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Abstract

Flavin-containing monooxygenase 3 (FM03) is a hepatic, microsomal enzyme 

important in the Phase I metabolism of xenobiotics. Numerous single nucleotide 

polymorphisms (SNPs) in FM03 have been identified and shown to affect the 

catalytic activity of the enzyme, with some destroying the activity altogether, 

causing the distressing disorder, Trimethyalminuria (TMAU), in humans.

Genotyping was performed at the FM03 locus on several individuals 

displaying symptoms of TMAU. Two new FM03 variants, R238Q and R492Q, 

were discovered in this investigation, with kinetic studies suggesting that R238Q 

destroys FM03 catalysis.

Kinetic studies of FM03 common polymorphisms showed that the 

E158K/E308G displayed significantly reduced catalytic activity compared with 

either single variant alone. E158K/V257M also displayed significantly reduced 

catalytic activity, but not compared to either single variant alone. The 

pharmacogenetic implications are discussed with particular reference to the 

recent finding that E158K/E308G has been associated with reduced polyp 

formation in patients with familial adenomatous polyposis who were treated with 

sulindac sulphide, an FM03 substrate.

The evolutionary history of FM03 was probed using sequence data of 

genomic DNA in a Japanese cohort of potential TMAU sufferers and control 

individuals. Mutational relationships among haplotypes were inferred and time 

depth of the variation and ages of individual mutations were estimated by 

coalescent analysis, with test statistics used to detect departure from neutral 

evolution. A case of balancing selection is proposed at the FM03 locus.

In an attempt to understand the structural and biophysical consequences 

of FM03 variants, a homology model of FM03 was generated, refined and 

validated. Flavin adenine dinucleotide (FAD), an FM03 cofactor, was also 

modeled into the FM03 model and the interactions between the enzyme and 

cofactor predicted.

3



Acknowledgements

First and foremost I would like to thank Prof. Elizabeth Shephard for her support, 

guidance and supervision over the course of my Ph.D. and for giving me the 

opportunity to explore such an interesting topic. I could not have hoped for a 

more supportive supervisor.

I wish to thank Dr. Azara Janmohamed for teaching me all the lab basics 

and day to day skills that allowed me to progress to this stage. Her tireless 

support, patience and friendship over these years have been very much 

appreciated. My thanks are also extended to those members of the Shephard lab 

who have helped me over the years.

I wish to thank Prof. Ian Phillips at Queen Mary University London for 

all of his help and advice, particularly with the Japanese genetics project.

I am extremely grateful to Prof. Paul Ortiz de Montellano who hosted my 

Bogue Fellowship at the University of California San Francisco and was very 

generous with both his time and facilities. My thanks also go to his lab members 

in San Francisco.

I would like to thank Prof. David Goldstein and Dr. Chris Taylorson for 

acting as my mentors during my Ph.D.

Thanks go to Mr. Frank Penter and Mr. Peter Cadley at UCL for sending 

me academic literature during my fellowship and Mr. Brian Watts at UCL for 

I.T. support.

I offer my extreme thanks to Dr. Andrias O’Reilly of Birkbeck College 

for introducing me to the MODELLER software and being so generous with his 

time. I also thank Dr. Abi Jones for preparing the bucal swab kit for the patient 

study.

I would like to thank the Medical Research Council, the Bogue 

Fellowship Committee and Bioline Ltd. for financial support. I would also like 

to thank the Bioline team very much for the invaluable industrial experience I 

gained.

Finally I would like to thank my wife Kelly for sharing this experience 

with me, smiling through my rants about bacteria not growing, computer 

programs crashing etc. and always reminding me about what is really important 

in life.

4



Contents

Title page 1

Statement 2

Abstract 3

Acknowledgements 4

Contents List 5

List of Figures 10

List of Tables 13

List of Abbreviations 14

1. Chapter One: Introduction 17

1.1. FMOs 18

1.2. FM03 24

1.3. Homology Modelling 36

1.4 Evolution of FM03 42

1.5. Aims 48

2. Chapter 2: Materials and Methods 49

2.1. FM03 TMAU patient screen 50

2.1.1. DNA extraction from buccal swab sample 50

2.1.2. DNA quantification 51

2.1.3. Polymerase Chain Reaction (PCR) amplification of FM03

exons and upstream loci from human genomic DNA 51

2.1.4. DNA Precipitation 52

2.1.5. DNA Sequencing 54

2.1.6. BsaWJ Restriction Digest of FM03 exon 9 PCR amplicon 54

2.1.7. CpG site identification 54

2.2. Generation of Polymorphic variants of FM03 55

2.2.1. Site-Directed Mutagenesis (SDM) 55

2.2.2. Plasmid isolation 57

2.2.2.1. Small-scale plasmid isolation 57

2.2.2.2. Large-scale plasmid isolation 58

2.2.3. Heterologous expression of hFM03 60

2.2.3.1. Cell growth and induction of expression 60

5



2.2.3.2. Bacterial cell harvest 60

2.2.3.3. Cell Lysis 61

2.2.3.3.1. Method I 61

2.2.3.3.2. Method II 61

2.2.3.3.3. Method III 61

2.2.3.3.4. Method IV 61

2.2.3.3.5. Method V 62

2.2.3.3.6. Method VI 62

2 2 3 3 .1 . Method VII 62

2.2.3.4. Cell fractionation 62

2.2.4. Protein quantification 63

2.2.5.1. SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 63

2.2.5.2. SDS-PAGE Staining 64

2.2.5.3. Western Blot of SDS-PAGE gel 64

2.2.5.3.1. Blotting 64

2.2.5.3.2. Antigen detection 65

2.2.6. Immunoquantification of FM03 66

2.2.7. Methimazole Assay of FMO activity 66

2.3. Generation of a homology model of FM03 68

2.3.1. Template Identification 68

2.3.2. Homology Modelling 68

2.3.2.1. Homology Modelling hFM03 68

2.3.2.2. Model scoring 69

2.3.2.3. Model refinement 69

2.3.2.4. Modelling FAD into the FM03 model 70

2.3.2.5. Putative Active Site assignment 70

2.3.2.6. Examination of FAD-FM03 interactions 71

23.2.1. Tertiary Model Alignment 71

2.3.3. Visualization of molecules 71

2.4.1. Identification of putative transmembrane regions. 71

2.5. Evolution studies of the FMO 3 locus 76

2.5.1. Data Analysis 76

2.5.1.1. Mutational relationship between haplotypes 76

2.5.1.2. Probing the time depths of FM03  variants 77

2.5.1.3. Testing FM03 for departures from neutrality 77

6



3. Chapter 3: Results and Discussion 79

3.1. TMAU Patient studies 80

3.2. Kinetic parameters of FM03 polymorphic variants 103

3.3. Generating a homology model of FMCG 113

3.4. Evolution of the FMO3 locus 155

4. Chapter 4: General Summary 182

5. Chapter 5: References 187

7



18

20

28

33

38

78

79

80

82

84

86

87

90

92

99

100

102

List of Figures 

Chapter One: Introduction

Major steps in the catalytic cycle of FMO

A primary sequence alignment of the five functional FMOs in

humans

The mutations of human FM03 

The polymorphisms of human FM03 

The Ramachandran plot

Chapter 3: Results and Discussion

Sequencing traces of FM03 exons of the mother of subject one 

Sequencing traces of FM03 exons of the father of subject one 

Sequencing traces of FM03 exon 6 of the father of subject one 

Sequencing traces of FM03  exons of subject one 

A sequence trace from a PCR amplification of exon 7 of the 

FMO3 gene from subject 3

Sequencing trace showing the region of FM03 exon 9 

containing the 1475G>A polymorphism of subject four 

Restriction digest analysis of FM03 exon 9 from subject four 

DNA with BsaWI

A representation of the 2 alleles of FM 03  present in the great 

uncle, mother, father and subject one, with the mutations 

highlighted

A genetic pedigree of the Norwegian family in this study 

DNA sequencing traces of FM03 cDNA on the E l58 

background

DNA sequencing traces of FM03 cDNA on the K158 

background

A Hanes-Woolf linear transformation plot of the Michaelis- 

Menton equation for each catalytically active variant of FM03, 

measuring methimazole concentration (pM)/ Assay product 

formed (nmol/min) as a function of Methimazole concentration 

(pM)

8



109

110

112

113

114

117

118

120

122

123

125

126

131

138

149

151

153

157

ClustalW alignments of 1W4X vs hFM03 and 1VQW vs 

hFM03

A cartoon representation of the homology model, based on 

1VQW, of FM03

FAD isoalloxazine ring orientation within FMO

FAD modelling within the homology Model of FM03 based

on 1VQW

MBT Ligand Explorer view of the modelled FM03 association 

with FAD

The FMO identifying sequences

The homology model, based on 1VQW, of FM03 with amino 

acid variants highlighted

ProSA output for FM03 model generated using 1VQW as a 

template

Ramachandran plots of the FM03 model generated using 

1VQW as a template

WHATIF assessment of the amino acid packing quality of the 

FM03 model generated using 1VQW as a template 

Buried cavities within the homology model of FM03 based on 

1W4X

A superposition of the two models of FM03 generated by 

homology modelling

Homology model of FM03 with residues implicated in FAD

incorporation and/or retention

Homology models recently published of FM03

Pairwise linkage disequilibrium

Reduced-median network of FM03 haplotypes

A genetree for FM03, estimated through maximum likelihood

coalescent simulation

SNP frequency spectrum and Pairwise mismatch distribution 

histograms



Chapter 4: General Summary

Figure 36 A cartoon representation of the homology model built of 171

FM03, built as part of this investigation

10



List of Tables

Chapter One: Introduction

Table 1 The priamry sequence identity between mammalian FMOs 19

Table 2 Mutations in FMO3 leading to TMAU phenotype 27

Table 3 Xenobiotics implicated as being substrates of FM03 31

Table 4 Polymorphic variants of FM03 34

Chapter 2: Materials and Methods

Table 5 Primers used to amplify each exon of FMO3 by PCR 51

Table 6 Sequence of forward and reverse primers used to generate each
mutation in hFM03 cDNA ^

Chapter 3: Results and Discussion

Table 7 Clinical characterization of index cases with TMAU 95

Table 8 S-oxygenation of methimazole by human FM03 variants 103

Table 9 A tabulation of all interactions predicted from the model of FM03
along with an incorporated FAD molecule, by MBT Ligand 11 -
Explorer

Table 10 SNP alleles and their frequencies 142

Table 11 Haplotypes and their estimated frequencies in the potential TMA 144
patient group

Table 12 Diversity estimates and neutrality tests for FM03 145

Table 13 Genotypes and their occurrences in potential TMAU sufferers. 147

Table 14 McDonald-Kreitman test of neutrality. 159

Table 15 Genotype and biochemical phenotype of individuals potentially 
suffering from TMAU

161

11



List of Abbreviations.

Abbreviation Definition

Afr African American

Ala Alanine

Amp Ampicillin

Arg Arginine

Asn Asparagine

Asp Aspartic acid

BBC Bitish Broadcasting Corporation

BLAST Basic Local Alignment Search

bp Base Pairs

BP Before Present

BSA Bovine Serum Albumin

Cauc Caucasian

cDNA Complemetary DNA

Con Control group

CYP Cytochrome P450 Monooxygenase

Cys Cysteine

dATP Deoxyadenosine triphosphate

dCTP Deoxycytosine triphospate

ddH20 double-distilled H20

DTT Dithiotreitol

dGTP Deoxyguanosine triphosphate

DNA Deoxyribonucleic acid

dNTP Deoxynucleoside triphosphate

DOPE Discrete optimised protein energy

DOS Disk Operating System

dsDNA Double stranded DNA

DTNB 5,5’-Dithio-bis(2-nitrobenzoic acid)

dTTP Deoxythymidine triphosphate

DX Diagnosis

E.coli Escherichia coli

EDTA Ethylenediaminetetraacetic acid

FAD Flavin adenine dinucleotide

FADHOOH Hydroperoxyflavin

12



FMO Flavin-containing Monooxygenase

G6PD Glucose-6-phosphate dehydrogenase

GHz Gigahertz

Gin Glutamine

Glu Glutamic acid

Gly Glycine

GP General Medical Practitioner

HEPES 4-(2-hydroxyethyl)-l-piperazineethanesulfonic acid

hFM03 human form of Flavin-containing Monooxygenase (form

3)

His Histidine

His6-tag Hexahistadine-tag

Hisp Hispanic American

hrs hours

lie Isoleucine

IPTG Isopropyl bD-thiogalactopyranoside

LB Luria Broth

LD Linkage disequilibrium

Leu Leucine

LINE Long interspersed nucleotide element

Lys Lysine

Kyr Thousand years

MB Megabyte

MBP Maltose-Binding Protein

Met Methionine

MHC Major histocompatibility complex

MOPSO 3-(N-morpholino)-2-hydroxypropane-sulphonic acid

mRNA Messenger RNA

NADPH p-Nicotinamide adenine dinucleotide phosphate (reduced)

ND Not determined

Ne Effective Population Size

NT Not tested.

OD Optical density

PAGE Polyacrylamide gel electrophoresis

PC Personal Computer

13



PCR Polymerase Chain Reaction

PDB Protein Data Bank

Phe Phenylalanine

PMSF Phenylmethylsulfonyl fluoride

Pro Proline

RAM Read Access Memory

RM Reduced Median

RNA Ribonucleic acid

S.D. Standard deviation

SDS Sodium dodecyl sulphate

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel

electrophoresis

Ser Serine

SNP Single nucleotide polymorphism

S.pombe Schizosaccharomyces pombe

TBS Tris Buffered Saline

TEMED N,N,N ,N -Tetramethylethylenediamine

TEV Tobacco Etch Virus

Thr Threonine

T m r c a Time to Most Common Recent Ancestor

TMA Trimethylamine

TMAU Trimethylaminuria

Tris Tris [hydroxymethyl] aminomethane

Trp Tryptophan

Tyr Tyrosine

UK United Kingdom of Great Britain and Northern Ireland

UV Ultra violet

USA United States of America

Val Valine



Chapter 1 

Introduction

15



1. Introduction

Xenobiotic metabolism refers to the biochemical modification in vivo of 

exogenous substances. These modifications are made through a series of enzyme 

systems, which often convert hydrophobic molecules into more readily excreted, 

polar metabolites. The primary site of xenobiotic metabolism is the liver, 

although virtually all tissues carry out xenobiotic metabolism to a greater or 

lesser extent. Xenobiotic metabolism can be considered in two phases. Phase I 

metabolism is the stage at which polar groups are either introduced or exposed in 

the xenobiotic by oxidation by Cytochrome P450 Monooxygenases (CYPs), 

Flavin-containing Monooxygenases (FMOs), Alcohol and Aldehyde 

Dehydrogenases, Monoamine Oxidase or Peroxidases or hydrolysis by Esterases, 

Amidases or Epoxide Hydrolase. Phase II metabolism is concerned with the 

conjugation of the modified product of Phase I metabolism to produce a water 

soluble conjugate, readily excreted from the body. The majority of Phase II 

reactions are catalysed by Transferases e.g. Glutathione S-Transferases, 

Sulfotransferases or UDP Glucuronyl Transferases.

After the CYPs, FMOs are the largest group of enzymes involved in 

Phase I metabolism of drugs and other xenobiotics and provide the focus for this 

investigation.

1.1. FMOs

FMOs (EC 1.14.12.8) are p-Nicotinamide adenine dinucleotide phosphate 

(reduced) (NADPH)-dependent enzymes that catalyse the oxidation of a wide 

range of compounds. Flavin adenine dinucleotide (FAD) acts as a prosthetic 

group within the FMO molecule and is reduced by NADPH. This reduced form 

of FAD readily binds molecular oxygen to generate a hydroperoxyflavin (FMO-
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FADHOOH). When in this state, the enzyme acts in a “cocked gun” fashion, 

ready to attack the soft, nucleophilic centre of chemicals containing nitrogen, 

sulphur, selenium or phosphorus (Figure 1). This mechanism distinguishes 

FMOs from other monooxygenases as the activation of oxygen, in the form of 

the C(4a) hydroperoxide derivative of FAD, does not require binding of the 

oxygenatable substrate [1]. This is theorised to be the basis of the broad range of 

substances that are FMO substrates, including hydrazines [2], phosphines [3], 

iodine boron-containing compounds [4], sulphides [5], selenides [6] and an array 

of amines [7]. There is evidence of a number of endogenous compounds being 

FMO substrates, such as methionine [8], cysteamine and cysteine- and 

homocysteine-S-conjugates [ 1 ].

In humans, five FMO genes are known to encode protein {FMOs 1-5) [9]. 

FMOs 1,2,3 and 4 are found in a cluster with FM06, a putative pseudogene, at 

lq23-4 [10]. FMOS is located further away from this cluster at lq21. A second 

cluster on chromosome 1 contains five FMO pseudogenes[ll], FM07P to 

FMO IIP,  which are located within a cluster ~4 Mb to the centromeric side of the 

functional FMO gene cluster [11] and appear to have arisen as a result of a locus 

duplication event. FMOs 1-5 exhibit between 50 to 59% amino acid identity 

across mammalian species [12] including humans (Table 1). FMOs of other 

mammalian species have >78% sequence identity to their human orthologues 

(Table 1). Two GXGXXG motifs, characteristic of FAD- and NADPH- 

pyrophosphate-binding sites are present at identical positions (residues 9-14 and 

191-196, respectively) in mammalian FMOs. Figure 2 shows a primary 

sequence alignment of the five, functional FMOs in humans. The FAD-binding 

site is contained within a highly conserved motif that predicts a Pap secondary

17



Figure 1. Major steps in the catalytic cycle of FMO [1]

S and SO are the xenobiotic substrate and the oxygenated product respectively. 

No substrate binding is required for the cycle to begin. (1) FAD-OOH reacts 

with the nucleophile within the enzyme active site. (2) One atom of molecular 

O2 is incorporated into the substrate and the other is released as H2O. (3) The 

system regenerates.

18



Species h uman Chimpanzee Dog Rabbit Rat
FMO 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Human 1 - 58 53 52 51 99 58 54 53 51 89 57 55 52 51 86 58 55 52 53 82 57 53 51 51
2 58 - 57 55 55 58 99 57 57 56 58 86 58 54 56 56 86 57 55 56 57 84 58 55 57
3 53 57 - 52 56 54 57 99 54 55 55 58 83 53 54 53 58 83 53 54 54 57 81 53 54
4 52 55 52 - 54 51 55 53 99 54 53 55 53 86 52 54 54 53 84 52 50 54 53 80 53
5 51 56 56 54 - 51 57 55 54 99 52 58 52 53 89 51 57 52 52 85 51 57 54 51 84

Chimpanzee 1 99 58 54 51 51 - 57 54 50 50 88 57 55 53 50 85 58 54 52 52 82 57 53 51 51
2 58 99 57 55 57 57 - 57 57 57 58 87 58 54 56 56 87 58 55 56 57 85 58 55 57
3 54 57 99 53 55 54 57 - 54 55 55 58 83 53 54 54 58 83 54 55 54 59 81 52 53
4 53 57 54 99 54 50 57 54 - 51 54 53 55 79 51 54 56 54 85 54 51 56 54 82 53
5 51 56 55 54 99 50 57 55 51 - 51 56 53 51 89 51 56 52 52 85 50 57 51 51 84

Dog 1 89 58 55 53 52 88 58 55 54 51 - 57 56 54 51 87 57 55 53 52 87 57 56 53 52
2 57 86 58 55 58 57 87 58 53 56 57 - 58 54 56 56 87 59 57 58 57 84 58 55 57
3 55 58 83 53 52 55 58 83 55 53 56 58 - 54 54 54 59 84 55 54 55 57 83 53 54
4 52 54 53 86 53 53 54 53 79 51 54 54 54 - 53 54 53 83 53 51 54 53 78 51
5 51 56 54 52 89 50 56 54 51 89 51 56 54 - 51 55 53 52 84 51 59 52 50 83

Rabbit 1 86 56 53 54 51 85 56 54 54 51 87 56 55 53 51 - 55 54 53 52 83 56 53 52 51
2 58 86 58 54 57 58 87 58 56 56 57 87 53 54 55 55 - 58 53 57 56 86 58 52 51
3 55 57 83 53 52 54 58 83 54 52 55 59 84 53 53 54 58 - 54 56 55 57 85 52 54
4 52 55 53 84 52 52 55 54 85 52 53 57 55 83 52 53 53 54 - 51 55 53 79 52
5 53 56 54 52 85 52 56 55 54 85 52 58 54 53 84 52 57 56 52 - 52 56 56 51 83

Rat 1 82 57 54 50 51 82 57 54 51 50 87 57 55 51 51 83 56 55 51 52 - 56 53 51 51
2 57 84 57 54 57 57 85 59 56 57 57 84 57 54 59 56 86 57 55 56 56 - 57 55 57
3 53 58 81 53 54 53 58 81 54 51 56 58 83 53 52 53 58 85 53 56 53 57 - 52 52
4 51 55 53 80 51 51 55 52 82 51 53 55 53 78 50 52 52 52 79 51 51 54 52 - 51
5 51 57 54 53 84 51 57 53 53 84 52 57 54 51 83 51 51 54 52 83 51 57 52 51 -

Table 1. The primary sequence identity (%) between mammalian FMOs. Orthologues are shown in bold and paralogues are shown underlined.
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FM01 -MAKRVAIV
FM02 -MAKKVAVI
FM03 -MGKKVAI3
FMO 5 MTKKRIAV1
FM04 -MAKKVAVI

* . . * . .

GAGVS 
GAGVS 
GAGVSG 
GGGVSG 
GAGVSG

, AS IKC C LEE GLE PTC FERSDD L GGLWRFTEHVEE GRAS LYKS W SNS CKEMS CYSD FP FPED YP 79 
11SLKC CVDE GLE PTC FERTEDIGGVWRFKENVED GRAS IYQSWTHTSKEMS C FSD FPHPEDFP 79 

LAS IR S C LEE GLE PTC FEKSNDIGGLWKFSDHAEE GRAS IYKS VFSNS SKEHHC FPD FP FPDD FP 79 
L SS IKC C VEE GLE P VC FERTDDIGGLWRFQENPEE GRAS IYKS VIIHTSKEMMC FSD YP IPDHYP 80 
L S S IKC C VDED LE PTC FERSDD IGGLWKFTE S SKD GHTRVYKS LVTNVCKEMS CYSD FP FHED YP 79 

* * * * * *  * . .  * . . *  ***  * * * • . . * • * * • * . *  . •■* ■ . * . * .  * ** *  * . * . * .  ■ •*

FM01 NYVPNS Q FLEYLKMYANHFD L LKHIQ FKTKVC SVTKC SD SAVS GQWEWTMHEEKQE SAIFDAVMVCTGFLTNPYL P LD S 159
FM02 NFLHNSKLLEYFRIFAKKFD LLKYIQFQTTVLSVRKC PD FS S S GQWKWTQSNGKZQSAVFDAVMVC S GHHIL PHIP LKS 159
FMO3 NFMHNSKIQEYIIAFAKEKNL LKYIQ FKTFVS SVHKHPD FATTGQWDVTTERD GKKE SAVFDAVMVC S GHHVYPNL PKE S 159
FM05 NFMHNAQVLE YFRMYAKE FD L LKYIRFKTTVC SVKKQ PD FATS GQWEWTE SE GKKEMNVFD GVMVCTGHHTNAHL P LE S 160
FMO 4 NFMMHEKFWDYL QE FAEHFD L LKYI Q FKTTVC SITKRPD FSETGQWDWTETE GKQHRAVFDAVMVCTGHFLNPHL P LEA 159

 ̂ • t* . *• i •***•*•*•* t  t ;  t  t t  • • *• • ■ t t t g ;

FM01 FP GIHAFKGQYFHSRQYKHPDIFKDKRVL V I 
FMO 2 FP GMERFKGQYFHSRQYKHPD GFE GKRIL V I 
FMO 3 FP GLNHFKGKC FHSRDYKE P GVFNGKRVLW 3 
FMO5 FP GIEKFKGQYFHSRDYKNPE GFTGKRVI11 
FM04 FP GIHKFKGQILHS QEYKIPE GFQ GKRVLVI

* * * •  * * * •  *  *  * * • • • • * • * * • *  *  • *  *  * ■

GMGNSOTDIAVEASHLAEKVFL STTGGGWVISRIFD S GYPWDMVFMTRF 239  
GMGNSG SDIAVE LSKNAAQVFISTRHGTWVMSRISED GYPWD SVFHTRF 239  

LGKSG CDIATEL SRTAEQVMIS SRS GSWVMSRVWDNGYPWDML LVTRF 239  
3IGNSG GD LAVEIS QTAKQVFLSTRRGAWILNRVGDYGYPADVL FS SRL 24 0  
3LGHT0GDIAVE L SRTAAQVL L STRTGTWVL GRS SDWGYPYMMMVTRRC 23 9

FM01 QSMLRHS L PTPIVTWLMERKINNWLNHANYGLIPEDRTQ LKE FVLHDE L P GRIITGKVFIRP SIKEVKENSVIFMHTSKE 31 9  
FMO 2 RSMLRNVL PRTAVKWMIE Q QMNRWFNHENYGLE P QNKYIMKE P VLHDDVP SRL L C GAIKVKSTVKE LTETS A I FED GTVE 31 9  
FM03 GTFLKHNL PTAI SDWLYVKQMNARFKHENYGLMP LNGVLRKE P VFHDE L P AS IL  C GI VS VKPNVKE FTETS A I FED G TIF 31 9  
FMO5 THFIWKICGQSLAHKYLEKKINQRFDHEMFGLKPKHRALSQHPTLNDDLPURI ISGLVKVKGNVKEFTETAAI FEDGSRE 32 0  
FMO 4 C S F I  AQ VL P SRFLNWIQERKLNKRFHHED YGL S -  ITKGKKAKFIVIJDE L PNC IL  C GAITMKTS V IE  FTETSAVFED GTVE 318  

: : :  : : : *  : * *  .

FM01 EPIDIIVFATGYlr: 
FMO 2 ENIDVIIFATG' 
FH03 EGIDCVIFATG" 
FM05 DDIDAVIFATG' 
FM04 EM IDW IFTTG'

FAFP FLDE SWKVEDGQ AS LYKYI FP AHL QKPTL A I IG LIK P L GSHIPTGETQARWAVRVLKGVNKL 399  
•Yfe FS FP FLED S LVKVENHMVS LYKYIFPAHLDKSTLACIGLIQ P L GSIFPTAE L QARUVTRVFKGL C S L 399
Y 3 FAYP FLDESIIKSRNNE11LFKGVFP P L LEKSTIAVIGFVQSLGAAIPTVDLQSRWAAQVIKGTCTL 399
Y 3 FD FP FLED S -  VKWKNKIS LYKKVFP P HLERPTLAII GL IQ P L GAIMPI SE L Q GRWATQ VFKGLKTL 399
Y TFSFP FFEE P LKS LCTKKIFLYKQVFP LNLERATLAI I  GL IGLKGSIL SGTELQARWVTRVFKGL CKI 398

■ * . * * * . *

FM01 P F P SVMIEEINARKENKP SWFGL C YCKAL Q SD YITYIDE L LTYINAKPHL FSML LTD PHL ALTVFFGPC S P YQ FRLTGP G 479
FH02 P SERTHMHDIIKRNEKRIDL FGE S Q S QTL QTHYVDYLDE LALEIGAKPD FC S L L FKD PKLAVRLYFGPCNSYQYRLVGPG 47 9
FMO3 P SMEDHMWDINEKMEKKRKWFG— KSETIQTDYIVYMDE L S S FIGAKPNIPUL FLTD PKLAMEVYFGPC S PYQ FRLVGP G 477
FMO 5 P SQ SEMHAEISKAQEEIDKRYVE S QRHTIQ GD YIDTMEE LAD L VGVRPNL L S LAFTD PKL ALHL L L GP CTPIHYRVQ GP G 479
FM04 P P S QKLHMEATEK-E Q LIKRGVFKDTSKDKFDYIAYMDDIAACIGTKPSIP L L FLKD PRLAWEVFFGPCTPYQYRLMGP G 47 7

*.  : :  : *: : : : : :  : : * * * . .  ***

FM01 KWEGARHAIMTQWDRTFKVIKARWQE SPSPFE SF- -  LKVFS FLAL L V A IFL IFL ----------------------------------------------------- 53 2
FMO 2 Q WE GARNAIFTQKQRILKP LKTRALKD S SNFS VS FL -  LKIL GL L AWVAFFC Q L Q WS-------------------------------------------------- 53 5
FMO 3 Q WP GARNAI LTQWDRS LKPMQTRWGRL QKP C FFFHWLKL FAI PILL IAVFL VLT------------------------------------------------------ 5 32
FMO 5 KWD GARKAILTTDDRIRKP LMTRWERS S SMTSTMTIGKFML AL AFFAI11AYF-------------------------------------------------------- 53 3
FMO 4  KWD GARNAI LTQWDRTLKP LKTRIVPD S SKP ASHSHYLKAWGAP VL LAS L L LICKS S L FLKLVRDKL QDRMS PYL VS L WRG 55 8

Figure 2. A primary sequence alignment of the five functional FMOs in 

humans.

The primary sequences of FMOs 1-5 are aligned. An asterix denotes conserved 

identical residues, a colon indicates conserved similar residues, and a dot 

indicates highly similar residues. The ‘GXGXXG' FAD and NADPH binding 

moieties are boxed (see text) along with the FMO characteristic ‘FATGY’ motif.
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structure, a Rossman fold, known to be involved in binding dinucleotides [13]. 

Phylogenetic analysis suggests that the five functional FMO genes arose from a 

common ancestral gene via a series of gene duplications, estimated to have 

occurred between 210 and 275 million years ago [11]. This is much earlier than 

the divergence of mammals, some 85 million years ago, and therefore it is 

predicted that all mammals possess the five functional FMO genes 1 to 5 [11].

Unlike CYPs, FMOs are not inducible [14, 15]. FMOs exhibit distinct 

developmental and tissue-specific expression [14, 16, 17], which are described in 

the following sections.

FMOl

FMOl, the first FMO purified, was identified as a mixed-function amine oxidase 

in porcine liver microsomes. Its substrates include nitrogen- and sulphur- 

containing compounds [18]. A cDNA for the corresponding protein of humans 

was isolated in 1991 [19] and was formally named as FMOl in 2004 [12]. 

FMOl encodes a polypeptide of 532 amino-acid residues of molecular mass 

60,306.

FMOl is expressed in abundance in the liver of all mammals examined to 

date [20-23], with the exception of the adult human liver where the mRNA [9, 

14] and the protein [24, 25] is not found. The lack of FMOl expression in the 

human adult liver is thought to be due to the insertion of several long 

interspersed nucleotide elements (LINEs), just upstream of the proximal 

promoter [26]. FMOl is expressed however in the human foetal liver [9, 14, 16, 

24, 25] where the expression is highest in the first trimester (7.8 ± 5.3 pmol/mg 

microsomal protein), then declines during foetal development and by 3 days after 

birth is completely extinguished [24]. FMOl is also expressed in the foetal 

human kidney, but this expression is increased after birth [9, 14, 19, 25, 27].
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In human, FMOl is expressed mainly in the kidney [9, 14, 19, 25] but it 

is also expressed in the intestinal mucosa, the mammary and salivary glands, and 

in a number of endocrine tissues, including pancreas, adrenal cortex and medulla, 

thyroid, thymus and testis [11]. It is thought that FMOl is likely to be the major 

contributor to renal xenobiotic metabolism as observed amounts of FMOl in 

adult human kidney (47 ± 9 pmol/mg microsomal protein) [25] are not much 

lower than that observed in the liver for the major hepatic cytochrome P450 

(CYP), CYP3A4 (96 ± 5 1  pmol/mg microsomal protein) [28] and are greater 

than that of the total content of CYPs in adult human kidney [29].

FMQ2

FM02 is expressed predominantly in the foetal and adult lung of several 

mammals including our closest evolutionary relative, the chimpanzee [23, 30, 

31], but in humans the gene encodes a truncated, non-functional protein [32], In 

comparison with FM02 of the rabbit [23], guinea pig [30] and rhesus macaque 

[31], the human enzyme lacks 64 residues from its carboxy terminus resulting 

from a C>T mutation changing a glutamine codon at position 472 to a stop 

codon. The nonsense mutation, g.23238C>T (Q472X), that gave rise to the 

truncated polypeptide is not present in non-human primates such as the 

chimpanzee (Pan troglodytes) and the gorilla (Gorilla gorilla) [32] and must 

therefore have arisen in the human lineage some time after the divergence of the 

Homo and Pan clades took place some 6 million years ago [33].

Analysis of individuals of different ethnic backgrounds, namely European 

Caucasians, Orientals (Japanese and Chinese), Africans (including African 

Americans and UK Afro-Caribbeans), New-Guinea Aboriginals, Indians and 

Maoris, revealed that the allele encoding the truncated FM02 occurred at a 

frequency of 100% in all groups investigated, with the exception of individuals
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of recent African descent, in which the ancestral allele, which encodes a full- 

length FM02, was present at a frequency of 4% [32]. Analysis of products of 

heterologously expressed cDNAs revealed that the truncated protein is inactive, 

whereas the full-length protein is catalytically active [32]

FMQ4

FM04 is 558 amino-acid residues long. Other members of the FMO family, with 

the exception of the truncated form of FM02, contain between 532 and 535 

residues [9]. Sequence comparisons reveal that the additional residues in FM04 

are contained in a single block located at the C-terminus of the polypeptide [34]. 

It has been suggested that the additional residues may have arisen as a result of a 

single point mutation in the termination codon of the ancestral FM04 gene. A 

similar extension is present in FM04s of other mammals and thus the predicted 

mutation would have occurred before the radiation of mammals. FM04 is 

expressed constitutively at low amounts in the liver, lung and kidney of the adult 

human [11, 34-37].

FMQ5

Despite the gene organization of FM05 being similar to the other FMOs, it is 

distinctive as it is not part of the FMO gene cluster on human chromosome 

lq24.3, but is located ~26Mb closer to the centromere, at 1 q21.1 [11], encoding a 

polypeptide 533 amino acids in length..

FMOS is expressed in many foetal and adult tissues, but in human its 

main site of expression is adult liver [11, 16, 36, 37], although it is not present in 

the same amounts as FM03. FM05  expression is the highest of the FMOs in the 

adult skin [16] and in the small intestine [36, 37].
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FM05 is regarded as an atypical FMO with regard to substrate 

specificity. FM05 exhibits little catalytic activity towards compounds, such as 

methimazole, that are good substrates for other FMOs [38-41]. Despite its 

expression in the adult human liver, FM05 is not thought to play a significant 

role in the metabolism of drugs, with the possible exception of esonarimod [42].

1.2. FMQ3

A cDNA for human FM03 was identified in 1992 by Lomri et al. [43] and the 

genomic location of human FM03 was subsequently mapped by Shephard et al. 

the following year [10]. FM03 encodes a polypeptide of 532 amino-acid 

residues with a molecular mass 60,047.

FM03 is the major form of FMO present in the adult human liver [9, 14] with 

expression being switched on at birth [24]. FM03 mRNA has also been detected 

in the lung, kidney, adrenal medulla and cortex, pancreas, thyroid, gut and brain 

[11]. It is thought that FMO3 expression is switched on after birth in humans 

[24], however small amounts of FM03 protein have been detected in the human 

embryonic, but not foetal, liver. The mRNA for FM03 is also not detectable in 

foetal liver [14]. The mechanisms and factors required to express the FM03 gene 

in the embryo, to silence its expression during foetal development and then to re­

activate expression of the gene after birth are unknown. Immunochemical 

analysis of 240 individuals between the ages of 8 weeks gestation and 18 years of 

age by Koukouritaki et al., (2002) [24] detected small amounts of FM03 at eight 

weeks gestation, but not in the foetus (15-40 weeks gestation). FM03 was 

undetectable, or present only in small amounts in postnatal samples during the 

first 3 weeks of life, in most individuals sampled. Subsequently, three distinct 

phases of FMO3 expression were defined. Between 3 weeks and 10 months of
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age, amounts of FM03 increased 5-fold, to 4.7 ± 5.9 pmol/mg microsomal 

protein. Between 10 months and 11 years of age another 3-fold increase in 

expression was observed (to 12.7 ± 8.0 pmol/mg microsomal protein). Between 

11 and 18 years of age, there was a further 2-fold increase (to 26.9 ± 8.6 

pmol/mg microsomal protein). The amount of FM03 was not affected by 

gender.

The age at which FM03 expression is switched on varies from birth to up 

to 2 years old. However, by 10 months of age the majority of individuals are 

expressing FM03. This contrasts with the extinction of FMOl expression in 

human liver, which is tightly linked to the process of birth, being switched off 

within a few days of birth, irrespective of gestational age [24]. This is important 

in terms of the metabolism of xenobiotics that are substrates of FM03 as, during 

the first year of life, most individuals will have no, or very small amounts of 

FMO, in their liver. The amounts of FM03 present in adult liver are comparable 

to those of the most abundant hepatic CYPs, CYP3A4, CYP2C and CYP1A2, 

with reported specific contents of 96 ± 51, 60 ± 27 and 42 ± 23 pmol/mg 

microsomal protein, respectively [28].

Inter-individual differences of up to 20-fold in the amount of FM03 have 

been reported [24, 44]. Such variation would be expected to have consequences 

for the ability of individuals to metabolize therapeutic drugs and potentially 

harmful foreign chemicals that are substrates for the enzyme. FMOs are thought 

not to be inducible by exogenous chemicals (there have been only two reported 

cases of induction in the case of FMOl and the work is yet to be verified [45, 

46]) and, therefore, inter-individual variation in their expression is more likely 

due to genetic, rather than to environmental, factors. This is supported by the 

discovery, in the 5’-flanking region of FMO 3, of single-nucleotide
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polymorphisms (SNPs) that affect the transcription of the gene, in some cases 

effectively silencing it and in others, increasing it as much as 8-fold [24]. 

However, expression of FM03 may be influenced by physiological factors, e.g. 

FM03 declines during menstruation [47-49].

FMQ3 and Trimethylaminuria

FM03 is the most abundant FMO in the human liver reaching levels as high as 

0.5% of the total microsomal protein in this organ. FM03  has previously been 

implicated in termination of pharmacological activity of primary amines and is 

therefore important in drug clearance. However, it is the involvement of FM03 

in the N-oxidation of the dietary-derived xenobiotic trimethylamine (TMA) that 

has provided the impetus for the study of this enzyme in relation to the metabolic 

disorder, Trimethylaminuria (TMAU). TMA is produced by the gut bacteria 

when they metabolise compounds such as choline and lecithin [50]. TMA is 

rapidly absorbed. Normally, FM03 catalyses the A-oxidation of dietary derived 

TMA [51], which smells of rotting fish, into the non-odorous TMA-N-oxide, 

which is readily excreted from the body in the urine. Mutations across the entire 

length of FM03 have been shown to result in the failure to catalyse the N- 

oxidation of TMA into trimethylamine 7V-oxide (Table 2 and Figure 3). TMA is 

excreted in its raw, odorous form in the bodily fluids of individuals carrying any 

one of these mutations in a homozygous state (Figure 2). Affected individuals 

have >40% unmetabolised TMA in their urine compared to 0-9% in unaffected 

individuals [52]. The first described clinical report of TMAU was in 1970 [53]. 

TMAU (or fish-odour syndrome) sufferers excrete an offensive smell of rotting 

fish within their bodily fluids. This condition can not be considered a minor 

affliction as patients often have trouble integrating into society, many are heavy
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Table 2. Mutations in FMQ3 leading to TMAU phenotype
Amino acid change Nucleic acid change exon Reference

g.-2092-10145del 1-2 [54]
E32K g.94G>A 2 [55]
I37T g.llOT>C 2 [56]
R51G g.lll45A >G 3 [57]
A52T g.l 1148G>T 3 [58]
V58I g.lll66G >A 3 [59]
N61S g.l 1177A>G 3 [35, 60]
K64KfsX2** g. 11185delA 3 [55]
M66I g.l 1192G>T 3 [54,61,62]
M82T g.l 1239T>C 3 [63]
N114S g.l5036A>G 4 [47, 64]
V143E g.l5123T>A 4 [65]
G148X g.l5137G>T 4 [66]
P153L g.l5153C>T 4 [61,67]
C197fsX g. 15526_15527delTG 5 [68]
D198E g.l5531T>A 5 [69]
I199T g.l5533T>C 5 [70]
T201K* g.l5539C>A 5 [71]
R223Q g.l8177G>A 6 [72]
R238P g.l8225G>C 6 [56]
R238Q g.l8225G>A 6 Unpublished
M260V* g.l 8290A>G 6 [71]
E305X g.21429G>T 7 [58, 73]
E314X g.21460G>T 7 [62]
R387L g.21680G>T 7 [58]
W388X g.21684G>A 7 [64]
K394KfsXll g.21702delG 7 [56]
M405IfsX + g.23580delG+ 8 [56]
M434I g.24486G>A 9 [35]
Q470X g.24592C>T 9 [64]
G475D g.24608G>A 9 [70]
R492W g.24658C>T 9 [35, 62]
R492Q g.24658G>A 9 Unpublished
R500X g.24682C>T 9 [71]

** K64KfsX2 has also been referred to as M66X

* Causative consequences of variant may be considered ambiguous because of 

variants found in Trans.

+Although this deletion occurred in exon 7, it caused a frameshift resulting in a 

truncation at amino acid 405 in exon 8.

Mutation nomenclature follows that recommended by the Human Genome 

Organization (http://www.hgvs.org/mutnomen/)
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Figure 3.The mutations of human FM 03
The genetic and corresponding amino acid substitutions are shown for the mutations causing TMAU within human FM03. Each exon is numbered and 

the FAD binding moiety within exon 2, the NADPH binding moiety within exon 7 and the FMO characteristic ‘FATGY’ motif within exon 5 are 

highlighted as solid, black bars.
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smokers in an attempt to mask the smell and in some cases they have been known to 

take their own lives rather than live on in this state [74]. Transient forms of this 

disease have been associated with childhood [75] and menstruation in females [48, 

52]. It has also been implicated in an interesting case where a 16 year old male 

displayed TMAU symptoms which manifested at the same time as seizures and 

episodes of psychotic behavioural disturbances [76]. The authors point out that in the 

early nineteenth century, odour was considered an important symptom of psychiatric 

illness, quoting “the breath of maniacal persons has been remarked by Esquirol and 

other practical authors to exhale a fetid smell, which some compare to that of stinking 

fish.” [77]. At this time, no explanation of an association, if indeed one exists which 

can be attributed to TMAU, is forthcoming. This early 19th century comment is not 

the earliest TMAU-like reference on record. Shakespere’s The Tempest [78] 

describes a character, Caliban, as a savage and deformed slave of which was written 

“What have we here? A man or a fish? Dead or alive? A fish: he smells like a fish; a 

very ancient and fish-like smell.” The earliest reference is thought to be in the Indian 

Epic, Mahabharata [79], dated -1000 B.C. which mentions a young woman 

condemned to a solitary life as a ferry-woman, cast from society because she smelled 

like “rotting fish”. The disorder has also been highlighted of late in the general 

media, with TMAU being the subjectFt of a newspaper article and a BBC 

documentary [80]. TMAU is a rare, recessively inherited [81] condition, affecting 

between 0.1-1% of the population [82-84], although this may be higher as the level of 

ignorance to this condition among the medical profession remains high. The 

condition is often diagnosed as one of ‘poor hygiene’ or an overactive imagination on 

the part of the patient. Despite the underlying genetic mechanism of the disorder, 

treatment of TMAU is limited. Antibiotics are sometimes prescribed in an attempt to 

kill gut flora that produce TMA from dietary precursors such as choline and
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lecithin.The dietary supplements copper chlorophyllin and charcoal have been 

reported to decrease the amount of TMA in the urine [85]. Strict diets that limit the 

intake of foodstuffs rich in precursors of TMA, such as meat, eggs, soya and fish, 

have been reported to help control the condition.

Catalytic consequences of the FMQ3 polymorphisms

Although TMAU is a rare condition, polymorphisms in FM03 certainly have 

implications for the wider public. Many xenobiotics are substrates of FM03 (Table 

3) including pesticides, dietary-derived compounds and a diverse range of therapeutic 

drugs such as atypical antipsychotics, anti-thyroids and anti-fungals. Polymorphisms 

exist across the entire length of FM03, which are known to affect the catalytic 

properties of the encoded enzyme (Table 4 and Figure 4), but do not cause TMAU. 

This could have implications to individuals possessing these polymorphisms. For 

instance, an individual with a polymorphism in FM03 that causes a reduction in 

oxidation activity (e.g. D132H, Table 4 and Figure 4) may be considered a poor 

metaboliser of FM03 substrates (Table 3) and therefore may have a heightened risk of 

overdose. This observation is all the more serious when considering the fact that 

adverse drug responses are suggested as the fourth leading cause of death in the 

U.S.A. [8 6 ]. Conversely, a polymorphism in FM03 leading to increased activity of 

the enzyme (e.g. L360P, Table 4 and Figure 4) may lead to lower efficacy of drugs 

metabolised by the enzyme and ineffective dose prescription due to a more rapid drug 

clearance. As displayed in Table 4, work has begun to establish the catalytic 

consequences of polymorphisms to the FM03 enzyme with regards to -N  and -S  

oxidation. These polymorphisms have been generated on the E l58 background only. 

Given that the E158K background is prevalent at a frequency of nearly 50% [87] the 

work in this thesis considers the catalytic consequences of the polymorphisms found 

in human populations on both the El 58 and K158 backgrounds in order to get an
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Table 3. FM03 substrates.
Substrate Pharmacological Agent ref
N-(3R)-1 -azabicyclo[2.2.2]oct-3-ylfuro[2,3-c]pyridine-5- 
carboxamide(l)

Receptor agonist [8 8 ]

1 -methyl-4-phenyl-1,2,3,6-tetrahydropyridine Dopaminergic
neurotoxin

[89]

5,6-dimethylxanthenone-4-acetic acid Anti-neoplastic agent [90]
Almotriptan Serotonin agonist [91]
Amphetamine CNS stimulant [92]
Arecoline Acetylcholine receptor 

agonist
[93]

Benzydamine Anti-inflammatory [94]
Bupivacaine Anesthetic [95]
Caffeine CNS stimulant [95]
Cevimeline Muscle relaxant [961
Chlorpromazine Anti-psychotic [97]
Clozapine Anti-psychotic [98]
Dapsone Anti-inflammatory [99]
Deprenyl Type B Monoamine 

oxidase inhibitor
[92]

K11777 Anti-protozoal [1 0 0 ]
Ketoconazole Anti-fungal agent [ 1 0 1 1

Fluphenazine Anti-psychotic [ 1 0 2 1

Itopride Dopamine antagonist [103]
Lidocaine Anesthetic [95]
Methamphetamine CNS stimulant [92]
MK-0457 Aurora kinase inhibitor [104]
Olanzapine Anti-psychotic [1051
Olopatadine Anti-inflammatory [1061
Perazine Anti-psychotic [107]
Phenethylamine Psychotropic agent [1081
Propranolol Adrenergic antagonist [95]
Pyrazoloacridine Anti-neoplastic agent [1091
Ranitidine Gastrointestinal H2 

receptor antagonist
[1 1 0 ]

S 16020 Topoisomerase II 
antagonist

[1 1 1 ]

(<S)-3-methyl-5-( 1 -methyl-2-pyrrolidinyl)isoxazole Anti-anxiety agent [1 1 2 ]
(iS)-Nicotine Neuronal stimulant [113]
Sulfamethoxazole Antibacterial [991
Tamoxifen Oestrogen antagonist [114]
TGI 00435 Src Kinase inhibitor [115]
Thioproperazine Anti-psychotic [1 0 2 ]
Trifluoperazine Anti-psychotic [1 0 2 ]
Trimethylamine Dietary derived amine [67]
Tyramine Dietary derived amine [116]
Verapamil Anti-arrhythmia agent [117]
Xanomeline Muscarinic agonist [118]
Zimeldine Serotonin receptor 

antagonist
[119]
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Table 3.FM03 substrates
4-chlorophenyl methyl sulphide Environmental sulphide [1 2 0 ]
7 alpha-thiomethylspironolactone Anti-mineralocorticoid [ 1 2 1 1

Aldicarb Pesticide [1 2 2 ]
Albendazole Anti-protozoal [123]
Cimetidine Histamine H2 

Antagonist
[113]

Cronetron Pesticide [1 2 2 ]
Diphenyl sulphide Environmental sulphide [1 2 0 ]
Disulfoton Pesticide [124]
Ethionamide Anti-tubercular Agents [125]
Ethyl methyl sulphide Environmental sulphide [1 2 0 ]
Famesylcysteine Posttranslationally 

modified amino acid
[126]

Fenthion Pesticide [127]
Fonofos Pesticide [128]
Methamphetamine CNS stimulant [92,

129]
Methimazole Anti-thyroid Agents [130]
Methionine Essential amino acid [131]
MK-0767 methyl sulphide Peroxisome proliferator 

receptor agonist.
[132]

Phorate Pesticide [124]
iS-methyl-esonarimod Cytokine production 

inhibitor
[42]

Sulindac sulphide Anti-neoplastic agent [5]
Tazarotenic acid Tazarotene (a retinoid) 

metabolite
[133]

Thiacetazone Anti-tubercular Agents [134]
Thiobenzamide Anti-tubercular Agents [135]
Triclabendazole Anti-protozoal [136]
Diethylphenylphosphine Pesticide [3]
Folex Defoliant [137]
2 -(methylseleno)-cinnamonitrile Pharmaceutical

intermediate
[138]

Benzyl selenide Selenium salt 
metabolite

[138]

Dimethylselenide Selenium salt 
metabolite

[139]

Ebselen Anti-inflammatory [6 ]
Methyl phenyl selenide (Selenoanisole) Heame biosynthsis 

antagonist
[6 ]

n-[2 -(methylseleno)-ethyl] benzamide Anti-oxidant (Ebselen) 
metabolite

[138]

(Phenylselenomethyl)-trimethylsilane Fuel additive [138]
Seleno-l-methionine Methionine analogue [140]

Xenobiotic substrates of FM03 are listed and highlighted according to the soft 
nucleophile attacked by the hydroperoxyflavin form of FM03 (blue -  nitrogen, red -  
sulphur, green -  phosphorus and black -  selenium).
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Figure 4.The polymorphisms of human FM 03
The genetic and corresponding amino acid substitutions are shown for the nonsynonymous polymorphisms (boxed) of human FM03. Each exon is 

numbered and the FAD binding moiety within exon 2, the NADPH binding moiety within exon 7 and the FMO characteristic ‘FATGY’ motif within 

exon 5 are highlighted as solid, black bars.
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Table 4. Polymorphic variants of FMO3

Amino Acid 
change

Nucleic Acid 
change

exon Functional
consequence

Reference

E24D g.72G>T 2 Modest reduction [60]
T108T g.15112A>C 4 Synonymous. 

No effect
[141]

D132H g.l5089G>C 4 Substrate dependent 
decrease

[142,143]

S147S g.l5136C>T 4 Synonymous. 
No effect

[141, 142, 
144]

E158K g.l5167G>A 4 Limited, substrate- 
dependent decrease

[62, 67, 
70, 73, 
142, 145]

K167K g.l5530A>G 5 Synonymous. 
No effect

[141]

G180V g.l5475G>T 5 No effect [35]
R205C g.l5550C>T 5 Moderate decrease [69]
N245N g. 18248G>C 6 Synonymous. 

No effect
[73]

V257M g.l8281G>A 6 Moderate substrate 
dependent decrease

[35, 73, 
142]

M260V g.l 8290A>G 6 n.d. [71]
V277A g.21350T>C 7 n.d. [146]
N285N g.21467C>T 7 Synonymous. 

No effect
[141, 142]

E308G g.21443A>G 7 Moderate substrate 
dependent decrease

[58, 70, 
73,147]

13501 g.21570C>T 7 Synonymous. 
No effect

[142]

L360P g.21599T>C 7 Increased activity [143]
E362Q g.21604G>C 7 n.d. [142, 146]
K416N g.23613G>T 8 Modest reduction [60]
I486M g.24642G>A 9 n.d. [146]
G503R g.24691G>C 9 n.d. [142]

* Likely to cause TMAU in a homozygous individual (included in this table because 
its frequency is reported to be > 1 % [60])
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accurate picture of the catalytic effect of polymorphisms in the population. This approach 

is supported by the finding that a homozygote individual of both the E158K and E308G 

polymorphisms display a mild TMAU phenotype, whereas the homozygote E158/E308 

shows no such phenotype [70].

FMQ3 Tertiary structure

The characterisation of any protein sequence is key to understanding the contribution of 

structure to function. The determination of the tertiary structure of a protein, whether it is 

via X-ray crystallography or NMR, can be used to learn about the mechanistic processes 

that underlie a protein’s function. Generally, when two proteins are similar at the primary 

sequence level, they tend to share a similar tertiary structure and thus similar properties and 

functions [148]. As similarity decreases, so too does the likelihood of inferring similarity 

in protein function from primary sequence. Currently there are no mammalian FMO 

structures deposited in the Protein Data Bank (PDB) [149]. However, the possibility exists 

that a theoretical model could be built of FM03 using the three-dimensional atomic 

coordinates of solved protein structures as templates, providing that the templates are of a 

high enough sequence identity to provide a meaningful guideline. Previously, two models 

of FMO have been reported [150, 151] based on the crystal structures of glutathione 

reductase (PDB 1GET, at 1.86 A resolution [152]) and NADPH peroxidase (PDB code 

1 NPX, at 2.16 A resolution [153]). However, these models were generated by merely 

threading the FMO structure onto the aC-atoms of the very low sequence identity templates 

(18% and 16% primary sequence identity to FM03, respectively and 20% identical to each 

other). Thus their use to infer biophysical significance requires extreme caution.
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1.3. Homology Modelling

The idea of generating models of proteins is not new. It was demonstrated in the 1960’s 

that when ribonuclease is denatured, it can refold into its native form and its function is not 

impaired [154, 155]. This study gave rise to the idea that a protein’s tertiary structure may 

be able to be inferred from the amino acid sequence [155]. Currently, ab initio methods of 

modelling protein structure from primary sequence are extremely unreliable, especially for 

larger proteins. The most reliable method of protein structure prediction is homology 

modelling [156-158]. Also known as comparative modelling, the basic principle of 

homology modelling is the generation of a model of a protein (the target) from a protein of 

known structure (the template) with a significant degree of primary sequence identity. The 

scientific defence of this approach is based on the observation that protein tertiary structure 

changes through evolution far more slowly, relative to the primary sequence of the 

molecule [159], and indeed the DNA sequence from which it is derived when considering 

synonymous substitutions.

Homology modelling involves five steps.

1. Identifying a known template structure to the target to be modelled.

2. Aligning the template sequence with the target sequence.

3. Building the model.

The backbone of the model is generated using the coordinates of the template file as a

guide. Loops between more highly conserved secondary structural elements are added (it

is often the case that gaps in alignment are represented as loops) or are altered in length.

4. Energy Minimisation

5. Assessing the quality of the model.
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It is vital that the model quality is assessed. Automated modelling, although convenient, 

is not advanced enough to generate meaningful results without user input. Pre-calculated 

models from known structures are available from resources such as ModBase [160], 

which uses a PSI-BLAST and Modeller [161] (discussed in more detail below) pipeline to 

generate the results, but they are not validated or refined, nor does the template selected to 

model from undergo any analysis. Indeed, the ModBase web site itself warns that the 

database “ ...contains theoretically calculated models, which may contain significant 

errors, not experimentally determined structures”. There is also a web server version of 

Modeller, ModWeb [162], that automatically models your target sequence for you but 

does not assure the quality of alignment, selection of the correct initial template or any 

sort of assessment of model quality.

To assess the quality of a model, several factors of biophysical attributes are 

considered. As mentioned above, steric clashes of amino acid side chains are considered 

by the modelling software, but they still do happen and must be addressed. The bond 

length and angles between two alpha carbon atoms (aC) on the polypeptide backbone are 

relatively fixed. The only areas of conformational freedom are around the amino acid 

side chains from the aC atom to the C atom of the carbon of the carboxyl group and from 

the aC atom to the N of the amino group known as Psi (T) and Phi (<I>) angles 

respectively. Normally, the values of O are limited to a range of between -60 and -150 

degrees and the values of T range between -60 and 120 degrees. The predictability of 

these angle states led to Gopalasamudram Narayana Ramachandran in 1968 to propose an 

energy landscape when plotting these angles on a graph. Ramachandran plots [163] 

(Figure 5) enable the modeller to observe the possible conformations of ® and ¥  angles 

for any given protein. The plot can be thought of as areas of allowed and disallowed 

angle pairs. It is therefore possible, using Ramachandran plots, to identify unreasonable

37



Figure 5. The Ramachandran Plot

A) Shows the torsion angle between the aC and the N of the amino group, denoted ® and 

the torsion angle between the aC and the C atom of the carboxyl group, denoted T. B) A 

Ramachandran plot made up of the energy landscape when pairs of ® and *P angles are 

plotted. Three small red areas denote the regions in which O/T are ‘allowed’. This area is 

expanded, denoted by the yellow areas on the plot, when the restraints are relaxed by just 

0.1 A. The majority of the plot, represented as white in colour is in the ‘disallowed’ 

regions, where dihedral angle pairs are sterically improbable and where one would look for 

poorly modelled amino acid residues. (Modified from 

http://www.cryst.bbk.ac.uk/PPS2/course/section3/rama.html)

http://www.cryst.bbk.ac.uk/PPS2/course/section3/rama.html


torsion pairs of O/'F. The use of wet lab experimental data in refining homology models 

can not be understated. The catalytic cycle of FMOs is well defined and contains a 

regenerative cycle including electron donors and electron carriers (Figure 1). Models that 

can not explain experimentally observed biochemistry must be viewed critically.

6 . Refining of the model.

Processes such as loop modelling and dihedral angle modifications can be made if 

sterically poor regions are identified. For instance, in the case of dihedral angles, 

graphical packages such as Swiss-PDBViewer [164], can be used to get a more 

reasonable representation of sidechains within the polypeptide.

In the past, homology models have been built of CYPs and these have proved useful in 

generating theories to explain the consequences of polymorphisms, active site dynamics, 

ligand interactions etc., but it is notable that these have usually been built using templates 

of reasonably high primary sequence identity [165-168].

It is possible however, to produce homology models of proteins despite only having 

templates of relatively low primary sequence available. Often, the terms ‘midnight’ and 

‘twilight’ zones are used to describe the levels of 25% and 30% sequence identity. These 

thresholds represent the boundaries beyond which structural homology is so low that little 

useful information could be extrapolated from homology modelling [169], thus any model 

built using templates below this threshold would be deemed so unreliable that the 

endeavour would be of questionable value.

Modeller

Modeller [170] has been shown to be among the best modelling software available [157]. 

Essentially it is a set of Python scripts which perform all of the steps needed to produce and
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refine a homology model. Modeller automatically derives restraints from the template 

structure and the alignment with the target sequence. Modeller uses these restraints to carry 

out backbone, side chain and loop generation steps. These restraints include atomic 

distances, angles, dihedral angles, pairs of dihedral angles, rules of secondary structure 

packing and some other spatial features defined by atoms. Modeller also has a set of 

restraints that were evaluated empirically from protein X-ray crystal and NMR structures. 

Energy minimization using simulated annealing refines the special arrangements within the 

model by simulating a melting of the molecule at a high temperature, allowing the molecule 

to overcome any local minima and then cooling it slowly until an optimum global minimum 

is achieved.

A feature of Modeller which is particularly useful in modelling enzymes is the 

capacity to model heteroatoms such as enzyme cofactors in complex with a target. This can 

be done by either defining the ligand in the Modeller topology library, which is essential if 

said ligand is not present in the template structure or, more commonly, by assuming that the 

ligand interacts in a similar biophysical fashion with the target and the template Modeller 

can extrapolate all distance restraints from the interaction of the ligand to the template 

structure and then satisfying these restraints when building the model along with the ligand 

in the target.
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1.4. Evolution of FMQ3

The classic genetic dogma that for each gene there are only two alleles, a “wild-type” and a 

mutant, with the latter title referring to a deleterious state, has long since gone. We now 

appreciate, if not fully understand, multiple allelic states created by single nucleotide 

polymorphisms, not only in coding regions but also in upstream genetic elements, 

promoters and introns. The information presented as the pattern of sequence variation over 

a single chromosome in a diploid organism, termed the haplotype, is vital to understand the 

relationship of all the heterozygous positions in a gene within an individual and to 

understand the product of a haplotype.

The recent explosion of genomic information at both the inter- and intra- species 

level, both in terms of the extent of coverage and the amount of Single Nucleotide 

Polymorphism (SNP) data, specifically dbSNP [171] and the HAPMAP initiative [172], has 

also facilitated this possibility.

Features of datasets can be analysed to gain insight into the evolution of a locus 

such as SNP frequencies, haplotypes, synonymous and non-synonymous changes, 

recombinational events, association among variants such as linkage disequilibrium etc. In 

addition, allele frequency distribution can give indications as to whether natural selection 

may have had specific influence on the evolution of a locus.

Coalescent Theory

Coalescent theory refers to the idea that all alleles are ultimately inherited from a single 

ancestor. This individual can be considered as a single most recent common ancestor. 

When considering a specific allele, this allele can undergo coalescence to return to the most 

recent common ancestor, often represented graphically as a phylogenetic tree. Coalescence
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does not just refer to the arrival at the most common recent ancestor. At any point where 

two lineages converge it can be said that these lineages have coalesced.

It is possible to reconstruct the evolutionary history of a locus such as the FM03 

locus using coalescent models provided that sequence data are available over a large 

enough genomic region. Also, using coalescent based methods, where haplotypes lineages 

are traced back using mathematical models to the most common recent ancestor [173], it is 

possible to reconstruct genetic networks which make up distinct haplotypes and also answer 

questions about the SNPs themselves which make up the haplotypes, such as estimations of 

age.

Statistical tests using simulations of coalescence

Coalescent simulations can be used to compare values obtained from genetic testing of real 

data, such as genomic sequencing, to values generated from random samples of the same 

sample size and level of polymorphism as the observed data. Significant differences 

between the two values can then be interpreted. Some genetic tests which can be used with 

coalescent simulations are outlined below.

Watterson’s estimator of 0 (0w) [174] and Nei & Lei’s nucleotide diversity (7t) 

[175] are two representations of polymorphism diversity within a sample. They differ in 

that 0 w uses the number of segregating sites (the number of sites in a stretch of nucleotides 

which display a polymorphism, e.g. if 2500bp is sequenced in 1000 individuals, 100 

individuals possess a polymorphism at 456bp, 449 individuals possess a polymorphism at 

1324bp and 20 individuals possess a polymorphism at 1878bp, the number of segregating 

sites would be 3) as the basis of diversity representation whereas n uses the average number 

of pairwise differences (in the previous example of 1 0 0 0  individuals, each individual would 

be compared to the next and their number of pairwise differences recorded, with an average

42



of the whole population being taken as representative of the sequence diversity within a 

population) in a sample as the basis of nucleotide diversity representation.

Tajima’s D [176] is a test of nucleotide diversity, comparing 0w and 7t in the context 

of the population size. It was proved that, assuming a constant-size neutral population, 

Tajima’s D would be near zero as 0w and 7t would be about the same. If the locus was 

undergoing a selective sweep, then a negative selection could be expected as genetic 

diversity is reduced as fixation of mutations is established. When balancing selection is 

acting, Tajima’s D can be expected to be positive owing to the excess of highly 

polymorphic sites and a deficit of low-frequency polymorphisms, compared to neutrally 

evolving sites.

Fu and Li’s F* and D* [177] uses polymorphic data to test the null hypothesis that 

all mutations are selectively neutral [178]. Fu and Li’s F* is based on the differences 

between the number of singletons (mutations appearing once) and n whereas Fu and Li’s 

D* is based on the differences between the number of singletons and the total number of 

mutations in the population sample.

Fu’s Fs statistic can be used to compare the observed number of sequence 

haplotypes to the number expected under the assumption of an infinite-sites model of 

neutral mutation with no recombination. The null hypothesis of neutral evolution would 

generate a value near zero with a paucity of haplotypes leading to a negative value and an 

intermediate to excess number indicating balancing or directional selection respectively, 

both discussed in this section.

Harpending’s raggedness statistic (r) [179] and Rogers’ mismatch distribution test 

[179] can identify the mode of distribution of pairwise differences with the former 

describing the variation about the curve generated from the latter. A smooth, unimodal 

distribution is indicative of population growth or directional selection, both discussed in
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this section whereas a ragged distribution is indicative of balancing selection or a 

population size which has remained constant.

Linkage Disequilibrium (LD), the tendency for alleles to be present in the same 

haplotype (positive LD) or not (negative LD), can be measured using a number of statistical 

tests. Wall’s B and Wall’s Q [180], based on segregating sites, examine each of the 

possible pairs of adjacent segregating sites. When adjacent sites are found to be the same 

among individuals within a population, they will be in complete disequilibrium and are 

referred to as congruent pairs. Wall’s tests examine the proportion of segregating site pairs 

that are congruent. Zns [181] is another way to measure LD, but this statistic is based on an 

average of pairwise associations between polymorphisms across the locus within the whole 

population.

Non-coalescence based statistical tests

A non-coalescent based test of neutrality was proposed by John McDonald and Martin 

Kreitman in 1991 [182]. The McDonald and Kreitman’s test compares synonymous and 

nonsynonymous variation within and between species because, under neutrality the ratio of 

replacement to synonymous fixed differences between species should be the same as the 

ratio of replacement to synonymous differences within the species. When dealing with 

human samples, it is usual to compare the human locus to that of a close relative such as 

Pan Troglodytes (chimpanzee). This particular comparison has become much more 

accessible since the completion of the chimpanzee genome sequencing project [183].

To test if genetic differentiation at a locus is due to population-subdivision, 

Wright’s fixation index (Fst) [184] can be used. This test considers the difference between 

the mean heterozygosity among subdivisions in a population and to the population as a 

whole, e.g. a Japanese cohort compared to an Irish cohort and a Japanese cohort compared
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to the human population as a whole. The fixation index ranges from 0 (indicating no 

difference at all between subpopulations and the population as a whole) and 1 (meaning 

complete differentiation).

Natural selection

As mentioned above, variability in SNP distribution can be caused by natural selection. 

Natural selection can force evolution in different directions, creating different genetic 

signatures in the form of allele frequencies. In light of this, natural selection can be 

subdivided into three categories.

Directional selection

Directional selection occurs when a certain allele confers a greater level of fitness than 

others, resulting in an increase in frequency of the allele. When this selection type is 

followed through to completion the allele is said to be completely fixed, meaning that the 

entire population expresses the fitter phenotype. Evidence of this has been presented, for 

example, in the case of triosephosphate isomerase evolution in bony fish [185] and the 

factor IX gene locus in humans [186].

Stabilising selection

More commonly a selection event occurs which lowers the frequency of alleles that have a 

deleterious effect on the phenotype. Selection will continue in this way until the allele is 

eliminated from the population. Evidence of this has been presented, for example, in the 

case of immune responsiveness in Parus caeruleus (Blue Tit) [187] and transcription 

factors in humans [188].
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Balancing selection

This type of selection maintains alleles at intermediate frequencies in a population. This 

manifests itself in a diploid species when a heterozygote has a higher fitness than 

homozygous individuals when considering a relevant loci. Evidence of this has been 

presented, for example, the major histocompatibility complex (MHC; HLA in humans) 

[189, 190], Glucose-6-phosphate dehydrogenase (G6PD) in humans [191], the 5’ cis- 

regulatory region of human chemokine (C-C motif) receptor 5 CCR5 [192], PTC [193], the 

bitter taste gene in humans, and the retroviral restriction factor, TRIM5alpha in Old World 

monkeys [194].

Given that FM03 is such an important molecule in terms of the interaction between 

humans and their chemical environment, it could be speculated that FM03 would be a 

likely target for natural selection. One might envisage a situation where the maintainance 

of a seemingly deleterious allele in a xenobiotic metabolising enzyme in terms of catalytic 

activity might be maintained at an intermediate frequency within a certain population, due 

to a selective advantage this conferred within the population’s chemical environment.
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1.2. Aims

The aims of this investigation were as follows.

• To investigate the genetic contribution of FMO 3 variation to apparent TMAU 

sufferers by sequence analysis of the FM03 locus in selected individuals and their 

families where possible.

• To assay the catalytic consequences of FM03 variation, particularly focussing on 

combinations of variation involving the E l58 site and another site, by comparing 

kinetic performance of variants using an established enzyme assay for FM03.

• To attempt to understand the consequences of amino acid variation within FM03, 

structurally and mechanistically, by building a homology model of FM03.

• To attempt to understand how FMO3 locus variation has evolved to the genotypes 

evident today, through genetic analysis of a human population cohort.
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Chapter 2 

Materials and Methods
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2.1. FM03 TMAU patient screen

2.1.1. DNA extraction from buccal swab sample

The buccal swab kit used to collect a buccal swab sample from a patient was prepared by 

Dr. Abi Jones (Department of Biology, University College London) and consisted of a 

sterile, Ultra Violet (UV)-irradiated cotton swab and a solution containing 1 mL of 0.5% 

(w/v) sodium dodecyl sulphate (SDS) and 0.05M ethylenediaminetetraacetic acid (EDTA) 

(VWR International, UK). The swab was rubbed against the inside of the patient’s cheek 

and submerged in the SDS/EDTA solution (above) by the GP. This was stored at room 

temperature and posted to University College London for DNA extraction and analysis.

The buccal swab was added to 800 pL of sterile distilled water containing 8  pg of 

Proteinase K (Roche, UK). The sample was then incubated at 56°C overnight. 0.6 mL of a 

phenol (Fisher Scientific, UK) and chloroform (May & Baker Ltd, Dagenham, UK) mixture 

was aliquoted and stored at -20°C. 0.8 mL of the SDS/EDTA/ solution was transferred 

from the mouth-swab collection tube into the tube containing the ice-cold 

phenol/chloroform mixture. The tube was inverted to mix the contents, and then 

centrifuged at 17,900 x g for 10 min. The aqueous phase was transferred to a fresh 

microcentrifuge tube containing 0.6 mL chloroform and 30 pL of 5M NaCl (VWR 

International, UK). The tube was inverted, to mix the contents, and then centrifuged at

17.900 x g for 10 min. The aqueous phase was transferred to a fresh microcentrifuge tube 

containing 0.7 mL chloroform. The tube was inverted to mix the contents, and then 

centrifuged at 17,900 x g for 10 min. The aqueous phase was transferred to a fresh 

microcentrifuge tube containing 0.7ml isopropanol (VWR International, UK), inverted to 

mix the contents and then incubated at -20°C for 2 hrs. The sample was then centrifuged at

17.900 x g for 15 min. The supernatant was decanted and the tube was placed upside down
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at an angle of 45° on tissue paper for approximately 20 min to dry the DNA pellet. 0.8 mL 

of 70% ethanol was added to the DNA sample, which was then centrifuged at 17,900 x g 

for 10 min. The DNA pellet was then air-dried, as described above. After 20 min, 400 pL 

of distilled water was added to the pellet and the sample was incubated at 56°C for 10 min 

to resuspend the DNA. The sample was then stored at -20°C.

2.1.2. DNA quantification

DNA was quantified using the NanoDrop system (NanoDrop Technologies, USA). The 

NanoDrop system was calibrated with the elution buffer used to resuspend the DNA and 

the DNA concentration was calculated automatically utilising pre-programmed extinction 

coefficients.

DNA absorbs UV light at a wavelength of 260 nm, whereas protein absorbs UV 

light at 280 nm and aromatic compounds such as phenol and other aromatic compounds 

absorb UV light at 230 nm. A260/A280 and A260/A230 ratios were compared to assess 

the quality of the DNA. A level above 1.8 was taken to represent a good quality DNA 

sample free of contaminants.

2.1.3. Polymerase Chain Reaction (PCR) amplification of FMQ3 exons and upstream 

loci from human genomic DNA

Upstream elements I (-2310 to -1716, based on assigning the ‘A’ of the ATG translation 

transcriptional start codon +1) and II (-2733 to -2162), the non-coding exon 1 (-1906 to - 

1436) and exons 2-9 of FM03 were each amplified by PCR using primers detailed in Table 

5 and synthesized by Eurogentec (Belgium). The PCR reaction mixtures contained, in a 

final volume of 50 pi, 50 ng of patient DNA , 0.5 pL of the appropriate sense (100 mM) 

and antisense (100 mM) primers, 1 pL of dNTP (10 mM), 5pl of 10X NH4 Reaction Buffer
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Table 5. Primers used to amnlil 'v each exon of FM03 bv PCR
FM03 sequence 

region
Primer Primer Sequence

Upstream 
element I

Sense 5 ’ -TTCCTGGT ACT AATAG ATC A-3 ’

Upstream 
element I

Antisense 5 ’ -TCTGTGTGTCT ACGTCCT-3 ’

Upstream 
element II

Sense 5 ’ - ATCCTCT AATCCTTGTTAAA-3 ’

Upstream 
element II

Antisense 5 ’ -CC AAT AAGG AGG ATG ACT -3 ’

Exon 1 Sense 5 ’ -TGGG AG ACTGGCCTAC AG-3 ’

Exon 1 Antisense 5 ’ -G AG ACGG AGTTTCGCTTTT A-3 ’

Exon 2 Sense 5 ’ -GTG AGCT ACC AT ACTC AGCC AGTG-3 ’

Exon 2 Antisense 5 ’ -C AC AGTGTGCTCTT AT AC ACTTCCC-3 ’

Exon 3 Sense 5 ’ -G ACCTG ATC AGT AT ACTC ATTT ACC-3 ’

Exon 3 Antisense 5 ’ - AGT AGTAG AC AT AC ACTTCTTC AGC-3 ’

Exon 4 Sense 5 ’ -CTTTTCTTTTTTC AT ACTGT ATCTGC-3 ’

Exon 4 Antisense 5’-AAAAAGAAGACATTATCAAGATATTC-3’

Exon 5 Sense 5’-TATGCTTGGTGTGTTAAAATAGCAC-3’

Exon 5 Antisense 5 ’ -C AC ACCTTTC AAACG AT AAT AACTC-3 ’

Exon 6 Sense 5 ’ -C AG AATATCC ACTAC AAATGGTC AC-3 ’

Exon 6 Antisense 5’-GCTTACAGGACATTAAGGGTTGTTG-3’

Exon 7 Sense 5 ’ -GCCTCC ATC AATTTGTTCTTC AG-3 ’

Exon 7 Anti sense 5 ’ -C AA AG ATCC AAAGTT ATTGTC ACTG-3 ’

Exon 8 Sense 5 ’ -GG A AAATT AC AGGCTGGTCCTATGC-3 ’

Exon 8 Antisense 5 ’ - AT AGCTTGT AGTTGTC ATTCC AATG-3 ’

Exon 9 Sense 5 ’ -TTCTCTGTTCTGTTTCT AC AC AG AG-3 ’

Exon 9 Antisense 5 ’ -CCCTGTCTGGGT ATTGTC AGT AAC-3 ’
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(Bioline Ltd, UK), 0.4 pL BIOTAQ Polymerase (Bioline Ltd, UK) and 1.25 pL (for 

upstream elements I and II and exons 1,2,3,5, 6  and 8 ), 2 pL (for exon 4) or 2.5 pL (for 

exons 7 and 9) of MgCL (50 mM) in thin-walled 0.5 mL Eppendorf tubes. The tubes were 

placed in a Techne Genius (Sussex, UK) thermal cycler that has a heated lid.

An initial denaturation step was performed at 95°C for five min. This was followed 

by 30 cycles of 95°C for 30 s; 58°C (for exons 2, 3, 5, 6  and 8 ), 55°C (for exon 1), 56°C 

(for exons 4 and 7) or 50°C (for upstream elements I and II and exon 9) for 30 s, and 72°C 

for 30 s. Finally, a single step of 72°C for 5 min completed the PCR amplification.

The sizes of the amplicons were confirmed by electrophoresis through a 1 % agarose 

(Invitrogen, UK) SYBR Safe (Molecular Probes, UK) gel in 0.5X TBE.

PCR reactions were cleaned-up using SureClean (Bioline Ltd, UK). An equal 

volume of SureClean was added to the PCR reaction, the mixture was vortexed briefly, then 

incubated at room temperature for 10 min. The sample was then centrifuged for 10 min at

17,900 x g. The supernatant was removed and the pellet washed with 70% ethanol (VWR 

International, UK) and vortexed for 30 s. The sample was centrifuged for 10 min and the 

supernatant was removed. The pellet was then air-dried.

2.1.4. DNA Precipitation

All chemicals were supplied by BDH (UK) except where stated. 3M sodium acetate, pH 

5.2 (0.1X vol) and 2X vol of ethanol (VWR International, UK) was added to the DNA 

solution. The sample was placed in a -70 °C freezer for 30 min. The mixture was then 

centrifuged at 17,900 x g using a bench-top centrifuge for 15 min at 4 °C. The supernatant 

was carefully removed and the DNA pellet was washed with 500 pL of 70% ethanol and 

centrifuged again at 17,900 x g using a bench-top centrifuge for 15 min at 4 °C. The 

supernatant was carefully removed and the DNA pellet was air dried for approx 5 min to
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allow the residual ethanol to evaporate. The DNA pellet was resuspended in ddH2 0  and 

stored at 4 °C.

2.1.5. DNA Sequencing

The DNA was cleaned by adding 50 pL of SureClean (Bioline, UK) to the reaction mixture, 

incubating for 10 min and then centrifuging at 17,900 x g for 15 min. The supernatant was 

removed and the pellet washed with 500 pL of 70% ethanol and the sample was then 

centrifuged at 17,900 x g. DNA was resuspended in ddlUO. DNA sequencing was 

performed by MWG-Biotech (Germany) using the “Value Read” service or by ElimBio 

(CA, USA), with both requiring 1 pg of plasmid DNA or 20 ng of PCR generated DNA per 

100 bases. Sequences were analysed by comparison to the wild-type hFM03 cDNA. DNA 

was sequenced in both forward and reverse orientations.

2.1.6. BsaWI Restriction Digest of FMQ3 exon 9 PCR amplicon

To detect the presence or destruction of the Bswl restriction endonuclease recognition site 

(5’-WCCGGW-3’) by the 1475G>A (R492Q) mutation, PCR was performed as described 

in section 2.1.3. on FM03 exon 9 from patient DNA. 500 ng of PCR amplicons was 

digested at 37 °C for 2 hrs with 5 U BsaWI, in a solution containing IX NEBuffer 2 

(10 mM Tris-HCl, 50 mM NaCl, 10 mM MgCl2 and 1 mM Dithiothreitol, pH 7.9 @ 25°C), 

supplemented with Bovine Serum Albumin (BSA) (100 mg/mL), made up to a total volume 

of 50 pL with ddH2 0 . The digested products were visualised by agarose gel 

electrophoresis as described in 2.1.3.
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2.1.7. CpG site identification

Human FM03 cDNA was submitted for sequence analysis to the Mutability (version 1.70) 

web server (http://www.hgu.mrc.ac.uk/Softdata/Mutability/).

2.2. Generation of Polymorphic variants of FMQ3

2.2.1. Site-Directed Mutagenesis (SDM)

Site-directed mutagenesis was performed to generate each desired mutation.

Template DNA (5 ng) (hFM03 cloned into the vector pET-21b(+) (Novagen, UK)); 

5 pL Accubuffer (Bioline, UK); a pair of complementary oligonucleotide primers (see 

Table 6 ), each containing the desired mutation; 1 jiL of 10 mM dNTPs (Bioline, UK); 2.5 U 

Accuzyme (Bioline, UK) and 41 pL ddH2 0  were mixed in a 0.5-mL thin-walled 

Eppendorf tube and subjected to thermal cycling in a Techne GENIUS unit (Cambridge, 

UK) featuring a heated lid. An initial denaturation step was performed at 95°C for five min 

followed by an annealing step of 1 min at 55°C. This was followed by 15 cycles of 72°C 

for 6  min; 95°C for 30 s and 55°C for 30 s,. Finally, a single step of 72°C for 9 min 

completed the SDM amplification process.

The DNA was cleaned by adding 50 p.L of SureClean (Bioline, UK) to the reaction 

mixture, incubating for 10 min and then centrifuging at 17,900 x g for 15 min. The 

supernatant was removed and the pellet washed with 500 p,L of 70% ethanol and the sample 

was then centrifuged at 17,900 x g. DNA was resuspended in 44 jiL of d d ^ O  and 5 pL of 

NEB buffer 4 (NEB, UK) and digested with 20 U of Dpnl (NEB, UK) for 2 h at 37 °C. 

Dpnl endonuclease specifically digests methylated and hemi-methylated DNA. This means 

that the template DNA is digested leaving only the newly synthesised DNA, which should 

contain the desired mutation.
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Table 6. Sequence of forward and reverse primers used to generate each mutation in
h F M 0 3  cDNA

Mutant 
(a.a. level)

Strand Primer Sequence Original
Codon

Mutated
Codon

E 158K Sense 5 ’ -CTACC AAAAAAGTCCTTTC-3 ’ GAG AAG

Antisense 5 ’ -G AAAGG ACTTTTTTGGTAG-3 ’
R 238Q * Sense 5 ’ -TCGTC ACTC A ATTTGG AACCT-3 ’ CGA CAA

Antisense 5 ’-AGGTTCCAAATTGAGTGACGA- 3 ’
V 257M Sense 5 ’ -CTGGTTGTAC ATG AAGC AG A-3 ’ GTG ATG

Antisense 5 ’ -TCTGCTTC ATGTAC AACC AG-3 ’
E 308G Sense 5 ’ -G AATTC AC AGGG ACCTCGGC-3 ’ GAG GGG

Antisense 5 ’ -GCCG AGGTCCCTGTGAATTC-3 ’

All primers were synthesized by Eurogentec (Belgium) except where marked (*) which 

were synthesized by ElimBio (CA, USA). The nucleotide change is highlighted in bold and 

underlined in the primer sequence. The codon changes are also shown.

55



DpnI-digested amplification product (1 jxL) was added to 50 |liL of Alpha-Select Gold 

Efficiency E.coli competent cells (deoR endAl recAl relAl gyrA96 hsdR17(rk - mk+) 

supE44 thi-1 A(lacZYA-argFV169) O8051acZAM15 F-) (Bioline Ltd, UK) in a Falcon 

2059 tube and incubated on ice for 20 min. The transformation mixture was_heat-shocked 

at 42 °C for 45 s and then returned to ice for 2 min. 1 mL of SOC (Bacto Tryptone (20 g/L) 

(BD Diagnostic, MA, USA), Bacto Yeast Extract (5 g/L) (BD Diagnostic, MA, USA), 10 

mM NaCl (Sigma-Aldrich, St. Louis, MO, USA), 2.5 mM KC1 (Sigma-Aldrich, St. Louis, 

MO, USA), 10 mM MgCl2 (Sigma-Aldrich, St. Louis, MO, USA), 10 mM MgS04  (Sigma- 

Aldrich, St. Louis, MO, USA) and 20 mM glucose (Sigma-Aldrich, St. Louis, MO, USA)) 

was added and the transformation mixture was incubated for lhr at 37 °C in a shaking 

incubator. The mixture was then centrifuged for 5 min at 1200 x g. The bacterial pellet 

was resuspended in 100 mL of SOC (31 g (31 Capsules) per Litre 

Containing/litre: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 5 g MgSOWFLO, 

supplemented with 20 mM Glucose (BDH, UK)) (Qbiogene, Inc., Irvine, CA) and plated 

onto a Luria-Bertani Broth (LB) ampicillin (amp) (50 |Lig/ml) agar plate (40 g (40 Capsules 

or 8  Large Capsules) per litre Contents/litre: LB Medium, 15 g Agar-B) (Qbiogene, Inc., 

Irvine, CA). The plates were incubated at 37 °C for -16 hrs.

2.2.2. Plasmid isolation

2.2.2.1. Small-scale plasmid isolation

To isolate plasmid DNA from small volumes of bacterial cells, a ChargeSwitch Plasmid ER 

Mini kit (Invitrogen, CA) was used.
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Overnight bacterial culture (1.5 mL) was pipetted into a 1.5 mL thick-walled 

Eppendorf tube. This was centrifuged at 17,000 x g for 10 min. The supernatant was 

completely removed. The pellet was resuspended in 300 pL of Resuspension Buffer 

containing RNase A (5 mg/ml). The mixture was pipetted and vortexed until no cell 

clumps were visible. 300 pL of ChargeSwitch Lysis Buffer was then added and the tube 

gently inverted until the solution became opaque. This solution was incubated for 4 min at 

room temperature. 300 pL of ChargeSwitch Precipitation Buffer was then added and the 

tube again inverted until no more precipitant was formed. The mixture was centrifuged at

17,900 x g in a bench-top microcentrifuge for 10 min, forming a compact white pellet up 

the side of the tube. The supernatant was transferred to a fresh tube containing 30 pL of 

ChargeSwitch Magnetic Beads (25 mg/ml) and incubated for 1 min at room temperature. 

The tube was applied to the MagnaRack for one min whereupon a compact pellet was 

formed consisting of DNA bound to the magnetic beads. The supernatant was removed and 

discarded and the beads were resuspended in 990 pL of ChargeSwitch Wash Buffer. The 

application to the MagnaRack and wash step was repeated and then the pellet was 

resuspended in 50-100 pL of ChargeSwitch Elution Buffer (10 mM Tris-HCl, pH 8.5) and 

incubated at room temperature for 1 min. The tube was applied to the MagnaRack for 1 

min and the supernatant, containing the plasmid DNA was recovered.

2.2.2.2. Large-scale plasmid isolation

In order to extract DNA from large volumes of bacterial cells, a QIAGEN QLAfilter™ 

Plasmid Midi Kit (QIAGEN Inc, USA) was used.

5 mL LB containing 5 pL amp (50 pg/ml) was inoculated with a single colony and 

grown for 8  hrs at 37°C in a shaking incubator at 225 rpm. 25 pL of culture was used to
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inoculate 25 mL of LB and 25 pL amp (50 fxg/ml) and grown in a 500 mL Erlenmayer flask 

for 12-16 h at 37°C in a shaking incubator at 225 rpm.

Bacterial cells were harvested in 400 mL Sorvall centrifugation bottles by 

centrifugation at 6000 x g for 15 min at 4 °C. The supernatant was removed by inverting 

the open bottle. The bacterial pellet was resuspended in 4 mL of Buffer PI containing 

RNase A (5 mg/ml). The bacterial pellet was resuspended by pipetting and vortexing until 

no cell clumps were visible. 4 mL of Buffer P2 was then added and the bottle was inverted 

6  times. The mixture was incubated at room temperature for 5 min. 4 mL of chilled Buffer 

P3 was added to the lysate and the bottle was inverted 6  times. The lysate was immediately 

poured into the barrel of a QIAGEN Midi cartridge and incubated at room temperature for 

10 min. During this incubation the QLAGEN-tip 500 was equilibrated by applying 10 mL 

of Buffer QBT and allowing the column to empty by gravity flow. The cap was removed 

from the QIAfilter outlet nozzle and the plunger was gently inserted into the cartridge. The 

lysate was filtered into the previously equilibrated QLAGEN-tip. The cleared lysate was 

allowed to enter the resin within the QIAGEN-tip by gravity flow. The QLAGEN-tip was 

washed twice with 10 mL of Buffer QC. The DNA was eluted in 5 mL of Buffer QF (10 

mM Tris-HCl, pH 8.5).

The DNA was precipitated by adding 3.5 mL of isopropanol at room temperature. 

The sample was mixed and centrifuged immediately at 15,000 x g for 30 min at 4 °C. The 

supernatant was carefully decanted and the DNA pellet was washed with 1 mL of 70% 

ethanol at room temperature. The ethanol was transferred to a 1.5 mL Eppendorf tube and 

centrifuged at 15,000 x g for 10 min at 4 °C. The supernatant was removed and the pellet 

was air dried for approx 10 min to allow residual ethanol to evaporate. The DNA pellet 

was re-dissolved in 100 pL of ddHaO, quantified and stored at -20 °C.
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2.2.3. Heterologous expression of hFMQ3

2.2.3.1. Cell growth and induction of expression

E.coli BL21 cells transformed with the appropriate cDNA were used for the expression of 

hFM03 proteins. A modified version of the pET-2 lb(+) (Novagen, UK) with the His-tag 

coing region removed was used as the expression vector as this had previously been used in 

the lab with satisfactory performance. The His-tag was removed due to concerns that it 

would interfere with catalysis of the recombinant FM03 enzyme.

A starter culture was grown in 25 mL LB and 5 |nL of amp (50 fig/ml) was 

inoculated with a single colony from a freshly streaked plate containing (E.coli) 

BL21(DE3) (F  ompT hsdS^{re ’ me ') gal dcm (DE3) pLysS (CmR)) (Novagen, UK) + 

hFM03 transformants and grown in a shaking incubator at 37 °C until the OD6 00 was 

between 0.6 and 1.0. 1 L of fresh LB medium was inoculated with 10 mL of this starter 

culture and the cells were incubated at 37 °C until an OD6 00 ° f  0.4 was reached. Expression 

of hFM03 was then induced by adding isopropyl /?D-thiogalactopyranoside (IPTG) (Sigma, 

CA, USA) to a final concentration of 0.5 mM, supplemented with riboflavin (Sigma, CA, 

USA) to a final concentration of 50 mg/L and incubated overnight in a shaking incubator at 

30 °C.

2.2.3.2. Bacterial cell harvest

The culture was transferred to an appropriate container, depending on the amount of culture 

(small culture -  50 mL Falcon Tube, large culture - Sorvall centrifugation bottle), and 

centrifuged at 1200 x g for 30 min at 4 °C. The supernatant was removed completely by 

inverting the tube/bottle.
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2.2.3.3. Cell Lvsis

Due to the variety of methods used to lyse cells in the stucy of FMOs in the literature, 

several methods were tested simultaneously, including two methods previously used in the 

lab ‘in house’ (methods III and VII below).

2.2.3.3.1. Method I f!951

The pellet was resuspended in 25 mL of lysis buffer (50 mM sodium phosphate buffer 

(pH7.5) (sodium dihydrogen orthophosphate 1-hydrate (NaKhPC^KhO) (BDH, UK) was 

added to 1M di-Sodium hydrogen orthophosphate anhydrous (Na2HP0 4 ) (BDH, UK) until 

a pH of 7.5 was reached), 100 mM KC1 (Sigma, CA, USA) and ImM EDTA (BDH, UK) (a 

chelating agent added to sequester metal ions in order to minimise proteolysis) and 

incubated on ice for 20 min. The culture was sonicated for 4 periods of 30 s, with 1 min 

cooling periods in between.

2.2.3.3.2. Method II U461

The pellet was resuspended in 25 mL of lysis buffer (50 mM sodium phosphate buffer (pH

7.5) and 0.5 mM phenylmethylsulfonyl fluoride (PMSF) (a serine protease inhibitor)) and 

incubated on ice for 20 min. The culture was sonicated for 3 periods of 2 min, with 2 min 

cooling periods in between.

2.2.3.3.3. Method III

The pellet was resuspended in 25 mL of lysis buffer (10% (v/v) glycerol (Sigma, UK), 10 

mM sodium phosphate buffer (pH 7.5) and Lyzozyme (Sigma, UK) (0.75 mg/ml) (a 

enzyme that hydrolyses peptidoglycans in bacterial cell walls, weakening them)) and
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incubated on ice for 20 min. The culture was sonicated for 3 periods of 30 s, with 30 s 

cooling periods in between.

2.2.3.3.4. Method IV [211

The pellet was resuspended in 25 mL of lysis buffer (50 mM sodium phosphate buffer (pH

7.5), 0.5% Triton X100 (v/v) (Sigma, CA, USA) (a detergent used to solubilise membrane 

proteins) and 10% (v/v) glycerol ) and incubated on ice for 20 min. The resuspended 

bacterial pellet was sonicated for 3 periods of 2 min, with 2 min cooling periods in 

between.

2.2.3.3.5. Method V 11961

The pellet was resuspended in 25 mL of lysis buffer (10 mM sodium phosphate buffer (pH

7.5), 10% (v/v) glycerol and Lysozyme (Sigma, UK) (0.75 mg/ml)) and incubated on ice 

for 20 min. The culture was sonicated for 16 periods of 15 s, with 2 min cooling periods in 

between

2.2.3.3.6. Method V I 11971

The pellet was resuspended in 25 mL of lysis buffer (100 mM KC1, 50 mM potassium 

phosphate buffer (pH 7.5) (^/-Potassium hydrogen orthophosphate (K2HPO4 ) (1 M) and 

Potassium di-Hydrogen orthophosphate (KH2PO4 ) (BDH, UK) 1 M; K2HPO4 was added to 

KH2PO4 until pH = 7.5), 20% (v/v) glycerol, 1 mM EDTA and Lysozyme (1 mg/ml) 

(Sigma, UK)) and incubated on ice for 30 min. The culture was not sonicated.

61



2.2.3.3.7. Method VII

The pellet was resuspended in 25 mL of lysis buffer (150 pM KC1, 10 mM 4-(2- 

hydroxyethyl)-l-piperazineethanesulfonic acid (HEPES) (pH 7.5) (Fisher Scientific, NJ, 

USA), 1 mM EDTA and 20% (v/v) glycerol) and incubated on ice for 20 min. The culture 

was sonicated for 3 periods of 30 s, with 1 min cooling periods in between.

2.2.3.4. Cell fractionation

Sonicated cultures were centrifuged at 1200 x g for 15 min. The supernatant was recovered 

and the pellet (Inclusion Bodies) was resuspended in 2 mL 8  M Urea (Fisher Scientific, NJ, 

USA) and stored at room temperature. The supernatant was centrifuged at 100,000 x g for 

1 h at 4 °C. The supernatant (cytoplasm) was recovered and stored at -70 °C. The pellet 

(cell membrane) was resuspended in 1.5 mL of lysis buffer and stored at -70 °C.

2.2.4. Protein quantification

The method used was based on that of Lowry et al., (1951) [198]. A series of bovine serum 

albumin (BSA) (Bio-Rad, CA, USA) samples were prepared by diluting the stock solution 

(1.4mg/ml) with ddH2 0 . 100 pL of each standard was pipetted into a 13 mL test tube. 

Experimental samples were also 100 pL in volume. The DC Protein Assay Kit (Bio-Rad, 

UK) was used to perform the assay. Reagent A (alkaline copper tartrate solution) (500 pL) 

was added to both the standards and the samples, which were immediately vortexed. 

Reagent B (dilute Folin reagent) (4 mL) was added to both the standards and the samples, 

and again the tubes were vortexed immediately. The tubes were allowed to stand for 15 

min after which time the absorbance was stable for 1 hour. The absorbance was read at 750 

nm using the GeneQuant pro RNA/DNA calculator (Amersham Pharmacia, UK). The
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A750 readings of the BSA standards were used to construct a standard curve and the 

protein concentrations of the experimental samples were extrapolated from this.

2.2.5.1. SDS-Polvacrylamide Gel Electrophoresis (SDS-PAGE)

All materials and reagents were supplied by Invitrogen (USA) except where stated.

Protein (20 pg) was placed in a 0.5 pL thin-walled tube along with NuPAGE LDS 

Sample Buffer (IX), 1 pL of /Lmercaptoethanol and ddPLO to make up to a total volume of 

15 pi. The samples were heated at 95°C for 5 min. Samples were then loaded on to a 4- 

12% NuPAGE Novex Bis-Tris Gel. The gel was run in 50ml of IX NuPAGE MES SDS 

Running Buffer at 200 volts, using the XCell SureLock Mini-Cell for 35 min. Prestained 

SDS-PAGE Standard (Broad Range) (3 pL) (Bio-Rad, CA, USA) were run alongside the 

samples, to provide molecular mass reference.

2.2.5.2. SDS-PAGE Staining

The SDS-PAGE gel was removed from the disposable casings. The gel was placed in a 

small container and 200 mL of ddfLO was poured on top of it. As per manufacturer 

instruction, the gel was microwaved on full power for one min and then incubated for one 

min on a shaker. The water was removed and this step was repeated twice. The water was 

removed and 30 mL of SimplyBlue SafeStain (Invitrogen, CA, USA) was poured on top of 

the gel so the gel was submerged in the solution. The gel was microwaved on full power 

for 1 min and placed on a shaker for 10 min to incubate. The stain was removed and the gel 

was rinsed quickly with ddPLO to remove excess stain. 200 mL of ddtLO was added to the 

gel, which was then incubated for 10 min. The ddtLO was removed and 200 mL of fresh 

ddtLO was added and the gel was incubated until the desired result was achieved.
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2.2.5.3. Western Blot of SDS-PAGE gel

2.2.5.3.1. Blotting

All materials were supplied by Invitrogen (CA, USA) unless otherwise stated. 200 mL of 

IX NuPAGE Transfer Buffer was prepared by combining 10 mL NuPAGE Transfer Buffer, 

20 mL Methanol (or 40 mL Methanol if blotting from two gels), 200 pL NuPAGE 

Antioxidant and making up to the final volume with ddtLO. One nitrocellulose membrane 

filter paper sandwich per gel was soaked in the transfer buffer along with an appropriate 

number of blotting pads. A piece of pre-soaked filter paper was placed on top of the gel 

and any trapped air bubbles were removed. The gel was turned over and a pre-soaked 

transfer membrane was placed on the gel and any air bubbles were removed. Another pre- 

soaked filter paper was placed on top of the transfer membrane and any trapped air bubbles 

were removed. Two soaked blotting pads were placed into the cathode core of the XCell II 

Blot Module. The gel/membrane assembly was placed on the blotting pad, ensuring that 

the gel was closest to the cathode and the membrane closest to the anode. Enough pre- 

soaked blotting pads were added on top of the membrane assembly to rise 0.5 cm over the 

rim of the cathode. The anode was placed on top of the pads and the module was slid into 

the guide rails of the XCell SureLock Mini-Cell. The blot module was topped up with 

transfer buffer to cover the gel/membrane assembly. The outer chamber of the XCell 

SureLock Mini-Cell was filled with 650 mL of ddlLO. The transfer was performed at 150 

mA for 2 hrs.

2.2.5.3.2. Antigen detection

After protein transfer, the membrane was incubated for at least 1 hour at room temperature 

in 50 mL of blocking buffer (5% powdered non-fat milk (Safeway, CA, USA), 150 mM
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NaCl (Sigma, CA) and 25 mM Tris-HCl (pH 7.5) (Sigma, CA, USA)). The blocking 

solution was removed and replaced with 50 mL of primary antibody solution (WB-FM03 

(BD Biosciences, CA, USA) at 1:5000 dilution in 0.5% powdered non-fat milk, 150 mM 

NaCl, 25 mM Tris-HCl (pH 7.5)). The membrane was then incubated for 1 hour at room 

temperature. The nitrocellulose was rinsed 3 times with 50 mL of wash buffer (0.1% 

Tween 20 (Bio-Rad, CA, USA), 25 mM Tris-HCl (pH 7.5), 150 mM NaCl) for 15 min 

each. The nitrocellulose was then incubated at room temperature for 1 hour with 50 mL of 

secondary antibody solution (Horse Radish Peroxidase-conjugated goat anti-rabbit IgG at 

1:10,000 dilution (BD Biosciences, CA, USA) in 0.5% powdered non-fat milk, 150 mM 

NaCl, 25 mM Tris-HCl (pH 7.5)). The nitrocellulose was washed 3 times with 50 mL of 

wash buffer. The nitrocellulose was then developed using the ECL Western Blotting 

Analysis System (Amersham, UK). 1 mL of Reagent A was added to 1 mL Reagent B and 

the mixture was placed on top of the nitrocellulose, using a pipette to ensure that the whole 

membrane was in contact with the mixture. The blot was then wrapped in Saran wrap and 

placed in contact with a sheet of Kodak Biomax Light autoradiography film (Kodak, CA, 

USA). The film was exposed and developed. This procedure was repeated varying the 

exposure time until a satisfactory level of detection was observed (between 30 s and 10 

min).

2.2.6. Immunoquantification of FMQ3

Various amounts of quantified FM03 standards (BD Biosciences, CA, USA) were loaded 

on a 4-12% NuPAGE Novex Bis-Tris Gel (Invitrogen, CA, USA) along with duplicate 

samples of 5 pg and 10 pg of bacterial extract containing an unknown amount of expressed 

recombinant protein. SDS-Page was performed as described in Section 2.2.5 and a western 

blot was performed on these gels as described in Section 2.2.5.3. The developed western
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blot film was scanned using a Hewlett Packard Scanjet 4850 Flatbed Scanner (Hewlett 

Packard, NJ, USA) and the results were saved in TIFF format. The amount of FM03 in the 

recombinant bacterial protein sample was quantified densitometrically, using ImageJ 

software [199], by comparison with a standard curve of FM03 standards.

2.2.7. Methimazole Assay of FMO activity ri301

Bacterial membrane protein fractions containing quantified human FM03 were obtained 

using cell lysis method VII (2.23.3.1.). All other methods of lysis tested yielded protein 

deemed inactive as no activity was observed spectroscopically. FM03 was activity was 

assayed as follows. 2 mL of assay mixture was prepared as follows. A mixture containing 

4 mM Dithiothreitol (DTT) (Sigma, CA, USA), 12 mM 5,5’-Dithio-bis(2-nitrobenzoic 

acid) (DTNB) (Sigma, CA, USA), 20 mM p-Nicotinamide adenine dinucleotide phosphate 

(reduced form) (NADPH) (Sigma, CA, USA) was made up in Assay Buffer (Tris-HCl (pH 

8.4), 1 mM EDTA). The mixture was divided between two clear 2 mL plastic cuvettes 

(Sarstedt, Germany). All reagents and protein were equilibrated to 37 °C during 

preparation of the assay. Both cuvettes were placed inside a Cary Split-beam 

Spectrophotometer 3000 (Varian, CA, USA), with the 1 mL mixture acting as a reference. 

The mixtures were incubated at 37 °C before the non-reference cuvette was spiked with 2- 

Mercapto-1-methylimidazole (Methimazole) (Lancaster Synthesis, NH, USA) to a range 

(1000-3 pM) of final concentrations in a final volume of 1 mL. The absorbance at 412 nm 

(the disappearance of the yellow coloured TNB to DTNB (colourless)) was followed for 5 

min after the baseline had settled. Enzyme velocities were calculated using the TNB 

extinction coefficient of 13,600 M' 1 cm’1. The enzyme kinetic parameters, Km, Vmax were 

estimated from Hanes-Woolf [200] linear transformations of the Michaelis-Menton 

equation using the Enzyme Kinetics module (v. 1.3.) of the SigmaPlot (v 10.0.) program
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(Systat Software Inc., CA, USA). This transformation has been shown to be superior to 

others such as the Eadie-Hofstee [201] and Lineweaver-Burk [202], because it applies the 

same weights to all substrate concentrations, unlike the Eadie-Hofstee and Lineweaver- 

Burk which place a high weight on low concentration values causing a bias in the data 

towards reflecting the enzyme behaviour at these lower concentrations as representative of 

the enzyme behaviour as a whole [203]. Km, Kcat and Kcat/ Km values were calculated for 

each FM03 variant tested and these were compared with those of wild type FM03 (n=3 for 

each protein). Statistical significance was assessed using an unpaired t-test performed 

using GraphPad Prism 4.0 (GraphPad Software, CA, USA).

2.3. Generation of a homology model of FMQ3

2.3.1. Template Identification

The blastp function of the Basic Local Alignment Search Tool (BLAST) [204] was used to 

search the Protein Data Bank (PDB) for homologues similar at a global primary sequence 

level to human FM03. GenTHREADER [205] was used to look for structural homologues 

similar at a fold-level, inferred from sequence-sequence alignment against library of known 

folds derived from solved protein structures. This latter step was especially important in 

this case as it has been shown that as the sequence identity drops into the twilight zone (see 

section 1.3.), there may be insufficient signal in the sequence-based methods (e.g. BLAST) 

to detect distant relationships [206]. Threading methods (e.g. GenTHREADER) have the 

ability to detect common folds that may be present even in the absence of significant 

sequence homology [207].
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2.3.2. Homology Modelling

Homology Modelling was performed using MODELLER [161].

2.3.2.1. Homology Modelling hFMQ3

The FM03 (target) sequence and the template sequence(s) were aligned using the ClustalW 

algorithm [208] web server at the European Bioinformatics Institute (EBI) 

(http://www.ebi.ac.uk/clustalw). The Blosum scoring matrix [209] was used with penalty 

values set at 10 for opening or closing a gap, and 0.05, for extending a gap. The output was 

saved in .pir format. The ‘model-default.py’ python script was modified to insert the 

location of the .ali file (the renamed PIR file), the location of the template PDB file and the 

number of models to build. The ‘model-default.py’ python script was executed using a 

1700 Advent PC with a Mobile Intel Pentium processor 4 (3.20GHz) and 512 MB of RAM 

within the DOS command line, to generate the models. The ‘model-loop.py’ python script 

was used in an attempt to improve the accuracy of loop predictions generated by the 

previous script.

2.3.2.2. Model scorine

Regions of probable inaccuracy were defined by positive ProSa [210] profiles or negative 

VERIFY_3D [211] profiles. The stereochemical quality of the models was also assessed 

using WHAT_CHECK [212] to assess the side-chain environment and PROCHECK [213] 

to validate the backbone and side-chain conformation and Swiss-PDBViewer v.3.7 [164] 

was used to generate Ramachandran plots (Figure 5, section 1.3.).
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2.3.2.3. Model refinement

The ‘dope_loopmodel.py’ python script was modified to direct it to the models generated 

and then executed using a 1700 Advent PC with a Mobile Intel Pentium 4 processor 

(3.20GHz) and 512 MB of RAM within the DOS command line. This method uses the 

more advanced ‘Discrete Optimised Protein Energy’ (DOPE) method to assess the spacing 

of the atoms in the model and refine them at the cost of computational time rather than 

simply using ‘loopmodel.py’. Additionally, the regions of probable inaccuracy identified in 

Section 2.3.2.2., which corresponded to loop regions, were targeted specifically for loop 

modelling. Several versions of any model are returned with various loop arrangements, the 

one with the lowest energy being taken as the ‘best’ orientation (see Section 1.3.).

Dihedral angles within the polypeptide model were modified using the 

Ramachandran plot within Swiss-PDBViewer v.3.7, which has click-and-drag capabilities 

allowing side chains to be moved within the plot, from unlikely positions to more 

favourable positions as determined by their proximity to the favoured regions of the 

ramachandran plot (see Figure 5), resulting in a more robust biophysical model.

2.3.2.4. Modelling FAD into the FMQ3 model

In the case of the FM03 model generated using the structure “Crystal structure of a protein 

with similarity to flavin-containing monooxygenases and to mammalian dimethylalanine 

monooxygenases” (PDB code, 1VQW) [2141, the FAD molecule present in the template 

was modelled into the putative active site of the FM03 model. The atomic coordinates of 

the FAD molecule within the PDB file of 1VQW were assigned a chain identifier manually 

using a text editor. A ‘blk’ character was added to the .ali file at the end of both the target 

and template sequences to represent the ligand. This effort was performed in an attempt to
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gain insight into the possible interactions of the FAD molecule within the FM03 homology 

model.

The ‘model-ligand.py’ script was executed using a 1700 Advent PC with a Mobile 

Intel Pentium 4 processor (3.20GHz) and 512 MB of RAM within the DOS command line 

to generate a model that included the FAD molecule in the structure.

2.3.2.5. Putative Active Site assignment

Models based on the PDB crystal structure of “Phenylacetone Monooxygenase, a Baeyer- 

Villiger Monooxygenase” (PDB code, 1W4X) [215] were examined for hydrophobic 

pockets, initially using Q-SiteFinder [216] which uses the interaction energy between the 

protein and a van der Waals probe to locate energetically favourable binding sites within 

the molecule. FAD- and NADPH- binding motifs were highlighted on the model, which 

provided evidence, when found in the proximity of known enzyme catalytic residues 

identified using the Catalytic Site Atlas [217], that the model made sense in terms of the 

FM03 catalytic cycle (Figure 1). Finally, the CAVER [218] module of the PyMol 

visualisation tool was used to identify buried cavities within the model to show the possible 

physical contact between substrates within the molecule.

Models based on 1VQW were assessed by eye as the active site of the ligand 

(methimazole) bound state of the template model had been deposited in the PDB, named 

“Crystal structure of flavin-containing monooxygenase (FMO)from S.pombe and substrate 

(methimazole) complex” (PDB code, 2GVC).
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2.3.2.6. Examination of FAD-FMQ3 interactions

The hydrophobic and hydrophilic interactions between the modelled FAD molecule within 

the FM03 homology model was examined using the Ligand Explorer tool within the 

Molecular Biology Toolkit (MBT) suite [219].

2.3.2.I. Tertiary Model Alignment

Tertiary models of FM03 generated by Modeller were aligned using FATCAT [220] 

(http://fatcat.bumham.org/), for pairwise alignment, or POSA [221] 

(http://fatcat.bumham.org/POSA/), for multiple structure alignment.

2.3.3. Visualization of molecules

Molecules were visualised using PyMol (www.pymol.org).

2.5. Evolution studies of the FMQ3 locus

Previously, DNA had been obtained by the Yamazaki group at Showa Pharmaceutical 

University, Japan, from 23 unrelated Japanese (18 male and 5 female ranging in age from 

19 to 52 years old) who had responded to an internet article because of self-perception of 

TMAU symptoms, specifically a body odour smelling strongly of rotten fish. Urinary 

TMA/TMA /V-oxide was examined by the Yamazaki group and DNA was also obtained 

from 45 Japanese non-TMAU sufferers. Coding exons, together with 3.4 kb of upstream 

sequence and 2.9 kb of flanking intron and 3’ untranslated gene regions were amplified by 

PCR and sequenced. Haplotypes were inferred by the Yamazaki group. For details of the 

haplotypes inference and PCR conditions, see Allerston et al., 2007 [222].
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2.5.1. Data Analysis

2.5.1.1. Mutational relationship between haplotypes

All pairwise comparisons between SNPs were analysed for evidence of linkage 

disequilibrium (measured as R2) using DnaSP (version 4.10.3) [223]. Any significant 

associations between SNPs were identified using %2 tests with a Bonferroni correction for 

multiple comparisons. The minimum number of recombination events (Rm) within the 

samples was estimated by the four-gamete test [224]. To visualise mutational relationships 

between haplotypes, the Reduced Median (RM) Network algorithm [225], as implemented 

by Network 4.1.1.2 (http://www.fluxus-engineering.com), was used.

2.5.1.2. Probing the time depths of FM03 variants

In an attempt to estimate the time to the most recent common ancestral sequence ( T m r c a )  

and the ages of some of the mutations in our sample, we used the program GENETREE 

(version 9.0), which uses maximum-likelihood coalescent analysis [226]. The method is 

based on a standard coalescent model, which assumes an infinite-sites model of mutation (a 

model where each new mutation occurs at a site that has not mutated before) with no 

recombination. Thus, only infinite-sites-compatible data were used for this analysis. Under 

the coalescent model, mutations are assumed to occur along ancestral lineages according to 

a Poisson process of rate 0/2, where 0 (the population mutation parameter) = 4Nep. Ne is 

the effective population size (the size of a theoretical, randomly mating, isolated and 

stationary population, which would have the same distribution and type of polymorphism as 

the population examined) and p is the neutral mutation rate per locus per generation, which 

can be calculated from the equation p = vgL, where v is the neutral mutation rate per 

nucleotide per year, g is the generation time in years and L is the number of silent sites in
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the sequence. An estimate of the parameter 0 was obtained through the use of the mL 

function of GENETREE and was refined by using the surface option of the program. This, 

together with our estimate of the neutral locus mutation rate, enabled Ne to be determined, 

from the equation 0 = 4Ne|i. Coalescent simulations performed using GENETREE gave 

estimates for T mrca and the ages of SNPs in coalescent units of 2Ne generations, which 

were converted to years by using our estimate of Ne and a generation time of 20 years.

2.5.1.3. Testing FMQ3 for departures from neutrality

DnaSP was used to calculate two estimates of sequence diversity, Watterson’s estimator of 

0 (0w) [174] and nucleotide diversity (7t) [175], and to determine a number of test statistics: 

Tajima’s D [176], Fu and Li’s F* and D* [177], the expected number of haplotypes (h) 

[227], Fu’s Fs [228], raggedness (r) [179], Z„s [181] and Wall’s B and Q [180]. 

Significance values for the test statistics were assessed by comparison with a distribution of 

estimates obtained from coalescent simulations of 5,000 random samples of the same 

sample size and level of polymorphism as the observed data. Simulations were performed 

assuming constant population size and no recombination (making tests conservative) or for 

the level of recombination in the observed data. DnaSP was also used to analyse the allele 

frequency spectrum and the pairwise differences among FM03 haplotypes, via Rogers’ 

mismatch test [179], performed using Arlequin (version 3.01) [229]

(http://lgb.unige.ch/arlequin/). The ratio of replacement to silent polymorphisms within 

humans was compared with the ratio of replacement to silent fixed differences between 

humans and chimpanzee, by means of a McDonald-Kreitman test [182], using a Fisher’s 

exact test of independence. Wright’s fixation index ( F s t )  [184] was used to measure 

population subdivision by comparing genetic diversity within subpopulations to that of the
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whole population by comparing the FM03 SNPs of the Japanese cohort to population 

panels provided in dbSNP [171].
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Chapter 3 

Results and Discussion
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3. Results and discussion

3.1. TMAU Patient studies 

Introduction

This section describes the analysis of the DNA from several suspected TMAurics. In each 

case the individual concerned had been diagnosed, through TMArTMA A-Oxide ratio 

anaysis through urine testing, as having suspected primary TMAuria. The FM03 locus was 

examined for mutations that would provide evidence for a TMAuria diagnosis and provide 

further insight into the genetics and molecular biology of this disease. Exons 2 to 9 were 

sequenced along with three flanking upstream regions of FM03 analysed (-2310 to -1716, - 

2733 to -2162 and -1906 to -1436 (containing the non-coding exon 1) where the ‘A’ of the 

ATG start codon of FM03 is considered +1) by sequencing in any of the suspected 

patients.

Subject one

A medical doctor from Northern Norway contacted us after the parents of a female child (2 

years old) had complained about a strong bodily odour, reminiscent of rotten fish, 

emanating periodically from the child. Neither parent complained of a similar problem, but 

after further questioning, the mother did report of an uncle who lived alone, has never 

married and she remembered that he had an odd smell. The parents were not 

consanguineous.

The parents were reluctant to bleed the child and so their blood was obtained first in 

order to check their DNA, after which time, if anything interesting was found, the child 

would then be bled for DNA extraction. In the meantime the mother contacted her uncle 

and introduced him to the doctor. His DNA was also obtained. DNA samples were sent
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from the Norwegian doctor to UCL, where the sequencing analysis was of the FM03 locus 

(mentioned above and described in detail in 2 .1 .).

A previously unreported mutation was found in exon 6  in a heterozygous state in the 

mother and in the subject. This same mutation was found in a homozygous state in the 

great uncle confirming a Primary TMAU diagnosis for this individual.

A relatively common FM03 haplotype was discovered in the father, but this was 

not found to have been inherited by the subject and so did not contribute to the TMAU 

phenotype.

No other mutations were observed in the regions amplified.

Mother of subject one

The sequencing trace indicated that the mother was homozygous for the E l58 background 

(Figure 6  A). The trace also indicated that the mother was a heterozygote for the 713G>A 

(R238Q) mutation (Figure 6  B).

Father of sub ject one

The sequencing trace indicates that the father is heterozygous for the 472G>A (E158K) 

polymorphism (Figure 7 A) and for the 923A>G (E308G) (Figure 7 B). From this 

information it was not possible to deduce if these polymorphisms were in cis or trans.

Great Uncle of subject one

The sequencing trace indicated that the great uncle was homozygous for the 713G>A 

(R238Q) polymorphism (Figure 8 ).
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Mother

Wild-type

470

A A G A G
Figure 6  A). A sequence trace from a PCR amplification of exon 4 of the FM 03  gene 
from the mother of subject one

1 ro
The trace indicated that the mother of subject one was homozygous for the Glu 

background.

Control Mother

713G>A
Wild-type R238Q

710 715 710 715

Figure 6  B). A sequence trace from a PCR amplification of exon 6  of the FM 03  gene 
from the mother of subject one

The trace indicates that the mother is heterozygous for the 713G>A (Arg Gin) 

polymorphism.
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Control
W i l d - t y p e

Father
V a r i a n t

I
4720>A
E158K l

1

470

A A A G
470

A A A G
Figure 7 A). A sequence trace from a PCR amplification of exon 4 of the FM 03  gene 
from the father of subject one

1The trace indicates that the father is heterozygous for the 472G>A variant (Glu Lys).

920

E gc A G A C C  A G

Control
W ild - t y p e

i

Father

V a r ia n t

Figure 7 B). A sequence trace from a PCR amplification of exon 7 of the FM 03  gene 
from the father of subject one

The trace indicates that the father is heterozygous for the 923A>G variant (Glu308Gly).
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Control Great Uncle

710

7 1 3 G > A  
R 2 3  8 QI¥t\ i

[ i l l v  V

A

710
C T C G A T T  C T C A A T T

Figure 8 . A sequence trace from a PCR amplification of exon 6  of the FM 03  gene 
from the great uncle of subject one

The trace indicated that the great uncle of subject one is homozygous for the 713G>A 

(Arg Gin) polymorphism.
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Subject one - Norwegian child

The sequencing trace indicated that the female subject (bom 1999) was heterozygous for 

the 713G>A (R238Q) polymorphism (Figure 9 A). The trace also showed that the subject 

was a homozygous for the E l58 background (Figure 9 B) and homozygous for the E308 

background (Figure 9 C). This indicated that the heterozygous polymorphisms present in 

the father (E158K and E308G) were in a cis state. This was an important experiment as it 

has previously been shown that having the E158K and E308G polymorphisms, either alone 

[70] or in concert with another polymorphism [62], can cause a TMAU phenotype if in cis. 

Both polymorphisms had previously been shown to be present in the paternal FM03 in a 

heterozygous state, but the phase of these polymorphisms was unknown. This experiment 

showed that the polymorphisms were in cis and that this allele had not been inherited by the 

subject.
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Control

w i l d t y p e

Subject one
713G >A

no
C T C G A T T

R238Q

I I I II I

no
C T C G

A A T T

Figure 9 A). A sequence trace from a PCR amplification of exon 6 of the FM 03  gene 
from subject one
The trace indicates that subject one is heterozygous for the 713G>A (Arg238Gln) 
polymorphism.

Subject one

i i

470
A A A G A G T

Figure 9 B). A sequence trace from a PCR amplification of exon 4 of the FM 03  gene 
from subject one
The trace indicates that subject one is homozygous for the Glu variant.

Subject one

9 2 0

C A G A G A C
Figure 9 C). A sequence trace from a PCR amplification of exon 7 of the FM 03  gene 
from subject one
The trace indicates that subject one is homozygous for the Glu308 variant.
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Subject two

A 1 year old child from Northern Ireland was presented to the local General Practitioner 

displaying a TMAU-like phenotype. DNA was collected from the child and sent to UCL 

for analysis.

No mutations were found in the FM03 locus.

Subject 2 - Northern Irish patient 1

Analysis revealed there were no mutations in the subject’s FM03 gene or in the upstream 

regions sequenced.

Subject three

A 4 year old female child from Northern Ireland was presented to the local General 

Practitioner displaying a TMAU-like phenotype. DNA was collected from the child and 

sent to UCL for analysis.

Analysis of the FM03 locus revealed that the child was homozygous for a mutation 

in exon 7 leading to a truncation of the FM03 protein, which has previously been reported 

to destroy FM03 activity. No other mutations were observed in the regions amplified.

A previously unreported mutation was found in exon 9 in a heterozygous state. No other 

mutations were observed in the regions amplified.

Subject 3 - Northern Irish patient 2

The DNA sequencing trace indicated that the subject was homozygous for the 913G>T 

polymorphism (Figure 10) which results in a premature termination at codon 305 in exon 7.
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CONTROL PATIENT

wild-type
E 305X

c.913G >T

I I

910

A A G G A A T  A A G T A A T
Figure 10. A sequence trace from a PCR amplification of exon 7 of the FM 03  gene 
from subject three

The trace indicated that the subject is homozygous for the 913G>T (Glu305X) 
polymorphism.
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Subject 4 - Sheffield, England patient

The sequencing traces indicated that the 4 year old subject was heterozygous for a 

1475G>A (R492Q) polymorphism (Figure 11). A restriction digest assay of a PCR 

amplified exon 9 of subject FM03 also indicated that this was this case (Figure 12).

Subject four

A 4 year old female child from Sheffield, England presented with a TMAU phenotype to 

their general medical practitioner. A buccal swab kit was prepared at UCL (by Dr. Abi 

Jones, Dept, of Biology) and sent to the GP in Sheffield in order to obtain a buccal swab of 

the child. This was returned to UCL for DNA extraction, FM03 locus amplification, and 

sequencing and restriction analysis (see section 2.1. for details).
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wild-type

het
c.1475G>A
R492Q

A C C G G T C A C C ^ G  TC
Figure 11. Sequencing trace showing the region of FM 03  exon 9 containing the 
1475G>A polymorphism of subject four

When comparing sequencing trace of subject four (right) to the wild-type trace (left) a 

distinct G/A double peak can be observed in the subject. This indicated that the subject was 

heterozygous for the 1475G>A (Arg492 Gin) polymorphism.
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A)
| wild-type |

BsaWI

619 C)
280

B)

c.1475G>A
R492Q

homo
R492Q

homo
R492

339bp

619 bp

280 bp

619

Patiant
uncul

Patient
cut

♦ uncut

Figure 12. Restriction digest analysis of FM 03  exon 9 from subject 4 DNA with BsaWI

A) A wild-type PCR product of FM03 exon 9 yield a 619bp product containing a single 

restriction site 280bp from the start of the exon, whereas the 1475G>A mutant contains no 

such restriction site. B) A BsaWI digest of a wild-type homozygote would therefore yield 

a 339bp and a 280bp fragment. A 1475G>A homozygous mutant would not cut at all and a 

heterozygote digest yield a 339bp fragment, a 280bp fragment and a 619bp uncut fragment. 

C) The subject’s restriction digest generated restriction fragments suggesting that subject 

four was indeed a heterozygote for the 1475G>A (Arg492 Gin) mutation.
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TMAU Patient studies - discussion

The finding that none of the TMAU patients and their family members studied (n=7) 

contained any genetic variation in the upstream regions of FM03 analysed is perhaps 

surprising. The same upstream regions were analysed in a study by Koukouritaki et al., 

(2005) [141] in a population group of 200 individuals (400 chromosomes) each from three 

different population groups; Caucasian American (Cauc), African American (Afr) and 

Hispanic American (Hisp). Seven variants were discovered with 3 occurring at relatively 

high frequencies in all 3 population groups; -2650C>G (dbSNP [230] Build 127 id# 

rs 1736560) 0.303 (Cauc), 0.259 (Afr) and 0.438 (Hisp); -2543T>A (dbSNP id# 

rs 12404218) 0.205 (Cauc), 0.192 (Afr) and 0.291 (Hisp); -2177G>C (dbSNP id# 

rs3754491) 0.068 (Cauc), 0.124 (Afr) and 0.286 (Hisp). The same study showed that - 

2650C>G on its own and together with 2543T>A has been shown to increase luciferase 

reporter expression, with the double variant resulting in an 8-fold increase in reporter 

activity. It is conceivable that the lack of these variants in our patient cohort may be a 

compounding, were other mutations or polymorphisms were found within the coding 

regions, or causative, where no mutations were found with regards to the TMAU 

phenotypes reported. However, our own investigation of the sequencing information from 

the 22 putative TMAU sufferers (TMAU) (44 chromosomes) and 45 control individuals 

(Con) (90 chromosomes) from a Japanese population featured all three of the upstream 

SNPs at relatively high frequencies in both groups; -2650C>G 0.545 (TMAU) and 0.578 

(Con); ~2543T>A 0.114 (TMAU) and 0.100 (Con); -2177G>C 0.114 (TMAU) and 0.110 

(Con) (Table 10, section 3.4.). It is possible that the lack of variants in the Norwegian 

family cohort (see section 3.1.) is due to population differences. This seems unintuitive 

though, both because of the otherwise global occurrence at high frequency detailed above 

and due to the subject and her family being of European ancestry, perhaps represented

88



genetically in the Caucasian American group of Koukouritaki et al’s study and recent data 

from the HapMap [1721 project. SNP information deposited from this project in dbSNP 

found the allele frequencies for the 3 SNPs in a European panel of 120 chromosomes to be 

0.308 (-2650OG), 0.100 (-2543T>A) and 0.100 (-2177G>C).

Sequencing a control group from specific populations from which the patients 

belong to in tandem with a patient population could shed more light on this observation.

Norwegian Cohort -  Subject one

Initially, an infant with a phenotype typical of TMAU was presented to a genetic councillor 

(Dr. Hildegunn Hoeberg Vetti, Center for Medical Genetics and Molecular Medicine, 

Haukeland University Hospital, Norway). The parents wanted to confirm this TMAU via a 

genetic screen, but were reluctant to bleed the child. Therefore, both parents agreed to be 

screened instead, from which the genotype of the child could be inferred. The results 

(detailed in sections 3.1. and 3.1.) were interesting. The father is heterozygous for the 

E158K and E308G variants in cis (see section 3.1.2.1.2 and Figure 13). When found in cis, 

these relatively common polymorphisms can result in a reduction in FM03 activity [21, 24, 

147]. When the mother was shown to be heterozygous for a new variant, R238Q (see 

section 3.1. and Figure 13), a residue shown to cause TMAU when changed to tryptophan 

[56], it led to the postulation that the child had inherited the E158K and E308G variants in 

cis allele from the father and the allele containing the R238Q variant from the mother, 

reducing levels of FM03 activity to cause the observed TMAU phenotype. To confirm this 

idea, DNA was extracted from the child and analysed. In the meantime the mother of 

subject one had relayed information to the genetic councillor regarding her uncle whom she 

remembered as always having a strong smell of fish and had led a somewhat
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Figure 13. A representation of the 2 alleles of FM 03  present in the great uncle, 
mother, father and subject one, with the mutations highlighted

The great uncle is homozygous for the R238Q mutation. The mother is heterozygous for 
this mutation. The father is heterozygous the E158K and E308G polymorphisms in cis. 
Subject one has inherited the R238Q mutation from the mother and the allele without the 
polymorphism in exon 4 and exon 6 from the father. The white sections indicate regions, in 
subject one and great uncle, which have not been sequenced.
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reclusive life. After a telephone conversation with the gentleman, the doctor suggested he 

take a TMA-challenge meal, after which he reported his odour problem was exacerbated. 

His DNA was then sent to University College London for analysis.

Contrary to our postulated idea, subject one had not inherited the expected alleles 

from her parents. The child had indeed inherited the R238Q allele from the mother, but she 

had not inherited the E158K and E308G in cis variant allele from the father (see section

3.1. and Figure 13). Instead, she had inherited what appears to be a functional FM03 allele 

from her father and is thus heterozygous. Thus, the prognosis for the child is improved 

because of this as, with a functional FM03 allele, the chances of being able to manage the 

TMAU phenotype is vastly increased. Indeed, because the child has the identical FM03 

protein-coding sequence to her mother who shows no signs of TMAU, it may be that the 

condition will prove transient and dissipate with age. There have been reported cases in the 

literature to support the transient nature of TMAU in some children [75]. It would be 

interesting to analyse the urine TMA/TMA N-oxide ratio of the mother of subject one to 

confirm whether the effect of being heterozygous for the variant R238Q is indeed devoid of 

a TMAU phenotype as she reports.

In contrast, the great uncle of the child is homozygous for the R238Q variant of 

FM03 and as such would be considered as a TMAU sufferer (see section 3.1. and Figure 

13). The great uncle has since received genetic counselling.

The genetic pedigree of this family paints an interesting genetic lineage not least 

because it contained a consanguineous relationship in the family; with the great uncle being 

the offspring of two first cousins (see Figure 14). The documented high levels of 

consanguinity in northern Norway [231], where the family are from, may have given rise to 

the prevalence of this, otherwise rare allele (it is not present in dbSNP) in this isolated 

population.This investigation has revealed a previously unreported mutation in FM03,
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o

o Great Uncle 
DOB 1960

O

Infant
OOB1999

^ ^ 1  TMAU symptoms reported 

( ^ )  | | No TMAU symptoms reported

Figure 14. A genetic pedigree of the Norwegian family in this study

The great uncle, offspring of consanguineous relationship (first cousins), is homozygous for 
the 713G>A (R238Q) polymorphism and displays TMAU symptoms. Subject one displays 
TMAU symptoms despite being merely heterozygous for the 713G>A (R238Q) 
polymorphism. The mother does not report TMAU symptoms despite being genotypically 
identical to her daughter at the FM03 locus.
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713G>A (R238Q) which reportedly causes a TMAU phenotype. As mentioned above, this 

represents the second reported case of TMAU caused by the mutation of R238, and the first 

time two different mutations have been implicated in TMAU at the same nucleotide leading 

to two separate amino acid changes. Previously, Teresa et al., (2006) [56] had reported an 

Italian cohort that featured a TMAU patient with the R238P amino acid change, resulting 

from a 713G>C mutation. The importance of this highly conserved residue is thus 

highlighted further. Possible structural changes associated with the residue are discussed 

later (section 4) as are the catalytic consequences of the variant (section 3.2.).

Sub ject two - Northern Irish Patient one

The lack of mutations in the FM03 gene of subject two (section 3.1) means that primary 

TMAU is an unlikely diagnosis. Subject two may have Secondary Trimethylaminuria, 

which can be transient and so may disappear with age [75]. This is unlikely however as 

reported cases of this usually manifest in children with heterozygous variations in FM03. 

It is possible that the child has a problem involving gut flora, rendering digestion of TMA 

rich foods more difficult, leading to a TMAU-like phenotype. Current treatment regimes 

include dietary restrictions to cut out choline (a TMA precursor) and TMA rich foods and 

treatment with antibiotics such as Neomycin and Metronidazole, which has previously 

proved moderately successful in TMAU patients [232, 233]. The development of antibiotic 

resistance has been suggested as a problem which may be overcome by bi-weekly therapy 

of different antibiotics [233]. Management of TMA production and sequestration of free 

TMA by consuming the dietary supplement chlorophyllin-copper complex is a suggested 

alternative therapy to alleviate symptoms of TMAU [47, 85]. Individual patients report 

mixed responses to these different treatments. It has also been suggested that the use of
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soaps with lower pH (5.5-6.5) could be used to try and neutralise the odorous TMA from 

the skin surface.

Subject three - Northern Irish Patient two

The DNA analysis indicates that the patient is homozygous for the 913G>T (E305X) 

polymorphism (section 3.1.) (Figure 10). This polymorphism encodes a truncated form of 

FM03 which does not include the final 227 amino acids of the 532 amino acid molecule. 

This stretch of the enzyme is predicted to contain important residues involving linkage 

between NADPH and active site domains, a binding site for FAD flavin moiety, the FAD 

domain side of a substrate cleft-isoalloxazine ring, an active site to active site linkage of 

monomers, a dimer interface (important only if FM03 exists as a dimer, it is not known in 

what state the enzyme exists in vivo) and active site of the substrate cleft and a predicted 

membrane anchoring domain [40]. The loss of such protein domains may be academic as a 

truncation of this size would most probably have destructive consequences in terms of 

protein folding and protein localisation.

The 913G>T polymorphism has been reported before [73] in patients displaying 

TMA N-oxidd TMA ratios indicating Primary Trimethylaminuria (Table 7). The 

polymorphism was found in a homozygous state in a single individual (Family 2 in the 

paper) who, although having TMA concentrations close to that of the control level, had 

extremely elevated TMANO/TMA ratios. It has been shown in vitro that the E305X 

truncation totally destroys the catalytic activity of FM03 in terms of A-oxidation of TMA 

[73].

Where this polymorphism was found in the other individuals it was found in a heterozygous 

state along with 551C>T (P153L) which has been shown to destroy FM03 catalytic activity 

in terms of A-oxidation [62, 67, 73]. Furthermore, a polymorphism has been reported
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Table 7. - Clinical characterization of index cases with TMAU (adapted from Treacv et al.. 
(1998) T731)__________________________________________________________________
Case Ancestry Age at DX 

(years)

TMAa TMANO/TMAb Genotype

1 English-Irish 15 60.4 ± 11.7 21.9/78.1 P153LAE305X

2 English-Irish 14 19.7 ±2.8 11.8/88.2 E305X\E305X

5 English-Irish 

German-Spanish

58 501.2 ±

280.3

NT P153L\E305X

6 English-Irish 4 40.2 ± 7.8 NT P153LVE305X

7 English-Scottish 18 48.1 ±7.5 NT P153L\E305X

aThe normal level is <18 pmol/mmol creatinine. 

bThe normal ratio is >97:3.

NT, not tested.

DX, Diagnosis
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leading to a premature termination codon only nine residues downstream from E305X, 

E314X (940G>T) which has also been shown in vitro to destroy catalytic activity in terms 

of A-oxidation [62].

At this stage there is no genotypic evidence to suggest Secondary 

Trimethylaminuria and the presence of a mutation in a homozygous state, previously shown 

to destroy FM03 catalysis of /V-oxidation, indicate that a Primary Trimethylaminuria 

phenotype would be expected.

Subject four -  Sheffield, England subject.

Subject four was found to be heterozygous for thel475G>A (R492Q) variant (section 3.1.). 

Thus, two different mutations have been implicated in TMAU leading to two separate 

amino acid changes, the other being 1474C>T (R492W). This is the first time two different 

mutations have been implicated in TMAU at the same codon, but not due to a mutation at 

the same nucleotide, leading to two separate amino acid changes

Previously the R492W has been reported in a compound heterozygote TMAU 

patient. Akerman et al., (1999) [62] first described the 1474C>T mutation (leading to a 

R492W amino acid change) in a compound heterozygote with another novel mutation, 

198G>T (M66I). Akerman et al., (1999) [58] also investigated an 8 year old French 

Canadian girl displaying a classic TMAU biochemical phenotype, who was a compound 

heterozygote for the R492W mutation along with a P153L (458C>T) mutation. This latter 

mutation was shown to segregate with TMAU [67] and has been shown to destroy the 

activity of FM03 in a recombinant protein. Dolphin et al., (2000) [35] investigated a 

patient with compound heterozygosity for the R492W and a previously unreported 

mutation, M434I (1302G>A). Both mutations were generated individually in a 

baculovirus-mediated insect cell protein expression system and assayed for activity. The
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M434I mutation was found to severely decrease FM03 activity and the R492W mutation 

was found to destroy enzyme function completely.

It is probable that the structural change produced by the R492W substitution 

destroys (or greatly reduces) the protein activity, due to the proximity of the amino acid 492 

to the predicted active site of the substrate cleft [40]. As subject four is heterozygous for 

this mutation, it is possible that TMAU will prove transient. The subject was 4 years old 

when she was first examined by the GP. Transient TMAU has been reported previously 

with the TAMU phenotype disappearing completely in these cases as the child reaches 7-8 

years old [75]. Here, the transient TMAU phenotype was postulated to have been caused 

by . .a transient overproduction in the gut or an overloading of the gut-generated substrate 

overwhelming the hepatic enzymes’ [FM03] oxidizing capacity.” However, it is more 

probable that rather than being the “cause”, the gut-overload was compounded because the 

child had only a single FM03 allele able to generate a functional FM03 enzyme.

Because this subject possesses one functional FM03 gene, it would be reasonable to 

predict that the TMAU phenotype will be a transient one, and once adult expression of 

FM03 is established, the phenotype would be predicted to dissipate (discussed in section 

1.2 .).
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3.2. Kinetic parameters of FMQ3 polymorphic variants 

Introduction

To assess the catalytic consequences of FM03 amino acid variation, kinetic parameters 

were assessed using an established assay for FMO activity (described in section 2.2.7.)- Of 

particular interest were two double amino acid variants, E158K/V257M and 

E158K/E308G. It has been shown previously that in combination with E158K, the E308G 

variant was catalytically impaired, compared with either variant present alone. Also, the 

R238Q variant discovered in the TMAU Norwegian cohort discussed earlier (section 3.1.) 

was also assayed for FM03 activity.

Kinetic parameters of FMQ3 polymorphic variants - Results

Variant FM03 cDNAs were created as described in section 2.1.1. Analysis of the DNA 

sequencing traces, for both strands, confirmed the presence of the mutation in the cDNA on 

the E158 (Figure 15) and K158 (Figure 16) backgrounds. The DNA traces were also used 

to confirm the absence of undesired mutations that might have been inadvertently 

introduced, that would cause premature stop codons or unwanted amino acid variants.

All FM03 variants were readily expressed in bacteria according to the protocol 

detailed in section 2.2.3.1. Only cell lysis method VII (detailed in section 2.2.3.3.7.) was 

amenable to maintaining catalytically active FM03 during the cell protein preparation 

protocol.

FM03 activity was assessed by the Methimazole assay, detailed in section 2.2.7. A 

hyperbolic Michaelis-Menton relationship between enzyme rate and substrate concentration 

was observed for all variants of FM03 tested, except the R238Q form of the enzyme which 

was catalytically inactive. A Hanes-Woolf linear transformation of the Michaelis-Menton
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Figure 15. DNA sequencing traces of FM 03 cDNA on the E158 background
Sequencing traces of FM03 cDNA generated via site-directed mutagenesis on the E l58 background are shown. 
A) E158K, B) V257M, C) E308G and D) R238Q.
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Figure 16. DNA sequencing traces of FM 03 cDNA variants on the K158 background
Sequencing traces of FM03 cDNA generated via site directed mutagenesis on the K158 background are shown. A) The E158K/V257M double 
variant and B) the E158K/E308G double variant.
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equation was used to determine the kinetic parameters, Km and /feat and Kcat/KM (Figure 

17). /feat and Km/ ATcat were also calculated for each catalytically active variant (Table 8). 

Only the E158K/V257M and E158K/E308G double mutants were significantly catalytically 

deficient when compared to the wild-type FM03, as measured by the decrease in catalytic 

efficiency, Acat/KM- The E158K/V257M double mutant was 71.4% as efficient (P < 0.05) 

and the E158K/E308G double mutant was 42.7% as efficient (P < 0.005) (see appendix 1 

for details). Interestingly, while the V257M single mutant was not significantly 

catalytically different from the E158K/V257M double mutant, the catalytic activity of the 

E158K/E308G double mutant was significantly reduced to that of the E308G single mutant 

(P < 0.05) (see Appendix 1 for details). The Km of wild-type FM03, 143 ± 17 pM, is 

similar to that reported earlier for the protein expressed in bacterial systems [197].
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Figure 17. A Hanes-Woolf linear transformation plot of the Michaelis-Menton 
equation for each catalytically active variant of FM 03, measuring methimazole 
concentration (pM)/ Assay product formed (nmol/min) as a function of Methimazole 
concentration (pM)

Wild-type (black), E158K (Green), V257M (blue), E308G (pink), E158K/V257M (orange) 
and E158K/E308G (red) FM03 variants are plotted. A plot showing ony wild-type 
(unbroken line) and E158K/E308G (dashed line) is also presented for clarity. All data 
display a good linearity, indicative of obeying classical Michaelis-Menton kinetics.
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Table 8. 5-oxygenation of methimazole bv human FMQ3 variants

FM03 variant Km (pM) Kcat (s -1) Kcat/KM (pM '1 s -1) Relative activity (%)

Wild type 143 ± 17 0.0704 ±0.00219 4.9 04 ±6.0 ~Ui 100
E158K 170 ±24 0.0704 ± 0.00278 4.1 _U4 ± 6.0 u;> 84.1
V257M 179 ± 27 0.0715 ±0.00308 3.9 _U4± 6.3 'u:> 79.9
E308G 166 ±29 0.0672 ± 0.00326 4.0 04 ± 7.0 81.8

E158K / V257M 183 ±30 0.0643 ±0.00301 3.5 _U4± 6.1 'u:> 71.4*
E158K / E308G 292 ± 59 0.0615 ±0.00402 2.1 4)4 ± 4.4 42.7 **

R238Q N.D. N.D. N.D. N.D.

The 5-oxygenation of methimazole was determined as described in section 2.2.7. 
Data are mean ± standard deviation obtained from three independent experiments. 
Km (pM), Kcat (s '), Kcat/KM (pM'1 s '*) and catalytic activity relative to wild-type 
FM03 are displayed (%).

* P < 0.05 compared to the result obtained from wild-type FM03 (see Appendix 1 for 
details).
** P < 0.005 compared to the result obtained from wild-type FM03 (see Appendix 1 
for details).

N.D. Enzyme activity was not detected.
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Kinetic parameters of FMQ3 polymorphic variants - Discussion

The impact of pharmacogenetics of monooxygenases on the drug metabolism and 

distribution of certain drugs has been established. Variant alleles of CYP2C8*3 have 

been implicated in altered oxidation of the mitotic inhibitor paclitaxel [234, 235]. 

Patients carrying amino acid variants of CYP2C9 have been implicated in warfarin 

sensitivity, e.g. CYP2C9*2 R144C and CYP2C9*3 I359L, requiring lower doses of 

warfarin [236, 237] due to lowered catalytic activity of the enzyme [238-240]. 

CYP2D6 polymorphism has been implicated in the impaired metabolism of the anti­

hypertensive debrisoquine [241-243] and the anti-convulsant mephenytoin [244, 245]. 

The allelic frequency of CYP variants vary widely from population to population 

[246], which is important when considering the clinical significance of 

pharmacogenetic studies. Given the extremely broad range of FM03 substrates, any 

frequent polymorphisms that alter FM03 catalytic efficiency would be relevant to 

pharmacogenetic considerations for therapeutic strategies.

E158K is the most common FM03 polymorphism with an allelic frequency 

ranging from 39-50% depending on the population sampled. [65, 66, 70, 87, 143, 147, 

222, 247-251]. Heterozygotes have shown no significant increase in free TMA in 

urine [70]. In vitro studies by other groups have also shown the lack of significant 

effect on FM03 catalysis by this common polymorphism, as confirmed in this 

investigation (section 3.2.) [248, 252].

The allelic frequency of V257M has been reported to range from 3-25% 

depending on the ethnicity of the population [35, 142, 222, 247-249, 253, 254]. The 

lack of significant reduction in recombinant FM03 enzyme efficiency due to the 

V257M polymorphism presented in this investigation (section 3.2.) has also been
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demonstrated by other groups [35, 255]. Another group has also reported a lack of 

significant reduction, but in a substrate specific manner [256].

E308G has been shown to be a relatively common polymorphism with an 

allelic frequency of 6-26% depending on the population sampled [62, 70, 147, 248- 

251, 257]. In vivo [249, 258] and in vitro [255, 259] methods have shown the variant 

to have little consequence catalytically to FM03 efficiency and this is supported by 

the work presented in this investigation with an insignificant reduction in enzyme 

efficiency, as a measure of ^cat/KM.

Little data on the frequency of E158K and V257M being found in cis exists. 

E158K and V257M were found in cis at an allelic frequency of 4-6% in a Han 

Chinese population [254]. In a different study, E158K/V257M was found at an allelic 

frequency of 1% in a study of Hispanic Americans, but was not present in any other 

population in the study (Caucasian American, African American and Asian 

American) [248]. Surprisingly, this E158K/V257M double mutant was found with 

the E308G mutation in cis also, with the other allele of the individual unknown. 

Because the source of the DNA was a blood bank, it was not possible to test the 

individual for symptoms of TMAU and, to date, this E158K/V257M/E308G triple 

mutant has not been assayed and it may be of interest to see what the catalytic 

consequence would be to FM03. This investigation suggests that the E158K/V257M 

double mutant does cause a significant reduction in FM03 catalytic efficiency (P < 

0.05) with efficiency dropping to 71.48% of that of the wild-type enzyme. It is 

interesting to note that the E158K/V257M double mutant has relatively similar 

catalytic parameters, as does the single V257M mutation on its own.

E158K and E308G occur in cis at an allelic frequency ranging from 1-16% 

depending on the source population [248, 250, 254]. The E158K/E308G double
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variant when found in cis (featured earlier in the Norwegian cohort, section 3.2.) has 

previously been shown to reduce FM03 activity by around 50% in vivo (as a measure 

of free TMA in urine samples compared with control subjects) [58, 70]. The activity 

of in vitro expressed FM03 have shown a dramatic reduction in catalytic efficiency of 

the E158K/E308G variant when compared to either the E158K or E308G single 

variants [21, 143, 147]. The kinetic study presented as part of this investigation 

supports a reduced catalytic efficiency in the E158K/E308G double mutant of 42.7% 

compared to wild-type FM03, which represents a significant reduction (P < 0.005). 

That the E158K/E308G double mutant significantly disrupts FM03 catalysis, 

compared with either the E158K or E308G single mutants, is made all the more 

interesting when we consider that the E158K/V257M double mutant has a relatively 

similar catalytic activity to either of the single mutations alone. FM03-substrate 

metabolism shown to be affected by the reduction in catalytic efficiency of the 

E158K/E308G variant occurring in cis includes the histamine F^-receptor antagonist 

ranitidine [147], the anti-tubercular agent thiobenzamide [147] and the non-narcotic, 

non-steroidal anti-inflammatory drug, sulindac [5]. Interestingly, in the latter case, 

the E158K/E308G variants were found to have a protective effect on the development 

of polyps in familial adenomatous polyposis patients who received sulindac as a 

means of primary chemoprevention, presumably reducing the ability of the enzyme to 

inactivate the drug, leading to prolonged exposure to the active form of sulindac, 

sulindac sulphide [260, 261]. Therefore, the relationship between the E158K and 

E308G variants has the potential to be important from a pharmacogentic standpoint 

when considering FM03 substrates as therapeutic treatments.

The finding that the R238Q variant of FM03 was catalytically inactive is 

consistent with the finding in this investigation that individuals with a FM03 allele
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containing this variant have compromised TMA metabolism. In chapter 3, a case 

study was presented of a Norwegian cohort that was screened for TMAU-associated 

mutations at the FM03 locus (see section 3.2. for details). A child showing 

symptoms of TMAU was found to be heterozygous for the 713G>A (R238Q) 

mutation. Her great uncle was found to be homozygous for this mutation and 

consequently received genetic counselling after being diagnosed as having TMAU. 

With no other mutations present, R238Q was suggested as the cause of the TMAU 

phenotype. Evidence of importance of arginine at amino acid 238 for FM03 catalysis 

is also presented by Teresa et al., (2006) who describe the mutation 713 G>C (R238P) 

in an Italian TMAU cohort with a TMAU phenotype [56].

107



3.3. Generating a homology model of FMQ3

Introduction

To theorise about the structural consequences of the variants of FM03, homology 

modelling of FM03 was performed.

Modelling FMQ3

The two closest homologues to human FM03 in the PDB at present, in terms of 

identity at the primary sequence level, are the crystal structure of Baeyer-Villiger 

Monooxygenase from the moderate thermophilic bacterium, Thermobifida fusca 

(T.fusca) [215] (26% identity) at 2.40 A resolution (PDB accession code 1W4X) and 

the crystal structure of FMO from Schizosaccharomyces pombe (S.pombe) [214] 

(29% identity) at 1.70 A resolution (PDB accession code 1VQW) (see Figure 18 for 

ClustalW primary sequence alignments). The next nearest homologues are of 

extremely low sequence identity (<15%).

Using the homology modelling software ‘Modeller’ it was possible to generate 

models of FM03 from the crystal structure templates 1W4X and 1VQW.

Homology model of FMQ3 using 1VOW as a template

The crystal structure 1VQW was co-crystallised with ligands and the coenzyme FAD. 

Using a python script within the suite of scripts that make up Modeller, it was 

possible to model this coenzyme along with the rest of the target from the template.

The model displays two main bundles of secondary structure (Figure 19). The 

larger of the two seems to be where the FAD and NADPH molecules are predicted to

bind. It consists of a bundle of six a-helixes, one, four-stranded parallel [3-sheet and
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Figure 18. ClustalW alignments of 1W4X vs hFM03 and 1VQW vs hFM03.

An asterix denotes conserved identical residues, a colon indicates conserved similar residues, and a dot indicates highly similar residues.
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Figure 19. A cartoon representation of the homology model, based on 1VQW, of 
FM 03

The model displays two main bundles of secondary structure. The larger of the two 
seems to be where the FAD (shown in blue) and NADPH (not shown) molecules are
predicted to bind. It consists of a bundle of six a-helixes (red), one, four-stranded 

parallel (3-sheet (yellow) and one, three stranded anti-parallel (3-sheet. In the model,

the flavin moiety is bound within the a-helix bundle, with the adenine dinucleotide 
moiety of the molecule penetrating deep into the protein, poking between an anti­
parallel (3-sheet and with the tip of the moiety residing near a parallel (3-sheet, 

one, three stranded anti-parallel (3-sheet. In the model, the flavin moiety is bound

within the a-helix bundle, with the adenine dinuceotide moiety of the molecule
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penetrating deep into the protein, poking between an anti-parallel p-sheet and with the

tip of the moiety residing near a parallel P-sheet.

The crystal structure of 1VQW [214] have helped to give further insights into 

the mechanism of FMO action. The correct orientation of the isoalloxazine ring of 

the FAD molecule is predicted to be vital in order for it to act as an efficient 

prosthetic group, namely to accept a hydride ion from NADPH, accept molecular 

oxygen and for oxygenation of the substrate (Figure 20 A). The flavin moiety is 

visible from the surface image of the protein, residing in a pocket, readily accessible 

and solvent-exposed. The orientation of the FAD molecule within the FM03 model 

was examined and shown to be positioned in a reasonable orientation (Figure 20 B) 

with the Asn 61 residue in close proximity to the FAD isoalloxazine ring. This 

residue is equivalent to Asn 91 in the 1VQW structure, which has been shown to be a 

key residue in binding molecular oxygen, and is thought to be the only FMO residue 

directly involved in substrate catalysis.

In the FM03 model, the adenine dinucleotide moiety of FAD is buried deep 

within the protein (Figure 21 A). There are several residues known to be involved in 

TMAU, where FM03 catalysis is severely disrupted or destroyed, that reside 

proximal to the modelled FAD molecule within the FM03 model, namely E32K, 

A52T, V58I and N61S (Figure 21 B). The residues predicted to interact with the 

FAD molecule within the FM03 homology model were investigated further using 

MBT Ligand Explorer (Figure 22). Hydrophobic and hydrophilic interactions were 

predicted, measured and tabulated (Table 9).

A)
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A)

ASN 91

B)

ASN 61

Figure 20. FAD isoalloxazine ring orientation within FMO

A) The isoalloxazine ring of the FAD molecule within the active site of S.pombe 
FMO solved crystal structure (1VQW) is shown (red) along with a molecule of FMO 
substrate Methimazole (blue). Asn 91 is highlighted in orange. Asn 91 in 1VQW has 
been shown to be a key residue in binding molecular oxygen and is thought to be the 
only FMO residue directly involved in substrate catalysis.
B) The isoalloxazine ring of the modelled FAD molecule within the FM03 model 
based on 1VQW is shown (red). The Asn 61 residue is highlighted in yellow, which 
is the equivalent residue to Asn91 in 1 VQW.
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A)

N61S,

Figure 21. FAD modelling within the homology Model of FM 03 based on 1VQW

A) A cartoon representation of FM03 (green) with FAD represented as red spheres.
B) A close up view of FAD within FM03, with the local amino acid residues known 
to be associated with TMAU represented by blue spheres.
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A)

L /-ASN61

Figure 22. MBT Ligand Explorer view of the modelled FM 03 association with 
FAD
A) A cartoon representation of FM03 with FAD shown as ball-and-sticks. FM03 
residues predicted to interact with FAD are labelled and their hydrophobic (purple) 
and hydrophilic (green) interactions are shown as dashed lines along with their 
distance, measured in Angstroms, which is labelled.
B) A close up view.
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Table 9. A tabulation of all interactions predicted from the model of FMQ3 along 
with an incorporated FAD molecule, by MBT Ligand Explorer

FM03 
amino acid 
residue

u

Interaction(s) (distance (A)) Catalytic effect reported at 
residue

Ile8 Hydrophobic (3.48, 3.53)
Gly 9 Hydrophilic (2.77) 

Hydrophobic (2.77)
Val 12 Hydrophilic (2.54, 3.08)
Ser 13 Hydrophilic (2.68, 3.21)
Phe 31 Hydrophilic (2.92)
Glu 32 Hydrophilic (2.65, 2.83) TMAU E32K [55]
Lys 33 Hydrophobic (3.59, 3.88) Within 1 residue of 

TMAU causing E32K
Leu 40 Hydrophobic (2.90, 3.83, 3.88) 

Hydrophilic (2.88)
Trp 41 Hydrophobic (2.85, 2.92, 3.67, 3.72, 3.79)
Ser 60 Hydrophilic (3.05) Within 1 residue of 

TMAU causing N61S
Asn 61 Hydrophilic (3.0) TMAU N61S [35, 60]
Met 67 Hydrophobic (3.61) Within 1 residue of 

TMAU causing M66I
Phe 109 Hydrophobic (3.08, 3.56)
Val 110 Hydrophilic (3.04, 3.26)
Cys 146 Hydrophilic (3.02)
Ser 147 Hydrophilic (2.72) 

Hydrophobic (3.12, 3.42, 3.65)
Ala 378 Hydrophobic (3.79)

The FM03 residue is detailed along with any hydrophobic and/or hydrophilic 
interactions, with their distances measured in Angstroms shown in parentheses. 
Hydrophilic interactions are H-H measurements and hydrophobic interactions are H-C 
measurements. Also shown is any implication in TMAU of an amino acid change.
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Seventeen FM03 residues were predicted to contribute to the binding of FAD, 

including 2 of the residues associated with TMAU above, E32K and N61S. Met 67, 

which is one residue away from Met 66 and shown to be a causative mutation in 

TMAU when mutated to isoleucine [54, 61, 62], was shown to interact with the FAD 

molecule.

FMOs are known to have a hydrophobic 'FATGY' sequence motif common to 

most FMOs (it is ‘FTTGY in FM 04’), and an 'identifying sequence' 

FXGXXXHXXXF. Despite being known for quite some time, the actual role of these 

two highly conserved motifs has remained elusive. Both motifs were mapped onto 

the FM03 model to try to gain some insight into their possible roles. The FATGY 

motif was shown to map to a region around the rim of the pocket containing the 

putative active site of FM03 (Figure 23 A). The FMO identifying sequence maps to 

the 'top' of the FM03 model (Figure 23 B).

The catalytic site atlas did not identify any probable catalytic residues from its 

database of enzyme active sites, within the putative active site of the FM 03 model 

based on 1VQW.

Mutations and Polymorphisms of FMQ3

In an attempt to try and understand possible insights that may be gleaned from a 

structural standpoint, the residues known to be variant in FM03 were mapped on to 

the model (Figure 24). The variants included all residues known to destroy (or 

severely disrupt) FM03 activity, those residues known to alter FM03 catalytic 

activity and the two residues for which novel mutations were discovered in this 

investigation (see section 3.2.). The amino acid residues affected are shown in Figure 

24 and the consequences for these changed are discussed later in this chapter.
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A)

B)

Figure 23. The FMO identifying sequences

FMOs are known to have a hydrophobic sequence motif common to all FMOs, 
'FATGY' and an 'identifying sequence' FXGXXXHXXXF.
A) The FATGY motif is shown (yellow) to map to a region around the 'mouth' of the 
pocket containing the putative active site of FM03. A FAD molecule can be seen 
within the pocket (red).
B) The FXGXXXHXXXF FMO identifying sequence (orange) maps to the 'top' of 
the FM03 model, with the FATGY motif shown in yellow to emphasise the relative 
position of the two motifs.

117



Figure 24. The homology model, based on 1VQW, of FM 03 with amino acid variants highlighted
The model is shown as a cartoon (A) and as a surface view (B) with residues known to be variant in FM03 were mapped on to the model. 
Residues known to destroy (or severely disrupt) FM03 activity are shown as red spheres, residues known to alter but not severely disrupt FM03 
catalytic activity are shown in blue and the two sites of allelic variation shown to destroy catalytic activity where two novel variants were 
discovered in this investigation (R238Q and R492Q) are shown as yellow spheres and labelled.



Model scoring FMQ3 homology model based on 1VOW

The programme Verify 3D considers the 3D compatibility of the protein model to its ID 

primary sequence. The residues in the 3D model are characterized by the environment 

surrounding it, defined by the area of the residue that is buried, the proportion of side-chain 

area covered by polar atoms and the local secondary structure. The likelihood of finding a 

specific amino acid in the environment defined is then scored, e.g. finding a charged 

residue buried in a non-polar environment would be assigned a poor score reflecting the 

improbable nature of such an occurrence [262]. Models that are largely wrong have a low 

overall score, whereas models that contain small numbers of improperly built segments can 

be detected by low scoring regions in the profile plot. A single region (residue 223 to 

residue 267) was defined as a low scoring region, and can be considered to be an 

improperly built segment of the FM03 model based on 1VQW.

ProSA analyses the energy distribution in proteins as a function of sequence 

position, with native structures typically having a balanced energy distribution devoid of 

high energy peaks or 'strained' areas littering the protein, such features being typical of 

unlikely regions in terms of amino acid 3D position. The ProSA plot of residue scores 

identified two areas of concern in the model (Figure 25 A). One area was the C-terminal 

region and the other was the region around 223 - 267 that verify 3D also identified. Despite 

these regions of uncertainty, ProSA indicated that the model generated was of good overall 

quality with a z-score within the range of scores typically found for native proteins of a 

similar size with solved structures in the PDB (Figure 25 B).

119



-3

Sequence position '20fl------------553---------- 355---------- 555---------- §55----------I5oo
Number of residues

Figure 25. ProSA output for FM 03 model generated using 1 VQW as a template

A) An energy distribution plot of FM03. The thin green line considers the energy distribution over a 10-residue stretch, whereas the thick green 
line considers the energy distribution over a 40-residue stretch. The plot suggests two areas of concern with the model, indicated by peaks of 
positive energy, at the C-terminus and in the middle of the protein around 220-270 amino acids.
B) A plot of the z-scores of all solved structures currently in the PDB as a function of their length, solved either by NMR (dark blue) or X-ray 
crystallography (light blue). The position of the z-score of the FM03 model as a function of the length of the model is indicated by a black dot. 
This shows that the model is generally within the range of the z-score expected for a molecule of that size and indicates that the model is of a 
general good quality.



The Ramachandran plot for the FM03 model, generated using 1VQW as a template, 

showed 41/532 (7.7%) of amino acid residues in sterically improbable regions of the energy 

landscape (Figure 26 A). One measure of a good model is having more than 90% of the 

amino acide residues in the sterically 'allowed' regions [263]. The number of amino acids 

in the improbable areas was reduced to 33/532 (6.2%) by moving residue sidechains very 

close to ‘allowed’ regions into the region by breaking the aC-backbone either side of the 

residue, dragging the side chain into the region and then ligating the aC-backbone within 

Swiss-PDBViewer v.3.7, as displayed in the Ramachandran plot (Figure 26 B). 6/33

(18.1%) of the residues remaining in the disallowed regions of the Ramchandran plot reside 

within the region identified by Verify3D and ProSA as being a region that may not have 

been built correctly. 8/33 residues (24.2%) of these residues within the disallowed regions 

of the Ramachandran plot reside in the C-terminal region of the model, highlighted as an 

area of concern by Verify3D and ProSA. The residues suggested by MBT Ligand Explorer 

(Table 9) as being important in binding to the FAD prosthetic group were highlighted on a 

Ramachandran plot (Figure 26 C). All residues were found to be in the ‘allowed’ regions, 

suggesting that the model is reasonable in these important areas.

Finally, the packing quality of each residue was assessed using the WHATIF web 

server (Figure 27). A threshold value of -5 was used, below which level a residue can be 

considered poorly packed. The results indicated that there were two main areas of poorly 

packed amino acid residues. One corresponds to the area around amino acids 220-270, 

previously identified as a poorly built region by Verify3D and ProSA. The C-terminus, 

although not containing as many or as poorly packed residues, still stands out as an area of 

poor packing. The rest of the model, on the whole, was reasonably well packed.
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Figure 26. Ramachandran plots of the FM 03 model generated using 1 VQW as a template

A) The Ramachandran plot for the FM03 model generated using 1VQW as a template showing 41/532 (7.7%) of amino acid residues in 
sterically improbable regions of the energy landscape (points outside the defined rings boundries of allowed regions, shown in blue and yellow).
B) The number of amino acids in the improbable areas was reduced to 33/532 (6.2%) by moving residue sidechains very close to ‘allowed’ 
regions into the region by breaking the aC-backbone either side of the residue, dragging the side chain into the region and then ligating the aC- 
backbone within Swiss-PDBViewer v.3.7, as displayed in the Ramachandran plot. 6/33 (18.1%) residues are within the region identified by 
Verify3D and ProSA as being a region that may not have been built correctly (see section), highlighted in pink. 8/33 residues (24.2%) of these 
residues within the disallowed regions of the Ramachandran plot reside in the C-terminal region of the model, highlighted as an area of concern 
by Verify3D and ProSA and are highlighted in green.
C) The residues suggested by MBT Ligand Explorer (see Table 9) as being important in binding to the FAD prosthetic group are highlighted as 
red dots in the Ramachandran plot. All residues were found to be in the ‘allowed’ regions, suggesting that the model is reasonable in these 
important areas
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Figure 27. WHATIF assessment of the amino acid packing quality of the FM 03 model generated using 1VQW as a template
A threshold value of -5 was used, below which level a residue can be considered poorly packed. For clarity, a horizontal, black bar indicates the 
threshold. It is apparent that there are two main areas of poorly packed amino acid residues. One corresponds to the area around amino acids 
220-270, previously identified as a poorly built region by Verify3D and ProSA. The C-terminus, although not containing as many or as poorly 
packed residues, still stands out as and area of poor packing.
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Homology model of FMQ3 using 1W4X as a template

A homology model of FM03 was also built using the Baeyer-Villiger Monooxygenase 

from the moderate thermophilic bacterium, Thermobifida fusca (1W4X) as a template. The 

hydrophobic network highlighted in the model (Figures 28 A and B) based on 1W4X was 

shown to consist of two channels, one containing predicated binding motifs for FAD and 

the other a predicted binding motif for NADPH. Indeed, the crystal structure of 1W4X 

included FAD bound to the protein corresponding to the predicted FAD binding site 

derived from the motifs. A Q-site finder probing of the model (Figure 28 C) showed 

various hydrophobic sites, but the deepest hydrophobic pocket (incidentally, where 

NADPH was predicted to bind) contained several hits classified as ‘Probable’ (E-value < 

le-5) from the Catalytic Site Atlas (Figure.28 D).

The FM03 model built using 1W4X was aligned with the model generated using 

1VQW as a template and compared using the FATCAT server. The alignment of the two 

models generated using 1W4X and 1VQW showed that they were significantly similar (P <
o

0.05) with an RMSD of 3.22 A (Figure 29), with the majority of the difference occurring in 

the difficult C-terminal area where the template coverage was extremely low. Indeed, when 

the last 37 amino acids are removed from both homology models, the pairwise alignment 

lowers to 2.3 A which is significantly similar (P < 0.005). Despite this, for reasons 

discussed later, it was decided not to continue with more detailed studies of the model, built 

using 1W4X as a template.
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Figure 28. Buried cavities within the homology model of FM 03 based on 1W4X

A) Two buried cavities are highlighted (white) within the model of FM03 generated 
using 1W4X as a template. B) The buried cavities are shown with the FM03 model 
stripped away to emphasise their association. C) The meshed features within the 
model are Q-site Finder predictions of predicted buried protein-ligand interaction 
sites. D) The highlighted residues on the FM03 model represent the top hits reported 
by the Catalytic Site Atlas (1 being the top hit).
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Figure 29. A superimposition of the two models of FM 03 generated by homology 
modelling

A cartoon view of the two models of FM03 are shown, generated using 1W4X as a 
template (blue) and the model of FM03 generated using 1VQW a template (red).
The models are significantly similar (P < 0.05) with an RMSD of 3.22 A.
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Homology Modelling of FMQ3 - Discussion

When employing homology modelling in an attempt to understand protein structure 

and biophysical consequences of structural changes, it is important to understand the 

molecular biology of the protein template. This is especially important when dealing 

with enzymes, where catalytic properties are a consideration. Homology models of 

FM03 were made using the FMO from S.pombe (1VQW) and the Baeyer-Villiger 

monooxygenase (BMO) from T.fusca (1W4X). In many respects, FMOs and BMOs 

are similar. Both are flavoenzymes that require NADPH as an electron donor and 

both react with molecular oxygen to form a flavin-peroxide intermediate, which then 

attacks soft-nucleophilic centres of substrates. Crucially, however, the BMO 

undergoes a conformational change executed via a domain rotation event during 

catalysis [215]. This occurs once the FAD molecule is reduced by NADPH. In order 

for molecular oxygen to bind, the enzyme must undergo a conformational change. 

The domain rotation occurs around a molecular ‘hinge’ consisting of a domain linker 

in the form of two antiparallel /?-strands which are higly conserved in BMOs [215]. 

Domain rotations have been shown before in xenobiotic metabolism enzymes during 

catalysis, such as thioredoxin reductase [264]. Indeed, the antiparallel ^-strand 

domain linker is present in several proteins that exhibit domain motions, including 

thioredoxin reductase [265], but not in FMOs. In all three states of FMO crystallised 

(with no ligand bound, with substrate bound and with NADPH bound), no 

conformational change is present [214]. Despite the high degree of similarity of the 

two homology models generated, due to the different mode of action of catalysis by 

the two enzymes, only the model generated using the FMO from S.pombe (1VQW) 

was selected for further study.
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Homology modelling of FMQ3 based on the FMO from S.pombe (1VOW)

Despite domain assignment software such as DomPred [266] consistently predicting 

FM03 existing as a single domain unit, the homology model of FM03 displays two 

distinct regions of secondary structure bundles. Although these regions may well not 

qualify as being true protein domains (independent or, at the least, semi-independent 

units, able to fold and, in some cases, retain function if separated from the parent 

chain [267]) their seemingly distinct nature is interesting. It may well be that these 

regions are true domains, with automatic domain assignment methods being fallible 

due to the complexity of the task [268] and the the paucity of domain definitions 

already in the databases for FMOs. The C-terminal region of the FM03 model exists 

essentially as a long, floppy loop, devoid of more complex secondary structure. In 

many ways this region is meaningless due to the lack of coverage by the template 

protein and therefore very little structural information can be gained from analysis of 

this region.

The larger of the two domains is where the NADPH and FAD molecules are 

predicted to bind and where a molecule of the latter is modelled. In the model, the

flavin moiety is bound within the a-helix bundle, with the adenine dinuceotide moiety 

of the molecule penetrating deep into the protein, poking between an anti-parallel p-

sheet and with the tip of the moiety residing near a parallel P-sheet. It is perhaps not

unreasonable to speculate that this region of secondary structure may be involved in 

maintaining core stability around this vital region of catalysis. Despite the proposed 

catalytic region residing in a large, deep pocket, we theorise that the actual 

metabolism of substrates takes place relatively near the solvent exposed opening of 

the pocket, where the isoalloxazine ring of the flavin moiety of the FAD molecule 

resides.
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The crystal structures of 1VQW [214] have helped to give further insights into 

the mechanism of FMO action. The correct orientation of the isoalloxazine ring of the 

FAD molecule is predicted to be vital in order for it to act as an efficient prosthetic 

group, namely to accept a hydride ion from NADPH, accept molecular oxygen and for 

oxygenation of the substrate. Therefore, it was judged to be important for the 

modelled FAD molecule within the FM03 model to be in a reasonable orientation. A 

cursory examination of the FAD molecule orientation seemed to suggest that the ring 

was in a reasonable orientation when compared to the 1VQW template. Further 

examination of the model revealed that the relative distance and orientation of Asn 61 

to the FAD isoalloxazine ring (Figure 20 and Table 9) was comparable to Asn 91 and 

the FAD isoalloxazine ring within 1VQW. This is encouraging as Asn 61 is the 

human FM03 equivalent to S.pombe Asn 91, and Asn 91 has been shown to be a key 

residue in binding molecular oxygen and is thought to be the only FMO residue 

directly involved in substrate catalysis. Protein sequence alignment of all mammalian 

FMOs available at the time, an FMO from Saccharomyces cerevisiae (S.cerevisiae) 

and four putative FMOs from Caenorhabditis elegans (C.elegans) showed that the 

asparigine at this position was conserved in all sequences. This calls into question the 

previous theory of Asn 61 involvement in a conserved secondary structure of a 

conserved membrane interaction domain [141].

FAD is a relatively large molecule and, within the FM03 model, most of the 

molecule would not be visible, with the adenine dinucleotide moiety of FAD buried 

deep within the protein (Figures 21 and 24). Several residues are known to be 

involved in TMAU, where FM03 catalysis is severely disrupted or destroyed, that 

reside proximal to the modelled FAD molecule within the FM03 model, namely 

E32K, A52T, V58I and N61S (Figure 21 B). It was therefore decided to probe the
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involvement of other FM03 residues in FAD binding. The hydrophobic and 

hydrophilic interactions were predicted, measured and tabulated using MBT Ligand 

Explorer (Figure 22 and Table 9). 17 FM03 residues were predicted to contribute to 

the binding of FAD (Table 9), including two of the residues associated with TMAU, 

E32K and N61S (Figure 30). Asn 61, discussed above, was predicted to be vital for 

the catalytic cycle of FM03 with the other residues associated with FAD binding, and 

was presumably important in FAD stability and molecule accessibility. Other 

interacting residues reported by MBT Explorer, although, not associated with FM03 

catalytic reduction to date, were proximal to residues known to be so. Lys 33 (Figure 

30), which is one residue away from Glu 32 (Figure 30) and known to be associated 

with TMAU, was predicted to have hydrophilic interactions with FAD. Ser 60 is one 

residue away from the important Asn 61 (Figure 30), discussed above, and associated 

with TMAU, and is predicted to have a hydrophilic association with FAD. Met 67 

(Figure 30) is one residue away from Met 66 (Figure 30), known to be associated with 

TMAU, and is predicted to have a hydrophobic association with FAD.

In order to probe the involvement and importance of each residue predicted to 

be involved with FAD binding and stability in vitro FM03 codons could be altered by 

mutagenesis, the protein expressed and relative FAD content assayed, to see how 

much FAD binding is disrupted. Recently, a group showed that the M66I FM03 

variant failed to incorporate or retain FAD, despite expressing to comparable protein 

levels [259]. M66 (Figure 30) is highlighted on the homology model of FM03 in 

Figure 24. Interestingly, a variant of the 492 residue (Figure 30), R492W was also 

shown to lack FAD. This residue is also highlighted in Figure 24. This residue was
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Figure 30. Homology model of FM 03 with residues implicated in FAD 

incorporation and/or retention.

The FM03 homology model is shown with Glu 32 (orange), Lys 33 (pink), Ser 60 

(magenta), Asn 61 (cyan), Met 67 (yellow) and R492 (blue) displayed as spheres. 

The FAD molecule is displayed in as sticks (red).
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found to be variant in the English subject studied in this investigation (see section 

3.1.), albeit in the Q492 state. The finding that this residue caused the enzyme to be 

unable to incorporate or retain FAD is curious, as the residue does not reside near the 

catalytic core near the FAD molecule. Unfortunately, very little information about 

this region is forthcoming from the homology model due to lack of template coverage, 

discussed above. No other residues predicted to be involved with FAD incorporation 

or stability (Table 9) were investigated by this group, although other variants shown 

to be involved in TMAU were and had FAD levels comparable to wild-type enzyme, 

showing that FAD presence required but not sufficient for FM03 catalytic efficacy.

Mapping the two FMO identifying sequences, ‘F(A/T)TGY’ and 

‘FXGXXXHXXXF’, onto the model does not reveal an obvious reason for their high 

level of conservation. Due to the highly conserved nature of the ‘FATGY’ motif, it 

would be reasonable to assume that this motif is important to the molecule. A 'fishy 

taint' in the eggs of chickens has been associated with a mutation in Fmo3 which 

changes the threonine to a serine [269]. The position of the motif on the model of 

FM03 does not instantly give a clue as to the role of this motif. The ‘FATGY’ motif 

on the FM03 model maps to just above the putative active site pocket (Figure 23 A). 

Undoubtedly, the integrity of this pocket would be very important to the maintenance 

of an environment suitable for redox reactions to take place, but any specific reason as 

to why this region is so highly conserved is open to speculation. This is also the case 

for the ‘FXGXXXHXXXF’ motif, perhaps even more so, as it maps to a position in 

the larger domain but with little obvious function (Figure 23 B). It may be that these 

motifs are important in order for proper protein folding to take place or for 

maintenance of structural stability.
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The catalytic site atlas did not identify any probable catalytic residues from its 

database of enzyme active sites, within the putative active site of the FM03 model 

based on 1VQW. This may be due to the Atlas' bias towards enzymes that have had 

their mechanisms solved; hence any enzyme without a family member in the PDB 

would be less likely to be represented.

Mutations and Polymorphisms of FMQ3

The residues known to be variant in FM03 were mapped on to the homology model 

of FM03 to try and understand any structural consequences of their variance. The 

variants included all residues known to destroy (or severely disrupt) FM03 activity, 

those residues known to alter FM03 catalytic activity and the two residues for which 

novel mutations were discovered in this investigation.

The majority of the amino acid variants shown to be destructive in FM03 

seem to cluster in the larger domain, with a significant concentration around the FAD 

coenzyme (Figure 24). The majority of polymorphic sites shown to affect, but not 

destroy, FM03 activities seem to cluster in the smaller bundle of secondary structure 

(Figure 24). Other than disrupting protein folding or stability, it is not obvious as to 

how many of the variants that map away from the catalytic core are responsible for 

the lack of FM03 activity associated with their presence. R238 is positioned near, but 

not within the putative active site. A variant of this residue, R238Q, was discovered 

by a patient study in this investigation (see section 3.1.). As shown in this 

investigation, when this residue is mutated to glutamine, FM03 activity is destroyed 

(see section 3.2.). It has also been shown that when this residue is found as a proline, 

FM03 activity is destroyed [56]. The proximity of the residue to the active site courts 

speculation that the variants may prevent proper access to the active site for the
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coenzyme, electron donor, -substrate or a combination of the three. Any and all of 

these situations would prevent FM03 catalysis. The second variant, discovered for 

the first time in this investigation, was R492Q (see section 3.1.). It has been shown 

previously to destroy FM03 activity when changed to a tryptophan at this position 

[35, 62]. It is difficult to hypothesise about the possible structural consequences of 

this mutation, as it resides on the poorly modelled C-terminal region, discussed in 

more detail below.

Homology model validation

The observations so far assume that the model of FM03 resembles the actual structure 

of human FM03. There is no way of knowing this until the structure is solved by 

crystallographic methods, but the quality of the homology model was assessed to try 

and give some sort of indication of how much faith one can place in this model of 

FM03.

Four well-established and widely cited methods of structure validation were 

used to assess the homology model of FM03; Verify 3D (assesses residue packing 

environment), ProSA (assesses packing based on special separation of Cp residues), 

WHATIF (assesses residue packing quality) and Ramachandran Plot (examines the 

psi and phi backbone conformational angles for each residue in a protein.) analyses, 

generated using Swiss-PDB Viewer.

Generally, Verify 3D, ProSA and WHATIF agreed that the model of FM03 

was a good one in terms of residue environment, energy distribution and atomic 

packing quality. However, all three methods identified two areas of concern with the 

model, the first around a 50 amino acid stretch ranging from around amino acids 220- 

270 and the second region located at the C-terminal portion of the model. It is not
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surprising that the C-terminal region was flagged as being unrealistically built. This 

region was always going to be difficult to model due to the lack of template coverage 

(see Appendix 2 for details). A possible way of improving the model of this C- 

terminal region into a more realistic conformation would be to consider this tail region 

in isolation, BLAST the PDB for more suitable templates, and then build a chimeric 

model incorporating the top hit. This would require a reasonable level of primary 

sequence homology to expect an improvement. Such homology templates are not 

available in the PDB at this time. It is not clear as to why the region around amino 

acids 220-270 has not been built correctly. The template provided to Modeller as a 

basis of structural comparison had coverage in the majority of this area (see Appendix 

2 for details). Despite the classification of this region as being poorly modelled, the 

general topology of the model would be expected to be generally correct, so one can 

draw some sort of gross observations, such as, the proximity of the residue to the 

active site may possibly of interest. Both regions of poor quality do not seem to be 

directly involved in the catalytic core of the molecule and do not contain many 

mutations and/or polymorphisms known to destroy FM03 activity, although the R238 

residue mentioned above does reside in this area. We can not dismiss the importance 

of the C-terminal region of FM03, with several truncation mutations and three residue 

mutations in this region known to perturb FM03 activity (Table 2), including the 

residue R492, mentioned earlier. Mutations in this area may have more to do with the 

importance of the C-terminal region with regards to cellular localisation, rather than 

catalytic activity of protein folding/stability.

One measure of a good model is having more than 90% of the amino acid 

residues in the sterically 'allowed' regions of a Ramachandran plot [263]. This was 

found to be the case in the FM03 homology model before refinement and was
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subsequently improved during refinement. Almost half of the residues in poorly 

defined regions of the Ramachandran plot had also been previously identified as being 

present in the two areas of concern discussed above. Crucially, the residues identified 

by MBT Ligand Explorer (Table 9) as being important in binding to the FAD 

prosthetic group were found to be in the ‘allowed’ regions, suggesting that the model 

is reasonable in these important areas.

Comparison of FMQ3 model built with others recently published

Recently, Borbas et al., (2006) [270] described a model of human FM03 that they had 

created to help describe the consequences of the L360P polymorphism, discovered in 

their lab. This model was generated using the SWISS-MODEL system [164] which is 

a fully automated modelling program with absolutely no human intervention during 

model building or model scoring or refinement afterwards, much like ModWeb (see 

section 1.3.). More recently, Yeung et al., (2007) [259] presented a homology model 

of FM03 using proprietary software (Molecular Operating Environment (available 

from http://www.chemcorp.com)) which was not refined or scored.

The general topology of the two recently published models of FM03 and the 

one built in this investigation are similar (Figure 31). This is unsurprising as all three 

use the same template, 1VQW, to generate the majority of the molecule, with the 

Yeung et al., (2007) [259] model having the added feature of a C-terminal tail 

segment modelled on cytochrome C oxidase from Rhodobactor sphaeroides [271] 

(PDB code 1M56). The value of this feature could be questioned however, 

considering the low template coverage in terms of primary sequence identity being 

only 22% to human FM03, below the ‘midnight zone’ cut-off point (see section 1.3.).
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All three models seem to have two bundles of secondary structure, with the 

largest forming the core, catalytic centre with the FAD binding domain. More 

detailed comparison of the structures would require the PDB coordinates of all three, 

not presently available.
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A) B)

Figure 31. Homology models recently published of FM 03
Both models are based on the S.pombe FMO, 1VQW, the template used to generate the homology model in this investigation. A) Borbas et al., 
(2006) [270] presented a model highlighting the location of FAD (pink) and NAPDH (purple) binding sites. The variant site 360 is also 
highlighted (yellow). B) Yeung et al., (2007) [259] presented a model highlighting several variant sites (single spheres), regions most similar to 
yeast FMO (white), additional residues at C terminus (red), FATGY motif (cyan), nucleotide binding motifs (yellow) and FMO ‘identifying’ and 
signature motifs (purple).
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FMQ3 model -  Active site of FMQ3

The literature surrounding the biochemical activities catalysed by the active site of 

FMOs has been built up since the early pioneering work of Daniel Ziegler in the 1960’s 

right up to the present day. Since there is no structure of a mammalian FMO and no 

homologue of high enough sequence identity to infer function, the active site and the 

consequences of alterations to the active site, i.e. through amino acid substitutions, have 

been shrouded in mystery. Having a refined model of FM03 means it would be possible to 

probe the biophysical environment of any putative active site through protein-ligand 

docking. A good starting point in protein-ligand docking would be AutoDock, which is a 

free-to-academia suite of computer programs used to model protein-ligand interactions. It 

is the most highly cited docking algorithm in the peer-reviewed literature (correct as of 10th 

October, 2006) [272]. AutoDock has been shown to be more accurate than other free-to- 

academia, protein-ligand software such as FlexX [273] and Dock [274] in benchmarking 

tests [275]. AutoDock uses a protein molecule (such as the homology model of FM03) and 

a ligand (such as FM03 substrate, methimazole or FM03 cofactor, FAD) as input files. 

The program then probes a user-defined space, e.g. the putative FM03 active site, using 

simulated annealing techniques for a low energy conformation. This process is an iterative 

one and the results can be viewed by the user. Models can also be mutated and then 

subsequently subjected to docking studies in an attempt to understand the biophysical 

consequences of amino acid substitutions at the tertiary level. This sort of study could give 

fresh insight into the impact of the mutations underlying TMAU and the polymorphisms 

known to cause changes in the catalytic capacity of FM03.
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FMQ3 model -  insieht to the structural chanees which lead to TMAU

The mutations leading to TMAU are more likely to cause perturbations in FAD binding or 

orientation, leading to FAD being completely displaced from the molecule or bound in a 

state which renders the prosthetic capacity of the molecule inefficient, or indeed, lost. This 

could be assayed in vitro by generating mutations predicted to perturb FAD binding by site 

directed mutagenesis and then assessing FAD content compared to wild-type protein. This 

approach is supported by the recent work by Yeung et al., (2007) [259] who showed that 

M66I, a residue known to cause TMAU and one residue away from M67 which was 

predicted in section 3.3. Table 9, to interact with FAD, failed to incorporate FAD forming 

the FM03 holoenzyme in vitro [259]. It would be interesting, and possible, to 

systematically generate the FM03 variants predicted to interact with FAD and then assay 

the molecules for FAD incorporation. To complement this, having a refined FM03 

homology model allows protein-ligand docking studies to be performed. Where docking 

studies suggested that FAD may well be able to bind to FM03 but does so in such a manner 

that the correct orientation of the isoalloxazine ring can not be achieved, then FAD content 

would be expected to be maintained at a wild-type level, but catalysis would be perturbed.

Other variant sites are more difficult to theorise as to the causes of FM03 activity 

perturbation, other than protein folding, structural integrity maintenance and perhaps cell 

localisation.
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3.4. Evolution of the FMQ3 locus

The work in this section has been published.

Allerston, C.K., Shimizu, M., Fujieda, M., Shephard, E. A., Yamazaki, H. and Phillips, I. R. 
(2007) Molecular evolution and balancing selection in the flavin-containing 
monooxygenase 3 gene (FM03). Pharmacogenetics and Genomics. 17(10):827-839.

FMQ3 nucleotide sequence variation

6,274 bp of the FMO3 gene were sequenced from 23 Japanese potential TMAU sufferers. 

This comprised 3,358 bp of contiguous 5’ flanking sequence (extending from -5144 to - 

1786, relative to the A of the ATG translational initiation codon), the entire coding 

sequence (1,599 bp, 533 codons, including the stop codon, in exons 2-9) and 1,317 bp of 

partial intronic and 3’-untranslated region. The sequencing was performed by the Yamazaki 

group in Japan. Haplotype phases were inferred by the Yamazaki group using the software 

packages SNPAlyze (DYNACOM, Chiba, Japan) and HAP [276]. Results from one 

individual were ambiguous and thus were excluded from the data set. Sixteen diallelic 

SNPs were identified, 12 in the 5’-flanking region and 4 in the coding region (Table 10). 

Twelve of the SNPs were transitions and 4 were transversions. Three of the SNPs, all in the 

5’flanking region, at -4600, -4488 and -3788, are novel. All of the coding-region SNPs 

were nonsynonymous substitutions: at positions +15167G>A in exon 4 (Glu>Lys change at 

amino-acid residue 158), +15549C>T in exon 5 (Arg>Cys change at residue 205), 

+18281G>A in exon 6 (Val>Met change at residue 257) and +21443A>G in exon 7 

(Glu>Gly change at residue 308). The SNPs at codons 158, 257 and 308 are polymorphic 

variants that individually have a limited effect on enzyme activity [35, 67, 255]. None of 

the SNPs were present as a singleton, i.e. occurred in only one sequence of the sample, and 

only one (+15549C>T) was present as a doubleton. Comparison with the FM03 sequence 

of chimpanzee (Pan troglodytes) (Genbank accession no. NM_001009092.1) showed that 

for each diallelic SNP observed in humans, one of the two alleles was present at the
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Table 10. SNPs and their frequencies

dbSNP
Accession

Number

Allele Frequency of derived variant in
Potential TMAU 

sufferers0 
(n=44)

Controlsd

(n=90)
Position Ancestral3 Derived1*

rs6608461 -5109 G C 0 .11 4 (0 .0 5 1 ,0 .2 0 6 ) 0 .10 0 (0 .0 6 1 ,0 .1 5 1 )

-4600 T C 0 .11 4 (0 .0 5 1 ,0 .2 0 6 ) 0 .10 0 (0 .0 6 1 ,0 .1 5 1 )

rs 12402693 -4488 C T 0.114 (0 .0 5 1 ,0 .2 0 6 ) 0 .1 0 0 (0 .0 6 1 ,0 .1 5 1 )

-3788 T C 0 .11 4 (0 .0 5 1 ,0 .2 0 6 ) 0 .10 0 (0 .0 6 1 ,0 .1 5 1 )

rs 1736554 -3606 G A 0.11 4 (0 .0 5 1 ,0 .2 0 6 ) 0.211 (0.163, 0.266)

rs3754487 -3549 C T 0 .31 8 (0 .2 2 8 ,0 .4 1 9 ) 0.267 (0.216, 0.321)

rs 1736555 -3548 A G 0.545 (0.446, 0.643) 0.578 (0 .524 ,0 .631)

rs3754489 -3544 C T 0 .114 (0 .0 5 1 ,0 .2 0 6 ) 0 .10 0 (0 .0 6 1 ,0 .1 5 1 )

rs 12404183 -2854 T C 0 .114 (0 .0 5 1 ,0 .2 0 6 ) 0 .1 0 0 (0 .0 6 1 ,0 .1 5 1 )

rs 1736560 -2650 C G 0.545 (0.446, 0.643) 0.578 (0 .524 ,0 .631)

rs 12404218 -2543 T A 0.11 4 (0 .0 5 1 ,0 .2 0 6 ) 0 .10 0 (0 .0 6 1 ,0 .1 5 1 )

rs3754491 -2177 G C 0 .1 1 4 (0 .0 5 1 ,0 .2 0 6 ) 0 .1 0 0 (0 .0 6 1 ,0 .1 5 1 )

rs2266782 15167(E158K) G A 0.364 (0.270, 0.464)

rs28363549 15549(R205C) C T 0.045 (0.009, 0.128)

rs 1736557 1828KV257M) G A 0.068 (0 .021 ,0 .155)

rs2266780 21443(E308G) A G 0.318(0 .228 , 0.419)

“The positions of the SNPs are given relative to the ‘A’ of the ‘ATG’ translational initiation 
codon. For each codon-region SNP, the codon position is also given. 
bThe ancestral state of each SNP was inferred from the chimpanzee sequence. 
cNumbers in parenthesis are 95% confidence intervals.
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corresponding position in chimpanzee (Table 11). The ancestral state of each SNP was 

inferred from the chimpanzee sequence. With the exception of SNPs at -3548 and -2650, 

the more common human variant corresponded to the inferred ancestral allele.

Calculations of measures of nucleotide diversity were based on the number of 

effectively silent sites in the sequenced region. For the potential TMAU sufferers this was 

estimated to be 5,065 and is the sum of all 5’flanking and 3’-untranslated sites, plus all 

intronic sites (with the exception of the two conserved splice sites at the 5’ and 3’ end of 

each intron) and exon sites that are silent. Although the 5’-flanking region undoubtedly 

contains some sites that are functionally constrained, the identity of these is not known and 

intuitively they would constitute a very small proportion of the 3,358 bp of 5’-flanking 

region sequenced. For the control group, all 3,358 bp of 5’-flanking region were considered 

silent.

Two estimates of sequence diversity were calculated: the average expected per-site 

nucleotide heterozygosity (0W), estimated from the observed number of polymorphic sites 

[174], and nucleotide diversity (7t), a direct estimate of per-site heterozygosity, derived 

from the average pairwise sequence difference between two random sequences in a sample 

[227]. For the potential TMAU sufferers, 0W is 0.00054 and n is 0.00065 (Table 12). For the 

control group, both estimates of diversity are higher, 0W being 0.00070 and n 0.00095. The 

estimates of nucleotide sequence diversity (n) for FM03 are similar to the average value of 

n (0.00075) for human genetic loci [277, 278]. There were no mutations at silent sites in the 

coding region.
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Table 11. Haplotvpes and their estimated frequencies in the potential TMA patient group

N ucleotic

Haplotype

e position

1 1 1
5 4 4 3 3 3 3 3 "> -> 5 5 8 1
I 6 4 n 6 5 5 5 8 6 5 1 1 5 2 4

0 0 8 8 0 4 4 4 5 5 4 7 6 4 8 4
9 0 8 8 6 9 8 4 4 0 3 7 7 9 1 3

Codon
1 2 2 3
5 0 5 0
8 5 7 8

G T C T G C A C T C T G G C G A
Frequency

Chimp
1
2
3
4
5
6 
7

C T C
G
G

G
G

T C G A C

C.
G

A

A G
A

0.364
0.045
0.114
0.045
0.045
0 .318
0 .068

The positions of the SNPs are given relative to the ‘A’ of the ‘ATG’ translational initiation 
codon. For each codon-region SNP, the codon position is also given. Bases identical to the 
chimpanzee sequence are indicated with a dash and are inferred as the ancestral state. 
Haplotype 1 is identical at each SNP position and thus represents the ancestral haplotype. 
Polymorphisms are derived from this state and the base change is indicated.
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Table 12. Diversity estimates and neutrality tests for FMO3

Potential TMAU sufferers Control group
Sample summaries

na 44 90
Sb 16 12
sc 0 0
Rmd 1 0

P values P values
he 7 < 0.05* 4 <0.01
Expected no. of 
haplotypesf

11.6 9.6

Parameter estimates
0wg 0.00055 0.0070
7^ 0.00066 0.00095
Test statistics
Tajima’s D "'”' 0.66 - 0.92 -

Fu and Li’s F * ""1 1.59 <0.05 1.47 < 0.001
Fu and Li’s D*1' " 1 1.51 <0.05 1.52 <0.05
Fu’s Fs[m 3.50 < 0.05* 7.38 <0.01
Raggedness (r)11 /V| 0.16 - 0.37 <0.02
zJS" 0.32 < 0.05* 0.48 <0.02
Wall’s fi1'80' 0.33 < 0.05* 0.45 <0.05
Wall’s e 11801 0.38 - 0.50 <0.02

A total of 6,274 sites (5,033 silent sites) were analysed in potential TMAU sufferers and
3,358 silent sites in control individuals.
aNumber of chromosomes surveyed
bNumber of segregating sites
cNumber of singleton sites
dMinimum number of recombination events, based on the four-gamete test [224] 
eNumber of haplotypes
fGiven the extent of nucleotide diversity in the sample and assuming no recombination
events have taken place
gExpected heterozygosity per nucleotide [174]
hAverage pair-wise sequence difference per nucleotide [227]

P values are given within the potential TMAU sufferer group when significant (P < 0.05) 
and are based on comparisons to estimates obtained from coalescent simulations performed 
assuming constant populations size and no recombination, except where marked which 
were significant only when simulations were performed for the level of recombination 
observed in the sample.
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Haplotypes

The 16 SNPs in the sample of 44 chromosomes were found to segregate as 7 distinct 

haplotypes. These haplotypes, together with the haplotype composed of the ancestral state 

of each allele, inferred from chimpanzee, are shown in Table 11. The most frequent 

haplotype in the sample (haplotype 1), with a frequency of 0.363, is identical to the 

chimpanzee sequence at all 16 SNP positions and thus represents the inferred ancestral 

haplotype. One of the haplotypes (haplotype 4) appears to have arisen as the result of a 

recombination event (see section 3.4.).

Although individuals in the TMAU cohort were self-selected on the basis of an 

apparent fishy body odour, only seven were diagnosed as suffering from mild TMAU, as 

judged by urinary secretion of 70-90% of total TMA as TMA A-oxide, with two more 

being classed as borderline (excretion of 90% of total TMA as the A-oxide) [85]. Of the 

seven mild TMAU sufferers, six have a haplotype pair that is the same as that present in 

one of the unaffected individuals (Table 13). If only the 5’-flanking region is considered the 

12 SNPs present in this region segregate as four distinct haplotypes. The identity of these 

haplotypes is the same, and their frequencies are similar, in the potential TMAU sufferers 

and control groups. This is also the case for the haplotype pairs in the two groups. 

Therefore, with the exception of R205C (see section 3.4.), none of the SNPs or haplotypes 

identified in the 44 chromosomes of the potential TMAU group is apparently causative of 

the disorder. Some affected individuals may possess mutations, in unsequenced regions of 

the gene, which would compromise gene expression or RNA processing. Alternatively, the 

mild TMAU may be the result of dietary intake of relatively large amounts of TMA 

precursors, e.g. choline, or to factors that affect the metabolism of such compounds, for 

instance, gut flora composition or functional polymorphisms of endogenous enzymes.
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Table 13. Genotypes and their occurrences in potential TMAU sufferers

Genotype 
(haplotype pair)

Occurrences in
Diagnosed 

TMAU sufferers
Borderline cases Non-affected

individuals
1-1 1 1
1-2 1 1
1-3 1 1
1-5 1 1
1-6 2 4
3-4 1
3-6 2
4-7 1
6-6 2
6-7 2

Total 7 2 13

The number of ocurrances of each haplotype pair in diagnosed TMAU sufferers, borderline 
cases and non-affected individuals is presented. Of note is the finding that six of the 
individuals diagnosed as suffering for TMAU (albeit mild cases) have a haplotype pair that 
is also found in non-affected individuals.
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Recombination and linkage disequilibrium

The presence in haplotypes of diallelic SNPs of pairs of sites with four gamete 

combinations is indicative of recombination (crossing-over between the two sites or gene 

conversion) or repeated mutation. The probability of repeated mutation at the same site is 

very small. The four-gamete test (Table 12) [224] reveals that only 2 out of 120 pairs of 

SNP sites compared (-3548, 158 and -2650, 158) have all four gametes. The presence of 

these two four-gamete site pairs can be accounted for by a single recombination event 

(between variant sites -2650 and 158).

Of the 120 pairwise comparisons of variant sites, 37 show significant LD (P < 

0.001) (Figure 32 A). A plot of pairwise LD (measured as R2) against physical distance 

indicates that strong LD extends to a distance of 25 kb (Figure 32 B), e.g. between the SNP 

at -3549 and that at 308, which lies 21.5 kb downstream of the translation initiation codon.
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Figure 32. Pairwise linkage disequilibrium

A) A plot of the association among 16 SNPs within 22 Japanese individuals. Blackened 
boxes indicate 37 out of 120 possible associations that display significant LD at the 0.001% 
level by a %2 test and Bonferroni correction. Numbers denote the nucleotide positions of the 
SNPs relative to the A of the ATG translational initiation codon.
B) The relationship between pairwise LD, measured as R2, and physical distance, in 
kilobase pairs (kb), for the 37 associations significant at the 0.001% level.
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Evolutionary history of FMQ3 allelic divergence

The mutational relationship among the haplotypes was visualised by construction of a RM 

network [225] (Figure 33). In a RM network, circles correspond to distinct haplotypes. The 

size of each circle is proportional to the relative frequency of the haplotype in the sample. 

Haplotypes are connected by branches (lines) along which mutations are indicated. Where 

multiple mutations occur along a single branch, e.g. between the central node and haplotype 

3, the order in which these occurred is not known and hence their sequence along the 

branch is arbitrary.

Haplotype 1 corresponds to the ancestral sequence and thus is the root haplotype of 

the network. By tracing the connections that link the route haplotype to the other 

haplotypes, the evolutionary history of genetic changes at the FM03 locus can be inferred. 

The FM03 haplotypes fall into four major clades. One of these comprises the ancestral 

haplotype (haplotype 1) and haplotype 5, which are separated from each other by a single 

cSNP that causes an Arg>Cys substitution at residue 205 of the protein. The three other 

haplotype clades comprise of phylogenetically distinct lineages radiating from a central 

node, separated from the ancestral haplotype by two mutations (at -2650 and -3548): 

haplotype 3 has undergone eight further mutations in the 5’-flanking region; haplotypes 2 

and 7 both have an additional single mutation (at -3606) and are separated from each other 

by a single SNP that causes a Val > Met substitution at residue 257; haplotype 6 is 

separated from the central node by three mutations, one (at -3549) in the 5’-flanking region 

and two SNPs that cause Glu > Lys and Glu > Gly substitutions at residues 158 and 308, 

respectively.

The placement of one haplotype, haplotype 4, is ambiguous, as indicated by a 

reticulation in the network. This is due to homoplasy (the inferred occurrence of multiple 

independent evolutionary events giving rise to the same allelic state at a variable site) that
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Figure 33. Reduced-median network of FM03 haplotypes.

Each of the seven unique haplotypes is represented by a circle, the size of which is 
proportional to the relative frequency of the haplotype. Mutational relationships are 
indicated by lines linking the haplotypes. Mutational differences between haplotypes are 
indicated on the branches of the network. Mutations in the 5’-flanking region of the gene 
are identified by their nucleotide position relative to the A of the ATG translational 
initiation codon. Coding-region mutations leading to an amino acid change, 15167 
(E158K), 15549 (R205C), 18281 (V257M) and 21443 (E308G), are boxed. Where 
mutations occur along a branch, their order is arbitrary.
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affects sites -3548, -2650 and 158.

Time depth of FMQ3 variation and ages of mutations

To investigate the length of time over which the sequence differences have arisen and of the 

ages of individual mutations, something which can’t be done using a RM network, the 

sequence haplotypes were analysed through the use of the program GENETREE, which 

uses maximum-likelihood coalescent analyses [226], under assumptions of neutrality and 

an infinite-sites model of evolution, i.e. no recombination. Thus haplotype 4, which appears 

to have arisen via a recombination event, was excluded from this analysis. The method uses 

all of the information in the infinite-sites-compatible sequence data set.

The maximum-likelihood estimate of the population mutation parameter (0m l) per 

locus, conditional on the FM03 gene tree and determined by using the GENETREE 

program, is 3.30. This is slightly larger than 0w, the estimate of the parameter from the 

number of polymorphic sites, which is 2.74 for the locus.

The gene tree for FM03 is shown in Figure 34. To estimate the neutral mutation 

rate of FM03 we used the net silent-site sequence divergence between humans and 

chimpanzee (i.e. divergence between species minus divergence within species) and a 

human-chimp divergence time of ~6 million years before present (BP) [33]. The net 

sequence divergence was estimated as 47.31. This gave a neutral mutation rate (v) of 7.78 x 

10'10 per site per year. Assuming a generation time of 20 years, the locus-specific neutral 

mutation rate (p) is 7.88 x 10'5 per locus per generation. Using the GENETREE maximum 

likelihood estimate of the parameter 0 and our estimate of the locus-specific mutation rate 

p, the effective population size (N e) was calculated, from the relationship 0 = 4Nep, as 

10,463.

The estimated time to the most recent common ancestral sequence (T m rca ), i.e. the
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Figure 34. A genetree for FM 03, estimated through maximum-likelihood coalescent 
simulation
The tree shows the inferred genealogical history of the 6 haplotypes compatible with the 
infinite sites model of mutation. Mutations in the 5’-flanking region of the gene are 
identified by their nucleotide position relative to the A of the ATG translational initiation 
codon. Coding-region mutations leading to an amino acid change, 15167 (E158K), 15549 
(R205C), 18281 (V257M) and 21443 (E308G), are boxed. Where branches contain 
multiple mutations, with the exception of 15167 (see text), the order of mutations through 
time is arbitrary. The scale is presented as millions of years before present (Myr BP).
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total time depth of the tree, derived from the maximum-likelihood coalescent analysis, was 

calculated as 2.08 in units of 2Ne generations. This value was substituted using the estimate 

of Ne and assuming 20 years per generation, to years. This corresponds to 872 thousand 

years (kyr) BP (SD = 226 kyr BP). This corresponds closely to the coalescence time 

expected for a neutrally evolving human nuclear locus, assuming random mating and a 

long-term constant effective population size, i.e. 4Ne generations ago [279]. In a coalescent 

model assuming constant effective population size, average pairwise divergence is 

dominated by the time taken for the last two lineages to coalesce, which is expected to take 

2Ne generations, or half the total time back to the most recent common ancestral sequence. 

From the net sequence divergence between human and chimp FM03 genes (47.31) and the 

average pairwise sequence difference among human haplotypes in the same region (3.32), 

the average pairwise age of sequence diversity is estimated as 6 x l06x 3.32/47.31 = 421 kyr 

BP. This indicated a TMRCAof 842 kyr BP.

The maximum-likelihood coalescent analysis of GENETREE also enables 

estimation of the ages of individual mutations and the coalescent times of various 

haplotypes. The coalescent time for haplotypes 2, 3, 6 and 7, which corresponds to the point 

at which these evolutionary lineages coalesce to a common ancestor, is estimated as 674 

kyr BP (SD = 182 kyr BP). Similarly, the coalescent time of haplotypes 2 and 3 is 

estimated as 283 kyr BP. In cases where multiple mutations have occurred along a single 

branch, e.g. that leading to haplotype 3, the order in which they arose is unknown and 

consequently the dates of individual mutations can not be estimated. However, in the case 

of the branch leading to haplotype 6, which contains three mutations, the single 

recombination event that, from the RM network (Figure 33) and the four gamete test, was 

predicted to give rise to haplotype 4 (see above), indicates that the mutation at 158 predated 

those at -3549 and 308. This allows the SNP at 158 (Gly > Lys) to be dated. The mutation
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is estimated to have occurred 371 kyr BP (SD =132 kyr BP). Although the order in which 

mutations at -3549 and 308 occurred is not known, the SNP at 308 (Glu > Gly) is 

estimated to have occurred some 200 kyr BP and thus it, too, is relatively old. The SNPs at 

257 (Val > Met) and 205 (Arg > Cys) occurred more recently, with estimated ages of 62 

kyr (SD = 52 kyr) and 52 kyr (SD = 59 kyr), respectively.

Evidence for balancing selection at the FMQ3 locus

To examine the possibility that balancing selection, suggested by the relatively long branch 

lengths separating intermediate-frequency haplotypes on both the RM network (Figure 33) 

and the genetree (Figure 34), has acted on the FM03 locus, several tests were performed. 

These tests fell into four classes based on (1) the frequency spectrum of alleles within the 

FM03 locus, (2) the number and diversity of haplotypes in the sample, (3) LD and finally 

(4) interspecific comparison of sequence variation. To address the possibility of bias that 

might arise from analysis of sequences derived from potential TMAU sufferers, all tests 

were also performed independently, on 3,356 bp of 5 -flanking region of FM03 from 45 

unaffected Japanese individuals.

A summary of the tests carried out on the FM03 population samples is presented in 

Table 12.

Allele frequency spectrum

Under neutrality, and assuming random mating and a constant population size, the two 

estimates of nucleotide variation, 0W and 7t, should be equal and Tajima’s D, which 

compares these values, should be zero. The two neutrality tests are not equal in both the 

potential TMAU group and the control group leading to a positive Tajima’s D value.
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Fu and Li’s F* and D* statistics were used to compare the observed number of 

singleton polymorphic sites with that expected under a neutral model. Fu and Li’s F * and 

D* were positive for both the potential TMAU sufferers (P > 0.05) and the control group (P 

> 0.001 and P > 0.05, respectively).

Wrights fixation index, Fst, which measures population subdivision by comparing 

genetic diversity within subpopulations to that of the whole population, was used to analyse 

the FM03 SNPs. Only Japanese individuals were sequenced in this investigation, but SNP 

coverage in the genotyped panels of dbSNP contained details of four of the SNPs featured 

in the Japanese group, -3606, -2854, 15167 (E158K) and 18281 (V257M), in panels of 

European, Asian and African origin. The average Fst value four the four SNPs among 

these populations were found to be 0.050.

The allele frequency spectrum (Figure 35 A) showed an excess of intermediate- 

frequency SNPs compared to the number expected under a neutral model of evolution.

The Number and diversity of haplotypes

The number and diversity of haplotypes was examined to investigate departures from 

neutrality. Fu’s Fs statistic was used to compare the observed number of sequence 

haplotypes to the number expected under the assumption of an infinite-sites model of 

neutral mutation with no recombination. The significantly positive value of Fs (P > 0.02) 

(Table 12) indicated an excess of intermediate-frequency haplotypes.

As mentioned earlier, analysis of DNA sequences from the potential TMAU 

sufferers indicated that the sample has undergone a single recombination event. When 

coalescent simulations were performed for the level of recombination observed in this data 

set, the number of haplotypes and Fs for the TMAU group were significantly different from 

those expected under neutrality (P < 0.05)

156



A)
10-

OT
CL

(/)
T>c
1
T3
**—
O

252010 155

250 -

Frequency of SNP in sam ple population 2 3 4 5 6 7 8 9  10 11
Pairwise Haplotype Differences

Figure 35. SNP frequency spectrum and Pairwise mismatch distribution histograms

A) A frequency spectrum of SNP alleles. Bars represent the observed frequency of SNP alleles and the line indicates the frequency expected 
under a model of neutral evolution.
B) Pairwise mismatch distribution among FM03 haplotypes. Bars show the observed frequencies of the numbers of differences between all 
pairs of the 44 haplotypes in the Japanese potential TMAU sufferers.
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The pairwise difference distribution among FM03 haplotypes was examined using the 

Rogers’ mismatch distribution test [179]. The result showed a multimodal, also known 

as ragged, distribution (Figure 35 B) with a raggedness index of 0.16 for the potential 

TMAU sufferer group and 0.37 (P < 0.02) for the control group (Table 12).

Linkage disequilibrium

Zns [181], Wall’s B and Wall’s Q [180], were used to assess whether the strong LD which 

occurred throughout the FM03 locus (Figure 32) was consistent with a neutral model of 

evolution. In the control group, values of Z„$, Wall’s B and Wall’s Q were all significantly 

higher than expected under neutrality (Table 12). Z„s and Wall’s B for the potential TMAU 

sufferers was significantly high when compared with estimates obtained from simulations 

performed for the level of recombination observed in this group (P < 0.05).

Inter-specific comparisons of the FMQ3 locus

Comparison of the sequenced regions of the human and chimpanzee (Pan troglodytes) 

(Ensembl [280] genebuild (August 2006 PanTro 1.0)) FM03 locus revealed 49 fixed 

differences. Eight of these were in coding regions of which two were non-synonymous 

variants (247G>A in exon four generating a R116H variant and 1421A>T in exon 9 

generating a D474V variant). The average nucleotide divergence per silent site between 

human and chimpanzee within the sequenced regions of the FM03 locus was found to be 

0 .010.

The McDonald-Kreitman test, a test of neutrality that is not dependent on 

assumptions about population history, was used to compare the ratio of replacement to 

silent polymorphisms within humans with the ratio of replacement to silent fixed 

differences between humans and chimpanzee (Table 14). The test indicated that the
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Table 14. McDonald-Kreitman test of neutrality

S ilent R ep lacem en t F ish er 's  ex a c t test
F ixed
P olym orphic

4 7  2 P < 0.05  
12 4

Numbers of polymorphisms and fixed difference founds at both silent and replacement 
(those that change amino acid residue) sites in the 44 chromosomes are contrasted with a 
2 x 2  Fisher’s exact test of independence.
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number of replacement SNPs in human FM03 is significantly more than would be expected 

under a neutral model of evolution (P > 0.05).

Evolution of the FMQ3 locus - Discussion 

FMQ3 nucleotide sequence variation

There was a marked paucity of low-frequency variance with regards to the SNPs present in 

the population sample of FM03. The finding that of the seven mild TMAU sufferers, six 

have a haplotype pair that is the same as present in unaffected individuals is perhaps not as 

surprising when one considers that those six individuals had haplotype 1 as one of the 

haplotypes. This haplotype is the ancestral haplotype and as such can be considered to 

code for a wild-type FM03. TMAU is a recessive condition, where severely affected 

individuals have both of their FM03 alleles containing mutations leading to perturbation or 

destruction of FM03 activity. The individuals in this study were assessed biochemically 

and diagnosed as having borderline or mild TMAU (Table 15).

Evidence that the sample has undergone only one recombination event (see 3.4.) is 

indicative of strong linkage disequilibrium (LD).

Evolutionary History of FMQ3

The presence of homoplasic sites is indicative either of recurrent mutations or 

recombination events. Haplotype 4 may have arisen via a recurrent mutation of the 

ancestral haplotype at position 158. However, the mutation at the 15167 (G>A) (encoding 

amino acid 158) site is not a CpG site and thus would not be subject to a markedly higher 

rate of mutation. A more likely origin is via a single recombination event that took place 

between sites -2650 and 15167 on an ancestral haplotype and a haplotype corresponding to
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Table 15. Genotype and biochemical phenotype of individuals potentially suffering from
TMAU

Genotype
(haplotype
pair)

Total TMA
(mmol/mol
creatinine)

Free TMA 
(mmol/mol 
creatinine)

TMA A/-oxide 
(% of total 

TMA)

Diagnosis

1-1 123.7 4.7 96 Unaffected
1-1 88.7 11.0 88 Mild
1-2 70.1 12.9 82 Mild
1-2 44.0 2.6 94 Unaffected
1 -3 71.7 21.0 71 Mild
1 -3 69.0 4.0 94 Unaffected
1-5 60.7 1.8 97 Unaffected
1 -5 85.1 22.2 74 Mild
1 -6 127.5 13.0 90 Borderline
1-6 32.8 1.6 95 Unaffected
1 -6 156.0 0.8 99 Unaffected
1 -6 70.0 14.0 80 Mild
1 -6 36.9 1.0 97 Unaffected
1 -6 110.0 1.1 99 Unaffected
3 -4 116.5 10.6 91 Borderline
3 -6 64.6 0.8 99 Unaffected
3 -6 157.1 2.2 99 Unaffected
4-7 121.2 16.0 87 Mild
6 -6 119.4 13.0 89 Mild
6 -6 109.8 10.1 91 Borderline
6-7 117.0 6.2 95 Unaffected
6-7 49.1 0.5 99 Unaffected

Free TMA and TMA A-oxide were measured in the first void urine of the morning of each 
individual. The haplotype pair of each individual is shown along with the diagnostic urine 
analysis, which was carried out by the Yamazaki Group, Showa Pharmaceutical University, 
Japan.
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the node located on the branch linking the central node to haplotype 6. The haplotype 

corresponding to this node would have contained a mutation at site 158, but not sites -3549 

or 21448 (encoding amino acid 308), indicating that the mutation at site 15167 (encoding 

amino acid 158) pre-dated the occurrence of the latter two mutations. The recombination 

event inferred from the RM network corresponds to that predicted by the four-gamete test 

(see above). Data from dbSNP [230], which indicate that the SNP at codon 158 occurs 

more frequently than that at codon 308, supports the conclusion that the former mutation 

occurred before the latter.

Time depth

The net sequence divergence was estimated as 47.31. This gave a neutral mutation rate (v) 

of 7.78 x 10'10 per site per year which is similar to estimates for many other human nuclear 

loci [281]. The effective population size (Ne) was calculated, from the relationship 0 = 

4Nep, as 10,463 (very close to the average value determined from other genes [281-286]). 

The calculated value of the T m rca  of 842 kyr BP from the coalescent model was very close 

to the estimate obtained from the maximum-likelihood coalescent analysis of 872 thousand 

years (kyr) BP (S.D. = 226 kyr BP). Thus two independent methods of calculation give 

very similar estimates for the time-depth of the FM03 gene tree, which correspond to that 

expected for nuclear genes. Thus most of the mutations in the sample, including the SNPs 

at 158 and 308, probably arose before the origin of modem humans some 150-200 kyr ago 

[281, 287] and almost all probably predated the migration out of Africa, estimated to have 

occurred 50-100 kyr ago [281, 287]. Of the identified SNPs that are present in dbSNP (- 

3606, -2854, 158 and 257), all occur in African, European and Asian populations, as does 

the SNP at 308 [248], which supports their pre-out-of-Africa origin. The estimated age of
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the most recent mutation in this study at nucleotide 15549 (R205C) indicated that it may 

have arisen after migration out of Africa and thus may be restricted to Eurasian or Asian 

populations. This is supported by the presence of the mutation in Asian, but not African or 

European, populations.

Tests for departure from neutrality -  a case for balancing selection

A higher value of 0w and tt, for both the potential TMAU sufferers and control groups 

(Table 12) and, consequently, a positive Tajima’s D, implies an excess of moderate 

frequency compared to low-frequency variants, though the excess is not statistically 

significant.

Positive Fu and Li’s F* and D* values indicate a significantly high proportion of 

‘old’ versus ‘young’ mutations, suggesting balancing selection or population subdivision. 

The Fst value of 0.050 among the populations in the dbSNP panels for the four SNPs 

covered indicated that only 5% of the observed variation was due to differences among 

populations. This value is lower than that typically observed for nuclear genes -0.15 [281, 

288-290], and is lower than the values reported for 80% of 25,549 SNPs [291]. This trend 

of FM03 haplotype diversity has been reported recently in African Americans, non-Latino 

whites and Hispanics of Mexican descent [60]. The low Fst values estimated for the FM03 

SNPs suggests that little genetic differentiation of FM03 has occurred among continental 

populations and suggests that the positive Fu and Li’s D* and F* are more likely due to 

balancing selection than to population subdivision.

The excess of intermediate-frequency SNPs, in both the patient and control groups, 

compared to the number expected under a neutral model of evolution are suggestive of 

balancing selection. Most genes studied to date differ from this in that they contain an 

excess of rare alleles, which has been interpreted as either being due to positive selection or
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population growth [292]. The significantly positive value of Fu’s Fs (P>0.02) indicated an 

excess of intermediate-frequency haplotypes, supporting the earlier findings that this may 

be due to balancing selection acting on the FM03 locus. This paucity of haplotypes was 

significant (P>0.01), considering the extent of nucleotide diversity of the sample, which 

futher supports this interpretation.

The multimodel distribution observed by the Rogers’ mismatch test and 

Harpending’s Raggedness test is typical for a distribution observed when balancing 

selection is in effect or where the population size has remained constant over a long period 

[179]. This is in contrast to a unimodel, also known as smooth, distribution, which is 

typical of a population growth or directional selection [179] and which is exhibited by the 

majority of genes studied to date [292].

The results of significant Zns, Wall’s B and Wall’s Q tests are compatible with 

balancing selection acting on the FM03 locus, which would be expected to result in LD 

among selectively neutral polymorphic sites closely linked to the sites under selection.

The average nucleotide divergence per silent site between human and chimpanzee 

within the sequenced regions of the FM03 locus was consistent with that of other genes 

[191,288, 293].

The McDonald-Kreitman test, indicating that the number of replacement SNPs in 

human FM03 is significantly more than would be expected under a neutral model of 

evolution, could be construed as balancing selection or slightly deleterious selection. In the 

latter case, although purifying selection would prevent a slightly deleterious amino acid 

variant from attaining a high frequency, it may be weak enough to allow the variant to be 

maintained at a low frequency. However, replacement polymorphisms of FM03 are not all 

rare, with two of the four having a moderate frequency (>30%), which would favour 

balancing rather than slightly deleterious selection.
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The analysis of the FM03 samples from the two cohorts of Japanese individuals 

generated results based on phylogenetics, allele frequency spectrum, the number, frequency 

and mismatch distribution of haplotypes, linkage disequilibrium and inter-specific sequence 

comparisons, which all provide evidence for the FM03 locus undergoing a period of 

balancing selection. The failure of several of the test statistics used in this investigation to 

detect selection where there is independent, compelling evidence of such (as in the cases of 

the p-globin [282] and Duffy blood group loci [294]) underscored the strength of the signal 

of detection for the departure from neutrality in the FM03 locus where significant values 

were attained for all tests. It has been shown that the vast majority of human genes 

investigated display negative Tajima’s D [295], an allele frequency spectrum skewed to the 

left due to an excess of rare alleles [296] and a haplotype mismatch distribution that is 

unimodal [296], interpreted as evidence of the expansion of the human population, which 

would obscure any affects of balancing selection. Therefore, our results represent strong 

evidence for balancing selection at the FM03 locus.

Balancing selection can maintain variation in the population for longer than would 

be expected under a neutral model of evolution. It is characterised by an excess of alleles at 

intermediate frequency and a phylogeny in which > 2 lineages are separated by relatively 

large branching, giving the network an old coalescence. These characteristics have been 

presented describing the FM03 locus. The variants being maintained would be expected to 

confer a selective advantage in order to be maintained in a population, of which the 

determination of the identity and phenotypic consequences are extremely difficult to 

determine. In the case of the FM03 locus, two haplotypes, 1 and 6, have been maintained 

at an intermediate frequency over long periods. Haplotype 1 is the ancestral form whereas 

Haplotype 6 contains three SNPs in the 5’-flanking region and two coding region SNPs 

(corresponding to amino acid variants E158K and E308G) (Figures 33 and 34). Both
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coding region SNPs are relatively old, with ages estimated as 363,000 years and 200,000 

years respectively (see section 3.4.). The coincidence of the two variants is interesting as 

they have been reported clinically and in the FMO community for several years. As 

mentioned earlier (section 3.2.), although E158K and E308G individually have little affect, 

when found in cis this study has shown (and others in the past have also shown) that this 

can result in a reduction in FM03 activity [21, 147]. The FM03 substrate metabolism 

shown to be affected by this double variant also mentioned earlier (see section 3.2., 

ranitidine [147], thiobenzamide [147] sulindac [5]), is of great interest. Of particular 

interest is the sulindac case, where the E158K/E308G variants were found to have a 

protective effect on the development of polyps in familial adenomatous polyposis patients 

who received sulindac as a means of primary chemoprevention, presumably reducing the 

ability of the enzyme to inactivate the drug, leading to prolonged exposure [260]. This 

instance gives rise to the possibility that the maintenance of haplotypes that encode versions 

of enzymes displaying substrate-dependent differences in catalytic activity may confer an 

evolutionary advantage, enabling polymorphic individuals to retain the ability to detoxify 

harmful xenobiotics while reducing their metabolic capacity to inactivate a natural 

compound that has a beneficial effect.

Although not present at such a high frequency as Haplotypes 1 and 6, Hapotype 3 

coalesced with other haplotypes some 675,000 years ago. Evidence exists for three of the 

ten upstream SNPs that make up Haplotype 3, that their presence increases FM03 

promotion 8-fold [141]. These SNPs (-2650, -2543 and -2177) presumably lie in the FM03 

promoter region, which is poorly defined at present. Sequences upstream of -2714 were not 

investigated by these authors, so the effect on promoter activity of the other SNPs in 

Haplotype 3 is not known at this time. However, it is still reasonable to speculate that 

individuals possessing Haplotype 3 would express greater amounts of FM03 and thus, on
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the one hand are able to detoxify harmful foreign chemicals more quickly but on the other 

hand also metabolise therapeutic agents that are substrates of this enzyme more quickly, 

possibly lowering drug efficacy and thus therapeutic benefit.
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4. Summary

Evolution is shaped by differences at a genetic level between and among species, with 

SNPs contributing a significant potion of these differences. This investigation has 

considered the SNPs of FM03 and their importance to the molecule in terms if its 

evolution, biophysical properties, structure and catalytic efficiency. This is of importance 

to human health not only because of the importance of FM03 in clearing potentially 

harmful xenobiotics from the body, but also because of the variation in SNP and allelic 

frequencies of the haplotypes they make up, between populations. In the case of 

therapeutic drugs, the likely efficacy of such drugs in patients with perturbed xenobiotic 

metabolism would depend on the population with which you are dealing. On an individual 

case basis, the genotype of the individual could be used to predict the likely outcome of 

administering a drug. Such pharmacogenetic considerations are becoming more important 

in the development phase of drug-development [297, 298] and any information that can be 

learned in this area is of interest.

This study considered the rare mutations in FM03 that cause the disease TMAU. 

The distress and strain that this disorder puts on the individual and their loved ones can not 

be understated and research into this disease is important. This investigation presented 

patient studies including one family study which resulted in the discovery of two novel 

variants of FM03, R492Q and R238Q. R238Q was generated, assessed in vitro for

catalytic efficiency and found to be catalytically inactive.

This study also considered the relevance of commonly occurring polymorphisms of 

FM03. Of particular interest was of the occurrence of two common polymorphism in cis, 

E158K and E308G. When found together, these variants cause a significant reduction in 

enzyme efficiency, when compared to when found alone and also compared to 

E158K/V257M, another relatively common polymorphism pairing found in cis. The
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outcome of the kinetic investigation of this study supported the consequences of the double 

mutant. This is of pharmacogenetic interest due to the case of the E158K/E308G variant 

having a protective effect on the development of polyps in familial adenomatous polyposis 

patients who received sulindac as a chemotherapy agent, presumably by reducing the ability 

of FM03 to catalyse the metabolism of sulindac 5-sulphide to the sulindac 5-sulphoxide 

thus reducing the capacity of FM03 to inactivate the drug. The maintenance of such a 

seemingly destructive haplotype in the population at relatively high frequencies is 

consistent with this investigation’s proposal that FM03 is under balancing selection, 

presented in section 3.4., along with an in-depth evolutionary study of the FM03 locus.

To try and understand the mechanistic consequences of the amino acid changes 

caused by these common SNPs and to understand the FM03 molecule as a whole, a 

homology model was generated. Figure 36 shows the homology model with the variants 

tested for catalytic activity highlighted. The physical proximity of the amino acid residues 

at sites 158 and 308 compared to that of 158 and 257 may offer some kind of clue as to why 

the consequences of there being variations in the amino acids at both sites have such 

different consequences. Both polymorphisms have been shown to cause limited catalytic 

change individually, but when both are changed to K158 and G308, it could be imagined 

that the physical proximity of the two residues would become critically close to a threshold 

that a double mutation breaches, lowering catalytic activity. Why the double variant 

E158K/V257M seemingly caused a significant lowering in catalytic activity is not obvious. 

The two residues are extremely far apart on the model generated in this study. The exact 

nature of the V257 residue’s contribution is difficult to show from this model as this area 

was of low coverage in the template used to build the model. The same can be said of 

R238. Why this residue, when changed to R238Q, seems to destroy catalytic activity, 

shown in vivo and in vitro in this investigation, is not clear.
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Figure 36. A cartoon representation of the homology model built of FM 03, built as 
part of this investigation

The FM03 polymorphisms E158K (blue), V257M (orange) and E308G (cyan), generated 
and probed as part of a kinetic study (section 3.2.), featured within both an evolutionary 
(section 3.4.) and TMAU patient screen (section 3.1.) are highlighted as spheres. Also 
highlighted as spheres is the R238Q variant (pink) which is a novel FM03 variant 
described in section.3.1. and also investigated by kinetic studies, in section 3.2.



FM03 is a fascinating molecule. Such an important molecule, found at abundant 

levels in the liver, yet with so much ancient variation at a genetic level, contributes to a 

diverse genotypic and phenotypic distribution spread among the populations of the planet. 

The broad range of xenobiotics from our increasingly harmful environments, not to mention 

the many that we introduce willingly that FM03 metabolises, means that anything we can 

learn about it is of value. It has been recognised that drug-designers and pharmaceutical 

development as a whole have not appreciated FMOs as major contributors to drug 

metabolism. Because FMOs are seemingly not inducible, unlike the CYPs, the drug-drug 

interactions involving induction are not an issue, though those involving enzyme inhibition 

are still of importance to pharmaceutical licensing. This means that a case where one drug 

is taken which, perhaps as a side-effect, induces expression of an FMO, which in turn, due 

to the abundance of the enzyme, metabolises a second drug taken concurrently by a patient 

thus lowering the efficacy, is not a scenario which needs to be considered, unlike with the 

CYPs which are inducible. As mentioned earlier, a pharmacogenetic case involving FM03 

variation has been reported in the metabolism of the chemotherapy agent, sulindac (see 

sections 3.2. and 3.4.).

Pharmacogenetic information has the potential to improve therapeutic efficacy as 

we learn more about the genetic contribution to drug metabolism. Whether this potential is 

realised remains to be seen.
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