiment 1 Experiment 2

1 Saline—̂ -amphetamine Saline—c/-amphetamine

2 SCH23390 (0.1)—̂ -amphetamine SCH23390 (1)—̂ /-amphetamine

3 SCH23390 (0.1)—Ringers SCH23390 (1)—Ringers
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5.4/ RESULTS

5,4.1/ Effects o f pre-treatment with the Drlike receptor antagonist 

haloperidol on the glutamate response to local infusion o f d-amphetamine in the 

rostral anterior cingulate cortex

There was no difference in basal efflux of glutamate in the rACC of animals in the 

treatment groups:

Experiment 1(a)

SAL+AMP 

HAL(0.1 )+AMP 

HAL(0.1 )+RINGERS

Experiment 1(b)

SAL+AMP 

HAL (1)+AMP 

HAL( 1 )+RINGERS

Experiment 1(a)

Injection of saline did not affect glutamate efflux. Subsequent infusion of 

^/-amphetamine (10 pM) caused an immediate increase in glutamate efflux to a 

maximum of 33.09 ± 7.80 pmol/20min, which was sustained for the remainder o f the 

experiment. Infusion of 100 pM ^/-amphetamine did not cause any further increase in 

glutamate efflux (Figure 5.2 and see Table 5.3 for statistical analysis). Injection of

0.1 mg/kg haloperidol produced a transient increase in glutamate efflux in the rACC

14.27 ± 1.20 pmol/20min 

15.48 ± 1.27 pmol/20min 

7.64 ± 0.50 pmol/20min

10.59 ± 1.50 pmol/20min 

10.76 ± 0.93 pmol/20min 

8.5 ± 0.85 pmol/20min
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(to 26.85 ± 6 . 6 8  pmol/20min), which quickly returned to basal levels in the 

subsequent sample. In the presence of 0.1 mg/kg haloperidol, ^-amphetamine 

retained to ability to increase glutamate efflux at both concentrations tested. 

Extracellular glutamate reached a maximum value of 40.15 ± 11.21 pmol/20min on 

infusion of ^-amphetamine (Figure 5.2 and see Table 5.3 for statistical analysis). 

Injection of haloperidol (0.1 mg/kg) alone increased glutamate efflux in the rACC at 3 

and 4 h after injection (Figure 5.3 and see Table 5.4 for statistical analysis).

Experiment 1(b)

Injection of saline did not affect glutamate efflux in the rACC. Infusion of 10 

/zM ^-amphetamine caused an immediate increase in glutamate efflux to a maximum 

of 19.14 ± 2.41 pmol/20min, which declined rapidly in the next two samples. 

Subsequent infusion of 100 /zM ^-amphetamine caused a resurgence of the glutamate 

response, which reached a peak of 22.64 ± 7.70 pmol/20min after one sample and 

then started to decline rapidly (Figure 5.4 and see Table 5.5 for statistical analysis). 

d-Amphetamine retained the ability to increase extracellular glutamate in the presence 

of 1 mg/kg haloperidol (Figure 5.4 and see Table 5.5 for statistical analysis). 

Injection of 1 mg/kg haloperidol alone did not affect glutamate efflux in the rACC at 

any time (Figure 5.5 and see Table 5.6 for statistical analysis).
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Figure 5.2 Effects o f cumulative infusion o f d-amphetamine on glutamate ( ‘GLU’) 
efflux in the rACC o f freely-moving rats.
Haloperidol (0.1 mg/kg i.p.) or saline ( 1  ml/kg i.p.) were injected at To as indicated by 
the arrow, a?-AMP (10 pM: 80 min, 100 pM: 80 min) infusion was initiated at T 120 as 
indicated by the line. Glutamate efflux is expressed as pmol/20min. Points show mean 
± s.e. mean GLU efflux after injection of HAL (closed circles) or saline (open 
circles). N=9. Top graph shows raw data and bottom graph net data set.
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Figure 5.3 Effects o f haloperidol (0.1 mg/kg i.p.) injection on glutamate ( ‘GLU) 
efflux in the rACC o f freely-moving rats
Haloperidol was injected at To as indicated by the arrow. Glutamate efflux is 
expressed as pmol/20min. Points show mean ± s.e. mean GLU efflux. N=7. Top graph 
shows raw data and bottom graph net data set. * - .P<0.05.
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Table 5.3 Statistics generated from split-plot ANOVA summarizing the effects o f  
administration o f d-amphetamine fd-AM P) on glutamate efflux in the rACC. Rats 
were pre-treated with either saline (‘SAL’: 1 ml/kg) or haloperidol (‘HAL’: 0.1 
mg/kg) 2 h before local infusion of ^-amphetamine. Glutamate efflux after each 
treatment was compared, over 1 -h increments, with efflux in the cluster of basal 
samples. Significant differences are shown in bold.

Treatment J-AMP (local infusion)

Table 5.4 Statistics generated from split-plot ANOVA summarizing the effects o f  
administration o f haloperidol (0.1 mg/kg i.p.) on glutamate efflux in the rACC. 
Glutamate efflux was compared, over 1-h increments, with efflux in the cluster of 
basal samples.

SAL HAL

[d-AMP] pM

10
100

F(l,10)=7.116 P<0.02 F(l,9)=9.662 /><0.01
F(l,8)=6.094 / ><0.04 F(l,8)=6.684 i><0.03

Treatment Haloperidol (0.1 mg/kg i.p.)

Time 
T 2 0 -T 6 0  

T 8 0 -T 120 

10 pM 
100 pM

F(l,12)=10.722/><0.02 
F(l,12)=0.768 7><0.03 
F(l,12)=6.857/><0.01 
F(l,12)=6.461 /><0.03
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Figure 5.4 Effects o f cumulative infusion o f d-amphetamine on glutamate ( ‘GLU') 
efflux in the rACC o f freely-moving rats.

HAL (1 mg/kg i.p.) or saline (1 ml/kg i.p.) were injected at To as indicated by the 
arrow. (/-AMP (10 pM: 80 min, 100 pM: 80 min) infusion was initiated at T 120 as 
indicated by the line. Glutamate efflux is expressed as pmol/20min. Points show mean 
± s.e. mean after injection of HAL (closed circles) or saline (open circles). N=9. The 
top graph shows raw data and the bottom graph net data set.
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Table 5.5 Statistics generated from split-plot ANOVA summarizing the effects o f 
administration o f d-amphetamine ( ‘d-AMP’) on glutamate efflux in the rACC. Rats 
were pre-treated with either saline (1 mg/kg) or haloperidol (1 mg/kg) 2 h before local 
infusion of ̂ -amphetamine. Glutamate efflux after each treatment was compared with 
efflux in the basal samples. Glutamate efflux after each treatment was compared, over 
1 h increments, with efflux in the cluster of basal samples. Significant differences are 
in bold.

Treatment d-AMP (local infusion)

SAL HAL

[d-AMP] pM

10
100

F(l,7)=11.713 /><0.01 F(l,6)=4.086 P<0.1 
F(l,7)=6.400 P<0.04 F(l,6)=6.272 /><0.05

Table 5.6 Statistics generated from split-plot ANOVA summarizing the effects o f  
administration o f haloperidol (1 mg/kg i.p.) on glutamate efflux in the rACC. 
Glutamate efflux was compared, over 1-h increments with that in the cluster of basal 
samples.

Treatment Haloperidol (1 mg/kg i.p.)

Time 
T2 0-T60  

T80-T120 

10 pM 
100 pM

F(1,3)=4.830P<0.1 
F(1,3)=7.068P<0.1 
F(l,3)=0.996 P<0.4 
F(l,2)=1.493 P<0.3
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5.4.2/ Effects o f pre-treatment with the Dj-like receptor antagonist SCH23390 on 

the glutamate response to local infusion of d-amphetamine in the rostral anterior 

cingulate cortex.

There was no difference in basal glutamate efflux in the rACC of animals destined for 

systemic injection o f saline of SCH23390.

Experiment 2(a)

SAL+AMP 

SCH(0.1 )+AMP 

SCH (0.1)+RINGERS

Experiment 2(b)

SAL+AMP 

SCH (1)+AMP 

SCH( 1 )+RINGERS

Experiment 2(a)

Injection of saline did not affect glutamate efflux. Infusion of 10 pM <i-amphetamine 

produced a delayed increase in glutamate efflux, which was sustained throughout the 

experiment and reached a maximum of 21.08 ± 5.16 pmol/20min. Infusion of 

1 0 0  pM ^/-amphetamine did not produce any further increase in glutamate efflux 

(Figure 5.6 and see Table 5.7 for statistical analysis). Injection of 0.1 mg/kg 

SCH23390 did not affect glutamate efflux. In the presence of SCH23390, 

</-amphetamine retained the ability to increase glutamate efflux at 100 pM (Figure 5.6

12.56 ± 1.26 pmol/20min 

7.72 ± 0.83 pmol/20min 

11.58+ 1.60 pmol/20min

10.25 ± 0.90 pmol/20min 

10.90 ± 0.83 pmol/20min 

9.44 ± 0.81 pmol/20min
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and see Table 5.7 for statistical analysis). Injection of 0.1 mg/kg SCH23390 alone 

produced an immediate increase in glutamate efflux (to 18.75 ±3.15 pmol/20min), 

which quickly declined to basal levels in the subsequent sample (Figure 5.7 and see 

Table 5.8 for statistical analysis).

Experiment 2(b)

Injection of saline did not affect glutamate efflux in the rACC. Infusion of 10 (jlM 

^/-amphetamine caused an immediate increase in glutamate efflux to 20.9 ± 5.83 

pmol/20min, which declined rapidly in the subsequent two samples. Infusion of 100 

fiM ^-amphetamine caused a resurgence of the glutamate response, which reached a 

peak of 20.35 ±5.15 pmol/20min after two samples and then declined rapidly (Figure 

5.8 and see Table 5.9 for statistical analysis). Injection of 1 mg/kg SCFI23390 did not 

affect glutamate efflux in the rACC. In the presence of SCH23390, ^/-amphetamine 

no longer had the ability to increase glutamate efflux at either dose tested (Figure 5.8 

and see Table 5.9 for statistical analysis). Injection of 1 mg/kg SCH23390 alone did 

not affect glutamate efflux at any time (Figure 5.9 and see Table 5.10 for statistical 

analysis).
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Figure 5.6 Effects o f cumulative infusion o f d-amphetamine on glutamate ( ‘GLU) 
efflux in the rACC o f freely-moving rats.

SCH23390 (0.1 mg/kg i.p.) or saline (1 ml/kg i.p.) were injected at To as indicated by 
the arrow. J-AMP (10 pM: 80 min, 100 pM: 80 min) infusion was initiated at T 120 as 
indicated by the line. Glutamate efflux is expressed as pmol/20min. Points show mean 
± s.e. mean GLU efflux after injection of SCH23390 (closed circles) or saline (open 
circles). N= 6  in each group. The top graph shows raw data and the bottom graph net 
data set.
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raw data and the bottom graph net data set.
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Table 5.7 Statistics generated from split-plot ANOVA summarizing the effects o f local
infusion o f d-amphetamine ( ‘d -A M P 10-100 pM) on glutamate efflux in the rACC
after pre-treatment with saline or SCH23390 (0.1 mg/kg i.p.).

Glutamate efflux after each treatment was compared, over 1 -h increments, with efflux 
in the cluster of basal samples. Significant differences are shown in bold.

Treatment d-AMP (local infusion)

SAL SCH23390

[</-AMP] pM

10 F(1,4)=3.998P<0.1 F(1,4)=1.062P<0.4

100 F(l,4)=7.369 P<0.05 F(l,5)=l 1.085 P<0.02

Table 5.8 Statistics generated from split-plot ANOVA summarizing the effects o f  
administration o f SCH23390 (0.1 mg/kg i.p.) on glutamate efflux in the rACC. 
Glutamate efflux in each time bin was compared with that in the basal samples.

Treatment SCH23390 (0.1 mg/kg i.p.)

Time
T2 0-T60 F(l,2)=0.338 P<0.6
T8 0-T120 F(l,3)=0.001 P< 0.9
10 pM F(l,3)=0.012 P<0.9
100 pM F(l,3)=0.382 P<0.6
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Figure 5.8 Effects o f cumulative infusion o f d-amphetamine on glutamate ( ‘GLU') 
efflux in the rACC o f freely-moving rats.
SCH23390 (1 mg/kg i.p.) or saline (1 ml/kg i.p.) were injected at To as indicated by 
the arrow. d-AMP (10 pM: 80 min, 100 pM: 80 min) infusion was initiated at T 120 as 
indicated by the line. Glutamate efflux is expressed as pmol/20min. Points show mean 
± s.e. mean GLU efflux after SCH (closed circles) and saline (open circles) injection. 
N=8 /l 1 in each group. The top graph shows raw data and the bottom graph net data 
set.
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efflux is expressed as pmol/20min. Points show mean ± s.e. mean GLU efflux. N=7.
The top graph shows raw data and the bottom graph net data set.
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Table 5.9 Statistics generated from split-plot ANOVA summarizing the effects o f local
infusion o f d-amphetamine ( ‘d-AMP’: 10-100 pM) on glutamate efflux in the rACC
after pre-treatment with saline or SCH23390 (1 mg/kg i.p.).

Glutamate efflux after each treatment was compared, over 1 -h increments, with efflux 
in the cluster of basal samples. Significant differences are shown in bold.

Treatment J-AMP local infusion

SAL SCH23390

[J-AMP] pM

10 F(l,9)=5.796 7><0.04 F(l,7)=2.221 P< 0.2

100 F(l,7)=l 1.437 PO.Ol F(l,7)=3.433/><0.1

Table 5.10 Statistics generated from split-plot ANOVA summarizing the effects o f  
administration o f SCH23390 (1 mg/kg i.p.) on glutamate efflux in the rACC. 
Glutamate efflux in each time bin was compared with that in the basal samples.

Treatment SCH23390 (1 mg/kg i.p.)

Time
T2 0-T60 F(1,5)=3.325 P<0.1
T8 0-T120 F(l,4)=0.740 P<0.4
10 pM F(l,5)=1.553 P<0.3
100 pM F(l,5)=0.565 P<0.5
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5.5/ DISCUSSION

In previous experiments, it was discovered that local infusion of dopamine at 

increasing concentrations increased glutamate efflux in the rostral anterior cingulate 

cortex, while no change was observed in the caudal anterior cingulate cortex at any 

time. Local infusion of {/-amphetamine also increased dopamine efflux in the rACC, 

but not the cACC. Based on these observations, we proposed that an increase in 

dopamine neurotransmission could underlie the glutamate response to local infusion 

of {/-amphetamine in the rACC. In this chapter, the experiments further explored the 

possibility that an increase in dopaminergic neurotransmission underlies the glutamate 

response to local infusion of {/-amphetamine in the rACC and also attempted to 

elucidate the subtype of dopamine receptor responsible for the glutamate response to 

^/-amphetamine.

5.5.1/ Effects o f haloperidol and SCH23390 on spontaneous glutamate efflux in the 

rACC

Systemic administration of neither antagonist affected spontaneous glutamate 

efflux in the rACC, suggesting a lack of tonic control of extracellular glutamate by 

both Di-like and D2 -like receptors in this brain region. This result agrees with the 

study by Reid et al., in 1997, which investigated glutamate efflux in the same region 

of the ACC as me.
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5.5.2/ Effects of haloperidol on the glutamate response to d-amphetamine

To determine the role of D2-like receptors in modulating the glutamate 

response to local infusion of {/-amphetamine in the rACC, the D2-like receptor 

antagonist haloperidol (0 . 1  and 1 mg/kg i.p.) was administered 2  h before the 

{/-amphetamine treatment. The plasma half-life of haloperidol in the rat is 

approximately 3 h (Kapetanovic et al., 1982), so the concentration of haloperidol in 

the brain would have declined progressively during the experiment. However, 

haloperidol has a high affinity for the D2 -like receptor in the rat brain (Ki = 28 nM), 

so only low concentrations are required for optimal receptor occupancy. In these 

experiments, pre-treatment with systemic haloperidol did not affect the glutamate 

response to {/-amphetamine. In other words, {/-amphetamine retained the ability to 

increase glutamate efflux at both doses tested. This result indicates that there is no 

modulation of glutamate efflux by D2 -like receptors after impulse-dependent or 

independent release by {/-amphetamine. However, the possibility that the 

concentration of haloperidol in the cortex declined too much to permit occupation of 

D2 -like receptors cannot be ruled out.

This is the first time that an attempt has been made to elucidate the subtype of 

dopamine receptor responsible for mediating the glutamate response to local infusion 

of {/-amphetamine in the rACC. Several previous authors have investigated the 

mechanisms underlying evoked glutamate efflux in different subregions of the 

prefrontal cortex by other psychostimulants. For example, systemic administration of 

the glutamatergic antagonist phencyclidine (‘PCP’: 5 mg/kg i.p.) increased glutamate 

efflux in the prefrontal cortex (Adams and Moghaddam, 2001). This increase in 

glutamate efflux was not prevented by pre-treatment with haloperidol (0 . 1  mg/kg i.p.)

164



20 min before administration of PCP. Similarly, systemic administration of cocaine 

(15-30 mg/kg i.p.) stimulated glutamate efflux in the cingulate region of the prefrontal 

cortex (Reid et al., 1997). This was unaffected by pre-treatment with haloperidol (0.2 

mg/kg i.p.) 60 min before administration of cocaine. The pharmacology of PCP 

differs greatly compared to d-amphetamine (see: Chapter 1 for details of 

d-amphetamine pharmacology). PCP is an antagonist at NMDA receptors, while 

d-amphetamine is a releaser of dopamine. The mechanisms by which these drugs 

increase glutamate efflux are probably different to those recruited by d-amphetamine. 

The pharmacology of cocaine exhibits some similarity to the pharmacology of 

d-amphetamine (both influence the plasma membrane dopamine transporter to 

increase extracellular levels of dopamine, albeit by different mechanisms), so may be 

predictive of some of the actions of d-amphetamine on glutamatergic transmission in 

the rat cortex.

5.5.3/ Effects o f SCH23390 on the glutamate response to d-amphetamine

To determine the role of Di-like receptors in modulating the glutamate 

response to local infusion of d-amphetamine in the rACC, the Di-like receptor 

antagonist SCH23390 (0.1 and 1 mg/kg i.p.) was administered 2 h before 

d-amphetamine treatment. In these experiments, systemic administration of 

SCH23390 at the lower dose (0.1 mg/kg i.p.) did not affect the glutamate response to 

local infusion of d-amphetamine. No pharmacokinetic data regarding SCH23390 are 

freely available. Nevertheless, the glutamate response to both doses of 

d-amphetamine was attenuated by pre-treatment with the higher dose of SCH23390 (1 

mg/kg i.p.), indicating a role for Di-like receptors in d-amphetamine-evoked

165



glutamate release. This agrees with the high density of Di-like compared to E^-like 

receptors in the prefrontal cortex, with Di-like receptors being about 20 times more 

abundant than D2-like recptors in the prefrontal cortex (Lidow et al., 1991).

These data are in contradiction with a couple of previous microdialysis studies 

investigating the effects of Di-like receptors on glutamatergic neurotransmission. 

Abekawa et al. (2000) measured extracellular glutamate in the rat prefrontal cortex 

(coordinates: AP +2.7 ML ±1.4 DV -6.5) using microdialysis. They found that local 

infusion of a selective Di-like receptor agonist SKF38393 (2-200 /xM) dose- 

dependently decreased extracellular glutamate and that this effect was reversed by co

perfusion with the selective Di-like receptor antagonist SCH23390 (40 fiM). Another 

study also demonstrated a dose-dependent decrease in extracellular glutamate in the 

prefrontal cortex (coordinates: AP +2.7 ML -0.8 DV -1.8) after local infusion of 

SKF38393 (10-500 ^M; Harte and O’Connor, 2004). The action of these agonists on 

presynaptic Di-like receptors present on glutamatergic pyramidal neurones was 

proposed to underlie these decreases in extracellular glutamate. These studies were 

clearly performed in different regions of the rat prefrontal cortex when compared to 

my study and investigated the effects of dopaminergic agents on spontaneous 

glutamate efflux, rather than drug-evoked increases. The authors also used local 

infusion to deliver two drugs at once into the region of study. This could have caused 

pharmacokinetic artifacts leading to a false positive result, explaining the 

discrepancies between our data.

In light of these previous microdialysis studies, it is not clear how dopamine 

acting at Di-like receptors could be increasing glutamate efflux in the rACC. A study 

by Reid et al., in 1997, found an increase in glutamate efflux after systemic 

administration of cocaine (30 mg/kg i.p.). The increased glutamate efflux was
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blocked by pre-treatment with SCH23390 (0.02 mg/kg i.p.) but not haloperidol (0.2 

mg/kg i.p.). The authors speculated that this was mediated by Di-like receptors 

present on the collaterals of prefrontal-VTA glutamatergic neurones. Clearly, further 

work is required to elucidate the exact mechanism underlying my result.

In vivo and in vitro receptor competition studies have shown that SCH23390 

potently interacts with brain 5 -HT2 receptors (Bischoff et al., 1986, McQuade et al., 

1988). This could explain the attenuation of the glutamate response to d- 

amphetamine by SCH23390. Both systemic (0.1 mg/kg i.p.) and intracortical (10 

(jlM) administration of 5-HT2a/c agonists, such as lysergic acid increase glutamate 

efflux in the rat prefrontal cortex (Muschamp et al., 2004). This increase in glutamate 

efflux is blocked by pre-treatment with the selective 5-HT2A antagonist Ml 00,907 

(0.05 mg/kg i.p.). These studies suggest that ^-amphetamine-induced glutamate 

efflux occurring secondary to release of 5-HT cannot be ruled out.
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5.5.4/ Summary o f key findings

• There is no tonic control o f glutamate release in the prefrontal cortex by 

either Di-like or D2 -like receptors

• The increased extracellular glutamate in response to local infusion of 

d-amphetamine in the prefrontal cortex is unaffected by pre-treatment with 

the D2 -like receptor antagonist haloperidol

• Activation of Dj-like receptors contributes to the d-amphetamine-induced 

increase in glutamate efflux in the rACC
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Chapter 6

6.0/ Effect of pre-treatment with the GLT-1 inhibitor dihydrokainate on the 

glutamate response to systemic administration of d-amphetamine in the rostral 

and caudal anterior cingulate cortices 

6.1/ INTRODUCTION

In experiments described in Chapter 3, the glutamate response to 

administration of d-amphetamine was found to depend on both brain region and route 

of administration. Systemic d-amphetamine caused a gradual, sustained increase in 

glutamate efflux in the cACC, while, in the rACC, no increase in glutamate efflux was 

observed at any time. Conversely, local infusion of d-amphetamine increased 

glutamate efflux in the rACC but had no effect in the cACC. Subsequent experiments 

focused on elucidating the role of dopamine receptors in the glutamate response to 

local infusion of d-amphetamine in the rACC (see: Chapters 4 and 5). Here, I 

explored further the possible mechanisms underlying the increased extracellular 

glutamate in the cACC evoked by systemic administration of d-amphetamine. The 

rACC was also studied.

Uptake is necessary for the clearance of glutamate from the extracellular fluid, 

since there is no extracellular enzyme, which can metabolise it. Glutamate uptake is 

accomplished by means of transporter proteins, which use the electrochemical 

gradient of Na+ across the plasma membrane as a driving force for uptake. To date, 

five subtypes of glutamate transporters have been cloned, including both neuronal and
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glial transporters: GLAST, GLT-1, EAAC-1, EAAT4 and EAAT5. GLAST and 

GLT-1 are predominantly localised to astrocytes, while EAAC-1, EAAT4 and 

EAAT5 are neuronal (for review see Danbolt, 2001). Previous studies suggest that 

GLT-1 accounts for the majority of glutamate uptake in the forebrain (Haugeto et al., 

1996; Tanaka et al., 1997, Chapter 1).

Increased glutamate efflux in the ventral tegmental area, measured by in vivo 

microdialysis, stimulated by either systemic injection or local infusion of 

^-amphetamine is independent of Ca2+ in the perfusion medium, suggesting that it is 

does not depend on exocytotic (impulse-dependent) release (Wolf et al., 2000). 

Impulse-independent release of glutamate can occur via both neurones and glial cells. 

During brain ischaemia, increased extracellular Na+ concentrations lead to reversal of 

glutamate transporters. It is uncertain which transporters are involved, and evidence 

for both glial and neuronal transporters has been derived (Seki et al., 1999; Dawson et 

al., 2000; Rossi et al., 2000). Studies in the laboratory of Attwell have favoured the 

involvement of neuronal glutamate transport (Harmann et al., 2002; Rossi et al., 

2000). Harmann et al. (2002) studied the effects of ischaemia on hippocampal slices 

from mice lacking the GLT-1 transporter. After a few minutes of simulated 

ischaemia, pyramidal cells in wild-type mice showed a large and sudden glutamate- 

evoked current, which declined to a less inward plateau. In GLT-1 knockout mice, 

the characteristics of this current were indistinguishable from those of hippocampal 

slices from wild-type mice, suggesting that GLT-1 does not contribute significantly to 

glutamate release or removal from the extracellular space during early ischaemia. 

Seki et al., in 1999, induced forebrain ischaemia in rats by bilateral occlusion of the 

carotid artery for 30 min. This led to increased extracellular glutamate, as measured 

by microdialysis. Dihydrokainate (‘DHK’: 1 mM) attenuated this increased glutamate
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efflux. DHK is a non-transportable inhibitor of the glial glutamate transporter, GLT-

1. Infusion of the anion channel blocker 4,4’-dinitrostilben-2,2’-disulfonic acid 

(DNDS; 1 mM) also attenuated extracellular glutamate levels. DHK inhibited the 

early ischaemic response more strongly than DNDS. This suggests the existence of 

two Ca2+-independent mechanisms of glutamate release during ischaemia -  a rapid 

reversal of the astrocytic glutamate transporter, GLT-1, as well as a more slowly 

developing cell swelling-induced release of glutamate.

There is evidence for impulse-independent release of glutamate by GLT-1 in 

response to challenge with d-amphetamine. For example, glutamate efflux in the 

ventral tegmental area was increased by i.p. injection of d-amphetamine (5 mg/kg; 

Wolf et al., 2000). This increase in glutamate efflux was abolished by pre-treatment 

with local dihydrokainate (‘DHK’; 1 mM). In addition, blockade of GLT-1 by DHK 

led to increased glutamate efflux as measured by microdialysis in the striatum, 

suggesting that GLT-1 is responsible for clearance of extracellular glutamate in this 

brain region (Massieu et al., 1995; Del Arco et al., 1999). It is therefore conceivable 

that d-amphetamine could be acting on this transporter, either directly or indirectly, to 

increase glutamate efflux. Glial cells also release glutamate into the extracellular 

space by Ca -dependent vesicular release (for review see Haydon, 2001) and non- 

vesicular release, via the cystine-glutamate antiporter present on glial cells. This non- 

vesicular release by the cystine-glutamate antiporter is thought to constitute a major 

proportion (60 %) of the basal extracellular concentration of glutamate in the striatum 

at least (Baker et al., 2002).

The purpose of these experiments was to investigate the role of GLT-1 in the 

increase in glutamate efflux in the cACC induced by systemic administration of 

d-amphetamine. This was tested by examining the effect of glutamate transporter
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inhibition with dihydrokainate (DHK). The effect of DHK in the rACC was also 

investigated to ascertain whether GLT-1 would have any influence on glutamatergic 

neurotransmission in this brain area. It is conceivable that the lack of effect of 

^-amphetamine on glutamate efflux in this subregion is because GLT-1 efficiently 

sequesters any increased extracellular glutamate. The dose of DHK (1 mM) was 

based on that used in a previous study in the ventral tegmental area, which 

demonstrated a blockade of the J-amphetamine-induced increase in glutamate efflux 

in this region (Wolf et al., 2000). The dose of ^-amphetamine (3 mg/kg i.p.) was 

based on our previous studies (see: Chapter 3), showing a reliable increase in 

glutamate efflux in the cACC.

6.2/ AIM

• To determine and compare the effect o f pre-treatment with the GLT-1 blocker 

dihydrokainate (DHK) on the glutamate response to systemic administration o f  

d-amphetamine in the caudal and rostral anterior cingulate cortices.
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6.3/ METHODS

6.3.1/ In vivo microdialysis

Experiments were performed on freely-moving rats (250-300g on day o f surgery).

Rats were implanted with a microdialysis probe in either the cACC or rACC on the 

day before experimenting. d-Amphetamine was dissolved in 0.9 % saline to a 

concentration of 3 mg/ml. This was administered in a volume of 1 ml/kg (i.e. 3 

mg/kg). This dose of d-amphetamine was based on our previous experiments in 

which there was an increase in glutamate efflux in the cACC (see: Chapter 3). For 

local infusion, dihydrokainate (‘DHK’) was dissolved in Ringer’s to make a 1 mM 

solution. This dose of DHK was based on a previous study, which demonstrated a 

blockade of d-amphetamine-induced glutamate efflux in the rat ventral tegmental area 

(Wolf et al., 2000).

Once stable basal glutamate efflux was established, DHK/Ringer’s was infused 

locally down the probe for the duration of the experiment. One hour later, the rats 

received an intraperitoneal injection of either saline or d-amphetamine and sampling 

continued for a further 5 h (Figure 6.1). The rats were randomly assigned to one of 

four treatment groups for measurement of glutamate efflux in both the cACC and 

rACC (Table 6.1).
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Table 6.1 Drug treatment groups. Rats were randomly assigned to 1 of 4 treatment 
groups for either the caudal or rostral ACC.

Local infusion Systemic injection

RINGER’S DHK SALINE d-AMP

1 X X

2 X X

3 X X

4 X X

Local DHK/Ringer’s

d-AM P/Sal

-60 0 60 360 (min)

Figure 6.1 Timeline for experiments performed in Chapter 6. After 3 stable basal 
samples were taken, DHK/Ringer’s solution was infused at time To for the remainder 
of the experiment. At time T6o, 3 mg/kg d-amphetamine/saline was given by i.p. 
injection.
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6.3.2/ Statistical analysis

All data were analysed for statistical significance using two-way ANOVA with 

repeated measures. ‘Time’ was a ‘within subjects’ factor and ‘pretreatment’ was a 

‘between subjects’ factor. Data were also divided into ‘bins’ with three consecutive 

samples per bin. Therefore, each bin represents 1 h of sampling (Figure 6.2). ‘Bin’ 

was a ‘within subjects’ factor.

Bin1 ‘Bin4 ‘Bin5’ ‘Bin6

-60 60 120 180 240 300 360 Sample time 
(min)

Figure 6.2 Time bins for statistical analysis o f changes in extracellular glutamate 
after local infusion o f DHK/Ringer’s solution and systemic injection o f  
d-amphetamine/saline.
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6.4/ RESULTS

6.4.1/ Caudal Anterior Cingulate Cortex

There was no difference in basal glutamate efflux in the cACC in the four treatment 

groups:

Ringers-saline

DHK-saline

Ringers-amphetamine

DHK-amphetamine

8.3 ± 3.4 pmol/20min

9.2 ±1.5 pmol/20min 

5.1 ± 2.0 pmol/20min

9.3 ± 2.1 pmol/20min

Glutamate efflux was unaffected by infusion of Ringer’s and subsequent injection of 

saline. There was a transient increase in glutamate efflux during the first hour of 

sampling after initiation of infusion of DHK, which quickly returned to basal levels 

for the next 3 h of sampling (Figure 6.3). Glutamate efflux rose steadily during the 

final 2 h, but this did not attain statistical significance (see: Table 6.2 for statistical 

analysis).

During infusion of Ringer’s solution, systemic injection of d-amphetamine caused a 

large, transient increase in glutamate efflux (+ 500 % cf. basal). After the transient 

increase, glutamate efflux decreased (+ 2 0 0  % cf. basal) and remained at this level for 

the remainder of the experiment (Figure 6.4 and see: Table 6.3 for statistical analysis). 

The transient increase in glutamate efflux induced by systemic injection of 

d-amphetamine was unaffected by local infusion of DHK. There was only a

176



negligible effect of DHK on the sustained increase in glutamate efflux 2 h after 

injection of d-amphetamine (T120-T2 20 DRUG*B1N Fi^ 6  = 4.480 P<0.04). 

Subsequently, glutamate efflux increased during the final 2 h of sampling until it 

reached the same level as in the Ringer’s-d-AMP group (Figure 6.4 and see: Table 6.3 

for statistical analysis).

In the Ringer’s-saline group, four of the rats had to be excluded due to incorrect probe 

placement.
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Figure 6.3 Effects o f intraperitoneal administration o f saline on glutamate efflux in 
the cACC o f freely-moving rats.
Infusion of DHK (1 mM) or Ringer’s solution was initiated at To and maintained for 
the entire experiment, as indicated by the line. Saline was administered at Too as 
indicated by the arrow. Glutamate efflux is expressed as pmol/20min. Points show 
mean ± s.e. mean GLU efflux after infusion of DHK (closed triangles) or Ringer’s 
solution (open triangles). The top graph shows raw data and bottom graph net data set. 
Ringer’s group: N=4, DHK group: N=10.
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Table 6.2 Statistics generated from split-plot AN OVA summarizing the effects o f  
administration o f saline on glutamate efflux in the cACC. Rats were pre-treated with 
either DHK (1 mM) or Ringer’s solution 1 h before systemic injection of saline. 
Glutamate efflux in each time bin was compared with efflux in the basal samples. 
Significant differences are highlighted in bold.

Treatment Saline (1 ml/kg)

Ringer’s DHK

Time (min)
T2 0-T60

T80-T120

T 140-T180

T2 0 0-T240

T2 8 0-T300

T32 0-T360

F(l,2)=0.711 P<0.5 
F(l,2)=0.002 P<0.9 
F(l,2)=0.016 P<0.9 
F(l,2)=0.011 P< 0.9 
F(l,2)=0.010 P<0.9 
F(l,2)=0.093 P<0.8

F(l,8)=16.372 P<0.004 
F( 1,9)=0.160 P<0.1 
F(l,9)=0.369 P<0.6 
F(l,9)=0.010 P<0.9 
F(l,8)=0.541 P<0.5 
F(l,8)=2.643 P<0.1

Table 6.3 Statistics generated from split-plot AN OVA summarizing the effects o f  
administration o f d-AMP on glutamate efflux in the cACC. Rats were pre-treated with 
either DHK (1 mM) or Ringer’s solution 1 h before systemic injection of t/-AMP. 
Glutamate efflux in each time bin was compared with efflux in the basal samples. 
Significant differences are highlighted in bold.

Treatment d-AMP (3 mg/kg)

Ringer’s DHK (1 mM)

Time (min)
T2 0-T60

T80-T120

T 140-T180

T2 00-T240

T2 6 0-T300

T32 0-T360

F(l,6)=0.069 P<0.S 
F(l,6)=6.725 /><0.04 
F(l,6)=8.949 ^<0.05
F(l,6)=0.299 P<0.6 
F(l,6)=1.391 P< 0.3 
F(1,6)=1.288 P<0.3

F(l,7)=5.732 /><0.05 
F(l,6)=6.029 /><0.05
F(l,6)=0.144 P<0.1 
F(l,7)=0.148 P<0.7 
F(1,5)=6.924P<0.5 
F(l,7)=2.058 P<0.2
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Figure 6.4 Effects o f intraperitoneal administration o f d-amphetamine on glutamate 
efflux in the cACC o f freely-moving rats.
Infusion of DHK (1 mM) or Ringer’s solution was initiated at To and maintained for 
the entire experiment as indicated by the line, d-Amphetamine (3 mg/kg i.p.) was 
administered at T6o as indicated by the arrow. Glutamate efflux is expressed as 
pmol/20min. Points show mean ± s.e. mean GLU efflux after infusion of DHK 
(closed triangles) or Ringer’s (open triangles). The top graph shows raw data and 
bottom graph net data set. N= 8  for both groups. * - .P<0.05.
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6.4.2/ Rostral Anterior Cingulate Cortex

There was no difference in basal glutamate efflux in the rACC in the four treatment 

groups:

Ringers-saline 8+1.5 pmol/20min

DHK-saline 9.7 ± 3.0 pmol/20min

Ringers-amphetamine 12.6 ± 2.3 pmol/20min

DHK-amphetamine 10.9 + 1.9 pmol/20min

Glutamate efflux was increased by systemic injection of saline during the first 2 h 

post-injection (Figure 6.5 and see: Table 6.4 for statistical analysis). Infusion of DHK 

and subsequent injection of saline did not affect glutamate efflux at any time (Figure 

6.5 and see: Table 6.4 for statistical analysis) i.e. DHK blocked the glutamate 

response to systemic saline.

During infusion of Ringer’s solution, systemic injection of ^-amphetamine caused a 

small, transient increase in glutamate efflux (+50 % cf. basal). After the transient 

increase, glutamate efflux returned to basal levels and remained stable for the 

remainder of the experiment (Figure 6 . 6  and see: Table 6.5 for statistical analysis). 

The transient increase in glutamate efflux induced by systemic ^/-amphetamine was 

significantly attenuated by local infusion of DHK (Tgo-Tno DRUG: Fi n =5.105 

P<0.04). Subsequently, a progressive decrease in glutamate efflux was observed (- 50 

% cf. basal; Figure 6 .6 ).
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Figure 6.5 Effects o f intraperitoneal administration o f saline on glutamate efflux in 
the rACC o f freely-moving rats.
Infusion of DHK (1 mM) or Ringer’s solution was initiated at To and maintained for 
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data set. N=4/6
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Figure 6 . 6  Effects o f intraperitoneal administration o f d-amphetamine on glutamate 
efflux in the rACC of freely-moving rats.
Infusion of DHK (1 mM) or Ringer’s solution was initiated at To and maintained for 
the entire experiment as indicated by the line, d-Amphetamine (3 mg/kg i.p.) was 
administered at T60 as indicated by the arrow. Glutamate efflux is expressed as 
pmol/20min. Points show mean ± s.e. mean GLU efflux after infusion of DHK 
(closed circles) or Ringer’s (open circles). Top graph shows raw data and bottom 
graph net data set. N=5/6. * P<0.05
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Table 6.4 Statistics generated from split-plot AN OVA summarizing the effects o f 
systemic administration o f saline on glutamate efflux in the rACC. Rats were pre
treated with either DHK (1 mM) or Ringer’s solution 1 h before systemic injection of 
saline. Glutamate efflux in each time bin was compared with efflux in the basal 
samples. Significant differences are shown in bold.

Treatment Saline (1 ml/kg)

Ringer’s DHK (1 mM)

Time (min)
T2 0-T60 F(1,3)=0.017P<0.9 F(l,5)=0.035 P<0.9
T80-T120 F(l,2)=8.286/><0.1 F(1,4)=0.704P<0.4

H S 0 1 H 00 O F(l,3)=12.912 P<0.04 F(l,5)=0.417/><0.5
T2 00-T240 F(l,3)=0.291 p< 0.6 F(l,4)=0.656 P<0.5
T26O-T30O F(l,3)=0.611 P< 0.5 F(1,3)=1.835 P<0.3
T32 0-T36O F(1,3)=0.595P<0.5 F(1,4)=3.866P<0.1

Table 6.5 Statistics generated from split-plot ANOVA summarizing the effects o f  
systemic administration o f d-amphetamine on glutamate efflux in the rACC. Rats were 
pre-treated with either DHK (1 mM) or Ringer’s solution 1 h before systemic 
injection of ^-amphetamine. Glutamate efflux in each time bin was compared with 
efflux in the basal samples. Significant differences are highlighted in bold.

Treatment (/-AMP (3 mg/kg)

Ringer’s DHK(lmM)

Time (min)
T20-T60 F(l,5)=0.905 P<0.4 F(l,3)=0.179 P<0.7
T80-T120 F(1,5)=1.508 P<0.3 F(l,2)=1.459 P<0.4

O0
0

H1O F(l,5)=0.531 P<0.5 F(l,3)=12.484 P<0.04
T2 0 0-T240 F(l,4)=0.392 P<0.6 F(l,3)=10.736 P<0.05
T2 6O-T300 F(l,5)=0.528 P<0.5 F(l,3)=9.459 P<0.05
T3 2 0-T36O F(l,5)=1.033 P<0.4 F(l,2)=1.542 P<0.3
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6.5/ DISCUSSION

6.5.1/ The effect of inhibition of GLT-1 on spontaneous glutamate efflux 

6.5.1.1/ The caudal anterior cingulate cortex

A marked increase in extracellular glutamate efflux was observed in the cACC 

during the first hour of DHK infusion in the DHK-SALINE group. This quickly 

returned to basal levels for the next 3 h of sampling. One previous microdialysis 

study infused increasing concentrations of the glutamate uptake inhibitor L-trans- 

pyrrolidine-2,4-dicarboxylic acid (PDC; 0.1-10 mM) and found a dose-dependent 

increase in extracellular glutamate in the frontal cortex (but not the anterior cingulate 

cortex; Semba and Wakuta, 1998). My result is inconsistent with previous data, in 

that the increased glutamate efflux was not sustained throughout infusion of DHK. In 

the present experiments, glutamate efflux only increased during the first hour of 

infusion, but then returned to basal levels even after continued infusion of DHK. In 

the study by Semba and Wakuta, the increase in glutamate efflux was maintained 

throughout DHK infusion.

6.5.1.2/ The rostral anterior cingulate cortex

In the rACC, no increase in glutamate efflux in response to DHK was observed at any 

time. Previous microdialysis studies have infused DHK in the striatum, and 

demonstrated a clear, dose-related increase in glutamate efflux (Del Arco et al., 

1999). Any change in glutamate efflux could have been masked by reuptake of 

glutamate by other transporters surrounding the synapse, for example, the neuronal
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transporter EAAC1 (Kanai and Hediger, 2003). Alternatively, any glutamate released 

by the transporter could be acting on presynaptic metabotropic glutamate receptors to 

decrease neuronal release and thus normalising the levels of synaptic glutamate. The 

group II family of metabotropic glutamate receptors are highly enriched in the 

prefrontal cortex (Ohishi et al., 1993). At an ultrastructural level, mGluR2 has been 

localised to presynaptic structures at the periphery of the synaptic area (Petralia et al,

1996), which fits with the modulation of glutamatergic transmission in the prefrontal 

cortex. The highly selective mGluR2 agonist LY354740 (10 mg/kg) administered 20 

min before PCP, completely abolished the increased glutamate efflux in the prefrontal 

cortex normally seen after systemic administration of PCP (5 mg/kg i.p., Moghaddam 

and Adams, 1998).

6.5.2/ The effect of inhibition of GLT-1 on d-amphetamine-induced glutamate 

efflux

6.5.2.1/ The Caudal Anterior Cingulate Cortex

In the cACC, injection of d-amphetamine led to a large, transient increase in 

glutamate efflux (+ 500 % cf. basal), which was quickly dissipated to a plateau (+ 200 

% cf. basal). Due to the delayed nature of the increase in VTA glutamate efflux 

induced by systemic d-amphetamine, it is thought to involve inhibition or reversal of 

glutamate transporters, rather than Ca2+-dependent release associated with 

neurotransmission (Wolf et al., 2000). These authors discovered that blockade of the 

glial glutamate transporter GLT-1 by dihydrokainate prevented the increase in 

glutamate efflux induced by systemic d-amphetamine. I was interested in finding out
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if blockade of GLT-1 had the same effect on the increase in extracellular glutamate in 

the cACC. To do this, dihydrokainate (‘DHK’), a nontransportable inhibitor of the 

GLT-1 subtype of glutamate transporter, was used. Pre-treatment with DHK by local 

infusion did not prevent the transient increase in glutamate efflux within the cACC, 

suggesting that this does not depend on the glial glutamate transporter GLT-1. As 

systemic {/-amphetamine did not affect dopamine efflux in the cACC (see: Chapter 4), 

it can be inferred that the increased glutamate efflux is unlikely to occur secondary to 

an increase in dopaminergic neurotransmission.

The more sustained response to J-amphetamine was attenuated by DHK 2-4 h 

after injection of {/-amphetamine, suggesting that GLT-1 has some effect on glutamate 

release governed by afferent inputs to this area. Reversal o f the glutamate transporter 

by {/-amphetamine and extrusion of glutamate into the extracellular space could play a 

minor role, although more experiments would be needed to corroborate this finding. 

Previous microdialysis studies have suggested that reversal o f GLT-1 and efflux of 

glutamate is responsible for the increase in glutamate efflux seen after systemic 

{/-amphetamine. Intraperitoneal {/-amphetamine (5 mg/kg) led to a delayed increase 

in glutamate efflux in the ventral tegmental area (VTA). This was completely 

inhibited by pre-treatment with the non-competitive glial glutamate transporter 

inhibitor dihydrokainate, infused 60 min before systemic administration of 

{/-amphetamine (‘DHK’ ImM; Wolf et al., 2000). Another study found increased 

striatal glutamate in response to local infusion of {/-amphetamine (54 mM). This was 

attenuated by co-perfiision with blockers of GLT-1, DHK (8 mM) and L-trans- 

pyrrolidine-2,4-dicarboxylic acid (‘PDC’ 4mM; Del Arco et al., 1999).

These authors suggested that oxidative stress and generation of free radicals by 

{/-amphetamine treatment was mediating reversal of GLT-1. Indeed, there have been
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several reports in the literature suggesting that both acute and chronic administration 

of J-amphetamine leads to oxidative stress and production of free radicals. For 

example, infusion of J-amphetamine (10 /zM) directly into the striatum caused an 

increased formation of hydroxyl radicals (Wan et al., 2000, see also Huang et al., 

1997). These effects of ̂ /-amphetamine suggest a mechanism of action similar to that 

induced by ischaemia/hypoxia. During ischaemia, the activity of the Na+/K+-ATPase 

is markedly suppressed and the ionic gradient of Na+ is reduced, resulting in reversed 

operation of astrocytic and neuronal glutamate transporters (for review see Camacho 

and Massieu, 2006). Therefore, glutamate and Na+ are transported to the extracellular 

space (Szatkowski et al., 1990). The ischaemia-induced rise in extracellular 

glutamate caused by reversed uptake occurs mainly via GLT-1. This has been 

demonstrated using microdialysis in the hippocampal CA1 region of mice lacking 

GLT-1 (Mitani and Tanaka, 2003). During a 5 min ischaemic period, the increase in 

glutamate levels seen in GLT-1 mutant mice was greater than that observed in wild 

type mice. This result indicates that GLT-1 takes up extracellular glutamate to protect 

neurones against delayed neuronal death. However, during a 20 min ischaemic 

period, the increase in extracellular glutamate measured by microdialysis was higher 

in wild type mice compared to GLT-1 mutant mice during the last 12.5 min of 

ischaemia. Neurotoxicity was also observed in this group. This indicates release of 

glutamate, triggering acute neuronal death in the later stages of an ischaemic episode. 

These observations lead to the conclusion that during the first minutes of ischaemia, 

when energy levels are not exhausted, glutamate transporters operate normally 

eliminating released glutamate. However, when energy metabolism is severely 

altered, glutamate transporters operate in the reverse direction extruding glutamate to 

the extracellular space and contributing to cell death.

188



Further evidence for a hypoxic effect of d-amphetamine comes from a 

microdialysis study performed in the striatum (Del Arco et al., 1999). Intracerebral 

infusions of d-amphetamine (5-20 fJLg/fi\) caused a decrease of extracellular Na+ and 

an increase of extracellular lactate. Co-infusion of the oadrenoceptor antagonist 

phenoxybenzamine (PBZ: ImM) with 20 /zg//xl d-amphetamine significantly 

attenuated the increase in glutamate efflux produced by d-amphetamine, suggesting 

that the decrease in oxygen availability was caused by constriction of blood vessels. 

As a consequence of the decrease in oxygen concentration in the cell, cellular ATP 

synthesis is reduced. This impairs the function of the ATPase pumps responsible for 

pumping Na+ out of the cell. Thus, intracellular [Na+] increases and facilitates 

reversal of the Na+-dependent neurotransmitter transporters (see: Figure 6.7).
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Figure 6.7 Schematic diagram showing the suggested mechanisms through which 
d-amphetamine may act to increase the extracellular concentrations o f  
neurotransmitters

• d-Amphetamine acts through a \-adrenoceptors of the brain blood vessels to 
produce a vasoconstriction

• This results in a decrease in oxygen availability for the cell
• As a consequence of the decrease in oxygen availability, function of the glial 

Na+K+-ATPase is reduced
• This leads to an increase in intracellular Na+, facilitating reversal of the 

Na+-dependent glial transporter, GLT-1 and extrusion of glutamate into the 
extracellular space
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Since the increased glutamate efflux induced by systemic d-amphetamine in the 

cACC was only attenuated after 2-4 h by pre-treatment with DHK, it follows that the 

some of the glutamate released by d-amphetamine is derived from another source. 

Other possible sources of glutamate release have been discussed in previous chapters, 

and include Ca -dependent exocytotic release by both neurons and astrocytes, or 

glutamate release through other subtypes of glutamate transporter.

6.5.2.2/ The Rostral Anterior Cingulate Cortex

In the rACC, systemic administration of d-amphetamine led to a small, 

transient increase in glutamate efflux (+ 50 % cf. basal), which quickly returned to 

basal levels after 40 min. Again, I examined the role o f glial glutamate transporters in 

d-amphetamine-induced glutamate efflux. The small, transient glutamate response to 

d-amphetamine was significantly attenuated by pre-treatment with DHK and could 

rest on retrotransport at the glial glutamate transporter. However, after this, there was 

a gradual, sustained and marked decrease in glutamate efflux in the DHK-AMP group 

(-50 % c f basal) compared to the RINGERS-AMP group. To the best of my 

knowledge, this is the first time that such a decrease in glutamate efflux in the rat 

cortex in response to d-amphetamine has been reported. Disturbances of 

glutamatergic neurotransmission have been implicated in the pathophysiology of 

schizophrenia (Tsai et al., 1995), with decreased glutamatergic neurotransmission 

observed during psychosis. This correlates well with my result.

6.5.3/ Mechanism of decreased glutamate efflux
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6.5.3.1/ Decreased extracellular glutamate -  a possible hypothesis

I propose that glutamate released into the synapse by the action of 

d-amphetamine is taken up by the activity o f high-afifinity glutamate transporters 

present in both neurones and glia surrounding the synaptic cleft (e.g. the glial 

glutamate transporter GLT-1 or the neuronal glutamate transporter EAAC1) (Kanai 

and Hediger, 2003). The glial glutamate transporter GLT-1 is responsible for the vast 

majority of glutamate transport activity in the rat forebrain (>90 %; Tanaka et al.,

1997). Under normal conditions, any increase in glutamate efflux evoked by systemic 

injection of d-amphetamine is cleared by GLT-1, so no overall change in extracellular 

glutamate sampled by the probe is seen. When local GLT-1 is blocked by infusion of 

DHK, the concentration of glutamate within the synaptic cleft is transiently increased. 

This released glutamate acts on inhibitory autoreceptors, such as mGluR2 to inhibit its 

own release, and, thus, the concentration of extracellular glutamate sampled by the 

probe decreases (see Figure 6.8).

Candidates for this autoreceptor inhibition include the mGluR5 receptors, 

which are thought to act presynaptically in the prefrontal cortex (Fazal et al., 2003). 

Microdialysis studies have also shown that selective group II mGluR agonists block 

ketamine-stimulated glutamate release in the rat prefrontal cortex (Lorrain et al., 

2003), as well as decreasing basal glutamate efflux in the rat nucleus accumbens (Xi 

et al, 2003). However, Melendez et al. (2005) reported no effect on basal 

extracellular glutamate levels in the rat medial prefrontal cortex by either group I- or 

group Il-selective ligands. These results suggest that GLT-1 normally masks 

glutamate release governed by afferent inputs to the rACC.
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Figure 6.8 Proposed scheme by which local infusion o f DHK and systemic injection 
o f d-amphetamine could cause a gradual, sustained decrease in glutamate efflux in 
the rACC.

1. Systemic administration of d-amphetamine leads to increased 
glutamate efflux in the rACC

2. Under normal circumstances, this increased extracellular glutamate is 
rapidly taken up by the glial glutamate transporter, GLT-1, thus 
masking increased extracellular glutamate

3. Blockade of GLT-1 and subsequent injection of d-amphetamine leads 
to a transient increase in extracellular glutamate

4. This increased glutamate acts on inhibitory mGluRs present on the 
terminals of glutamatergic pyramidal neurones to decrease release of 
glutamate

5. Consequently, a decrease in extracellular glutamate is seen
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6.5.4/ SUMMARY OF KEY FINDINGS

• In the cACC, GLT-1 has some contribution to release of glutamate governed by 

afferent influences, but another mechanism accounts for a large proportion of 

glutamate released

• In contrast, in the rACC, GLT-1 limits the concentration of extracellular glutamate 

seen after systemic administration of d-amphetamine

• Spontaneous efflux of glutamate in either subregion was not affected by DHK, 

suggesting that GLT-1 is not essential for clearance of extracellular glutamate in the 

rat anterior cingulate cortex
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Chapter 7

7.0/ Effect of pre-treatment with the GLT-1 inhibitor dihydrokainate on the 

glutamate response to local infusion of d-amphetamine in the caudal and rostral

anterior cingulate cortices.

7.1/ INTRODUCTION

In my previous studies, systemic d-amphetamine caused a sustained increase 

in glutamate efflux in the cACC (see: Chapter 3). This was unaffected by pre

treatment with the glial glutamate transporter inhibitor dihydrokainate directly into the 

cACC (see: Chapter 6). In the rACC, only a transient increase in glutamate efflux 

was observed after systemic administration of d-amphetamine, after which glutamate 

levels quickly returned to basal concentrations. This transient increase in glutamate 

efflux did not attain criteria for statistical significance. Pre-treatment with DHK 

caused sustained decrease (below baseline) in glutamate efflux in the DHK-AMP 

group (see: Chapter 6).

In the cACC, inhibition of GLT-1 had little impact on the increase in 

extracellular glutamate produced by systemic d-amphetamine. In the rACC, the 

small, transient response to systemic administration of d-amphetamine could rest on 

efflux at the transporter, but the mechanism underlying the subsequent, sustained 

decrease in glutamate efflux will require further studies to elucidate. It is possible that 

extracellular glutamate, which would normally undergo clearance by GLT-1, activates 

glutamatergic autoreceptors, which inhibit its release. Again, an asymmetry in the 

regulation of glutamatergic neurotransmission between the cACC and rACC is 

evident from these experiments. The glutamate response to systemic d-amphetamine
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in the rACC is constrained by uptake of glutamate at GLT-1, while GLT-1 plays no 

role in the glutamate response in the cACC.

The purpose of the experiments performed in this Chapter was to further 

characterise the mechanisms underlying the increase in glutamate efflux in the cACC 

and rACC induced by local infusion of ̂ /-amphetamine. The effect of pre-treatment 

with the glial glutamate transporter inhibitor dihydrokainate on the glutamate 

response to local infusion of ̂ -amphetamine was determined in each subregion. The 

concentration of DHK (1 mM) was based on our previous studies, which 

demonstrated a constraint of the glutamate response to systemic ^-amphetamine in the 

rACC by GLT-1 (see: Chapter 6, Wolf et al., 2000). The concentrations o f d- 

amphetamine (10 and 100 pM) were based on my previous studies, which 

demonstrated a reliable increase in glutamate efflux in the rACC (see: Chapters 3 and 

5).

7.2/ AIM

• To compare the effects o f pre-treatment with the GLT-1 blocker 

dihydrokainate on the glutamate response to local infusion o f d-amphetamine 

in the caudal and rostral anterior cingulate cortices.
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7.3/ METHODS

7.3.1/ In vivo microdialysis

Experiments were performed on freely-moving rats (250-300 g on day of surgery).

Rats were implanted with microdialysis probes under halothane anaesthesia in both 

the cACC and the rACC (i.e. dual-probe) the day before experimenting. For local 

infusion, dihydrokainate was dissolved in Ringer’s to make a 1 mM solution and 

d-amphetamine was dissolved in Ringer’s to make 10 and 100 fiM solutions. These 

doses of d-amphetamine were based on previous experiments carried out in the 

laboratory, which demonstrated a clear increase in glutamate efflux (see: Chapter 3). 

The dose of DHK was based on a previous study, which demonstrated a blockade of 

d-amphetamine-induced glutamate efflux in the rat ventral tegmental area (Wolf et al., 

2000).

Rats implanted with dual-probes were assigned to one of three treatment 

groups. There were six treatment groups in total and rats were randomised between 

these treatment groups (see: Table 7.1 for details of treatment groups).
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Table 7.1 Drug treatment groups. Rats were randomly assigned to 1 of 6 treatment 
groups.

Pre-treatment Treatment

DHK Ringer’s DHK J-amphetamine

1-

cACC

X X

2-

cACC

X X

3-

cACC

X X

4-

rACC

X X

5-

rACC

X X

6-

rACC

X X

Once stable basal glutamate efflux was established, DHK/Ringer’s was 

infused locally down both probes for the duration of the experiment. One hour later, 

the perfusion fluid was changed for Ringer’s/DHK solution containing 10 pM 

^/-amphetamine and samples collected for another 2 h. After 2 h, the perfusion fluid 

was changed for Ringer’s/DHK solution containing 100 pM J-amphetamine and 

sampling continued for a further 2 h (Figure 7.1).
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Local DHK/Ringer’s

10 nM 100 nM [d-AMP]

-60 0 60  180 300  Sampling time
(min)

Figure 7.1 Timeline for DHK experiment. After 3 stable basal samples were taken, 
DHK/Ringer’s solution was infused at Time To for the remainder of the experiment. 
At Time T6 0 , 10 pM ^-amphetamine was locally infused. At Time Tiso, 100 pM 
^-amphetamine was locally infused.

7.3.2/ Statistical analysis

All data were analysed for statistical significance using two-way ANOVA with 

repeated measures. ‘Time’ and ‘brain region’ were both ‘within subjects’ factors. 

‘Pretreatment’ was a ‘between subjects’ factor. Data were also divided into ‘bins’ 

with three consecutive samples per bin. Therefore, each bin represents 1 h of 

sampling (Figure 7.2). ‘Bin’ was a ‘within subjects’ factor.

Bin1 ‘Bin4’ ‘Bin5’ ‘Bin6’

-60 0 60 120 180 240 300 Sample time
(min)

Figure 7.2 Time bins for statistical analysis o f changes in extracellular glutamate 
after local infusion o f DHKJRinger's solution and local infusion o f d-amphetamine.
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7.4/ RESULTS

7.4.1/ Caudal anterior cingulate cortex

There was no difference in basal glutamate efflux in the cACC in the three treatment 

groups:

DHK-DHK 10.6 ± 1.5 pmol/20min

RINGERS-AMP 14.7 ± 2.7 pmol/20min

DHK-AMP 13.9 ± 6.1 pmol/20min

Local infusion of DHK (1 mM) did not significantly increase glutamate efflux at any 

time (Figure 7.2 and see Table 7.2 for statistical analysis). Local infusion of 

increasing concentrations of ^-amphetamine did not significantly increase glutamate 

efflux at any time (Figure 7.3 and see Table 7.3 for statistical analysis). Co-infusion 

of DHK and ^/-amphetamine, led to a significant increase in glutamate efflux during 

the first hour of infusion of the lowest concentration (10 /*M), when compared to 

glutamate efflux after infusion of <7-amphetamine alone: PRETREATMENT*BIN 

F(l,18)=6.574 P<0.02 (Figure 7.4). After 1 h, glutamate efflux returned to basal 

levels for the remainder of the experiment (Figure 7.4) i.e. DHK enhanced the 

glutamate response to the lowest concentration of J-amphetamine (10 fiM) during the 

first hour of infusion (see Table 7.4 for statistical analysis).
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Figure 7.3 Effects o f infusion o f dihydrokainate (DHK) on glutamate (*GLU') efflux 
in the cACC and rACC o f freely-moving rats
Infusion of DHK (1 mM) was initiated at To. GLU efflux is expressed as pmol/20 
min. Points show mean ± s.e.mean GLU efflux in the cACC (closed triangles) and 
rACC (closed circles). N=7/8. The top graph shows raw data and the bottom graph net 
data set.
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Table 7.2 Statistics generated from split-plot ANOVA summarizing the effects o f local 
infusion o f DHK (ImM) on glutamate efflux in the cACC and rACC. Glutamate efflux 
in each time bin was compared with efflux in the basal samples. Significant 
differences are highlighted in bold.

Treatment DHK (ImM)

cACC rACC

Time (min)
T2 0-T60 F(i,i8)-0.177
T8 0-T120 F(i,i8)=2.139
T 140-T180 F(i,i7)=7.339
T2 0 0-T24 0 F(i,i7)=0.494
T26 0-T300 F(i,i6)=0.253

P<0.6 F(i, 4 f=0.694 P<0.4
P<0.1 F(i, 4 f =0.124 P<0.1
P< 0.02 F(i, 4 f =0.369 P< 0.6
P< 0.4 F(i, 4 f =0.097 ^<0.8
P< 0.6 F(i, 3 f =1.629 P<0.2
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Figure 7.4 Effects o f cumulative infusion o f d-amphetamine (d-AMP) on glutamate 
('GLU') efflux in the cACC and rACC o f freely-moving rats
Infusion of Ringer’s was maintained until T4 0 . Infusion of J-AMP (10 pM: 120 min, 
100 pM: 120 min) was initiated at as indicated by the line. GLU efflux is 
expressed as pmol/20min. Points show mean ± s.e.mean GLU efflux in the cACC 
(closed triangles) and rACC (closed circles). N=8/10. The top graph shows raw data 
and the bottom graph net data set.
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Table 7.3 Statistics generated from split-plot ANOVA summarizing the effects o f local 
infusion o f d-amphetamine on glutamate efflux in the cACC and rACC. Glutamate 
efflux in each time bin was compared with efflux in the basal samples. Significant 
differences are highlighted in bold.

Treatment J-AMP

cACC rACC

[</-AMP] (pM)

10 (1 h) F(U4)=0.050 P<0.8 F(Ui)=0.526 P<0A
10 (2 h) F(U4)=0.126 P<0.1 F(U,>=1.875 P<0.2
100 (1 h) F(U4)=0.094 P<0.8 F(,,2o)=4.356 /><0.05
100 (2 h) F(i^3)=1.647 P<0.2 F(U1)=1.398 P<0.3
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7.4.2/ Rostral Anterior Cingulate Cortex

There was no difference in basal glutamate efflux in the prefrontal cortex in the three 

treatment groups:

DHK-DHK 7.2 ± 0.9 pmol/20min

RINGERS-AMP 8.9 ± 1.9 pmol/20min

DHK-AMP 11.0 ± 7.3 pmol/20min

Local infusion of DHK (1 mM) did not increase glutamate efflux at any time 

(Figure 7.2 and see Table 7.2 for statistical analysis). A dose-related increase in 

glutamate efflux was observed after local infusion of d-amphetamine (Figure 7.3 and 

see Table 7.3 for statistical analysis). This increase attained statistical significance at 

the highest dose tested (100 fiM) when compared to glutamate efflux in the anterior 

cingulate cortex: REGION T2 0 0-T300 F(i,M)=4.495 P<0.05. A maximum net increase 

of 20.9 ± 16.0 pmol/20min was observed after infusion of 100 /*M ^-amphetamine. 

The ^/-amphetamine-induced glutamate efflux was phasic in nature, and declined in 

amplitude during subsequent samples. Pre-treatment with 1 mM DHK did not affect 

the glutamate response to ^/-amphetamine (no significant effect o f ‘pretreatment’ was 

seen; Figure 7.5). ^/-Amphetamine retained the ability to increase glutamate efflux 

even in the presence of 1 mM DHK (Figure 7.5 and see Table 7.4 for statistical 

analysis). Frequent fluctuations in glutamate efflux were seen in this treatment group, 

with efflux increasing for a couple of samples before returning to basal levels again.
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Figure 7.5 Effects o f cumulative infusion o f d-amphetamine ( ‘d-AMP’) on glutamate 
( ‘GLU’) efflux in the caudal anterior cingulate cortex ( ‘cACC’) o f freely-moving rats. 
Infusion of DHK (1 mM) or Ringer’s solution was initiated at To and maintained 
throughout as indicated by the line. Infusion of <i-AMP (10 pM: 120 min, 100 pM: 
120 min) was initiated at Too as indicated by the line. GLU efflux is expressed as 
pmol/20min. Points show mean ± s.e. mean GLU efflux after infusion of DHK 
(closed triangles) or Ringer’s (open triangles). N=8 /l 1. The top graph shows raw data 
and the bottom graph net data set.
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Figure 7.6 Effects o f cumulative infusion o f d-amphetamine ( ‘d-AMP’) on glutamate 
( ‘GLU) efflux in the rostral anterior cingulate cortex ( ‘rACC) o f freely-moving rats. 
Infusion of DHK (1 mM) or Ringer’s solution was initiated at To and maintained 
throughout as indicated by the arrow. Infusion of d-AMP (10 pM: 120 min, 100 gM: 
120 min) was initiated at T60 as indicated by the line. GLU efflux is expressed as 
pmol/20min. Points show mean ± s.e. mean GLU efflux after infusion of DHK 
(closed circles) or Ringer’s (open circles). N=9/12. The top graph shows raw data and 
the bottom graph net data set.
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Table 7.4 Statistics generated from split-plot ANOVA summarising the effects o f local 
infusion o f d-amphetamine + DHK (1 mM) on glutamate efflux in the cACC and 
rACC. Glutamate efflux in each time bin was compared with efflux in the cluster of 
basal samples. Significant differences are highlighted in bold.

Treatment </-AMP + DHK (1 mM)

cACC rACC

[J-AMP] (pM)

10 (1 h) F0 ,i8)=8 . 6 6 6  P<0.01 F(i,14)=8.291 P<0.01
10 (2 h) F(U8)=0.126 P<0.1 F(i,14)=1.352 P<0.3
100 (1 h) F(i,i7)=0.083 /><0.8 F(1,,4)=9.135 />«).01
100 (2 h) F(U8)=0.054 /><0.8 F(U4)=3.024 /><0.1

208



7.5/ DISCUSSION

7.5.1/ Caudal Anterior Cingulate Cortex

Consistent with my previous studies, neither local infusion of DHK nor

{/-amphetamine affected glutamate efflux in the cACC (see: Chapter 3 and Chapter 6).

An increase in glutamate efflux was seen during the first hour of co-infusion of both 

DHK and the lower concentration o f {/-amphetamine (10 fiM). This quickly returned 

to basal levels and remained at this concentration for the remainder o f the experiment, 

despite infusion of a higher concentration (100 fiM) of {/-amphetamine. When 

{/-amphetamine is infused locally in the cACC, any increase in glutamate efflux could 

be masked by uptake at the glial glutamate transporter, GLT-1. This transporter is 

responsible for greater than 90 % o f glutamate transport activity in the rat forebrain 

(Tanaka et al., 1997). However, when uptake at this transporter is blocked by the 

addition of DHK to the perfusion medium, the {/-amphetamine-induced glutamate 

efflux is immediately evident. After the initial increase in glutamate efflux, the 

extracellular concentration quickly returned to basal levels and remained at this 

concentration for the remainder of the experiment.

The mechanism by which the glutamate response to local infusion of the higer 

concentration of {/-amphetamine is switched off in the cACC is unclear. It is possible 

that the response is being switched off by glutamate hetero/auto receptors in the 

terminal fields by the increased extracellular glutamate. Candidates for this include 

mGlu5, which are thought to act presynaptically in the preffontal cortex (Fazal et al., 

2003). Members of the group II family of mGluRs are enriched in the preffontal
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cortex (Ohishi et al., 1993) and have an inhibitory effect on PCP-evoked glutamate 

release (Moghaddam and Adams, 1998).

Actions of ^-amphetamine mediated by other neurotransmitters (e.g. 

noradrenaline and serotonin) were also possible. Local infusion with the NMDA 

antagonist 3-[(R)-2-carboxypiperazin-4yl]-propyl-l-phosphoric acid (CPP; 100 pM) 

increased extracellular glutamate in the rat preffontal cortex (Calcagno et al., 2006). 

Intracortical perfusion with the 5-HTiA agonist 8 -OH-DPAT (3 pM) completely 

prevented the rise in extracellular glutamate. This effect was reversed by co-perfusion 

with the 5-HTia antagonist WAY-100635 (100 pM). Any increase in extracellular 

glutamate induced by ^-amphetamine in the anterior cingulate cortex could be 

inhibited by an action of 5-HT on inhibitory 5-HTjA receptors. 5-HTiA receptors are 

enriched in the preffontal cortex and particularly on glutamatergic pyramidal neurons 

(Amargos-Bosch et al., 2004, Santana et al., 2004). To date, no microdialysis studies 

have been performed investigating the effects of noradrenergic agents on drug-evoked 

increases in extracellular glutamate.

Alternatively, the supplies of neuronal glutamate to be released into the 

extracellular space and sampled by the microdialysis probe could be exhausted by the 

continued infusion of J-amphetamine. Neurones are not capable of synthesizing 

glutamate since they lack pyruvate carboxylase, which is the main anaplerotic enzyme 

in the brain (Shank et al., 1985). They rely on the astrocytic supply of TCA cycle 

intermediates, as every drain of neuronal amino acids would otherwise lead to a 

shortage of neurotransmitter precursors. Astrocytes also take up neuronal glutamate, 

which will lead to a further depletion of transmitters in neurons. Pyruvate 

carboxylase in astrocytes converts pyruvate to oxaloacetate, resulting in the formation 

of Q«-ketoglutarate. From Qf-ketoglutarate, glutamate can be formed and converted to
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glutamine, which is transferred to neurons and emerges as glutamate (Kvamme et al., 

2000). This is the so-called ‘glutamate-glutamine’ cycle. Once the supply of 

neuronal glutamate has been exhausted by the addition of {/-amphetamine to the 

infusion medium, it may take some time for it to be replenished. Continued infusion 

of {/-amphetamine would exacerbate the situation, meaning that there would never be 

sufficient neuronal concentrations o f glutamate to be released into the extracellular 

space.

In addition to competitive inhibition of GLT-1, DHK also acts as a weak 

agonist of ionotropic glutamate receptors (see: Chapter 1, section 1.8 ). Infusion of the 

glutamate agonists NMD A and kainate increases glutamate efflux in the striatum of 

rats (Hashimoto et al., 2000). Assuming that these results can be generalised to the 

entire rat brain, this property o f DHK could explain the potentiation of the glutamate 

response to the lower concentration o f {/-amphetamine. However, as infusion of DHK 

alone did not increase glutamate efflux in the cACC, this is unlikely.

7.5.2/ Rostral Anterior Cingulate Cortex

Consistent with our previous studies, local infusion of DHK did not affect 

extracellular glutamate concentrations in this brain region. A concentration- 

dependent increase in glutamate efflux was observed on local infusion of 

^/-amphetamine, which attained statistical significance after infusion of the highest 

concentration (100 fiM). Again, the increased glutamate efflux observed in the rACC 

was phasic in nature, with the increased extracellular glutamate rapidly returning to 

basal levels in the subsequent samples. This phasic glutamate efflux has been a 

constant feature of these studies (see: Chapter 3, Figure 3.3). Pre-treatment with
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DHK did not affect the glutamate response to ^-amphetamine in the rACC. 

Therefore, the J-amphetamine-induced increase in extracellular glutamate does not 

rest on efflux at the glial glutamate transporter and it is not essential for clearance.

There are theoretical problems associated with the simultaneous infusion of 

two drugs down the microdialysis probe. During local infusion, the extracellular 

concentration of the drug will not be the same as the concentration dissolved in the 

Ringer’s and it hard to predict how much of the drug will remain in the infusion fluid. 

Dissolving two different drugs in Ringer’s will complicate this situation further and 

could lead to variable concentrations of drug in the extracellular fluid from animal to 

animal. The compounds could also interact chemically within the Ringer’s solution, 

therefore further influencing their pharmacokinetics.
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7.5.3/ SUMMARY OF KEY FINDINGS

• In the caudal anterior cingulate cortex, the glutamate response to the lower 

concentration (10 jiM) o f J-amphetamine but not the higher concentration was 

enhanced by pre-treatment with DHK

• In the rostral anterior cingulate cortex, pre-treatment with DHK did not 

prevent the glutamate response to local infusion of ̂ -amphetamine

• Local infusion of DHK did not affect spontaneous glutamate efflux in either 

subregion at any time, suggesting that GLT-1 is not essential for regulation of 

extracellular glutamate under baseline conditions
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Chapter 8

8.0/ General Discussion

8.1/ SUMMARY OF RESULTS

The rat anterior cingulate cortex shows functional specialisation. The aim of 

these experiments was to look for possible neurochemical coding of this by 

comparing regulation of glutamatergic neurotransmission in two adjacent subregions 

of the rat anterior cingulate cortex -  the caudal anterior cingulate cortex (cACC: AP 

+1.0 ML +0.6 DV -3.6) and the rostral anterior cingulate cortex (rACC: AP +2.5 ML 

+0.6 DV -4.6). The rACC is responsible for mediating the affective response to a 

noxious stimulus, while the cACC contributes to the motor response to the 

unconditioned stimulus, only. Both single and dual-probe microdialysis studies were 

performed in freely-moving rats to investigate the effects of ̂ /-amphetamine on both 

dopamine and glutamate efflux in the two subregions.

Systemic administration of ^/-amphetamine increased glutamate efflux in the 

cingulate region of the preffontal cortex (corresponding to the rACC in my studies; 

Reid et al., 1997). d-Amphetamine has also been shown to differentially affect 

dopamine efflux in different subregions of the rat medial preffontal cortex (which 

receive inputs from different brainstem areas: Mazei et a l ., 2002). It follows that the 

effect of ̂ -amphetamine on glutamate efflux could also differ in different subregions 

of the anterior cingulate cortex. So far, this has not been investigated systematically.

The experiments performed in Chapter 3 indicated that the glutamate response 

to J-amphetamine in the anterior cingulate cortex depends on both subregion and 

route of administration. Local infusion of flf-amphetamine (1-100 (jlM; via
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‘ ret rod ialy sis’) dose-dependently increased glutamate efflux in the rACC but not the 

cACC. Systemic administration of ̂ -amphetamine (3 mg/kg i.p.) increased glutamate 

efflux in the cACC but not the rACC. This suggests that in the rACC, actions o f d- 

amphetamine in the terminal fields are increasing glutamate efflux, while the 

glutamate response to systemic J-amphetamine is constrained by afferent influences. 

In the cACC, the reverse situation is occurring, with the effects of ^-amphetamine 

depending on actions upstream of this subregion.

The next experiments attempted to elucidate some of the mechanisms 

responsible for the glutamate response to local infusion of ^/-amphetamine in the 

rACC. The rACC receives a dense dopaminergic projection from the ventral 

tegmental area o f the midbrain, which could influence glutamatergic transmission. 

Firstly, it was important to determine the effect of J-amphetamine on dopamine efflux 

in the two subregions (Chapter 4). Both local infusion (10-100 /xM; via retrodialysis) 

and systemic administration (3 mg/kg i.p.) of ^-amphetamine increased dopamine 

efflux in the rACC. Therefore, the dopamine response in the rACC is not modulated 

by afferent inputs.

In contrast, there was no dopamine response in the cACC either after local 

infusion or systemic administration of ̂ -amphetamine. These data fit well with the 

dopaminergic innervation of the rat preffontal cortex, which is highest in the deeper 

layers (V-VI) of the prelimbic cortex (corresponding to area Cg3 of the rACC) and 

lowest in the superficial layers of the dorsal anterior cingulate area. They also suggest 

that an increase in dopaminergic neurotransmission could underlie the increased 

glutamate transmission in the rACC in response to local infusion of ̂ /-amphetamine. 

In contrast, the increased extracellular glutamate in the cACC in response to systemic 

injection of ̂ -amphetamine cannot be related to an increase in dopamine efflux. To
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confirm these results, a dose-dependent increase in glutamate efflux in the rACC, but 

not the cACC, in response to local infusion o f dopamine solution was seen. These 

data all point to an involvement of increased extracellular dopamine in the glutamate 

response to local ^/-amphetamine in the rACC only.

To characterise further the mechanisms underlying the increased rACC 

glutamate in response to local infusion of ̂ -amphetamine, rats were pre-treated with 

one of two dopaminergic antagonists 2  h before local infusion of (/-amphetamine ( 1 0 - 

100 [iM; via retrodialysis: Chapter 5). Pre-treatment with either dose of the D2-like 

receptor antagonist haloperidol (0 . 1  and 1 mg/kg i.p.), did not affect the glutamate 

response to local (/-amphetamine in the rACC, suggesting that any increase in 

glutamate efflux is not secondary to an action of dopamine on D2 -like receptors. 

Similarly, pre-treatment with the D|-like receptor SCH23390 at the lower dose (0.1 

mg/kg i.p.) did not affect the glutamate response to local infusion of (/-amphetamine. 

However, the (/-amphetamine-induced increase in extracellular glutamate was blunted 

by the higher dose of SCH23390 (1 mg/kg i.p., see Figure 8.1 (a)). This suggests that 

an action of dopamine on Dj-like receptors contributes to the glutamate response to 

local infusion (/-amphetamine in the rACC. This result is in agreement with 

anatomical studies investigating the distribution of Di-like receptors in the preffontal 

cortex. Di-like receptors are more prominent in the deeper layers (V-VI) of the 

cortex, with a more homogeneous distribution in the superficial layers. Di-like 

receptors also greatly outnumber D2 -like receptors in this brain region.

It is conceivable that, where no increase in glutamate efflux was seen after 

administration of (/-amphetamine, this was due to uptake of glutamate by highly 

efficient glutamate transporters surrounding the glutamatergic synapse. The glial 

glutamate transporter GLT-1, present on glial cells, is the most abundant glutamate
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transporter in the rat forebrain. The experiments performed in Chapter 6  sought to 

investigate the role of this transporter in the glutamate response to systemic 

amphetamine in both the rACC and cACC. The sustained increase in glutamate 

efflux was partly attenuated by DHK, 2-4 h after treatment with ^-amphetamine. This 

suggests that DHK has some effect on the glutamate response to ^-amphetamine, and 

a small proportion could rest on reversal o f GLT-1 and subsequent release of 

glutamate. However, it seems that a large proportion of glutamate is released by 

another mechanism.

In the rACC, systemic injection of ^-amphetamine caused a small, transient 

increase in glutamate efflux (nonsignificant), which quickly returned to basal levels in 

the next sample. Pretreatment with DHK caused a progressive, sustained decrease in 

glutamate efflux below baseline compared to the animals, which had received 

^/-amphetamine injection alone. The glutamate response to systemic ^/-amphetamine 

in the rACC therefore depends on GLT-1. This reduction could arise from inhibition 

of glutamate uptake by GLT-1 and subsequent activation of terminal autoreceptors by 

the increased extracellular glutamate, which inhibit its release. Local infusion of 

DHK alone did not affect spontaneous glutamate efflux in either the cACC or rACC, 

suggesting that uptake of glutamate by GLT-1 is not essential for clearance of 

glutamate in either subregion.

Finally, in Chapter 7, I determined the effect of inhibition of glial glutamate 

transport on the glutamate response to local infusion of ̂ -amphetamine in the rACC 

and cACC. In the cACC, as before, neither local infusion of d-amphetamine nor 

DHK affected glutamate efflux. However, DHK augmented the response to the lower 

concentration (10 fxM) of ̂ /-amphetamine for the first hour of infusion. In the rACC, 

as before, local infusion of DHK did not affect glutamate efflux and local infusion of
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J-amphetamine increased extracellular glutamate. DHK did not affect the glutamate 

response to local infusion of ̂ /-amphetamine in this brain region and so the increased 

extracellular glutamate does not depend on GLT-1. These experiments suggest that, 

in the cACC, the glutamate response to local ^-amphetamine is masked by uptake of 

glutamate by GLT-1, while GLT-1 does not influence the glutamate response in the 

rACC (see Figure 8 .1 (b)).

8.2/ IMPLICATIONS OF THESE RESULTS

This is the first time that a systematic investigation of the regulation of 

glutamatergic neurotransmission along the rostro-caudal axis o f the anterior cingulate 

cortex has been performed. It is clear from these studies that different mechanisms 

are responsible for governing glutamatergic transmission in the rostral and caudal 

anterior cingulate cortices. The striking asymmetry in the regulation of glutamate 

efflux between the cACC and rACC is the most notable feature of these experiments. 

To summarise, systemic ^-amphetamine increased glutamate efflux in the cACC, but 

not the rACC. Conversely, local infusion of ^/-amphetamine increased glutamate 

efflux in the rACC but not the cACC. As regards the glial glutamate transporter, 

GLT-1, this plays an important role in the constraint of the glutamate response to 

^/-amphetamine in both subregions. However, in the rACC, GLT-1 is responsible for 

limiting the concentration of extracellular glutamate arising governed by afferents to 

the rACC, i.e. only seen following systemic administration of ^-amphetamine, 

whereas, in the cACC, GLT-1 limits any increase in glutamate efflux arising from 

local actions of ^/-amphetamine. GLT-1 has no effects on the local actions o f d-
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amphetamine in the rACC and only a limited action on the effects of ̂ -amphetamine 

governed by afferent influences to the cACC.

Despite being contiguous, the cACC and rACC are functionally 

heterogeneous. Lesion and behavioural studies have implicated a role for the rACC in 

the affective component of pain (Lei et al., 2004), while the cACC is thought to be 

responsible for motor planning as a secondary response to nociceptor stimulation. 

The reciprocal responses to c/-amphetamine suggest that different mechanisms are 

responsible for the control of glutamatergic transmission in the two brain regions. 

These regional differences in the regulation of glutamatergic transmission discovered 

in the present experiments could help to explain their differential function.

Previous studies have indicated a role for glutamate in the regulation of 

dopamine neurotransmission in rat cortical areas (Feensta et al., 1995; Smith and 

Whitton, 2001). My studies have shown that the reverse situation is also relevant. 

Only a few laboratories have used microdialysis to study the influence of dopamine 

on glutamatergic transmission in the rat cerebral cortex, despite the fact that dopamine 

is a neuromodulator in an ideal position to regulate glutamatergic neurotransmission. 

Dopamine-glutamate interactions are clearly very important for the pathogenesis of 

diseases such as schizophrenia and major depressive disorder. Elucidating the precise 

nature of these interactions will undoubtedly aid in further understanding the 

mechanisms of these neurological disorders and finding more effective treatment.

To my knowledge, this is the first time that a decrease in extracellular 

glutamate in a subregion of the preffontal cortex in response to ^/-amphetamine has 

been demonstrated. It has been well documented that chronic use of ̂ -amphetamine 

by human subjects leads to psychotic symptoms characteristic of schizophrenia. 

Clinical studies have suggested that decreased glutamate transmission in the

219



prefrontal cortex (including the anterior cingulate cortex) is a cardinal feature of 

chronic schizophrenia in man (Ohrmann, 2005). Numerous animal models of 

psychosis exist and many of these involve decreased glutamate transmission (Zuo et 

al., 2006). My experiments, in which decreased glutamate efflux was observed after a 

single dose of ^-amphetamine, suggest that impairment of GLT-1 function could 

contribute to ^-amphetamine psychosis or schizophrenia.

This model also fits in well with the proposed role for glial cells in the 

pathogenesis o f schizophrenia. The importance of glial-neuronal interactions for 

glutamate metabolism has been highlighted, and, in particular, the ‘glutamate- 

glutamine’ cycle, by which glutamate released by neurones is taken up by astrocytes. 

Once inside the astrocyte, glutamate enters the TCA cycle and is converted to 

glutamine, which can be transferred to neurones and hydrolysed to glutamate by 

phosphate-activated glutaminase. Disruption of glial-neuronal interactions is thought 

to be a key feature of schizophrenia (Kondziella et al., 2006). In the anterior 

cingulate cortex of schizophrenics, an estimated glial cell loss o f 15-20 % can be 

found in layers V and VI. This glial cell loss is reflected in the hypo metabolism of 

the prefrontal cortex of schizophrenics and agrees with the initial glutamatergic 

excitotoxicity and subsequent NMDA receptor hypofunction characteristic of this 

disorder (Kondziella et al., 2007). My experiments could be effectively modelling the 

glial cell loss, leading to eventual glutamatergic hypofunction, which is a cardinal 

feature of schizophrenia.

In conclusion, these studies revealed notable asymmetry in the neurochemical 

regulation of dopaminergic and glutamatergic transmission in the rACC and cACC, 

which could explain the differential functions of these subregions.
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Figure 8.1 Summary diagrams showing the effects o f different drug treatments on 
dopamine and glutamate efflux in the rat rostral and caudal anterior cingulate 
cortices

(a) Effects of local and systemic d-AMP on glutamate efflux and modulation 
by dopaminergic neurotransmission.

(b) Effects of local and systemic d-AMP on glutamate efflux and modulation 
by glial glutamate transport.
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