
Sparsity in M achine Learning
Theory and Practice

Zakria Hussain

A dissertation submitted in partial fulfillment

of the requirements for the degree of

D octor o f P h ilosophy

of the

U niversity o f London.

The Centre for Computational Statistics and Machine Learning

Department of Computer Science

University College London

UMI Number: U591578

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U591578
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

2

I, Zakria Hussain, confirm th a t the work presented in this thesis is my own. Where in­

formation has been derived from other sources, I confirm th a t this has been indicated in the

thesis.

A bstract 3

Abstract

The thesis explores sparse machine learning algorithms for supervised (classification and re­

gression) and unsupervised (subspace methods) learning. For classification, we review the set

covering machine (SCM) and propose new algorithms th a t directly minimise the SCMs sample

compression generalisation error bounds during the training phase. Two of the resulting algo­

rithm s are proved to produce optim al or near-optimal solutions with respect to the loss bounds

they minimise. One of the SCM loss bounds is shown to be incorrect and a corrected derivation

of the sample compression bound is given along with a framework for allowing asymmetrical

loss in sample compression risk bounds. In regression, we analyse the kernel matching pursuit

(KMP) algorithm and derive a loss bound th a t takes into account the dual sparse basis vectors.

We make connections to a sparse kernel principal components analysis (sparse KPCA) algorithm

and bound its future loss using a sample compression argument. This investigation suggests a

similar argument for kernel canonical correlation analysis (KCCA) and so the application of

a similar sparsity algorithm gives rise to the sparse KCCA algorithm. We also propose a loss

bound for sparse KCCA using the novel technique developed for KMP. All of the algorithms

and bounds proposed in the thesis are elucidated with experiments.

Acknowledgements 4

Acknowledgem ent s

A PhD can a t times be a lone battle and at others an academic partnership between student

and supervisor. I was fortunate enough to have met my supervisor, John Shawe-Taylor, during

my undergraduate studies. Before becoming John’s student I was unaware of how well known

and respected he is in his chosen discipline. I feel privileged to have had his supervision during

my PhD and would like to take this opportunity to thank him for all the wisdom, insights and

knowledge of machine learning he has passed on to me and will never forget his most im portant

lesson to me th a t a hack can never beat a good theory. Long may our research collaboration

continue.

During the PhD I have had the pleasure of being at two institutions. Having started a t the

University of Southampton I would like to thank everybody a t the ISIS lab who helped during

my PhD. Thanks to Anthony Demco, Steve Gunn, David R. Hardoon, Andriy Kharechko, Alain

Lehmann, Emilio Parrado-Hernandez and Sandor Szedmak. Special mentions for David who

became a flatmate and a good friend, Sandor who was always happy to help and Emilio for

hosting me a t Carlos III in M adrid and always being at hand to help. A big thank you to Ollie

Blacklock who introduced me to the Accies cricket team, and a fresh outlook to Southampton.

I would also like to take this opportunity to thank Mario Marchand and Francois Laviolette for

their help and support with the first part of Chapter 3.

At UCL I would like to thank the 8th floor lab for being so quiet and considerate towards

their fellow colleague. A special mention to Cedric Archambeau, Tom Diethe and Jan Rupnik

who I have had many fruitful discussions with and who have become good friends (and a bad

influence on my coffee drinking habit).

I would like to thank friends for being extremely supportive and always there to ask whether

I had “finished yet?” . This did not always help, but how were you to know? T hank you, to all

the friends I made outside the lab in Glen Eyre and Monti halls in Southam pton, with whom I

shared some great times with.

Finally I would like to thank my family for always being there and dedicate this thesis to

my mother and father.

Nomenclature

N om enclat ure

* input space
(x,y) input-output pair
£(•) true error
£(•) empirical error
V set of V examples
M set of M examples
S sample
n hypothesis space
<E exists in (within)
f e n hypothesis (function) in hypothesis space
A learning algorithm
II• II L 2 norm (length of a vector)
IHIpVob Frobenius norm
K kernel matrix
X data (input) m atrix
«(•>•) kernel function
d(-r) distance function
m number of examples
n number of dimensions
1(0 indicator function
R the set of real numbers
diag{-} diagonal elements of a m atrix

the ith unit vector
1 all one vector
V probability distribution generating the data
Pr probability
iid independently and identically distributed
E expectation
d sparsity parameter
i index vector
w primal weight vector
a dual weight vector

Contents 6

Contents

1 In trod u ction 10

1.1 Motivation ... 11

1.2 Brief history of machine l e a r n in g .. 13

1.3 Outline of thesis ... 15

1.4 C o n trib u tio n s ... 16

2 B ackground 17

2.1 Machine le a rn in g ... 18

2.2 Kernel m e th o d s .. 18

2.3 A lg o r i th m s ... 19

2.3.1 Classification: the set covering machine (S C M) ... 20

2.3.2 Regression: kernel least squares (K L S R)... 22

2.3.3 Subspace methods: principal components analysis (P C A) 23

2.4 Learning th e o ry .. 24

2.4.1 Probably Approximately Correct (PAC) th e o r y ... 27

2.4.2 Vapnik-Chervonenkis (VC) t h e o r y .. 28

2.4.3 Sample compression t h e o r y ... 29

3 Sparsity in supervised learning 32

3.1 In troduction ... 33

3.2 Incorrect Bound ... 35

3.3 Sample Compression Loss Bounds for Imbalanced D ata...... .. 36

3.4 Discussion and Numerical Comparisons with O ther B o u n d s 45

3.4.1 S e t u p ... 46

3.4.2 Discussion of r e s u l t s ... 47

3.5 Using generalisation error bounds to train the set covering m ach in e....................... 48

3.6 The bound set covering m a c h in e .. 49

3.7 The branch and bound set covering m ach ine.. 50

3.7.1 A lg o rith m .. 51

3.8 BBSCM (r) .. 53

3.9 T h eo ry .. 54

Contents 7

3.10 Experim ents.. 57

3.11 Kernel matching p u r s u i t ... 61

3.11.1 A lgorithm ... 62

3.11.2 A generalisation error bound for kernel matching pursuit 64

3.12 S u m m a ry ... 67

4 Sparsity in unsu p ervised learn ing 68

4.1 Sparse kernel principal components a n a ly s is ... 69

4.1.1 A lg o rith m .. 69

4.1.2 A generalisation error bound for sparse kernel principal components analysis 72

4.2 Kernel canonical correlation a n a ly s is ... 77

4.2.1 Sparse kernel canonical correlation a n a ly s is .. 79

4.2.2 Choosing the best i (slow m e th o d) .. 80

4.2.3 Choosing the best i (fast method) .. 80

4.2.4 A generalisation error bound for sparse kernel canonical correlation analysis 82

4.2.5 Choosing a set i (faster m e th o d) .. 84

4.3 E xperim ents.. 85

4.4 S u m m a ry .. 87

5 C onclusions 89

5.1 Further w o r k ... 89

List o f Figures 8

List of Figures

3.1 Bound values for the SCM when m p = 2020, m n = 1980, cp = 5, Cn = 5,6 = 10. . 47

3.2 Bound values for the SCM when m p = 1000, m n = 3000, cp = 5, cn = 5,6 = 10. . 48

3.3 Plot of KM P bound against its test error. We used 450 examples for training and

the 56 for testing. Bound was scaled down by a factor of.5.. 66

4.1 Sample compression bound plot for sparse KPCA including the error and com­

plexity term s separately (SRM principle)... 75

4.2 Bound plots for sparse kernel PC A comparing the sample compression bound

proposed in this chapter and the already existing PCA bound..................................... 76

4.3 Plot of SKCCA bound against its test error for different splits of the data. We

used 500 examples for training and the 300 for testing. Bound was scaled down

by a factor of 5 and a = 0.00095... 84

4.4 A small data set - average test error for retrieval over 5 different splits of the

data. Left: average error using window (method) of size 10. Right: average error

using average precision... 86

4.5 A medium sized data set - average test error for retrieval over 5 different splits of

the data. Left: average error using window (method) of size 10. Right: average

error using average precision.. 86

4.6 A large sized data set - average test error for retrieval over 2 different splits of

the data. Left: average error using window (method) of size 10. Right: average

error using average precision.. 87

List o f Tables 9

List of Tables

3.1 Description of d ata s e t s ... 57

3.2 10 fold cross-validation on Votes d a ta set using a full search...................................... 58

3.3 10 fold cross-validation on Votes data set using BBSCM with r = 1......................... 58

3.4 10 fold cross-validation on Votes data set using BBSCM with r = 0.8..................... 59

3.5 10 fold cross-validation on Votes data set using BBSCM with r = 0.7..................... 59

3.6 10 fold cross-validation on Votes data set using BBSCM with r = 0.6..................... 59

3.7 10 fold cross-validation on Votes data set using BBSCM with r = 0.1..................... 60

3.8 SVM and SCM model-selection using 10 fold cross-validation..................................... 60

3.9 10 fold cross-validation on several UCI repository data sets using BSCM...................... 61

4.1 Training and test times in seconds for small, medium and large da ta set sizes

(English-Spanish d a t a) ... 87

10

Chapter 1

Introduction

Machine learning is an attempt at creating computer systems capable o f improving their per­

formance automatically over time, allowing us to tackle problems that are unlikely to be solved

using more classical computer science approaches. Obvious examples are image recognition,

fraud detection, spam filtering and automatic car driving systems. Clearly, the realisation of

such adaptive systems technology would certainly enhance many areas o f human life.

It is important to note that computers have several distinct advantages over humans - most

notably the ability to carry out very fast numerical calculations and database storage. However,

humans excel in areas such as vision, speech, creation, etc. and so machine learning may be

viewed as trying to bridge the gap between computational power and human learning.

In this chapter we identify the problem statement o f the entire thesis by walking the reader

through a typical machine learning problem, describing the main attributes and terminologies

involved and then proceeding to a possible solution. A fter this we describe the main focus o f the

thesis, sparsity and describe it within the context o f the thesis. We are not mathematically precise

in this chapter and leave such rigour fo r the future. We conclude the chapter by discussing the

contributions of the thesis and outlining the remaining chapters.

1.1. M otivation 11

1.1 M otivation

Machine learning is an attem pt at making computers intelligent, allowing us to solve problems

th a t would seem otherwise infeasible. For instance, consider learning to classify spam from

genuine e-mails. Understanding the nature of the e-mails would allow us to classify them as

spam or non-spam. However, how can we program a computer to automatically carry out this

task to distinguish between the two?

A naive approach is to set flags th a t alert the email client of potential spam attacks. For

example, ensuring e-mails contain full names of the recipient, or th a t the sender exists in the

recipients e-mail address book. However the problem with this approach is th a t a genuine sender

may use formal wording and only refer to the recipient using their surname. Also, the second

flag would judge genuine senders as spam if there address was not already listed in the recipient’s

address book. Clearly setting flags as outlined above is not a practical solution to the problem

and has serious drawbacks. We would like a more sophisticated solution in order to recognise

e-mails th a t are spam, including those e-mails not previously encountered. This is exactly the

type of problem machine learning tackles.

A machine learning approach to this problem would be the following. We may associate

every e-mail with a label of whether or not it is spam. Potentially every e-mail user would

be exposed to large amounts of data in this context, containing a large collection of e-mails

together with their classifications (these classifications would need to be labelled manually but

we will assume this has already been done). Given these e-mails and their corresponding labels

(spam/non-spam) can we construct a “general rule” th a t decides whether or not a new e-mail

is spam?

We may tackle this problem in the following way: create a distance measure between e-

mails so th a t they lie at some distance from one another. Hopefully non-spam e-mails would lie

very far away from those defined as spam. Next, by generating the smallest ball (for instance)

th a t encloses all of the e-mails th a t are non-spam we can have a general rule th a t states th a t

every e-mail within the ball is genuine and everything outside is spam. Therefore, computing

the distance measure for every new e-mail received and using the general rule, we can predict

whether or not an e-mail is spam. Notice th a t we have not explicitly defined attribu tes or

features to look for in e-mails (as in the flag example given above) but simply addressed the

similarity of e-mails using some arbitrary distance measure. This very simple (and not precisely

defined) algorithm illustrates some im portant machine learning concepts.

In machine learning we use the term examples to denote the e-mails and outputs to denote

the labelling of spam or non-spam. The problem of spam detection is known as classification;

where we would like to predict which class an example belongs to. When the number of classes

is two we refer to it as binary classification. When the number of classes is greater than two

it is known as multi classification. Also, when the outputs are not restricted to discrete classes

but numbers on the real line we call this regression.

1.1. Motivation 12

All of these types of problems are described under the framework of supervised learning

- where for every example we are given an output. In analogy to a teacher giving a student

a question together with its answer during the learning phase, but only a question during the

testing phase, the student must learn from the questions and solutions presented in order to

generalise in the future. The construction of the general rule from the examples and labels is

a phase known as training/learning. Unsurprisingly the prediction stage of our general rule is

known as testing. The general rule is known as the hypothesis and is simply a function th a t

(in the supervised learning case) m aps examples to outputs. For classification (regression) we

sometimes also refer to this function as the classifier (regressor), respectively.

Another framework for learning is unsupervised learning - where we are only given examples,

perhaps because their exist no outputs or because the outputs are too costly to be supplied.

In the unsupervised learning setting the learning algorithm attem pts to find some pattern th a t

will distinguish examples from one another. Hopefully, in the context of e-mails we may find

a pattern th a t creates two distinct regions, one for spam and another for non-spam. However,

because we have no outputs, this may be overly ambitious. Instead, more realistically, we may

expect to generate several regions th a t perhaps partition the e-mails into categories of sender,

date, length, etc.

A framework th a t amalgamates the two frameworks mentioned above is called semi­

supervised learning - where we are given examples and a limited number of outputs, because

examples are cheaper to acquire than labels. In the e-mail example, the number of e-mails th a t

we may have access to could be huge. However, labelling all of them may be too costly. This

is where supervised and unsupervised learning can be combined effectively to create powerful

learning rules th a t makes use of large amounts of (cheap) unlabelled data.

Other learning frameworks exist but the thesis will focus on supervised and unsupervised

learning and so we will limit ourselves to these methodologies throughout the thesis.

The algorithm we described above for classifying spam used all of the e-mails in order to

construct the ball or hypothesis. Now let us consider the situation where every example-label

(input-output) pair comes with an associated cost. We would like to classify correctly as many

(all) of the e-mail messages th a t we may receive in the future but minimise the number of

input-output pairs used in the construction of the hypothesis. We try to minimise this problem

throughout the thesis, attem pting to create parsimony in the learnt functions in the sense that

they rely only on a small subset of examples. We refer to this property as sparsity throughout the

remaining work. Sparsity forms the backdrop of the entire thesis and we show in the frameworks

of supervised and unsupervised learning th a t we can indeed have such sparse learning algorithms

along with theoretical guarantees of future generalisation ability.

Before commencing with a background chapter we give a brief historical overview of machine

learning and then proceed with an outline and contribution of the thesis.

1.2. Brief history o f machine learning 13

1.2 Brief history of m achine learning

We give a brief overview of machine learning history w ith a bias on the topics from the thesis.

One of the first machine learning algorithms was the perceptron developed by Rosenblatt

[1958]. It was biologically inspired and was proposed as the analogy to a neuron found in

the brain. The algorithm looked for linear relationships in the data and was later shown, in a

famous book called ‘Perceprons’ [Minsky and P apert, 1969], to be incapable of learning the XOR

problem. This caused a decade of decline in machine learning research. However, in the 1980’s

several authors showed th a t multi-layer perceptrons could indeed solve more difficult problems

(including the XOR).

Throughout this tim e several Russian authors were also developing their own theories for

learning. Most notably, Vapnik and Chervonenkis [Vapnik and Chervonenkis, 1971] introduced

the concept of the VC-dimension, which quantified the power of a classifier. They proposed upper

bounds on linear classifiers using the VC-dimension and helped develop the field of statistical

learning theory.

The theory of kernels were first proposed in the 1940s and one of the main exponents called

Aronszajn [1950] published a paper th a t described their attributes. However, it wasn’t until the

work of Aizerman et al. [1964] th a t kernels were introduced into the machine learning litera­

ture. They were sporadically used with neural networks but were yet to take off as a new force

in machine learning. The first step towards the kernel m ethods framework was taken in the

Computational Learning Theory conference of 1992 when Boser et al. [1992] introduced their

support vector machine (SVM) algorithm. The algorithm looked for linear relationships in the

kernel defined feature space and hence showed th a t the use of kernels could help keep the sim­

plistic and well understood linear functions in a setting th a t allowed them to be applied to more

complex and non-linear data. Several years later Cortes and Vapnik [1995] introduced penalty

terms into the SVM th a t allowed misclassifications to be accounted for (see also Cristianini and

Shawe-Taylor [2000] for more discussion on the SVM).

During this period several researchers were working on the problem of devising a compu­

tational learning theory. It would be fair to say th a t this work started with the seminal paper

of Valiant [1984] who looked to formalise a m athematical model for learning, much like the

earlier work of Vapnik and Chervonenkis [1971] but w ith the difference th a t there was a more

computer science standpoint, i.e., Valiant also required a polynomial tim e learning algorithm

in order to ensure ‘learnability’ in his model th a t was later coined the probably approximately

correct (PAC) learning model. To demonstrate the effectiveness of this model Valiant [1984]

proposed a learning algorithm for learning conjunctions or disjunctions of monomials. Several

years later Haussler [1988] showed th a t Valiant’s standard monomial learning algorithm (see

Anthony and Biggs [1992] for details) could be viewed as the problem of the minimum set cover,

and solved (approximately) w ith the greedy set cover algorithm [Chvatal, 1979].

In the late 1980’s there was a real drive towards constructing PAC learning bounds for a

1.2. Brief history o f machine learning 14

larger class of algorithms. The work of Blumer et al. [1989] gave the first PAC guarantees using

the VC-dimension. Also, in an unpublished m anuscript Littlestone and W armuth [1986] proved

th a t PAC learnability was possible if you could find a small number of training samples th a t

could be used (reconstructed) to relabel the training data. These compression bounds became

known as sample compression bounds.

Kernel methods really came to prominence after the papers by Scholkopf et al. [1996, 1998]

where they showed th a t a well-known (linear) statistical algorithm called principal components

analysis could be computed in kernel defined feature space and hence tackle non-linear data. It

is fair to say th a t most of the work th a t came after the kernel principal components analysis

publication, in the kernel m ethods domain, tried to take linear algorithms and make then non­

linear in this way. It may be a ttribu ted to starting the area of kernel methods (although SVMs

came earlier, Scholkopf et al. [1996] dem onstrated th a t the kernel trick was not restricted to

just SVMs). For good introductions to kernel methods see the books by Scholkopf and Smola

[2002] and Shawe-Taylor and Cristianini [2004].

Valiant and Haussler’s work had not been applied to real world data sets because of the

definition of monomials, which were restricted to Boolean-valued data sets, and their algo­

rithm s made no provisions for misclassifications. Marchand and Shawe-Taylor [2001] fixed these

problems and proposed the set covering machine (SCM), a general purpose learning algorithm

capable of learning on real world d ata sets with sample compression bounds guaranteeing its

future success. This is where we begin our journey for the classification algorithm.

After the Scholkopf et al. [1998] paper and several kernel algorithms later, machine learners

were now concerned with working with larger d ata sets. But the fact the number of data points

determined the dimensions of the kernel meant th a t larger d ata sets could not be stored in

computer memory. Therefore, there was a drive towards constructing low rank m atrix approxi­

mations and sparse variants of kernel algorithms. Smola and Scholkopf [2000] created a sparse

kernel principal components analysis (SKPCA) algorithm which gave a low rank approximation

of the kernel matrix. Their algorithm used principles from a well known algorithm in the signal

processing community called matching pursuit [Mallat and Zhang, 1993]. An algorithm th a t

pursues parsimonious solutions to find the line of best fit in a least squares sense. The algorithm

was suboptimal in the sense th a t only the last element of the weight vector was updated, how­

ever Pati et al. [1993] and Davis et al. [1994] proposed an extension called orthogonal matching

pursuit that fixed this issue. The algorithms were greedy in nature and could be constructed by

only using dot products. This led Vincent and Bengio [2002] to propose kernel matching pursuit

(KMP), which was a sparse version of kernel least squares regression. These two algorithms are

very much related and use the same principles for constructing sparse solutions. We will use

these two algorithms as the basis of the regression and subspace methods work.

1.3. Outline o f thesis 15

1.3 Outline of thesis
The thesis is structured as follows. C hapter 2 gives a brief overview of the main machine learning

principles to be discussed. It will describe the main building blocks needed, including the

set covering machine, the kernel least squares regression, kernel principal components analysis

and basic learning theory including Vapnik-Chervonenkis (VC) theory, probably approximately

correct (PAC) learning theory and sample compression theory. The thesis is structured so

that the chapters are all self contained. The novel contributions of the thesis are given in

Chapters 3 and 4, with C hapter 3 beginning with the problem of classification. It discusses a

new generalisation error bound for the set covering machine th a t bounds separately the error

on the positive and negative class of examples and also proposes several new algorithms th a t

use the bounds to drive the SCMs optimisation criteria. We provide theoretical results to prove

th a t the algorithms presented produce optimal (or near optimal) solutions. The final part of the

chapter investigates the regression problem in a sparse setting, by describing the kernel matching

pursuit algorithm. We propose a generalisation error bound for kernel matching pursuit th a t

takes into account the sparse solutions delivered. The bound uses a novel technique of upper

bounding K M P’s loss by combining sample compression schemes together with VC theory.

Chapter 4 is dedicated to subspace methods (unsupervised learning) and starts with a

description of the sparse kernel principal components analysis. We prove th a t sparse KPCA can

be viewed as a compression scheme and hence propose the first sample compression bound for

a subspace method. From this analysis and the investigation into sparse KPCA, we are able to

propose a sparse version of kernel canonical correlation analysis th a t can help tackle problems

not previously tractable with the KCCA algorithm. We upper bound its future loss using the

same method derived for KMP.

All the novel work proposed in the thesis is illuminated with empirical results.

The main contributions can be stated as follows:

• Chapter 3

— A new generalisation error bound for the SCM

— A sample compression bound for asymmetric loss

— The bound set covering machine (BSCM)

— The branch and bound set covering machine (BBSCM)

— The r-branch and bound set covering machine (BBSCM (r))

— Theoretical justification of the BBSCM and BBSCM (r)

— Sparse generalisation error bound for KMP

• Chapter 4

- Sample compression bound for sparse KPCA

1.4. Contributions 16

- Sparse kernel canonical correlation analysis (fast)

- Sparse kernel canonical correlation analysis (faster)

- Sparse generalisation error bound for sparse KCCA

1.4 Contributions
The work contained in this thesis was published or subm itted for publication in the following

papers.

• Zakria Hussain and John Shawe-Taylor. Using generalization error bounds to train the

set covering machine. In Proceedings o f International Conference of Neural Infromation

Processing, 2007.

• Zakria Hussain, Francois Laviolette, Mario Marchand, John Shawe-Taylor, Spencer

Charles-Brubaker and M atthew Mullin. Revised Loss Bounds for the Set Covering Ma­

chine and Sample-Compression Loss Bounds for Class Imbalance. Journal o f Machine

Learning Research, 8:2533-2549, 2007.

• Zakria Hussain, John Shawe-Taylor, Charanpal Dhanjal and David R. Hardoon. Theoreti­

cal analysis of matching pursuit in machine learning and sparse kernel canonical correlation

analysis. To be submitted to the Journal o f Machine Learning Research.

17

Chapter 2

Background

The previous chapter gave a simple example of a typical supervised learning problem without

being mathematically precise. In this chapter we make all the preliminary definitions needed

and survey the most common methods in machine learning and learning theory in the context

of the thesis. There are several strands o f the learning methodology that we wish to introduce;

Classification, regression and subspace methods.

Classification is typically encountered in the two class case, where examples are drawn

from two different classes, most frequently referred to as the positive and negative classes. B y

training on these examples and finding a general pattern we would like to predict the class o f

a new example. The classification algorithm we describe is the set covering machine (SCM).

Regression is similar to classification but with the difference that the predicted functions are no

longer restricted to two classes but numbers on the real line. For this line of work we describe a

non-linear regression algorithm called kernel least squares regression. Finally, subspace methods

look to approximate complete subspaces from which the original data may come from, by finding

the most important directions in the data. This is commonly used as a pre-learning tool to

map the data into a lower dimensional space before training a learning algorithm in this lower

dimensional space. The non-linear subspace method we discuss in this chapter is the kernel

principal components analysis algorithm.

Learning theory gives worse case guarantees on learning protocols, upper bounding the future

loss that may be incurred, resulting in the ability to judge the quality o f learning that an algorithm

has achieved. We review three learning theory methodologies, namely, probably approximately

correct (PAC) learning theory, Vapnik-Chervonenkis (VC) theory and sample compression the­

ory.

2.1. Machine learning 18

2.1 Machine learning
Machine learning is the study of making computers “learn” . Extracting information from the

data set, inferring rules and making predictions in the future. These d ata sets are generally

composed of objects in the form of vectors known as training examples. Other structures such

as graphs, strings, trees, etc. are also considered but we restrict ourselves to vectors here. The

following definition makes the distinction between the supervised and unsupervised learning

data sets (containing multiple numbers of training examples) th a t we will use throughout the

thesis.

D efin itio n 2.1 (Supervised learning d a ta set). Let x = (x i , . . . , xn) G Kn be a member o f an

input space X and let S = { (x i, y i) , . . . , (xm, ym)} be a sample (data set) of m input-output

pairs (x, y). The classification sample considers the output values { —1,+1} and the regression

sample considers outputs in K.

In the unsupervised learning case we have the following definition for a d ata set.

D e fin itio n 2.2 (Unsupervised learning data set). Let X be the input space and x be a mem ­

ber of X . The unsupervised learning data set is given by a sample S = { x i , . . . , x m} of

inputs only. In the case when we have a second input space y we have a paired sample

S = {(xi, y i) , . . . , (xm, y m)} o f inputx -inputy pairs.

D ata can often be non-linear and in this case a combination of linear functions can be

combined to tackle non-linearity. This technique is used for instance in multi-layer perceptrons.

Another method for tackling non-linear d ata is to map the input data into a higher dimensional

space and find a single linear function in this space.

D e fin itio n 2.3. Given a vector x = (x i , . . . ,x n) in n-dimensional space we can map it into a

higher N-dimensional feature space T using the mapping (f)

0 : x 0(x) = ((f)i (x) , . . . , <f>N (x)) G T

where N > n.

In the algorithms we discuss, we will use the mapped input data to carry out learning.

However mapping into higher dimensions (the feature space) and computing inner products to

find linear functions (in feature space) is more expensive than simply using the input data, but

this com putation can be made considerably more efficient by making use of kernels [Aronszajn,

1950, Aizerman et al., 1964].

2.2 Kernel m ethods
The theory of kernels dates back to the work of Aronszajn [1950] and Aizerman et al. [1964].

However, the practical significance of kernels in machine learning was not realised until almost

30 years later in the development of the support vector machine (SVM) [Boser et al., 1992,

2.3. Algorithms 19

Vapnik, 1998, Cristianini and Shawe-Taylor, 2000]. The SVM works by first mapping the input

data into a higher dimensional feature space and then looking for a linear function (hyperplane)

th a t creates a large separation between the two classes of examples. This large separation is

known as the margin and created for the points closest to the hyperplane known as support

vectors. The kernel trick allows one to work in feature space without having to explicitly carry

out this mapping, but simply works w ith the input d a ta using kernel functions.

D efin itio n 2.4 (Aizerman et al. [1964]). A kernel is a function k that for all x ,z G X satisfies

k (x , z) = (4>(x),0(z)),

where (j) is a mapping from X to an (inner product) feature space T

(f) : x i ► 0 (x) G T .

The kernel function allows us to take full advantage of working in higher dimensional feature

space but without the com putational burden of computing the mapping. We make use of kernel

algorithms for the regression and subspace methods algorithms described later, as they look to

find a linear function. However, before moving onto these kernel algorithms we first describe

the set covering machine (SCM) which does not necessarily rely on a kernel function1 as it is an

ensemble method and can simply be computed using some L p distance metric.

2.3 Algorithm s
In this section we discuss all the algorithms th a t we use as the basis of the thesis. In future

chapters we either propose a theoretical analysis of the algorithms using sparsity arguments

(regression and subspace methods), new theoretical analysis (all chapters) and new learning

algorithms (classification and subspace methods). Therefore the algorithms of this section are

the only prerequisites to reading and understanding the remainder of the work presented in the

thesis. We start the discussion in the order of the chapters of the thesis, and therefore begin

with a description of the classification algorithm known as the set covering machine (SCM).

Before we begin with classification we would like to make some general definitions. We will

be given a sample S th a t contains vectors of our data inputs and our (usually scalar) outputs for

the case of classification and regression. The input space will be denoted by X and the output

space by y. In the unsupervised learning setting (namely for canonical correlation analysis) we

will use y to denote an input (see Definition 2.2). So the following

input-output

pairing is only for the supervised learning case. For the unsupervised learning case we will have

input

1 It is possible to use a kernel, however, we choose not to make this unecessary computation.

2.3. Algorithms 20

or

input*-input y

pairings. All these definitions will be made clearer in their respective sections.

2.3.1 Classification: th e set covering m achine (SCM)

The classification problem can be described as follows. Find a function (hypothesis) / :

x i —> y th a t maps examples x to labels y € {—1,1} given a classification sample S —

m i Urn)} -

Consider a set B = { / ^ (x) } ^ of Boolean-valued functions /it (x) th a t each map examples

x belonging to X onto {0,1} and assume th a t we have found a small subset 71 CB of these

functions. Given 71, and an arb itrary example x, then the function / (x) of the set covering

machine (SCM) is defined as

/(x) =

^ h(x) (conjunction)
ieK

\ J h(x) (disjunction).
hen

The conjunction function / (x) outputs True (1) if all h(x) e 7Z are True and False otherwise.

The disjunction function / (x) outputs False (0) if all h(x) e TZ are False and True otherwise.

In the context of this thesis we will use the value of —1 to denote the output of 0 (False) for the

conjunction or disjunction of the function / (x) . Furthermore we define the number of Boolean­

valued functions contained in 7Z or / by \7Z\ or | / | , respectively. W ith these notations we can

make the following definition.

D e fin itio n 2.5. Let V be the set o f positive (+1) and A f the set o f negative (—1) training

examples when the SCM is constructing a conjunction o f Boolean-valued junctions. Similarly,

let V be the set of negative (—1) a n d N the set of positive (+1) training examples when the SCM

is constructing a disjunction of Boolean-valued functions.

We describe the SCM for the case when the set of Boolean-valued functions is a set of

functions constructed from the data, known as data-derived (decision) functions. The set of

data derived functions we use throughout the thesis is the set B consisting of the following

data-dependent balls.

D efin itio n 2.6. For a training example X* e X with label yi <E { — 1,1} and (real-valued) radius

p = d(x^,Xj) ± a where d(xj,X j) denotes the distance between x* and x.j, Xj 6 V is a border

point and a is a small positive fixed real number, let h itP be the following data-dependent ball

centred at x t :

, , x) Vi i f d (x i , x) < p
h iA *) = < _

I yi otherwise

where yi is the complement o f yi, p — d (x i,X j) + a i f X* € V and p = d(x.i,Xj) — a i f x* € Af.

2.3. Algorithms 21

We will often switch, w ithout loss of generality, between the subscript notation hi)P to the

more simple h to denote a data-dependent ball when i and p are clear from the context. Consider

a sample S consisting of pairs (x, y), a ball h from the set of data-dependent balls B, then Vtf(h)

denotes the set of pairs (x, y) £ A f correctly classified by h and 7pp(h) denotes the set of pairs

(x, y) e V misclassified by h. Given these definitions the usefulness of a data-dependent ball

can be defined as follows.

D efinition 2.7. The usefulness (or utility,) o f a data-dependent ball h is expressed as:

= Wtf(h)\ - p\7rv (h)\ (2.1)

where p is a small positive real number.

W hen we discuss a V example we will mean an example from the set of V . Similarly, an

Af example will refer to an example from the set of A f examples.

The SCM algorithm uses a greedy approach to try and completely classify the set of Af

examples whilst misclassifying zero (or a small number) of V examples. Let N contain the

set of A f examples yet to be covered and let P contain the set of V examples th a t have been

misclassified. We would like to find a subset of balls TZ CB . Therefore, initially TZ <—0 , N <— A f

and P <— 0. At the first iteration the SCM algorithm looks for ball hi,p th a t maximises the

utility value £fyr,px p(fii,p). After the ball hijP with the highest usefulness is found, then the

subset TZ <— TZ U is updated together with N <— N \ P7v(hj,p) and P <— P U 7Tpv p(fi^p).

This is repeated until N = 0 is em pty or until the early (soft) stopping criterion \TZ\ > s is

satisfied (where s € N is a positive integer).

A lgorithm 1: The set covering machine (SCM)
Input: empty hypothesis TZ <—0 , the set of data-dependent balls B, soft stopping param eter

and penalty parameter p.
l: for i = 1 to s do
2: find ball h E B th a t maximises

U N,v^p(h) — f yv(f i) | ~ p \n v^p (h)\

3: update TZi <— TZi U {/i}, N N \ Pjv(fi) and P <— P U 7rp xp(fi)
4. end for

O utput: subset of data-dependent balls TZ

Clearly the algorithm is greedy as it only adds ball h to the subset TZ if it maximises the

utility UN,v^.p(h). Once the SCM has output TZ then we can construct a hypothesis / consisting

of data-dependent balls TZ CB in order to make predictions.

Let i = (* i , . . . , i s) denote an index vector th a t points to training examples in S, s <

|5 |. Therefore, given TZ = {h \lrP, . . . , h\gjP) consisting of data-dependent balls we can define a

2.3. Algorithms

function / t (x) to classify example x like so:

(yT if /i(x) = yT M h e U
/ t (x) = <

I yT otherwise

where* from Definition 2.5, a conjunction (T = c) SCM defines yc — 1, yc

(T — d) SCM defines yd = —1, yd = 1-

2.3.2 Regression: kernel least squares (KLSR)

The regression problem aims to find a hypothesis / : x i—► y th a t maps examples x to outputs

y G M given a regression sample S = { (x i, j/ i) , . . . , (xm, ym)}.

Least squares is a regression algorithm th a t only looks for linear relationships in the data.

This is fine if the function can be approximated by a linear combination of the features, however,

as pointed out earlier d ata sets are often non-linear. Therefore, algorithms reliant on the inner

product, can in a very simple and natural manner be transformed into a non-linear algorithm

by using a kernel.

We denote a m atrix of examples by X = (x i , . . . , x m)T and a vector of real valued outputs

as y = (y i , . . . , ym)T , where T denotes the transpose of a m atrix or vector. Given a pair (x, y)

we would like a function / (x) th a t predicts the value of y. Because y is no longer a discrete

value the difference between the prediction and the actual value is a real value known as the

residual. We would like to minimise the sum of squares of the residual by,

min ||y —X w ||2, (2.3)
w

where w is known as a weight vector and forms the linear function. This is known as the primal

least squares regression. The kernel (dual) legist squares regression can be defined by writing

the primal weight vector in term s of the training examples so th a t w = X Ta , where a is known

as the dual weight vector. Making this substitution into the above minimisation problem gives

the kernel least squares minimisation problem

min ||y — X X Ta | |2.
a

The solution of the above equation is given by

a = (X X TX X T) _1 X X Ty,

where the inverse of (X X TX X T) exists. Otherwise the pseudoinverse can be used. By making

a further substitution to create the kernel m atrix K = X X T we get,

22

(2 .2)

= — 1 and a disjunction

a = (K TK) 1 K y — K -1y,

2.3. Algorithms 23

where as before we assume K -1 exists. This a helps create a function th a t is linear in higher

dimensional feature space - however making the substitution w = X Ta yields a non-linear

function in the input space. Therefore, we can make predictions using a function / (x t) on

example Xj like so

/(x<) = w TXi (primal)

= a TK[:,i] (dual)

where K[:,i] = («(xi , x^), . . . , /c(xm, x*))T is defined as the kernel functions between all the

training examples in X = (x i , . . . , x m)T and Xi. We will also refer to this as a kernel basis

vector. For the remainder of the thesis we will only concern ourselves with dual problems.

2.3.3 Subspace m ethods: principal com ponents analysis (P C A)

The problem of subspace methods such as principal components analysis can be described as

finding a projection function / th a t finds a low dimensional representation (a subspace) of the

input space X C Mn given a sample S = { x i , . . . , x m}.

Principal components analysis (PCA) looks to find the directions in which S = {x^}™ i

has maximal variance. This results in a low dimensional representation of S th a t has the

unim portant dimensions removed. We use the convention X = S to denote the training sample

as rows of examples. The PCA problem is formulated as follows:

w J X TX w x
max ------ =---------, (2.4)

Wx W x

where w x is the primal weight vector (eigenvector) th a t maximises the expression of Equation

(2.4). This quotient is known as the Rayleigh quotient and the PCA maximisation problem is

solved for the eigenvector w x th a t has the largest corresponding eigenvalue A. We can move on

from this simple linear PCA problem to its dual formulation by mapping the training examples

into higher dimensional feature spaces via the kernel trick. This equates to finding the primal

weight vectors as a linear combination of the training examples and the dual weight vectors,

hence, giving us the following identity:

w x = X Ta x, (2.5)

where a x is a dual weight vector. Making this substitution into Equation (2.4) gives us the dual

PCA problem

a l X X TX X Ta x , x
max ------ , (2.6)
«x a ' X X 1 a x v '

2.4. Learning theory 24

and defining the kernel m atrix K = X X T we have the kernel PCA problem

max
qex

q j K TK a x
a j K a *

(2.7)

In a similar way as we had done w ith the kernel least squares regression we can of course

use the projection function / to map new examples x t into the low dimensional subspace, like

so:

The goal of a learning theory is to formulate the learning phenomenon into a mathematical

model th a t quantifies the level of learning th a t is possible. Two of the earliest pioneers of

learning theory were Vapnik and Chervonenkis [1971] who developed w hat is now commonly

referred to as Vapnik-Chervonenkis (VC) theory. This and related theories are also referred to

as Statistical Learning Theory. Given some learning algorithm th a t generates a hypothesis the

theory looks to prove upper bounds on the number of mistakes the hypothesis may incur in

the future. The hope is th a t these bounds will hold with high probability and will be close to

the true number of mistakes actually made by the hypothesis. A parallel development saw the

definition of Probably Approximately Correct (PAC) [Valiant, 1984] learning th a t also further

asserts th a t a polynomial time algorithm must exist. Perhaps, because of this very computer

science requirement, it can be attribu ted to the development of what is known as Com putational

Learning Theory (CoLT). Note, th a t the extra requirement of a polynomial tim e algorithm is

the only differentiating factor between PAC theory and VC theory.

The initial paper on PAC learning used a simple counting argument for hypothesis spaces

in order to generate bounds on the generalisation error. However, many learning algorithms do

not work in this restrictive regime and so several years later, Blumer et al. [1989] showed th a t

a finite VC-dimension (see definition below) could also be used in order to prove learnability in

the PAC sense. This work allowed the upper bounding of many more learning algorithms whose

power (capacity/complexity) could be explained using the VC-dimension of the hypothesis class.

Around the same time, Littlestone and W armuth [1986] showed th a t d ata compression could also

be related to PAC learnability and introduced sample compression theory. This theory, relates

the level of sparsity th a t an algorithm achieves and simply counts the cardinality of the training

examples (compression set) used in order to derive loss bounds. As with the VC-dimension, the

size of the compression set can be viewed as the power/capacity of the hypothesis class. It is an

open question if the VC-dimension of d for a function class implies a sample compression set of

Before we commence with some definitions and notations we would like to point out th a t we

2.4 Learning theory

size d.

will give sketch proofs of all the results in this section as they are well known and because we will

provide more elaborate proofs of all the bounds proposed later on in the thesis, which make use

2.4. Learning theory 25

of the bounds presented here. Throughout the thesis we assume some probability distribution V

generates a sample S from a joint space X x y in an independently and identically distributed

(iid) manner. In this section, we assume y = { — 1 , 1} is the output space. Given such an S we

would like to find a hypothesis / th a t correctly computes / (x) = y with high probability for any

(x, y) ~ V . We need a measure th a t calculates whether or not we have been erroneous in our

prediction. Hence, we would like to define the probability of / making a loss on future unseen

data points. This is a very im portant quantity in machine learning and known as the true error

(generalisation error).

D e fin itio n 2.8 (true error). Given a hypothesis f and a probability distribution V , the true

error er(-) of f is the following probability,

e r(/) = . P r _ { /(*) ± y) ■(x,y)~X>

However, as we have pointed out above, the true error is a future loss and unobservable

as the labels (and sometimes even the data points) have not yet been received. Before moving

onto a quantity th a t is observable we would like to raise some points about the true error.

Firstly, it is a quantity th a t all machine learning algorithms should try to minimise - however

this is impossible to carry out directly because it is defined for data points whose labels are

unknown (also referred to as test data). As its definition suggests, minimising the generalisation

error would lead to hypotheses th a t have good generalisation in the future, a sound goal for

all learning algorithms. There are two main principles th a t indirectly try to achieve this goal,

called the Empirical Risk Minimisation (ERM) principle and the Structural Risk Minimisation

(SRM) principle, both of which we will address in due course.

The fact th a t we cannot minimise the true error directly seems somewhat disappointing.

However, there does exist a quantity th a t suggests an indirect minimisation of the generalisation

error. Given a training sample 5 and assuming th a t the data points in S arrive iid from the same

probability distribution V then we can define the following empirical error2 as the (probability

of) misclassification on the observed training sample S.

D e fin itio n 2.9 (empirical error). Given a hypothesis f and a sample S = {(xi,?/*)}™^, the

empirical error er(-) o f f is the following quantity:

m
er(/) = P r { /(*) / v} = — 1 ^ ’ (2‘8)(x.,y)~s rn 'i=i

where I is the indicator function.

The em pirical/training error is based on the training data th a t our learning machines

have access to. By assuming th a t the training and testing data are generated from the same

2Empirical here indicates that the input-output pairs have been observed in the training data. This is also
why it is commonly referred to as the training error.

2.4. Learning theory 26

distribution we are expecting th a t a learning protocol will only need to use the training d ata in

order to generalise well in the future. This is true for many learning algorithms. The main goal,

as mentioned above, is to minimise the true error. However, as this is not possible and from the

assumptions we have made on the distribution generating the data we can try and minimise the

empirical error. This is known as the Empirical Risk M inimisation (ERM) principle.

D efin itio n 2.10 (Empirical Risk Minimisation). Given a hypothesis space H , the Empirical

Risk Minimisation principle wants to find a hypothesis f * e H having the smallest empirical

error. This equates to the following expression:

E R M {f*) = arg min (e r(/)} .

Given a training sample S , any learning algorithm will want to minimise the true error.

The ERM principle is an indirect route to achieving this goal. By making the assumption th a t

the training and testing d ata come from the same distribution we can look to carry out the

ERM in hope th a t it will also minimise the true error. However, an im portant issue is th a t

simply minimising the empirical error could lead to overftting, finding functions th a t are only

capable of correctly classifying the training data but poor at generalising in the future. This

is a danger of the ERM principle but can be avoided using regularisation. This is where we

would, for example, solve a more approximate problem such as in ridge regression where the

ridge param eter acts as a “sm oother” of the function generated by least squares regression. This

smoothing in effect makes sure th a t we find functions th a t are more general. Another way to

think about this is th a t it is an attem pt a t striking a balance between the complexity of the

function learnt and the accuracy on the training data. This leads us onto w hat is known as the

Structural Risk Minimisation (SRM) principle.

D e fin itio n 2.11 (Structural Risk Minimisation). Given a hypothesis space ?i , a complexity

measure V (/) of a hypothesis f then the Structural Risk M inimisation principle wants to find

a hypothesis f* e H whose empirical error plus complexity is minimal. This equates to the

following expression:

S R M (f*) = arg min (e r(/) + AV(/)} . (2.9)
f£H

The complexity (structure) term tries to avoid the situation of over/under-fitting the data.

It is not rigourously defined above, as there are several different complexity terms th a t can and

have been used in learning theory. We will develop these term s below and show th a t in sparsity

this complexity term simply translates to the parsimony of the hypothesis sought. However,

before moving onto specifics of capacity term s we now commence with a discussion about the

PAC learning framework, th a t allows us to formulate upper bounds for learning algorithms.

After this we go on to discuss more complex bounds, in the PAC framework, th a t take into

account the structure of the hypotheses found.

2.4. Learning theory 27

2.4.1 Probably A pproxim ately Correct (PAC) theory

PAC learning is an acronym for “Probably Approximately Correct” . Simply translated as saying

th a t we can find a hypothesis w ith low error (approximately correct) with high probability

(probably). These bounds rely on using the information available to us and not making any

assumptions about the distribution th a t may have generated the data. This is why they are

sometimes referred to as distribution-free bounds.

D efin itio n 2 .1 2 (Probably Approximately Correct). Given a hypothesis space Tt with input

space X , a learning algorithm A is probably approximately correct i f for all distributions V on

X , for all e , 5 e R (0 < e,S < 1), there is a sufficient sample size mo such that i f m > mo, then

where S is an m-sample generated iid according to V .

We will use the notation P rjS 1 : . . .} to denote the probability P m { . . .} over m points from

the sample S generated iid. An interpretation of the PAC bound is th a t the probability of

finding a hypothesis / € Tt whose training error er(/) = 0 and true error e r(/) < e is lower

bounded with high confidence (greater than a probability of 1 — 5). If we can show th a t an

algorithm will find a hypothesis th a t is provably PAC then with very high probability we will

have an error in the future th a t is less than e. A practical PAC bound looks to find the number

e which in tu rn is an upper bound for the true error e r(/) of the function / . We now discuss a

PAC bound th a t uses the size of the hypothesis space as the main bounding principle to find a

value for e.

Given a sample S consisting of m examples and a hypothesis space Tt, then the probability

of finding a function / e Tt th a t has error greater than some e € M (0 < e < l) will be greater

than 1 — e. If we have m independent samples then this will be (1 — e)m < exp (—em). Applying

the union bound we have the following upper bound

The bound uses the size of the hypothesis space Tt and the number of samples m in its

calculation. There is no sign of the distribution th a t generated the d a ta and so we can give a

PAC bound in terms of the sample complexity.

sample. Then with probability 1 —5, given a function f e Tt with zero training error er(/) = 0,

we can upper bound the true error er(/) by,

P r{ 5 : 3 / € H: e r(/) = 0 ,e r (/) > e} < 5,

P r {S ': e r(/) = 0 ,e r(/) > e} < \Tt\ exp (—e m). (2 .10)

T h e o re m 2 .1 (Sample complexity bound). Let Tt be the hypothesis space and m the size o f the

(2 .11)

Proof. Set rhs of Equation (2.10) to S and solve for e. □

2.4. Learning theory 28

This bound can only be formed by counting the size of the hypothesis space and hence

implies the hypothesis space must be finite. However, in most situations this is not the case.

For example, the set of hyperplanes in the SVM algorithm is an infinite set. In the case when

we have an infinite hypothesis space we can use a complexity term known as the VC-dimension

to help upper bound the future loss of an algorithm.

2.4.2 Vapnik-Chervonenkis (VC) theory

As was mentioned at the s ta rt of the previous section, Vapnik and Chervonenkis have been

pioneers of learning theory. They helped develop the theory of generalisation error bounds and

proposed the VC dimension. We s ta rt the discussion w ith a quantity th a t is related to the VC

dimension known as the growth function.

D e fin itio n 2.13 (Growth function). Given a hypothesis space Tt, a set o f m examples

{ x i , . . . , x m} then the growth function n-^ (m) can be defined like so:

n « (m) = . max |{ (/ (x i) , . . . , / (x m)) : / G Tt}\
(x i ,...,xm)GA:m

In other words, the growth function is the maximum number of distinct binary vectors th a t

can be formed from a set { x i , . . . , x m} of m input points using every possible hypothesis in

Tt. As we are dealing with a classification problem and each example can only take one of two

predictions —1 or +1, then we can have a maximum of 2m such distinct vectors. If these 2W

distinct vectors can be realised then we say th a t a set of m points is shattered by Tt.

D efin itio n 2.14 (Vapnik-Chervonenkis dimension). The Vapnik-Chervonenkis (VC) dimension

VCdim (Tt) is the maximum number o f points d shattered by Tt. I f such sets o f all sizes exist

then VC dim (Tt) — oo.

The VC-dimension quantifies the power of a hypothesis space with a single number d. If

Vm, not all 2m realisations can be achieved then the true error of an algorithm defining an

infinite hypothesis space can be upper bounded. This is done using the double sample trick. For

details of the proof see [Blumer et al., 1989, Anthony and Biggs, 1992].

T h e o re m 2.2 (Blumer et al. [1989]). Let Tt be a hypothesis space, S a training sample o f size

m and e e l . Then fo r sample S , the probability of f 6 Tt observing zero empirical error er (/)

and true error er(/) greater than some e can be upper bounded by,

Pr {S : e r(/) = 0 ,e r (/) > e} < 2Un (2rn)2-em/2.

The growth function can be upper bounded using the VC-dimension and hence an upper

bound given for learning algorithms whose hypothesis spaces can be quantified by a finite VC-

dimension.

T h e o re m 2.3 (VC theory bound). Let Tt be a hypothesis space having finite VC-dimension

d. For any probability distribution V on X x {—1,1}, with probability 1 — 6 over m random

2.4. Learning theory 29

examples S , any hypothesis f g TL that has e r(/) = 0 has true error er(/) upper bounded by,

Proof. By making use of Sauers lemma and the VC dimension d we can upper bound the growth

function for m > d by,

which gives polynomial growth in exponent d. Making this substitution into the rhs of the

The VC bound is data independent in the sense th a t it does not take into account the

information from the data points but simply needs to find a finite VC-dimension hypothesis

class in order for the learning algorithm to subsume PAC learnability. By d a ta independent we

mean th a t the VC-dimension is calculated from whether the hypothesis space Tt can shatter

some set of m points not just those given in the sample S. However, the information gained

from the hypothesis constructed from the data can give us more powerful and general complexity

measures th a t ultimately yield tighter upper bounds on the generalisation error. This is known

as a data-dependent bound and is possible in the sample compression framework.

2.4.3 Sam ple com pression theory

In 1986, Littlestone and W armuth wrote a technical report th a t was never published. Its influ­

ence allowed several learning algorithms to be bounded in term s of the so-called compression

set. A publication in 1995 by Sally Floyd and Manfred W armuth on “Sample compression,

leanability and the Vapnik-Chervonenkis dimension” addressed the earlier work of Littlestone

and W armuth [1986] and also showed relationships between the size of the compression set and

the VC-dimension. We show later th a t there is a one-to-one correspondence (in some cases)

th a t helps bound regression style algorithms in a sample compression setting. The relationship

between these two numbers is still a topic of research and beyond the scope of this thesis. The

interested reader is referred to the reference Floyd and W arm uth [1995]. Our interest for the

moment with sample compression theory is th a t it can help bound learning algorithms in a

data-dependent fashion and also in terms of the level of sparsity achieved by the functions -

giving us a complexity measure other than th a t defined by the VC dimension. We commence

with a definition of a sample compression scheme.

D efin itio n 2.15. The co m p ress io n fu n c tio n A induced by a sample compression algorithm

A on training set S is the map

such that the compression set A(S) C S is returned by A .

A re c o n s tru c tio n fu n c tio n $ is a mapping from a compression set A(S) to a set Tt of

probability in Theorem 2.2, setting it equal to S and solving for e gives the desired result. □

A : S A (S)

2.4. Learning theory- 30

hypotheses

$: A (S) i— > f e ? i .

W ith these ingredients we can now define a compression scheme.

D efin itio n 2.16. Let A (S) be the function output by learning algorithm, A on training set S.

A sample compression scheme is a reconstruction function & mapping a compression set A(S)

to some set of functions H such that

A (S) = *(A (S)).

I f H i s the set o f Boolean-valued functions then the sample compression scheme is said to be a

classification algorithm. I f H is the set o f Real-valued functions then the sample compression

scheme is a regression algorithm.

This definition suggests th a t a compression scheme and a learning algorithm are equivalent

if and only if the learning algorithm can construct its hypothesis from a small subset of the data

(the compression set).

An example of a compression scheme (see Herbrich [2002]) is the support vector machine

algorithm A svrn which produces a large margin separating hyperplane «4st;m(5) from the set of

support vectors. Observe th a t the SVM will produce the same hypothesis by only using the set of

support vectors - we can view this as the compression set Asvm(S). Furtherm ore, we can define

the notion of a reconstruction function &svm by rerunning the SVM using only th is set Asvm(S)

and producing the same hyperplane A svm(S) as the SVM, i.e., A SVm (S) = ®Svm (ASvm(S))-

We can bound the performance of learning algorithms using the size of th e compression

set (i.e., |A(5)|) in a PAC sense using the following simple counting argument. Let us denote

by d the cardinality of the compression set A(S). We showed for the VC bound th a t the error

of any function / € H could be upper bounded by assuming a double sample and requiring a

finite VC dimension. In the sample compression theory the double sample is in fact implicit

in the definition of a compression scheme. The second sample S th a t acted as a test set in

the VC argument is in fact the set of points th a t remain outside of the compression set in

the sample compression argument. The size of the compression set acts like the VC dimension

i.e., as a single number defining the complexity of the classifier learnt. However, the size of

the compression set is computed after the hypothesis has been constructed and is in fact data-

dependent unlike the VC dimension. Therefore, we can bound learning algorithms using the

size of the compression set.

Recall th a t the error of the function / is at most (1 — e)m for m points given a second sample

S. Therefore, if the second sample is defined over the m — d points outside of the compression

set then we have a probability of (1 — e)m~d < exp(e(ra — d)). Using this trick we have saved on

the 2 th a t appears in the VC bound. Next we would like to bound the error for every possible

hypothesis th a t could be constructed of size d from a sample of size m. This is the binomial

2.4. Learning theory 31

coefficient (™) and so a union bound over the number of errors th a t can occur in all possible

ways gives the following bound for a sample compression scheme making zero training error.

T heorem 2.4 (Sample compression bound [Bartlett and Shawe-Taylor, 1999]). Consider a

compression scheme 4>(A(S)). For any probability distribution V on X x { —1,1}, with probability

1 — 5 over m random examples S , the true error e r(/) of a hypothesis f £ H defined by a

compression set o f size d can be upper bounded by,

. 1 r „ / e m\ , (m y
CT(/) - m ^ d [(~d~) (j) . '

Proof. We can upper bound the probability of making zero training error er§(f) = 0 on the set

S — S \ A(S), but large true error e r(/) > e, by the following quantity,

P r {5 : e i g (f) = 0, e r(/) > e} < exp(-e(m - d)). (2.12)

Therefore the result follows by upper bounding the Binomial coefficient using Sauer’s lemma

i.e., (™) < (y p) d, setting the rhs of the above probability to 5 and multiplying it by 1 /m for

each possible choice of d, and solving for e. □

R em ark 2.1. The sample compression bound can take into account mis classifications on the

set S = S \ A(S) by counting the number o f ways o f choosing the errors k from the m — d points

and multiplying the rhs o f probability (2.12) with the Binomial coefficient

R em ark 2.2. The sample compression scheme bounds given here only need the information

from the compression set in order to recreate the hypotheses found by algorithm A . However, in

some situations we also need a message string that defines extra information needed in order to

make this reconstruction. This type o f extra information is needed in the set covering machine

(SCM) where it is required to distinguish between border points and centre points found in the

compression set. This will be explored further in the next chapter.

The data-dependent bound we have just given for sample compression schemes implies th a t

we will learn well if the size of the compression set is small and the error is also small (in the

case when we allow misclassifications). This is a structural risk minimisation style bound and

helps to avoid the problem of overfitting by guarding against classifiers th a t are too complex.

The SCM algorithm contains sample compression bounds and looks to trade-off the complexity

of the classifier against the empirical error. We show in Chapter 3 th a t we can directly minimise

such error bounds in order to train the set covering machine algorithm. But first, we give a

detailed and elaborated proof of a sample compression bound th a t accounts for the loss on both

classes of examples, a property referred to as asymmetrical loss.

32

Chapter 3

Sparsity in supervised learning

In this chapter we discuss supervised learning algorithms fo r classification and regression. For

classification we propose a sample compression bound for the set covering machine (SCM) that

allows the user the ability to specify different costs (weights) for the misclassification o f different

classes (asymmetric loss). Next we look to apply the generalisation error bounds fo r the SCM

(including the novel bound proposed) in order to train the algorithm. Recall that the SCM

contains two parameters that need tuning during training, the penalty parameter p and the soft

stopping parameter s. By noting that the non-trivial bounds are tight enough fo r model selection

we propose bound-driven learning algorithms for the SCM that remove both o f these parameters.

The first variant is called the bound set covering machine (BSCM) that greedily adds data-

dependent balls to the hypothesis. However, this is a sub-optimal algorithm and so we extend

our result to compute optimal solutions, and call it the branch and bound set covering machine

(BBSCM). By using a branch and bound approach we prove that the B B SC M will produce the

hypothesis with the smallest generalisation error bound. Therefore, we also propose a final

algorithm called the BBSCM (t) that produces (i) classifiers whose generalisation error bounds

are a factor r from the optimal and (ii) trades off time against the quality o f the solution.

In the regression section we turn our attention to a sparse non-linear variant o f least squares

regression called kernel matching pursuit (KMP) . We describe the algorithm and show that

unlike the SCM it does not form a compression scheme and hence cannot take advantage o f

sample compression theory. We show that although this is the case, we can view the kernel

defined feature space defined by the KM P algorithm as a sample compression scheme and make

use o f VC theory to help bound its future loss. Therefore, we propose the first (to our knowledge)

upper bound fo r K M P that jointly uses VC theory and sample compression theory in order to

construct loss bounds. We end the chapter with a plot o f the K M P bound against its test error

on a Boston housing data set and show that the lowest bound value actually coincides with the

smallest test error fo r KMP.

3.1. Introduction 33

3.1 Introduction
The following bound proposed by M archand and Shawe-Taylor [2001] bounds the performance

of the SCM using sample compression theory.

T h e o re m 3.1 (Marchand and Shawe-Taylor [2001]). Suppose an SCM finds a hypothesis f

given by a setlZ c B o f data-dependent balls with d = d(1Z) = \TZ\ balls, cp = cp(fRf) of which are

centred around V examples, kp = kp(11) are the number o fV training errors and kn = kn (lZ)

the number o f A f training errors on a sample o f size rn > 2d + kp + kn } Then with probability

1 — 5 over random draws o f training sets, the generalisation error e r(/) of the resulting classifier

f can be bounded by

This bound is only specialised to the SCM and is not general enough to be applied to any

other sample compression based algorithms th a t rely on extra sources of inform ation2 in order

to make the reconstruction of the hypothesis. The second bound was originally constructed for

the Decision List Machine (DLM) M archand and Sokolova [2005] and is a more general result

th a t can be applied to different sample compressed learning algorithms, and is slightly tighter

than Theorem 3.1 (for the SCM).

T h e o re m 3.2 (Marchand and Sokolova [2005]). Suppose an SC M finds a solution given by a

set 1Z o f data-dependent balls with cp = cp(7Z) centred around V examples, cn = cn (TZ) centred

around A f examples and bp = bp(TZ) borders defined only by V examples, with kp = kp(IZ)

the number o fV training errors and kn = kn (TZ) the number o f A f training errors. Then with

probability 1 — 5 over random draws o f training sets, the generalisation error e r (/) o f the resulting

classifier f can be bounded by

where d ~ cn + cp + bp, k = kp + kn , and ((a) = 6-7T 2 (a + 1) 2 .

Although, this bound is more general it does not take into account the individual losses on

performance of classifiers trained on imbalanced data sets, M archand and Shawe-Taylor [2002]

er(/) < e{d,cp,bp, kp, kn ,S)

ad)C(k)C(bp)S

the two classes of examples. However, to obtain a loss bound th a t reflects more accurately the

S tr ic t ly speaking we use d to define the size of the compression set throughout this chapter, however, in
this instance we make a slight abuse of this fact and use it to denote the number of balls. However, this is only
done to simplify notation in the work that will be presented in Section 3.5 and to avoid using lots of different
notations.

2;in the SCM this relates to whether the points in the compression set are ball borders.

3.1. Introduction 34

have proposed a SCM loss bound th a t depends on the observed fraction of positive examples

in the training set and on the fraction of positive examples used for the compression set of the

final classifier. Hussain [2003] showed th a t this loss bound is incorrect. Therefore we propose, in

Section 3.3, a general loss bound which is valid for any sample compression learning algorithm

(including the SCM) and th a t depends on the observed fraction of positive examples and on

what the classifier achieves on the positive training examples. This loss bound is applicable to

a broader class of compression schemes.

We begin our discussion with preliminary definitions and terminology. Let the input space

^ b e a set of n-dimensional vectors of Rn and let x be a member of X. A positive example will

be referred to as a P-example and a negative example as a TV-example. Given a training set

S — S-p U Sjy of examples, the set of positive training examples will be denoted by Sp and the

set of negative training examples by Sjy.

Any learning algorithm th a t constructs a conjunction can be transform ed into an algorithm

constructing a disjunction just by exchanging the role of the positive and negative examples (see

Definition 2.5). For the rest of this chapter we will assume, w ithout loss of generality, th a t the

SCM always produces a conjunction.

In this chapter, we use the set of data-depedent balls B defined in Definition 2.6. Hence,

the subset 71 C H of data-dependent balls found by the SCM gives us a set of ball centres and

a set of ball borders. The union of these two sets gives us the compression set of the SCM (see

definition 2.15). We refine further this notion, for the SCM, in Section 3.3.

We adopt the PAC model where it is assumed th a t each example (x, y) is drawn indepen­

dently at random according to a fixed (but unknown) distribution. In this chapter, we consider

the probabilities of events taken separately over the P-examples and the A/’-examples. We will

therefore denote by Pr(xy)^-p{a(x,y)} the probability th a t predicate a is true on a random

draw of an example (x, y), given th a t this example is positive. Hence, the error probability of

classifier / on P-examples and on .A/’-examples, th a t we call respectively the expected V-loss and

the expected J\f-loss, are given by

erv U) = . P r { /(*) ^ y } ,
(x , y) ~ V

erA/-(/) = Pr {/(x) ^ y} ■
(x ,y)~ N

Similarly, let erp (f , S) denote the proportion of examples in S-p misclassified by / and let

erjy(f, S) denote the proportion of examples in Sjy misclassified by / . Hence

erv { f , S) = P r { / (x) ^ y} = E {̂ y)^ s .p { l (f (x) ± y))},
(x,y)~5-p

e r = Pr { / (x) 7 ̂y} = E (Xiy)^ SAA{I (/ (x) ^ y)) } .
(x ,i/)~S Ar

The probability of occurrence of a positive example will be denoted by pp. Similarly, p ^

will denote the probability of occurrence of a negative example. We will consider the general case

3.2. Incorrect Bound 35

where the loss Ip of misclassifying a positive example can differ from the loss Ijg- of m is c la s s i f y in g

a negative example. We will denote by .4(5) the classifier returned by the learning algorithm

A trained on a set 5 of examples. In this case, the expected loss £[.£(.4(5))] of classifier A(S) is

defined as

£[£(.4(5))] = lr • p r ■ er-p[A(S)\ + Ijy - p / f • eijy[A(S)] (3.1)

3.2 Incorrect Bound

Theorem 5 of Marchand and Shawe-Taylor [2002] gives the following loss bound for the SCM

with the symmetric loss case of l r = Itf = 1 -

Given the above definitions, let A be any learning algorithm that builds a SCM with data-

dependent balls with the constraint that the returned function A (S) always correctly classifies

every example in the compression set. Then, with probability 1 —5 over all training sets S of m

examples,

£[£(.4(5))] < 1 - e x p j ----------------——------ ------- — (\ n B + \n ^ -
 ̂ u i Cp h Cji kp kfi \ Sq

where

r2 \ - s

<*o ^ • ((cp + l)(cn + 1)(6 + l)(fcp + l)(/cn + 1)) 2 • 5

B = (^ 1 (Trlp~ CP | (mn] (m p - cp - ~ h\ (rnn - ° n
\ Cp J y 6 / \ cn J y kp J \ kn

and where kp and kn are the number of misclassified positive and negative training examples

by classifier A(S) . Similarly, cp and cn are the number o f positive and negative ball centres

contained in classifier A(S) whereas b denotes the number o f ball borders* in classifier A(S) .

Finally m p and m n denote the number of positive and negative examples in training set S.

Let us take the B expression only and look more closely a t the number of ways of choosing

the errors on Sp and Sĵ p.
f m p Cp b\ f uin Cn \
\) V kn J

As was pointed out by Hussain [2003] the bound on the expected loss given above will be small

only if each factor is small. However, each factor can be small for a small number of training

errors (desirable) or a large number of training errors (undesirable). In particular, the product

of these two factors will be small for a small value of kn (say, kn = 0) and a large value of kp

(say, kp = m p — cp — b). In this case, the denominator in the exponential part of the bound

3As explained in Marchand and Shawe-Taylor [2002], the ball borders are always positive examples.

3.3. Sample Compression Loss Bounds for Imbalanced Data 36

given above will become

m Cp b cn kp kfi — rrin Cn,

and will be large whenever m n cn . Consequently, the bound given by Theorem 5 of Marchand

and Shawe-Taylor [2002] will be small for classifiers having a small compression set and making

a large number of errors on S-p and a small number of errors on Sfy. Clearly, this is incorrect

as it implies a classifier with good generalisation ability and so exposes an error in the proof.

In order to derive a loss bound where the issue of imbalanced misclassifications can be handled,

the errors for positive and negative examples must be bounded separately.

3.3 Sample Compression Loss Bounds for Imbalanced

D ata

Recall th a t X denotes the input space. Let X = (X x { — 1 , l})m be the set of training sets of

size m with inputs from X . We consider any learning algorithm A having the property that,

when trained on a training set S € X , A produces a classifier -4(5) which can be identified

solely by a subset A = Ap U Am c S, called the compression set, and a message string a th a t

represents some additional information required to obtain a classifier. Here A-p represents a

subset of positive examples and A_\f a subset of negative examples. More formally, this means

th a t there exists a reconstruction function 4> th a t produces a classifier / = <F(A,cr) when given

an arbitrary compression set A and message string a. We can thus consider th a t the learning

algorithm A , trained on 5, returns a compression set A(S) and a message string cr(S). The

classifier is then given by 3>(A(5), cr(S)).

For any training sample S and compression set A, consisting of a subset Ap> of positive

examples and a subset A/ / of negative examples, we use the notation A(5) = (Ap(S) , A_\f(S)).

Any further partitioning of the compression set A can be performed by the message string a.

For example, in the set covering machine, a specifies for each point in A-p, whether it is a ball

centre or a ball border (not already used as a centre). As explained by M archand and Shawe-

Taylor [2002], this is the only additional information required to obtain a SCM consistent with

the compression set.

We will use dp to denote the number of examples present in A p. Similarly, dn will denote

the number of examples present in Ajg-. To simplify the notation, we will use the m p and

vectors defined as

m-p — (m , nfip, m,fi, dp, dn, kp)

xiW = (xn, rrip, m n , dp, dn , fyj),

(3.2)

(3.3)

3.3. Sample Compression Loss Bounds for Imbalanced Data 37

and

m v {S,A(S)) = (|S |,|S H |S V I,|A P (S)|,|Ax (S)|,eV(.4(S% S)xm ,,) (3.4)

mx(S,A(S)) = (|S |,|S 7.|, |5 Ar|,|AP (S)|,|AAr(S)|,CTAf(X (S),S)xm n) . (3.5)

Hence, the predicate m-p(S ,A(S)) — m p means th a t |5 | = m, |Sp| = m p, |5 y | = m n,

|A p(5)| = dp, |Ajv'(jS)| = dn , er-p(A(S) ,S) = We use a similar definition for predicate

m j>s(S,A(S)) — n w . We will also use .B p(m p) and B / / (mjv) defined as

- C ?)G :)(V) >“ »
■ f t) C :) (' : “■)■ M

The proposed loss bound will hold uniformly for all possible messages th a t can be chosen

by A. It will thus loosen as we increase the set M. of possible messages th a t can be used. To

obtain a smaller loss bound, we will therefore permit A4 to be dependent on the compression

set chosen by A . In fact, the loss bound will depend on a prior distribution Pa (o') of message

strings over the set of possible messages th a t can be used with a compression set A. We

will see th a t the only condition th a t Pa needs to satisfy is

E f i l (« 7) < l .
ctGA'Ia

Consider, for example, the case of a SCM conjunction of balls. Given a compression set

A = (Ap, A^r) of size (|A p|, |A ^ |) = (dp,d n), recall th a t each example in Ajv- is a ball centre

whereas each example in Ap can either be a ball border or a ball centre. Hence, to specify

a classifier given A, we only need to specify the examples in Ap th a t are ball borders4. This

specification can be used with a message string containing two parts. The first part specifies the

number b e {0, . . . ,dp} of ball borders in Ap. The second part specifies which subset, among

the set of (d6p) possible subsets, is used for the set of ball borders. Consequently, if b(o) denotes

the number of ball borders specified by message string cr, we can choose

Pa W = <(f>M) • (bd{Pa)) (SCM case), (3.8)

where, for any non-negative integer 6 , we define

r n = ^ (b + i y 2 . (3.9)
7TZ

4For a SCM making no error w ith A, we can pair each centre with its border in the following way. For each
negative centre, we choose the closest border. For each positive centre, we choose the furthest border.

3.3. Sample Compression Loss Bounds for Imbalanced Data 38

Indeed, in this case, we clearly satisfy

E - t m E (i ,
ctGA'Ia b= 0 cr:b(cr)=b

< 1 .

The proposed loss bound will make use of the following functions:

ejy(n w , (3) = 1 - exp

Trip (ip kp

win dn kfi

In (B-p(mp)) + >a- (3.10)

(3.11)

T h e o re m 3.3. Given the above definitions, let A be any learning algorithm having a recon­

struction function that maps compression sets and message strings to classifiers. For any prior

distribution P \ of messages and for any <5 G (0 , 1]:

Prjs € X : erpH(S)] < eP(mP(S,^(S)),5P(5)A)|

P r jse X : erAr[.4(S)] < eAr(mJv(5,^(S)), w (5)a) |

> 1 — <5

> i - s ,

where m p (S , A (S)) and m^ / (S , A (S)) are defined by Equation 3.4 and Equation 3.5, and

gv (S) = « d p(S)) ■ ((dn(S)) ■ W A S)) ■ PMs M S))

g * (S) = adp(S)) • C(dn(S)) ■ <(K(S)) ■ PMs)(<r(S)) ■

(3.12)

(3.13)

Note th a t Theorem 3.3 directly applies to the SCM when we use the distribution of messages

given by Equation 3.8.

Proof. To prove Theorem 3.3, it suffices to upper bound by 8 the following probability

P = P v ^ S E X : erv [A (S) } > e (m v (S , A (S)) , A (S) , o { S)

= ^ P r i s G X : erp[^4(5)] > e^irrp, A(S'), cr(S')^, m p (5 , A(S)) = n r p | ,
ITl'p ' ^

where e(m p, A(S'),<r(S)) denotes a risk bound on er-p[^4(S')] th a t depends (partly) on the com­

pression set A(S) and the message string o (S) returned by ^4(5). The summation over m p

stands for
m m —m v m v —dv

£<•) = £ £ £ £ (•)•
m-p m p = 0 dp = 0 dn = 0 kp= 0

Note th a t the summation over kp stops a t m p — dp because, as we will see later in the proof,

we can upper bound the risk of a sample-compressed classifier only from the training errors it

3.3. Sample Compression Loss Bounds for Imbalanced Data

makes on the examples th a t are not used for the compression set.

39

We will now use the notation i = (i i , . i d) for a sequence (or a vector) of strictly increasing

indices, 0 < i\ < i2 < • • • < id < fn. Hence there are 2m distinct sequences i of any length d,

including the empty sequence. We will also use |i| to denote the length d of a sequence i. Such

sequences (or vectors) of indices will be used to identify subsets of S. For S £ X , we define Si

as

Si ((^ij i Vi1))•••> (*̂ id j Vid)) •

Under the constraint th a t m (S, A(S)) = m , we will denote by ip any sequence (or vector)

of indices where each index points to an example of Sj>. We also use an equivalent definition

for in . If, for example, in = (2,3,6,9), then S-ln will denote the set of examples consisting

of the second, third, sixth, and ninth AA-example of S. Therefore, given a training set S and

vectors ip and in , the subset Si in will denote a compression set. We will also denote by Xmp

the set of all the 2mp possible vectors ip under the constraint th a t |Sp | = m p. We also use an

equivalent definition for Xm n . Using these definitions, we will now upper bound P uniformly

over all possible realizations of ip and in under the constraint m-p(S, -4(5)) = m-p. Thus

P < y ^ P r i f f £ X : 3 ip £ I Wp, 3 i n £ I m » , 3 g € M s iT><in ■
m 'p ^

erp[$(Sip,i„,CT)] > t[trip,S'ip,u , a j ;m P(5', A(S)) = m p)

 ̂ E E E :
mp ipGlmp in€lmn ^

er7>[$(ffipiin,a)] > €^mp,ffip,iri,cr),nip(ff,^(ff)) = mP j ,

where $ (f f ip>in , a) denotes the classifier obtained once, ff, ip , in , and o have been fixed. The last

inequality comes from the union bound over all the possible choices of ip € Xmp and in £ Xm n .

Let

P ' = P r j f f £ X : 3a £ M s lp,in : e r p [$ (f f ip)in,cr)] > e | m p , S i pii#, f f) , m p (S , lA (S)) = m ^ j .

We now make explicit how the positive and negative examples are interleaved in the training

sequence ff by introducing a new variable b, which is a bit-string of length m such th a t ff* is

a positive example if and only if b* = 1. Let B rrip denote the set of possible b vectors th a t we

3.3. Sample Compression Loss Bounds for Imbalanced Data 40

can have under the constraint th a t |5 p | = m p. We then have

b £Bmp

m v (S , A (S)) = m v \ b(S) = b j P r j S E X : b(S) = b j

= H P r j s E X : 3o E M Slp:irl : e rp [$ (S ip)iri, (j)] > e (mp , 6^ , (7) ,
bGBmp

m V (S , A(S)) = m v | b (S) = b j p ™p(l - pv

P' < (m }p™p(l -p -p)m- mP sup P r (s E X : 3(7 e M s . . :

err l$(Sipjin,(T)} > e(:

Under the condition b (5) = b, index vectors ip and in are now pointing to specific ex­

amples in S. Consequently, under this condition, we can compute the above probability by

first conditioning on the compression set Sipt\n and then performing the expectation over S-lpjin .

Hence

We will now stratify this last probability by the set of possible errors th a t classifier

$(Siptin ,o) can perform on the training examples th a t are not in the compression set S\ in .

Note that we do not force here the learner to produce a classifier th a t does not make errors on

5ipiin. However, the set of message strings needed by $ to identify a classifier h might be larger

when h can err on S\pt\n. To perform this stratification, let e r (f , S p) be the vector of indices

pointing to the examples of S-p th a t are misclassified by / . Moreover, let Xmp (ip) denote the set

of all vectors j p E Tmp for which no index i E j p is also in ip. In other words, for all ip E Xmp

P r j s e X : () b (S) = b | = E Slp,1j b P r | s € X : (-) b (S) = b , 5 ip,1„ |

By applying the union bound over o E M s ip iri, we obtain

3.3. Sample Compression Loss Bounds for Imbalanced Data

and all j p € Zmp(ip), we have j p n ip = 0. Therefore

41

jp€^mp (ip)

jpŜ TTlp (ip)

e r[$ (5 ip)iri, a), S v \ = j p | b (5) = b , Sip>in j ,

where the last equality comes from the fact th a t the condition m-p(5, A(S)) = m-p is obsolete

when b (5) = b with fixed vectors ip , i n , j P- Now, under the condition b (5) = b with a fixed

compression set this last probability is obtained for the random draws of the training

examples th a t are not in Sip,in . Consequently, this last probability is a t most equal to the

probability th a t a fixed classifier, having er-p > e(m p, S -lpt\n , cr), makes no errors on m p — dp — kp

positive examples th a t are not in the compression set 5jp;iri. Note th a t the probability space

created by the conditioning specifies only the positions of the positive examples but places no

further restrictions on them. They can therefore be viewed as independent draws from the

distribution of positive examples. This makes it possible to bound the probability of the event

by the probability th a t m p — dp — kp independent draws are all correctly classified. Hence, we

have

By regrouping the previous results, we get

3.3. Sample Compression Loss Bounds for Imbalanced Data 42

By using

/ \ ^p X
(l - e(m P> 5 ip,i™> &)) = P sipiln (<?) ■ B ^ m v } • C(fep) • CKO * C(rfp) • 5 >

we get P < 5 as desired. Similarly, we have

P r |s € X : eW [/ (S)] > w (m Af(S ,i(S)) ,M (S) j) | < 6 ,

which completes the proof. □

R em ark 3.1. This Theorem can be viewed in a standard form by using the inequality 1 —

exp(—x) < x, for x > 0. To see this, we simply need to substitute Equations 3.10 and 3.11

into each probability given in Theorem 3.3 and weaken them with the above inequality. Doing

so yields the following bounds,

P r { S e X : er-p[-4(5)] < 1

P r : ew[A(S)] <

tii/p dp kp

TTin dn kn

In (Bv (m P)) + l n i

In (^ (m ^)) + ln ^

> 1 - 5 ,

> 1 - 6 .

However, each probability is separately bounding the error on the positive and negative examples

and so will not (in the final bound) hold with probability 1 —5 but with probability 1 — 48 (to

be shown) as the expected loss will rely on four bounds simultaneously holding true (i.e., from

Equation 3.1 we would like to upper bound erp>[.4(5)], er^[> l(5)], p-p and p x) .

Now th a t we have a bound on both erp[^4(5)] and erJ\/'[^4(<S')], to bound the expected loss

£[£(.4(5))] of Equation 3.1 we now need to upper bound the probabilities pj> and pjg-. For

this task, we could use a well-known approximation of the binomial tail such as the additive

Hoeffding bound or the multiplicative Chernoff bound. However, the Hoeffding bound is known

to be very loose when the probability of interest (here p-p and p ^) is close to zero. Conversely,

the multiplicative Chernoff bound is known to be loose when the probability of interest is close

to 1/2. In order to obtain a tight loss bound for both balanced and imbalanced data sets, we

have decided to use the binomial distribution w ithout any approximation.

Recall th a t the probability Bin(m, k,p) of having a t most k successes among m Bernoulli

trials, each having probability of success p , is given by the binomial tail

k
Bin(m, k , p) = ~ P)

i=0 ' '

Following Langford [2005], we now define the binomial tail inversion Bin (m, k, 5) as the largest

value of probability of success such th a t we still have a probability of at least 5 of observing at

3.3. Sample Compression Loss Bounds for Imbalanced Data 43

most k successes out of m Bernoulli trials. In other words,

Bin (ra, k, 5) = sup^j p : Bin (m, k,p) > 5 (3.14)

Prom this definition, it follows th a t Bin (m, m n ,8) is the smallest upper bound on pjq-, which

holds with probability at least 1 — £, over the random draws of m examples.

where m p = m p (5 , A(S)) and m jy = mjg-(S,A(S)) . Consequently, we have the next theorem.

tion function that maps compression sets and message strings to classifiers. With probability

1 — <5 over the random draws o f a training set S , we have

where m p = mp(S', A(S)) and m ^ = m / / (S, A(S)) are defined by Equations 3.4 and 3.5.

We can now improve the loss bound given by Theorem 3.4 in the following way. Consider

the frequencies pp = m p/ m and pjq- = m n/ m. Let us simply denote by ep and e ^ some upper

bounds on erp[.A(S)] and erp[w4(S’)]. Let us also denote by pv and pf f some upper bounds on

pp and pa/\ Let us first assume th a t lj\fe_\f > l-pe-p. Then we have

(3.15)

Prom this bound (applied to both pp and p/s), and from the previous Theorem, the following

predicates hold simultaneously with probability 1 — 5 over the random draws of S:

erp[.4(S)] < ep

er^[^4(5)] <

T h eo rem 3.4. Given the above definitions, let A be any learning algorithm having a reconstruc-

c r

£[^(*4(5'))] < /p • Bi n^m, mp, -) • e p ^ m p ,p p (5 ') -)

3.3. Sample Compression Loss Bounds for Imbalanced Data 44

= /pep + pssiljvejv — /pep)

< l-pe-p + Pj^(lj^ejsj- - /pep)

= pvl-pe-p + p ssltfe tf + (pjs — Pat){Im €ĵ - Zpep) .

Likewise, if /pep > Ijsj-e/s, we have

£[*(.4(5))] < p r b e v + P u lm M + (pv - P v) (b ^ v ~ / a w) ■

Consequently, we have the following theorem.

T heorem 3.5. Given the above definitions, let A be any learning algorithm having a recon­

struction function that maps compression sets and message strings to classifiers. For any real

numbers a,b,c, ZeZ

-t./ , v def / a ■ M i f C> 0^ (a ; 6;c) = <
I 6 • |c| i f c < 0 .

Then, with probability 1 — 5 over the random draws o f a training set S , we have

where m p = m p ^ , 4 (5)) and m jv = A(S)) are defined by Equations 3.4 and 3.5.

To compare the bound given by Theorem 3.5 w ith the bound given by Theorem 3.4, let us

assume th a t l/sej^f > l-pe-p. Using our shorthand notation, the bound of Theorem 3.5 is given

£[*(4(5))] <

by

Zpppep + Ijg-pjyejq- + (p^f - PuWm'^-M ~ Zpep) .

Whereas the bound of Theorem 3.4 is given by

ZpPpCp + iMPjq-ttf ■

3.4. Discussion and Numerical Comparisons with Other Bounds 45

The bound of Theorem 3.4 minus the bound of Theorem 3.5 then gives

(l-pPpe-p + IatPaT6̂) - (l-pppe-p + lAfPAf^AT + (Pas ~ PAr){lAT^Af ~ b * r))

= (Pr - P v) b ^ v + {pm - M ^ at ~ (Pat - PAfWAftAr - b ^ v)

— (Pp - Pv + Pa/ ~ P M)b tv

= b p +PaS - 1) lp e v ■

Since Ipep > 0 and Pp + Pat > 1, we have an improvement using Theorem 3.5.

E xam ple 3.1. I f Ip — W = = 0.05, m = 100 , m p = 40, m n — 60, ep = 0.3, cat =

get 0.439 for the bound of Theorem 3-4 and only 0.371 for the bound o f Theorem 3.5.

the bound o f Theorem 3.5 can be significantly better than the the bound o f Theorem 3-4

3.4 Discussion and Numerical Comparisons w ith Other

Bounds
Let us first discuss the bounds th a t we have proposed and make explicit some of the details

and consequences. In general, risk bounds are simply upper bounds of the true error calculated

from the (overall) error achieved during training. There is no distinction made between the

positive and negative class. The results of the current chapter are bounds on the error achieved

separately on the positive and negative examples, hence, making the distinction between the

two classes explicit. Furthermore, the risk bound on one class depends on w hat the classifier

achieves on the training examples of th a t class, thus, making the bound more data-dependent

than the usual bounds on the true error. This strong data-dependence also allows the user to

take into account the observed number of positive and negative examples in the training sample

as well as the flexibility of specifying different losses for each class. This is known as asymmetric

loss and is not possible with current sample-compression loss bounds.

Note also th a t the proposed bounds are data dependent bounds for which there are no

corresponding lower bounds. A small compression scheme is evidence of simplicity in the struc­

ture of the classifier, but one th a t is related to the training distribution rather than a priori

determined.

Any algorithm th a t uses a compression scheme can use the bounds th a t we have proposed

and take advantage of asymmetrical loss and cases of imbalanced data sets. However, the

tightness of the bound relies on the sparsity of the classifiers {e.g., the size of the compression set).

Hence, it may not be advantageous to use algorithms th a t do not possess levels of sparsity similar

(or comparable) to the SCM. This is one reason why we will provide a numerical comparison of

various sample-compression bounds for the case of the SCM.

In order to show the merits of our bound we must now compare numerically against more

common sample compression bounds and the bound found to be incorrect. In doing so we point

out when our bound can be smaller and when it can become larger. All the compared bounds

0.4, we

Hence,

3.4. Discussion and Numerical Comparisons with Other Bounds 46

are specialized to the set covering machine compression scheme th a t uses data-dependent balls.

Here each ball is constructed from two d ata points—one th a t defines the centre of the ball and

another that helps define the radius of the ball (known as the border point). Hence to build a

classifier from the compression set, we also need an informative message string to discriminate

between the border points and the centres.

Let us now discuss the experimental setup, including a list of all the bounds compared, and

then conclude with a review of the results.

3.4.1 Setup

From Example 3.1 of Section 3.3, it is clear th a t using Theorem 3.5 is more advantageous than

Theorem 3.4. Hence, all experiments will be conducted with the bound of Theorem 3.5. The first

bound we compare against is taken from the original set covering machine paper by M archand

and Shawe-Taylor [2001] and is similar to the Littlestone and W armuth [1986] bound but with

more specialization for the SCM compression set defined from the set of data-dependent balls.

The second generalisation error bound is adapted from Marchand and Sokolova [2005] and is a

slight modification of the Marchand and Shawe-Taylor [2001] result. All these bounds will also

be compared against the incorrect bound given in Marchand and Shawe-Taylor [2002].

Please note th a t traditional sample compression bounds, such as th a t given by Theorem

6.1 of Langford [2005], cannot be used with the set covering machine as it does not allow the

inclusion of any side information in the reconstruction of the classifier. The SCM, however,

stores both the centre and border points in order to construct its hypotheses. This implies the

need for side information to discriminate between centres and border points, something th a t

traditional sample compression bounds do not cater for. Therefore, we cannot give numerical

comparisons against these types of bounds.

All generalisation error bounds detailed below will make use of the following definitions:

dn = cn , dp = cp + b, d = dp + dn and k = kp + kn . For completeness, we give the definitions

of all risk bounds not already stated and, to avoid repetition, we only give references to the

bounds described earlier.

• new bound (Theorem 3.5). When applied to the SCM, the new bound uses the dis­

tribution of messages given by Equation 3.8 and Equations 3.9, 3.10, 3.11, 3.12, 3.13,

and 3.14.

• incorrect bound (Theorem 5 of Marchand and Shawe-Taylor [2002]). This bound can

also be found in Section 3.2 of the current chapter.

• M S01 bound (Theorem 5.2 of Marchand and Shawe-Taylor [2001]). This bound is stated

in Theorem 3.1.

• M S 05 bound (Equation 10 of M archand and Sokolova [2005]). This bound is stated in

Theorem 3.2.

3.4. Discussion and Numerical Comparisons with Other Bounds 47

3.4.2 D iscussion of results

The numerical comparisons of these four bounds (new bound, incorrect bound, MS01 bound

and MS05 bound) are shown in Figure 3.1 and Figure 3.2. Each plot contains the number of

positive examples mp, the number of negative examples m „, the number of positive centres

Cp, the number of negative centres Cn and the number of borders b. The number of negative

misclassifications A:n was fixed for all plots and these values can be found in the x-axis label

(either 0 or 500). The number of positive examples was varied and its quantity was set to those

values given by the x-axis of the plot. For example, in the left hand side plot of Figure 3.1, the

number of negative misclassifications kn was 0 and the number of positive misclassifications kp

varied from 1 to 2000. The y-axis give the bound values achieved. Finally, the empirical error

was also included in each plot—which is simply the number of examples misclassified divided

by the number of examples, i.e., (kp + k n) / (m p + rrin).

Figure 3.1 shows the case where the number of positive and negative examples is approxi­

mately the same. We clearly see th a t the incorrect bound becomes erroneous when the number

kp of errors on the positive training examples approaches the total number m p of positive train­

ing examples. We also see th a t the new bound is tighter than the MS01 and MS05 bounds when

the kp differs greatly from kn . However, the latter bound is slightly tighter than the new bound

when kp — kn .

0 8
new bound
r e a r e d bound

-M S05 bound
-MS01 bound
-em p n c a le rra

0 7

#12
5
1
I

0.2

500 1000 1500
number of positive examples m sdassttod (^ > 0 . kn = 0)

2000

0 9

0 8

0.7

0 6S
§■o

new bound
• - — ■ incorrect bound
 MS05 bound
 MS01 bound
 empncal error

02

500 1000 1500
> 0 , ^ = 5001

2000
number of positive examples misclassified (k^

Figure 3.1: Bound values for the SCM when mp = 2020, m n = 1980, cp = 5,c„ = 5, b = 10.

Figure 3.2 depicts the case where there is an imbalance in the data set (mn » m p), implying

greater possibility of imbalance in misclassifications. However, the behavior is similar as the one

found in Figure 3.1. Indeed, the MS01 and MS05 loss bounds are slightly smaller than the new

bound when kp/ m p is similar to kn /m n , but the new bound becomes smaller when these two

quantities greatly differ. This is where the new bound is most advantageous—in the case when

there is an imbalance in misclassifications. As we would expect, the new bound is smaller when

one class of examples is more abundant than the other.

3.5. Using generalisation error bounds to train the set covering machine 48

©2
5TJ
-

new bound
incorrect bound
MS05 bound
MS01 bound
empirical e ro r

200 400
number of positive examples misclassilied (kp > 0, kn =500)

600 800
k

1000

new bound
 incorrect bound
 MS05 bound
 MS01 bound

empirical error

| 0.4

400
number ot positive examples misclassilied (kp > 0, kn = 0)

200 600 800 1000
number of misclassilied > 0,

Figure 3.2: Bound values for the SCM when mp = 1000, ra„ = 3000, cp = 5, Cn = 5, b = 10.

Now th a t we have described tight sample compression bounds for the SCM we can look

to minimise the bounds in practice and integrate them more closely into the workings of the

algorithm.

3.5 Using generalisation error bounds to train the set cov­

ering machine
The set covering machine (SCM) described in Section 2.3.1 contains regularisation parameters

s and p. The first requires tha t we only add a small number of balls into the hypothesis

and the second bounds misclassifications of the negative class (in the conjunction case). The

SCM algorithm is an SRM (see Definition 2.11) style algorithm as the bound suggests good

generalisation properties if the empirical error is kept minimal and a small number of balls

produced. The algorithm attem pts at achieving this goal by solving the set cover problem

using a greedy algorithm. We now aim at incorporating the bounds into the SCM by directly

minimising them during training. We show tha t our algorithm will achieve provably optimal

solutions with regards to the generalisation error bound it minimises. We also give heuristic

solutions to tackle problems with large hypothesis spaces tha t become intractable and illustrate

the efficacy of the approaches by conducting experiments on real world data sets.

Interestingly, note that all the bounds presented so far in this chapter axe non-trivial (i.e.

always less than 1) and are expected to be small whenever the SCM builds a classifier consisting

of a small number of balls. Also Marchand and Shawe-Taylor [2002] showed th a t model selec­

tion using the loss bound was competitive against traditional cross-validation model selection

techniques. Exploiting this fact we apply the generalisation error bounds directly to obtain

classifiers for the SCM and, with it, remove the need for parameter estimation in the SCM.

Because of its greedy application of the bound, we call this first heuristic the bound set covering

machine (BSCM).

3.6. The bound set covering machine 49

3.6 The bound set covering machine
In this variant of the SCM we allow the algorithm to be driven by one of the generalisation error

bounds given by Theorem 3.1, Theorem 3.2 or Theorem 3.5. However, for simplicity and to save

space we only describe the algorithm with Theorem 3.1, although Theorem 3.2 and Theorem 3.5

can also be applied using the same reasoning.

Recall from Theorem 3.1 that the generalisation error er(/) for the classifier / found by

the SCM can be upper bounded by the quantity e (/) = e(rn, d , cp, kp, kn ,S), where d, cp, kp and

kn are computed from the set of balls in the hypothesis / and rn and <5 are fixed. Therefore,

given any hypothesis / = {h \t , . . . , h \d} containing d balls, we can calculate the risk bound

of adding any new ball h to / as e (/ U {h}) = e(m ,d -f 1 , cp + r, kp + q, kn — w,5) where

0 < r, q,w G N. Therefore the bound set covering machine (BSCM) algorithm can be described

as follows. Initially hypothesis / <— 0, A <— Af, P <— 0 and best bound e* <— 1. At the first

iteration, the BSCM algorithm looks for ball ht that minimises the generalisation error bound

e (/ U {fi,}) when added to hypothesis / . Ball fi, th a t maximally minimises e(f U {fit}) is added

to the hypothesis / <— / U {fit}, N <— N \ {t'Afyfi,)}, P <— P U {nv^p(hi) } and best bound

e* e{f U { f i t }) . This is repeated until no new loss bound e(f U {fi}), for any new ball fi can

be found such th a t e (/ U {fi}) < e*. After this the resulting hypothesis / can be used to classify

new test examples using (2.2). See Algorithm 2 for details.

A lgorithm 2: The bound set covering machine (BSCM)
Input: empty hypothesis / <— 0, N <— Af, P <— 0 and error bound param eter e* <— 1 .

1: found <— tru e
2: w hile found do
3: Call bscm -addball (/ , e*, N, P. f ound)
4: e n d w hile

O utput: A conjunction or disjunction of balls / .

F u n c tio n b scm -a d d b a ll(/,c* ,N , P , f ound)
, fi|B|} from the examples in

P U {Tr-pv/fyfi*)}

The BSCM does not involve the soft stopping param eter s, as was the case for the SCM,

since if the addition of a new ball in the current hypothesis causes the bound to become worse,

then the algorithm is term inated. This is a better and more theoretically motivated stopping

l: Construct the set of data dependent balls B — { fii,. . .
jv u (? \ P)

2: found <— fa lse

3 for i = 1 , . . . , \B\ do
4: if e (/ U {fi,}) < e* th en
5: i * <— i
6: 6* C (/ U { f i j)
7: found <— true

8: end if
9: end for

10: if found th en
11: update / <— / U {fit}, N <— N \ {^v(fit)} und P
12; end if

3.7. The branch and bound set covering machine 50

criterion than stopping the algorithm early. Also, the BSCM no longer requires the penalty

param eter p used to allow misclassifications on the set Af because the function to be minimised

is now the generalisation error bound and not the utility function given by equation (2.1). Hence,

we have eradicated the need for both param eters s and p th a t were present in the SCM.

The BSCM algorithm is greedy in the same spirit as the SCM but with the difference th a t it

minimises the loss of a hypothesis using the generalisation error bound rather than maximising

the utility function for the addition of a single data-dependent ball. However it is well known

th a t a greedy algorithm will not always deliver globally optimal solutions and so we now tu rn

our attention to tackling this problem. By using a branch and bound approach we prove th a t

our algorithm will return solutions th a t are globally optimal with respect to the loss bounds it

minimises.

3.7 The branch and bound set covering machine
The branch and bound algorithm for solving combinatorial optimisation problems was first

introduced in Land and Doig [I960]. The idea is to first partition the solution space into

subproblems, and then to optimise individually over each in turn. This method implicitly

enumerates all possibilities of a solution space and allows many solutions to be discarded5

without explicitly looking at them. Clearly this is advantageous when the search space is

particularly large as it only requires the algorithm to search a subset of the entire space. Many

large instances of combinatorial problems have been solved to optimality using branch and bound

algorithms. Therefore from the fact th a t we can enumerate the entire hypothesis space for the

set covering machine and compute bounds for any new ball added to the current hypothesis, we

can solve the set covering machine in this way.

We will use a branch and bound approach to enumerate all possible hypotheses that can

be generated from the set of data-dependent balls. This is done by evaluating the bound every

time a new ball can be added to the current hypothesis. If this bound is not smaller than the

best bound currently found then there is no need to include it or its descendants, i.e., balls

that may be constructed from this hypothesis. Therefore, we can consider the set of hypotheses

as a tree, where each subtree contains all the balls th a t can be constructed from the current

set N and V \ P. Furthermore, pruning balls without explicitly visiting them at their depths

of the tree can dramatically reduce the number of balls th a t must be visited and hence speed

up the algorithm. As mentioned earlier, the motivation for a branch and bound strategy for

solving the set covering machine is that if the function to be minimised is the generalisation

error bound then we are guaranteed to find the hypothesis with the smallest generalisation error

bound. Hence, if the estim ate (upper bound) of the true error is a good approximation to the

test error then we can be confident that the hypothesis produced will generalise well.

The algorithm works in the following way. We first define the notion of a best possible (bp)

generalisation error bound as the com putation of a bound that covers the remaining number

"’Only solutions that will never achieve improved results over the current best solution are dismissed.

3.7. The branch and bound set covering machine 51

of negative examples and misclassifies no further positive examples (see below for an exact

definition). Initially we compute all the hypotheses possible with a single ball and order them

according to their generalisation error bounds. Next we look at the hypotheses, in turn, and

their bp bounds and disregard further inspection of hypotheses if their bp generalisation error

bounds are larger than the current smallest loss bound. If this is not the case then we compute a

table of values that indicates whether we can achieve a smaller risk bound by sacrificing sparsity.

These two pruning strategies allow a full enumeration of the entire hypothesis space. Therefore,

termination of the algorithm implies th a t all hypotheses have been considered.

3.7.1 A lgorithm

The algorithm relies on functions a d d b a ll and c r e a te ta b le . We detail below each function

and also include pseudocode. Before we describe the functions in detail we will give some

notation. Let S be a sample containing rn input-output pairs from X x { — 1 , 1}, B the set of

data-dependent balls computed from S and T the SCM machine type, which can either be a

conjunction or disjunction of balls. As earlier, let n-p^p(h) be the set of examples from V \ P

misclassified by h and u ^ {h) be the set of examples from N correctly classified by h.

For any hypothesis / and any ball hi f let f i = / U { h l }. From earlier definitions, the

generalisation error bound of / is given by e(f) where,

€(f) = e(m, d, cp, k p , kn , 5),

also for the same hypothesis / the best potential (bp) generalisation error bound r] (f) is given

by,

r] (f) = e(m, d + 1 , cp, kp , 0, S).

The bp generalisation error bound r;(/) is the bound e(A) if a single ball h t can be added to

hypothesis / such that all of the remaining J\f examples are covered and none of the remaining

V examples misclassified. Contrast this to the generalisation error bound e(f) which is simply

the bound given for hypothesis / .

Algorithm BBSCM

The input of the algorithm is sample S containing input-output pairs from the sets V and Af.

machine type T and the set of data-dependent balls B.

The algorithm contains local variables f ,N .P ,e * and global variable (. Initially / <— 0 is the

empty hypothesis, N is the set of M training examples still to be covered, P is empty because

no V examples have been misclassified, t* is the best generalisation error bound found so far

for any hypothesis / and initially set to 1 . Global variable t is set to the number of balls \B\

possible for current B.

Using the above inputs and variables, algorithm BBSCM calls recursive function

a d d b a ll(/ , e* , N , P) (see below).

3.7. The branch and bound set covering machine 52

Finally the output of algorithm BBSCM is a conjunction or disjunction of balls (classi­

fier/hypothesis) /* th a t can be used for classification using equation (2 .2).

In p u t : S,T,B
1: / «- 0 ;
2:
3: P <- 0;
4: €* < - 1;
5: £ <- \B\\

C all : a d d b a ll (f , e * , N , P)
O u tp u t: A T = ‘conjunction’ or ‘disjunction’ of data-dependent balls 1Z* C B

A lg o r i th m 4: BBSCM(S, T, B)

Function addball

This function adds each possible ball hi to the current hypothesis so th a t = / U {hi} and

checks to see if its generalisation error bound et is smaller than the best generalisation error

bound e* found so far. If so, then the value of /* is replaced with f i and the best risk bound

/* is replaced with e* (line 8). Also at this stage function c r e a te ta b le is called (line 9) to get

t a b le (see description of function c r e a te ta b le below).

F u n c tio n ad d b a ll N , P)

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26

Data:
Consider all h € B \ / ;
Order according to e({h } U /) -> (h i , ci , r / i) , . . . , (kg, eg, rje) 5
for i = 1 , . . . , t do

f t e m p <— / , N t e m p <— A , Pt emp <— P
if rji < e* th en

/ i <- / U (M , N <— N \ {vN (ht)}, P ^ P U {7T v ^ p (h t)}
if €i < e* th en

/* <- fi, e* *- €i
call crea te ta b le (€ 3*,m)

end if
found false
d - l / i l
A ̂ |JV|
w hile -ifound do

d <- d + 1
A A + |N t e m p \ —| N \
kn tab le(d , |P |)
if kn = —1 or A > —kn th en

found <— true
end if

en d w hile
if kn ^ —1 th en

call addball (/*,e*,N , P)
en d if

end if
end for

On line 17 if t a b l e (d , |P |) returns kn = —1 then this indicates th a t there is no bound for

d and |P | th a t is smaller than e*. If t a b l e (d , |P |) is a positive integer kn, then there is a

3.8. BBSC M (t) 53

possibility of finding a ball to add to the current hypothesis th a t will give a smaller risk bound

than e* provided there exists a set of d additional balls th a t leave no more than kn Af examples

uncovered and no additional V examples misclassified. If kn > 0, then line 18 checks whether a

larger number of M examples can be covered using d balls (see Lemma 3.2 and equation (3.20)

from proof of main theorem). If so, then the procedure calls itself recursively (line 23) until all

balls in B have been enumerated.

Function createtab le

Local variable t a b le is an m x m m atrix whose elements are all initially set to —1. Function

c r e a te ta b le calculates for d balls and kp misclassifications (on the V examples) the number of

N examples th a t can be covered w ithout creating a bound th a t is larger than the best bound

e* found so fax (line 14). This function returns ta b le .

F u n c tio n c r e a te ta b le (e*,ra)
l: Initialize t a b le < 1 ;
2: Cp <— 0;
3: k p f ound <— t r u e
4: kp <-------1
5: w h i l e k p f ound d o
6: k p f ound <— f a l s e
7: kp <— kp + 1
8: d f ound <— t r u e
9: d < - 0

10: w h i l e d fo u n d d o
11: d fo u n d <— f a l s e
12: d d + 1
13: kn <— 0
14: w h i l e e (m , d, cp, kp, kn, S) < e* d o
15: kn <— kn + 1
16: e n d w h ile
17: if kn > 0 th e n
18: k p f ound <— t r u e
19: d fo u n d <— t r u e
20: e n d if
21: tab le (d , kp) <— kn — 1
22: e n d w hile
23: e n d w hile

3.8 B B SC M (r)
BBSCM (r) allows a trade-off between the accuracy of the classifier and speed. In function

c r e a te ta b le (e*, m) the w h ile condition computes e(ra, d, cp,kp, kn, 5) < e*. In the BBSCM (r)

heuristic this w h ile condition becomes e(m, d, cp,kp, kn, <5) < r • e*. Allowing the BBSCM

algorithm to ignore solutions whose generalisation error bounds are not a factor r from the

optimal found so far.

Clearly setting r = 1 returns the BBSCM algorithm - however as mentioned above this

algorithm is too slow for data sets with m > 100 training examples. Therefore we would like

to set r < 1. Setting r close to 1 may cause the heuristic to be too slow but create hypotheses

3.9. Theory 54

th a t have small generalisation error bounds similar to those for r = 1. Setting r close to 0 will

speed up the solution but may not create a large enough search space in order for BBSCM (r)

to find hypotheses with relatively small generalisation error bounds. Hence, setting r is unlike

setting a regularisation param eter since it is trading accuracy against time - bigger r is always

better in terms of generalisation error bounds, but costs more in term s of computational time.

3.9 Theory
Now th a t we have described the BBSCM algorithm we are in a position to describe its theory.

The two pruning steps make use of the generalisation error bounds and their properties. The

first theorem is a direct consequence of the first pruning step from function addball (line 5).

The second theorem includes the ideas behind the second pruning step found in function addball

(line 11-21) and relies on lemma 3.2 and 3.3 to help justify its claim.

Before looking at the first theorem we would like to present the following lemma th a t allows

the theorem to be proved. Note th a t all the results here are given for Theorem 3.1 although as

mentioned earlier they can also be obtained with Theorem 3.2 and 3.5.

L em m a 3.1. The generalisation error bound given by equation (3.1) (Theorem 3.1) is mono-

tonically increasing in the second parameter i f m > 4d + 2 — cp + kp + kn .

Proof. We would like to show for varying d with fixed m > 0, cp < d, kp, kn > 0, 0 < £ < 1,

th a t e(m, d + l , c pi kp, kn ,S) > e(m, d, cp, kp, kn ,6). Writing out the bounds in full we get

e(m,d + l , c p, kp, k n ,5) = 1 — exp <
(0

2(d+ l) - kp kTl

/ (ii) (Hi)

ln (2(JTl)) +ln(2(5 1))
V

+ in(TPrfc:i))+in-^±i)
(it;)

(3.16)

and

e(m,d, cp, kp, k n ,6) = 1 — exp <

+ In

(V) /

(O

- 2d— kn — k T

/ (i i ') (H i ') (i v ')

V
(3.17)

We know th a t the function f (x) = 1 — exp{—x] is a monotonically increasing function

because its first derivative f ' (x) = exp{—x} > 0 .

Looking a t only the binomial coefficients, let ln(z(d + 1)) = (ii) + (Hi) + (iv) and let

ln(z(d)) = (ii') + (in') + (iv'). Subtracting we get ln Ignoring the ln, we would like

3.9. Theory 55

to show:

(m W2(d+l)Wm-2(d+l)\
Z { d + 1) _ \ 2 { d + l)) \ cp A kp+ k n)

> 1. (3 .18)

Using the definition of a binomial coefficient (£) = ŵ_n̂ !fc! and simplifying, equation (3.18)

becomes:

(m — 2d — kp — kn) (m - 2d - 1 - kp - kn)
(2d + 2 - c p)(2d + l - c p) ~ ’

which is true if m — 2d — kp — kn > 2d + 2 — cp = + m > 4 d + 2 — Cp + kp + kn . This holds

for all the experiments we have conducted using the bounds. We also know th a t (*) > (»') and

(v) > (vf). Therefore it follows th a t (3.16) > (3.17). □

T h e o re m 3.6 . Let e* be the smallest generalisation error bound currently found fo r hypothesis

f* by the BBSC M algorithm. For any hypothesis f i that gives r](fi) > e* there exists no extension

f 5 f i such that the generalisation error bound for f satisfies e(f) < e*.

Proof. Let f = f i U { h i , . . . , hn } where n is the number of balls added to hypothesis fi . After n

balls the best generalisation error bound for / is e(f) which is e(m, d + n, cp, kp, 0, (5). We know

by Lemma 3.1 this bound is > e (m,d + 1, cp, kp, 0, S) = rj(fi) which from the statem ent in the

Theorem is greater than e*. Hence for any hypothesis f t with T](fi) > e* there is no extension

/ D fi such th a t e(f) < e*. □

This theorem states th a t for any hypothesis f i if the bp generalisation error bound r/j is

worse than the best bound e* then there is no need to try and cover any more N examples from

this ball as there will never be a smaller bound than the best e* found so far.

L em m a 3.2 . Let U be a set covered by A \ , . . . , A^. For any V C U 3 j such that > £•

Proof. We know for i = l , . . . , k th a t |V| = | U (A i n V)| < Y l i = i IAi H V\ which implies

Yli=i Therefore by using the pigeon hole principle we know 3 j such th a t >

I- □

L em m a 3.3. Suppose c re a te ta b le (e * , m) has been executed and kn = ta b le (d , kp) > 0. It

follows that e(m ,d, cp,kp ,kn + 1 , 5) > e* for cp > 0.

Proof. In function c rea te ta b le (e* ,m) w hile the condition e(m ,d, cp,kp, kn, 5) < e* holds we

increment kn — kn + 1 for fixed values of m + 0 , d + 0 , cp = 0 , kp > 0 and 5. When this

condition fails we have ta b le (d , kp) = kn — 1 for kn > 0. Therefore if kn = ta b le (d , kp) > 0 for

fixed d and kp then e(m, d, 0 , kp, kn + 1 ,5) > e*. □

Using Lemma 3.2 and 3.3 we can now prove th a t the BBSCM (r) algorithm will only disre­

gard a ball for inclusion if it cannot lead to a hypothesis with generalisation error bound smaller

than th a t already found by BBSCM (r).

3.9. Theory 56

T h e o re m 3.7 (main theorem). I f algorithm BBSC M (t) outputs hypothesis f* with generalisa­

tion error bound e* then there exists no hypothesis f such that e(f) < r • e*.

Proof. We will prove this result by contradiction. Assume / has the smallest generalisation

error bound e(f) < r • e*. Let / = {6 i , . .. , 6/t} be the hypothesis returned by the BBSCM

algorithm. In this setting we know th a t f has generalisation error bound c(^) — c* ^ *(/)•

Let / t = {6i , . . . , bn } be any maximal hypothesis in the search tree of the algorithm such th a t

P C / . Let the number of M examples misclassified for f be given by kn = kn (f) , similarly the

number of V examples misclassified kp = kp(f) , and the number of balls d = d(f) . Also for /*

let the number of V examples misclassified be defined as k^ = kp(Bt). Lemma 3.2 implies that

there exists a ball bj € f , b j p such th a t a t node f \

/, x , \Ntemp\ — kn ,
\vN (bj) n N tem p\ > J ~ | / t | + 1 ' ̂ ^

We claim th a t this implies bj was acceptable at node /1 and should have been added to hypoth­

esis /* . However bj was not chosen by algorithm BBSCM to be added to / I , a contradiction.

To prove the claim assume th a t the last call to c r e a t e t a b le (r • e, m) before bj was con­

sidered a t node /* was made with t ■ e > t • e*. By lemma 3.3 we must have

kn = ta b le (d , kp) > kn (3.21)

since otherwise kn > kn -I- 1 and so

e(/) = e(m,d , cp, k p, k n ,6)

> e(m, d, cp, k̂p, kn , S)

> e(m, d,cp, A:J,kn+ 1,<5)

> e(m, d, 0 , k^, kn + 1 , S) > r - e > r • e*

contradicting e(f) < r • e*. Substituting (3.21) into (3.20) we get

|VN(bj) n Ntemp\ (d — |/* | + 1) > \Ntemp\ — kn

setting \vN (bj) n Ntem p\ — \Ntemp\ — \ N\ gives

(\ N t e mp \ —\N\) (d — \f^\ + 1) — \Ntemp\ > — kn

\Ntemp\(d — |/^ |) — \ N \ (d — |/* | + 1) > -k n

Now we need to show th a t A = \ N t e m p \ (d - \ f ^ \) ~ \ N \ (d —\ p \ + l) in function ad d b a ll. Initially

before the w h ile loop in ad d b a ll (/ I ,e* , N , P) we have d = \ p \ and A = — | A | and so d + 1 = d

3.10. Experim ents

on the d — | / t | iteration implying

57

A = HAr| + (d - | / t |) (| J V t e m p | - | J V |)

= \ N t e m p \ (d - | / f |) - \ N \ (d - 1/+1 + 1)

hence the test A > —kn succeeds. Proving the claim. □

T h eo rem 3.8. I f algorithm B B SC M outputs a hypothesis f* then its generalisation error bound

e* will be globally optimal (i.e. the smallest bound possible).

Proof. Apply Theorem 3.7 w ith r = 1. □

From these theoretical results we have shown th a t the BBSCM is guaranteed to find the

global optimal hypothesis /* with the smallest generalisation error bound e*.

3.10 Experim ents
Experiments were conducted on seven standard UCI repository data sets D.J. Newman and

Merz [1998] described in table 3.1. All examples with contradictory labels and whose attributes

contained unknown values were removed (this reduced considerably the Votes d ata set).

D ata Set # of examples # o f
featurespos neg total

BreastW 239 444 683 9
Votes 18 34 52 16
Pim a 269 499 768 8
Haberm an 219 75 294 3
Bupa 145 200 345 6
Glass 87 76 163 9
Credit 296 357 653 15

Table 3.1: Description of d ata sets

Initially we test the BBSCM algorithm for the Votes d a ta set as this was the only data

set for which we could obtain results in a reasonable time (for BBSCM). We show th a t a full

branch and bound search (full search) and the BBSCM yield the same hypothesis but th a t the

BBSCM obtains it more quickly. The full search equates to removing line 9 and lines 11-21

from the a d d b a ll function. This carries out a full exhaustive search of the hypothesis space.

Similarly the BBSCM algorithm also carries out a full enum eration but with enumerating a

smaller number of balls, as the pruning step removes a larger percentage of the search space.

We report these results in Table 3.2 - 3.7 where the first table is a full search and the

remaining tables report the results for BBSCM for varying values of r as r goes from 1 down

to 0.1. In each table we report the results for 10 fold cross-validation and give machine type T,

which indicates a conjunction with a ‘c’ and a disjunction with a ‘d ’. The column ‘th m ’ denotes

the bound used, ‘tim e’ is the number of seconds needed for all folds, balls’ is the average

number of balls per fold, ‘error %’ is the overall error over the folds, ‘std (error)’ is the standard

3.10. Experim ents 58

T thm time (secs) # balls error % std (error) bound std (bound)
c 3.1 7.7 1.1 7 0.09 0.48 0.05
d 3.1 31.67 1.9 10.83 0.18 0.48 0.05
c 3.2 28.14 1.7 10.67 0 .12 0.45 0.06
d 3.2 28.86 2.1 10.83 0.18 0.43 0.05
c 3.5 0.16 1 8.33 0.16 0.64 0.02
d 3.5 0.24 1 10.33 0.16 0.65 0.02

Table 3.2: 10 fold cross-validation on Votes d ata set using a full search.

deviation of the error for the 10 folds, ‘bound’ is the average bound value output for each of the

classifiers and ‘std (bound)’ is the standard deviation of the bound values.

As we would expect, Table 3.2 and Table 3.3 are almost identical, with the difference being

in the time column, which shows speed-ups for several of the Theorems and machines. Note

th a t when the number of balls is close to 1 then there does not seem to be a large (or any)

speed-up as the search space is pre tty small because the branch and bound tree is shallow in

depth. This is due to the fact th a t both algorithms will be searching the same paths of the

branch and bound tree. The speed-ups are more prominent for the Theorems which produce

more depth to the branch and bound tree. Meaning th a t the BBSCM is able to prune away

some redundant subtrees, whereas a full search is required to visit them all. We see from the

disjunction case of Theorem 3.1 and both machines of Theorem 3.2 th a t we can achieve almost

two times the speed-up of an exhaustive search. Also, note th a t although the bound proposed

in this chapter has a larger generalisation error it seems to produce classifiers with smaller test

errors, when compared to Theorem 3.1 and Theorem 3.2 (except in the case of the conjunction

machine of Theorem 3.1).

T thm time (secs) # balls error % std (error) bound std (bound)
c 3.1 7.08 1.1 7 0.09 0.48 0.05
d 3.1 17.16 1.9 10.83 0.18 0.48 0.05
c 3.2 16.06 1.7 10.67 0 .12 0.45 0.06
d 3.2 15.47 2.1 10.83 0.18 0.43 0.05
c 3.5 0.16 1 8.33 0.16 0.64 0 .02
d 3.5 0.24 1 10.33 0.16 0.65 0 .02

Table 3.3: 10 fold cross-validation on Votes data set using BBSCM with r = 1.

We also report results for the BBSCM (t) when r = 0 .8 ,0 .7 ,0 .6 ,0.1 in Tables 3.4 - 3.7. We

do not report results for r = 0.9 because they were identical to r = 1, and also for r = 0.5 — 0.2

because they showed no difference from r = 0 .6 . We can see th a t as r becomes smaller then

the bound values become larger, because r removes the smaller bounds from the search space.

However, from all tables of varying r we can see th a t Theorem 3.5 does not change. This is

because only 1 ball is ever added meaning th a t the search space is small and the bound is too

loose initially to allow any more balls to produce hypotheses th a t are smaller. Although as

the speed increases (r becomes smaller) we see th a t we still achieve the optimal solution (i.e.,

for r = 1) for this particular generalisation error bound. The advantage of smaller r is the

3.10. Experim ents 59

increase in time complexity and the sparser solutions. We see from Table 3.4 and Table 3.5 th a t

although the BBSCM with r = 0.8,0.7 obtains the (overall) smallest test error for all d ata sets,

it creates loss bounds th a t are greater than 0.5. This points to the fact th a t maybe the sample

compression bounds of the set covering machine (SCM) tend to focus more towards minimising

the empirical error and not so much towards the level of sparsity, i.e., maybe the SRM principle

is not being demonstrated accurately enough within the bounds. Clearly, the sparser solutions

are generalising better (for the Votes d a ta set) but the bounds are not reflecting this as well

as perhaps they could, i.e., the smallest bounds are not (always) corresponding to the smallest

test errors. Finally, note for instance, the tim e given in Table 3.5, for the disjunction machine

of Theorem 3.2 is almost four times faster than a full search (see Table 3.2) using the same

bound and machine, resulting in a sparser solution and a smaller test error than the test error

constructed by the smallest bound found using a full search.

T thm tim e (secs) # balls error % std (error) bound std (bound)
c 3.1 4.62 1 7 0.09 0.54 0.16
d 3.1 7.49 1.8 9.5 0.13 0.56 0.16
c 3.2 12.43 1.6 10.67 0.12 0.52 0.17
d 3.2 6.06 1.9 7.5 0.13 0.5 0.18
c 3.5 0.16 1 8.33 0.16 0.64 0 .0 2
d 3.5 0.24 1 10.33 0.16 0.65 0 .0 2

Table 3.4: 10 fold cross--validation on Votes data set using BBSCM with r = 0.8.

T thm time (secs) # balls error % std (error) bound std (bound)
c 3.1 4.46 1 7 0.09 0.54 0.16
d 3.1 5.03 1.8 9.5 0.13 0.56 0.15
c 3.2 11.6 1.6 10.67 0 .12 0.52 0.17
d 3.2 5.64 1.9 7.5 0.13 0.5 0.18
c 3.5 0.16 1 8.33 0.16 0.64 0 .02
d 3.5 0.24 1 10.33 0.16 0.65 0 .0 2

Table 3.5: 10 fold cross-validation on Votes data set using BBSCM with t = 0.7.

T thm time (secs) # balls error % std (error) bound std (bound)
c 3.1 3.26 1 7 0.09 0.54 0.16
d 3.1 3.96 1.6 16.7 0.15 0.57 0.15
c 3.2 11.32 1.6 10.67 0.12 0.52 0.17
d 3.2 4.78 1.9 7.5 0.13 0.5 0.18
c 3.5 0.16 1 8.33 0.16 0.64 0 .0 2
d 3.5 0.24 1 10.33 0.16 0.65 0 .02

Table 3.6: 10 fold cross-validation on Votes d a ta set using BBSCM with r = 0.6.

As mentioned earlier, the BBSCM was not practical for any of the data sets other than

Votes. Therefore, we now turn our attention to the BSCM algorithm th a t is essentially a greedy

algorithm th a t minimises the loss bound. F irst we give results for the SVM and SCM on all 7

data sets. For the SVM we used the Gaussian kernel and evaluated the 7 and C parameters

3.10. Experim ents 60

7 thm time (secs) # balls error % std (error) bound std (bound)
c 3.1 3.24 1 7 0.09 0.54 0.16
d 3.1 2.13 1 20.17 0.16 0.63 0.13
c 3.2 3.59 1 9 0.1 0.54 0.1
d 3.2 3 1 18.16 0.14 0.61 0.14
c 3.5 0.16 1 8.33 0.16 0.64 0.02
d 3.5 0.24 1 10.33 0.16 0.65 0.02

Table 3.7: 10 fold cross-validation on Votes d a ta set using BBSCM with r = 0.1.

D ata Set SVM SCM
SVs tim e error % T # balls time error %

Votes 18.5 8 .8 10.33 c 1 5.4 11.54
Glass 92.4 183.8 23.83 c 3.8 57.9 23.31
Haberm an 136.4 5129.2 24.13 d 13 272.5 27.89
Bupa 199.4 3083.1 26.94 d 32.6 128 34.78
Credit 325.9 7415.1 25.45 d 3.7 831.2 31.7
BreastW 79.2 506.1 3.5 c 2 658.4 3.95
Pim a 398.1 11071.9 24.6 c 5.9 1091.9 27.21

Table 3.8: SVM and SCM model-selection using 10 fold cross-validation.

using 10 fold cross-validation. We report in Table 3.8 the number of support vectors ‘SVs’ found

by the SVM, the time taken over 10 fold cross-validation (including the param eter tuning stage),

and the ‘error’. For the SCM we used the L 2 norm to construct the set of data-dependent balls

and report the best machine type T equal to ‘c’ for a conjunction and ‘d ’ for a disjunction

th a t gave the smallest cross-validation error, the average number of balls found ‘# balls’, the

‘tim e’ taken in seconds and the test ‘error’ found for cross validation. In Table 3.9 we report 10

fold cross validation results for the bound set covering machine (BSCM) algorithm. The table

reports the results for all the machines and theorems presented so far. We see th a t compared

to the results of the SCM and SVM in Table 3.8 the BSCM is much faster (as there are no

parameters to tune) and also produces sparser solutions. Note th a t the results of the BSCM

for the Votes data set are optimal (see BBSCM and full search Tables 3.2 and 3.3 above) with

respect to the generalisation error bound of Theorem 3.5. We bold font the rows of Table 3.9

to indicate the classifiers th a t would be chosen, in a model selection strategy, by picking the

hypothesis with the smallest generalisation error bound for a particular choice of machine type

and loss bound. When compared to Table 3.8 we see th a t these classifiers do not obtain the

smallest test errors compared to the SVM or SCM, except for Haberm an and BreastW which are

competitive. On the other hand we have made rows in Table 3.9 italic to signify those classifiers

producing the smallest test error. In this scenario, the test error results for Votes, Haberman,

BreastW and Pim a are better than for the SCM and also competitive with the SVM. Note th a t

the BSCM results are considerably sparser than the SVM and SCM and the running times are

at least 10 times faster.

3.11. Kernel matching pursuit 61

data set T thm tim e (secs) # balls error % std (error) bound
Votes c 3.1 0.09 1 13.67 0.1732 0.4808
Votes d 3.1 0 .12 1 13.67 0.1732 0.4839
Votes c 3.2 0 .1 2 1.6 15.67 0.1671 0.4654
V otes d 3.2 0.15 1 13.67 0.1732 0.4644
Votes c 3.5 0.07 1 8.33 0.162 0.6354
Votes d 3.5 0 .12 1 10.33 0.1629 0.6498
G lass c 3.1 1.03 2 25.68 0.1511 0.5299
Glass d 3.1 1.65 1 26.38 0.1211 0.5658
Glass c 3.2 2.17 2 .2 27.01 0.1578 0.5339
Glass d 3.2 1.82 1 26.38 0.1211 0.5707
Glass c 3.5 1.07 1.2 36.41 0.1063 0.6331
Glass d 3.5 0.81 1 40.53 0.0702 0.6381

Haberman c 3.1 7.85 1 25.85 0.0772 0.5311
Haberman d 3.1 3.4 1 26.2 0.0771 0.5327
Haberman c 3.2 14.23 1.4 25.86 0.0772 0.5338
Haberm an d 3.2 4.9 1 26.2 0.0771 0.5355
Haberman c 3.5 17.32 1 25.14 0.0251 0.3859

H a b e rm a n d 3.5 5.75 1 25.83 0.0133 0.3804
Bupa c 3.1 6.72 1.2 38.85 0.0795 0.6606
Bupa d 3.1 14.15 3.4 38.55 0.1017 0.6503
Bupa c 3.2 10.75 1.1 38.55 0.0795 0.6645
Bupa d 3.2 27.12 3.6 38.28 0.1006 0.653
B u p a c 3.5 1 1 .2 1 39.73 0.0401 0.5369
Bupa d 3.5 20.5 1 37.97 0.0393 0.538
Credit c 3.1 24.94 1 32.47 0.0708 0.5991
Credit d 3.1 40.44 2.5 32.63 0.0605 0.5991
Credit c 3.2 4 2 . 2 2 1 32.47 0.0708 0.6009
Credit d 3.2 69.63 2.3 32.63 0.0605 0.5977
Credit c 3.5 45.71 1 42.27 0.0203 0.5293
C re d it d 3.5 66.35 1 41.96 0.0243 0.5292

BreastW c 3.1 25.3 1.5 3.64 0.0207 0.1374
BreastW d 3.1 36.63 1.1 3.65 0.0217 0.1396

B re a s tW c 3.2 33.69 1.5 3.64 0 .0207 0.1333
BreastW d 3.2 26.9 1.1 3.65 0.0217 0.1351
Breast W c 3.5 16.89 1 2.77 0.023 0.1653
BreastW d 3.5 67.4 1 3.06 0.0259 0.1682

Pima c 3.1 36.98 2.8 25.4 0.0445 0.5448
Pima d 3.1 56.67 2 29.06 0.0556 0.5632
Pima c 3.2 69.24 2.7 25.53 0.046 0.5472
Pima d 3.2 101.58 2.2 29.32 0.0539 0.5649
P im a c 3.5 50.4 1 33.47 0.0205 0.4189
Pima d 3.5 110.53 1 33.07 0.0152 0.4206

Table 3.9: 10 fold cross-validation on several UCI repository d ata sets using BSCM.

3.11 Kernel m atching pursuit

The kernel least squares regression algorithm described in Section 2.3.2 uses all of the training

data (the full kernel m atrix K) in order to construct a prediction function of the form

m

/ (x) = £ « t«(x,x,) ,

3.11. Kernel matching pursuit 62

where a is the dual weight vector and m is the number of examples observed in the training

sample S. We now describe a sparse kernel least squares regression algorithm th a t only uses a

small number of kernel functions to construct a prediction function of the form

|i|
/ (x) = a i i «(x, XjJ, (sparse) (3.22)

i = 1

where i = (i\ , . . . , id) is an index vector pointing to d « m examples in S. We use the notation

ij to denote the j t h element of i. Also, recall th a t we denote a kernel basis vector using the

notation K [:,j] = (k(xi, Xj), • • •, « (x m, Xj))T .

3.11.1 A lgorithm

We can induce sparsity in the dual by defining the primal weight vector w from a small number

of training examples such th a t w = X[i, :]Ta , where |a | = |i|. Substituting this into Equation

(2.3) from Chapter 2 we get

min ||y — XX[i, :]Td | |2,
d

as the sparse dual least squares minimisation problem. The sparse kernel K [:,i] = X X[i, :]T

is the set of kernel basis vectors defined by the index set i and yields the sparse kernel least

squares regression problem as,

min ||y - K [: ,i]a ||2. (3.23)
d

If we differentiate with respect to d and then set the resulting equation (known as the normal

equations) to zero and solve for a we retrieve the optimal solution of Equation (3.23) for

6 = (K[:,i]TK[:,i])~l K[:,i]Ty. (3.24)

We assume th a t (K[:, i]TK[:, i]) is invertible as each basis vector added is orthogonal to all

others, hence making the set of sparse bases linearly independent. We are now left with the

problem of finding an appropriate set i of kernel basis vectors th a t minimises the loss of (3.23).

A simple method to find i is the following greedy procedure. Let j = { ! , . . . ,m} be the set

of indices pointing to every training sample in S. Initially assign i = 0 to em pty and add in

turn an index j £ j to i = i U { j} and evaluate expression (3.23). After this evaluation, update

with the i\ = j th a t minimises (3.23) and repeat for ?2 , .. • ,id until d basis vectors have been

added to i = {zi, . . . , id}. As simple as this algorithm is it is very inefficient as it requires the

computation of a d x d m atrix inverse for each trial and yields a time complexity of O {d?m)

to add one basis. Another, more efficient method for solving this problem is by using kernel

matching pursuit (KMP) [Vincent and Bengio, 2002], which also greedily constructs the set i

but does not compute the inverse of a m atrix in order to find the optimal a . This avoids the

3.11. Kernel matching pursuit 63

cubic time complexity of the greedy strategy discussed above. The pseudocode for the KMP

algorithm is given in Algorithm 7.

A lg o rith m 7: Kernel matching pursuit w ith prefitting [Vincent and Bengio, 2002]
In p u t: Kernel K , sparsity param eter d > 0.

l: initialise A = [] and i = []
2: for i = 1 to d do
3: Find improvement = ; (Ky)^ V(K-2)T1
4: Set b to the index of m a x {improvement}
5: cti = (K [: , i j]T K [:, i j]) _ I K [:, i i]T y
6: (d i , . .. , d i _ i) T = (d i , . . . , d i _ i) T - d jA [:,ii] (if A is non-empty)
7: Set r = K[:, ii] and p = ^ Ty j , then update (if A is non-empty)

A = A - A [: , i i] p

8: Deflate kernel m atrix

K K - K [: , i i] p

1 - ^ I K
T 1 T

9: Add row vector p to A m atrix

10: Set K [:, ii] = 0
11. e n d for
O u tp u t : Index vector i and sparse dual weight vector d

The algorithm works in the following way. Firstly we look for the largest improvement

th a t can be made to Equation (3.23) with a single kernel basis vector. Hence we would like to

minimise for all i = 1 , . . . , m the following expression,

|y - K[:, i]dx. 112 K : , t

2K [:,i]Ty
K [:,i]Ty , / K [: , i l Ty

+

K [:,t |Ty
I I K M H I

where we have made the substitution of d i using Equation 3.24 when i = {i}. Therefore we

would like to maximise the final component of the last line, like so,

arg max
K[:,»]Ty

which corresponds to finding the kernel basis vector th a t is most collinear with the regression

output vector y. This computation is carried out in Line 3 of Algorithm 7. We use the notation

3.11. Kernel m atching pursuit 64

X .X = X '2 to denote element (component) wise multiplication of the matrices X . Similar nota­

tion will hold for vectors. The division of vectors (matrices) will always be assumed component

wise division.

After this we can update the last dti using Equation (3.24). This leaves the remaining

d i , . . . , d i _ i unchanged and so to reflect the new chosen basis vector K[:,i] we would need

to update these values. This is carried out in Line 5 of Algorithm 7. Finally, the algorithm

orthogonalises the kernel m atrix such th a t the remaining points are chosen from the orthogonal

subspace defined by the set i, and th a t the indices in i can never be considered again. This step

is carried out in Line 8 of Algorithm 7. For more information about the algorithm see [Vincent

and Bengio, 2002].

3.11.2 A generalisation error bound for kernel m atching pursuit

Kernel matching pursuit does not form a compression scheme (see definition 2.16) as it relies on

all of the information in the training data in order to construct the regressor given by Equation

(3.22) because d is computed using kernel columns K [:,j] = (k (x i , X j) , . . . , K(xm,Xj))T which,

by definition, use all of the m training examples x i , . . . , x m present in S. Therefore, we cannot

apply a sample compression bound similar to Theorem 2.4 in order to upper bound the loss of

KMP. However, we can view the sparsity in dual space constructed by KM P for defining the

feature space as a compression scheme and use a VC argument in order to upper bound K M P’s

future risk.

VC bounds as mentioned in subsection 2.4.2 have commonly been used to bound learning

algorithms whose hypothesis spaces are infinite. The problem with these results is th a t the

VC-dimension can sometimes be infinite even in cases where learning is successful. However,

for KMP we can avoid this issues by making use of the fact th a t the VC-dimension of the set of

linear threshold functions is simply the dimension of the function class. In KM P this directly

translates into the number of basis vectors chosen and results in a standard VC argument.

The KMP algorithm (or any regression algorithm) can be upper bounded using a regres­

sion loss function or a classification loss function. The former requires the need for a pseudo­

dimension and extra machinery not presented in this thesis. The latter m ethod simply requires

the use of the standard VC bounds for classification (see 2.4.2). Therefore we must first map

the regression loss suffered by KMP into a corresponding classification loss in the following way.

D efin itio n 3.1. Let S ~ V be a regression training sample generated iid from a fixed but

unknown probability distribution V . Given the error e r (/) = P rs ^ p { |/ (x) — y\] fo r a regression

function f between training example x and regression output y we can define, for some fixed

positive scalar a E R, the corresponding true classification loss (error) as

era{ f) = Pr { | / (x) - y | > a | }
(x,y)~ V

3.11. Kernel m atching pursuit 65

Similarly, we can define the corresponding empirical classification error as

era (/) = era (/ , S) = P r { |/ (x) - y\ > a |}
(x ,y)~ S

= E (x>y)̂ s { I (| / (x) - y \ > a) } ,

where I is the indicator function and S is supressed when clear from context.

Now th a t we have a loss function th a t is discrete we can make a simple sample compression

argument, th a t counts the num ber of possible subspaces, together with a traditional VC style

bound given by Theorem 2.2 to upper bound the expected loss of KMP.

To help keep the notation consistent with earlier definitions we will denote the indices of

the chosen basis vectors by i. The indices of i are chosen from the training sample S and we

denote S\ to be those samples indexed by the vector i. Given these definitions and Theorem 2.2

we can upper bound the true loss of KMP as follows.

T h e o re m 3.9. Fix a G R, a > 0. Let A be the regression algorithm o f KMP, m the size o f the

training set S and d the size o f the chosen basis vectors i. Let S be reordered so that the last

m — d points are outside o f the set i and let t = YliLm -d ^ (l/(x *) ~ Vi I > Q) be the number of

errors fo r those points in S \ S\. Then with probability 1 — 5 over the generation o f the training

set S the expected loss £[£{-)\ o f algorithm A can be bounded by,

m — d — t

(3.25)

Proof. F irst consider a fixed size d for the compression set and number of errors t. Let

Si = { x ^ , . . . , x id} be the set of d training points chosen by the KM P regressor, S 2 =

{xid+1, . . . , Xid+t} the set of points erred on in training and S = S \ (Si U S2) the points

outside of the compression set (Si) and training error set (S2). Suppose th a t the first d points

form the compression set and the next t are the errors of the KM P regressor. Since the remain­

ing m — d — t points S are drawn independently we can apply Theorem 2.2 to the era loss to

obtain the bound

P r { S : era (/) = 0 ,era (f) > e} < 2 — “) 2_e(m_d_t)/2,

where we have made use of a bound on the number of dichotomies th a t can be generated by par­

allel hyperplanes due to Anthony [2004], which is (m7i_1) which is < ’

where n is the number of parallel hyperplanes and equals 2 in our case. We now need to consider

all of the ways th a t the d basis vectors and t error points might have occurred and apply the

3.11. Kernel matching pursuit

union bound over all of these possibilities. This gives the bound

66

Pr { S : 3 f e span{Si} s.t. era (/ , S2) = l ,e r Q(/ ,S) = 0 ,era (/) > e}

Finally we need to consider all possible choices of the values of d and t. The number of these

possibilities is clearly upper bounded by m 2. Setting m 2 times the rhs of (3.26) equal to 5 and

solving for e gives the result. □

The bound is determined by the level of sparsity together with a VC-style argument making

it the first such analysis of this type. It can and will be adapted for the sparse kernel canonical

correlation analysis th a t we propose in C hapter 4. Note th a t this is the first upper bound on the

generalisation error for KMP th a t we are aware of and as such we cannot compare the bound

against any others.

Sound
‘KMP tost error

KMP error on Boston housing data set

0 I 1-------------1-------------1-------------1-------------1-------------1-------------1-------------1-------------1------------
0 5 10 15 20 25 30 35 40 45 50

Level of sparsity

Figure 3.3: Plot of KMP bound against its test error. We used 450 examples for training and
the 56 for testing. Bound was scaled down by a factor of 5.

Figure 3.3 plots the KMP test error against the loss bound given by Theorem 3.9. The

bound value has been scaled by 5 in order to get the correct pictorial representation of the two

plots. It is in actual fact trivial but as Figure 3.3 shows, its minima directly coincides with

the lowest test error (after 17 basis vectors). This motivates a training algorithm for KMP

that would use the bound as the minimisation criteria and stop once the bound fails to become

smaller. This is a similar strategy as the one proposed for the set covering machine (SCM) in

Section 3.5. This type of training regime can help make learning algorithms more autom ated as

they need less human intervention for the model selection phase and also tie together machine

learning theory and practice.

3.12. Sum m ary 67

3.12 Summary
We have observed th a t the SCM loss bound proposed by Marchand and Shawe-Taylor [2002] is

incorrect and, in fact, becomes erroneous in the limit where the number of errors on the positive

training examples approaches the to ta l number of positive training examples. We then proposed

a new loss bound, valid for any sample compression learning algorithm (including the SCM),

th a t depends on the observed fraction of positive examples and on what the classifier achieves

on them. This new bound captures the spirit of M archand and Shawe-Taylor [2002] with very

similar tightness in the regimes in which the bound could hold. This is shown in numerical

comparisons of the loss bound proposed in this chapter w ith all of the earlier bounds th a t can

be applied to the SCM.

Using the bound proposed and two previously existing bounds for the SCM we applied them

directly into the workings of the SCM. Initially we proposed the bound set covering machine

(BSCM), which greedily minimises the loss bound and term inates after no risk bound can be

found th a t is smaller, hence removing the need for regularisation parameters. Furthermore, we

proposed the branch and bound set covering machine (SCM) th a t globally minimises the loss

bound and gave a variant called BBSCM (r) th a t trades-off time complexity against accuracy of

solution. The algorithms were proved to produce classifiers with the smallest loss bounds and

experimentally showed to be competitive against the SCM and SVM.

Finally, for the regression section, we described a sparse prediction function for least squares

regression and then presented an efficient algorithm th a t solves sparse kernel least squares re­

gression called kernel matching pursuit (KMP). The algorithm creates dual sparsity and does

not form a compression scheme. However, we noticed th a t the dual sparsity could be viewed

as a compression scheme (in feature space) with the VC dimension acting synonymously with

the compression set. This allowed a natural method for upper bounding the loss of KM P (for

classification loss) and in practice gave a bound th a t coincides with the minimum test error

achieved by KMP (for the Boston housing data set and a particular choice of a).

68

Chapter 4

Sparsity in unsupervised learning

Section 3.11 gave a sample compression analysis in the feature space o f KMP. In this chapter,

we attempt to make similar analyses fo r kernel principal components analysis (KPCA) and

kernel canonical correlation analysis (KCCA). For KPCA we analyse a sparse variant that uses

matching pursuit in order to construct sparse subspaces. We show that this algorithm does

form a compression scheme (unlike KM P) and that its loss can be upper bounded using sample

compression theory defined in Section 2-4-3 o f Chapter 2. We test our proposed bound against

the KPCA bound o f Shawe- Taylor et al. [2005] and show that it is significantly tighter.

Furthermore, we propose a matching pursuit algorithm fo r sparse kernel canonical correla­

tion analysis (SKCCA) and propose a generalisation error bound fo r SKCCA using a similar

approach taken fo r K M P in Section 3.11. We show that the difference between the projections

can be viewed as a regression problem and state the bound in the same form as the K M P bound.

We test the bound fo r a real world data set and show that although the bound is trivial its m inima

coincides with the smallest test error. Finally we conclude the chapter with experimental results

for document retrieval tasks that show little deterioration in test error but large improvements

in time complexity when compared to KCCA.

4.1. Sparse kernel principal components analysis 69

4.1 Sparse kernel principal com ponents analysis
Recall from Chapter 2 th a t the kernel principal components analysis (KPCA) finds a small

subspace of the training d ata in feature space using the entire kernel matrix. As we had done in

the previous chapter for regression, we now turn our attention to computing KPCA with only

a small subset of the kernel basis vectors. This is known as sparse kernel principal components

analysis (SKPCA) and can be formulated by restricting the definition of the primal weight

vectors to only using a small num ber of training examples.

4.1.1 A lgorithm

In a sparse PC A algorithm we may want to find a sparsely represented vector w x = X [i, :]T a x ,

th a t is a linear combination of a small number of training examples indexed by vector i. This

corresponds to projections being made onto a sparse subspace maximising the variance of the

data. Therefore by making the substitution w x = X [i, :]Td x into Equation (2.4) we have the

following sparse dual PCA maximisation problem,

« J X [i , :] X T X X [i , :] T a I
max — —=p— --------------------- , (4.1)

a I X [i , :] X [i , :] Td I

which is equivalent to sparse kernel PCA (SKPCA) with K [:, i] = X X [i , :• IT

d j K [: , i] TK [: , i] d

d l K t U l a *

where a x is a sparse vector of length d = |i |. Clearly maximising the quantity above will lead

to the maximisation of the generalised eigenvalues corresponding to d x - and hence a sparse

subset of the original PCA problem. This analysis assumes th a t i has already been chosen. We

now consider how to choose the set of vectors indexed by i.

The procedure involves choosing basis vectors th a t maximise the Rayleigh quotient without

the set of eigenvectors, choosing basis vectors iteratively until some pre-specified number of

d vectors are chosen. An orthogonalisation of the kernel m atrix at each step ensures future

potential basis vectors will be orthogonal to those already chosen. This algorithm is equivalent

to Smola and Scholkopf [2000]. The quotient to maximise is:

e T K 2e

m ax " = 1 ^ 7 ’

where e* is the ith unit vector. Note, th a t this quotient looks similar to the KPCA formulation

of Equation (2.7) but without the use of the eigenvectors 6tx . Maximising Equation (4.3) will

find the maximum variance in the feature space and not the projected space as is the case in

traditional KPCA. This is fine to do in the first iteration of picking a basis vector but not for

subsequent iterations. We need to orthogonalise (or deflate as it is more commonly referred

to in the subspace method literature) the kernel matrix, creating a projection into the space

orthogonal to the basis vectors chosen. This step ensures th a t we will find the maximum variance

4.1. Sparse kernel principal components analysis 70

of the data in the projected space as is the case with KPCA.

The deflation step can be carried out as follows. Let r = K[:,i] = X X T e* where e* is the

ith unit vector. We know th a t prim al PCA deflation can be carried out with respect to the

features in the following way:

x = { 1 - ^) x '

where u is the projection directions defined by the chosen eigenvector and X is the deflated

matrix. However, in sparse KPCA, u = X T e^ because the projection directions are simply the

examples in X . Therefore, for sparse KPCA we have:

X X 1 = X (I -) [I

U U
= X (I - ^) X T

u 1 u /

X X T e ,e 7 X X T
= X X T'n

;lT

K [»,*]

Therefore, given a kernel m atrix K the deflated kernel m atrix K can be computed as follows:

* = K- kS j <4'4>

where r = K [:, id] and id denotes the latest element in the vector i.

A lg o r i t h m 8: A matching pursuit algorithm for sparse kernel principal components
analysis

I n p u t : Kernel K , sparsity param eter d > 0.
initialise i = [j
fo r j = 1 to d d o

Find im provem ent =

Set ij to the index of m a x { im p ro v em en t}
set r = K [: ,ij]
deflate kernel matrix like so:

K = K

7: e n d fo r
8: Compute approximation K using i and Equation (4.6)

O u t p u t : O utput sparse m atrix approximation K

This algorithm is presented in Algorithm 8 and is equivalent to the algorithm proposed by

Smola and Scholkopf [2000], as they iteratively add a basis vector by maximising the Rayleigh

quotient and then deflate to guarantee the chosen vectors are orthogonal to all other vectors

in the kernel matrix. Line 6 of Algorithm 8 is equivalent to the Smola and Scholkopf [2000]

orthogonalisation procedure. However, their motivation comes from the stance of finding a low

4.1. Sparse kernel principal com ponents analysis 71

rank matrix approximation of the kernel m atrix. They proceed by looking for an approximation

K = K[:, i]T for a set i such th a t the Frobenius norm between the trace residuals

tr{K — K[:,i]T} = tr{K — K} is minimal. Their algorithm finds the set of indices i and the

projection matrix T. However, the use of T in computing the low rank m atrix approximation

seems to imply the need for additional inform ation from outside of the chosen basis vectors

in order to construct this approxim ation. However, we show th a t a projection into the space

defined solely by the chosen indices is enough to reconstruct the kernel m atrix and does not

require any extra inform ation .1 The projection is the well known Nystrom method [Williams

and Seeger, 2001].

An orthogonal projection P i(0 (x j)) of a feature vector into a subspace defined only

by the set of indices i can be expressed as:

P ,(x 3) = X T (X X T r ‘X 0 (x ,) ,

where X = X [i,:] are the i training examples from data m atrix X. It follows that,

Pi(x:,)TPi(xJ) = 0(xj)TXT(XXT)-1X X T(XXT)-1X0(xj)

= 0(xj)TXT(XXT)-1X0(xj)

= K[i, jf]K[i, i]- 1K [7, i], (4.5)

with K [i,j] denoting the kernel entries between the index set i and the feature vector 0 (x j),

giving us the following projection into the space defined by i:

K = K [:,i]K [i,i] -1K [:,i]T . (4.6)

Hence, we simply need the chosen basis vectors i to make this reconstruction. This is very

im portant for the theoretical analysis th a t we carry out in the next section, as it implies the

following claim.

C la im 4.1. The sparse kernel principal components analysis algorithm is a compression scheme.

Proof. Given a data point (p(x.j) in feature space and a set of chosen indices i we can reconstruct

the projection using Equation (4.5), i.e., K [i,j]K [i, i]- 1K [j, i]. Therefore, we only require kernel

evaluations between the training examples indexed by i and the data point 4>(x.j) in order to

make this reconstruction. Hence, i forms a compression set. □

R e m a rk 4 .1 . This claim proves that sparse kernel PCA form s a sample compression scheme.

The only information needed fo r the reconstruction function is the data in the compression set

from which the matrix approximation (given by Equation 4-6) can be created.

1In their book, Smola and Scholkopf redefined their kernel approximation in the same way as we have done
[Scholkopf and Smola, 2002],

4.1. Sparse kernel principal components analysis 72

We can now prove th a t Algorithm 8 is equivalent to Algorithm 2 of Smola and Scholkopf

[2000].

T h eo rem 4.1. Agorithm 8 is equivalent to Algorithm 2 o f Smola and Scholkopf [2000].

Proof. Let K be the kernel m atrix and let K[:, i] be the ith column of the kernel matrix. Assume

X is the input m atrix containing rows of vectors th a t have already been mapped into a higher

dimensional feature space using <f> such th a t X = (0 (x i) , . . . , </>(xm))T . Smola and Scholkopf

[2000] state in section 4.2 of their paper th a t their algorithm 2 finds a low rank approximation

of the kernel m atrix such th a t it minimises the Frobenius norm ||X — X H p ^ = tr{K — K}

where X is the low rank approxim ation of X . Therefore, we need to prove th a t Algorithm 8

also minimises this norm.

We would like to show th a t the maximum reduction in the Frobenius norm between the

kernel K and its projection K is in actual fact the choice of basis vectors th a t maximise the

Rayleigh quotient and deflate according to Equation 4.4. At each stage we deflate by,

K = K
K[id, irf]'

The trace tr{K } = Y ^ L i *] is the sum of the diagonal elements of m atrix K . Therefore,

t r { r r T}
tr{K } = tr{K } -

= t r { K } -

= t r { K } -

K[irf, id]
t r { r Tr }
K[id, id]
K 2[id,id]
K[id,id]

The last term of the final equation corresponds exactly to the Rayleigh quotient of Equation 4.3.

Therefore the maximisation of the Rayleigh quotient does indeed correspond to the maximum

reduction in the Frobenius norm between the approximated m atrix X and X . □

Claim 4.1 proves th a t we have a compression scheme and so we can bound the sparse KPCA

algorithm using the tools available to us from sample compression theory.

4.1.2 A generalisation error bound for sparse kernel principal com po­

nents analysis

The results of the last section imply a sample compression analysis for sparse KPCA. We use the

sample compression framework of Littlestone and W armuth [1986] to bound the generalisation

error of the sparse PCA algorithm. Note th a t kernel PCA bounds of [Shawe-Taylor et al., 2005]

do not use sample compression in order to bound the true error. As pointed out above, we use

the simple fact th a t this algorithm can be viewed as a compression scheme. No side information

is needed in this setting and a simple application of Littlestone and W armuth [1986] is all that

is required. T hat said, the usual application of compression bounds has been for classification

4.1. Sparse kernel principal components analysis 73

algorithms, while here we are considering a subspace method.

Recall th a t a sample compression scheme for classification is a learning algorithm th a t

only needs to use a small subset of training points to construct a hypothesis. This hypothesis

mentioned earlier, this implies th a t this type of learning algorithm and a compression scheme

are equivalent. Therefore, we will sometimes refer to a compression scheme learning algorithm

as a compression scheme and vice versa.

To bound the generalisation error of the sparse KPCA algorithm we make use of the fol­

lowing well-known theorem.

T h e o re m 4.2 (Hoeffding’s inequality). I f X i , . . . , X n are independent random variables satis­

fying X i E [a.i,&i] (meaning X i is in the interval between ai and bi) and i f we define the sum of

these random variables as Sn = Xi, then it follows that

where E[-] denotes the expectation.

This theorem upper bounds the probability of deviation between the sum of the random

an upper bound on the deviation of the observed error and the true error for a fixed function

/ given for random draws of training sets. Together w ith the proof th a t sparse kernel PCA

defines a compression scheme we are now in a position to present a sample compression bound

for sparse KPCA.

T h e o re m 4.3. Let Ad be any learning algorithm having a reconstruction function that maps

compression sets to regressors. Let m be the size of the training set S, let d be the size o f the

compression set and let £m-d[I{Ad(S))] be the empirical loss on the m — d points outside of

the compression set. Then with probability 1 — S, the expected loss £[£(Ad{S))] o f algorithm Ad

given any training set S can be bounded by,

Equation (4.7) equal to From the definitions £(•) > 0 and R — sup£(-) we can set bi — 0

should be capable of labelling all of the training points not found in the compression set. As

(4.7)

variables and the expected value of this sum. In a machine learning context it can provide

£[£(Ad(S))} < min £,
l<t<a

where £(■) > 0 and R = sup^(-).

Proof. Consider the case where we have a compression set of size d. Then we have (™) different

ways of choosing the compression set. Given S confidence we apply Hoeffding’s bound to the

m — d points not in the compression set once for each choice by setting the right hand side of

4.1. Sparse kernel principal components analysis 74

and di = ^ 2 respectively, in Hoeffding’s bound. Using these facts we get,

(
2 exp

2 exp I —

2e^

2ê
(m — d)R 2/(m — d)2

(m — d) 2e2
2 exp I —

R 2

5

O

6

(7)
s

(?) ■

Solving for e and further applying a factor 1 /m to 5 to ensure one application for each possible

choice of d we get:

e <
R 2

2 (m — d)) +ln (
2m
~ T

Hence by Hoeffding’s bound Pr{£[^(.Ad(*$'))] > Sm-.d[^{Ad{S))\ + e} < <5. This together with

the fact th a t using more dimensions can only reduce the expected loss on test points gives the

result. □

R e m a rk 4.2 . I t should be noted that this simple analysis could not be carried out with K M P as

it requires additional information from outside o f the compression set in order to reconstruct its

regressors. This is not considered in the above theorem. Such an analysis is possible by taking

into account the extra information needed in order to make the desired reconstruction. This can

be performed by using the Vapnik-Chervonenkis (VC) argument we proposed in Section 3.11.

We now consider the application of the above bound to sparse KPCA. Let the corresponding

loss function be defined as

^ (A (S))(x) = | | x - P it(x) ||2,

where x is a test point and PH (x) its projection into the subspace determined by the set if of

indices returned by A t(S). Thus we can give a more specific loss bound in the case where we

use a Gaussian kernel in the sparse kernel principal components analysis.

C o ro lla ry 4.1 (Sample compression bound for SKPCA). Using a Gaussian kernel and all of

the definitions from Theorem 4-3, we get the following bound:

£{e(A (Sj)\ < min

(4.8)

Note th a t R corresponds to the smallest radius of a ball th a t encloses all of the training

points. Hence, for the Gaussian kernel R equals 1. Figure 4.1 shows how the bound is optimising

the structural risk minimisation principle (when we do not use the min in Theorem 4.3). The

4.1. Sparse kernel principal components analysis 75

blue line represents the training residual computed as the loss of those points not in i, the black

line is the complexity term in the bound (the square root term in Equation (4.8)). The red line

in the figure is the bound value and carries out a trade-off between accuracy on the training

data and complexity of the function.

Sttudurai Risk Mmmualion pr.napie la sparse KPCA compression bound

Figure 4.1: Sample compression bound plot for sparse KPCA including the error and complexity
terms separately (SRM principle).

We now compare the sample compression bound proposed above for SKPCA with the

KPCA bound introduced by Shawe-Taylor et al. [2005]:

T h eo rem 4.4 (Shawe-Taylor et al. [2005]). I f we perform P C A in the feature space defined by

a kernel k(x , z) then with probability greater than 1 — 5, fo r any 1 < d < m , i f we project new

data onto the space Ud, the expected squared residual is bounded by

£ [\\PudW x))\\2] ^ - A >‘(S) + 1 + ^
m t=l

+ R \ — In —
m

where the support of the distribution is in a ball of radius R in the feature space and X>t(S) =

is the sum of the eigenvalues greater than t computed from the training data in the

feature space.

We apply this bound with the Gaussian kernel which sets both R and /c(xt ,Xj) to 1. We

compute it for sparse KPCA by simply adapting it to work with a sparse set of basis vectors

rather than a full kernel matrix and its reduced dimensionality. Figure 4.2 shows plots for the

test error residuals together with its upper bounds computed using Theorem 4.4 and the sample

compression bound of Corollary 4.1. The sample compression bound is much tighter than the

PCA bound and non-trivial. This is in stark contrast to the PCA bound, which is looser and

4.1. Sparse kernel principal components analysis 76

trivial.

The bound is at its lowest point after 43 basis vectors have been added. We speculate tha t

at this point the “true” dimensions of the da ta have been found and tha t all other dimensions

correspond to “noise” . Notice how, after approximately 43 dimensions the test error looks

straighter in its decline - implying th a t a constant “noise” factor is helping to reduce the test

error. We carry out an extra toy experiment to help assess whether or not this is true and to

show that the sample compression bound can help indicate when the principal components have

captured most of the actual data. The plot on the right of Figure 4.2 depicts the results of a toy

experiment where we randomly sampled 1000 examples with 450 dimensions from a Gaussian

distribution with zero mean and unit variance. We then multiplied the first 50 dimensions with

large numbers (using exponentially decreasing factors) and the remaining 400 dimensions with

a small constant noise factor (very small number). This caused the first 50 dimensions to have

much larger eigenvalues than the remaining 400. From the right plot of Figure 4.2 we see that

the test residual keeps dropping after 50 basis vectors have been added with small decrements.

The compression bound picks 46 dimensions with the largest eigenvalues and fails to pick the

final 4, however, the PCA bound of Shawe-Taylor et al. [2005] is much more optimistic and is

at its lowest point only after 30 basis vectors, implying th a t it has captured most of the data

in 30 dimensions. Therefore, as well as being tighter and non-trivial, the compression bound

is much better at predicting the best choice for the number of dimensions to use with sparse

KPCA. Note th a t we carry out this experiment without randomly permuting the projections

into a subspace because SKPCA is rotation invariant and will always pick out the principal

components with the largest eigenvalues.

Boadpftlar9«»U(MPCA

0 *0 2D 30 <0 50 SO 70 ® N 100 110 120 130 140 ISO
imi

Figure 4.2: Bound plots for sparse kernel PCA comparing the sample compression bound pro­
posed in this chapter and the already existing PCA bound.

4.2. Kernel canonical correlation analysis

4.2 Kernel canonical correlation analysis

77

The theoretical work we proposed in the earlier sections together with the practical implemen­

tations motivates this section.

In this section we introduce a sparse canonical correlation analysis algorithm in the dual.

a primal view and then proceed towards its dual counterpart.

We first derive a sparse version of kernel canonical correlation and present it as a function

i. The initial algorithm lays the foundations to become our “gold standard” . However, its

practical. Therefore, we improve the speed of the algorithm with a m atching pursuit algorithm

th a t corresponds to the Algorithm 8 of KPCA and also introduce an approxim ation method to

gain extra computational advantage. We give a brief overview of canonical correlation analysis

(CCA) and kernel canonical correlation analysis (KCCA), but s ta rt the discussion w ith a small

example to motivate the reason why two views of the same data may be im portant.

In canonical correlation analysis we seek to find the maximum correlation between two

different views of the same object. For instance, we may have the same book in English and

French. The two views are the two different languages and the objective of CCA in this case

would be to find the features th a t are maximally correlated between the two languages. In this

way we would hope to extract features th a t bring out the underlying semantic content.

Let S = { (x i ,y i)} ^ 1 be a sample containing inpu t^ -inpu ty pairs where each x* and y *

are row vectors of length n, and let Px : x x Tw x and Py : y i—> y Tw y be the projections of

each input into spaces defined by w x and w y. The idea of canonical correlation analysis (CCA)

is to maximise the correlation corr(Px (X.), Py (Y)) between the d a ta in their corresponding

projection space. Taking the maximum correlation of these two projections reduces to the

following maximisation problem:

matrices of X and Y , respectively.

The above maximisation problem can be evaluated by solving a generalised eigenproblem

In doing so, we point out why we cannot use the theory of section 4.1 and must use the theory

of section 3.11 to bound the generalisation error of this new KCCA variant. We also show th a t

the algorithm is similar in spirit to KM P and sparse KPCA. Firstly, we discuss the work from

(see Function 9). Then we are left with the issue of how to choose the set of basis vectors

naive implementation leads to an inefficient algorithm th a t must be refined in order for it to be

P max
Wx , wy

w J X TY w y
(4.9)

^ /w J X TX w xw J Y TY w y

m»Y w j CxyWy

where G xy = C yx is the covariance m atrix between X and Y and C xx and C yy the covariance

4.2. Kernel canonical correlation analysis 78

of the form:

A w = ABw, (4.10)

0 C x y Wx
= A

C x x 0 w x

C y X 0
. w y .

0 ^ y y . .

where (w,A) are the eigenvector-eigenvalue pair corresponding to the solution and A, B are

square matrices. The CCA generalised eigenproblem can be w ritten as:

(4.11)

The fact th a t this problem only looks for linear relationships in data and does not tackle non­

linear data sets limits its use in many contexts. By applying the kernel trick, several authors [Lai

and Fyfe, 2000, Bach and Jordan, 2003] have proposed a kernel version of canonical correlation

analysis in order to tackle non-linear relations.

Let us map each training example to a higher dimension using a feature mapping 0 : x i->

0(x). In the case of a linear kernel each n-dimensional vector x is mapped with the identity

0(x) = x th a t corresponds to the following kernel m atrix K x = X X T . Therefore by making

substitutions w x = X Ta x and w.

Y Y t with K y we get the following kernel CCA maximisation problem,

y — Y OLy in Equation (4.9) and replacing X X with K x and

a l K l K „ o l
max y'-'-y

,ay o cJ K JK xa xa J K j K yocy

which can be solved as the following generalised eigenproblem,

0 K

K y x

x y

0

OLx
= A

1

H
tO 0 ocx

O Ly 0 K? .
O Ly

(4.12)

K yKy. Note th a t anywhere ICXy — I£xI£y, ICyX — IC^ICX — ICXy, I^x — I^x^^x and -Ky

kernel can be used in the above setting.

The solution of the above eigenproblem may lead to overfitting (see Hardoon et al. [2004],

Shawe-Taylor and Cristianini [2004]) and to avoid this the following regularised version has been

proposed,

(4.13)

where 0 < r x, r y < 1 are regularisation param eters th a t each penalise the norms of the

weight vectors w x and w y, respectively. The solution of the generalised eigenproblem is of

order 0 (m 3) complexity. Another downside is th a t the amount of data needed is twice the size

of the kernel matrices. These problems have been tackled by reducing to solving a standard

eigenproblem which saves on memory but the overall saving in time complexity is not significant.

1

H

o

i

OLx
= A

(1 - tx)K% + txK x 0 O L x

r

K H O

i . a y .
0 (1 - T y) K l + T y K y _ O Ly

4.2. Kernel canonical correlation analysis 79

Also, Gram Schmidt orthogonalisation procedures have been used to tackle these problems.

However, analysing data sets w ith more than 10,000 d ata points is typically a real challenge

with any of these variants of KCCA. We now present methods th a t deliver dual sparsity which

result in fast training/testing times and tractab ility for larger data sets.

4.2.1 Sparse kernel canonical correlation analysis

We would like to construct (dual) sparse kernel canonical correlation analysis (SKCCA) al­

gorithms. By sparsity we m ean using a small subset of basis vectors from the sample

(x j,y i) ,i = l , . . . , m . The sparse index set of basis vectors will be contained in an index

vector i. Following earlier notation for sparse PCA the sparse CCA problem can be expressed

as:

w I X t Y w .
m ax y

^ /w j X TX w xw J Y TY w y

where w x € span{X [i,:]} and w y 6 span{Y [i,:]}. This equation can be converted into its dual

by taking advantage of the fact th a t the primal weight vectors can be w ritten in term s of a

linear combination of the training examples and the dual weight vectors:

W, = X [i ,:] a „

= Y[i, :]Td y.

(4.14)

(4.15)

We can substitute these two expressions into the CCA problem:

d j x [i , :]XTY Y [i,:]Td „
p = max

Y /dJX Ji, :]XTX X[i, :]YTY Y [i, :]Td y

Furthermore, we have K x[:,i] = XX [i, :]T and K y[:,i] = Y Y [i, :]T , therefore we have the

sparse kernel CCA problem:

m ax
I jO l j i y

&x K x[:, i] K y[:,i]d:y

yjocx K 2 [i,i]d xd jK 2 [i , i] a y

where d x and a y are sparse dual eigenvectors. This leads to, for fixed i, the sparse KCCA

generalised eigenproblem of the form

(4.16)

Therefore, the solution of Equation (4.16) will yield a sparse set of eigenvectors from which

to make the projection into the common space. Function sparseKCCA describes how to solve the

problem and is the sparse KCCA algorithm th a t we will use throughout the chapter, whenever

we are given two kernels K x, K y and a (small) index set i. Notice the similarities between

0 Ii-xy [b l] d x
= A

k £M 0

K yx[i,i] 0 OLy 0 KJM _ C t y

4.2. Kernel canonical correlation analysis 80

Equation (4.16) and Equation (4.12) given for KCCA. Firstly, the forms are identical when i is

the full set of training examples. However, as we will restrict i to be much smaller, we will only

require the solution from square kernel m atrices of size d x d where d = |i|. Finally, note th a t

our sparse eigenproblem given by Equation (4.16) is in the “un-regularised” form of the KCCA

problem. However, we will show in the experiments th a t sparsity is in fact a more robust form

of regularisation for KCCA as opposed to the standard method given in Equation (4.13).

F u n c tio n sparseKCCA(Kx, K y, i)

l: set X = K x[:, i]T and Y = K„[:, i]T
2: create sparse m atrices K xx = X X
3: solve the following generalised eigenvalue problem:
2: create sparse m atrices K xx = X X T , K.yy = Y Y T , K xy = X Y T and K yx = K Jy

0 O L x = A
K xx 0 O L x

K y x 0 0 K - y y . O Ly

O u tp u t : sparse eigenvectors a x, 6cy and eigenvalues A.

Now th a t we have described the sparseKCCA algorithm we tu rn our attention to finding

the best sparse index set i of training examples to use in conjunction with the sparse KCCA.

4.2.2 C hoosing the best i (slow m ethod)

We describe an algorithm th a t chooses the best index set i from the entire set of basis vectors in

a greedy fashion. We seek a low dimensional subspace as the span of a set i of training examples,

using the corresponding subsets for the projections in the spaces X and y . The criterion for

extending the subspace is to choose the example for which the correlation com puted when

projecting all of the data into the corresponding subspaces is maximal. This corresponds to a

greedy optimisation of this criterion.

One approach is to look a t the addition of each basis vector, in turn , and to run the

sparseKCCA using this set of chosen basis vectors. A basis vector whose sparse KCCA solution

yields the largest eigenvalue is added to the set and this process repeated up to a sparsity

parameter d. This simple greedy strategy results in Algorithm 10.

This simple algorithm has one major problem: its complexity is cubic in the number of

training points. This is a larger complexity than we are willing to accept. Therefore, we would

like an approach similar to SKPCA and KMP when looking for these basis vectors. A more

com putationally efficient approach for choosing basis vectors can be given by looking at the idea

behind the sparse KPCA algorithm of Algorithm 8.

4.2.3 C hoosing the best i (fast m ethod)

Using a similar strategy to Smola and Scholkopf [2000] we now show th a t maximising the

quotient of the CCA problem leads to a fast method for choosing basis vectors. However, after

picking a basis vector (unlike algorithm 10) we must project into a space orthogonal to it, and

describe a deflation step th a t guarantees future basis vectors chosen are orthogonal to all others.

We would like to construct a very fast calculation th a t enables us to quickly find basis

4.2. Kernel canonical correlation analysis 81

A lgorithm 10: A greedy algorithm for choosing basis vectors (“gold standard”)
Input: two views K x, K y, sparsity param eter d > 0.

l: initialise i = [] and j = [1, . . . , m\
2: for i = l to d do
3: for j = 1 to |j| do
4: set ii = j j such th a t i only contains the chosen indices
5. run sparseKCCA(Kx, K y, i) to find eigenvalues A in decreasing order
6: if A j is the largest found so far th en
7: set besti = j
8: end if
9: end for

10: update ij = foest* with the index of the best basis vector found
ll: remove index jbestt from j
12: end for
13: run sparseKCCA (K x, K y, i) with final i to find d x, a ty and A
O utput: eigenvectors d x , 6t y .

vectors. We take a similar approach to Algorithm 8 which implies the maximisation of the

generalised Rayleigh quotient,

e.TK xK uei
max pi = y.......... , (4.17)

yJ e j K l e , e j K l e i

where e t is the 2th unit vector. At each iteration we look to find the basis vector th a t maximises

the quotient given by Equation (4.17). Once it has been chosen then the following orthogo­

nality procedure (deflation) is carried out to make sure future chosen bases are sufficiently far

(geometrically) from those already added to the set i.

Initially, at the first step j = 1, let K£ = K x and = K y denote the deflated kernel

matrices at the j th iteration. To find the deflated matrices at step j + 1 we use the KMP

deflation given in line 8 of Algorithm 7:

K i +1 = K (4.18)

(4.19)

where r x = K£[:,ij] and Ty = K ^[:,ij] such th a t j = | i| , > 0 and ij is the last element

added to vector i and I is the identity m atrix. This procedure is repeated until d basis vectors

have been chosen. This protocol is described in Algorithm 11. Notice the similarities between

this algorithm and Algorithm 8 which uses the same procedure of quotient maximisation and

deflation in order to evaluate a sparse kernel principal components analysis.

4.2.4 A generalisation error bound for sparse kernel canonical corre­

lation analysis

The compression bound for SKPCA cannot be applied in the SKCCA setting because the basis

vectors chosen in order to produce the common subspace requires the full information of the

4.2. Kernel canonical correlation analysis 82

A lg o rith m 11: A fast greedy algorithm for choosing basis vectors
In p u t: Two views K x, K y, sparsity param eter d > 0.

1: initialise i = []
2: for i = 1 to d d o
3: find im p rovem en t =

4: se t i i to th e in d ex o f m a x { im p r o v e m e n t}
5: se t r x = K x [:, i»] an d r y = K y[:, i<]
6: deflate kernel m atrices like so:

K x

7. e n d for
8: run sparseKCCA (K x ,K y ,i) with final i to find d x, cty and A

O u tp u t : index vector i, and eigenvectors d x, dty

training set. However, from the type of analysis we made earlier for KM P we can upper bound

the future loss of sparse KCCA.

To help keep the notation for the following bound consistent with the bound introduced for

KM P we make the following definitions. We denote the input* sample as S x and similarly the

input y sample as S y . Therefore, two training samples consisting of paired d a ta sets from the

joint space X x y will be denoted as S X x y = S x U S y . We denote the index set of the chosen

basis vectors as i and also S X x y will denote the paired samples indexed by vector i. Earlier we

denoted Px to be the projection from inpu t* but here use the notation f x to denote the same

projection function. We make the same change in the notation of the Py function.

We would also like to remind the reader th a t the primal weight vectors w x and w y for

each view are 1-dimensional weight vectors for some given dimension i € {1, . . . ,d}. Finally,

analogously to Definition 3.1 we now define the loss functional th a t will be used for the SKCCA

bound.

D efin itio n 4.1. Let S Xx y ~ V be a paired training sample from a fixed but unknown distri­

bution V . Given the projection functions f x = / X(x) = w j x and f y = f y (y) = w ^ y and the

error e r(f x , f y) = |w jx — w jy | = | / X(x) — / y(y)| fo r the paired data points x and y we can

define, fo r some fixed positive scalar a e R, the corresponding true classification loss as

era{fxJ y) = P r (| / X(x) - / y(y)| > a } .
(x,y)~Z>

Similarly, we can define the corresponding empirical classification loss as

T rT ,
T ' T n

T„TV y K 7

era { f x J y) = e ^ * Xy(f x , f y) = , P r { |/X(x) - /„ (y) | > a}
(x,y)~S'<x-v

= E (x , y) ^ x y (I (| / r (x) — A(y)| > Of)} ,

4.2. Kernel canonical correlation analysis 83

where I is the indicator function and S X x ^ is suppressed when clear from context.

Given this definition we would like to upper bound the true classification loss with the

information gained from the empirical classification loss. We can proceed in much the same

way as was done for KMP but w ith the difference th a t the weight vectors w z and w y are the

vectors th a t allow a projection into a single dimension. Giving a bound on the loss of the

two corresponding projections Px and Py onto each dimension found. By making this style of

analysis we can simply adapt the KM P bound as follows.

T h e o re m 4.5 . Fix a € R, a > 0. Let A be the SKCCA algorithm, m the size o f the paired

training sets S X x y and d the cardinality o f the set i of chosen basis vectors. Let S X x ^ be

reordered so that the last m — d points are outside o f the set l and define t = —

f y(y l)\ > a) to be the number o f errors fo r those points in S X x y n S X x y . Then with probability

1 — 8 over the generation o f the paired training sets S X x y the expected loss S [£(■)} o f algorithm

A can be bounded by,

projection w z and w y . This corresponds to a regression loss and can be m apped it into its

corresponding classification loss using Definition 4.1. Therefore by constraining the weight

vectors to be 1-dimensional and using this loss functional we can proceed in the same manner

This bound can only work on each dimension of the projections found. In order to get a

We have plotted the bound against the true classification loss found between test points

x and y projected into 1-dimensional subspaces found by KCCA and averaged over all the

see all bound plots look very similar in shape (with some slight orientation) to the test error,

with the plot on the the top left being the most similar.

£M -4(S))] <

Proof. We can trea t the loss between w J x and w J y as a regression loss

(w z (4.20)

where we would want (4.20) to be 0 (or the zero function) for all x and y and every dimension

as the proof of Theorem 3.9. □

bound for the entire subspace found by SKCCA we would require a union bound over the whole

d dimensional subspace - which would greatly loosen the bound. We do not include this bound

here.

dimensions. The bound plots are given in Figure 4.3, and each plot corresponds to a different

split of the training and testing data. The bounds have also been scaled down by a factor of 5

in order to show both plots closer together (the bounds become trivial early on). As you can

4.2. Kernel canonical correlation analysis 84

SK CCA «roronEn£*i-SpntitM d<iM SKCCA e m r on EngfeH-Spsnsh to t data sal

1«-

12

 SKCCA ts s te n w

SKCCA a m r on E n g lS t-S p a tt t w feta sat SKCCA e m r on E ng te D -S p in tt text data set

 bouid
SKCCA last em r

3

0 . 3 '

 bound
— SKCCA test e m r

1C
-■
3

Level ol sparsity

Figure 4.3: Plot of SKCCA bound against its test error for different splits of the data. We used
500 examples for training and the 300 for testing. Bound was scaled down by a factor of 5 and
a = 0.00095.

4.2.5 Choosing a set i (faster m ethod)

Interestingly the bound of the previous section only requires a small subset of chosen basis

vectors i in order to make the sparse reconstruction of the joint subspace in kernel canonical

correlation analysis. This indicates th a t the bound is not algorithm-specific and th a t any set

of chosen basis vectors i would give an upper bound on the generalisation error. We could

randomly select basis vectors but this doesn’t seem to generate good solutions.

Another alternative is to compute the Rayleigh quotient of Equation (4.17) once and then

choose the d indices generating the largest correlation values of the Rayleigh quotient. Clearly

the bound still holds in this case and the algorithm has a constant complexity of 0 { m 2). This

4.3. Experim ents 85

algorithm is described in Algorithm 12. We show in the next section th a t this algorithm competes

in accuracy with the fast algorithm of Algorithm 11.

A lgorithm 12: A faster greedy algorithm for choosing basis vectors
Input: Two views K x, K y, sparsity param eter d > 0.

l: initialise i = []

2: find improvement = ((K(^ ^ (^ j)Tl)
3: set i to the index of the largest d values of improvement
4: run sparseKCCA (K x ,K y , i) w ith final i to find d x, a y and A

O utput: index vector i, and eigenvectors d x, a y

4.3 Experim ents
The experiments we conduct are for tex t retrieval tasks and compared against the KCCA al­

gorithm using two different measures for small, medium and large sized data sets. The results

indicate comparable performance to KCCA with the added advantage of faster running times.

The retrieval is assessed using m ate retrieval. The first measure is called the “window”

measure and counts the number of times documents can be retrieved using their pair as a query.

The window size we use is 10 and if the pair can be retrieved within the top 10 correlation

values then we count the document as being retrieved, otherwise it is considered not to have

been retrieved (error). However, a problem with this measure is th a t it does not take into

account the positions from which the documents were retrieved. The second measure rectifies

this problem and is called “average precision” and is the standard average precision method

employed in Information Retrieval tasks. Here we associate a weight for the position th a t a

document may be retrieved from in the second language. Position 1 has the highest weight

and position m (where m is the number of test examples) has the lowest weight. The average

precision sums up weights of the positions th a t the documents are retrieved from and takes an

average as the final measure of retrieval rate. Clearly, the average precision measure is more

robust because it takes into account the position of the docum ents retrieved. This is in contrast

with the window method that is content with a document th a t is contained in the top 10 (say)

highest correlation values.

D ata Set KCCA SKCCA SKCCA (faster)
train test total train test to tal train test to tal

Small
Medium
Large

8
1707

24693

20
1995

27733

28
3702

52426

9
334

5242

5
224
698

14
558
5940

2
59

1873

5
224
695

7
283

2568

Table 4.1: Training and test times in seconds for small, medium and large d ata set sizes (English-
Spanish data)

As you can see from Figures 4.4, 4.5 and 4.6 the KCCA algorithm requires different pa­

rameter values in order to produce stable results. Also, as the data set sizes increase, so do

the best param eter values, i.e., from 0.1 in the small data set (Figure 4.4) to 0.75 in the larger

4.3. Experiments 86

— KCCA wdti regulartsatfcm set to 0 0001
— — KCCA ynttiregulansaDor set to 0 001
- - - KCCA Mtti regutansaOon set to 0 01
 KCCA Mtti regulansalion set to 01
— KCCA Nth regulansalion set to 0.5
 SKCCA
 SKCCA (taster)___________________

10 20 30 *0 50 60 70 80 90 100
Level ol tperesy (numBer ol drecOoni (KCCA) or number of Dass vectors (SKCCA))

TnWng: 500 Testing: 300 Training: 500 Testing: 300

■ KCCA wth regulansalion set to 0.0001
• KCCA vrtli regulansalion set to 0.001
■ KCCA wth regulansalion set to 0.01
■ KCCA wTi regulansalion set to 0.1
■ KCCA vrfh regulansalion set *>0.5

0.7&
I
OS
!
I1

5rU1

100
L9td at sparcty (number of directions (KCCA) or number of basis vectors (SKCCA))

Figure 4.4: A small data set - average test error for retrieval over 5 different splits of the
data. Left: average error using window (method) of size 10. Right: average error using average
precision.

Tnunng 3000 T«ong 1000

o
*
5

is

I

Figure 4.5: A medium sized data set - average test error for retrieval over 5 different splits of
the data. Left: average error using window (method) of size 10. Right: average error using
average precision.

•

d ata set (Figure 4.6). Moreover, we hypothesise th a t as the size of the data set increases, so

to does the value of the regularisation parameter needed in order to achieve good generalisa­

tion. However, the upper bound of this parameter value is 1 and when this value is reached

then KCCA may start to generate trivial solutions and overfit (as was shown for the smaller

param eter values in all three plots). We cannot however show th a t this hypothesis is correct

for very large d ata sets because it is not possible to train KCCA on data sets with more than

20000 training points (for instance). The experiments show th a t SKCCA is stable throughout

the experiments with different sized data sets, meaning th a t sparsity is a robust and efficient

80 100 120 140 160 180 200
Lm I of aparsty (runbar of draeftans (KCCA) or numter al In m vedar* (SKCCA))

Tnvw* 3000 T«mg 1000

4.4. Summary 87

Trsrvg ftOOTeang 1000

0 SO

Figure 4.6: A large sized data set - average test error for retrieval over 2 different splits of the
data. Left: average error using window (method) of size 10. Right: average error using average
precision.

way of regularising KCCA. Another im portant issue with these results is th a t although they

show th a t KCCA obtains slightly better accuracy this improvement comes a t a cost, KCCA

needs to compute the projections onto an m x d dimensional space where m are the number of

training samples and d the dimension of the largest d correlation values. However, our SKCCA

only needs to compute a projection into a d x d subspace. In the large d ata set results (see

Fig. 4.6) we can see that projecting into a 7000 x 500 dimensional space is far more costly than

a 500 x 500 dimenisonal space, as is the case for SKCCA. The faster times are confirmed in

Table 4.1 where SKCCA is up to 10 times faster than SKCCA and up to 20 times faster with

SKCCA (faster). However, the testing time for both is almost a factor of 40 faster than KCCA.

Therefore, SKCCA can be used in situations where large data sets are intractable for KCCA to

both train and test on. Also, the fact th a t SKCCA is an iterative algorithm means th a t it does

not rely on storing the full kernel m atrix in memory and has very fast testing times once the

sparse set of basis vectors have been chosen.

4.4 Summary
We proposed the first sample compression bound for a subspace method called sparse kernel

principal components analysis (SKPCA) and proved th a t the algorithm is a sample compression

scheme. We also tested the sample compression bound proposed against the bound of Shawe-

Taylor et al. [2005] on the Boston housing data set and showed th a t it was considerably tighter

and non-trivial. Also, a toy experiment demonstrated th a t the compression bound is a better

candidate for model selection than the KPCA bound and is able to indicate when most of the

true data has been captured with SKPCA.

Next we exploited the property th a t maximising the Rayleigh quotient and deflating the

4.4. Sum m ary 88

kernel m atrix can speed up sparse KPCA to propose the first matching pursuit style algorithm for

kernel canonical correlation analysis called sparse kernel canonical correlation analysis (SKCCA).

We bounded the loss of SKCCA using the same argument we had made for KMP in C hapter 3

and provided a generalisation error bound th a t also relied on the level of sparsity achieved by

the algorithm. We gave plots of the bound proposed which showed for a particular choice of c*

th a t we could achieve bounds w ith similar shapes to the test error.

Finally, we ended by giving experim ental results for the SKCCA algorithm on text retrieval

tasks. We tested against the KCCA algorithm for small, medium and large d ata sets, showing

competitive retrieval accuracy but large increases in com putational time complexity.

89

Chapter 5

Conclusions

We have taken the reader on a journey th a t looked at machine learning algorithms and tech­

niques to help enforce sparsity. We promoted many of its merits through experimentation and

theoretical analyses, and maintained a similar algorithmic approach across the different learning

domains to help deliver sparsity i.e., by using a greedy algorithm to build up predictive functions

until some term ination criteria was reached. This simple protocol was capable of producing very

powerful learning algorithms to help tackle machine learning problems using a small number of

training samples (kernel basis vectors). However, as is the nature of research the work presented

is in no way complete or finished and there remain many areas for future work. We outline some

of the more im portant issues we feel have been raised from the work conducted in this thesis.

5.1 Further work

The classification section described the set covering machine (SCM) algorithm and proposed

variants called the BSCM, BBSCM and BBSCM (r) and showed th a t they are considerably

sparser than the well known support vector machine (SVM). However, even though the SCM

has some very nice properties like tight generalisation error bounds and sparsity it does not

seem to be very well known or popular as an alternative classification algorithm to the SVM.

We feel th a t new application areas for the SCM are needed in order to show its m erits on a

wider class of problems - for instance using kernels, applying it to other problem domains such

as Bioinformatics or in situations where we believe th a t the target* function is made up of a

small number of features. Showing th a t the algorithm is advantageous in different scenarios

could potentially increase the popularity of the algorithm. Also, an implementation th a t is

readily available is also a future research direction and something th a t we hope to carry out,

by making the algorithms in the thesis available as a standalone C + + library together with a

MATLAB interface. This would certainly allow more users access to the algorithms without

having to program it explicitly. Another im portant issue is th a t for the SCM to be more

popular it may need to tackle problems other than classification, such as novelty detection

and regression. Hopefully, keeping all the SCM benefits and competing with other well known

algorithms in these problem domains. There have been extensions and improvements made to

5.1. Further work 90

the set covering machine (SCM) (see M archand et al. [2003], Laviolette et al. [2006], Hussain

et al. [2004]) but all the experimental work to date has been on the UCI data sets. Although

this thesis made no attem pt at addressing these issues we feel th a t it is now of param ount

im portance to try and tackle a larger class of problems with the SCM to help gauge its merits

and advantages over other learning algorithms.

The BBSCM algorithm ’s experim ental results have been disappointing. Although we proved

theoretically that the algorithm would find the smallest bound, we also showed for the Votes

data set th a t this does not indicate the smallest test error. In some cases, bounds with larger

values gave the smallest test error. This certainly is not what we expected. The bounds clearly

find functions th a t yield small test error but not in the situations where we would hope, i.e.,

when the bounds were the smallest. The bound proposed in this thesis looked for sparser

solutions (in most cases creating hypotheses with one ball) but the previous bounds (not relying

on bounding the positive and negative examples separately) created less sparse solutions. In

some cases the one ball hypotheses gave the smallest test error, in others it gave the worst. It

would be interesting to analyse why these bounds have such behaviour. Perhaps they need some

sort of interaction amongst one another? Maybe applying the bound proposed for the first ball

chosen and then switching to one of the other bounds for the remaining choice of balls would

help avoid the “one ball” situation of the bound of Theorem 3.5. Another more pressing issue

is th a t the BBSCM algorithm, with all the pruning strategies we employed, was only capable of

improving the running times (over a full search) by a factor of 2. This was not nearly enough to

be able to tackle larger data sets. A future research direction for the BBSCM would be to prune

further the search space, although we would need to be able to prove (as we did in the thesis)

th a t the deletion of such balls would never help create a smaller generalisation error bound.

The regression section th a t described the KMP algorithm introduced a novel theoretical

analysis justifying the performance of the algorithm in term s of the level of sparsity achieved.

However, as these bounds become trivial early on, what have we gained? The point of general­

isation error bounds can be two-fold. One is to understand the level of learning th a t is possible

(i.e., tight bounds) the second is to help in model selection (i.e., follow the test error shape).

The bounds certainly help in model selection situations but do not deliver tight bounds. A

research direction would be to tighten these bounds by using a more natural loss function for

regression such as least squares. Tighter bounds would certainly give us more confidence in the

final regressors computed, such as in medical data analysis situations where we would like to be

confident th a t our mistakes won’t be worse than some (small) upper bound. This would also

tighten the SKCCA bound proposed.

The KM P and SKCCA algorithms both look for dual sparsity and hence require the full set

of training examples in order to compute the final prediction functions. This seems somewhat

at odds w ith the sparsity property we desired at the start of the thesis. We required a small

number of training points in order to reconstruct our functions but in the KMP and SKCCA case

5.1. Further work 91

we need a small number of kernel basis vectors but not a small number of examples. In order

to enforce this type of sparsity we could choose a small number of training examples and use

the remaining points as a test set - much like the sample compression framework of learning.

The bounds would certainly be tigh t and we would no longer require the full set of training

d a ta as is the case currently. However, the problem with this regime is th a t we could not take

advantage of the “maximise a quotient and deflate” procedure we have been so dependent on

throughout the second half of the thesis. This is because we would need to evaluate a loss on the

points remaining outside of the compression set, which the maximisation of a quotient would

not give us. Therefore, we would lose our natural speed-up for the sparse kernel algorithms

we described in this thesis. Therefore, a m ethod for achieving similar levels of computational

speed-ups during training would certainly be a fruitful area of research.

We believe th a t the SKCCA algorithm can be applied to real world and very large data sets.

One issue is storing the full kernel m atrix in memory where for larger data sets this can become

a problem. However because the SKCCA algorithm is an incremental algorithm th a t adds kernel

basis vectors one at a time, we can attem pt at tackling larger data sets. For instance, methods

such as sub-sampling would greatly decrease the com putational effort needed to store kernel

matrices and compute KCCA on very large d a ta sets and so we consider the experim entation

on very large real world d ata sets for SKCCA an im portant future research direction.

As a final remark we would like to point out th a t the unsupervised learning and regression

section all used the same framework of matching pursuit, where a greedy algorithm is used

to build up functions in order to evaluate some target. Although KMP and SKPCA already

existed, we provided a more coherent framework and clearer connections between the m atching

pursuit algorithms in machine learning. The main principle was to maximise some function (i.e.,

Rayleigh quotient), deflate the kernel matrices and then repeat until some stopping criterion

was reached. This simple framework allowed us to pose the KCCA algorithm in a matching

pursuit format and also describe bounds on its generalisation error. We feel th a t the matching

pursuit framework is not only restricted to these problem domains and a future research direction

would be to apply the framework presented to a wider class of problem domains such as novelty

detection and multi-view learning. We hope th a t the work presented in this thesis will help

motivate research in this direction. •

B IB LIO G R A P H Y 92

B ibliography

M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the potential function

method in pattern recognition learning. Automation and Remote Control, 25:821 - 837, 1964.

M artin Anthony. Partitioning points by parallel planes. Discrete Mathematics, 282:17 21, 2004.

M artin Anthony and Norman Biggs. Computational Learning Theory. Cambridge University

Press, Cambridge, 1992.

N. Aronszajn. Theory of reproducing kernels. Transactions o f the American Mathematical

Society, 68:337 - 404, 1950.

Francis R. Bach and Michael I. Jordan. Kernel independent component analysis. Journal of

Machine Learning Research, 3:1-48, 2003.

P. B artlett and J. Shawe-Taylor. Generalization performance of support vector machines and

other pattern classifiers. In B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances

in Kernel Methods — Support Vector Learning, pages 43-54, Cambridge, MA, 1999. MIT

Press.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. W armuth. Learnability and the Vapnik-

Chervonenkis dimension. Journal o f ACM, 36(4):929-965, 1989.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers.

In Proceedings of the 5th Annual AC M Workshop on Computational Learning Theory, pages

144-152. ACM Press, 1992.

V. Chvatal. A greedy heuristic for the set covering problem. Mathematics o f Operations Re­

search, 4:233-235, 1979.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273

297, 1995.

Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and

Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, U.K., 2000.

G. Davis, S. Mallat, and Z. Zhang. Adaptive time-frequency approximations with matching

pursuits. Optical Engineering, 33:7:2183-2191, 1994.

B IB L IO G R A P H Y 93

C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repository of machine learning

databases, 1998. URL h ttp ://w w w .ics .u c i.ed u /~ m leax n /M L R ep o sito ry .h tm l.

Sally Floyd and Manfred W armuth. Sample compression, learnability, and the Vapnik-

Chervonenkis dimension. Machine Learning, 21(3):269-304, 1995.

David R. Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis:

An overview with application to learning methods. Neural Computation, 16(12):2639-2664,

2004.

David Haussler. Quantifying inductive bias: Al learning algorithms and V aliant’s learning

framework. Artificial Intelligence, 36:177-221, 1988.

Ralf Herbrich. Learning Kernel Classifiers. MIT Press, Cambridge, Massachusetts, 2002.

Zakria Hussain. The set covering machine: Implementation, extensions and applications. Mas­

te r’s thesis, Royal Holloway, 2003.

Zakria Hussain, Sandor Szedmak, and John Shawe-Taylor. The linear programming set covering

machine. Technical Report, 2004.

Pei Ling Lai and Colin Fyfe. Kernel and nonlinear canonical correlation analysis. International

Joint Conference on Neural Networks, 4:4614, 2000.

A. H. Land and A. G. Doig. An autom atic method for solving discrete programming problems.

Econometrica, 28:497-520, 1960.

John Langford. Tutorial on practical prediction theory for classification. Journal o f Machine

Learning Research, 6:273-306, 2005.

Francois Laviolette, Mario Marchand, and Mohak Shah. A PAC-Bayes approach to the set cov­

ering machine. Proceedings of the 2005 conference on Neural Information Processing Systems

(N IPS 2005), 2006.

Nick Littlestone and Manfred K. W armuth. Relating data compression and learnability. Tech­

nical report, University of California Santa Cruz, Santa Cruz, CA, 1986.

Stephane M allat and Zhifeng Zhang. Matching pursuit w ith time-frequency dictionaries. IEEE

Transactions on Signal Processing, 41(12):3397-3415, 1993.

Mario M archand and John Shawe-Taylor. Learning with the set covering machine. Proceedings of

the Eighteenth International Conference on Machine Learning (ICML 2001), pages 345 352,

2001 .

Mario M archand and John Shawe-Taylor. The set covering machine. Journal o f Machine

Learning Reasearch, 3:723 746, 2002.

http://www.ics.uci.edu/~mleaxn/MLRepository.html

B IB L IO G R A P H Y 94

Mario M archand and M arina Sokolova. Learning with decision lists of data-dependent features.

Journal o f Machine Learning Reasearch, 6:427-451, 2005.

Mario M archand, Mohak Shah, John Shawe-Taylor, and M arina Sokolova. The set covering ma­

chine w ith data-dependent half-spaces. Proceedings o f the Twentieth International Conference

on Machine Learning (ICML 2003), pages 520-527, 2003.

M. Minsky and S. Papert. Perceptrons: A n introduction to Computational Geometry. MIT

Press, 1969.

Y. Pati, R. Rezaiifar, and P. K rishnaprasad. Orthogonal matching pursuit: Recursive function

approxim ation with applications to wavelet decomposition. In Proceedings o f the 27th Annual

Asilomar Conference on Signals, Systems, and Computers, pages 40-45, 1993.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organi­

zation in the brain. Psychological Review, 65(6):386-408, 1958.

B. Scholkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel eigenvalue

problem. Technical Report 44, M ax-Planck-Institut fur biologische Kybernetik, 1996.

B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel eigenvalue

problem. Neural Computation, 10:1299-1319, 1998.

John Shawe-Taylor and Nello Cristianini. Kernel Methods fo r Pattern Analysis. Cambridge

University Press, Cambridge, U.K., 2004.

John Shawe-Taylor, Christopher K. I. Williams, Nello Cristianini, and Jaz Kandola. On the

eigenspectrum of the Gram m atrix and the generalization error of kernel-PCA. IE E E Trans­

actions on Information Theory, 51(7):2510-2522, 2005.

Alex J. Smola and Bernhard Scholkopf. Sparse greedy m atrix approximation for machine learn­

ing. In Proceedings of 17th International Conference on Machine Learning, pages 911-918.

Morgan Kaufmann, San Francisco, CA, 2000.

L. G. Valiant. A theory of the learnable. Communications o f the Association o f Computing

Machinery, 27(11):1134-1142, November 1984.

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of

events to their probabilities. Theory o f Probability and its Applications, 16(2):264-280, 1971.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998.

Pascal Vincent and Yoshua Bengio. Kernel matching pursuit. Machine Learning, 48:165 187,

2002 .

B IB L IO G R A P H Y 95

Christopher K. I. W illiams and M atthias Seeger. Using the Nystrom method to speed up kernel

machines. In Advances in Neural Inform ation Processing Systems, volume 13, pages 682-688.

