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Abstract

The thesis explores sparse machine learning algorithms for supervised (classification and re­

gression) and unsupervised (subspace methods) learning. For classification, we review the set 

covering machine (SCM) and propose new algorithms th a t directly minimise the SCMs sample 

compression generalisation error bounds during the training phase. Two of the resulting algo­

rithm s are proved to produce optim al or near-optimal solutions with respect to  the loss bounds 

they minimise. One of the SCM loss bounds is shown to  be incorrect and a corrected derivation 

of the sample compression bound is given along with a framework for allowing asymmetrical 

loss in sample compression risk bounds. In regression, we analyse the kernel matching pursuit 

(KMP) algorithm and derive a loss bound th a t takes into account the dual sparse basis vectors. 

We make connections to a sparse kernel principal components analysis (sparse KPCA) algorithm 

and bound its future loss using a sample compression argument. This investigation suggests a 

similar argument for kernel canonical correlation analysis (KCCA) and so the application of 

a similar sparsity algorithm gives rise to  the sparse KCCA algorithm. We also propose a loss 

bound for sparse KCCA using the novel technique developed for KMP. All of the algorithms 

and bounds proposed in the thesis are elucidated with experiments.
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Nomenclature

N om enclat ure

* input space
(x,y) input-output pair
£(•) true error
£(•) empirical error
V set of V  examples
M set of M  examples
S sample
n hypothesis space
<E exists in (within)
f e n hypothesis (function) in hypothesis space
A learning algorithm
II• II L 2 norm (length of a vector)
IHIpVob Frobenius norm
K kernel matrix
X data (input) m atrix
«(•>•) kernel function
d(-r) distance function
m number of examples
n number of dimensions
1(0 indicator function
R the set of real numbers
diag{-} diagonal elements of a m atrix

the ith  unit vector
1 all one vector
V probability distribution generating the data
Pr probability
iid independently and identically distributed
E expectation
d sparsity parameter
i index vector
w primal weight vector
a dual weight vector
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Chapter 1

Introduction

Machine learning is an attempt at creating computer systems capable o f improving their per­

formance automatically over time, allowing us to tackle problems that are unlikely to be solved 

using more classical computer science approaches. Obvious examples are image recognition, 

fraud detection, spam filtering and automatic car driving systems. Clearly, the realisation of 

such adaptive systems technology would certainly enhance many areas o f human life.

It is important to note that computers have several distinct advantages over humans -  most 

notably the ability to carry out very fast numerical calculations and database storage. However, 

humans excel in areas such as vision, speech, creation, etc. and so machine learning may be 

viewed as trying to bridge the gap between computational power and human learning.

In this chapter we identify the problem statement o f the entire thesis by walking the reader 

through a typical machine learning problem, describing the main attributes and terminologies 

involved and then proceeding to a possible solution. A fter this we describe the main focus o f the 

thesis, sparsity and describe it within the context o f the thesis. We are not mathematically precise 

in this chapter and leave such rigour fo r  the future. We conclude the chapter by discussing the 

contributions of the thesis and outlining the remaining chapters.
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1.1 M otivation

Machine learning is an attem pt at making computers intelligent, allowing us to  solve problems 

th a t would seem otherwise infeasible. For instance, consider learning to classify spam from 

genuine e-mails. Understanding the nature of the e-mails would allow us to  classify them  as 

spam or non-spam. However, how can we program a computer to automatically carry out this 

task to distinguish between the two?

A naive approach is to  set flags th a t alert the email client of potential spam attacks. For 

example, ensuring e-mails contain full names of the recipient, or th a t the sender exists in the 

recipients e-mail address book. However the problem with this approach is th a t a genuine sender 

may use formal wording and only refer to  the recipient using their surname. Also, the second 

flag would judge genuine senders as spam if there address was not already listed in the recipient’s 

address book. Clearly setting flags as outlined above is not a practical solution to  the problem 

and has serious drawbacks. We would like a more sophisticated solution in order to  recognise 

e-mails th a t are spam, including those e-mails not previously encountered. This is exactly the 

type of problem machine learning tackles.

A machine learning approach to  this problem would be the following. We may associate 

every e-mail with a label of whether or not it is spam. Potentially every e-mail user would 

be exposed to large amounts of data  in this context, containing a large collection of e-mails 

together with their classifications (these classifications would need to  be labelled manually but 

we will assume this has already been done). Given these e-mails and their corresponding labels 

(spam/non-spam) can we construct a “general rule” th a t decides whether or not a new e-mail 

is spam?

We may tackle this problem in the following way: create a distance measure between e- 

mails so th a t they lie at some distance from one another. Hopefully non-spam e-mails would lie 

very far away from those defined as spam. Next, by generating the smallest ball (for instance) 

th a t encloses all of the e-mails th a t are non-spam we can have a general rule th a t states th a t 

every e-mail within the ball is genuine and everything outside is spam. Therefore, computing 

the distance measure for every new e-mail received and using the general rule, we can predict 

whether or not an e-mail is spam. Notice th a t we have not explicitly defined attribu tes or 

features to look for in e-mails (as in the flag example given above) but simply addressed the 

similarity of e-mails using some arbitrary distance measure. This very simple (and not precisely 

defined) algorithm illustrates some im portant machine learning concepts.

In machine learning we use the term examples to denote the e-mails and outputs to  denote 

the labelling of spam or non-spam. The problem of spam detection is known as classification; 

where we would like to  predict which class an example belongs to. When the number of classes 

is two we refer to it as binary classification. When the number of classes is greater than two 

it is known as multi classification. Also, when the outputs are not restricted to discrete classes 

but numbers on the real line we call this regression.
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All of these types of problems are described under the framework of supervised learning 

-  where for every example we are given an output. In analogy to a teacher giving a student 

a question together with its answer during the learning phase, but only a question during the 

testing phase, the student must learn from the questions and solutions presented in order to 

generalise in the future. The construction of the general rule from the examples and labels is 

a phase known as training/learning. Unsurprisingly the prediction stage of our general rule is 

known as testing. The general rule is known as the hypothesis and is simply a function  th a t 

(in the supervised learning case) m aps examples to  outputs. For classification (regression) we 

sometimes also refer to  this function as the  classifier (regressor), respectively.

Another framework for learning is unsupervised learning -  where we are only given examples, 

perhaps because their exist no outputs or because the outputs are too costly to be supplied. 

In the unsupervised learning setting the learning algorithm attem pts to find some pattern  th a t 

will distinguish examples from one another. Hopefully, in the context of e-mails we may find 

a pattern  th a t creates two distinct regions, one for spam and another for non-spam. However, 

because we have no outputs, this may be overly ambitious. Instead, more realistically, we may 

expect to generate several regions th a t perhaps partition the e-mails into categories of sender, 

date, length, etc.

A framework th a t amalgamates the two frameworks mentioned above is called semi­

supervised learning -  where we are given examples and a limited number of outputs, because 

examples are cheaper to acquire than  labels. In the e-mail example, the number of e-mails th a t 

we may have access to  could be huge. However, labelling all of them  may be too costly. This 

is where supervised and unsupervised learning can be combined effectively to create powerful 

learning rules th a t makes use of large amounts of (cheap) unlabelled data.

Other learning frameworks exist but the thesis will focus on supervised and unsupervised 

learning and so we will limit ourselves to  these methodologies throughout the thesis.

The algorithm we described above for classifying spam used all of the e-mails in order to 

construct the ball or hypothesis. Now let us consider the situation where every example-label 

(input-output) pair comes with an associated cost. We would like to  classify correctly as many 

(all) of the e-mail messages th a t we may receive in the future but minimise the number of 

input-output pairs used in the construction of the hypothesis. We try  to minimise this problem 

throughout the thesis, attem pting to create parsimony in the learnt functions in the sense that 

they rely only on a small subset of examples. We refer to  this property as sparsity throughout the 

remaining work. Sparsity forms the backdrop of the entire thesis and we show in the frameworks 

of supervised and unsupervised learning th a t we can indeed have such sparse learning algorithms 

along with theoretical guarantees of future generalisation ability.

Before commencing with a background chapter we give a brief historical overview of machine 

learning and then proceed with an outline and contribution of the thesis.
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1.2 Brief history of m achine learning

We give a brief overview of machine learning history w ith a bias on the topics from the thesis.

One of the first machine learning algorithms was the perceptron developed by Rosenblatt 

[1958]. It was biologically inspired and was proposed as the analogy to a neuron found in 

the brain. The algorithm looked for linear relationships in the data  and was later shown, in a 

famous book called ‘Perceprons’ [Minsky and P apert, 1969], to  be incapable of learning the XOR 

problem. This caused a decade of decline in machine learning research. However, in the 1980’s 

several authors showed th a t multi-layer perceptrons could indeed solve more difficult problems 

(including the XOR).

Throughout this tim e several Russian authors were also developing their own theories for 

learning. Most notably, Vapnik and Chervonenkis [Vapnik and Chervonenkis, 1971] introduced 

the concept of the  VC-dimension, which quantified the power of a classifier. They proposed upper 

bounds on linear classifiers using the VC-dimension and helped develop the field of statistical 

learning theory.

The theory of kernels were first proposed in the 1940s and one of the main exponents called 

Aronszajn [1950] published a paper th a t described their attributes. However, it wasn’t  until the 

work of Aizerman et al. [1964] th a t kernels were introduced into the machine learning litera­

ture. They were sporadically used with neural networks but were yet to take off as a new force 

in machine learning. The first step towards the kernel m ethods framework was taken in the 

Computational Learning Theory conference of 1992 when Boser et al. [1992] introduced their 

support vector machine (SVM ) algorithm. The algorithm looked for linear relationships in the 

kernel defined feature space and hence showed th a t the use of kernels could help keep the sim­

plistic and well understood linear functions in a setting th a t allowed them  to be applied to  more 

complex and non-linear data. Several years later Cortes and Vapnik [1995] introduced penalty 

terms into the SVM th a t allowed misclassifications to be accounted for (see also Cristianini and 

Shawe-Taylor [2000] for more discussion on the SVM).

During this period several researchers were working on the problem of devising a compu­

tational learning theory. It would be fair to say th a t this work started  with the seminal paper 

of Valiant [1984] who looked to formalise a m athematical model for learning, much like the 

earlier work of Vapnik and Chervonenkis [1971] but w ith the difference th a t there was a more 

computer science standpoint, i.e., Valiant also required a polynomial tim e learning algorithm 

in order to ensure ‘learnability’ in his model th a t was later coined the probably approximately 

correct (PAC) learning model. To demonstrate the effectiveness of this model Valiant [1984] 

proposed a learning algorithm for learning conjunctions or disjunctions of monomials. Several 

years later Haussler [1988] showed th a t Valiant’s standard monomial learning algorithm (see 

Anthony and Biggs [1992] for details) could be viewed as the problem of the minimum set cover, 

and solved (approximately) w ith the greedy set cover algorithm [Chvatal, 1979].

In the late 1980’s there was a real drive towards constructing PAC learning bounds for a
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larger class of algorithms. The work of Blumer et al. [1989] gave the first PAC guarantees using 

the VC-dimension. Also, in an unpublished m anuscript Littlestone and W armuth [1986] proved 

th a t PAC learnability was possible if you could find a small number of training samples th a t 

could be used (reconstructed) to  relabel the training data. These compression bounds became 

known as sample compression bounds.

Kernel methods really came to  prominence after the papers by Scholkopf et al. [1996, 1998] 

where they showed th a t a well-known (linear) statistical algorithm called principal components 

analysis could be computed in kernel defined feature space and hence tackle non-linear data. It 

is fair to say th a t most of the work th a t came after the kernel principal components analysis 

publication, in the kernel m ethods domain, tried to take linear algorithms and make then non­

linear in this way. It may be a ttribu ted  to  starting the area of kernel methods (although SVMs 

came earlier, Scholkopf et al. [1996] dem onstrated th a t the kernel trick was not restricted to 

just SVMs). For good introductions to kernel methods see the books by Scholkopf and Smola 

[2002] and Shawe-Taylor and Cristianini [2004].

Valiant and Haussler’s work had not been applied to  real world data  sets because of the 

definition of monomials, which were restricted to Boolean-valued data  sets, and their algo­

rithm s made no provisions for misclassifications. Marchand and Shawe-Taylor [2001] fixed these 

problems and proposed the set covering machine (SCM), a general purpose learning algorithm 

capable of learning on real world d ata  sets with sample compression bounds guaranteeing its 

future success. This is where we begin our journey for the classification algorithm.

After the Scholkopf et al. [1998] paper and several kernel algorithms later, machine learners 

were now concerned with working with larger d ata  sets. But the fact the number of data  points 

determined the dimensions of the kernel meant th a t larger d ata  sets could not be stored in 

computer memory. Therefore, there was a drive towards constructing low rank m atrix approxi­

mations and sparse variants of kernel algorithms. Smola and Scholkopf [2000] created a sparse 

kernel principal components analysis (SKPCA) algorithm which gave a low rank approximation 

of the kernel matrix. Their algorithm used principles from a well known algorithm in the signal 

processing community called matching pursuit [Mallat and Zhang, 1993]. An algorithm th a t 

pursues parsimonious solutions to find the line of best fit in a least squares sense. The algorithm 

was suboptimal in the sense th a t only the last element of the weight vector was updated, how­

ever Pati et al. [1993] and Davis et al. [1994] proposed an extension called orthogonal matching 

pursuit that fixed this issue. The algorithms were greedy in nature and could be constructed by 

only using dot products. This led Vincent and Bengio [2002] to  propose kernel matching pursuit 

(KMP), which was a sparse version of kernel least squares regression. These two algorithms are 

very much related and use the same principles for constructing sparse solutions. We will use 

these two algorithms as the basis of the regression and subspace methods work.
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1.3 Outline of thesis
The thesis is structured as follows. C hapter 2 gives a brief overview of the main machine learning 

principles to be discussed. It will describe the main building blocks needed, including the 

set covering machine, the kernel least squares regression, kernel principal components analysis 

and basic learning theory including Vapnik-Chervonenkis (VC) theory, probably approximately 

correct (PAC) learning theory and sample compression theory. The thesis is structured so 

that the chapters are all self contained. The novel contributions of the thesis are given in 

Chapters 3 and 4, with C hapter 3 beginning with the problem of classification. It discusses a 

new generalisation error bound for the set covering machine th a t bounds separately the error 

on the positive and negative class of examples and also proposes several new algorithms th a t 

use the bounds to  drive the SCMs optimisation criteria. We provide theoretical results to prove 

th a t the algorithms presented produce optimal (or near optimal) solutions. The final part of the 

chapter investigates the regression problem in a sparse setting, by describing the kernel matching 

pursuit algorithm. We propose a generalisation error bound for kernel matching pursuit th a t 

takes into account the sparse solutions delivered. The bound uses a novel technique of upper 

bounding K M P’s loss by combining sample compression schemes together with VC theory.

Chapter 4 is dedicated to subspace methods (unsupervised learning) and starts  with a 

description of the sparse kernel principal components analysis. We prove th a t sparse KPCA can 

be viewed as a compression scheme and hence propose the first sample compression bound for 

a subspace method. From this analysis and the investigation into sparse KPCA, we are able to 

propose a sparse version of kernel canonical correlation analysis th a t can help tackle problems 

not previously tractable with the KCCA algorithm. We upper bound its future loss using the 

same method derived for KMP.

All the novel work proposed in the thesis is illuminated with empirical results.

The main contributions can be stated as follows:

• Chapter 3

— A new generalisation error bound for the SCM

— A sample compression bound for asymmetric loss

— The bound set covering machine (BSCM)

— The branch and bound set covering machine (BBSCM)

— The r-branch and bound set covering machine (BBSCM (r))

— Theoretical justification of the BBSCM and BBSCM (r)

— Sparse generalisation error bound for KMP

• Chapter 4

-  Sample compression bound for sparse KPCA
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-  Sparse kernel canonical correlation analysis (fast)

-  Sparse kernel canonical correlation analysis (faster)

-  Sparse generalisation error bound for sparse KCCA

1.4 Contributions
The work contained in this thesis was published or subm itted for publication in the following 

papers.

•  Zakria Hussain and John Shawe-Taylor. Using generalization error bounds to  train  the 

set covering machine. In  Proceedings o f International Conference of Neural Infromation 

Processing, 2007.

•  Zakria Hussain, Francois Laviolette, Mario Marchand, John Shawe-Taylor, Spencer 

Charles-Brubaker and M atthew  Mullin. Revised Loss Bounds for the Set Covering Ma­

chine and Sample-Compression Loss Bounds for Class Imbalance. Journal o f Machine 

Learning Research, 8:2533-2549, 2007.

•  Zakria Hussain, John Shawe-Taylor, Charanpal Dhanjal and David R. Hardoon. Theoreti­

cal analysis of matching pursuit in machine learning and sparse kernel canonical correlation 

analysis. To be submitted to the Journal o f Machine Learning Research.
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Chapter 2

Background

The previous chapter gave a simple example of a typical supervised learning problem without 

being mathematically precise. In  this chapter we make all the preliminary definitions needed 

and survey the most common methods in machine learning and learning theory in the context 

of the thesis. There are several strands o f the learning methodology that we wish to introduce; 

Classification, regression and subspace methods.

Classification is typically encountered in the two class case, where examples are drawn 

from  two different classes, most frequently referred to as the positive and negative classes. B y  

training on these examples and finding a general pattern we would like to predict the class o f 

a new example. The classification algorithm we describe is the set covering machine (SCM). 

Regression is similar to classification but with the difference that the predicted functions are no 

longer restricted to two classes but numbers on the real line. For this line of work we describe a 

non-linear regression algorithm called kernel least squares regression. Finally, subspace methods 

look to approximate complete subspaces from  which the original data may come from, by finding 

the most important directions in the data. This is commonly used as a pre-learning tool to 

map the data into a lower dimensional space before training a learning algorithm in this lower 

dimensional space. The non-linear subspace method we discuss in this chapter is the kernel 

principal components analysis algorithm.

Learning theory gives worse case guarantees on learning protocols, upper bounding the future 

loss that may be incurred, resulting in the ability to judge the quality o f learning that an algorithm 

has achieved. We review three learning theory methodologies, namely, probably approximately 

correct (PAC) learning theory, Vapnik-Chervonenkis (VC) theory and sample compression the­

ory.
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2.1 Machine learning
Machine learning is the study of making computers “learn” . Extracting information from the 

data  set, inferring rules and making predictions in the future. These d ata  sets are generally 

composed of objects in the form of vectors known as training examples. Other structures such 

as graphs, strings, trees, etc. are also considered but we restrict ourselves to vectors here. The 

following definition makes the distinction between the supervised and unsupervised learning 

data sets (containing multiple numbers of training examples) th a t we will use throughout the 

thesis.

D efin itio n  2.1 (Supervised learning d a ta  set). Let x  =  ( x i , . . .  , xn) G Kn be a member o f an 

input space X  and let S  =  { (x i, y i ) , . . . ,  (xm, ym)} be a sample (data set) of m  input-output 

pairs (x, y). The classification sample considers the output values { —1,+1} and the regression 

sample considers outputs in K.

In the unsupervised learning case we have the following definition for a d ata  set.

D e fin itio n  2.2 (Unsupervised learning data set). Let X  be the input space and x  be a mem ­

ber of X . The unsupervised learning data set is given by a sample S  =  { x i , . . . , x m} of 

inputs only. In  the case when we have a second input space y  we have a paired sample 

S  =  {(xi, y i ) , . . . ,  (xm, y m)} o f inputx -inputy pairs.

D ata can often be non-linear and in this case a combination of linear functions can be 

combined to  tackle non-linearity. This technique is used for instance in multi-layer perceptrons. 

Another method for tackling non-linear d ata  is to  map the input data  into a higher dimensional 

space and find a single linear function in this space.

D e fin itio n  2.3. Given a vector x  =  ( x i , . . .  ,x n) in n-dimensional space we can map it into a 

higher N-dimensional feature space T  using the mapping (f)

0 : x  0(x) =  ((f)i ( x ) , . . . ,  <f>N (x)) G T

where N  > n.

In the algorithms we discuss, we will use the mapped input data to  carry out learning. 

However mapping into higher dimensions (the feature space) and computing inner products to 

find linear functions (in feature space) is more expensive than  simply using the input data, but 

this com putation can be made considerably more efficient by making use of kernels [Aronszajn, 

1950, Aizerman et al., 1964].

2.2 Kernel m ethods
The theory of kernels dates back to the work of Aronszajn [1950] and Aizerman et al. [1964]. 

However, the practical significance of kernels in machine learning was not realised until almost 

30 years later in the development of the support vector machine (SVM) [Boser et al., 1992,
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Vapnik, 1998, Cristianini and Shawe-Taylor, 2000]. The SVM works by first mapping the input 

data  into a higher dimensional feature space and then looking for a linear function (hyperplane) 

th a t creates a large separation between the two classes of examples. This large separation is 

known as the margin and created for the points closest to  the hyperplane known as support 

vectors. The kernel trick allows one to  work in feature space without having to explicitly carry 

out this mapping, but simply works w ith the input d a ta  using kernel functions.

D efin itio n  2.4 (Aizerman et al. [1964]). A kernel is a function k that for all x ,z  G X  satisfies

k (x , z ) =  (4>(x),0(z)),  

where (j) is a mapping from  X  to an (inner product) feature space T

(f) : x  i ► 0 ( x )  G T .

The kernel function allows us to  take full advantage of working in higher dimensional feature 

space but without the com putational burden of computing the mapping. We make use of kernel 

algorithms for the regression and subspace methods algorithms described later, as they look to 

find a linear function. However, before moving onto these kernel algorithms we first describe 

the set covering machine (SCM) which does not necessarily rely on a kernel function1 as it is an 

ensemble method and can simply be computed using some L p distance metric.

2.3 Algorithm s
In this section we discuss all the algorithms th a t we use as the basis of the thesis. In future 

chapters we either propose a theoretical analysis of the algorithms using sparsity arguments 

(regression and subspace methods), new theoretical analysis (all chapters) and new learning 

algorithms (classification and subspace methods). Therefore the algorithms of this section are 

the only prerequisites to reading and understanding the remainder of the work presented in the 

thesis. We start the discussion in the order of the chapters of the thesis, and therefore begin 

with a description of the classification algorithm known as the set covering machine (SCM).

Before we begin with classification we would like to  make some general definitions. We will 

be given a sample S  th a t contains vectors of our data inputs and our (usually scalar) outputs for 

the case of classification and regression. The input space will be denoted by X  and the output 

space by y. In the unsupervised learning setting (namely for canonical correlation analysis) we 

will use y  to  denote an input (see Definition 2.2). So the following

input-output

pairing is only for the supervised learning case. For the unsupervised learning case we will have

input

1 It is possible to  use a kernel, however, we choose not to make this unecessary computation.
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or

input*-input y

pairings. All these definitions will be made clearer in their respective sections.

2.3.1 Classification: th e  set covering m achine (SCM )

The classification problem can be described as follows. Find a function (hypothesis) /  : 

x i —> y th a t maps examples x  to  labels y € {—1,1} given a classification sample S  — 

m i  Urn)} -

Consider a set B = { / ^ ( x ) } ^  of Boolean-valued functions /it (x) th a t each map examples 

x  belonging to X  onto {0,1} and assume th a t we have found a small subset 71 CB  of these 

functions. Given 71, and an arb itrary  example x, then the function / (x )  of the set covering 

machine (SCM) is defined as

/(x) =

^  h(x) (conjunction)
ieK

\ J  h(x) (disjunction).
hen

The conjunction function / ( x )  outputs True (1) if all h(x) e  7Z are True and False otherwise. 

The disjunction function / (x )  outputs False (0) if all h(x) e  TZ are False and True otherwise. 

In the context of this thesis we will use the value of —1 to denote the output of 0 (False) for the 

conjunction or disjunction of the function / (x ) .  Furthermore we define the number of Boolean­

valued functions contained in 7Z or /  by \7Z\ or | / | ,  respectively. W ith these notations we can 

make the following definition.

D e fin itio n  2.5. Let V  be the set o f positive (+1) and A f the set o f negative (—1) training 

examples when the SCM  is constructing a conjunction o f Boolean-valued junctions. Similarly, 

let V  be the set of negative (—1) a n d N  the set of positive (+1) training examples when the SCM  

is constructing a disjunction of Boolean-valued functions.

We describe the SCM for the case when the set of Boolean-valued functions is a set of 

functions constructed from the data, known as data-derived (decision) functions. The set of 

data  derived functions we use throughout the thesis is the set B  consisting of the following 

data-dependent balls.

D efin itio n  2.6. For a training example X* e  X  with label yi <E { — 1,1} and (real-valued) radius 

p = d(x^,Xj) ±  a  where d(xj,X j) denotes the distance between x* and x.j, Xj 6 V  is a border 

point and a  is a small positive fixed real number, let h itP be the following data-dependent ball 

centred at x t :

, , x ) Vi i f d ( x i , x ) < p
h iA * )  =  < _

I yi otherwise

where yi is the complement o f yi, p — d (x i,X j)  +  a  i f  X* € V  and p =  d(x.i,Xj) — a  i f  x* € Af.
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We will often switch, w ithout loss of generality, between the subscript notation hi)P to  the 

more simple h to denote a data-dependent ball when i and p are clear from the context. Consider 

a sample S  consisting of pairs (x, y ), a ball h from the set of data-dependent balls B, then Vtf(h) 

denotes the set of pairs (x, y) £ A f  correctly classified by h and 7pp(h) denotes the set of pairs 

(x, y) e  V  misclassified by h. Given these definitions the usefulness of a data-dependent ball 

can be defined as follows.

D efinition  2.7. The usefulness (or utility,) o f a data-dependent ball h is expressed as:

= Wtf(h)\ -  p\7rv (h)\ (2.1)

where p is a small positive real number.

W hen we discuss a V  example we will mean an example from the set of V . Similarly, an 

Af  example will refer to an example from the set of A f examples.

The SCM algorithm uses a greedy approach to  try  and completely classify the set of Af  

examples whilst misclassifying zero (or a small number) of V  examples. Let N  contain the 

set of A f  examples yet to be covered and let P  contain the set of V  examples th a t have been 

misclassified. We would like to find a subset of balls TZ CB . Therefore, initially TZ <—0 , N  <— A f  

and P  <— 0. At the first iteration the SCM algorithm looks for ball hi,p th a t maximises the 

utility value £fyr,px p(fii,p). After the ball hijP with the highest usefulness is found, then the 

subset TZ <— TZ U is updated together with N  <— N  \  P7v(hj,p) and P  <— P  U 7Tpv p(fi^p).

This is repeated until N  =  0 is em pty or until the early (soft) stopping criterion \TZ\ > s is 

satisfied (where s € N is a positive integer).

A lgorithm  1: The set covering machine (SCM)
Input: empty hypothesis TZ <—0 , the set of data-dependent balls B, soft stopping param eter 

and penalty parameter p. 
l: for i = 1 to  s do 
2: find ball h E B th a t maximises

U N,v^p(h) — f yv( f i ) |  ~  p \n v^p (h )\

3: update TZi <— TZi U {/i}, N  N  \  Pjv(fi) and P  <— P  U 7rp xp(fi)
4. end for

O utput: subset of data-dependent balls TZ

Clearly the algorithm is greedy as it only adds ball h to  the subset TZ if it maximises the 

utility UN,v^.p(h). Once the SCM has output TZ then we can construct a hypothesis /  consisting 

of data-dependent balls TZ CB  in order to make predictions.

Let i =  ( * i , . . . , i s) denote an index vector th a t points to training examples in S, s < 

|5 |. Therefore, given TZ = {h \lrP, . . . ,  h\gjP) consisting of data-dependent balls we can define a
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function / t ( x )  to classify example x  like so:

( yT if /i(x) =  yT M h e U  
/ t ( x ) =  <

I yT  otherwise

where* from Definition 2.5, a conjunction (T =  c) SCM defines yc — 1, yc 

(T  — d) SCM defines yd =  —1, yd =  1-

2.3.2 Regression: kernel least squares (KLSR)

The regression problem aims to  find a hypothesis /  : x  i—► y th a t maps examples x  to  outputs 

y G M given a regression sample S  =  { (x i, j/ i ) , . . . ,  (xm, ym)}.

Least squares is a regression algorithm th a t only looks for linear relationships in the data. 

This is fine if the function can be approximated by a linear combination of the features, however, 

as pointed out earlier d ata  sets are often non-linear. Therefore, algorithms reliant on the inner 

product, can in a very simple and natural manner be transformed into a non-linear algorithm 

by using a kernel.

We denote a m atrix of examples by X  =  ( x i , . . . ,  x m)T and a vector of real valued outputs 

as y  =  (y i , . . . ,  ym)T , where T  denotes the transpose of a m atrix or vector. Given a pair (x, y) 

we would like a function / ( x )  th a t predicts the value of y. Because y is no longer a discrete 

value the difference between the prediction and the actual value is a real value known as the 

residual. We would like to  minimise the sum of squares of the residual by,

min ||y  —X w ||2, (2.3)
w

where w  is known as a weight vector and forms the linear function. This is known as the primal 

least squares regression. The kernel (dual) legist squares regression can be defined by writing 

the primal weight vector in term s of the training examples so th a t w  =  X Ta ,  where a  is known 

as the dual weight vector. Making this substitution into the above minimisation problem gives 

the kernel least squares minimisation problem

min ||y — X X Ta | |2.
a

The solution of the above equation is given by

a  =  (X X TX X T) _1 X X Ty,

where the inverse of (X X TX X T) exists. Otherwise the pseudoinverse can be used. By making 

a further substitution to create the kernel m atrix K =  X X T we get,

22

(2 .2)

=  — 1 and a disjunction

a  =  (K TK) 1 K y — K -1y,
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where as before we assume K -1 exists. This a  helps create a function th a t is linear in higher 

dimensional feature space -  however making the substitution w =  X Ta  yields a non-linear 

function in the input space. Therefore, we can make predictions using a function / ( x t) on 

example Xj like so

/(x<) =  w TXi (primal)

=  a TK[:,i] (dual)

where K[:,i] =  («(xi ,  x^), . . . ,  /c(xm, x*))T is defined as the kernel functions between all the 

training examples in X  =  ( x i , . . .  , x m)T and Xi. We will also refer to this as a kernel basis 

vector. For the remainder of the thesis we will only concern ourselves with dual problems.

2.3.3 Subspace m ethods: principal com ponents analysis (P C A )

The problem of subspace methods such as principal components analysis can be described as 

finding a projection function /  th a t finds a low dimensional representation (a subspace) of the 

input space X  C Mn given a sample S  =  { x i , . . . , x m}.

Principal components analysis (PCA) looks to find the directions in which S  =  {x^}™ i 

has maximal variance. This results in a low dimensional representation of S  th a t has the 

unim portant dimensions removed. We use the convention X  =  S  to  denote the training sample 

as rows of examples. The PCA problem is formulated as follows:

w J X TX w x
max ------ =---------, (2.4)

Wx W x

where w x is the primal weight vector (eigenvector) th a t maximises the expression of Equation 

(2.4). This quotient is known as the Rayleigh quotient and the PCA maximisation problem is 

solved for the eigenvector w x th a t has the largest corresponding eigenvalue A. We can move on 

from this simple linear PCA problem to its dual formulation by mapping the training examples 

into higher dimensional feature spaces via the kernel trick. This equates to finding the primal 

weight vectors as a linear combination of the training examples and the dual weight vectors, 

hence, giving us the following identity:

w x =  X Ta x, (2.5)

where a x is a dual weight vector. Making this substitution into Equation (2.4) gives us the dual 

PCA problem

a l  X X TX X Ta x , x
max ------   , (2.6)
«x a '  X X 1 a x v '
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and defining the kernel m atrix K  =  X X T we have the kernel PCA problem

max
qex

q j K TK a x
a j K a *

(2.7)

In a similar way as we had done w ith the kernel least squares regression we can of course 

use the projection function /  to  map new examples x t into the low dimensional subspace, like 

so:

The goal of a learning theory is to  formulate the learning phenomenon into a mathematical 

model th a t quantifies the level of learning th a t is possible. Two of the earliest pioneers of 

learning theory were Vapnik and Chervonenkis [1971] who developed w hat is now commonly 

referred to  as Vapnik-Chervonenkis (VC) theory. This and related theories are also referred to 

as Statistical Learning Theory. Given some learning algorithm th a t generates a hypothesis the 

theory looks to  prove upper bounds on the number of mistakes the hypothesis may incur in 

the future. The hope is th a t these bounds will hold with high probability and will be close to 

the true number of mistakes actually made by the hypothesis. A parallel development saw the 

definition of Probably Approximately Correct (PAC) [Valiant, 1984] learning th a t also further 

asserts th a t a polynomial time algorithm must exist. Perhaps, because of this very computer 

science requirement, it can be attribu ted  to  the development of what is known as Com putational 

Learning Theory (CoLT). Note, th a t the extra requirement of a polynomial tim e algorithm is 

the only differentiating factor between PAC theory and VC theory.

The initial paper on PAC learning used a simple counting argument for hypothesis spaces 

in order to  generate bounds on the generalisation error. However, many learning algorithms do 

not work in this restrictive regime and so several years later, Blumer et al. [1989] showed th a t 

a finite VC-dimension (see definition below) could also be used in order to  prove learnability in 

the PAC sense. This work allowed the upper bounding of many more learning algorithms whose 

power (capacity/complexity) could be explained using the VC-dimension of the hypothesis class. 

Around the same time, Littlestone and W armuth [1986] showed th a t d ata  compression could also 

be related to PAC learnability and introduced sample compression theory. This theory, relates 

the level of sparsity th a t an algorithm achieves and simply counts the cardinality of the training 

examples (compression set) used in order to derive loss bounds. As with the VC-dimension, the 

size of the compression set can be viewed as the power/capacity of the hypothesis class. It is an 

open question if the VC-dimension of d for a function class implies a sample compression set of

Before we commence with some definitions and notations we would like to  point out th a t we

2.4 Learning theory

size d.

will give sketch proofs of all the results in this section as they are well known and because we will 

provide more elaborate proofs of all the bounds proposed later on in the thesis, which make use
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of the bounds presented here. Throughout the thesis we assume some probability distribution V  

generates a sample S  from a joint space X  x y  in an independently and identically distributed 

(iid) manner. In this section, we assume y  =  { — 1 , 1} is the output space. Given such an S  we 

would like to find a hypothesis /  th a t correctly computes / ( x )  =  y with high probability for any 

(x, y) ~  V . We need a measure th a t calculates whether or not we have been erroneous in our 

prediction. Hence, we would like to  define the probability of /  making a loss on future unseen 

data points. This is a very im portant quantity  in machine learning and known as the true error 

(generalisation error).

D e fin itio n  2.8 (true error). Given a hypothesis f  and a probability distribution V , the true 

error er(-) of f  is the following probability,

e r( / )  =  . P r _ { /(* ) ±  y ) ■(x,y)~X>

However, as we have pointed out above, the true error is a future loss and unobservable 

as the labels (and sometimes even the data  points) have not yet been received. Before moving 

onto a quantity th a t is observable we would like to raise some points about the  true error. 

Firstly, it is a quantity th a t all machine learning algorithms should try  to  minimise -  however 

this is impossible to  carry out directly because it is defined for data  points whose labels are 

unknown (also referred to as test data). As its definition suggests, minimising the generalisation 

error would lead to hypotheses th a t have good generalisation in the future, a sound goal for 

all learning algorithms. There are two main principles th a t indirectly try  to  achieve this goal, 

called the Empirical Risk Minimisation (ERM) principle and the Structural Risk Minimisation 

(SRM) principle, both of which we will address in due course.

The fact th a t we cannot minimise the true error directly seems somewhat disappointing. 

However, there does exist a quantity th a t suggests an indirect minimisation of the generalisation 

error. Given a training sample 5  and assuming th a t the data  points in S  arrive iid from the same 

probability distribution V  then we can define the following empirical error2 as the  (probability 

of) misclassification on the observed training sample S.

D e fin itio n  2.9 (empirical error). Given a hypothesis f  and a sample S  =  {(xi,?/*)}™^, the 

empirical error er(-) o f f  is the following quantity:

m
er( / )  =  P r { /(* ) /  v}  =  — 1 ^  ’ (2‘8)(x.,y)~s rn 'i=i

where I is the indicator function.

The em pirical/training error is based on the training data  th a t our learning machines 

have access to. By assuming th a t the training and testing data  are generated from the same

2Empirical here indicates that the input-output pairs have been observed in the training data. This is also
why it is commonly referred to as the training error.
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distribution we are expecting th a t a learning protocol will only need to use the training d ata  in 

order to generalise well in the future. This is true for many learning algorithms. The main goal, 

as mentioned above, is to  minimise the true error. However, as this is not possible and from the 

assumptions we have made on the  distribution generating the data  we can try  and minimise the 

empirical error. This is known as the  Empirical Risk M inimisation (ERM) principle.

D efin itio n  2.10 (Empirical Risk Minimisation). Given a hypothesis space H , the Empirical 

Risk Minimisation principle wants to find a hypothesis f * e H  having the smallest empirical 

error. This equates to the following expression:

E R M {f* )  = arg min (e r( /)}  .

Given a training sample S , any learning algorithm will want to minimise the true error. 

The ERM principle is an indirect route to  achieving this goal. By making the assumption th a t 

the training and testing d ata  come from the same distribution we can look to  carry out the 

ERM in hope th a t it will also minimise the true error. However, an im portant issue is th a t 

simply minimising the empirical error could lead to overftting, finding functions th a t are only 

capable of correctly classifying the training data but poor at generalising in the future. This 

is a danger of the ERM principle but can be avoided using regularisation. This is where we 

would, for example, solve a more approximate problem such as in ridge regression where the 

ridge param eter acts as a “sm oother” of the function generated by least squares regression. This 

smoothing in effect makes sure th a t we find functions th a t are more general. Another way to 

think about this is th a t it is an attem pt a t striking a balance between the complexity of the 

function learnt and the accuracy on the training data. This leads us onto w hat is known as the 

Structural Risk Minimisation (SRM) principle.

D e fin itio n  2.11 (Structural Risk Minimisation). Given a hypothesis space ?i ,  a complexity 

measure V ( / )  of a hypothesis f  then the Structural Risk M inimisation principle wants to find  

a hypothesis f*  e H whose empirical error plus complexity is minimal. This equates to the 

following expression:

S R M (f* )  =  arg min (e r( /)  +  AV(/)} . (2.9)
f£H

The complexity (structure) term  tries to  avoid the situation of over/under-fitting the data. 

It is not rigourously defined above, as there are several different complexity terms th a t can and 

have been used in learning theory. We will develop these term s below and show th a t in sparsity 

this complexity term  simply translates to the parsimony of the hypothesis sought. However, 

before moving onto specifics of capacity term s we now commence with a discussion about the 

PAC learning framework, th a t allows us to  formulate upper bounds for learning algorithms. 

After this we go on to discuss more complex bounds, in the PAC framework, th a t take into 

account the structure of the hypotheses found.
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2.4.1 Probably A pproxim ately Correct (PAC) theory

PAC learning is an acronym for “Probably Approximately Correct” . Simply translated as saying 

th a t we can find a hypothesis w ith low error (approximately correct) with high probability 

(probably). These bounds rely on using the information available to us and not making any 

assumptions about the distribution th a t may have generated the data. This is why they are 

sometimes referred to as distribution-free bounds.

D efin itio n  2 .1 2  (Probably Approximately Correct). Given a hypothesis space Tt with input 

space X , a learning algorithm A  is probably approximately correct i f  for all distributions V  on 

X , for all e , 5 e R  (0 < e,S < 1), there is a sufficient sample size mo such that i f  m  > mo, then

where S  is an m-sample generated iid according to V .

We will use the notation P rjS 1 : . . .}  to  denote the probability P m { . . .} over m points from 

the sample S  generated iid. An interpretation of the PAC bound is th a t the probability of 

finding a hypothesis /  € Tt whose training error er( / )  =  0 and true error e r( / )  <  e is lower 

bounded with high confidence (greater than a probability of 1 — 5). If we can show th a t an 

algorithm will find a hypothesis th a t is provably PAC then with very high probability we will 

have an error in the future th a t is less than e. A practical PAC bound looks to  find the number 

e which in tu rn  is an upper bound for the true error e r( /)  of the function / .  We now discuss a 

PAC bound th a t uses the size of the hypothesis space as the main bounding principle to find a 

value for e.

Given a sample S  consisting of m  examples and a hypothesis space Tt, then  the probability 

of finding a function /  e  Tt th a t has error greater than  some e € M ( 0 < e < l )  will be greater 

than  1 — e. If we have m independent samples then this will be (1 — e)m <  exp (—em). Applying 

the union bound we have the following upper bound

The bound uses the size of the hypothesis space Tt and the number of samples m in its 

calculation. There is no sign of the distribution th a t generated the d a ta  and so we can give a 

PAC bound in terms of the sample complexity.

sample. Then with probability 1 —5, given a function f  e Tt with zero training error er( / )  =  0, 

we can upper bound the true error er( / )  by,

P r{ 5 :  3 /  € H: e r( / )  =  0 ,e r ( /)  > e} < 5,

P r {S ': e r( /)  =  0 ,e r( / )  > e} <  \Tt\ exp (—e m ). (2 .10)

T h e o re m  2 .1  (Sample complexity bound). Let Tt be the hypothesis space and m  the size o f the

(2 .11)

Proof. Set rhs of Equation (2.10) to  S and solve for e. □
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This bound can only be formed by counting the size of the hypothesis space and hence 

implies the hypothesis space must be finite. However, in most situations this is not the case. 

For example, the set of hyperplanes in the SVM algorithm is an infinite set. In the case when 

we have an infinite hypothesis space we can use a complexity term  known as the VC-dimension 

to help upper bound the future loss of an algorithm.

2.4.2 Vapnik-Chervonenkis (VC) theory

As was mentioned at the s ta rt of the previous section, Vapnik and Chervonenkis have been 

pioneers of learning theory. They helped develop the theory of generalisation error bounds and 

proposed the VC dimension. We s ta rt the discussion w ith a quantity th a t is related to  the VC 

dimension known as the growth function.

D e fin itio n  2.13 (Growth function). Given a hypothesis space Tt, a set o f m  examples 

{ x i , . . . ,  x m} then the growth function  n-^ (m) can be defined like so:

n « (m )  =  . max |{ ( / ( x i ) , . . . , / ( x m)) : /  G Tt}\
(x i ,...,xm)GA:m

In other words, the growth function is the maximum number of distinct binary vectors th a t 

can be formed from a set { x i , . . . , x m} of m  input points using every possible hypothesis in 

Tt. As we are dealing with a classification problem and each example can only take one of two 

predictions —1 or +1, then we can have a maximum of 2m such distinct vectors. If these 2W 

distinct vectors can be realised then we say th a t a set of m  points is shattered by Tt.

D efin itio n  2.14 (Vapnik-Chervonenkis dimension). The Vapnik-Chervonenkis (VC) dimension 

VCdim (Tt) is the maximum number o f points d shattered by Tt. I f  such sets o f all sizes exist 

then VC dim (Tt) — oo.

The VC-dimension quantifies the power of a hypothesis space with a single number d. If 

Vm, not all 2m realisations can be achieved then the true error of an algorithm defining an 

infinite hypothesis space can be upper bounded. This is done using the double sample trick. For 

details of the proof see [Blumer et al., 1989, Anthony and Biggs, 1992].

T h e o re m  2.2 (Blumer et al. [1989]). Let Tt be a hypothesis space, S  a training sample o f size 

m  and e e l .  Then fo r sample S , the probability of f  6  Tt observing zero empirical error er ( / )  

and true error er( / )  greater than some e can be upper bounded by,

Pr {S  : e r( /)  =  0 ,e r ( /)  >  e} < 2Un (2rn)2-em/2.

The growth function can be upper bounded using the VC-dimension and hence an upper 

bound given for learning algorithms whose hypothesis spaces can be quantified by a finite VC- 

dimension.

T h e o re m  2.3 (VC theory bound). Let Tt be a hypothesis space having finite VC-dimension 

d. For any probability distribution V  on X  x {—1,1}, with probability 1 — 6 over m  random
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examples S , any hypothesis f  g TL that has e r( / )  =  0 has true error er( / )  upper bounded by,

Proof. By making use of Sauers lemma and the VC dimension d we can upper bound the growth 

function for m  > d by,

which gives polynomial growth in exponent d. Making this substitution into the rhs of the

The VC bound is data independent in the sense th a t it does not take into account the 

information from the data  points but simply needs to  find a finite VC-dimension hypothesis 

class in order for the learning algorithm to subsume PAC learnability. By d a ta  independent we 

mean th a t the VC-dimension is calculated from whether the hypothesis space Tt can shatter 

some set of m  points not just those given in the sample S. However, the information gained 

from the hypothesis constructed from the data can give us more powerful and general complexity 

measures th a t ultimately yield tighter upper bounds on the generalisation error. This is known 

as a data-dependent bound and is possible in the sample compression framework.

2.4.3 Sam ple com pression theory

In 1986, Littlestone and W armuth wrote a technical report th a t was never published. Its influ­

ence allowed several learning algorithms to be bounded in term s of the so-called compression 

set. A publication in 1995 by Sally Floyd and Manfred W armuth on “Sample compression, 

leanability and the Vapnik-Chervonenkis dimension” addressed the earlier work of Littlestone 

and W armuth [1986] and also showed relationships between the size of the compression set and 

the VC-dimension. We show later th a t there is a one-to-one correspondence (in some cases) 

th a t helps bound regression style algorithms in a sample compression setting. The relationship 

between these two numbers is still a topic of research and beyond the scope of this thesis. The 

interested reader is referred to the reference Floyd and W arm uth [1995]. Our interest for the 

moment with sample compression theory is th a t it can help bound learning algorithms in a 

data-dependent fashion and also in terms of the level of sparsity achieved by the functions -  

giving us a complexity measure other than th a t defined by the VC dimension. We commence 

with a definition of a sample compression scheme.

D efin itio n  2.15. The co m p ress io n  fu n c tio n  A induced by a sample compression algorithm 

A  on training set S  is the map

such that the compression set A(S) C S  is returned by A .

A re c o n s tru c tio n  fu n c tio n  $  is a mapping from  a compression set A(S) to a set Tt of

probability in Theorem 2.2, setting it equal to  S and solving for e gives the desired result. □

A : S A (S)
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hypotheses

$  : A (S) i— > f e ? i .

W ith these ingredients we can now define a compression scheme.

D efin itio n  2.16. Let A (S ) be the function output by learning algorithm, A  on training set S. 

A sample compression scheme is a reconstruction function & mapping a compression set A(S) 

to some set of functions H  such that

A (S )  =  *(A (S)).

I f H i s  the set o f Boolean-valued functions then the sample compression scheme is said to be a 

classification algorithm. I f  H  is the set o f Real-valued functions then the sample compression 

scheme is a regression algorithm.

This definition suggests th a t a compression scheme and a learning algorithm  are equivalent 

if and only if the learning algorithm can construct its hypothesis from a small subset of the data 

(the compression set).

An example of a compression scheme (see Herbrich [2002]) is the support vector machine 

algorithm A svrn which produces a large margin separating hyperplane «4st;m(5) from the set of 

support vectors. Observe th a t the SVM will produce the same hypothesis by only using the set of 

support vectors -  we can view this as the compression set Asvm(S). Furtherm ore, we can define 

the notion of a reconstruction function &svm by rerunning the SVM using only th is set Asvm(S) 

and producing the same hyperplane A svm(S) as the SVM, i.e., A SVm (S ) =  ®Svm (ASvm(S))-

We can bound the performance of learning algorithms using the size of th e  compression 

set (i.e., |A(5)|) in a PAC sense using the following simple counting argument. Let us denote 

by d the cardinality of the compression set A(S). We showed for the VC bound th a t the error 

of any function /  € H  could be upper bounded by assuming a double sample and requiring a 

finite VC dimension. In the sample compression theory the double sample is in fact implicit 

in the definition of a compression scheme. The second sample S  th a t acted as a test set in 

the VC argument is in fact the set of points th a t remain outside of the compression set in 

the sample compression argument. The size of the compression set acts like the VC dimension 

i.e., as a single number defining the complexity of the classifier learnt. However, the size of 

the compression set is computed after the hypothesis has been constructed and is in fact data- 

dependent unlike the VC dimension. Therefore, we can bound learning algorithms using the 

size of the compression set.

Recall th a t the error of the function /  is at most (1 — e)m for m  points given a second sample 

S. Therefore, if the second sample is defined over the m  — d points outside of the compression 

set then we have a probability of (1 — e)m~d < exp(e(ra — d)). Using this trick we have saved on 

the 2 th a t appears in the VC bound. Next we would like to  bound the error for every possible 

hypothesis th a t could be constructed of size d from a sample of size m. This is the binomial
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coefficient (™) and so a union bound over the number of errors th a t can occur in all possible 

ways gives the following bound for a sample compression scheme making zero training error.

T heorem  2.4 (Sample compression bound [Bartlett and Shawe-Taylor, 1999]). Consider a 

compression scheme 4>(A(S)).  For any probability distribution V  on X x { —1,1}, with probability 

1 — 5 over m  random examples S , the true error e r( / )  of a hypothesis f  £ H  defined by a 

compression set o f size d can be upper bounded by,

. 1 r „  / e m\  , ( m y
CT(/) -  m ^ d  [ (~d~) ( j ) .  '

Proof. We can upper bound the  probability of making zero training error er§( f )  =  0 on the set 

S  — S  \  A(S), but large true error e r( / )  >  e, by the following quantity,

P r {5 : e i g ( f )  =  0, e r( / )  >  e} < exp(-e(m  -  d)). (2.12)

Therefore the result follows by upper bounding the Binomial coefficient using Sauer’s lemma 

i.e., (™) <  ( y p ) d, setting the rhs of the above probability to 5 and multiplying it by 1 /m  for 

each possible choice of d, and solving for e. □

R em ark 2.1. The sample compression bound can take into account mis classifications on the 

set S  = S  \  A(S) by counting the number o f ways o f choosing the errors k from  the m  — d points 

and multiplying the rhs o f probability (2.12) with the Binomial coefficient

R em ark 2.2. The sample compression scheme bounds given here only need the information  

from the compression set in order to recreate the hypotheses found by algorithm A . However, in 

some situations we also need a message string that defines extra information needed in order to 

make this reconstruction. This type o f extra information is needed in the set covering machine 

(SCM) where it is required to distinguish between border points and centre points found in the 

compression set. This will be explored further in the next chapter.

The data-dependent bound we have just given for sample compression schemes implies th a t 

we will learn well if the size of the compression set is small and the error is also small (in the 

case when we allow misclassifications). This is a structural risk minimisation style bound and 

helps to  avoid the problem of overfitting by guarding against classifiers th a t are too complex. 

The SCM algorithm contains sample compression bounds and looks to  trade-off the complexity 

of the classifier against the empirical error. We show in Chapter 3 th a t we can directly minimise 

such error bounds in order to  train the set covering machine algorithm. But first, we give a 

detailed and elaborated proof of a sample compression bound th a t accounts for the loss on both 

classes of examples, a property referred to as asymmetrical loss.
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Chapter 3

Sparsity in supervised learning

In this chapter we discuss supervised learning algorithms fo r classification and regression. For 

classification we propose a sample compression bound for the set covering machine (SCM) that 

allows the user the ability to specify different costs (weights) for the misclassification o f different 

classes (asymmetric loss). Next we look to apply the generalisation error bounds fo r  the SCM  

(including the novel bound proposed) in order to train the algorithm. Recall that the SCM  

contains two parameters that need tuning during training, the penalty parameter p  and the soft 

stopping parameter s. By noting that the non-trivial bounds are tight enough fo r  model selection 

we propose bound-driven learning algorithms for the SCM  that remove both o f these parameters. 

The first variant is called the bound set covering machine (BSCM) that greedily adds data- 

dependent balls to the hypothesis. However, this is a sub-optimal algorithm and so we extend 

our result to compute optimal solutions, and call it the branch and bound set covering machine 

(BBSCM). By using a branch and bound approach we prove that the B B SC M  will produce the 

hypothesis with the smallest generalisation error bound. Therefore, we also propose a final 

algorithm called the BBSCM (t )  that produces (i) classifiers whose generalisation error bounds 

are a factor r  from the optimal and (ii) trades off time against the quality o f the solution.

In the regression section we turn our attention to a sparse non-linear variant o f least squares 

regression called kernel matching pursuit (KMP) . We describe the algorithm and show that 

unlike the SCM  it does not form  a compression scheme and hence cannot take advantage o f 

sample compression theory. We show that although this is the case, we can view the kernel 

defined feature space defined by the KM P algorithm as a sample compression scheme and make 

use o f VC theory to help bound its future loss. Therefore, we propose the first (to our knowledge) 

upper bound fo r K M P that jointly uses VC theory and sample compression theory in order to 

construct loss bounds. We end the chapter with a plot o f the K M P bound against its test error 

on a Boston housing data set and show that the lowest bound value actually coincides with the 

smallest test error fo r KMP.
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3.1 Introduction
The following bound proposed by M archand and Shawe-Taylor [2001] bounds the performance 

of the SCM using sample compression theory.

T h e o re m  3.1 (Marchand and Shawe-Taylor [2001]). Suppose an SCM  finds a hypothesis f  

given by a setlZ  c B  o f data-dependent balls with d =  d(1Z) =  \TZ\ balls, cp =  cp(fRf) of which are 

centred around V  examples, kp =  kp( 11) are the number o fV  training errors and kn = kn (lZ) 

the number o f A f  training errors on a sample o f size rn > 2d + kp + kn }  Then with probability 

1 — 5 over random draws o f training sets, the generalisation error e r( / )  of the resulting classifier 

f  can be bounded by

This bound is only specialised to the SCM and is not general enough to be applied to  any 

other sample compression based algorithms th a t rely on extra sources of inform ation2 in order 

to  make the reconstruction of the hypothesis. The second bound was originally constructed for 

the Decision List Machine (DLM) M archand and Sokolova [2005] and is a more general result 

th a t can be applied to different sample compressed learning algorithms, and is slightly tighter 

than  Theorem 3.1 (for the SCM).

T h e o re m  3.2 (Marchand and Sokolova [2005]). Suppose an SC M  finds a solution given by a 

set 1Z o f data-dependent balls with cp =  cp(7Z) centred around V  examples, cn =  cn (TZ) centred 

around A f  examples and bp =  bp(TZ) borders defined only by V  examples, with kp =  kp(IZ) 

the number o fV  training errors and kn = kn (TZ) the number o f A f  training errors. Then with 

probability 1 — 5 over random draws o f training sets, the generalisation error e r ( /)  o f the resulting 

classifier f  can be bounded by

where d ~  cn + cp + bp, k = kp +  kn , and ((a)  =  6-7T 2 (a  +  1 ) 2 .

Although, this bound is more general it does not take into account the individual losses on

performance of classifiers trained on imbalanced data  sets, M archand and Shawe-Taylor [2002]

er( / )  < e{d,cp,bp, kp, kn ,S)

ad)C(k)C(bp)S

the two classes of examples. However, to obtain a loss bound th a t reflects more accurately the

S tr ic t ly  speaking we use d  to define the size of the compression set throughout this chapter, however, in 
this instance we make a slight abuse of this fact and use it to denote the number of balls. However, this is only 
done to simplify notation in the work that will be presented in Section 3.5 and to avoid using lots of different 
notations.

2;in the SCM this relates to whether the points in the compression set are ball borders.
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have proposed a SCM loss bound th a t depends on the observed fraction of positive examples 

in the training set and on the fraction of positive examples used for the compression set of the 

final classifier. Hussain [2003] showed th a t this loss bound is incorrect. Therefore we propose, in 

Section 3.3, a general loss bound which is valid for any sample compression learning algorithm 

(including the SCM) and th a t depends on the observed fraction of positive examples and on 

what the classifier achieves on the positive training examples. This loss bound is applicable to 

a broader class of compression schemes.

We begin our discussion with preliminary definitions and terminology. Let the input space 

^ b e a  set of n-dimensional vectors of Rn and let x  be a member of X.  A positive example will 

be referred to  as a P-example and a negative example as a TV-example. Given a training set 

S  — S-p U Sjy of examples, the set of positive training examples will be denoted by Sp  and the 

set of negative training examples by Sjy.

Any learning algorithm th a t constructs a conjunction can be transform ed into an algorithm 

constructing a disjunction just by exchanging the role of the positive and negative examples (see 

Definition 2.5). For the rest of this chapter we will assume, w ithout loss of generality, th a t the 

SCM always produces a conjunction.

In this chapter, we use the set of data-depedent balls B  defined in Definition 2.6. Hence, 

the subset 71 C H  of data-dependent balls found by the SCM gives us a set of ball centres and 

a set of ball borders. The union of these two sets gives us the compression set of the SCM (see 

definition 2.15). We refine further this notion, for the SCM, in Section 3.3.

We adopt the PAC model where it is assumed th a t each example (x, y) is drawn indepen­

dently at random according to a fixed (but unknown) distribution. In this chapter, we consider 

the probabilities of events taken separately over the P-examples and the A/’-examples. We will 

therefore denote by Pr(xy)^-p{a(x,y)}  the probability th a t predicate a is true on a random 

draw of an example (x, y), given th a t this example is positive. Hence, the error probability of

classifier /  on P-examples and on .A/’-examples, th a t we call respectively the expected V-loss and

the expected J\f-loss, are given by

erv U )  =  . P r { /(* ) ^  y } ,
( x , y ) ~ V

erA/-(/) = Pr {/(x) ^ y} ■
(x ,y )~  N

Similarly, let erp ( f , S )  denote the proportion of examples in S-p misclassified by /  and let 

erjy(f,  S ) denote the proportion of examples in Sjy misclassified by / .  Hence

erv { f , S )  = P r { / ( x )  ^  y} = E {̂ y)^ s .p { l ( f ( x )  ±  y))},
(x,y)~5-p

e r =  Pr { / ( x )  7  ̂y} =  E (Xiy)^ SAA{I ( / ( x )  ^  y ) ) } .
(x ,i/)~S Ar

The probability of occurrence of a positive example will be denoted by pp.  Similarly, p ^  

will denote the probability of occurrence of a negative example. We will consider the general case
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where the loss Ip of misclassifying a positive example can differ from the loss Ijg- of m is c la s s i f y in g  

a negative example. We will denote by .4(5) the classifier returned by the learning algorithm 

A  trained on a set 5  of examples. In this case, the expected loss £[.£(.4(5))] of classifier A( S)  is 

defined as

£[£(.4(5))] =  lr  • p r  ■ er-p[A(S)\ +  Ijy - p / f  • eijy[A(S)] (3.1)

3.2 Incorrect Bound

Theorem 5 of Marchand and Shawe-Taylor [2002] gives the following loss bound for the SCM 

with the symmetric loss case of l r  =  Itf =  1 -

Given the above definitions, let A  be any learning algorithm that builds a SCM  with data- 

dependent balls with the constraint that the returned function A ( S ) always correctly classifies 

every example in the compression set. Then, with probability 1 —5 over all training sets S  of m  

examples,

£[£(.4(5))] < 1 - e x p j ----------------——------ ------- — ( \ n B  + \n ^ -
 ̂ u i Cp h Cji kp kfi \  Sq

where

r2 \  - s

<*o ^ • ((cp +  l)(cn +  1)(6  +  l)(fcp +  l)(/cn +  1)) 2 • 5

B  = ( ^  1 ( Trlp~  CP | ( mn  ] ( m p - cp - ~ h\ ( rnn - ° n
\  Cp J  y 6 /  \  cn J  y kp J  \  kn

and where kp and kn are the number of misclassified positive and negative training examples 

by classifier A(S) .  Similarly, cp and cn are the number o f positive and negative ball centres 

contained in classifier A(S)  whereas b denotes the number o f ball borders* in classifier A(S) .  

Finally m p and m n denote the number of positive and negative examples in training set S.

Let us take the B  expression only and look more closely a t the number of ways of choosing 

the errors on Sp  and Sĵ p.
f  m p Cp b\ f  uin Cn \
\ )  V kn J

As was pointed out by Hussain [2003] the bound on the expected loss given above will be small 

only if each factor is small. However, each factor can be small for a small number of training 

errors (desirable) or a large number of training errors (undesirable). In particular, the product 

of these two factors will be small for a small value of kn (say, kn = 0 ) and a large value of kp 

(say, kp = m p — cp — b). In this case, the denominator in the exponential part of the bound

3As explained in Marchand and Shawe-Taylor [2002], the ball borders are always positive examples.
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given above will become

m  Cp b cn kp kfi — rrin Cn,

and will be large whenever m n cn . Consequently, the bound given by Theorem 5 of Marchand

and Shawe-Taylor [2002] will be small for classifiers having a small compression set and making 

a large number of errors on S-p and a small number of errors on Sfy. Clearly, this is incorrect 

as it implies a classifier with good generalisation ability and so exposes an error in the proof. 

In order to derive a loss bound where the issue of imbalanced misclassifications can be handled, 

the errors for positive and negative examples must be bounded separately.

3.3 Sample Compression Loss Bounds for Imbalanced  

D ata

Recall th a t X  denotes the input space. Let X  =  (X  x { — 1 , l} )m be the set of training sets of 

size m with inputs from X . We consider any learning algorithm A  having the  property that, 

when trained on a training set S  € X , A  produces a classifier -4(5) which can be identified

solely by a subset A =  Ap U Am  c  S, called the compression set, and a message string a  th a t

represents some additional information required to  obtain a classifier. Here A-p represents a 

subset of positive examples and A_\f a subset of negative examples. More formally, this means 

th a t there exists a reconstruction function  4> th a t produces a classifier /  =  <F(A,cr) when given 

an arbitrary compression set A and message string a. We can thus consider th a t the learning 

algorithm A , trained on 5, returns a compression set A(S) and a message string cr(S). The 

classifier is then given by 3>(A(5), cr(S)).

For any training sample S  and compression set A, consisting of a subset Ap> of positive 

examples and a subset A/ /  of negative examples, we use the notation A(5) =  (Ap(S) ,  A_\f(S)). 

Any further partitioning of the compression set A can be performed by the message string a. 

For example, in the set covering machine, a  specifies for each point in A-p, whether it is a ball 

centre or a ball border (not already used as a centre). As explained by M archand and Shawe- 

Taylor [2002], this is the only additional information required to  obtain a SCM consistent with 

the compression set.

We will use dp to denote the number of examples present in A p. Similarly, dn will denote 

the number of examples present in Ajg-. To simplify the notation, we will use the m p  and 

vectors defined as

m-p — (m , nfip, m,fi, dp, dn, kp)

xiW =  (xn, rrip, m n , dp, dn , fyj),

(3.2)

(3.3)
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and

m v {S,A(S)) = ( |S |,|S H |S V I,|A P (S)|,|Ax (S)|,eV(.4(S% S)xm ,,) (3.4)

mx(S,A(S)) = ( |S |,|S 7.|, |5 Ar|,|AP (S)|,|AAr(S)|,CTAf(X (S ),S )xm n) .  (3.5)

Hence, the predicate m-p(S ,A(S) )  — m p  means th a t |5 | =  m, |Sp| =  m p, |5 y | =  m n, 

|A p(5)| =  dp, |Ajv'(jS)| =  dn , er-p(A(S) ,S)  =  We use a similar definition for predicate 

m j>s(S,A(S)) — n w .  We will also use .B p(m p) and B / / ( mjv) defined as

- C ?)G :)(V ) >“ »
■ f t )  C : )  ( ' : “■)■ M

The proposed loss bound will hold uniformly for all possible messages th a t can be chosen 

by A. It will thus loosen as we increase the set M. of possible messages th a t can be used. To 

obtain a smaller loss bound, we will therefore permit A4 to  be dependent on the compression 

set chosen by A . In fact, the loss bound will depend on a prior distribution Pa (o') of message 

strings over the set of possible messages th a t can be used with a compression set A. We

will see th a t the only condition th a t Pa needs to  satisfy is

E  f i l ( « 7 ) < l .
ctGA'Ia

Consider, for example, the case of a SCM conjunction of balls. Given a compression set 

A =  (Ap, A^r) of size (|A p|, |A ^ |)  =  (dp,d n), recall th a t each example in Ajv- is a ball centre 

whereas each example in Ap can either be a ball border or a ball centre. Hence, to  specify 

a classifier given A, we only need to specify the examples in Ap th a t are ball borders4. This 

specification can be used with a message string containing two parts. The first part specifies the 

number b e  {0, . . .  ,dp} of ball borders in Ap. The second part specifies which subset, among 

the set of (d6p) possible subsets, is used for the set of ball borders. Consequently, if b(o) denotes 

the number of ball borders specified by message string cr, we can choose

Pa W  = <(f>M) • ( bd{Pa ) )  (SCM case), (3.8)

where, for any non-negative integer 6 , we define

r n  =  ^ ( b  + i y 2 . (3.9)
7TZ

4For a SCM making no error w ith A, we can pair each centre with its border in the following way. For each 
negative centre, we choose the closest border. For each positive centre, we choose the furthest border.
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Indeed, in this case, we clearly satisfy

E  -  t m  E  ( i ,
ctGA'Ia b= 0 cr:b(cr)=b

< 1 .

The proposed loss bound will make use of the following functions:

ejy(n w , (3) =  1 -  exp

Trip (ip kp

win dn kfi

In (B-p(mp))  + >a- (3.10)

(3.11)

T h e o re m  3.3. Given the above definitions, let A  be any learning algorithm having a recon­

struction function that maps compression sets and message strings to classifiers. For any prior 

distribution P \  of messages and for any <5 G (0 , 1]:

Prjs € X : erpH(S)] < eP(mP(S,^(S)),5P(5)A)| 

P r jse X  : erAr[.4(S)] < eAr(mJv(5,^(S)), w (5)a) |

>  1 — <5

>  i -  s ,

where m p ( S , A ( S ) )  and m^ / ( S , A ( S ) )  are defined by Equation 3.4 and Equation 3.5, and

gv (S) = « d p(S)) ■ ( (dn(S))  ■ W A S ) )  ■ PMs M S ) )  

g * (S )  =  adp(S) )  • C(dn(S)) ■ <(K(S) )  ■ PMs)(<r(S)) ■

(3.12)

(3.13)

Note th a t Theorem 3.3 directly applies to  the SCM when we use the distribution of messages 

given by Equation 3.8.

Proof. To prove Theorem 3.3, it suffices to upper bound by 8 the following probability

P  = P v ^ S  E X  : erv [ A ( S ) } > e ( m v ( S , A ( S ) ) , A ( S ) , o { S )

=  ^ P r i s G X  : erp[^4(5)] >  e^irrp, A(S'), cr(S')^, m p (5 , A(S) )  =  n r p | ,
ITl'p '  ^

where e(m p, A(S'),<r(S)) denotes a risk bound on er-p[^4(S')] th a t depends (partly) on the com­

pression set A(S)  and the message string o ( S ) returned by ^4(5). The summation over m p  

stands for
m  m —m v m v —dv

£<•) = £  £  £  £  (•)•
m-p m p = 0  dp = 0  dn =  0 kp=  0

Note th a t the summation over kp stops a t m p — dp because, as we will see later in the proof, 

we can upper bound the risk of a sample-compressed classifier only from the training errors it
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makes on the examples th a t are not used for the compression set.

39

We will now use the notation i =  ( i i , . i d )  for a sequence (or a vector) of strictly increasing 

indices, 0 < i\ < i2 < • • • <  id <  fn. Hence there are 2m distinct sequences i of any length d, 

including the empty sequence. We will also use |i| to  denote the length d of a sequence i. Such 

sequences (or vectors) of indices will be used to  identify subsets of S.  For S  £ X ,  we define Si 

as

Si ( (^ij i Vi1 ))•••> (*̂ id j Vid )) •

Under the constraint th a t m (S, A(S) )  = m , we will denote by ip any sequence (or vector) 

of indices where each index points to an example of Sj>. We also use an equivalent definition 

for in . If, for example, in =  (2,3,6,9),  then S-ln will denote the set of examples consisting 

of the second, third, sixth, and ninth AA-example of S. Therefore, given a training set S  and 

vectors ip and in , the subset Si in will denote a compression set. We will also denote by Xmp 

the set of all the 2mp possible vectors ip under the constraint th a t  |Sp | =  m p. We also use an 

equivalent definition for Xm n . Using these definitions, we will now upper bound P  uniformly 

over all possible realizations of ip and in under the constraint m-p(S, -4(5)) =  m-p. Thus

P  < y ^ P r  i f f  £ X : 3 ip £  I Wp, 3 i n £  I m » , 3 g  €  M s iT><in ■
m 'p ^

erp[$(Sip,i„,CT)] > t[trip,S'ip,u , a j ;m P(5', A(S))  =  m p )

 ̂ E  E  E  :
mp ipGlmp in€lmn ^

er7>[$(ffipiin,a)] > €^mp,ffip,iri,cr),nip(ff,^(ff)) = mP j  ,

where $ ( f f ip>in , a) denotes the classifier obtained once, ff, ip , in , and o  have been fixed. The last 

inequality comes from the union bound over all the possible choices of ip €  Xmp and in £  Xm n . 

Let

P '  =  P r j f f  £  X : 3a £ M s lp,in : e r p [ $ ( f f ip)in,cr)] >  e | m p , S i pii#, f f ) , m p ( S , lA ( S ) )  =  m ^ j  .

We now make explicit how the positive and negative examples are interleaved in the training 

sequence ff by introducing a new variable b, which is a bit-string of length m  such th a t ff* is 

a positive example if and only if b* =  1. Let B rrip denote the set of possible b  vectors th a t we
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can have under the constraint th a t |5 p | =  m p. We then have

b £Bmp

m v ( S , A ( S ) ) = m v \ b(S )  = b j  P r j S  E X  : b(S)  = b j  

=  H  P r j s E X :  3o  E M Slp:irl : e rp [$ (S ip)iri, (j)] >  e ( mp ,  6^ , ( 7) ,
bGBmp

m V (S , A( S ) )  = m v  | b (S) = b j p ™p(l -  pv

P'  < ( m }p™p( l -p -p )m- mP sup P r ( s E X :  3(7 e  M s .  . :

err l$(Sipjin,(T)} >  e(:

Under the condition b (5 ) =  b, index vectors ip and in are now pointing to  specific ex­

amples in S.  Consequently, under this condition, we can compute the above probability by 

first conditioning on the compression set Sipt\n and then performing the expectation over S-lpjin . 

Hence

We will now stratify this last probability by the set of possible errors th a t classifier 

$(Siptin ,o)  can perform on the training examples th a t are not in the compression set S\ in . 

Note that we do not force here the learner to  produce a classifier th a t does not make errors on 

5ipiin. However, the set of message strings needed by $  to identify a classifier h might be larger 

when h can err on S\pt\n. To perform this stratification, let e r ( f , S p )  be the vector of indices 

pointing to the examples of S-p th a t are misclassified by / .  Moreover, let Xmp (ip) denote the set 

of all vectors j p E Tmp for which no index i E j p is also in ip. In other words, for all ip E Xmp

P r j s e X :  ( ) b ( S ) = b |  =  E Slp,1j b P r | s € X : ( - ) b ( S ) = b , 5 ip,1„ |

By applying the union bound over o  E M s ip iri, we obtain
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and all j p €  Zmp(ip ), we have j p n  ip =  0. Therefore

41

jp€^mp (ip)

jpŜ TTlp (ip)

e r[$ (5 ip)iri, a ), S v \ =  j p | b ( 5 )  =  b ,  Sip>in j ,

where the last equality comes from the fact th a t the condition m-p(5, A(S) )  =  m-p is obsolete 

when b (5) =  b  with fixed vectors ip , i n , j P- Now, under the condition b ( 5 )  =  b  with a fixed 

compression set this last probability is obtained for the random draws of the training

examples th a t are not in Sip,in . Consequently, this last probability is a t most equal to  the 

probability th a t a fixed classifier, having er-p > e(m p, S -lpt\n , cr), makes no errors on m p — dp — kp 

positive examples th a t are not in the compression set 5jp;iri. Note th a t the  probability space 

created by the conditioning specifies only the positions of the positive examples but places no 

further restrictions on them. They can therefore be viewed as independent draws from the 

distribution of positive examples. This makes it possible to  bound the probability of the event 

by the probability th a t m p — dp — kp independent draws are all correctly classified. Hence, we 

have

By regrouping the previous results, we get
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By using

/ \ ^p X
( l  -  e(m P> 5 ip,i™> &)) =  P sipiln (<?) ■ B ^ m v } • C(fep) • CKO * C(rfp) • 5 >

we get P  < 5 as desired. Similarly, we have

P r |s € X  : eW [ / ( S ) ] > w (m Af(S ,i(S ) ) ,M ( S ) j ) |  < 6 , 

which completes the proof. □

R em ark 3.1. This Theorem can be viewed in a standard form  by using the inequality 1 — 

exp(—x) < x, for x  >  0. To see this, we simply need to substitute Equations 3.10 and 3.11 

into each probability given in Theorem 3.3 and weaken them with the above inequality. Doing 

so yields the following bounds,

P r { S e X  : er-p[-4(5)] < 1

P r : ew[A(S) ]  <

tii/p dp kp

TTin dn kn

In ( Bv (m P )) +  l n i  

In ( ^ ( m ^ ) )  +  ln ^

>  1 - 5 ,

>  1 - 6 .

However, each probability is separately bounding the error on the positive and negative examples 

and so will not (in the final bound) hold with probability 1 —5 but with probability 1 — 48 (to 

be shown) as the expected loss will rely on four bounds simultaneously holding true (i.e., from  

Equation 3.1 we would like to upper bound erp>[.4(5)], er^[> l(5)], p-p and p x ) .

Now th a t we have a bound on both erp[^4(5)] and erJ\/'[^4(<S')], to  bound the expected loss 

£[£(.4(5))] of Equation 3.1 we now need to upper bound the probabilities pj> and pjg-. For 

this task, we could use a well-known approximation of the binomial tail such as the additive 

Hoeffding bound or the multiplicative Chernoff bound. However, the Hoeffding bound is known 

to be very loose when the probability of interest (here p-p and p ^ )  is close to  zero. Conversely, 

the multiplicative Chernoff bound is known to be loose when the probability of interest is close 

to 1/2. In order to obtain a tight loss bound for both balanced and imbalanced data  sets, we 

have decided to use the binomial distribution w ithout any approximation.

Recall th a t the probability Bin(m, k,p)  of having a t most k successes among m Bernoulli 

trials, each having probability of success p , is given by the binomial tail

k
Bin(m, k , p )  = ~  P)

i=0 '  '

Following Langford [2005], we now define the binomial tail inversion Bin (m, k, 5) as the largest 

value of probability of success such th a t we still have a probability of at least 5 of observing at
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most k successes out of m Bernoulli trials. In other words,

Bin (ra, k, 5) =  sup^j p : Bin (m, k,p) > 5 (3.14)

Prom this definition, it follows th a t Bin (m, m n ,8) is the smallest upper bound on pjq-, which 

holds with probability at least 1 — £, over the random draws of m examples.

where m p  =  m p (5 , A(S) )  and m jy =  mjg-(S,A(S)) .  Consequently, we have the next theorem.

tion function that maps compression sets and message strings to classifiers. With probability 

1 — <5 over the random draws o f a training set S , we have

where m p  =  mp(S', A(S) )  and m ^  =  m / / (S,  A(S) )  are defined by Equations 3.4 and 3.5.

We can now improve the loss bound given by Theorem 3.4 in the following way. Consider 

the frequencies pp =  m p/ m  and pjq- = m n/ m.  Let us simply denote by ep and e ^  some upper 

bounds on erp[.A(S)] and erp[w4(S’)]. Let us also denote by pv  and pf f  some upper bounds on 

pp and pa/\ Let us first assume th a t lj\fe_\f > l-pe-p. Then we have

(3.15)

Prom this bound (applied to  both pp  and p/s),  and from the previous Theorem, the following 

predicates hold simultaneously with probability 1 — 5 over the random draws of S:

erp[.4(S)] <  ep

er^[^4(5)] <

T h eo rem  3.4. Given the above definitions, let A  be any learning algorithm having a reconstruc-

c r

£[^(*4(5'))] <  /p • Bi n^m, mp, - )  • e p ^ m p ,p p (5 ') - )
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=  /pep  +  pssiljvejv — /pep)

< l-pe-p +  Pj^(lj^ejsj- -  /pep)

= pvl-pe-p +  p ssltfe tf + (pjs — Pat){Im €ĵ  -  Zpep) .

Likewise, if /pep > Ijsj-e/s, we have

£[*(.4(5))] < p r b e v  +  P u lm M  + (pv  -  P v ) ( b ^ v  ~  / a w )  ■

Consequently, we have the following theorem.

T heorem  3.5. Given the above definitions, let A  be any learning algorithm having a recon­

struction function that maps compression sets and message strings to classifiers. For any real 

numbers a,b,c,  ZeZ

-t./ , v def /  a ■ M i f  C>  0^ ( a ; 6;c) =  <
I 6 • |c| i f  c < 0 .

Then, with probability 1 — 5 over the random draws o f a training set S , we have

where m p  =  m p ^ ,  4 (5 ) )  and m jv =  A(S) )  are defined by Equations 3.4 and 3.5.

To compare the bound given by Theorem 3.5 w ith the bound given by Theorem 3.4, let us 

assume th a t l/sej^f > l-pe-p. Using our shorthand notation, the bound of Theorem 3.5 is given

£[*(4(5))] <

by

Zpppep +  Ijg-pjyejq- +  (p^f -  PuWm'^-M ~  Zpep) .

Whereas the bound of Theorem 3.4 is given by

ZpPpCp +  iMPjq-ttf ■
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The bound of Theorem 3.4 minus the bound of Theorem 3.5 then gives

(l-pPpe-p +  IatPaT6̂ )  -  (l-pppe-p +  lAfPAf^AT +  (Pas ~  PAr){lAT^Af ~  b * r ) )

=  (Pr -  P v ) b ^ v  +  {pm  -  M ^ at ~ (Pat -  PAfWAftAr -  b ^ v )

— (Pp -  Pv  +  Pa/  ~ P M )b tv

=  b p  +PaS -  1) lp e v  ■

Since Ipep > 0 and Pp + Pat > 1, we have an improvement using Theorem 3.5.

E xam ple 3.1. I f  Ip — W  =  =  0.05, m =  100 , m p =  40, m n — 60, ep =  0.3, cat =

get 0.439 for the bound of Theorem 3-4 and only 0.371 for the bound o f Theorem 3.5. 

the bound o f Theorem 3.5 can be significantly better than the the bound o f Theorem 3-4

3.4 Discussion and Numerical Comparisons w ith  Other 

Bounds
Let us first discuss the bounds th a t we have proposed and make explicit some of the details 

and consequences. In general, risk bounds are simply upper bounds of the true  error calculated 

from the (overall) error achieved during training. There is no distinction made between the 

positive and negative class. The results of the current chapter are bounds on the error achieved 

separately on the positive and negative examples, hence, making the distinction between the 

two classes explicit. Furthermore, the risk bound on one class depends on w hat the classifier 

achieves on the training examples of th a t class, thus, making the bound more data-dependent 

than the usual bounds on the true error. This strong data-dependence also allows the user to  

take into account the observed number of positive and negative examples in the training sample 

as well as the flexibility of specifying different losses for each class. This is known as asymmetric 

loss and is not possible with current sample-compression loss bounds.

Note also th a t the proposed bounds are data dependent bounds for which there are no 

corresponding lower bounds. A small compression scheme is evidence of simplicity in the struc­

ture of the classifier, but one th a t is related to the training distribution rather than  a priori 

determined.

Any algorithm th a t uses a compression scheme can use the bounds th a t we have proposed 

and take advantage of asymmetrical loss and cases of imbalanced data  sets. However, the 

tightness of the bound relies on the sparsity of the classifiers {e.g., the size of the compression set). 

Hence, it may not be advantageous to use algorithms th a t do not possess levels of sparsity similar 

(or comparable) to the SCM. This is one reason why we will provide a numerical comparison of 

various sample-compression bounds for the case of the SCM.

In order to show the merits of our bound we must now compare numerically against more 

common sample compression bounds and the bound found to  be incorrect. In doing so we point 

out when our bound can be smaller and when it can become larger. All the compared bounds

0.4, we 

Hence,
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are specialized to the set covering machine compression scheme th a t uses data-dependent balls. 

Here each ball is constructed from two d ata  points—one th a t defines the centre of the ball and 

another that helps define the radius of the ball (known as the border point). Hence to  build a 

classifier from the compression set, we also need an informative message string to  discriminate 

between the border points and the centres.

Let us now discuss the experimental setup, including a list of all the bounds compared, and 

then conclude with a review of the results.

3.4.1 Setup

From Example 3.1 of Section 3.3, it is clear th a t using Theorem 3.5 is more advantageous than  

Theorem 3.4. Hence, all experiments will be conducted with the bound of Theorem 3.5. The first 

bound we compare against is taken from the original set covering machine paper by M archand 

and Shawe-Taylor [2001] and is similar to the Littlestone and W armuth [1986] bound but with 

more specialization for the SCM compression set defined from the set of data-dependent balls. 

The second generalisation error bound is adapted from Marchand and Sokolova [2005] and is a 

slight modification of the Marchand and Shawe-Taylor [2001] result. All these bounds will also 

be compared against the incorrect bound given in Marchand and Shawe-Taylor [2002].

Please note th a t traditional sample compression bounds, such as th a t given by Theorem

6.1 of Langford [2005], cannot be used with the set covering machine as it does not  allow the 

inclusion of any side information in the reconstruction of the classifier. The SCM, however, 

stores both the centre and border points in order to construct its hypotheses. This implies the 

need for side information to discriminate between centres and border points, something th a t 

traditional sample compression bounds do not cater for. Therefore, we cannot give numerical 

comparisons against these types of bounds.

All generalisation error bounds detailed below will make use of the following definitions: 

dn = cn , dp = cp + b, d = dp + dn and k =  kp +  kn . For completeness, we give the definitions 

of all risk bounds not already stated and, to avoid repetition, we only give references to  the 

bounds described earlier.

•  new  bound (Theorem 3.5). When applied to  the SCM, the new bound uses the dis­

tribution of messages given by Equation 3.8 and Equations 3.9, 3.10, 3.11, 3.12, 3.13, 

and 3.14.

•  incorrect bound (Theorem 5 of Marchand and Shawe-Taylor [2002]). This bound can 

also be found in Section 3.2 of the current chapter.

• M S01 bound (Theorem 5.2 of Marchand and Shawe-Taylor [2001]). This bound is stated 

in Theorem 3.1.

• M S 05 bound (Equation 10 of M archand and Sokolova [2005]). This bound is stated in 

Theorem 3.2.



3.4. Discussion and Numerical Comparisons with Other Bounds 47

3.4.2 D iscussion of results

The numerical comparisons of these four bounds (new bound, incorrect bound, MS01 bound 

and MS05 bound) are shown in Figure 3.1 and Figure 3.2. Each plot contains the number of 

positive examples mp, the number of negative examples m „, the number of positive centres 

Cp, the number of negative centres Cn and the number of borders b. The number of negative 

misclassifications A:n was fixed for all plots and these values can be found in the x-axis label 

(either 0 or 500). The number of positive examples was varied and its quantity was set to  those 

values given by the x-axis of the plot. For example, in the left hand side plot of Figure 3.1, the 

number of negative misclassifications kn was 0  and the number of positive misclassifications kp 

varied from 1 to 2000. The y-axis give the bound values achieved. Finally, the empirical error 

was also included in each plot—which is simply the number of examples misclassified divided 

by the number of examples, i.e., (kp + k n ) / ( m p +  rrin).

Figure 3.1 shows the case where the number of positive and negative examples is approxi­

mately the same. We clearly see th a t the incorrect bound becomes erroneous when the number 

kp of errors on the positive training examples approaches the total number m p of positive train­

ing examples. We also see th a t the new bound is tighter than the MS01 and MS05 bounds when 

the kp differs greatly from kn . However, the latter bound is slightly tighter than the new bound 

when kp — kn .
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Figure 3.1: Bound values for the SCM when mp =  2020, m n =  1980, cp =  5,c„ =  5, b =  10.

Figure 3.2 depicts the case where there is an imbalance in the data  set (mn »  m p), implying 

greater possibility of imbalance in misclassifications. However, the behavior is similar as the one 

found in Figure 3.1. Indeed, the MS01 and MS05 loss bounds are slightly smaller than  the new 

bound when kp/ m p is similar to kn /m n ,  but the new bound becomes smaller when these two 

quantities greatly differ. This is where the new bound is most advantageous—in the case when 

there is an imbalance in misclassifications. As we would expect, the new bound is smaller when 

one class of examples is more abundant than  the other.
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Figure 3.2: Bound values for the SCM when mp =  1000, ra„ =  3000, cp =  5, Cn =  5, b =  10.

Now th a t we have described tight sample compression bounds for the SCM we can look 

to minimise the bounds in practice and integrate them more closely into the workings of the 

algorithm.

3.5 Using generalisation error bounds to train the set cov­

ering machine
The set covering machine (SCM) described in Section 2.3.1 contains regularisation parameters 

s and p. The first requires tha t we only add a small number of balls into the hypothesis 

and the second bounds misclassifications of the negative class (in the conjunction case). The 

SCM algorithm is an SRM (see Definition 2.11) style algorithm as the bound suggests good 

generalisation properties if the empirical error is kept minimal and a small number of balls 

produced. The algorithm attem pts at achieving this goal by solving the set cover problem 

using a greedy algorithm. We now aim at incorporating the bounds into the SCM by directly 

minimising them during training. We show tha t our algorithm will achieve provably optimal 

solutions with regards to  the generalisation error bound it minimises. We also give heuristic 

solutions to  tackle problems with large hypothesis spaces tha t become intractable and illustrate 

the efficacy of the approaches by conducting experiments on real world data  sets.

Interestingly, note that all the bounds presented so far in this chapter axe non-trivial (i.e. 

always less than 1) and are expected to be small whenever the SCM builds a classifier consisting 

of a small number of balls. Also Marchand and Shawe-Taylor [2002] showed th a t model selec­

tion using the loss bound was competitive against traditional cross-validation model selection 

techniques. Exploiting this fact we apply the generalisation error bounds directly to obtain 

classifiers for the SCM and, with it, remove the need for parameter estimation in the SCM. 

Because of its greedy application of the bound, we call this first heuristic the bound set covering 

machine (BSCM).
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3.6 The bound set covering machine
In this variant of the SCM we allow the algorithm to be driven by one of the generalisation error 

bounds given by Theorem 3.1, Theorem 3.2 or Theorem 3.5. However, for simplicity and to  save 

space we only describe the algorithm with Theorem 3.1, although Theorem 3.2 and Theorem 3.5 

can also be applied using the same reasoning.

Recall from Theorem 3.1 that the generalisation error er( / )  for the classifier /  found by 

the SCM can be upper bounded by the quantity e ( /)  =  e(rn, d , cp, kp, kn ,S),  where d, cp, kp and 

kn are computed from the set of balls in the hypothesis /  and rn and <5 are fixed. Therefore, 

given any hypothesis /  =  {h \t , . . . ,  h \d} containing d balls, we can calculate the risk bound 

of adding any new ball h to /  as e ( /  U {h})  =  e(m ,d -f 1 , cp +  r, kp +  q, kn — w,5)  where 

0 < r, q,w G N. Therefore the bound set covering machine (BSCM) algorithm can be described 

as follows. Initially hypothesis /  <— 0, A <— Af, P  <— 0 and best bound e* <— 1. At the first 

iteration, the BSCM algorithm looks for ball ht that minimises the generalisation error bound 

e ( / U  {fi,}) when added to hypothesis / .  Ball fi, th a t maximally minimises e( f  U {fit}) is added 

to the hypothesis /  <— /  U {fit}, N  <— N  \  {t'Afyfi,)}, P <— P  U {nv^p(hi ) }  and best bound 

e* e{f  U { f i t } ) .  This is repeated until no new loss bound e( f  U {fi}), for any new ball fi can 

be found such th a t e ( / U  {fi}) < e*. After this the resulting hypothesis /  can be used to classify 

new test examples using (2.2). See Algorithm 2 for details.

A lgorithm  2: The bound set covering machine (BSCM)
Input: empty hypothesis /  <— 0, N  <— Af, P  <— 0 and error bound param eter e* <— 1 .

1: found <— tru e  
2: w hile  found do
3: Call bscm -addball ( / ,  e*, N,  P. f  ound)
4: e n d  w hile  

O utput: A conjunction or disjunction of balls / .

F u n c tio n  b scm -a d d b a ll( /,c* ,N , P , f  ound)
, fi|B|} from the examples in

P  U {Tr-pv/fyfi*)}

The BSCM does not involve the soft stopping param eter s, as was the case for the SCM, 

since if the addition of a new ball in the current hypothesis causes the bound to become worse, 

then the algorithm is term inated. This is a better and more theoretically motivated stopping

l: Construct the set of data  dependent balls B — { fii,. . .
jv u (?  \  P)

2: found <— fa lse  

3 for i =  1 , . . . ,  \B\ do
4: if e ( /  U {fi,}) < e* th en
5: i * <— i
6: 6* C ( /  U { f i j )
7: found <— true

8: end if
9: end for 

10: if found th en
11: update /  <— /  U {fit}, N  <— N  \  {^v(fit )} und P
12; end if
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criterion than stopping the algorithm early. Also, the BSCM no longer requires the penalty 

param eter p used to allow misclassifications on the set Af  because the function to be minimised 

is now the generalisation error bound and not the utility function given by equation (2.1). Hence, 

we have eradicated the need for both param eters s and p th a t were present in the SCM.

The BSCM algorithm is greedy in the same spirit as the SCM but with the difference th a t it 

minimises the loss of a hypothesis using the generalisation error bound rather than  maximising 

the utility function for the addition of a single data-dependent ball. However it is well known 

th a t a greedy algorithm will not always deliver globally optimal solutions and so we now tu rn  

our attention to tackling this problem. By using a branch and bound approach we prove th a t 

our algorithm will return solutions th a t are globally optimal with respect to the loss bounds it 

minimises.

3.7 The branch and bound set covering machine
The branch and bound algorithm for solving combinatorial optimisation problems was first 

introduced in Land and Doig [I960]. The idea is to first partition the solution space into 

subproblems, and then to optimise individually over each in turn. This method implicitly 

enumerates all possibilities of a solution space and allows many solutions to be discarded5 

without explicitly looking at them. Clearly this is advantageous when the search space is 

particularly large as it only requires the algorithm to search a subset of the entire space. Many 

large instances of combinatorial problems have been solved to optimality using branch and bound 

algorithms. Therefore from the fact th a t we can enumerate the entire hypothesis space for the 

set covering machine and compute bounds for any new ball added to the current hypothesis, we 

can solve the set covering machine in this way.

We will use a branch and bound approach to enumerate all possible hypotheses that can 

be generated from the set of data-dependent balls. This is done by evaluating the bound every 

time a new ball can be added to the current hypothesis. If this bound is not smaller than the 

best bound currently found then there is no need to include it or its descendants, i.e., balls 

that may be constructed from this hypothesis. Therefore, we can consider the set of hypotheses 

as a tree, where each subtree contains all the balls th a t can be constructed from the current 

set N  and V  \  P.  Furthermore, pruning balls without explicitly visiting them at their depths 

of the tree can dramatically reduce the number of balls th a t must be visited and hence speed 

up the algorithm. As mentioned earlier, the motivation for a branch and bound strategy for 

solving the set covering machine is that if the function to be minimised is the generalisation 

error bound then we are guaranteed to find the hypothesis with the smallest generalisation error 

bound. Hence, if the estim ate (upper bound) of the true error is a good approximation to the 

test error then we can be confident that the hypothesis produced will generalise well.

The algorithm works in the following way. We first define the notion of a best possible (bp) 

generalisation error bound as the com putation of a bound that covers the remaining number

"’Only solutions that will never achieve improved results over the current best solution are dismissed.
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of negative examples and misclassifies no further positive examples (see below for an exact 

definition). Initially we compute all the hypotheses possible with a single ball and order them 

according to their generalisation error bounds. Next we look at the hypotheses, in turn, and 

their bp bounds and disregard further inspection of hypotheses if their bp generalisation error 

bounds are larger than the current smallest loss bound. If this is not the case then we compute a 

table of values that indicates whether we can achieve a smaller risk bound by sacrificing sparsity. 

These two pruning strategies allow a full enumeration of the entire hypothesis space. Therefore, 

termination of the algorithm implies th a t all hypotheses have been considered.

3.7.1 A lgorithm

The algorithm relies on functions a d d b a ll  and c r e a te ta b le .  We detail below each function 

and also include pseudocode. Before we describe the functions in detail we will give some 

notation. Let S  be a sample containing rn input-output pairs from X  x { — 1 , 1}, B the set of 

data-dependent balls computed from S  and T  the SCM machine type, which can either be a 

conjunction or disjunction of balls. As earlier, let n-p^p(h)  be the set of examples from V  \  P  

misclassified by h and u ^ {h )  be the set of examples from N  correctly classified by h.

For any hypothesis /  and any ball hi f  let f i  = /  U { h l }. From earlier definitions, the 

generalisation error bound of /  is given by e( f)  where,

€( f )  = e(m, d, cp, k p , kn , 5),

also for the same hypothesis /  the best potential (bp) generalisation error bound r ] ( f )  is given

by,

r ] ( f )  =  e(m, d + 1 , cp, kp , 0, S).

The bp generalisation error bound r;(/) is the bound e(A) if a single ball h t can be added to 

hypothesis /  such that all of the remaining J\f examples are covered and none of the remaining 

V  examples misclassified. Contrast this to the generalisation error bound e( f )  which is simply 

the bound given for hypothesis / .

Algorithm BBSCM

The input of the algorithm is sample S  containing input-output pairs from the sets V  and Af. 

machine type T  and the set of data-dependent balls B.

The algorithm contains local variables f ,N .P ,e *  and global variable (. Initially /  <— 0 is the 

empty hypothesis, N  is the set of M  training examples still to be covered, P  is empty because 

no V  examples have been misclassified, t* is the best generalisation error bound found so far 

for any hypothesis /  and initially set to 1 . Global variable t  is set to the number of balls \B\ 

possible for current B.

Using the above inputs and variables, algorithm BBSCM calls recursive function 

a d d b a ll( / , e* , N , P )  (see below).
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Finally the output of algorithm BBSCM is a conjunction or disjunction of balls (classi­

fier/hypothesis) /*  th a t can be used for classification using equation (2 .2 ).

In p u t  : S,T,B
1: /  «- 0 ;
2:
3: P  <- 0;
4: €* < - 1;
5: £ <- \B\\

C all : a d d b a ll (f , e * , N , P )
O u tp u t:  A T  = ‘conjunction’ or ‘disjunction’ of data-dependent balls 1Z* C B

A lg o r i th m  4: BBSCM(S, T, B)

Function addball

This function adds each possible ball hi to  the current hypothesis so th a t =  /  U {hi} and 

checks to  see if its generalisation error bound et is smaller than the best generalisation error 

bound e* found so far. If so, then the value of /*  is replaced with f i  and the best risk bound 

/*  is replaced with e* (line 8 ). Also at this stage function c r e a te ta b le  is called (line 9) to get 

t a b le  (see description of function c r e a te ta b le  below).

F u n c tio n  ad d b a ll N , P )

1
2
3
4
5
6
7
8 
9

10
11

12
13
14
15
16
17
18
19
20 
21 

22
23
24
25
26

Data:
Consider all h € B  \  /  ;
Order according to e({h }  U / )  -> (h i ,  ci ,  r / i ) , . . . ,  (kg,  eg, rje) 5 
for i  =  1 , . . . ,  t  do

f t e m p  <— / ,  N t e m p  <— A , Pt emp  <— P  
if  rji <  e* th en

/ i  <- /  U ( M ,  N  <— N  \  {vN (ht)}, P ^ P  U {7T v ^ p ( h t)} 
if  €i <  e* th en  

/*  <- fi, e* *- €i 
call crea te ta b le (€ 3*,m) 

end  if
found false
d - l / i l
A  ̂ |JV|
w hile -ifound do 

d <- d +  1
A A +  |N t e m p \  —| N \
kn tab le(d , |P |) 
if  kn =  —1 or A > —kn th en  

found <— true  
end  if  

en d  w hile  
if  kn ^  —1 th en

call addball (/*,e*,N , P )  
en d  if  

end if  
end  for

On line 17 if t a b l e ( d , |P |)  returns kn =  —1 then this indicates th a t there is no bound for 

d and |P | th a t is smaller than e*. If t a b l e ( d , |P |)  is a positive integer kn, then there is a
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possibility of finding a ball to  add to  the current hypothesis th a t will give a smaller risk bound 

than e* provided there exists a set of d additional balls th a t leave no more than kn Af  examples 

uncovered and no additional V  examples misclassified. If kn >  0, then line 18 checks whether a 

larger number of M  examples can be covered using d balls (see Lemma 3.2 and equation (3.20) 

from proof of main theorem ). If so, then the procedure calls itself recursively (line 23) until all 

balls in B have been enumerated.

Function createtab le

Local variable t a b le  is an m  x m  m atrix  whose elements are all initially set to  —1. Function 

c r e a te ta b le  calculates for d balls and kp misclassifications (on the V  examples) the number of 

N  examples th a t can be covered w ithout creating a bound th a t is larger than the best bound 

e* found so fax (line 14). This function returns ta b le .

F u n c tio n  c r e a te ta b le  (e*,ra)
l: Initialize t a b le  < 1 ;
2: Cp <— 0;
3: k p f ound <— t r u e
4: kp <-------1
5: w h i l e  k p f  ound d o  
6: k p f ound <— f a l s e
7: kp <— kp +  1
8: d f  ound <— t r u e
9: d < - 0

10: w h i l e  d fo u n d  d o
11: d fo u n d  <— f a l s e
12: d d +  1
13: kn <— 0
14: w h i l e  e (m , d, cp, kp, kn, S) < e* d o
15: kn  <— kn +  1
16: e n d  w h ile
17: if kn > 0 th e n
18: k p f ound <— t r u e
19: d fo u n d  <— t r u e
20: e n d  if
21: tab le (d , kp) <— kn — 1
22: e n d  w hile
23: e n d  w hile

3.8 B B SC M (r)
BBSCM (r) allows a trade-off between the accuracy of the classifier and speed. In function 

c r e a te ta b le  (e*, m) the w h ile  condition computes e(ra, d, cp,kp, kn, 5) < e*. In the BBSCM (r) 

heuristic this w h ile  condition becomes e(m, d, cp,kp, kn, <5) < r  • e*. Allowing the BBSCM 

algorithm to ignore solutions whose generalisation error bounds are not a factor r  from the 

optimal found so far.

Clearly setting r  =  1 returns the BBSCM algorithm -  however as mentioned above this 

algorithm is too slow for data  sets with m  >  100  training examples. Therefore we would like 

to set r  < 1. Setting r  close to 1 may cause the heuristic to  be too slow but create hypotheses
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th a t have small generalisation error bounds similar to  those for r  =  1. Setting r  close to  0 will 

speed up the solution but may not create a large enough search space in order for BBSCM (r) 

to find hypotheses with relatively small generalisation error bounds. Hence, setting r  is unlike 

setting a regularisation param eter since it is trading accuracy against time - bigger r  is always 

better in terms of generalisation error bounds, but costs more in term s of computational time.

3.9 Theory
Now th a t we have described the BBSCM algorithm we are in a position to  describe its theory. 

The two pruning steps make use of the generalisation error bounds and their properties. The 

first theorem is a direct consequence of the first pruning step from function addball (line 5). 

The second theorem includes the ideas behind the second pruning step found in function addball 

(line 11-21) and relies on lemma 3.2 and 3.3 to  help justify its claim.

Before looking at the first theorem  we would like to present the following lemma th a t allows 

the theorem to  be proved. Note th a t all the results here are given for Theorem 3.1 although as 

mentioned earlier they can also be obtained with Theorem 3.2 and 3.5.

L em m a 3.1. The generalisation error bound given by equation (3.1) (Theorem 3.1) is mono- 

tonically increasing in the second parameter i f  m  > 4d +  2 — cp +  kp +  kn .

Proof. We would like to show for varying d with fixed m > 0, cp < d, kp, kn > 0, 0 <  £ <  1, 

th a t e(m, d +  l , c pi kp, kn ,S) >  e(m, d, cp, kp, kn ,6).  Writing out the bounds in full we get

e(m,d + l , c p, kp, k n ,5) =  1 — exp <
(0

2(d+ l) -  kp kTl

/  (ii) (Hi)

ln (2(JTl)) +ln(2(5 1))
V

+ in(TPrfc:i))+in-^±i)
(it;)

(3.16)

and

e(m,d, cp, kp, k n ,6) =  1 — exp <

+  In

(V) /

(O

- 2d— kn — k T

/  ( i i ' )  ( H i ' )  ( i v ' )

V
(3.17)

We know th a t the function f ( x )  = 1 — exp{—x]  is a monotonically increasing function 

because its first derivative f ' ( x )  = exp{—x} > 0 .

Looking a t only the binomial coefficients, let ln(z(d + 1)) =  (ii) +  (Hi) +  (iv) and let 

ln(z(d)) = (ii') +  (in' ) + (iv'). Subtracting we get ln Ignoring the ln, we would like
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to show:

( m W2(d+l)Wm-2(d+l)\ 
Z { d +  1 )  _  \ 2 { d + l ) ) \  cp A kp+ k n )

>  1. (3 .18)

Using the definition of a binomial coefficient (£) =  ŵ_n̂ !fc! and simplifying, equation (3.18) 

becomes:

(m — 2d — kp — kn ) (m  -  2d -  1 -  kp -  kn)
(2d +  2 - c p)(2d + l - c p) ~  ’

which is true if m  — 2d — kp — kn > 2d +  2 — cp = +  m >  4 d + 2 — Cp + kp + kn . This holds 

for all the experiments we have conducted using the bounds. We also know th a t (*) > (»') and 

(v) > (vf). Therefore it follows th a t (3.16) > (3.17). □

T h e o re m  3.6 . Let e* be the smallest generalisation error bound currently found fo r hypothesis 

f*  by the BBSC M  algorithm. For any hypothesis f i  that gives r](fi) > e* there exists no extension 

f  5  f i  such that the generalisation error bound for f  satisfies e( f )  < e*.

Proof. Let f  = f i  U { h i , . . . ,  hn } where n  is the number of balls added to hypothesis fi .  After n 

balls the best generalisation error bound for /  is e(f )  which is e(m, d + n, cp, kp, 0, (5). We know 

by Lemma 3.1 this bound is >  e (m,d  +  1, cp, kp, 0, S) =  rj(fi) which from the statem ent in the 

Theorem is greater than e*. Hence for any hypothesis f t with T](fi) > e* there is no extension 

/  D fi  such th a t e( f )  < e*. □

This theorem states th a t for any hypothesis f i  if the bp generalisation error bound r/j is 

worse than the best bound e* then there is no need to try  and cover any more N  examples from 

this ball as there will never be a smaller bound than the best e* found so far.

L em m a  3.2 . Let U be a set covered by A \ , . . . ,  A^.  For any V  C U 3 j  such that >  £•

Proof. We know for i =  l , . . . , k  th a t |V| =  | U (A i  n  V)| <  Y l i =  i IAi H V\  which implies 

Yli=i Therefore by using the pigeon hole principle we know 3 j  such th a t >

I-  □

L em m a  3.3. Suppose c re a te ta b le (e * , m) has been executed and kn =  ta b le (d , kp) >  0. It 

follows that e(m ,d, cp,kp ,kn  + 1 , 5 )  > e* for  cp >  0.

Proof. In function c rea te ta b le (e* ,m ) w hile  the condition e(m ,d, cp,kp, kn, 5) <  e* holds we 

increment kn — kn +  1 for fixed values of m  + 0 , d + 0 , cp =  0 , kp > 0 and 5. When this 

condition fails we have ta b le (d , kp) =  kn — 1 for kn > 0. Therefore if kn =  ta b le (d , kp) > 0 for 

fixed d and kp then e(m,  d, 0 , kp, kn +  1 ,5) > e*. □

Using Lemma 3.2 and 3.3 we can now prove th a t the BBSCM (r) algorithm will only disre­

gard a ball for inclusion if it cannot lead to  a hypothesis with generalisation error bound smaller 

than th a t already found by BBSCM (r).
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T h e o re m  3.7  (main theorem). I f  algorithm BBSC M (t ) outputs hypothesis f*  with generalisa­

tion error bound e* then there exists no hypothesis f  such that e(f)  < r  • e*.

Proof. We will prove this result by contradiction. Assume /  has the smallest generalisation 

error bound e(f )  < r  • e*. Let /  =  {6 i , . .. , 6/t} be the hypothesis returned by the BBSCM 

algorithm. In this setting we know th a t f  has generalisation error bound c(^) — c* ^  *(/)•

Let / t  =  {6i , . . . ,  bn } be any maximal hypothesis in the  search tree of the algorithm such th a t 

P  C / .  Let the number of M  examples misclassified for f  be given by kn =  kn (f ) ,  similarly the 

number of V  examples misclassified kp =  kp( f ) ,  and the number of balls d = d( f ) .  Also for /* 

let the number of V  examples misclassified be defined as k^ =  kp(Bt). Lemma 3.2 implies that

there exists a ball bj € f , b j  p  such th a t a t node f \

/, x , \Ntemp\ — kn ,
\vN (bj) n  N tem p\ > J  ~ | / t |  +  1 '  ̂ ^

We claim th a t this implies bj was acceptable at node /1  and should have been added to hypoth­

esis /* . However bj was not chosen by algorithm BBSCM to be added to / I ,  a contradiction.

To prove the claim assume th a t the last call to c r e a t e t a b le ( r  • e, m ) before bj was con­

sidered a t node /*  was made with t  ■ e > t  • e*. By lemma 3.3 we must have

kn =  ta b le (d , kp) > kn (3.21)

since otherwise kn >  kn -I- 1 and so

e(/) =  e(m,d , cp, k p, k n ,6)

> e(m, d, cp, k̂p, kn , S)

> e(m, d,cp, A:J,kn+ 1,<5)

> e(m, d, 0 , k^, kn +  1 , S) > r - e  > r  • e*

contradicting e( f )  <  r  • e*. Substituting (3.21) into (3.20) we get

|VN(bj) n  Ntemp\ (d  — |/* | +  1) > \Ntemp\  — kn

setting \vN (bj) n  Ntem p\ — \Ntemp\ — \ N\  gives

( \ N t e mp \ —\N\ ) (d — \f^\ + 1) — \Ntemp\  >  — kn 

\Ntemp\(d — |/^ |)  — \ N \ ( d — |/* | +  1) > -k n

Now we need to  show th a t A =  \ N t e m p \ ( d - \ f ^ \ ) ~ \ N \ ( d —\ p \  + l) in function ad d b a ll. Initially 

before the w h ile  loop in ad d b a ll ( / I  ,e* , N  , P )  we have d = \ p \  and A =  — | A | and so d + 1 = d
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on the d — | / t |  iteration implying

57

A =  HAr| +  ( d - | / t | ) ( | J V t e m p | - | J V | )

=  \ N t e m p \ ( d -  | / f |) -  \ N \ ( d -  1/+1 + 1)

hence the test A > —kn succeeds. Proving the  claim. □

T h eo rem  3.8. I f  algorithm B B SC M  outputs a hypothesis f*  then its generalisation error bound 

e* will be globally optimal (i.e. the smallest bound possible).

Proof. Apply Theorem 3.7 w ith r  =  1. □

From these theoretical results we have shown th a t the BBSCM is guaranteed to find the 

global optimal hypothesis /*  with the smallest generalisation error bound e*.

3.10 Experim ents
Experiments were conducted on seven standard UCI repository data  sets D.J. Newman and 

Merz [1998] described in table 3.1. All examples with contradictory labels and whose attributes 

contained unknown values were removed (this reduced considerably the Votes d ata  set).

D ata Set #  of examples # o f
featurespos neg total

BreastW 239 444 683 9
Votes 18 34 52 16
Pim a 269 499 768 8
Haberm an 219 75 294 3
Bupa 145 200 345 6
Glass 87 76 163 9
Credit 296 357 653 15

Table 3.1: Description of d ata  sets

Initially we test the BBSCM algorithm for the Votes d a ta  set as this was the only data 

set for which we could obtain results in a reasonable time (for BBSCM). We show th a t a full 

branch and bound search (full search) and the BBSCM yield the same hypothesis but th a t the 

BBSCM obtains it more quickly. The full search equates to  removing line 9 and lines 11-21 

from the a d d b a ll function. This carries out a full exhaustive search of the hypothesis space. 

Similarly the BBSCM algorithm also carries out a full enum eration but with enumerating a 

smaller number of balls, as the pruning step removes a larger percentage of the search space.

We report these results in Table 3.2 -  3.7 where the first table is a full search and the 

remaining tables report the results for BBSCM for varying values of r  as r  goes from 1 down 

to 0.1. In each table we report the results for 10 fold cross-validation and give machine type T, 

which indicates a conjunction with a ‘c’ and a disjunction with a ‘d ’. The column ‘th m ’ denotes 

the bound used, ‘tim e’ is the number of seconds needed for all folds, balls’ is the average 

number of balls per fold, ‘error %’ is the overall error over the folds, ‘std (error)’ is the standard
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T thm time (secs) #  balls error % std (error) bound std (bound)
c 3.1 7.7 1.1 7 0.09 0.48 0.05
d 3.1 31.67 1.9 10.83 0.18 0.48 0.05
c 3.2 28.14 1.7 10.67 0 .12 0.45 0.06
d 3.2 28.86 2.1 10.83 0.18 0.43 0.05
c 3.5 0.16 1 8.33 0.16 0.64 0.02
d 3.5 0.24 1 10.33 0.16 0.65 0.02

Table 3.2: 10 fold cross-validation on Votes d ata  set using a full search.

deviation of the error for the 10 folds, ‘bound’ is the average bound value output for each of the 

classifiers and ‘std (bound)’ is the standard  deviation of the bound values.

As we would expect, Table 3.2 and Table 3.3 are almost identical, with the difference being 

in the time column, which shows speed-ups for several of the Theorems and machines. Note 

th a t when the number of balls is close to 1 then there does not seem to be a large (or any) 

speed-up as the search space is pre tty  small because the branch and bound tree is shallow in 

depth. This is due to  the fact th a t both algorithms will be searching the same paths of the 

branch and bound tree. The speed-ups are more prominent for the Theorems which produce 

more depth to  the branch and bound tree. Meaning th a t the BBSCM is able to  prune away 

some redundant subtrees, whereas a full search is required to visit them  all. We see from the 

disjunction case of Theorem 3.1 and both machines of Theorem 3.2 th a t we can achieve almost 

two times the speed-up of an exhaustive search. Also, note th a t although the bound proposed 

in this chapter has a larger generalisation error it seems to  produce classifiers with smaller test 

errors, when compared to  Theorem 3.1 and Theorem 3.2 (except in the case of the conjunction 

machine of Theorem 3.1).

T thm time (secs) #  balls error % std (error) bound std (bound)
c 3.1 7.08 1.1 7 0.09 0.48 0.05
d 3.1 17.16 1.9 10.83 0.18 0.48 0.05
c 3.2 16.06 1.7 10.67 0 .12 0.45 0.06
d 3.2 15.47 2.1 10.83 0.18 0.43 0.05
c 3.5 0.16 1 8.33 0.16 0.64 0 .02
d 3.5 0.24 1 10.33 0.16 0.65 0 .02

Table 3.3: 10 fold cross-validation on Votes data  set using BBSCM with r  =  1.

We also report results for the BBSCM (t) when r  =  0 .8 ,0 .7 ,0 .6 ,0.1 in Tables 3.4 -  3.7. We 

do not report results for r  =  0.9 because they were identical to r  =  1, and also for r  =  0.5 — 0.2 

because they showed no difference from r  =  0 .6 . We can see th a t as r  becomes smaller then 

the bound values become larger, because r  removes the smaller bounds from the search space. 

However, from all tables of varying r  we can see th a t Theorem 3.5 does not change. This is 

because only 1 ball is ever added meaning th a t the search space is small and the bound is too 

loose initially to  allow any more balls to produce hypotheses th a t are smaller. Although as 

the speed increases (r  becomes smaller) we see th a t we still achieve the optimal solution (i.e., 

for r  =  1) for this particular generalisation error bound. The advantage of smaller r  is the
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increase in time complexity and the sparser solutions. We see from Table 3.4 and Table 3.5 th a t 

although the BBSCM with r  =  0.8,0.7 obtains the (overall) smallest test error for all d ata  sets, 

it creates loss bounds th a t are greater than  0.5. This points to the fact th a t maybe the sample 

compression bounds of the set covering machine (SCM) tend to focus more towards minimising 

the empirical error and not so much towards the level of sparsity, i.e., maybe the SRM principle 

is not being demonstrated accurately enough within the bounds. Clearly, the sparser solutions 

are generalising better (for the Votes d a ta  set) but the bounds are not reflecting this as well 

as perhaps they could, i.e., the smallest bounds are not (always) corresponding to  the smallest 

test errors. Finally, note for instance, the  tim e given in Table 3.5, for the disjunction machine 

of Theorem 3.2 is almost four times faster than  a full search (see Table 3.2) using the same 

bound and machine, resulting in a sparser solution and a smaller test error than  the test error 

constructed by the smallest bound found using a full search.

T  thm tim e (secs) #  balls error % std (error) bound std (bound)
c 3.1 4.62 1 7 0.09 0.54 0.16
d 3.1 7.49 1.8 9.5 0.13 0.56 0.16
c 3.2 12.43 1.6 10.67 0.12 0.52 0.17
d 3.2 6.06 1.9 7.5 0.13 0.5 0.18
c 3.5 0.16 1 8.33 0.16 0.64 0 .0 2
d 3.5 0.24 1 10.33 0.16 0.65 0 .0 2

Table 3.4: 10 fold cross--validation on Votes data  set using BBSCM with r  =  0.8.

T  thm time (secs) #  balls error % std (error) bound std (bound)
c 3.1 4.46 1 7 0.09 0.54 0.16
d 3.1 5.03 1.8 9.5 0.13 0.56 0.15
c 3.2 11.6 1.6 10.67 0 .12 0.52 0.17
d 3.2 5.64 1.9 7.5 0.13 0.5 0.18
c 3.5 0.16 1 8.33 0.16 0.64 0 .02
d 3.5 0.24 1 10.33 0.16 0.65 0 .0 2

Table 3.5: 10 fold cross-validation on Votes data  set using BBSCM with t  =  0.7.

T thm time (secs) #  balls error % std (error) bound std (bound)
c 3.1 3.26 1 7 0.09 0.54 0.16
d 3.1 3.96 1.6 16.7 0.15 0.57 0.15
c 3.2 11.32 1.6 10.67 0.12 0.52 0.17
d 3.2 4.78 1.9 7.5 0.13 0.5 0.18
c 3.5 0.16 1 8.33 0.16 0.64 0 .0 2
d 3.5 0.24 1 10.33 0.16 0.65 0 .02

Table 3.6: 10 fold cross-validation on Votes d a ta  set using BBSCM with r  =  0.6.

As mentioned earlier, the BBSCM was not practical for any of the data  sets other than 

Votes. Therefore, we now turn  our attention to the BSCM algorithm th a t is essentially a greedy 

algorithm th a t minimises the loss bound. F irst we give results for the SVM and SCM on all 7 

data  sets. For the SVM we used the Gaussian kernel and evaluated the 7  and C  parameters
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7 thm  time (secs) #  balls error % std (error) bound std (bound)
c 3.1 3.24 1 7 0.09 0.54 0.16
d 3.1 2.13 1 20.17 0.16 0.63 0.13
c 3.2 3.59 1 9 0.1 0.54 0.1
d 3.2 3 1 18.16 0.14 0.61 0.14
c 3.5 0.16 1 8.33 0.16 0.64 0.02
d 3.5 0.24 1 10.33 0.16 0.65 0.02

Table 3.7: 10 fold cross-validation on Votes d a ta  set using BBSCM with r  =  0.1.

D ata Set SVM SCM
SVs tim e error % T #  balls time error %

Votes 18.5 8 .8 10.33 c 1 5.4 11.54
Glass 92.4 183.8 23.83 c 3.8 57.9 23.31
Haberm an 136.4 5129.2 24.13 d 13 272.5 27.89
Bupa 199.4 3083.1 26.94 d 32.6 128 34.78
Credit 325.9 7415.1 25.45 d 3.7 831.2 31.7
BreastW 79.2 506.1 3.5 c 2 658.4 3.95
Pim a 398.1 11071.9 24.6 c 5.9 1091.9 27.21

Table 3.8: SVM and SCM model-selection using 10 fold cross-validation.

using 10 fold cross-validation. We report in Table 3.8 the number of support vectors ‘SVs’ found 

by the SVM, the time taken over 10 fold cross-validation (including the param eter tuning stage), 

and the ‘error’. For the SCM we used the L 2 norm to construct the set of data-dependent balls 

and report the best machine type T  equal to ‘c’ for a conjunction and ‘d ’ for a disjunction 

th a t gave the smallest cross-validation error, the average number of balls found ‘#  balls’, the 

‘tim e’ taken in seconds and the test ‘error’ found for cross validation. In Table 3.9 we report 10 

fold cross validation results for the bound set covering machine (BSCM) algorithm. The table 

reports the results for all the machines and theorems presented so far. We see th a t compared 

to the results of the SCM and SVM in Table 3.8 the BSCM is much faster (as there are no 

parameters to tune) and also produces sparser solutions. Note th a t the results of the BSCM 

for the Votes data set are optimal (see BBSCM and full search Tables 3.2 and 3.3 above) with 

respect to the generalisation error bound of Theorem 3.5. We bold font the rows of Table 3.9 

to indicate the classifiers th a t would be chosen, in a model selection strategy, by picking the 

hypothesis with the smallest generalisation error bound for a particular choice of machine type 

and loss bound. When compared to  Table 3.8 we see th a t these classifiers do not obtain the 

smallest test errors compared to  the SVM or SCM, except for Haberm an and BreastW  which are 

competitive. On the other hand we have made rows in Table 3.9 italic to  signify those classifiers 

producing the smallest test error. In this scenario, the test error results for Votes, Haberman, 

BreastW  and Pim a are better than  for the SCM and also competitive with the SVM. Note th a t 

the BSCM results are considerably sparser than  the SVM and SCM and the running times are 

at least 10 times faster.
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data set T thm tim e (secs) #  balls error % std (error) bound
Votes c 3.1 0.09 1 13.67 0.1732 0.4808
Votes d 3.1 0 .12 1 13.67 0.1732 0.4839
Votes c 3.2 0 .1 2 1.6 15.67 0.1671 0.4654
V otes d 3.2 0.15 1 13.67 0.1732 0.4644
Votes c 3.5 0.07 1 8.33 0.162 0.6354
Votes d 3.5 0 .12 1 10.33 0.1629 0.6498
G lass c 3.1 1.03 2 25.68 0.1511 0.5299
Glass d 3.1 1.65 1 26.38 0.1211 0.5658
Glass c 3.2 2.17 2 .2 27.01 0.1578 0.5339
Glass d 3.2 1.82 1 26.38 0.1211 0.5707
Glass c 3.5 1.07 1.2 36.41 0.1063 0.6331
Glass d 3.5 0.81 1 40.53 0.0702 0.6381

Haberman c 3.1 7.85 1 25.85 0.0772 0.5311
Haberman d 3.1 3.4 1 26.2 0.0771 0.5327
Haberman c 3.2 14.23 1.4 25.86 0.0772 0.5338
Haberm an d 3.2 4.9 1 26.2 0.0771 0.5355
Haberman c 3.5 17.32 1 25.14 0.0251 0.3859

H a b e rm a n d 3.5 5.75 1 25.83 0.0133 0.3804
Bupa c 3.1 6.72 1.2 38.85 0.0795 0.6606
Bupa d 3.1 14.15 3.4 38.55 0.1017 0.6503
Bupa c 3.2 10.75 1.1 38.55 0.0795 0.6645
Bupa d 3.2 27.12 3.6 38.28 0.1006 0.653
B u p a c 3.5 1 1 .2 1 39.73 0.0401 0.5369
Bupa d 3.5 20.5 1 37.97 0.0393 0.538
Credit c 3.1 24.94 1 32.47 0.0708 0.5991
Credit d 3.1 40.44 2.5 32.63 0.0605 0.5991
Credit c 3.2 4 2 . 2 2 1 32.47 0.0708 0.6009
Credit d 3.2 69.63 2.3 32.63 0.0605 0.5977
Credit c 3.5 45.71 1 42.27 0.0203 0.5293
C re d it d 3.5 66.35 1 41.96 0.0243 0.5292

BreastW c 3.1 25.3 1.5 3.64 0.0207 0.1374
BreastW d 3.1 36.63 1.1 3.65 0.0217 0.1396

B re a s tW c 3.2 33.69 1.5 3.64 0 .0207 0.1333
BreastW d 3.2 26.9 1.1 3.65 0.0217 0.1351
Breast W c 3.5 16.89 1 2.77 0.023 0.1653
BreastW d 3.5 67.4 1 3.06 0.0259 0.1682

Pima c 3.1 36.98 2.8 25.4 0.0445 0.5448
Pima d 3.1 56.67 2 29.06 0.0556 0.5632
Pima c 3.2 69.24 2.7 25.53 0.046 0.5472
Pima d 3.2 101.58 2.2 29.32 0.0539 0.5649
P im a c 3.5 50.4 1 33.47 0.0205 0.4189
Pima d 3.5 110.53 1 33.07 0.0152 0.4206

Table 3.9: 10 fold cross-validation on several UCI repository d ata  sets using BSCM.

3.11 Kernel m atching pursuit

The kernel least squares regression algorithm described in Section 2.3.2 uses all of the training 

data (the full kernel m atrix K ) in order to construct a prediction function of the form

m

/ ( x )  =  £ « t«(x,x, ) ,
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where a  is the dual weight vector and m  is the number of examples observed in the training 

sample S. We now describe a sparse kernel least squares regression algorithm th a t only uses a 

small number of kernel functions to  construct a prediction function of the form

|i|
/ ( x )  =  a i i «(x, XjJ,  (sparse) (3.22)

i =  1

where i =  (i\ , . . . ,  id) is an index vector pointing to d «  m  examples in S. We use the notation 

ij  to denote the j t h  element of i. Also, recall th a t we denote a kernel basis vector using the 

notation K [:,j] =  (k(xi,  Xj), • • •, « (x m, Xj))T .

3.11.1 A lgorithm

We can induce sparsity in the dual by defining the primal weight vector w  from a small number 

of training examples such th a t w  =  X[i, :]Ta ,  where |a | =  |i|. Substituting this into Equation 

(2.3) from Chapter 2 we get

min ||y — XX[i, :]Td | |2, 
d

as the sparse dual least squares minimisation problem. The sparse kernel K [:,i] =  X X[i, :]T 

is the set of kernel basis vectors defined by the index set i and yields the sparse kernel least 

squares regression problem as,

min ||y -  K [ : ,i]a ||2. (3.23)
d

If we differentiate with respect to  d  and then set the resulting equation (known as the normal 

equations) to zero and solve for a  we retrieve the optimal solution of Equation (3.23) for

6 =  (K[:,i]TK[:,i])~l K[:,i]Ty. (3.24)

We assume th a t (K[:, i]TK[:, i]) is invertible as each basis vector added is orthogonal to all 

others, hence making the set of sparse bases linearly independent. We are now left with the 

problem of finding an appropriate set i of kernel basis vectors th a t minimises the loss of (3.23). 

A simple method to find i is the following greedy procedure. Let j  =  { ! , . . .  ,m} be the set

of indices pointing to every training sample in S. Initially assign i =  0 to em pty and add in

turn an index j  £ j  to  i =  i U { j}  and evaluate expression (3.23). After this evaluation, update 

with the i\ =  j  th a t minimises (3.23) and repeat for ?2 , .. • ,id  until d basis vectors have been 

added to i =  {zi, . . . ,  id}. As simple as this algorithm is it is very inefficient as it requires the 

computation of a d x  d m atrix inverse for each trial and yields a time complexity of O {d?m) 

to add one basis. Another, more efficient method for solving this problem is by using kernel 

matching pursuit (KMP) [Vincent and Bengio, 2002], which also greedily constructs the set i 

but does not compute the inverse of a m atrix in order to find the optimal a . This avoids the
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cubic time complexity of the greedy strategy discussed above. The pseudocode for the KMP 

algorithm is given in Algorithm 7.

A lg o rith m  7: Kernel matching pursuit w ith prefitting [Vincent and Bengio, 2002]
In p u t:  Kernel K , sparsity param eter d > 0. 

l: initialise A  =  [ ] and i =  [ ]
2: for i =  1 to  d do
3: Find improvement =  ; (Ky)^ V(K-2)T1
4: Set b to the index of m a x  {improvement}
5: cti =  ( K [ : , i j ]T K [:, i j ] ) _ I  K [:, i i]T y
6: ( d i , . .. , d i _ i ) T =  ( d i , . . .  , d i _ i ) T -  d jA [:,ii] (if A  is non-empty)
7: Set r  =  K[:, ii] and p  =  ^ Ty j ,  then update (if A  is non-empty)

A  =  A - A [ : , i i ] p

8: Deflate kernel m atrix

K K - K [ : , i i ] p  

1 - ^  I K
T 1 T

9: Add row vector p  to  A  m atrix

10: Set K [:, ii] =  0
11. e n d  for
O u tp u t :  Index vector i and sparse dual weight vector d

The algorithm works in the following way. Firstly we look for the largest improvement 

th a t can be made to Equation (3.23) with a single kernel basis vector. Hence we would like to 

minimise for all i =  1 , . . . ,  m  the following expression,

|y -  K[:, i]dx. 112 K : , t

2K [:,i]Ty
K [:,i]Ty  , / K [ : , i l Ty

+

K [:,t |Ty 
I I K M H I

where we have made the substitution of d i  using Equation 3.24 when i =  {i}. Therefore we 

would like to  maximise the final component of the last line, like so,

arg max
K[:,»]Ty

which corresponds to  finding the kernel basis vector th a t is most collinear with the regression 

output vector y. This computation is carried out in Line 3 of Algorithm 7. We use the notation
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X .X  =  X '2 to denote element (component) wise multiplication of the matrices X . Similar nota­

tion will hold for vectors. The division of vectors (matrices) will always be assumed component 

wise division.

After this we can update the last dti using Equation (3.24). This leaves the remaining 

d i , . . . , d i _ i  unchanged and so to  reflect the new chosen basis vector K[:,i] we would need 

to update these values. This is carried out in Line 5 of Algorithm 7. Finally, the algorithm 

orthogonalises the kernel m atrix such th a t  the remaining points are chosen from the orthogonal 

subspace defined by the set i, and th a t the indices in i can never be considered again. This step 

is carried out in Line 8 of Algorithm 7. For more information about the algorithm see [Vincent 

and Bengio, 2002].

3.11.2 A  generalisation error bound for kernel m atching pursuit

Kernel matching pursuit does not form a compression scheme (see definition 2.16) as it relies on 

all of the information in the training data  in order to construct the regressor given by Equation 

(3.22) because d  is computed using kernel columns K [:,j] =  (k (x i , X j ) , . . . , K(xm,Xj))T which, 

by definition, use all of the m  training examples x i , . . . ,  x m present in S.  Therefore, we cannot 

apply a sample compression bound similar to  Theorem 2.4 in order to upper bound the loss of 

KMP. However, we can view the sparsity in dual space constructed by KM P for defining the 

feature space as a compression scheme and use a VC argument in order to  upper bound K M P’s 

future risk.

VC bounds as mentioned in subsection 2.4.2 have commonly been used to  bound learning 

algorithms whose hypothesis spaces are infinite. The problem with these results is th a t the 

VC-dimension can sometimes be infinite even in cases where learning is successful. However, 

for KMP we can avoid this issues by making use of the fact th a t the VC-dimension of the set of 

linear threshold functions is simply the dimension of the function class. In KM P this directly 

translates into the number of basis vectors chosen and results in a standard VC argument.

The KMP algorithm (or any regression algorithm) can be upper bounded using a regres­

sion loss function or a classification loss function. The former requires the need for a pseudo­

dimension and extra machinery not presented in this thesis. The latter m ethod simply requires 

the use of the standard VC bounds for classification (see 2.4.2). Therefore we must first map 

the regression loss suffered by KMP into a corresponding classification loss in the following way.

D efin itio n  3.1. Let S  ~  V  be a regression training sample generated iid from  a fixed but 

unknown probability distribution V . Given the error e r ( / )  =  P rs ^ p { |/ (x )  — y\] fo r  a regression 

function f  between training example x  and regression output y we can define, for some fixed 

positive scalar a  E R, the corresponding true classification loss (error) as

era{ f )  =  Pr { | / ( x ) - y |  > a | }
(x,y)~ V
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Similarly, we can define the corresponding empirical classification error as

era ( / )  =  era ( / ,  S) = P r { |/ (x )  -  y\ > a |}
(x ,y )~ S

=  E (x>y)̂ s { I ( | / ( x )  - y \  > a ) } ,

where I is the indicator function and S  is supressed when clear from context.

Now th a t we have a loss function th a t is discrete we can make a simple sample compression 

argument, th a t counts the num ber of possible subspaces, together with a traditional VC style 

bound given by Theorem 2.2 to  upper bound the expected loss of KMP.

To help keep the notation consistent with earlier definitions we will denote the indices of 

the chosen basis vectors by i. The indices of i are chosen from the training sample S  and we 

denote S\ to be those samples indexed by the vector i. Given these definitions and Theorem 2.2 

we can upper bound the true loss of KMP as follows.

T h e o re m  3.9. Fix a  G R, a  > 0. Let A  be the regression algorithm o f KMP, m  the size o f the 

training set S  and d the size o f the chosen basis vectors i. Let S  be reordered so that the last 

m  — d points are outside o f the set i and let t =  YliLm -d  ^ (l/(x *) ~  Vi I >  Q) be the number of 

errors fo r those points in S  \  S\. Then with probability 1 — 5 over the generation o f the training 

set S  the expected loss £[£{-)\ o f algorithm A  can be bounded by,

m  — d — t

(3.25)

Proof. F irst consider a fixed size d for the compression set and number of errors t. Let 

Si = { x ^ , . . . ,  x id} be the set of d training points chosen by the KM P regressor, S 2 =  

{xid+1, . . . ,  Xid+t} the set of points erred on in training and S  = S  \  (Si U S2) the points 

outside of the compression set (Si) and training error set (S2). Suppose th a t the first d points 

form the compression set and the next t are the errors of the KM P regressor. Since the remain­

ing m  — d — t points S are drawn independently we can apply Theorem 2.2 to the era loss to 

obtain the bound

P r { S  : era ( /)  =  0 ,era ( f )  > e} < 2 — “ )  2_e(m_d_t)/2,

where we have made use of a bound on the number of dichotomies th a t can be generated by par­

allel hyperplanes due to Anthony [2004], which is (m7i_1) which is < ’

where n  is the number of parallel hyperplanes and equals 2 in our case. We now need to consider 

all of the ways th a t the d basis vectors and t error points might have occurred and apply the
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union bound over all of these possibilities. This gives the bound

66

Pr { S  : 3 f  e  span{Si} s.t. era ( / ,  S2) =  l ,e r Q( / ,S )  =  0 ,era ( / )  >  e}

Finally we need to consider all possible choices of the values of d and t. The number of these 

possibilities is clearly upper bounded by m 2. Setting m 2 times the rhs of (3.26) equal to  5 and 

solving for e gives the result. □

The bound is determined by the level of sparsity together with a VC-style argument making 

it the first such analysis of this type. It can and will be adapted for the sparse kernel canonical 

correlation analysis th a t we propose in C hapter 4. Note th a t this is the first upper bound on the 

generalisation error for KMP th a t we are aware of and as such we cannot compare the bound 

against any others.

Sound
‘KMP tost error

KMP error on Boston housing data set

0 I 1-------------1-------------1-------------1-------------1-------------1-------------1-------------1-------------1------------
0 5 10 15 20 25 30 35 40 45 50

Level of sparsity

Figure 3.3: Plot of KMP bound against its test error. We used 450 examples for training and 
the 56 for testing. Bound was scaled down by a factor of 5.

Figure 3.3 plots the KMP test error against the loss bound given by Theorem 3.9. The 

bound value has been scaled by 5 in order to get the correct pictorial representation of the two 

plots. It is in actual fact trivial but as Figure 3.3 shows, its minima directly coincides with 

the lowest test error (after 17 basis vectors). This motivates a training algorithm for KMP 

that would use the bound as the minimisation criteria and stop once the bound fails to  become 

smaller. This is a similar strategy as the one proposed for the set covering machine (SCM) in 

Section 3.5. This type of training regime can help make learning algorithms more autom ated as 

they need less human intervention for the model selection phase and also tie together machine 

learning theory and practice.
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3.12 Summary
We have observed th a t the SCM loss bound proposed by Marchand and Shawe-Taylor [2002] is 

incorrect and, in fact, becomes erroneous in the limit where the number of errors on the positive 

training examples approaches the to ta l number of positive training examples. We then proposed 

a new loss bound, valid for any sample compression learning algorithm (including the SCM), 

th a t depends on the observed fraction of positive examples and on what the classifier achieves 

on them. This new bound captures the spirit of M archand and Shawe-Taylor [2002] with very 

similar tightness in the regimes in which the  bound could hold. This is shown in numerical 

comparisons of the loss bound proposed in this chapter w ith all of the earlier bounds th a t can 

be applied to  the SCM.

Using the bound proposed and two previously existing bounds for the SCM we applied them 

directly into the workings of the SCM. Initially we proposed the bound set covering machine 

(BSCM), which greedily minimises the loss bound and term inates after no risk bound can be 

found th a t is smaller, hence removing the need for regularisation parameters. Furthermore, we 

proposed the branch and bound set covering machine (SCM) th a t globally minimises the loss 

bound and gave a variant called BBSCM (r) th a t trades-off time complexity against accuracy of 

solution. The algorithms were proved to  produce classifiers with the smallest loss bounds and 

experimentally showed to be competitive against the SCM and SVM.

Finally, for the regression section, we described a sparse prediction function for least squares 

regression and then presented an efficient algorithm th a t solves sparse kernel least squares re­

gression called kernel matching pursuit (KMP). The algorithm creates dual sparsity and does 

not form a compression scheme. However, we noticed th a t the dual sparsity could be viewed 

as a compression scheme (in feature space) with the VC dimension acting synonymously with 

the compression set. This allowed a natural method for upper bounding the loss of KM P (for 

classification loss) and in practice gave a bound th a t coincides with the minimum test error 

achieved by KMP (for the Boston housing data  set and a particular choice of a ).
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Chapter 4

Sparsity in unsupervised  learning

Section 3.11 gave a sample compression analysis in the feature space o f KMP. In this chapter, 

we attempt to make similar analyses fo r kernel principal components analysis (KPCA)  and 

kernel canonical correlation analysis (KCCA). For KPCA we analyse a sparse variant that uses 

matching pursuit in order to construct sparse subspaces. We show that this algorithm does 

form  a compression scheme (unlike KM P) and that its loss can be upper bounded using sample 

compression theory defined in Section 2-4-3 o f Chapter 2. We test our proposed bound against 

the KPCA bound o f Shawe- Taylor et al. [2005] and show that it is significantly tighter.

Furthermore, we propose a matching pursuit algorithm fo r  sparse kernel canonical correla­

tion analysis (SKCCA) and propose a generalisation error bound fo r  SKCCA using a similar 

approach taken fo r K M P in Section 3.11. We show that the difference between the projections 

can be viewed as a regression problem and state the bound in the same form  as the K M P bound. 

We test the bound fo r a real world data set and show that although the bound is trivial its m inima  

coincides with the smallest test error. Finally we conclude the chapter with experimental results 

for document retrieval tasks that show little deterioration in test error but large improvements 

in time complexity when compared to KCCA.
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4.1 Sparse kernel principal com ponents analysis
Recall from Chapter 2 th a t the kernel principal components analysis (KPCA) finds a small 

subspace of the training d ata  in feature space using the entire kernel matrix. As we had done in 

the previous chapter for regression, we now turn our attention to  computing KPCA with only 

a small subset of the kernel basis vectors. This is known as sparse kernel principal components 

analysis (SKPCA) and can be formulated by restricting the definition of the primal weight 

vectors to only using a small num ber of training examples.

4.1.1 A lgorithm

In a sparse PC A algorithm we may want to  find a sparsely represented vector w x =  X [i, :]T a x , 

th a t is a linear combination of a small number of training examples indexed by vector i. This 

corresponds to  projections being made onto a sparse subspace maximising the variance of the 

data. Therefore by making the substitution w x =  X [i, :]Td x into Equation (2.4) we have the 

following sparse dual PCA maximisation problem,

« J X [ i , : ] X T X X [ i , : ] T a I
max — —=p—  --------------------- , (4.1)

a I X [ i , : ] X [ i , : ] Td I

which is equivalent to  sparse kernel PCA (SKPCA) with K [:, i] =  X X [ i , :• IT

d j K [ : , i ] TK [ : , i ] d  

d l K t U l a *

where a x is a sparse vector of length d = |i |.  Clearly maximising the quantity  above will lead 

to the maximisation of the generalised eigenvalues corresponding to  d x -  and hence a sparse 

subset of the original PCA problem. This analysis assumes th a t i has already been chosen. We 

now consider how to  choose the set of vectors indexed by i.

The procedure involves choosing basis vectors th a t maximise the Rayleigh quotient without 

the set of eigenvectors, choosing basis vectors iteratively until some pre-specified number of 

d vectors are chosen. An orthogonalisation of the kernel m atrix at each step ensures future 

potential basis vectors will be orthogonal to  those already chosen. This algorithm is equivalent 

to Smola and Scholkopf [2000]. The quotient to  maximise is:

e T K 2e

m ax "  =  1 ^ 7 ’

where e* is the ith  unit vector. Note, th a t this quotient looks similar to the KPCA formulation 

of Equation (2.7) but without the use of the eigenvectors 6tx . Maximising Equation (4.3) will 

find the maximum variance in the feature space and not the projected space as is the case in 

traditional KPCA. This is fine to  do in the first iteration of picking a basis vector but not for 

subsequent iterations. We need to orthogonalise (or deflate as it is more commonly referred 

to in the subspace method literature) the kernel matrix, creating a projection into the space 

orthogonal to the basis vectors chosen. This step ensures th a t we will find the maximum variance
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of the data in the projected space as is the case with KPCA.

The deflation step can be carried out as follows. Let r  =  K[:,i] =  X X T e* where e* is the 

ith  unit vector. We know th a t prim al PCA deflation can be carried out with respect to  the 

features in the following way:

x  = { 1 - ^ ) x '

where u  is the projection directions defined by the chosen eigenvector and X  is the deflated 

matrix. However, in sparse KPCA, u  =  X T e^ because the projection directions are simply the 

examples in X . Therefore, for sparse KPCA we have:

X X  1 =  X  ( I  -  ) [ I

U U
=  X ( I - ^ ) X T 

u  1 u  /

X X T e ,e 7  X X T
=  X X T'n

;lT

K  [»,*]

Therefore, given a kernel m atrix K  the deflated kernel m atrix K  can be computed as follows:

* = K- kS j <4'4>

where r  =  K [:, id] and id denotes the latest element in the vector i.

A lg o r i t h m  8: A matching pursuit algorithm for sparse kernel principal components 
analysis

I n p u t :  Kernel K , sparsity param eter d > 0.
initialise i =  [ j 
fo r  j  =  1 to  d d o  

Find im provem ent =

Set ij to  the index of m a x { im p ro v em en t}
set r  =  K [: ,ij ]
deflate kernel matrix like so:

K  =  K

7: e n d  fo r
8: Compute approximation K  using i and Equation (4.6) 

O u t p u t :  O utput sparse m atrix approximation K

This algorithm is presented in Algorithm 8 and is equivalent to  the algorithm proposed by 

Smola and Scholkopf [2000], as they iteratively add a basis vector by maximising the Rayleigh 

quotient and then deflate to guarantee the chosen vectors are orthogonal to all other vectors 

in the kernel matrix. Line 6 of Algorithm 8 is equivalent to  the Smola and Scholkopf [2000] 

orthogonalisation procedure. However, their motivation comes from the stance of finding a low
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rank matrix approximation of the kernel m atrix. They proceed by looking for an approximation 

K  =  K[:, i]T for a set i such th a t the Frobenius norm between the trace residuals 

tr{K  — K[:,i]T} =  tr{K  — K} is minimal. Their algorithm  finds the set of indices i and the 

projection matrix T. However, the  use of T  in computing the low rank m atrix approximation 

seems to imply the need for additional inform ation from outside of the chosen basis vectors 

in order to construct this approxim ation. However, we show th a t a projection into the space 

defined solely by the chosen indices is enough to  reconstruct the kernel m atrix and does not 

require any extra inform ation .1 The projection is the well known Nystrom method [Williams 

and Seeger, 2001].

An orthogonal projection P i(0 (x j)) of a feature vector into a subspace defined only

by the set of indices i can be expressed as:

P ,(x 3) =  X T (X X T r ‘X 0 (x ,) ,

where X  =  X [i,:] are the i training examples from data  m atrix X. It follows that,

Pi(x:,)TPi(xJ) = 0(xj)TXT(XXT)-1X X T(XXT)-1X0(xj)

= 0(xj)TXT(XXT)-1X0(xj)

=  K[i, jf]K[i, i]- 1K [7, i], (4.5)

with K [i,j] denoting the kernel entries between the index set i and the feature vector 0 (x j), 

giving us the following projection into the space defined by i:

K  =  K [:,i]K [i,i] -1K [:,i]T . (4.6)

Hence, we simply need the chosen basis vectors i to  make this reconstruction. This is very 

im portant for the theoretical analysis th a t we carry out in the next section, as it implies the 

following claim.

C la im  4.1. The sparse kernel principal components analysis algorithm is a compression scheme.

Proof. Given a data point (p(x.j) in feature space and a set of chosen indices i we can reconstruct 

the projection using Equation (4.5), i.e., K [i,j]K [i, i]- 1K [j, i]. Therefore, we only require kernel 

evaluations between the training examples indexed by i and the data  point 4>(x.j) in order to 

make this reconstruction. Hence, i forms a compression set. □

R e m a rk  4 .1 . This claim proves that sparse kernel PCA form s a sample compression scheme. 

The only information needed fo r the reconstruction function is the data in the compression set 

from which the matrix approximation (given by Equation 4-6) can be created.

1In their book, Smola and Scholkopf redefined their kernel approximation in the same way as we have done 
[Scholkopf and Smola, 2002],
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We can now prove th a t Algorithm 8 is equivalent to  Algorithm 2 of Smola and Scholkopf 

[2000].

T h eo rem  4.1. Agorithm 8 is equivalent to Algorithm 2 o f Smola and Scholkopf [2000].

Proof. Let K  be the kernel m atrix and let K[:, i] be the ith  column of the kernel matrix. Assume 

X  is the input m atrix containing rows of vectors th a t have already been mapped into a higher 

dimensional feature space using <f> such th a t X  =  (0 ( x i) , . . . ,  </>(xm))T . Smola and Scholkopf 

[2000] state in section 4.2 of their paper th a t  their algorithm 2 finds a low rank approximation 

of the kernel m atrix such th a t it minimises the Frobenius norm ||X  — X H p ^  =  tr{K  — K} 

where X  is the low rank approxim ation of X . Therefore, we need to prove th a t Algorithm 8 

also minimises this norm.

We would like to  show th a t the maximum reduction in the Frobenius norm between the 

kernel K  and its projection K  is in actual fact the choice of basis vectors th a t maximise the 

Rayleigh quotient and deflate according to  Equation 4.4. At each stage we deflate by,

K  =  K
K[id, irf]'

The trace tr{K } =  Y ^ L i *] is the sum of the diagonal elements of m atrix K . Therefore,

t r { r r T}
tr{K } =  tr{K } -  

=  t r { K } -  

=  t r { K } -

K[irf, id]
t r { r Tr }
K[id, id]
K 2[id,id]
K[id,id]

The last term  of the final equation corresponds exactly to the Rayleigh quotient of Equation 4.3. 

Therefore the maximisation of the Rayleigh quotient does indeed correspond to the  maximum 

reduction in the Frobenius norm between the approximated m atrix X  and X . □

Claim 4.1 proves th a t we have a compression scheme and so we can bound the sparse KPCA 

algorithm using the tools available to  us from sample compression theory.

4.1.2 A  generalisation error bound for sparse kernel principal com po­

nents analysis

The results of the last section imply a sample compression analysis for sparse KPCA. We use the 

sample compression framework of Littlestone and W armuth [1986] to bound the generalisation 

error of the sparse PCA algorithm. Note th a t kernel PCA bounds of [Shawe-Taylor et al., 2005] 

do not use sample compression in order to bound the true error. As pointed out above, we use 

the simple fact th a t this algorithm can be viewed as a compression scheme. No side information 

is needed in this setting and a simple application of Littlestone and W armuth [1986] is all that 

is required. T hat said, the usual application of compression bounds has been for classification
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algorithms, while here we are considering a subspace method.

Recall th a t a sample compression scheme for classification is a learning algorithm th a t 

only needs to use a small subset of training points to  construct a hypothesis. This hypothesis

mentioned earlier, this implies th a t this type of learning algorithm and a compression scheme 

are equivalent. Therefore, we will sometimes refer to  a compression scheme learning algorithm 

as a compression scheme and vice versa.

To bound the generalisation error of the sparse KPCA algorithm we make use of the fol­

lowing well-known theorem.

T h e o re m  4.2  (Hoeffding’s inequality). I f  X i , . . .  , X n are independent random variables satis­

fying X i  E [a.i,&i] (meaning X i is in the interval between ai and bi) and i f  we define the sum of 

these random variables as Sn =  Xi,  then it follows that

where E[-] denotes the expectation.

This theorem upper bounds the probability of deviation between the sum of the random

an upper bound on the deviation of the observed error and the true error for a fixed function 

/  given for random draws of training sets. Together w ith the proof th a t sparse kernel PCA 

defines a compression scheme we are now in a position to present a sample compression bound 

for sparse KPCA.

T h e o re m  4.3. Let Ad be any learning algorithm having a reconstruction function that maps 

compression sets to regressors. Let m  be the size of the training set S, let d be the size o f the 

compression set and let £m-d[I{Ad(S))] be the empirical loss on the m  — d points outside of 

the compression set. Then with probability 1 — S, the expected loss £[£(Ad{S))] o f algorithm Ad 

given any training set S can be bounded by,

Equation (4.7) equal to From the definitions £(•) >  0 and R  — sup£(-) we can set bi — 0

should be capable of labelling all of the training points not found in the compression set. As

(4.7)

variables and the expected value of this sum. In a machine learning context it can provide

£[£(Ad(S))} <  min £,
l<t<a

where £(■) >  0 and R  =  sup^(-).

Proof. Consider the case where we have a compression set of size d. Then we have (™) different 

ways of choosing the compression set. Given S confidence we apply Hoeffding’s bound to the 

m  — d points not in the compression set once for each choice by setting the right hand side of
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and di = ^ 2  respectively, in Hoeffding’s bound. Using these facts we get,

(
2 exp 

2 exp I —

2e^

2ê
(m  — d )R 2/(m  — d)2 

(m — d) 2e2
2 exp I —

R 2

5

O

6

(7)
s

( ? ) ■

Solving for e and further applying a factor 1 /m  to 5 to  ensure one application for each possible 

choice of d we get:

e <
R 2

2 (m — d) ) +ln (
2m
~ T

Hence by Hoeffding’s bound Pr{£[^(.Ad(*$'))] >  Sm-.d[^{Ad{S))\ +  e} <  <5. This together with 

the fact th a t using more dimensions can only reduce the expected loss on test points gives the 

result. □

R e m a rk  4.2 . I t should be noted that this simple analysis could not be carried out with K M P as 

it requires additional information from  outside o f the compression set in order to reconstruct its 

regressors. This is not considered in the above theorem. Such an analysis is possible by taking 

into account the extra information needed in order to make the desired reconstruction. This can 

be performed by using the Vapnik-Chervonenkis (VC) argument we proposed in Section 3.11.

We now consider the application of the above bound to  sparse KPCA. Let the corresponding 

loss function be defined as

^ (A (S ))(x ) =  | | x - P it(x ) ||2,

where x  is a test point and PH (x) its projection into the subspace determined by the set if of 

indices returned by A t(S ). Thus we can give a more specific loss bound in the case where we 

use a Gaussian kernel in the sparse kernel principal components analysis.

C o ro lla ry  4.1 (Sample compression bound for SKPCA). Using a Gaussian kernel and all of 

the definitions from Theorem 4-3, we get the following bound:

£{e(A (Sj)\ <  min

(4.8)

Note th a t R  corresponds to the smallest radius of a ball th a t encloses all of the training 

points. Hence, for the Gaussian kernel R  equals 1. Figure 4.1 shows how the bound is optimising 

the structural risk minimisation principle (when we do not use the min in Theorem 4.3). The
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blue line represents the training residual computed as the loss of those points not in i, the black 

line is the complexity term  in the bound (the square root term  in Equation (4.8)). The red line 

in the figure is the bound value and carries out a trade-off between accuracy on the training 

data and complexity of the function.

Sttudurai Risk Mmmualion pr.napie la  sparse KPCA compression bound

Figure 4.1: Sample compression bound plot for sparse KPCA including the error and complexity 
terms separately (SRM principle).

We now compare the sample compression bound proposed above for SKPCA with the 

KPCA bound introduced by Shawe-Taylor et al. [2005]:

T h eo rem  4.4 (Shawe-Taylor et al. [2005]). I f  we perform P C  A in the feature space defined by 

a kernel k(x , z ) then with probability greater than 1 — 5, fo r  any 1 <  d < m , i f  we project new 

data onto the space Ud, the expected squared residual is bounded by

£ [\\PudW x ))\\2] ^ - A  >‘(S) +  1 +  ^  
m t=l

+ R \  —  In —
m

where the support of the distribution is in a ball of radius R  in the feature space and X>t(S) =  

is the sum of the eigenvalues greater than t computed from the training data in the 

feature space.

We apply this bound with the Gaussian kernel which sets both R  and /c(xt ,Xj) to 1. We 

compute it for sparse KPCA by simply adapting it to  work with a sparse set of basis vectors 

rather than  a full kernel matrix and its reduced dimensionality. Figure 4.2 shows plots for the 

test error residuals together with its upper bounds computed using Theorem 4.4 and the sample 

compression bound of Corollary 4.1. The sample compression bound is much tighter than the 

PCA bound and non-trivial. This is in stark contrast to the PCA bound, which is looser and
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trivial.

The bound is at its lowest point after 43 basis vectors have been added. We speculate tha t 

at this point the “true” dimensions of the da ta  have been found and tha t all other dimensions 

correspond to “noise” . Notice how, after approximately 43 dimensions the test error looks 

straighter in its decline -  implying th a t a constant “noise” factor is helping to reduce the test 

error. We carry out an extra toy experiment to  help assess whether or not this is true and to 

show that the sample compression bound can help indicate when the principal components have 

captured most of the actual data. The plot on the right of Figure 4.2 depicts the results of a toy 

experiment where we randomly sampled 1000 examples with 450 dimensions from a Gaussian 

distribution with zero mean and unit variance. We then multiplied the first 50 dimensions with 

large numbers (using exponentially decreasing factors) and the remaining 400 dimensions with 

a small constant noise factor (very small number). This caused the first 50 dimensions to have 

much larger eigenvalues than the remaining 400. From the right plot of Figure 4.2 we see that 

the test residual keeps dropping after 50 basis vectors have been added with small decrements. 

The compression bound picks 46 dimensions with the largest eigenvalues and fails to  pick the 

final 4, however, the PCA bound of Shawe-Taylor et al. [2005] is much more optimistic and is 

at its lowest point only after 30 basis vectors, implying th a t it has captured most of the data 

in 30 dimensions. Therefore, as well as being tighter and non-trivial, the compression bound 

is much better at predicting the best choice for the number of dimensions to  use with sparse 

KPCA. Note th a t we carry out this experiment without randomly permuting the projections 

into a subspace because SKPCA is rotation invariant and will always pick out the principal 

components with the largest eigenvalues.

Boadpftlar9«»U(MPCA

0 *0 2D 30 <0 50 SO 70 ®  N  100 110 120 130 140 ISO
imi

Figure 4.2: Bound plots for sparse kernel PCA comparing the sample compression bound pro­
posed in this chapter and the already existing PCA bound.
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4.2 Kernel canonical correlation analysis

77

The theoretical work we proposed in the earlier sections together with the practical implemen­

tations motivates this section.

In this section we introduce a sparse canonical correlation analysis algorithm in the dual.

a primal view and then proceed towards its dual counterpart.

We first derive a sparse version of kernel canonical correlation and present it as a function

i. The initial algorithm lays the foundations to  become our “gold standard” . However, its

practical. Therefore, we improve the speed of the algorithm with a m atching pursuit algorithm 

th a t corresponds to the Algorithm 8 of KPCA and also introduce an approxim ation method to 

gain extra computational advantage. We give a brief overview of canonical correlation analysis 

(CCA) and kernel canonical correlation analysis (KCCA), but s ta rt the discussion w ith a small 

example to  motivate the reason why two views of the same data may be im portant.

In canonical correlation analysis we seek to  find the maximum correlation between two 

different views of the same object. For instance, we may have the same book in English and 

French. The two views are the two different languages and the objective of CCA in this case 

would be to find the features th a t are maximally correlated between the two languages. In this 

way we would hope to extract features th a t bring out the underlying semantic content.

Let S  =  { (x i ,y i )} ^ 1 be a sample containing inpu t^ -inpu ty  pairs where each x* and y * 

are row vectors of length n, and let Px : x  x Tw x and Py : y  i—> y Tw y be the  projections of 

each input into spaces defined by w x and w y. The idea of canonical correlation analysis (CCA) 

is to maximise the correlation corr(Px (X.), Py (Y )) between the d a ta  in their corresponding 

projection space. Taking the maximum correlation of these two projections reduces to the 

following maximisation problem:

matrices of X  and Y , respectively.

The above maximisation problem can be evaluated by solving a generalised eigenproblem

In doing so, we point out why we cannot use the theory of section 4.1 and must use the theory 

of section 3.11 to  bound the generalisation error of this new KCCA variant. We also show th a t 

the algorithm is similar in spirit to  KM P and sparse KPCA. Firstly, we discuss the work from

(see Function 9). Then we are left with the issue of how to choose the set of basis vectors

naive implementation leads to  an inefficient algorithm th a t must be refined in order for it to  be

P max
Wx , wy

w J X TY w y
(4.9)

^ /w J X TX w xw J Y TY w y

m»Y w j  CxyWy

where G xy = C yx is the covariance m atrix between X  and Y  and C xx and C yy the covariance
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of the form:

A w  =  ABw, (4.10)

0 C  x y Wx
=  A

C x x 0 w x

C y X 0
.  w y .

0 ^ y y .  .

where (w,A) are the eigenvector-eigenvalue pair corresponding to the solution and A, B  are 

square matrices. The CCA generalised eigenproblem can be w ritten as:

(4.11)

The fact th a t this problem only looks for linear relationships in data  and does not tackle non­

linear data  sets limits its use in many contexts. By applying the kernel trick, several authors [Lai 

and Fyfe, 2000, Bach and Jordan, 2003] have proposed a kernel version of canonical correlation 

analysis in order to  tackle non-linear relations.

Let us map each training example to  a higher dimension using a feature mapping 0  : x  i-> 

0(x). In the case of a linear kernel each n-dimensional vector x  is mapped with the identity 

0(x) =  x  th a t corresponds to  the following kernel m atrix K x =  X X T . Therefore by making 

substitutions w x =  X Ta x and w.

Y Y t  with K y we get the following kernel CCA maximisation problem,

y — Y  OLy in Equation (4.9) and replacing X X  with K x and

a l K l K  „ o l
max y'-'-y

,ay o cJ K JK xa xa J K j K yocy

which can be solved as the following generalised eigenproblem,

0 K

K y x

x y

0

OLx
= A

1

H 
tO 0 ocx

O Ly 0 K? .
O Ly

(4.12)

K yKy. Note th a t anywhere ICXy — I£xI£y, ICyX — IC^ICX — ICXy, I^x — I^x^^x and -Ky 

kernel can be used in the above setting.

The solution of the above eigenproblem may lead to  overfitting (see Hardoon et al. [2004], 

Shawe-Taylor and Cristianini [2004]) and to avoid this the following regularised version has been 

proposed,

(4.13)

where 0 <  r x, r y < 1 are regularisation param eters th a t each penalise the norms of the 

weight vectors w x and w y, respectively. The solution of the generalised eigenproblem is of 

order 0 ( m 3) complexity. Another downside is th a t the amount of data  needed is twice the size 

of the kernel matrices. These problems have been tackled by reducing to solving a standard 

eigenproblem which saves on memory but the overall saving in time complexity is not significant.

1

H

o

i

OLx
=  A

( 1  -  tx )K% +  txK x 0 O L x

r

K H O

i .  a y  .
0  ( 1 - T y ) K l  +  T y K y  _ O Ly
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Also, Gram Schmidt orthogonalisation procedures have been used to  tackle these problems. 

However, analysing data  sets w ith more than  10,000 d ata  points is typically a real challenge 

with any of these variants of KCCA. We now present methods th a t deliver dual sparsity which 

result in fast training/testing times and tractab ility  for larger data  sets.

4.2.1 Sparse kernel canonical correlation analysis

We would like to construct (dual) sparse kernel canonical correlation analysis (SKCCA) al­

gorithms. By sparsity we m ean using a small subset of basis vectors from the sample 

(x j,y i) ,i  =  l , . . . , m .  The sparse index set of basis vectors will be contained in an index 

vector i. Following earlier notation for sparse PCA the sparse CCA problem can be expressed 

as:

w I X t Y w .
m ax y

^ /w j  X TX w xw J Y TY w y

where w x € span{X [i,:]} and w y 6 span{Y [i,:]}. This equation can be converted into its dual 

by taking advantage of the fact th a t the primal weight vectors can be w ritten in term s of a 

linear combination of the training examples and the dual weight vectors:

W, =  X [i ,:] a „  

=  Y[i, :]Td y.

(4.14)

(4.15)

We can substitute these two expressions into the CCA problem:

d j x [ i ,  :]XTY Y [i,:]Td „
p =  max

Y /dJX Ji, :]XTX X[i, :]YTY Y [i, :]Td y

Furthermore, we have K x[:,i] =  XX [i, :]T and K y[:,i] =  Y Y [i, :]T , therefore we have the 

sparse kernel CCA problem:

m ax
I jO l j  i y

&x K x[:, i] K y[:,i]d:y 

yjocx K 2 [i,i]d xd jK 2 [ i , i ] a y

where d x and a y are sparse dual eigenvectors. This leads to, for fixed i, the sparse KCCA 

generalised eigenproblem of the form

(4.16)

Therefore, the solution of Equation (4.16) will yield a sparse set of eigenvectors from which 

to make the projection into the common space. Function sparseKCCA describes how to solve the 

problem and is the sparse KCCA algorithm th a t we will use throughout the chapter, whenever 

we are given two kernels K x, K y and a (small) index set i. Notice the similarities between

0 Ii-xy [b l] d x
=  A

k £M 0

K yx[i,i] 0 OLy 0 KJM _ C t y
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Equation (4.16) and Equation (4.12) given for KCCA. Firstly, the forms are identical when i is 

the full set of training examples. However, as we will restrict i to  be much smaller, we will only 

require the solution from square kernel m atrices of size d x  d where d =  |i|. Finally, note th a t 

our sparse eigenproblem given by Equation (4.16) is in the “un-regularised” form of the KCCA 

problem. However, we will show in the experiments th a t sparsity is in fact a more robust form 

of regularisation for KCCA as opposed to  the standard method given in Equation (4.13).

F u n c tio n  sparseKCCA(Kx, K y, i)

l: set X  =  K x[:, i]T and Y  =  K„[:, i]T 
2: create sparse m atrices K xx =  X X  
3: solve the following generalised eigenvalue problem:
2: create sparse m atrices K xx =  X X T , K.yy = Y Y T , K xy =  X Y T and K yx =  K Jy

0 O L x =  A
K xx 0 O L x

K y x 0 0 K - y y  . O Ly

O u tp u t :  sparse eigenvectors a x, 6cy and eigenvalues A.

Now th a t we have described the sparseKCCA algorithm we tu rn  our attention to finding 

the best sparse index set i of training examples to use in conjunction with the sparse KCCA.

4.2.2 C hoosing the best i (slow m ethod)

We describe an algorithm th a t chooses the best index set i from the entire set of basis vectors in 

a greedy fashion. We seek a low dimensional subspace as the span of a set i of training examples, 

using the corresponding subsets for the projections in the spaces X  and y .  The criterion for 

extending the subspace is to  choose the example for which the correlation com puted when 

projecting all of the data into the corresponding subspaces is maximal. This corresponds to  a 

greedy optimisation of this criterion.

One approach is to look a t the addition of each basis vector, in turn , and to  run the 

sparseKCCA using this set of chosen basis vectors. A basis vector whose sparse KCCA solution 

yields the largest eigenvalue is added to  the set and this process repeated up to a sparsity 

parameter d. This simple greedy strategy results in Algorithm 10.

This simple algorithm has one major problem: its complexity is cubic in the number of 

training points. This is a larger complexity than  we are willing to  accept. Therefore, we would 

like an approach similar to SKPCA and KMP when looking for these basis vectors. A more 

com putationally efficient approach for choosing basis vectors can be given by looking at the idea 

behind the sparse KPCA algorithm of Algorithm 8.

4.2.3 C hoosing the best i (fast m ethod)

Using a similar strategy to Smola and Scholkopf [2000] we now show th a t maximising the 

quotient of the CCA problem leads to  a fast method for choosing basis vectors. However, after 

picking a basis vector (unlike algorithm 10) we must project into a space orthogonal to it, and 

describe a deflation step th a t guarantees future basis vectors chosen are orthogonal to all others. 

We would like to construct a very fast calculation th a t enables us to quickly find basis
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A lgorithm  10: A greedy algorithm for choosing basis vectors ( “gold standard”) 
Input: two views K x, K y, sparsity param eter d > 0. 

l: initialise i =  [ ] and j  =  [1, . . . ,  m\
2: for i =  l to  d do  
3: for j  =  1 to |j| do
4: set ii =  j j  such th a t i only contains the chosen indices
5. run sparseKCCA(Kx, K y, i) to  find eigenvalues A in decreasing order
6: if  A j is the largest found so far th en
7: set besti =  j
8: end  if
9: end for

10: update ij =  foest* with the index of the best basis vector found
ll: remove index jbestt from j
12: end for
13: run sparseKCCA (K x, K y, i) with final i to  find d x, a ty and A 
O utput: eigenvectors d x , 6t y .

vectors. We take a similar approach to  Algorithm 8 which implies the maximisation of the 

generalised Rayleigh quotient,

e.TK xK uei
max pi =    y.......... , (4.17)

yJ e j K l e , e j K l e i

where e t is the 2th  unit vector. At each iteration we look to find the basis vector th a t maximises 

the quotient given by Equation (4.17). Once it has been chosen then the following orthogo­

nality procedure (deflation) is carried out to make sure future chosen bases are sufficiently far 

(geometrically) from those already added to the set i.

Initially, at the first step j  = 1, let K£ =  K x and =  K y denote the deflated kernel

matrices at the j th  iteration. To find the deflated matrices at step j  +  1 we use the KMP 

deflation given in line 8 of Algorithm 7:

K  i +1 =  K  (4.18)

(4.19)

where r x =  K£[:,ij] and Ty = K ^[:,ij] such th a t j  = | i| , >  0 and ij is the last element 

added to vector i and I is the identity m atrix. This procedure is repeated until d basis vectors 

have been chosen. This protocol is described in Algorithm 11. Notice the similarities between 

this algorithm and Algorithm 8 which uses the same procedure of quotient maximisation  and 

deflation in order to evaluate a sparse kernel principal components analysis.

4.2.4 A  generalisation error bound for sparse kernel canonical corre­

lation analysis

The compression bound for SKPCA cannot be applied in the SKCCA setting because the basis 

vectors chosen in order to produce the common subspace requires the full information of the
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A lg o rith m  11: A fast greedy algorithm  for choosing basis vectors 
In p u t:  Two views K x, K y, sparsity param eter d > 0.

1: initialise i =  [ ]
2: for i =  1 to d d o
3: find im p rovem en t =

4: se t i i to  th e  in d ex  o f  m a x { im p r o v e m e n t}
5: se t r x =  K x [:, i»] an d  r y = K y[:, i<]
6: deflate kernel m atrices like so:

K x

7. e n d  for
8: run sparseKCCA (K x ,K y ,i)  with final i to  find d x, cty and A 

O u tp u t :  index vector i, and eigenvectors d x, dty

training set. However, from the type of analysis we made earlier for KM P we can upper bound 

the future loss of sparse KCCA.

To help keep the notation for the following bound consistent with the bound introduced for 

KM P we make the following definitions. We denote the input*  sample as S x  and similarly the 

input y sample as S y . Therefore, two training samples consisting of paired d a ta  sets from the 

joint space X  x y  will be denoted as S X x y  = S x  U S y . We denote the index set of the chosen 

basis vectors as i and also S X x y  will denote the paired samples indexed by vector i. Earlier we 

denoted Px to be the projection from inpu t*  but here use the notation f x to  denote the same 

projection function. We make the same change in the notation of the Py function.

We would also like to remind the reader th a t the primal weight vectors w x and w y for 

each view are 1-dimensional weight vectors for some given dimension i € {1, . . .  ,d}.  Finally, 

analogously to Definition 3.1 we now define the loss functional th a t will be used for the SKCCA 

bound.

D efin itio n  4.1. Let S Xx y  ~  V  be a paired training sample from  a fixed but unknown distri­

bution V . Given the projection functions f x =  / X(x) =  w j x  and f y =  f y (y) = w ^ y and the 

error e r( f x , f y) =  |w jx  — w jy | =  | / X(x) — / y(y)| fo r the paired data points x  and y  we can 

define, fo r  some fixed positive scalar a  e R, the corresponding true classification loss as

era{fxJ y )  = P r ( | / X(x) -  / y(y)| > a } .
(x,y)~Z>

Similarly, we can define the corresponding empirical classification loss as

T rT ,
T ' T n

T„TV  y K 7

era { f x J y) =  e ^ * Xy( f x , f y) = , P r { |/X(x) -  /„ (y ) | > a}
(x,y)~S'<x-v

=  E ( x , y ) ^ x y  ( I  ( | / r ( x )  — A(y)| >  Of)} ,
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where I  is the indicator function and S X x ^  is suppressed when clear from context.

Given this definition we would like to  upper bound the true classification loss with the 

information gained from the empirical classification loss. We can proceed in much the same 

way as was done for KMP but w ith the difference th a t the weight vectors w z and w y are the 

vectors th a t allow a projection into a single dimension. Giving a bound on the loss of the 

two corresponding projections Px and Py onto each dimension found. By making this style of 

analysis we can simply adapt the KM P bound as follows.

T h e o re m  4.5 . Fix a  € R, a  >  0. Let A  be the SKCCA algorithm, m  the size o f the paired 

training sets S X x y  and d the cardinality o f the set i of chosen basis vectors. Let S X x ^  be 

reordered so that the last m  — d points are outside o f the set l and define t =  —

f y( y l )\ > a )  to be the number o f errors fo r  those points in S X x y  n  S X x y . Then with probability 

1 — 8 over the generation o f the paired training sets S X x y  the expected loss S [£(■)} o f algorithm 

A  can be bounded by,

projection w z and w y . This corresponds to a regression loss and can be m apped it into its 

corresponding classification loss using Definition 4.1. Therefore by constraining the weight 

vectors to  be 1-dimensional and using this loss functional we can proceed in the same manner

This bound can only work on each dimension of the projections found. In order to  get a

We have plotted the bound against the true classification loss found between test points 

x  and y  projected into 1-dimensional subspaces found by KCCA and averaged over all the

see all bound plots look very similar in shape (with some slight orientation) to the test error, 

with the plot on the the top left being the most similar.

£M -4(S))] <

Proof. We can trea t the loss between w J  x  and w J  y  as a regression loss

( w z (4.20)

where we would want (4.20) to  be 0 (or the zero function) for all x  and y  and every dimension

as the proof of Theorem 3.9. □

bound for the entire subspace found by SKCCA we would require a union bound over the whole 

d dimensional subspace -  which would greatly loosen the bound. We do not include this bound 

here.

dimensions. The bound plots are given in Figure 4.3, and each plot corresponds to a different 

split of the training and testing data. The bounds have also been scaled down by a factor of 5 

in order to  show both plots closer together (the bounds become trivial early on). As you can
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Figure 4.3: Plot of SKCCA bound against its test error for different splits of the data. We used 
500 examples for training and the 300 for testing. Bound was scaled down by a factor of 5 and 
a  =  0.00095.

4.2.5 Choosing a set i (faster m ethod)

Interestingly the bound of the previous section only requires a small subset of chosen basis 

vectors i in order to  make the sparse reconstruction of the joint subspace in kernel canonical 

correlation analysis. This indicates th a t the bound is not algorithm-specific and th a t any set 

of chosen basis vectors i would give an upper bound on the generalisation error. We could 

randomly select basis vectors but this doesn’t  seem to  generate good solutions.

Another alternative is to compute the Rayleigh quotient of Equation (4.17) once and then 

choose the d indices generating the largest correlation values of the Rayleigh quotient. Clearly 

the bound still holds in this case and the algorithm has a constant complexity of 0 { m 2). This
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algorithm is described in Algorithm 12. We show in the next section th a t this algorithm competes 

in accuracy with the fast algorithm  of Algorithm 11.

A lgorithm  12: A faster greedy algorithm  for choosing basis vectors 
Input: Two views K x, K y, sparsity param eter d > 0. 

l: initialise i =  [ ]

2: find improvement =  ((K(^ ^ (^ j )Tl)
3: set i to the index of the largest d values of improvement 
4: run sparseKCCA (K x ,K y , i)  w ith final i to find d x, a y and A 

O utput: index vector i, and eigenvectors d x, a y

4.3 Experim ents
The experiments we conduct are for tex t retrieval tasks and compared against the KCCA al­

gorithm  using two different measures for small, medium and large sized data  sets. The results 

indicate comparable performance to  KCCA with the added advantage of faster running times.

The retrieval is assessed using m ate retrieval. The first measure is called the “window” 

measure and counts the number of times documents can be retrieved using their pair as a query. 

The window size we use is 10 and if the pair can be retrieved within the top 10 correlation 

values then we count the document as being retrieved, otherwise it is considered not to have 

been retrieved (error). However, a problem with this measure is th a t it does not take into 

account the positions from which the documents were retrieved. The second measure rectifies 

this problem and is called “average precision” and is the standard  average precision method 

employed in Information Retrieval tasks. Here we associate a weight for the position th a t a 

document may be retrieved from in the second language. Position 1 has the highest weight 

and position m (where m  is the number of test examples) has the lowest weight. The average 

precision sums up weights of the positions th a t the documents are retrieved from and takes an 

average as the final measure of retrieval rate. Clearly, the average precision measure is more 

robust because it takes into account the position of the docum ents retrieved. This is in contrast 

with the window method that is content with a document th a t is contained in the top 10 (say) 

highest correlation values.

D ata Set KCCA SKCCA SKCCA (faster)
train test total train test to tal train test to tal

Small
Medium
Large

8
1707

24693

20
1995

27733

28
3702

52426

9
334

5242

5
224
698

14
558
5940

2
59

1873

5
224
695

7
283

2568

Table 4.1: Training and test times in seconds for small, medium and large d ata  set sizes (English- 
Spanish data)

As you can see from Figures 4.4, 4.5 and 4.6 the KCCA algorithm requires different pa­

rameter values in order to produce stable results. Also, as the data  set sizes increase, so do 

the best param eter values, i.e., from 0.1 in the small data  set (Figure 4.4) to 0.75 in the larger
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Figure 4.4: A small data  set -  average test error for retrieval over 5 different splits of the 
data. Left: average error using window (method) of size 10. Right: average error using average 
precision.

Tnunng 3000 T«ong 1000

o
*
5

is

I

Figure 4.5: A medium sized data set -  average test error for retrieval over 5 different splits of 
the data. Left: average error using window (method) of size 10. Right: average error using 
average precision.

•

d ata  set (Figure 4.6). Moreover, we hypothesise th a t as the size of the data  set increases, so 

to  does the value of the regularisation parameter needed in order to  achieve good generalisa­

tion. However, the upper bound of this parameter value is 1 and when this value is reached 

then KCCA may start to generate trivial solutions and overfit (as was shown for the smaller 

param eter values in all three plots). We cannot however show th a t this hypothesis is correct 

for very large d ata  sets because it is not possible to  train KCCA on data sets with more than 

20000 training points (for instance). The experiments show th a t SKCCA is stable throughout 

the experiments with different sized data  sets, meaning th a t sparsity is a robust and efficient

80 100 120 140 160 180 200
Lm I of aparsty (runbar of draeftans (KCCA) or numter al In m  vedar* (SKCCA))

Tnvw* 3000 T«mg 1000
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Figure 4.6: A large sized data  set -  average test error for retrieval over 2 different splits of the 
data. Left: average error using window (method) of size 10. Right: average error using average 
precision.

way of regularising KCCA. Another im portant issue with these results is th a t although they 

show th a t KCCA obtains slightly better accuracy this improvement comes a t a cost, KCCA 

needs to  compute the projections onto an m  x d dimensional space where m are the number of 

training samples and d the dimension of the largest d correlation values. However, our SKCCA 

only needs to compute a projection into a d x d subspace. In the large d ata  set results (see 

Fig. 4.6) we can see that projecting into a 7000 x 500 dimensional space is far more costly than 

a 500 x 500 dimenisonal space, as is the case for SKCCA. The faster times are confirmed in 

Table 4.1 where SKCCA is up to 10 times faster than SKCCA and up to 20 times faster with 

SKCCA (faster). However, the testing time for both is almost a factor of 40 faster than  KCCA. 

Therefore, SKCCA can be used in situations where large data  sets are intractable for KCCA to 

both train and test on. Also, the fact th a t SKCCA is an iterative algorithm means th a t it does 

not rely on storing the full kernel m atrix in memory and has very fast testing times once the 

sparse set of basis vectors have been chosen.

4.4 Summary
We proposed the first sample compression bound for a subspace method called sparse kernel 

principal components analysis (SKPCA) and proved th a t the algorithm is a sample compression 

scheme. We also tested the sample compression bound proposed against the bound of Shawe- 

Taylor et al. [2005] on the Boston housing data  set and showed th a t it was considerably tighter 

and non-trivial. Also, a toy experiment demonstrated th a t the compression bound is a better 

candidate for model selection than the KPCA bound and is able to  indicate when most of the 

true data  has been captured with SKPCA.

Next we exploited the property th a t maximising the Rayleigh quotient and deflating the
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kernel m atrix can speed up sparse KPCA  to  propose the first matching pursuit style algorithm for 

kernel canonical correlation analysis called sparse kernel canonical correlation analysis (SKCCA). 

We bounded the loss of SKCCA using the  same argument we had made for KMP in C hapter 3 

and provided a generalisation error bound th a t also relied on the level of sparsity achieved by 

the algorithm. We gave plots of the  bound proposed which showed for a particular choice of c* 

th a t we could achieve bounds w ith similar shapes to the test error.

Finally, we ended by giving experim ental results for the SKCCA algorithm on text retrieval 

tasks. We tested against the KCCA algorithm  for small, medium and large d ata  sets, showing 

competitive retrieval accuracy but large increases in com putational time complexity.
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Chapter 5

Conclusions

We have taken the reader on a journey th a t looked at machine learning algorithms and tech­

niques to  help enforce sparsity. We promoted many of its merits through experimentation and 

theoretical analyses, and maintained a similar algorithmic approach across the different learning 

domains to  help deliver sparsity i.e., by using a greedy algorithm to build up predictive functions 

until some term ination criteria was reached. This simple protocol was capable of producing very 

powerful learning algorithms to help tackle machine learning problems using a small number of 

training samples (kernel basis vectors). However, as is the nature of research the work presented 

is in no way complete or finished and there remain many areas for future work. We outline some 

of the more im portant issues we feel have been raised from the work conducted in this thesis.

5.1 Further work

The classification section described the set covering machine (SCM) algorithm and proposed 

variants called the BSCM, BBSCM and BBSCM (r) and showed th a t they are considerably 

sparser than  the well known support vector machine (SVM). However, even though the SCM 

has some very nice properties like tight generalisation error bounds and sparsity it does not 

seem to be very well known or popular as an alternative classification algorithm to the SVM. 

We feel th a t new application areas for the SCM are needed in order to show its m erits on a 

wider class of problems -  for instance using kernels, applying it to  other problem domains such 

as Bioinformatics or in situations where we believe th a t the target* function is made up of a 

small number of features. Showing th a t the algorithm is advantageous in different scenarios 

could potentially increase the popularity of the algorithm. Also, an implementation th a t is 

readily available is also a future research direction and something th a t we hope to  carry out, 

by making the algorithms in the thesis available as a standalone C + +  library together with a 

MATLAB interface. This would certainly allow more users access to the algorithms without 

having to program it explicitly. Another im portant issue is th a t for the SCM to be more 

popular it may need to  tackle problems other than  classification, such as novelty detection 

and regression. Hopefully, keeping all the SCM benefits and competing with other well known 

algorithms in these problem domains. There have been extensions and improvements made to



5.1. Further work 90

the set covering machine (SCM) (see M archand et al. [2003], Laviolette et al. [2006], Hussain 

et al. [2004]) but all the experimental work to  date has been on the UCI data  sets. Although 

this thesis made no attem pt at addressing these issues we feel th a t it is now of param ount 

im portance to  try  and tackle a larger class of problems with the SCM to help gauge its merits 

and advantages over other learning algorithms.

The BBSCM algorithm ’s experim ental results have been disappointing. Although we proved 

theoretically that the algorithm would find the smallest bound, we also showed for the Votes 

data set th a t this does not indicate the  smallest test error. In some cases, bounds with larger 

values gave the smallest test error. This certainly is not what we expected. The bounds clearly 

find functions th a t yield small test error but not in the situations where we would hope, i.e., 

when the bounds were the smallest. The bound proposed in this thesis looked for sparser 

solutions (in most cases creating hypotheses with one ball) but the previous bounds (not relying 

on bounding the positive and negative examples separately) created less sparse solutions. In 

some cases the one ball hypotheses gave the smallest test error, in others it gave the worst. It 

would be interesting to  analyse why these bounds have such behaviour. Perhaps they need some 

sort of interaction amongst one another? Maybe applying the bound proposed for the first ball 

chosen and then switching to one of the other bounds for the remaining choice of balls would 

help avoid the “one ball” situation of the bound of Theorem 3.5. Another more pressing issue 

is th a t the BBSCM algorithm, with all the pruning strategies we employed, was only capable of 

improving the running times (over a full search) by a factor of 2. This was not nearly enough to 

be able to tackle larger data  sets. A future research direction for the BBSCM would be to  prune 

further the search space, although we would need to be able to prove (as we did in the thesis) 

th a t the deletion of such balls would never help create a smaller generalisation error bound.

The regression section th a t described the KMP algorithm introduced a novel theoretical 

analysis justifying the performance of the algorithm in term s of the level of sparsity achieved. 

However, as these bounds become trivial early on, what have we gained? The point of general­

isation error bounds can be two-fold. One is to understand the level of learning th a t is possible 

(i.e., tight bounds) the second is to  help in model selection (i.e., follow the test error shape). 

The bounds certainly help in model selection situations but do not deliver tight bounds. A 

research direction would be to tighten these bounds by using a more natural loss function for 

regression such as least squares. Tighter bounds would certainly give us more confidence in the 

final regressors computed, such as in medical data  analysis situations where we would like to be 

confident th a t our mistakes won’t be worse than  some (small) upper bound. This would also 

tighten the SKCCA bound proposed.

The KM P and SKCCA algorithms both look for dual sparsity and hence require the full set 

of training examples in order to compute the final prediction functions. This seems somewhat 

at odds w ith the sparsity property we desired at the start of the thesis. We required a small 

number of training points in order to reconstruct our functions but in the KMP and SKCCA case
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we need a small number of kernel basis vectors but not a small number of examples. In order 

to enforce this type of sparsity we could choose a small number of training examples and use 

the remaining points as a test set -  much like the sample compression framework of learning. 

The bounds would certainly be tigh t and we would no longer require the full set of training 

d a ta  as is the case currently. However, the  problem with this regime is th a t we could not take 

advantage of the “maximise a quotient and deflate” procedure we have been so dependent on 

throughout the second half of the thesis. This is because we would need to evaluate a loss on the 

points remaining outside of the compression set, which the maximisation of a quotient would 

not give us. Therefore, we would lose our natural speed-up for the sparse kernel algorithms 

we described in this thesis. Therefore, a m ethod for achieving similar levels of computational 

speed-ups during training would certainly be a fruitful area of research.

We believe th a t the SKCCA algorithm  can be applied to real world and very large data  sets. 

One issue is storing the full kernel m atrix in memory where for larger data  sets this can become 

a problem. However because the SKCCA algorithm is an incremental algorithm th a t adds kernel 

basis vectors one at a time, we can attem pt at tackling larger data  sets. For instance, methods 

such as sub-sampling would greatly decrease the com putational effort needed to  store kernel 

matrices and compute KCCA on very large d a ta  sets and so we consider the experim entation 

on very large real world d ata  sets for SKCCA an im portant future research direction.

As a final remark we would like to  point out th a t the unsupervised learning and regression 

section all used the same framework of matching pursuit, where a greedy algorithm  is used 

to build up functions in order to  evaluate some target. Although KMP and SKPCA already 

existed, we provided a more coherent framework and clearer connections between the m atching 

pursuit algorithms in machine learning. The main principle was to maximise some function (i.e., 

Rayleigh quotient), deflate the kernel matrices and then repeat until some stopping criterion 

was reached. This simple framework allowed us to  pose the KCCA algorithm in a matching 

pursuit format and also describe bounds on its generalisation error. We feel th a t the matching 

pursuit framework is not only restricted to  these problem domains and a future research direction 

would be to apply the framework presented to a wider class of problem domains such as novelty 

detection and multi-view learning. We hope th a t the work presented in this thesis will help 

motivate research in this direction. •
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