
REFERENCE ONLY

UNIVERSITY OF LONDON THESIS

Degree Year Name of Author

ft?
COPYRIGHT
This is a thesis accepted for a Higher Degree of the University of London. It is an 
unpublished typescript and the copyright is held by the author. All persons consulting 
the thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author and 
that no quotation from it or information derived from it may be published without the 
prior written consent of the author.

Theses may not be lent to individuals, but the Senate  House Library may lend a copy 
to approved libraries within the United Kingdom, for consultation solely on the 
premises of those libraries. Application should be m ade to: Inter-Library Loans, 
Senate House Library, S en a te  House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London th e se s  may not be reproduced without explicit written 
permission from the S en a te  H ouse Library. Enquiries should be addressed  to the 
Theses Section of the Library. Regulations concerning reproduction vary according 
to the date of acceptance of the thesis and are listed below as  guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the 
author. (The S en a te  H ouse Library will provide a d d resse s  where possible).

B. 1962 - 1974. In many c a s e s  the author has  agreed to permit copying upon 
completion of a Copyright Declaration.

C. 1975 - 1988. Most th e se s  may be copied upon completion of a Copyright 
Declaration.

D. 1989 onwards. Most th e se s  may be copied.

This thesis comes within category D.

This copy has been  deposited in the Library of

This copy has been  deposited in the Senate  House Library, S enate  House,

LOANS

Malet Street, London WC1E 7HU.





The molecular and functional genetics of 
Bardet-Biedl syndrome

Bethan Elinor Hoskins

Molecular Medicine Unit 

Institute o f  Child Health, London

A thesis submitted for the degree o f  Doctor o f  Philosophy to 

the University o f  London

September, 2004



UMI Number: U591727

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U591727
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Abstract

Bardet-Biedl Syndrome (BBS) is a rare genetic disease comprising obesity, retinal 

dystrophy, polydactyly and renal abnormalities. When this study began there were six 

known loci for BBS, only one of which, BBS6, had been identified. The initial aims of the 

project were to find BBS genes by screening of candidate genes within the known 

intervals and performing a genome wide screen using previously unlinked patients.

During the time of this project three of the known BBS loci (BBSI, 2 and 4) have been 

identified and a further two novel genes (BBS7 and 8) have also been cloned. BBS was 

previously thought to be a recessive disease, but through mutation screening of all BBS 

genes in our cohort of 160 patients we have found evidence for complex inheritance 

involving the requirement for three mutations; a homozygous mutation in one BBS gene 

and a further heterozygous mutation at a second BBS locus, to manifest disease in some 

families.

As a quick and cheap alternative to sequencing for mutation detection, I developed the 

technique of multiplex capillary heteroduplex analysis (MCHA) which is now in routine 

use for screening new BBS cases. To determine the possible function of the BBS4 

protein, a yeast-two-hybrid screen was undertaken to identify interactors of BBS4. 

Pericentriolar Material 1 (PCM1), one of the potential interactors, also co-localises with 

the protein at the centriolar satellites of centrosomes and basal bodies of primary cilia. 

The BBS8 protein, which shares homology with BBS4 also localises to the basal body 

and, from immunohistochemistry experiments using the BBS8 antibody, has been shown 

to be expressed in ciliated tissues such as kidney, retina, brain and spermatids, 

implicating basal body dysfunction in the aetiology of BBS.

During the course of my studies, we have progressed from a handful of genetic loci to the 

determination of the putative protein function which may pave the way to the design of 

future therapies.
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Chapter 1 Introduction

Bardet-Biedl syndrome (BBS) is a rare, multisystem genetic disorder displaying both a 

highly variable phenotype and considerable genetic heterogeneity. Despite first being 

reported almost a century ago, the underlying genetic or biochemical defect leading to the 

manifestation o f the features of BBS was not known. It is only within the last five years, with 

the recent cloning o f several B B S  genes that it has been possible to propose a likely 

mechanism that, when defective, results in BBS.

1.1 History

The occurrence o f retinitis pigmentosa (RP), hypogenitalism and mental retardation was first 

reported almost 150 years ago by Laurence and Moon (1866). Over half a century later, and 

quite independently, George Bardet (1920) reported the case o f two siblings suffering from 

RP, polydactyly, hypogenitalism and obesity, followed in 1922 by a short case report from 

Arthur Biedl (1922) on siblings with RP, polydactyly, hypogenitalism, obesity and mental 

retardation. Initially the condition was known as Bardet-Biedl syndrome, however, in 1925, 

on the recommendation o f Solis-Cohen and Weiss (1925), the name Laurence-Moon-Bardet- 

Biedl or Laurence-M oon-Biedl syndrome was commonly used. It was only following a 

review o f the literature by Ammann (1970) that essential differences between the cases 

reported by Laurence and Moon, and those reported by Bardet and Biedl were highlighted, 

prompting a split in the nomenclature. The four siblings reported by Laurence and Moon 

developed a spastic paraparesis and there was no mention o f obesity or polydactyly in these 

patients.

In 1969 Klein and Ammann (1969), following a study o f 57 BBS cases in Switzerland, 

published the first clinical and genetic population-based survey o f BBS patients. Twenty-six 

o f the patients (45.6%) were classified as ‘com plete’ cases manifesting the five cardinal 

features of the disease: RP, obesity, polydactyly, hypogenitalism and mental retardation. The
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remaining patients were classified as in com ple te ' (19.3%; one or two cardinal features 

missing), ‘abortive’ (10.5%; only one or two cardinal features present), ‘atypical’ (8.8%; the 

ocular phenotype was som ething other than RP such as optic atrophy, m yopia or 

anophthalmia) or undetermined type (15.8%).

Initial diagnostic criteria for BBS were set out in 1982 by Schachat and Maumenee (1982). 

They recommended that four o f the five cardinal signs reported by Klein and Ammann 

(1969) be present for a diagnosis o f BBS to be made. They did propose however, that retinal 

degeneration be an essential requirement for diagnosis and suggested that in its absence, a 

diagnosis o f Prader-Willi syndrome (PWS) should be considered. As the renal component o f 

BBS was rarely noted before 1980, it was not until several years after it was initially reported 

(Bauman and Hogan, 1973) that it was suggested as a cardinal feature o f the disease in 

reports by Churchill et al. (1981) and Green et al. (1989). In the latter report, a study o f 32 

patients on the Island o f Newfoundland, 21 patients were studied in detail to establish the 

frequency o f both structural and functional renal abnormalities. All patients showed some 

form of abnormality, the most common structural features being abnormal calyces (in 95% of 

patients) and the persistence o f fetal lobulation (95%), and a defect in the ability to 

concentrate urine being the most common functional anomaly (14/17 tested; 82%). O f the 28 

patients that underwent an ophthalmic examination, 100% showed signs o f retinal dystrophy 

and all but one o f these patients were registered blind. Although this high incidence o f retinal 

disease is likely a true reflection o f the retinal involvement o f the syndrome, particularly in 

this geographically isolated population, it may also be influenced by an ascertainment bias as 

the patients in this study were primarily recruited through an Ocular Genetics Clinic. Fifty- 

eight percent of patients (18/31) had polydactyly, but when other digital abnormalities such 

as syndactyly and brachydactyly were also included, 90% o f patients were found to have 

dysmorphic extremities. Despite all patients showing signs o f inappropriate behaviour and 

shallow affect, less than half o f patients (41%) scored within the mentally retarded range on 

verbal and performance tests. Taking all o f their results into account, Green et al. (1989) 

suggested that the cardinal m anifestations o f BBS should be considered to be retinal 

dystrophy, dysmorphic extremities, obesity, hypogenitalism in males and renal disease.
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1.2 Diagnostic Criteria

The latest diagnostic criteria to be published are the first to incorporate the many secondary 

features that are often also seen in BBS cases. Beales et al. (1999) carried out a study o f 109 

patients, the largest survey o f living BBS patients ever conducted, to establish the frequency 

o f both the cardinal manifestations o f the disease, and the less common secondary features. 

As observed in other studies, the majority o f patients (102/109, 93%) had retinal dystrophy. 

The slightly lower frequency o f retinal disease in this report in comparison to that o f Green et 

al. (1989) is due to the fact that seven o f the patients, all below the age o f eight, did not have 

retinal dystrophy at the time o f study. Since the publishing o f this population survey, all 

patients have now developed RP resulting in a frequency o f 100% amongst UK BBS patients 

(P. Beales, Personal communication). Obesity was common in patients; 72% of post-pubertal 

subjects were overw eight according to the WHO body mass index classification 

(BMI>25kg/m2, where BMI = weight in kg (height in m)2) and 52% were obese 

(BMl>30kg/m2). Renal defects were reported in only 26 patients but, as only half o f the 

patients had had any kind o f radiological investigation, it is possible that some patients had a 

non-symptomatic structural renal defect o f which they would have been unaware. A variety 

o f secondary features were noted am ongst this population o f BBS patients including 

developmental delay, speech disorders, dental anomalies, ataxia or poor coordination, 

diabetes mellitus and behavioural problems. Beales et al. (1999) therefore recommended that 

the diagnostic criteria be modified to incorporate these findings and suggested that for a 

diagnosis o f BBS to be made there should be the presence o f either four primary features or 

three primary features and two secondary features (for a list o f primary and secondary 

features, see Table 1 .1). From this study the mean age at diagnosis was found to be nine 

years of age, despite some parents first noticing abnormalities in their children at the age o f 

three. A period o f six years between the initial development o f clinical signs and confirmed 

diagnosis is relatively long but is probably due to the late development o f some features of 

the disease, such as functional renal abnormalities and retinal dystrophy, and a possible 

reluctance o f clinicians to make a diagnosis o f BBS in the absence of a retinal phenotype.

19



Diagnostic criteria: Four primary features or
three primary and two secondary features________________________

Primary features
Rod-cone dystrophy (atypical retinitis pigmentosa)
Polydactyly
Obesity
Learning difficulties 
Hypogonadism in males 
Renal anomalies

Secondary features
Dental crowding/hypodontia/small roots/high arched palate
Brachydactyly/syndactyly
Speech disorders/delay
Strabismus/cataracts/astigmatism
Polyuria/polydipsia (nephrogenic diabetes insipidus)
Ataxia/poor coordination/imbalance
Left ventricular hypertrophy/congenital heart disease
Mild spasticity (especially lower limbs)
Diabetes mellitus 
Developmental delay 

_______ Hepatic fibrosis________________________________________

Table 1.1: Current diagnostic criteria for BBS, published by Beales et al. (1999)
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1.3 Demography and prevalence

BBS is a rare disease that is found throughout the world. The prevalence rate in the U S A 

and Northern Europe is between 1 in 100,000 and 1 in 160,000 (Beales et al., 1997; Croft et 

al., 1995; Klein and Ammann, 1969). However, high incidences o f BBS are found in two 

specific populations: the Bedouin tribes o f the M iddle East and on the island o f 

Newfoundland. The prevalence o f BBS in the mixed Arab population is estimated to be 1 in 

36,000, but a much higher incidence is seen in the Bedouin, particularly in Kuwait, where 

cases of BBS are as frequent as 1 in 13,500 live births (Farag and Teebi, 1989). The Bedouin 

are considered to be the most homogeneous Arab population due to the continued practice o f 

consanguineous marriage, with first-cousin marriages particularly common; consanguinity 

rates as high as 54.3% have been reported in Kuwait where over half the population is 

Bedouin (Al-Awadi et al., 1985). Newfoundland, located just o ff the coast o f Canada, is a 

large island with a population o f only 550,000 and a prevalence o f BBS o f 1 in 17,500 

(Parfrey et al., 2002). The island was settled in the late eighteenth and early nineteenth 

centuries by fishermen from the South-West coast o f England and the South-East coast o f 

Ireland. It has been estimated that 90% o f the current population are descended from the 

original 20,000 to 30,000 settlers (Bear et al., 1988; Young et al., 1999a). In addition to the 

geographic isolation o f the island, and the corresponding lack o f immigration, a poor road 

network has resulted in the majority o f families living in small communities o f less than 

2,500 with a high level o f kinship and possible consanguinity inferred from the marriage o f 

individuals with shared surnames

1.4 Primary Features

1.4.1 Retinal dystrophy

Rod-cone dystrophy (atypical retinitis pigmentosa) is a frequent finding in BBS patients 

(See Figure I. la). The retinal degeneration commonly begins with night-blindness, first
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noted by parents at a mean age o f 8.5 years, and progresses more rapidly than typical RP 

resulting in the patient being registered legally blind at a mean age o f 15.5 years in the UK 

BBS population (Beales et al., 1999). Results from the Swiss BBS study support this finding 

o f a more rapid rate o f retinal degeneration; Klein and Ammann (1969) reported that 86.4% 

of patients were registered blind by the age o f 30 in contrast to blindness occurring between 

the ages o f 40 to 50 as is the case in typical RP (predominantly autosomal dominant RP). As 

with most aspects o f the BBS phenotype, there is a degree o f both inter- and intrafamilial 

variation with respect to the age at which vision begins to deteriorate. In a study on the 

intrafamilial variation o f the BBS phenotype, Riise et al. (1997) found that amongst the 11 

families studied, first signs o f night-blindness developed at a mean age o f 4.6 years with a 

maximum intrafamilial variation o f +/- 6 years. There was a much larger degree o f variation 

seen in the age at which first signs o f  daytime visual impairment developed; the mean age 

was 6.6 years with a maximum variation o f  +/-14 years. There was also a noticeable 

difference in the pattern o f visual loss; in one family with three affected sibs, one sib 

developed nightblindness followed by daytime visual impairment (as is the case in most BBS 

patients), a second developed the symptoms in the reverse order and the third developed 

night and daytime visual impairment simultaneously. The significance o f these results 

however is hard to interpret as the sample size is very small and nightblindness is a largely 

subjective feature, which is difficult to measure.

In addition to retinal degeneration, other ocular abnormalities have been reported including 

strabismus, nystagmus, astigmatism, macular oedema and degeneration, cataracts, myopia 

and optic atrophy (Beales et al., 1999; Green et al., 1989; Klein and Ammann, 1969). Some 

o f these features were observed at a significant frequency and are now considered to be 

secondary features o f BBS (Beales et al., 1999) and may be present before the vision begins 

to deteriorate, allowing an earlier diagnosis (Musarella, 2001). An electroretinogram (ERG) 

is the investigation o f choice to study the retina o f patients. Although it can be hard to 

perform on infants, it may be altered as young as 14 months o f age and can therefore be used, 

in conjunction with support and advice, as a means o f preparing the child for an adult life 

without sight.
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1.4.2 Obesity

Obesity is a common finding in BBS but, as with the other features o f the disease, it is not 

universal. The extent o f  obesity varies betw een different studies due to different 

measurement criteria. Klein and Ammann (1969) reported obesity in 96% of their patients, 

classifying the obese as those that were above the 50th percentile for weight when plotted on 

weight distribution charts. Green et al. (1989) also plotted patient weights on percentile 

charts, in this case height-adjusted, but described only patients above the 90th percentile as 

overweight and therefore reported a slightly lower incidence o f obesity in Newfoundland 

patients (88%). The WHO classification system for obesity is based on the calculation o f the 

body mass index (BMI) that is an effective and non-invasive way o f assessing obesity, as the 

height o f the individual is incorporated into the calculation. Using this system, 72% o f 

patients in the Beales et al. study were overweight (BM I>25kg/m2) and 52% were obese 

(BMI>30kg/m2). In this study it was also found that male patients were significantly shorter 

than the general population (mean height o f male patients, 1.73m, compared to mean of 

general population, 1.76m), although female patients were also shorter than the general 

population, this difference was not significant (mean height o f  female patients, 1.62m, 

general population, 1 63m).

There are several genetic diseases including BBS, Prader-W illi (PW S) and AlstrOm 

syndromes that involve the association o f childhood obesity with hypogonadism, short 

stature and mental retardation. A child presenting with excess weight, normal intelligence 

and above average height for their age is more likely to be a case o f simple isolated obesity, 

it is therefore essential to determine the child’s height when considering the diagnosis o f a 

genetic condition (Kopelman, 1994). The aetiology o f the obesity seen in BBS is not known 

but it usually develops by the end o f the first year and continues into adulthood where it is 

predominantly localised to the trunk and proximal limbs (Figure 1.1b, Beales et al., 2004). In 

contrast to PWS patients, who have a substantially lower resting metabolic rate (RMR) in 

comparison to controls, a study o f the energy metabolism in BBS revealed that there were no 

significant differences in RMR, fat mass (FM) or fat-free mass (FFM) between a group o f 20 

BBS patients and 20 control subjects matched for age, gender and BMI (Grace et al., 2003). 

There was however, preliminary evidence in this study for a reduction in physical activity in
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the BBS group relative to controls, which is unsurprising considering the physical handicaps 

associated with BBS. There was also evidence for an increased energy intake amongst BBS 

patients.

In addition to the renal component o f the disease, obesity is one o f the largest causes o f 

morbidity and mortality in patients and is also associated with a number o f co-morbidities. In 

adults a BMI>28kg/m2 is linked to an increased risk o f several conditions, including 

ischaemic heart disease, stroke, diabetes, cancer and renal failure. Childhood obesity can lead 

to a low self-esteem, bullying, early puberty and hypertension. In addition, an increased risk 

o f death from cardiovascular disease has been observed in individuals whose BMI was above 

the 75th percentile for their age as an adolescent, whether or not the obesity persisted into 

adulthood (Kiess et al., 2001).

1.4.3 Renal abnormalities

The renal abnormalities in BBS can be structural; such as renal cysts, calyceal clubbing and 

fetal lobulation, functional; such as an inability to concentrate the urine, or both (Figure 1.1c, 

Beales et al., 1999; Harnett et al., 1988; Parfrey et al., 2002). Although not considered to be a 

cardinal manifestation o f BBS until the 1980s (Churchill et al., 1981; Green et al., 1989), 

Klein and Ammann (1969) did note renal abnormalities in some patients, including cystic 

kidneys in three o f the 57 patients in their study (5.26%). A study on the spectrum o f renal 

disease amongst the BBS population on Newfoundland in 1988 (Harnett et al., 1988) found 

that although the majority o f patients had a structural and/or functional abnormality, only 

15% of patients suffered from a marked symptomatic renal impairment. Hypertension and 

frequent urinary tract infections are also common in patients and must be well managed in 

order to preserve renal function for as long as possible.

The kidneys o f a BBS patient can show an altered appearance on ultrasound very early in life 

and, in some cases, prenatally (Cassart et al., 2004). Dippell and Varlam (1998) performed 

serial renal ultrasound examinations from birth on a group o f seven patients from five
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different families to study the changes in the renal appearance o f patients in the first few 

months and years o f life. At birth six patients had a renal volume in relation to body weight 

above the 97th percentile and all seven patients exhibited marked hyperechogenicity o f the 

parenchyma. Over the initial 12 months, the kidneys lost their growth potential and by the 

end o f the first year were below the 10th percentile for renal volume. In two patients this loss 

o f renal mass continued until at least five years o f  age. The finding o f large hyperechogenic 

kidneys, particularly in association with polydactyly, on a prenatal ultrasound scan can 

indicate an affected fetus and be used as a means o f prenatal diagnosis in an at-risk 

pregnancy (Dar et al., 2001; Gershoni-Baruch et al., 1992); however, as neither renal 

abnormalities nor polydactyly are universal features o f the disease, the absence o f  both 

features does not guarantee a healthy fetus.

Reports o f the percentage o f BBS patients to develop end-stage renal disease (ESRD) vary; 

Beales et al. (1999) reported ESRD in only 5% o f patients (6/109, four o f these six patients 

were children), Harnett et al. (1988) reported ESRD in 15% o f patients (3/20) and O ’Dea et 

al. (1996) estimate that 25% o f patients will have developed ESRD by the age o f 48 years. In 

patients with ESRD, hospital-based haemodialysis is the preferred treatment as the obesity, 

reduced manual dexterity and low IQ o f  BBS patients make home peritoneal dialysis a 

difficult option (Collins et al., 1994). There have been reports o f successful renal transplant 

in several patients (Beales et al., 2004; Collins et al., 1994; Norden et al., 1991); however the 

renal transplant can lead to complications caused by other features o f BBS. Both patients 

reported by Collins et al. (1994) had stable renal function post-transplant but were unable to 

control their weight due to hyperphagia, often seen in BBS patients, being exacerbated by the 

steroids used after transplantation. The transplant patient reported by Devarajan (1995) also 

suffered with morbid obesity post-transplant, despite not having suffered with it on initial 

presentation, and, having contracted three urinary tract infections in the six weeks after 

transplant, was found to be suffering from complex genital malformations that had not been 

detected previously. Considering these potential complications it is important to ensure that a 

thorough examination, including genitourinary anatomy, is performed prior to a transplant 

being given and that minimal steroids are used to maintain the transplanted organ. A new 

generation o f anti-rejection drugs that are now available should help to elevate some o f the 

problems experienced with the use o f high levels o f steroids.
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Figure 1 .1 : Primary features o f BBS. a) Fundoscopy from a 32 year old patient 
showing rod-cone dystrophy, b) Truncal obesity, c) Abdominal CT scan o f an 11- 
year-old patient, showing irregular shaped kidneys with multiple cysts, d) Postaxial 
polydactyly o f the hand, e) Hypogonadism.
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1.4.4 Polydactyly

Polydactyly of one or more limbs was seen in 69% of patients in both the Swiss and UK 

studies (Beales et al., 1999, Klein and Ammann, 1969). The extra digit can vary from a 

simple skin tag to a fully formed digit (Figure 1. Id, Beales et al., 2004) and is almost always 

postaxial, although there have been occasional reports o f preaxial polydactyly involving a 

bifid thumb (Klein and Ammann, 1969; Manouvrier-Hanu et al., 1999). In the UK study, 

21% of patients exhibited polydactyly o f all four limbs and polydactyly involving only the 

feet (21%) was almost three times more common than polydactyly involving only the hands 

(8%), findings similar to those of Green et al (1989) and Klein and Ammann (1969). There is 

extensive variation in the number and position o f extra digits. O f the 34 patients in the UK 

study that did not have polydactyly, almost half o f these (16/34) had affected sibs with 

polydactyly and in a case of monozygotic male twins, one twin had polydactyly o f three 

limbs whereas the other had no polydactyly (Beales et al., 1999). Carmi et al. (1995a) have 

suggested that there is a genotype-phenotype relationship involving the extent o f 

polydactyly; 11 of 12 BBS3 linked patients from their study had an extra digit on all four 

limbs, while the polydactyly observed in patients linked to BBS4  was predom inantly 

restricted to the hands. These results however may not be universal; only a single family was 

studied for each genetic locus and later studies involving a larger number o f families have 

not supported this observation (Riise et al., 1997).

Other limb abnormalities include brachydactyly o f the hands and feet (Figure 1. 2a), partial 

syndactyly (particularly involving the 2nd and 3rd toes), fifth finger clinodactyly and a large 

‘sandal’ gap between the 1st and 2nd toes (Beales et al., 1999; Green et al., 1989; Klein and 

Ammann, 1969).

1.4.5 Genital abnormalities

Hypogenitalism is more frequently reported in BBS males than females but despite the easier 

diagnosis in males, it is not thought that this accounts for all o f the excess (Klein and
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mentally retarded and reported observing ‘mild feeble-mindedness’ (mild mental retardation) 

in just over half o f both male and female patients. Sixty-two percent o f UK BBS patients 

were considered to be mentally retarded and half o f these had received special education of 

some form (Beales et al., 1999). Despite a difference in the frequency o f mental retardation 

in their studies, Beales et al. (1999) and Green et al. (1989) both reported altered behaviour 

in the majority o f patients including volatile outbursts, emotional immaturity and shallow 

affect. A more detailed study o f the behavioural phenotype and IQ o f 21 BBS children (ages 

ranged from three to 18 years) conducted by Barnett et al. (2002) confirmed the presence o f 

atypical behavioural traits in young patients and mild to moderate mental retardation in the 

majority o f cases (11/21 (52.4%) o f children had a Full Scale IQ in the mental retardation 

range). Cases o f parents reporting internalising problems such as withdrawal, anxiety and 

depressed mood were common amongst this study group and the preference for routines in 

many patients was reported to have a negative impact on family life. Two o f the 21 patients 

in this study were in the mild to moderate range and a further two were in the severe range 

for autism.
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Figure 1. 2: Secondary characteristics o f BBS. a) Brachydactyly of the hands (note 
also the scarring from the removal o f extra digits), b) High-arched palate, c) 
Examples of the characteristic face associated with BBS.
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1.5 Secondary features

In addition to a detailed study o f the cardinal features o f BBS, Beales et al. (1999) also 

described several secondary features o f  the disease, seen at varying frequencies within their 

patient cohort. These secondary features included:

Motor defects

Forty-three patients (39.4%) showed signs o f ataxia and poor coordination. Young patients 

appear clumsy and adults tend to have poor balance.

Developmental delay

H alf o f  patients were developmentally delayed and late in reaching milestones. Thirty-four 

male patients (31.2%) were also late in passing through puberty.

Dental Anomalies

Dental anomalies, including dental crowding, small teeth and enamel hypoplasia are common 

in BBS (Borgstrom et al., 1996; Kobrin et al., 1990). A high-arched palate is also present in 

the majority o f patients (Figure 1.2b), Beales et al., 1999).

Speech deficits

Speech therapy was required in 54% o f  patients to correct a vocal or speech defect. The voice 

is high-pitched w ith a breathy quality  with oral and palatal movements appearing 

uncoordinated.

Hearing loss

Twenty-one percent o f patients suffered with hearing loss as a result o f chronic glue ear, but 

in the majority o f  cases this had resolved by puberty. Three other patients (2.8%) had an 

unexplained sensorineural hearing loss and five patients (8.8%) with a progressive nerve 

deafness were also noted in the Swiss study (Klein and Ammann, 1969).
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Diabetes melhtus

Six percent of UK patients had non-insulin dependent diabetes mellitus (NIDDM) (Beales et 

al., 1999). Klein and Ammann (1969) and Green et a l  (1989) also reported NIDDM in 8.8% 

and 45% of patients respectively. The much higher frequency within the Newfoundland 

cohort is likely to be the most accurate estimate o f NIDDM in BBS as a fasting glucose 

tolerance test was carried out on all patients as part o f the study; in both the Swiss and UK 

studies, as only a minority o f patients had undergone such testing, it is possible that a number 

o f patients had undetected glucose intolerance or NIDDM.

Hypertension

Hypertension has been noted in several studies, although at very different frequencies. Klein 

and Ammann (1969) and Beales et al. (1999) reported low frequencies o f 1.8% and 8% 

respectively, whereas Green et al. (1989) report hypertension in 62% o f patients. This 

discrepancy may be due to the increased incidence o f renal disease within the Newfoundland 

cohort and may also be influenced by different measurement techniques.

( Characteristic face

As is the case with some other genetic syndromes there may be a characteristic face 

associated with BBS as proposed by Beales et al. (1999) and supported by Lorda-Sanchez et 

al. (2001); many patients have deep set eyes, hypertelorism, a long philtrum, thin upper lip 

and a prominent forehead with early frontal balding in male patients (Figure 1. 2c).

1.6 Consanguinity rates

BBS is a rare autosomal recessive disease with considerably higher frequencies in the 

Bedouin o f Kuwait and on the island o f Newfoundland, where consanguinity rates are high. 

In her review o f previously published cases o f BBS, Bell (1958) reported a consanguinity 

rate of 39% amongst parents o f patients, slightly higher than that reported on Newfoundland 

(Green et al., 1989). A surprisingly high rate o f consanguinity was observed in the Swiss 

BBS study; consanguinity was reported in 20 o f the 38 sibships (52.6%) described by Klein
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and Ammann (1969). This high rate is explained by the distribution o f many o f their families 

in isolated areas where consanguinity is likely to be much higher than the more populated 

regions o f Switzerland. As expected due to the outbred nature o f the British population, a low 

rate o f consanguinity (8.0%) was seen in the UK BBS cohort (Beales et al., 1999).

1.7 Heterozygous effects

Partial disease manifestations o f BBS have been reported in some obligate heterozygous 

relatives o f BBS patients. Through their study o f 109 UK BBS patients, Beales et al. (2000) 

also observed an increased incidence o f both clear cell renal cell carcinoma (CC-RCC) in 

parents, and renal malformations in unaffected sibs o f BBS patients. In a study o f 180 

parents, three (1.67%) were found to have CC-RCC. None o f the parents fell into a high-risk 

category for renal carcinoma such as the obese, smokers and those on chronic dialysis and all 

three parents were below 55 years o f age at which point the risk o f renal carcinoma rises 

sharply. The general population risk o f  developing CC-RCC below the age o f 55 is 1 in 

1041; therefore, the relative cumulative risk to parents o f BBS patients is 17 times higher 

than that o f the general population. In the same study, the incidence o f unilateral renal 

agenesis (2/123) was 20 times higher in siblings o f patients than in the general population. 

An increase in the incidence o f obesity in BBS heterozygote parents has also been reported. 

A study by Croft and Swift (1990) on a single extended family showed an increased 

incidence o f obesity, renal disease, hypertension and NIDDM in relatives o f four BBS 

affected sibs. The authors suggested that this high frequency o f features o f BBS is a result o f 

partial disease manifestations in the heterozygous state, but also acknowledge that the 

hypertension and diabetes in these individuals may be present merely as a consequence o f 

their obesity. In a later study by the same group (Croft et al., 1995), the proportion o f 

severely overweight fathers (26.7% ) am ongst the 34 parents studied was found to be 

significantly higher than in comparably aged American males (8.9%). However, this higher 

incidence of obesity in fathers was not observed in the considerably larger study o f the UK 

BBS population by Beales et al (1999). An increased incidence o f hypertension was also 

seen in the Croft et al. (1995) study but was not significant. As obesity was the only factor to
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be more prevalent in both studies, Croft et al. (1995) concluded that the cases o f 

hypertension, NIDDM and renal disease observed in the initial study must have been linked 

to something other than the BBS gene segregating in that family.

A high incidence o f rare recessive diseases in isolated populations is often explained by a 

founder effect with genetic drift but in certain cases other factors, in particular selection, 

must also play a part in maintaining these diseases at high frequencies in isolated populations 

(Zlotogora, 1998). The high prevalence o f BBS on the island o f Newfoundland can not be the 

result o f a single founder effect due to the occurrence o f both genetic and allelic 

heterogeneity among BBS patients on the island (See 1.9.1 Mapping o f  BBS 1-5). It has 

therefore been proposed that one reason for the high frequency o f BBS is past selection for 

heterozygous individuals based on their ability to store fat under the adverse conditions often 

seen in the harsh winters on Newfoundland. To determine if  the BBS1  gene (the high 

frequency o f which is likely due to a founder effect) is linked to obesity on the island, 200 

obese and 200 non-obese subjects were screened for the presence o f heterozygous BBS1 

mutations (Fan et al., 2004b). Although three o f the 200 obese subjects (1.5%) were found to 

be heterozygous for the M390R mutation (the most common mutation in BBS1 that accounts 

for approximately 80% of cases o f BBS1), the mutation was also seen in heterozygous form 

in three subjects from the non-obese cohort, indicating that this mutation is not linked to 

obesity in the general population o f Newfoundland. In the same study the BMI o f obligate 

heterozygous carriers o f BBS1 mutations were studied and compared to the BMI o f non- 

carriers; no significant difference in BMI was found between carriers and non-carriers.

1.8 Related syndromes

The combination of the late onset o f some o f the features o f BBS, such as renal disease and 

loss o f vision, and the existence o f  other genetic syndromes with sim ilar cardinal 

manifestations can lead to confusion amongst clinicians and the possibility o f misdiagnosis.

34



Differential diagnoses include:

• Laurence-Moon syndrome -  As described earlier (see 1.1 H istory) there has been 

confusion for many years as to whether the conditions described by Laurence and 

Moon (1866), and those described by Bardet (1920) and Biedl (1922) are distinct 

entities or are in fact the same disease. At the current time the conditions are 

considered to be separate based on the presence o f spastic paraparesis and the absence 

of obesity and polydactyly in Laurence-Moon patients.

• McKusick-Kaufman syndrome (MKKS) -  MKKS occurs in both sexes but is more 

common in females. It is usually diagnosed in infancy and is characterised by the 

presence o f postaxial polydactyly, hydrometrocolpos and, in 10-20% of patients, 

congenital heart defects (David et al., 1999). In affected males the features are limited 

to polydactyly and occasionally genital anomalies such as micropenis or hypospadias. 

Cases o f BBS that present at birth or in infancy with polydactyly and 

hydrometrocolpos may be misdiagnosed as MKKS if no follow-up to assess for the 

later development o f additional features o f BBS is performed. To avoid misdiagnosis, 

Slavotinek and Biesecker (2000) recommended that a diagnosis o f MKKS not be 

made in a sporadic female infant with hydrometrocolpos and polydactyly until five 

years o f age, following monitoring o f the infant for development o f further features o f 

BBS.

• Alstrom syndrome -  Alstrom syndrome shares several features with BBS including 

truncal obesity, atypical retinitis pigm entosa and renal dysplasia but can be 

distinguished from BBS by the presence o f a sensorineural hearing loss in 70% of 

patients and NIDDM in most patients (Beales et al., 2004). Other secondary features 

o f  Alstrom  syndrom e not reported  in BBS include acanthosis nigricans, 

hypertriglyceridemia and skeletal abnormalities (Dyer et al., 1994).

• Biemond II syndrome -  Another syndrom e involving the features o f obesity, 

polydactyly, hypogenitalism and mental retardation is the Biemond II syndrome. The 

substitution o f iris coloboma for retinitis pigmentosa and the additional feature o f
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dwarfism in this condition should ensure that there is little confusion between the 

diagnosis of Biemond II syndrome and BBS (Schachat and Maumenee, 1982).

1.9 The Genetics of BBS

BBS is an autosomal recessive, single gene disorder. It was initially expected that mutations 

at a single locus would account for all cases o f BBS but early linkage studies demonstrated 

the existence o f genetic heterogeneity that has lead to the mapping, and subsequent cloning, 

of several BBS genes.

1.9.1 Mapping of BBS1-5

The first BBS  gene was mapped in 1993 by Kwitek-Black et al. (1993). Two large inbred 

Bedouin kindreds from the Negev region in Israel were used in the linkage study; pedigree l 

contained nine affected members and pedigree 2, twelve. Both families were therefore large 

enough to be used independently for linkage analysis. The initial stage o f the linkage study 

was to exclude loci that are known to be associated with heritable retinal disease as RP is one 

o f the most common cardinal features o f  BBS (see 1.4.1 Retinal dystrophy). Loci that were 

studied included RP loci on chromosomes 7 and 8, Usher’s syndrome loci on chromosomes 

1, 11 and 14, the rhodopsin locus on chromosome 3 and the B est’s disease locus on 

chromosome 11. All loci were excluded in both BBS families and a genome wide screen was 

carried out in pedigree 1 with linkage found to chromosome 16q21. All affected individuals 

in the pedigree were homozygous for marker D16S408 and a lod score o f  4.2 at a 

recombination fraction o f 0 (0 = 0) confirmed statistically significant linkage to this area. 

Individuals in pedigree 2 were then haplotyped to test for linkage to 16q21 in the second 

kindred. The locus was found to be excluded in this pedigree, giving evidence for locus 

heterogeneity in BBS. As it was registered second, this locus was designated BBS2.
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In 1994 the second BBS locus, BBS1, was mapped by Leppert et al. (1994) using 31 outbred 

North American pedigrees. Twenty-nine o f the pedigrees were o f North European descent 

and three, Hispanic. A genome screen was carried out and a second BBS locus was mapped, 

with 17 o f the 31 families showing linkage to 11 q 13 with a lod score of 4.31. The 14 families 

that were excluded from BBSJ were also excluded from the previously mapped BBS2 locus 

giving evidence for the existence o f at least a third locus. No combination or severity o f traits 

were identified that could distinguish the BBS1  linked pedigrees from those that were 

unlinked, indicating that linkage to a particular locus could not be inferred by phenotype.

BBS3 was also mapped in 1994 to chromosome 3 p l2-13 by Sheffield et al. (1994) using 

conventional linkage analysis in a large inbred Bedouin pedigree. The family used in this 

linkage study was also used to test the pooled DNA approach to mapping recessive diseases 

in inbred populations. This approach to gene mapping works on the assumption that in 

isolated inbred populations most, or all, o f the affected individuals will share a common 

chromosomal region that is associated with the disease due to identity by descent (IBD) from 

a common ancestor (Figure 1. 3). Equal amounts o f DNA from all the affected members o f 

the pedigree are pooled and used as a template for PCR using polymorphic markers. Two 

control pools, one containing unaffected siblings and the other containing the parents o f the 

patients, are also generated and amplified with the markers. Markers that are not linked to the 

disease locus will have multiple alleles in the patient DNA pool, similar to the mixed alleles 

o f the control pools. Markers that are linked to the disease locus however, will show a shift 

towards a single allele, that is likely to be associated with the disease, and will differ from the 

control pools. If a shift in allele frequencies between the patient and control pools is seen for 

markers, the individual members o f the pedigree are genotyped for the markers, and those 

that flank them, and a lod score calculated. This DNA pooling strategy was also used to 

successfully map BBS4 to chromosome 15q23 (Carmi et al., 1995b).

In 1999, Woods et al. (1999) carried out a survey o f 17 Newfoundland families to investigate 

the high prevalence o f BBS seen on the island and to establish whether, as anticipated, it is 

the result o f a single gene founder effect. All families were genotyped using markers 

spanning the critical intervals o f  the four known loci and lod scores calculated. 

Unexpectedly, linkage to several loci was found indicating that the high frequency o f BBS on
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the island is not due to a founder effect. Three of the families were assigned to BBS1, one to 

BBS2, one to BBS3, six were excluded from all four loci and linkage results for the remaining 

six pedigrees were inconclusive and they could therefore not be assigned to any known locus. 

The family that was assigned to BBS3 was the first family of North European descent to be 

linked to this locus, which had previously only been reported in a single consanguineous 

Bedouin family. One o f the six families that were excluded from all loci was used to perform 

a genome-wide screen for the fifth BBS locus, the first locus to be mapped in a large inbred 

family o f European ancestry. The DNA pooling approach described by Sheffield et al. (1994) 

was used, and linkage to chromosome 2q31 was found, with all affected members o f the 

pedigree being homozygous by descent (HBD) for an ancestral haplotype spanning 13 cM 

(Young et al., 1999a).

ii
Figure 1. 3: Identity-by-descent (IBD). The affected individual is homozygous, or 
identical by descent, for the disease-associated haplotype (red), inherited from his 
great-grandfather.

38



1.9.2 Cloning of BBS genes

In the last four years considerable progress has been made in the cloning o f the genes 

responsible for BBS. A candidate gene approach, for the identification o f known loci, and an 

alternative homology-based approach, to identify novel genes through their homology to 

known BBS genes, have both been successful.

1.9.2.1 Positional Cloning of BBS6

The BBS6 gene was the last B B S  gene to be mapped to a chromosomal locus using 

conventional linkage analysis, and also the first BBS  gene to be cloned. Following the 

identification of several Newfoundland families that were unlinked to BBSI-5  (Woods et al., 

1999), a genome screen to map a sixth BBS  locus was carried out using the DNA pooling 

method in a single unlinked consanguineous pedigree with two affected individuals (Katsanis 

et al., 2000). A 3 :1 reduction o f alleles was seen from the control pool to the affected pool 

with marker D20S189 on chromosome 20pl2 . The remaining four pedigrees were also 

genotyped for D20S189 with a cumulative lod score o f 3.92, indicating a new BBS  locus on 

20pl2. To delineate the BBS6  critical interval further, all Newfoundland pedigrees were 

genotyped for 20p markers; a l.9cM  critical interval was identified between markers 

D20S185 and D20S189. Evidence o f a founder effect within BBS6 families was found as the 

haplotype o f one o f the disease-carrying chromosomes in pedigrees NF-Bl and NF-B5 

matched that of pedigrees NF-B3 and NF-B4.

Shortly before the mapping of BBS6 , the gene that, when mutated, causes MKKS was cloned 

(Stone et al., 2000). Given the clinical overlap between MKKS and BBS (See l.H Related 

syndromes), and the concordant mapping position, it was hypothesized that MKKS  was a 

candidate gene for BBS6 (Katsanis et al., 2000; Slavotinek et al., 2000). To test this 

hypothesis, mutation screening o f all coding exons and splice junctions o f the MKKS  gene 

was carried out in the five Newfoundland families. Several coding region alterations were 

found. The affected individuals in pedigrees NF-B3 and NF-B4 were homozygous for a lbp 

deletion (c.280delT) that results in a frameshift and premature termination o f the protein at
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codon 103 (F94fsX103). This deletion was also seen in heterozygous form in NF-B1 and NF- 

B5, supporting the haplotype inferred prediction o f a common ancestral chromosome in these 

four pedigrees. The other disease-associated allele in NF-B1 was a complex frameshift 

mutation, c.429 430delCT + 433_435delAG (D143fsX157), and in NF-B5, was a c.830T>C 

transition (L277P) that was not seen in 234 control chromosomes. The identification of 

mutations in MKKS in five Newfoundland families prompted mutational analysis o f this gene 

in 37 families o f North American or European origin. Mutations were found in two o f these 

pedigrees. In pedigree AR237 a homozygous c,110A>G (Y37C) mutation was found to 

segregate with the disease, this mutation had previously been reported in heterozygous form 

in an MKKS patient (Stone et al., 2000). Although MKKS mutations account for only 5-7% 

o f BBS cases in North America and Europe, they account for 34% o f BBS seen on 

Newfoundland, making BBS6 the second most prevalent locus on the island after B B S1 . 

MKKS is tenfold less prevalent than BBS and has not been reported in the Newfoundland 

population, suggesting that most m utations in M KKS  result in BBS whereas milder, 

hypomorphic alleles result in MKKS. Slavotinek et al. (2000) also found MKKS mutations in 

four unrelated BBS probands providing an independent confirmation that MKKS was the first 

gene to be associated with BBS. The MKKS protein shows similarity to type II chaperonins 

that are responsible for folding a range o f proteins. Alterations that change the shape o f the 

molecule or truncations o f the protein are likely to affect or abolish the ability o f the MKKS 

protein to fold target peptides.

In order to delineate the critical intervals for the BBS  loci, and determine the involvement o f 

BBS6 , Beales et al. (2001) conducted genetic and mutational analyses o f a cohort o f 163 

pedigrees from diverse ethnic backgrounds. The critical interval o f BBS1 had previously been 

refined to a genetic distance o f  2.9cM by linkage and haplotype analysis in 91 pedigrees 

(Katsanis et al., 1999), but intervals for some o f the other loci remained large. The B B S2 

interval was substantially reduced from thel8cM  interval previously published by Kwitek- 

Black et a /.(1 9 9 3 )to  2cM, by haplotype analysis o f eight linked pedigrees. The BBS3 

interval was also reduced from 6cM to 2cM by analysis o f two pedigrees that were consistent 

with linkage to 3pl3. The inclusion o f four Turkish pedigrees and one Pakistani pedigree in 

the haplotype analysis o f BBS4  meant that it was possible to refine the 2cM interval to a 

distance o f 1.3cM. It was not possible to reduce the BBSS critical interval o f 13cM, although
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with 3 pedigrees showing linkage to 2q31 it provided independent confirmation o f this locus 

that had previously only been described in a single Newfoundland pedigree. Strong evidence 

for a seventh BBS locus was provided by this study, as 14% of pedigrees were unlinked to 

any of the six known loci.

All 163 pedigrees were also screened for mutations in M KKS , regardless of any haplotype 

inferred chromosomal assignment. In eight pedigrees, missense alterations were found that 

segregated with the disease and were not present in a minimum of 188 control chromosomes. 

In seven o f these pedigrees, despite good coverage o f the open reading frame (ORF) o f the 

gene, and splice junctions, only one mutation was identified. One o f the heterozygous 

alterations, c.724 G>T (A242S) in pedigree B14, has also been reported in conjunction with 

an H84Y (c.250C>T) mutation in an MKKS patient (Stone et al., 2000), suggesting that it is 

a pathogenic mutation. Haplotype analysis o f B14 showed that both the affected and 

unaffected sibs had identical 2 0 p l2  haplotypes, but that the affected sib was also 

homozygous across the BBS2 interval (Figure 1. 4). The A242S (c.724G>T) allele was seen 

once in 142 Newfoundland controls, but not in 188 North American controls. These findings 

suggested that either the A242S is a very rare polymorphism or that BBS may not follow the 

classical model o f recessive inheritance.
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Figure 1. 4: Haplotype analysis o f  pedigree B14. Affected (03) and unaffected (04) 
offspring have identical haplotypes across the BBS6 interval, but only 03 is IBD for 
the BBS2 locus (Beales et al., 2001).
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1.9.2.2 Identification of the second BBS gene; BBS2

The second BBS  gene to be identified was, BBS2  (Nishimura et al., 2001). BBS2 is a novel 

gene with 17 coding exons and a predicted protein product of 721 amino acids. The gene is 

widely expressed, with strongest expression in the fetal and adult kidney, and adult heart, 

skeletal muscle, thyroid, spinal cord and adrenal gland. Homozygous mutations in BBS2 

were found in two large inbred Bedouin families, one o f which was used to map the locus. 

The families had different haplotypes around the BBS2 locus suggesting that they harboured 

different mutations. In one family a Ibp deletion in exon 8 (c.940delA) was found to 

segregate with the disease; this frameshift causes truncation o f the protein at codon 324 

(1314fsX324). The deletion was not seen in 96 controls. Two sequence variants, both 

homozygous and present in cis, were found to segregate with the disease in the second 

family. A c.224T>G (V75G) non-conservative substitution that was thought to be the 

disease-causing mutation in this family, and a c.367A>G (1123V) change that, based on its 

conservative nature, was assumed not to be pathogenic, although the possibility that both 

alterations are required for disease cannot be ruled out. The identification o f mutations in 

BBS2 in these two linked families prompted the screening o f 18 unrelated probands o f which 

three (17%) were found to harbour BBS2  mutations including two nonsense mutations in 

exon 8, c.814C>T and c.823C>T (R272X and R275X), and a lbp  insertion in exon 10, 

c. 1206insA (R403fsX408) (Nishimura et al., 2001).

1.9.2.3 Identification of BBS4

The BBS4 gene, cloned by Mykytyn et al (2001), comprises 16 exons encoding a 519 amino 

acid protein. Like BBS2, BBS4 is a novel gene that is ubiquitously expressed with the highest 

levels o f expression in the kidney. Mutations in BBS4 were found in five consanguineous 

pedigrees that showed evidence o f linkage to chromosome 15q. The Bedouin kindred used to 

map the BBS4 locus harboured a homozygous missense mutation, c.884G>C, in exon 12 

(R295P), which was not present in 48 Bedouin controls. In an Italian pedigree, exons 3 and 4 

failed to amplify by PCR in affected patients suggesting a partial gene deletion. Primers were 

designed to amplify across the deleted region and sequencing o f the junction fragment
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revealed a complete deletion o f exons 3 and 4 (IV S2IV S5), resulting in a loss o f 48 codons. 

The same 6kb deletion was also found in an Israeli-Arab family. The two families did not 

share haplotypes suggesting that the mutation occurred independently in the two families, but 

the possibility o f a distantly related ancestor cannot be ruled out. The deletion breakpoints 

are within Alu  repeat elements in introns 2 and 4, it is therefore possible that the deletion is 

caused by unequal homologous recom bination between the A lu  repeats. In two other 

European families, mutations in the splice donor site o f exon 4 (c.220+lG>C) and the splice 

acceptor site o f exon 7 (c.406-2A>C) were found. In a single non-consanguineous BBS 

family that was screened for BBS4 mutations, a heterozygous 2bp insertion, c.585-586insTG, 

was found in exon 8 (V195fsX209) but a second mutation in this family was not identified.

1.9.2.4 Cloning of the most common BBS gene; BBS1

The initial critical interval for the BBSJ gene, mapped in 1994 (Leppert et al., 1994), was 

large at 26cM. Several studies attempted to narrow the interval and, through a combination of 

haplotype analysis in 91 pedigrees and linkage disequilibrium in the Newfoundland BBS 

population, a reduction o f the interval to just lcM  was published (Katsanis et al., 1999; 

Young et al., 1999b). Haplotype analysis by M ykytyn et al. (2002) in several extended 

families generated an alternative critical interval distal to, and not overlapping with, either 

the Young et al. (1999b) interval or the slightly larger Katsanis et al. (1999) interval. 

Mutation screening o f several candidate genes within this distal interval in a cohort o f 

patients resulted in the identification o f sequence alterations in a novel gene with 17 exons, 

now known as B B S I , which segregated with disease. M utations identified in affected 

individuals included a homozygous c. 1645G>T nonsense mutation in exon 16 (E549X) in a 

consanguineous Puerto Rican pedigree, a one base deletion in exon 10, c. 851 del A, resulting 

in a frameshift (Y284fsX288) and a common c.1169T>G missense mutation in exon 12 

(M390R, accounts for -80%  of cases o f BBSJ) seen in homozygous form in 16 pedigrees and 

in heterozygous form in a further six pedigrees. Results o f these mutation analyses confirmed 

that BBSJ is the most common BBS gene, as predicted by linkage analysis. A study o f the 

BBS1 protein sequence did not provide any clues as to the function o f the protein but it does
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show similarity to the BBS2 protein (BBS1 and BBS2 are 23% identical and 40% similar 

over an area of 192 amino acids).

1.9.2.5 Identification of a seventh BBS locus; BBS7

In contrast to the conventional approach to gene identification o f linkage mapping and 

positional cloning by candidate gene screening, the fifth BBS  gene to be cloned was 

identified through its similarity to the BBS2  gene (Badano et al., 2003a). Fragments o f the 

BBS2 peptide sequence were used to screen the conceptual translation o f the human EST 

database (dbEST); two genes with modest similarity to BBS2  were identified. One o f  the 

genes was independently found to be BBSJ (Mykytyn et al., 2002) and in the other, mutations 

including a 4bp deletion, c.709-7l4delAAGA (K237fsX296), and two missense mutations, 

c.968A>G and c.662C>T (H323R and T221I), were found to segregate with disease, 

resulting in this novel gene being named BBS7 , and designated as the seventh genetic locus 

to be associated with BBS (Badano et al., 2003a).

1.9.3 Further BBS loci

Despite the recent cloning o f five BBS  genes (BBSJ, 2, 4, 6 and 7), a large portion o f patients, 

possibly as many as half (Katsanis et al., 2001b), remain unlinked to any o f these known loci 

indicating the existence o f additional BBS  loci within the human genome. The extensive 

genetic heterogeneity seen in BBS and the relatively small contribution o f some o f the known 

genes to the syndrome may make identification o f additional BBS  loci by conventional 

methods difficult. A greater knowledge o f the function o f the known BBS proteins, the 

proteins with which they interact and how mutations in their respective genes can lead to an 

identical phenotype will likely assist the identification o f new BBS genes by more functional 

approaches, as was successfully done in the case o f BBS7 (Badano et al., 2003a).
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1.10 Aims of the project

Shortly before this project began, the first BBS  gene, BBS6 , was cloned. Initial aims o f this 

project were:

• To identify the known loci by screening o f candidate genes within the BBS1-5 critical 

intervals.

• To map novel BBS  loci through a genome-wide homozygosity screen in unlinked 

consanguineous pedigrees o f Indian, Pakistani and Turkish origin.

Within the first year o f the project the BBS2  gene was cloned by another group, followed 

shortly afterwards by the cloning o f BB S4 , 1 and 7. Cloning o f these BBS  genes resulted in 

the following additional aims o f the project:

• Mutation analysis o f all cloned BBS genes by direct sequencing in our patient cohort.

• Development o f a quicker and more cost-effective mutation detection technique for 

screening o f new BBS cases.

• Identification o f interactors o f the BBS4 protein by yeast-two-hybrid analysis.

• Cloning o f new BBS  genes using a novel homology based approach, followed by 

expression analysis o f the gene products.

45



Chapter 2 Materials and Methods

2.1 Materials

2.1.1 Reagents

All reagents were o f AnalaR grade and obtained from Sigma Aldrich or BDH unless 

otherwise stated. All solutions were made using Milli-Q purified water and autoclaved where 

appropriate.

2.1.1.1 Stock solutions

TBE 89mM Tris borate, 2.5mM EDTA (pH 8.3)

TE lOmM Tris-HCl, ImM EDTA (pH 8.0)

2.1.1.2 Gel loading buffers

Sucrose loading dye 1 28M sucrose, bromophenol blue

1 kb DNA ladder 0.1 pg/pl 1 kb ladder (Invitrogen) in TE

Genotyping loading buffer three parts deionised formamide, one part GS-500 TAMRA

size standard (Applied Biosystems), one part blue dextran

(50mg/ml)/EDTA (50mM)

2.1.1.3 Yeast media

YPAD broth 2% bacto-peptone, 1% bacto-yeast extract, after autoclaving, 2% filter-

sterilized glucose and 0.004% Adenine sulfate added
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IxTE/LiAc 

IxTE/LiAc/PEG 

Synthetic dropout 

broth (SD) 

Dropout mix

SD agar 

Rescue solution

0.01M Tris, 0.1M lithium acetate

IxTE/LiAc in 50% polyethylene glycol-400 (PEG)

0.67% bacto-yeast nitrogen base without amino acids, after 

autoclaving, dropout mix added

20mg/l Adenine sulfate, 20mg/l Uracil, 20mg/l L-Tryptophan, 20mg/l 

L-Histidine, 20mg/l L-Methionine, 60mg/l L-Leucine and 30mg/l L- 

Lysine (30mg/l)

SD broth with 2% bacto-agar added prior to autoclaving

2% Triton X-100, 1% SDS, 0.1M sodium chloride, 0 .0 1M Tris,

0.001M EDTA

2.1.1.4 Immunohistochemistry solutions

Cam oy’s fluid six parts absolute alcohol, three parts chloroform, one part acetic acid

Peroxidase block 3% hydrogen peroxide in 100% methanol

Block 10% goat serum, 1% BSA in PBS

PBT 0.1% Triton X-100 in PBS (Gibco-BRL Life Technologies)

2.1.2 DNA samples

A diagnosis o f BBS in all patients was made by a clinician, based on published diagnostic 

criteria (Beales et al., 1999; Green et al., 1989). Where possible, samples from unaffected 

siblings and parents were also taken. For all samples, informed consent was obtained from 

either the individual, or in the case o f a child, from a parent. DNA extraction from blood was 

either performed using the PUREGENE DNA Purification Kit (Gentra, see 2.2.1.1 DNA 

extraction), or was carried out by the DNA Diagnostic Lab o f Great Ormond Street Hospital. 

DNA samples from affected individuals were aliquoted at ~30ng/pl in a 96-well plate format 

for PCR amplification. DNA samples from NPHP patients were provided by Friedhelm 

Hildebrandt (University o f Michigan), diluted to ~20ng/pl.
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2.1.3 Primer design

Primers were designed to amplify the coding region o f B B S ! , 2, 4, 6, 7 and S using the 

Primer v3 program (www.genome.wi.mit.edu-cgi-hin primer primer3.cgi). Amplicons were 

designed to include the exon and 50-l00bp o f flanking intronic sequence to ensure complete 

coverage of both splice junctions. Amplicon lengths ranged from 2l3-543bp. For BBS2, 4 , 7 

and S each amplicon was designed to contain a single exon. In the case of BBSJ certain exons 

and surrounding introns were sufficiently short to incorporate two exons within a single 

amplicon; exons 2 and 3 were contained within a single amplicon, as were exons 4 and 5. In 

contrast, exons 3 and 6 of BBS6 were too large to be amplified in a single amplicon; four 

overlapping amplicons (3a, 3b, 3c and 3d) were designed to amplify exon 3 and two (6a and 

6b) were designed for exon 6.

Primers were then tested for prim er dim er formation or amplification o f non-specific 

products using Am plify v .2 .l softw are (B ill Engels, University o f  W isconsin, 

http: engels genetics wisc.edu amplify am plify). To increase the stability of some primers, 

M 13 tags (Forward-TGTAAAACGACGGCCAGT, reverse-CAGGAAACAGCTATGACC) 

were added. Primers were manufactured and purified using a standard high purity salt free 

(HSPF) procedure (MWG Biotech, Sigma Genosys). To adapt primer pairs for MCHA, the 

forward primer o f each primer pair was 5 ' end-labelled with either 6-FAM, HEX or TET 

(MWG Biotech, Sigma Genosys). For information on primer sequences, amplicon size, PCR 

conditions and colour of MCHA label, see Appendices 1-6.

2.1.4 Microsatellite markers

For the homozygosity screen, the ABI PRISM Linkage Mapping Set (ABI, Applied 

Biosystems) was primarily used. The set consisted o f 358 dinucleotide repeat markers 

distributed throughout the genome with an average spacing o f lOcM. The markers were 

organized into 28 panels based on expected allele size and colour o f fluorescent label (FAM, 

HEX or TET). In order to achieve the desired density o f markers, gaps caused by a failure of
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markers from the ABI set to amplify were filled, where possible, using trinucleotide and 

tetranucleotide markers from the Single Chromosome Scan Human Screening Set (RG, 

Research Genetics, Inc.). If further markers were required to increase the density in an area 

o f homozygosity, suitable markers in the area were identified using the Genome Database 

(GDB, \s w w .g d b .o rg). The primers, one o f which was fluorescently labelled, were 

manufactured according to standard methods (Sigma genosys, MWG biotech).

2.1.5 Yeast strain, bait and cDNA library

2.1.5.1 Yeast strain

The PJ69-4A strain o f Saccharomyces cercvisiae (James et al., 1996) was used as the host 

strain for the two-hybrid screen. The strain consists of three reporter genes, each under the 

control of individual GAL4-inducible promoters (GAL2-ADK2, GAL1-HIS3 and GAL7-lacZ). 

The genotype of the yeast is: MATa, ga l4A, ga/SOA, trp \-90 \,  leu2-3, ura2>-52, his3-200, 

GAL2-ADE2, LYS2::GAL1-H1S3, met2::GAL7-lacZ.

2.1.5.2 pGBDU-BBS4 bait plasmid

Full-length BBS4 cDNA was cloned into the multiple cloning site (MCS) of pGBDU (James 

et al., 1996) using EcoRl and BamHl sites, amplified and the plasmid extracted by Dr.Alison 

Ross.

2.1.5.3 cDNA library

The Human Kidney MATCHMAKER cDNA Library (Clontech) was used as the prey in the 

two-hybrid screen. The library consisted o f -3 .5 x l0 6 independent clones, ranging in size
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from 0.5-4.0kb. cDNA inserts were cloned into the CcoRI and ATwI sites of the MCS of the 

pACT2 vector. The vector contains a nutritional marker (IJH 12) for selection in yeast.

2.1.6 BBS antibodies

BBS4 and BBS8 polyclonal antibodies were generated and purified by CovalAb. Computer 

prediction software was used to select likely immunogenic peptide sequences which were 

then synthesised and conjugated to a carrier protein such as keyhole limpet hemacyanin 

(KLH) or bovine serum alubmin (BSA) before being used to immunise a rabbit. Peptides 

sequences were - QFPVSTESQKPRQKK (BBS4) and GFLRPSTQSGRPGTME (BBS8). 

Diluted antisera for both antibodies were used in immunohistochemical staining.
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2.2 Experimental procedures

2.2.1 General methods

2.2.1.1 DNA extraction from blood

Genomic DNA was extracted from 10ml o f whole blood using the PUREGENE DNA 

Purification Kit (Gentra) according to manufacturers instructions. Following pelleting and 

lysis o f white blood cells the sample was then treated with RNase A. The proteins were 

precipitated out and the supernatant mixed with 100% isopropanol to precipitate the DNA. 

Following washing o f the DNA pellet with 70% ethanol, the DNA was resuspended in DNA 

hydration solution and stored at -20°C.

2.2.1.2 PCR reactions

Standard PCR reactions were carried out in a 25pl volume containing 1.5mM M gCh, lOmM 

Tris, 40mM NaCl, 0.25mM spermidine, 200pM  o f each dNTP (Amersham Biosciences), 

5pmol o f each primer, 1U Taq polymerase (Bioline) and ~30ng o f genomic DNA. PCR 

reactions were carried out in a 96-well plate on a standard thermocycler (Eppendorf, Perkin 

Elmer, GRI). All primer pairs were initially tested on control genomic DNA using the 

Touchdown PCR program and optimised further (annealing temperature or magnesium 

concentration) where necessary. For difficult PCR reactions, the FAILSAFE PCR PreMix 

Selection Kit (Epicentre) was used. Primers were tested in a PCR reaction using the 

FAILSAFE Enzyme Mix with one o f 12 different buffers (2x FAILSAFE PCR PreMix A-L). 

The reaction mix was comprised o f two parts; a 12.5pi volume containing 5pmol o f each 

primer, 1.25U FAILSAFE Enzyme Mix and ~30ng o f genomic DNA, with 12.5pl o f PreMix 

A-L. Following testing of a primer pair with each o f the PreMixes, the PCR was repeated 

using a PreMix that gave a single strong PCR product on agarose gel electrophoresis.
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PCR programs used were either:

1. A two-step touchdown program (TD) o f 95°C for 5 minutes, followed by step 1: 10 

cycles comprising 94°C for 30 seconds, an initial annealing temperature o f 65°C for 30 

seconds set to decrease by 1°C per cycle, an extension o f 72°C for 30 seconds, followed 

by step 2: 25 cycles o f 94°C for 30 seconds, 55°C for 30 seconds and 72°C for 30 

seconds, followed by a final extension at 72°C for 10 minutes. Or,

2. A standard PCR program of 95°C for 2 minutes, followed by 30 cycles o f 95°C for 30 

seconds, an annealing temperature o f  either 55°C, 58°C, 61°C, 63°C or 71°C dependent 

on the fragment for 30 seconds, 72°C for 45 seconds, followed by a final extension step 

o f 72°C for 10 minutes. Or,

3. The FAILSAFE PCR program: 94°C for 1 minute followed by, 30 cycles o f 94°C for 30 

seconds and 72°C for 1 minute.

2.2.1.3 Agarose gel electrophoresis

To estimate the yield o f PCR reactions, a 5pi aliquot o f each reaction was added to 2 pi 

sucrose loading dye and run on a 1 % agarose gel (1 g electrophoresis grade agarose (Gibco- 

BRL Life Technologies) in 100ml of lxTE) with ethidium bromide at a final concentration of 

0.5pg/ml. To check that products were o f the correct size, a 5pi aliquot o f lkb  ladder was 

also run alongside the PCR products in a single well o f the gel.

2.2.1.4 Restriction digests

Following detection of a sequence alteration in a patient sample, the ‘Cut M ap’ function in 

the Sequencher v4.1 software (Genecodes) was used to determine if  the change affected any 

restriction sites around the alteration. If the change either created or abolished a restriction 

site, a restriction digest using the corresponding enzyme was carried out on the patient
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sample, a control DNA sample and also any available relatives o f the patient, to confirm the 

presence o f the change in the patient and correct segregation within the family. Digests were 

carried out in a 20pl volume containing 0.2pl bovine serum albumin (BSA), 20U enzyme 

(lOu/pl, New England Biolabs), 2pl enzyme reaction buffer (New England Biolabs), 5.8pl 

water and lOpl PCR product. After gentle mixing, the reactions were then incubated at the 

optimal temperature for the enzyme (either 37°C or 55°C) overnight. 5pl o f sucrose loading 

dye was added to the reaction and the whole volume run on a 2% low melting point agarose 

gel (2g NuSieve GTG low melting point agarose (FMC Bioproducts) in 100ml lxTE with 

0.5pg/ml ethidium bromide). Samples from the patient and any relatives were compared to 

the pattern o f bands seen in the control sample to confirm presence of the sequence change.

2.2.2 Homozygosity mapping

2.2.2.1 Amplification of markers

To amplify markers, the True Allele PCR mix (Applied Biosystems) was used in a 7.5pi 

reaction volume consisting o f 4.5pl True Allele PCR Mix, 2.5pmol o f each primer, 1.5pl 

water and ~30ng genomic DNA. The True Allele PCR program was used; an initial 

denaturation at 95°C for 12 minutes followed by a two step cycling program, step 1: 10 

cycles o f 94°C for 15 seconds, 55°C for 15 seconds and 72°C for 30 seconds, then step 2: 20 

cycles o f 89°C for 15 seconds, 55°C for 15 seconds and 72°C for 30 seconds, followed by a 

final extension o f 72°C for 10 minutes.

2.2.2.2 Pooling of markers

Markers were pooled according to the Panel Guide for the ABI PRISM m arker set or 

combined such that there was a minimum difference o f 20bp between the largest expected 

allele size for one marker and the smallest expected allele size for the following marker. For 

pooling, 2.5pl o f HEX and TET labelled markers and 1.5pl o f FAM labelled markers were
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combined in a clean sample plate. Following pooling, a 1.5pl aliquot o f the mix was then 

added to 3.5pi genotyping loading buffer.

2.2.2.3 Gel preparation for electrophoresis of samples

Markers were run on a 96-well 6% polyacrylamide gel on an ABI 377 sequencer (Applied 

Biosystems). Prior to pouring the gel, all apparatus including glass plates (36cm well-to-read 

distance), spacers and combs were thoroughly cleaned using warm water and a solution of 

Alconox detergent to remove all traces o f dirt and residual fluorescence. The plates were then 

rinsed in distilled water and allowed to air dry before the apparatus was assembled. The glass 

plates, separated by 0.4mm thick spacers, were placed in the frame and locked into position. 

To make the gel, 10.8g urea and 3ml 6% Long Ranger Gel Solution (BMA) were combined 

in a 30ml solution o f lx  TBE. The mix was then filter sterilized through a 150ml filter 

(Nalgene) using a vacuum pump. Just prior to pouring o f the gel, 150pl freshly prepared 10% 

ammonium persulphate (APS) and 21 pi TEMED (N,N,N’,N’- tetramethylethylenediamine, 

Gibco-BRL life technologies) were added to the gel mix to accelerate polymerisation o f the 

acrylamide. The mix was then injected between the glass plates using a 20ml syringe. Whilst 

the gel was injected, the glass plates were tapped to prevent air bubbles from forming in the 

gel. The straight edge o f a plastic casting comb was inserted into the top o f the gel and 

clamped in place during the polymerisation process (-45 minutes). When the gel was set, the 

comb was removed, the top o f the gel rinsed out using distilled water and a paper 96-well 

comb (PE Biosystems) inserted.

2.2.2.4 Gel electrophoresis of markers

The gel apparatus was fitted inside the sequencer and both the upper and lower buffer 

chambers filled with lxTBE. The ‘ Prerun ’ protocol was then carried out to warm the gel to 

the run temperature o f 51°C. During the Prerun step, the samples were denatured at 95°C for 

three minutes and placed on ice. Following rinsing o f the wells with buffer, the samples were 

loaded using a Kloehn multichannel loader (Anachem). The first 48 samples were loaded in
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alternate lanes, the gel run for a further two minutes and the final 48 samples loaded. The gel 

was then run at 3k V for 3 hours.

2.2.2.5 Genotyping of markers

To analyse the results, the Gene Scan v.3.1.2 analysis software (Applied Biosystems) was 

first used to track the lanes o f the gel and to size the alleles using the internal TAMRA size 

standard present in each lane. The Genotyper v.2.5 software (Applied Biosystems) was then 

used to view the sized fragments that were designated appropriate allele sizes for each 

m arker based on the expected allele size range from the genome database (GDB, 

www.gdb.org).

2.2.3 Direct sequencing

2.2.3.1 PCR reaction clean-up

Following the PCR reaction, excess primers and dNTPs were removed using the exonuclease 

I {Exo I) and shrimp alkaline phosphatase (SAP) enzymes (New England biolabs). 2U SAP 

( lU/pl) and lOU Exo I ( lOU/pl) were added to the PCR product, held at 37°C for 15 minutes 

and then heated to 80°C for 10 minutes to denature the enzymes.

2.2.3.2 Cycle sequencing

Cycle sequencing was carried out using Big Dye Terminator v3.1 (Applied Biosystems) in a 

15gl reaction volume; 5pl PCR product, 3pl 5X Big Dye sequencing buffer, 2pl BigDye 

cycle sequencing reaction mix, 5pmol primer and 4pl water. The cycle sequencing program 

used was: 95°C for 2 minutes, followed by 35 cycles o f 95°C for 20 seconds, 50°C for 10 

seconds and 60°C for 3 minutes.
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2.2.3.3 Sequencing reaction clean up

To remove excess salt, sequence samples were passed through a sephadex (G-50) column. To 

make the column: sephadex was poured onto the loader and compacted using the scraper. A 

clean 96-well MultiScreen plate (M illipore) was then placed on top of the loader, the two 

parts (loader and plate) were turned over and the loader tapped to transfer the sephadex to the 

MultiScreen plate. Before use, the sephadex was rehydrated; 350|il o f water was added to the 

sephadex and the plate stored at 4°C for three hours. Following rehydration of the sephadex, 

the plate was spun down at 91 Og for five minutes, the flow-through discarded, 150pl water 

added and spun for a further five minutes to rinse the column. Prior to passing the sequence 

samples through the sephadex column, 5gl o f distilled water was added to each sample to 

bring the volume to 20gl. The sephadex plate was then transferred to a clean, skirted 96-well 

plate, the sample added and the plate spun for a final five minutes.

2.2.3.4 Capillary electrophoresis

After removal of salt from the sample by sephadex, the samples were run on the MegaBACE 

1000 DNA Analyser (Amersham Biosciences), a capillary-based DNA fragment analyser 

composed o f 96 40cm long acrylamide-coated capillaries with a 50pm internal diameter. 

Standard sequencing materials and conditions were used according to m anufacturer’s 

instructions. A pproxim ately one hour before the run, the 3% Long Range linear 

polyacrylamide (LPA) matrix (Amersham Biosciences) was removed from the refrigerator to 

allow the matrix to reach room temperature and a buffer plate containing 150pl lxLPA 

buffer (Amersham Biosciences) per well prepared. The ‘Matrix Fill and Prerun’ followed by 

the ‘Inject Samples and Run' protocols were performed. The samples were injected at a 

voltage o f 3k V for 40 seconds and run conditions o f 9k V for 60-100minutes (dependent on 

fragment length) were used.
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2.2.3.5 Sequence analysis

Sequence chromatograms were visualised using MegaBACE Sequence Analyzer v.3.0 

software (Amersham Biosciences) and exported to ABD format. Chromatograms were then 

analysed using the Sequencer v .4 .1 program (Genecodes). For each gene, a contig containing 

the published genomic sequence was created. All patient chromatograms were then aligned 

with the published sequence for analysis.

2.2.4 MCHA

2.2.4.1 Heteroduplex formation

To form heteroduplexes, 5pi (~300ng) o f the patient PCR product was mixed with an equal 

quantity o f the control DNA product and denatured at 95°C for 5 minutes with 2°C 

decrements every 2 minutes until the base holding temperature (25°C) was reached.

2.2.4.2 Sample plate preparation

2 pi o f the heteroduplexes were mixed with 0 .5pi ET Rox size standard (Amersham 

Biosciences) and made up to lOpl with distilled water. When pooling o f samples was carried 

out, l .5pi aliquots o f each o f the heteroduplexes were pooled, size standard added and made 

up to lOpl with distilled water. In each run, a known wt homoduplex amplified from control 

DNA was included in a single well o f the sample plate as a reference peak when analysing 

the patient samples.
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2.2.4.3 Capillary electrophoresis

MCHA was carried out on the MegaBACE 1000 DNA Analyser (Amersham Biosciences). 

To remove excess salt from the samples the ‘Preinject Samples’ protocol was performed 

prior to injection o f matrix into the capillaries. Following preinjection, 3% non-denaturing 

LPA matrix (Amersham Biosciences) was injected under high pressure for 200 seconds into 

the capillaries. A standard sample injection voltage of 3kV over 45 seconds was used. Each 

sample was run at 25°C at a voltage o f  lOkV for between 40 and 60 minutes dependent on 

fragment length.

2.2.4.4 MCHA Analysis

The results were analysed using Genetic Profiler v.2.0 software (Amersham Biosciences). 

Peaks were compared with the reference peak and any with an abnormal morphology (e.g. 

split or extra peaks) were reamplified using unlabelled primers, sequenced and analysed 

according to the direct sequencing protocol (see 2.2.3 Direct sequencing).

2.2.5 Yeast two-hybrid

2.2.5.1 Autoactivation test

To test the ability o f the DBD-BBS4 hybrid alone to activate the system, the pGBD\J-BBS4 

plasmid construct was transformed into PJ69-4A using a small-scale transformation protocol. 

A single colony o f PJ69-4A was used to inoculate a 5ml volume o f YPAD broth. The culture 

was incubated, with gentle shaking, overnight at 30°C. The following day, the optical density 

(OD6(X)) o f the culture was taken and a sufficient volume was used to inoculate a 60ml 

volume o f YPAD broth to an OD600 o f 0.1. The culture was again incubated at 30°C with 

gently shaking until the OD6oo had reached between 0.5 and 0.7 (four to six hours o f growth).
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Following incubation, cells were pelleted at l,500g for five minutes. The supernatant was 

then discarded, the cells resuspended in 20ml o f distilled water and pelleted a second time. 

The cell pellet was finally resuspended in 300pl o f lxTE/LiAc and aliquoted into three 

sterile 1.5ml eppendorf tubes. lOOng o f pGBDU-/?/?.S4 plasmid DNA and 50ng o f denatured 

carrier DNA (Herring testes DNA, Clonetech) was added to each eppendorf, followed by 

300pl lxTE/LiAc/PEG. The contents o f  the tube was mixed gently by inversion and 

incubated at 30°C, with shaking, for 30 minutes. 70pl dimethyl sulfoxide (DMSO) was then 

added to each tube, mixed by inversion and incubated at 42°C for a further 15 minutes. 

Following a brief centrifugation (10 seconds at 15,800g), the supernatant was discarded and 

the pellet resuspended in 500pl o f distilled water. The cell suspension from each tube was 

plated out onto a fresh SD-Ura agar plate and incubated at 30°C for two days.

Following two days growth, two colonies were picked from each o f the three SD-Ura plates 

and streaked out in duplicate onto SD-Ura-Ade and SD-Ura-His+3AT plates and incubated 

for a further four to five days. The absence o f growth on either the SD-Ura-Ade or the SD- 

Ura-His+3AT, indicated that there was no autoactivation o f the system by the DBD-BBS4 

hybrid protein. 3AT (3-aminotriazole) is an inhibitor o f the histidine pathway and is added to 

the media to suppress leaky expression o f HIS3.

2.2.5.2 Large scale transformation of library plasmids

Following the small-scale transformation o f  PJ69-4A with the pGBDU-/?/?SV bait plasmid to 

test for autoactivation, a library screen was carried out using a large-scale transformation 

protocol to introduce the library plasmids into the yeast. A 200ml volume o f SD-Ura media 

was inoculated with a whole scraping o f a streak from the SD-Ura plates used in the 

autoactivation test and incubated at 30°C with shaking for 24 hours. After the incubation, the 

ODf>(X) o f the culture was taken and an appropriate volume o f the starter culture added to 1 

litre o f prewarmed (30°C) YPAD broth to give an OD600 o f 0.1-0.2. The culture was again 

incubated at 30°C with gently shaking until the OD6oohad reached 0.5-0.7. The culture was 

pelleted in 250ml bottles at 960g for five minutes. The cell pellet from one o f  the bottles was 

resuspended in 20ml o f lxTE/LiAc which was then used to resuspend the cell pellet from the
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second bottle. The 20ml solution was pipetted into a sterile 1 litre conical flask and lOmg of 

denatured carrier DNA (Herring testes, Clontech) and 250pg o f library plasmid DNA added. 

The contents o f the conical flask was then mixed by swirling, 140ml o f lxTE/LiAc/PEG 

added and incubated at 30°C, with gentle shaking, for 30 minutes.

Following the incubation, 17.6ml o f DMSO was added to the conical flask, mixed gently and 

aliquoted equally between ten 50ml falcon tubes. The cells were heat shocked at 42°C for six 

minutes and immediately transferred to a sterile 1 litre conical flask containing a 400ml 

volume of room temperature YPAD broth without glucose. The cells were pelleted at 960g in 

250ml bottles, each pellet washed with 250ml YPAD without glucose and pelleted a second 

time. The pellets were resuspended in 1 litre o f prewarmed YPAD and incubated in a 2 litre 

conical flask, with gentle shaking, at 30°C for 1 hour. The cells were then pelleted, 

resuspended in 500ml SD-Ura-Leu, pelleted a second time and finally resuspended in 1 litre 

o f prewarmed SD-Ura-Leu. The culture was incubated, with gentle shaking, at 30°C for -10  

hours.

2.2.5.3 Transfection efficiency

The 1 litre culture was pelleted in 250ml bottles, washed twice with SD without glucose, 

pelleted again and resuspended in 10ml SD-Ura-Leu-Ade-His+3AT. lOpl o f  the cell 

suspension was removed and serially diluted (1:10, 1:100, 1:1,000, 1:10,000, 1:100,000 and 

1:1,000,000) in six eppendorf tubes. Each o f the dilutions was plated out onto a 10cm SD- 

Ura-Leu plate, using a sterile glass spreader to disperse the cells. The plates were incubated 

at 30°C for 3-4 days, at which point the number o f colonies on each plate was counted.

2.2.5.4 First round of selection - Histidine

The remainder o f the 10ml cell suspension was plated out in 550pl aliquots using a sterile 

glass spreader onto large (25cm) SD-Ura-Leu-His+3AT plates. The plates were then 

incubated at 30°C for 4-5 days.
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2.2.5.5 Second round of selection - Adenine

After 4-5 days, the plates from the first round o f selection were assessed for colony growth. 

Each o f the positive colonies from the SD-Ura-Leu-His+3AT plates were streaked out onto 

individual grids o f large, gridded SD-Ura-Leu-Ade plates using an inoculation loop.

2.2.5.6 Isolation of prey plasmid

Following the second round o f selection, the prey plasmid was isolated to allow identification 

o f the positive clone. To recover the pACT2 plasmid, a 5ml SD-Leu culture, inoculated with 

a scraping from the streak on the SD-Ura-Leu-Ade plate, was grown overnight at 30°C with 

shaking. The following day, the culture was centrifuged at 5,000g for 5 minutes, the pellet 

resuspended in the residual liquid and transferred to an eppendorf tube. 200pl o f rescue 

solution, lOOpl phenol:chloroform (1:1), followed by ~0.3g acid-washed glass beads (Sigma) 

was added and the contents o f the tube mixed vigorously using a vortex for two minutes. The 

tubes were spun in a microcentrifuge at full speed (15,800g) for five minutes and the top 

phase (~200pl) applied to a QIAprep spin column (QIAGEN) in a 1.5ml collection tube. The 

column was spun at full speed for 1 minute and the flow-through discarded. 500pl o f PB 

solution (QIAGEN) was added to the column, spun for 1 minute and the flow-through 

discarded. The column was then washed with 750pl o f PE solution (QIAGEN), spun down, 

flow-through discarded and spun a second time to remove all traces o f PE solution 

(QIAGEN) from the column. The column was transferred to a clean eppendorf tube for 

elution o f the plasmid DNA. 50pl EB solution (QIAGEN) was added to the centre o f the 

column, allowed to stand for 1 minute and then spun at full speed for 1 minute.

2.2.5.7 Amplification and identification of the prey cDNA sequence

To identify the clone, the insert was first am plified by PCR and sequenced. For 

amplification, a standard PCR reaction was carried out using ~2pg plasmid DNA and pACT2 

primers (F - AAAGAGATCTGTATGGCTTAC, R - CAGTATCTACGATTCATAGATC).
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A standard PCR program with an annealing temperature o f 60°C was used (See 2.2.1.2 PCR 

reactions). PCR reactions were cleaned-up and sequenced as described earlier (See 2.2.3 

D irect sequencing). The sequence text was then used to search the blastn database 

(www.ncbi nlm nih.uov/BLAST/Blast cgi) to identify the cDNA insert.

2.2.6 Immunohistochemistry

2.2.6.1 Fixation of mouse tissues

Mouse eyes were removed from sacrificed wt female mice, washed in PBS (Gibco-BRL Life 

technologies) and fixed in 100% methanol, 2% paraformaldehyde (PFA), 4% PFA or 

Cam oy’s fluid overnight at 4°C. Following fixation, the tissue was washed twice in PBS (10 

minutes each) and then dehydrated through an ethanol series; 25% ethanol in PBS (60 

minutes), 50% ethanol in PBS (60 minutes), 75% ethanol in PBS (60 minutes), 1:1 ratio 

100% ethanol: Histoclear (RA Lamb) (30 minutes) and Histoclear (30 minutes). The tissue 

was then transferred to fresh Histoclear in a glass bottle for storage at room temperature.

2.2.6.2 Paraffin embedding and sectioning

Fixed tissues were embedded in paraffin following dehydration, for microtome sectioning. 

Tissues were transferred to Histoclear: wax (30 minutes), followed by three further 

incubations in wax. All wax incubations were carried out in a 55°C oven. In the final wax 

step, tissues were orientated appropriately and the wax allowed to cool and harden in the 

plastic cassette. When the paraffin block had hardened, the cassette was fitted into the 

microtome, 4 micron sections taken and placed on TESPA (3-aminopropyltriethoxysilane) 

coated glass slides. Slides were stored at room temperature.
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2.2.6.3 Deparaffinisation of sections

Prior to staining, sections were deparaffinised in a Histoclear wash and ethanol series; 

Histoclear for 10 minutes, followed by 100% ethanol, 90% ethanol in PBS, 70% ethanol in 

PBS, 50% ethanol in PBS, 30% ethanol in PBS and water, each for five minutes.

2.2.6.4 Antigen retrieval

As the fixation and embedding processes can damage some antigens, an antigen retrieval step 

was also performed on some sections to determine whether it was required to improve the 

staining o f BBS proteins. Following the deparaffinisation step, slides were placed, in a plastic 

slide holder, in a preheated solution o f 0 .0 1M citric acid and microwaved for 4, 7 or 10 

minutes. The slides were then cooled slowly with running water.

2.2.6.5 Immunohistochemistry staining

Before application o f the primary antibody to the sections, a series o f blocking steps were 

performed. Firstly, endogeneous peroxidase activity within the sections was blocked using a 

solution o f 3% hydrogen peroxide in methanol for 15 minutes, followed by two five minute 

rinses in water. A blocking solution containing 10% goat serum and 1% BSA in PBS was 

then applied to the sections to block non-specific binding o f the secondary antibody and 

incubated at room temperature for 30 minutes. All antibody dilutions were made in block 

solution. The block was removed from the slides and the BBS4 or BBS8 antisera, diluted 1 in 

500 or 1 in 1,000 respectively, were applied to the sections. The slides were placed in a 

humified box to prevent drying out o f the sections and incubated at 4°C overnight. The next 

morning, the primary antibody was removed and the sides washed three times in PBT (five 

minutes each) and once in PBS. A 1 in 100 dilution o f biotinylated goat anti-rabbit (DAKO) 

secondary antibody was then prepared and applied to the sections. The slides were returned 

to the humified box and incubated at room temperature for 30 minutes. During this 

incubation, the components o f the ABComplex/HRP kit (DAKO) were mixed; reagent A
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(avidin) and reagent B (biotinylated HRP) were both diluted 1 in 100 and allowed to stand at 

room temperature for 30 minutes. After removal o f the secondary antibody, the slides were 

again washed three times in PBT and the ABComplex mixture applied, with a final 

incubation o f 30 minutes at room temperature. Following the incubation, the slides were 

washed three times in PBT and then treated with a solution o f DAB chromogen (1% DAB in 

water). The colour reaction was viewed under the microscope and, when a sufficient colour 

had developed (5-10 minutes), was quenched by plunging the slides into a trough o f water. 

The slides were then allowed to air dry before mounting o f the coverslip with DPX media 

(RA Lamb).
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Chapter 3 Homozygosity and candidate gene 
screens

3.1 Introduction

The first step in identifying the gene responsible for a genetic condition is to localise the gene 

to a specific chromosomal region. In recessive conditions, this can be done either by linkage 

analysis in small and large nuclear pedigrees, or by hom ozygosity m apping in 

consanguineous pedigrees. Following the localisation o f the disease gene and narrowing o f 

the critical interval where possible, mutation screening o f candidate transcripts is required to 

successfully identify the disease gene. Detection o f pathogenic mutations within the ORF of 

a candidate gene or EST in pedigrees that where used to map the locus provides confirmation 

that the gene is a BBS gene.

3.1.1 Linkage analysis

According to M endel’s second law, the law o f  independent assortment, the segregation o f 

alleles o f  one gene is independent o f  the segregation o f  alleles at another locus. This law 

applies to loci that are physically well separated, but is not true o f genes that are in close 

proximity to each other. During meiosis (Figure 3. 1), homologous chromosomes pair up and 

undergo recombination, or crossing-over, which involves an exchange o f  chromosomal 

m aterial betw een one chrom atid  o f  each hom ologous chrom osom e. Follow ing 

recombination, two o f the four gametes that are formed will contain original chromosomes 

and two will contain a modified chromosome that is made up o f part o f  the original 

chromosome and part o f the homologous chromosome. The proportion o f  recombinant 

chromosomes present after meiosis is referred to as the recombination fraction, 0, and is used 

as an estimate o f genetic distance. As only two o f the four chromatids are involved in 

recombination, 0 has a maximum value o f 0.50 for two loci that are far apart on the same
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chromosome, or on different chromosomes, and a minimum of 0 for loci that are adjacent to 

one another.

Homologous
chromosomes Recombination

A

B

A - - a- 

b- - B - b-

NR R R NR 

Gametes

Figure 3. 1: The process o f recombination. During meiosis recombination occurs at 
random along the length o f the chromosome. In this example the individual is a 
double heterozygote for two loci on the same chromosome (AaBb). Following a 
recombination event, two non-recombinant (NR) gametes (AB and ab) and two 
recombinant (R) gametes (Ab and aB) will be formed.

Linkage analysis is the study o f the inheritance o f two or more characteristics, such as a 

disease phenotype and a polymorphic marker, to determine if the two co-segregate more 

often than would be expected under Mendel’s second law. If two characteristics are found to 

have a recombination fraction o f <0.5, they are considered to be genetically linked. The 

object o f linkage analysis is therefore to estimate 0 and determine whether it differs 

significantly from 0.5. In simple cases, it is possible to estimate the value of 0 by counting 

the proportion o f recombinant individuals in the total number o f offspring, but linkage 

analysis in humans is rarely that simple. In disease gene mapping, as it is often not possible 

to count the number o f recombinant and non-recombinant offspring, methods such as the 

maximum likelihood method, or lod score method, are commonly used (Morton, 1955). 

Computer programs are used to calculate the likelihood of a given pedigree under different 

recombination fractions, L (0). This calculated likelihood is then tested against the likelihood 

o f observing the given pedigree under the hypothesis that the two loci are unlinked, L (0 = 

0.5).

66



In practice the common logarithm o f the ratio o f these two likelihoods is taken, giving the lod 

score:

Z (0) = logio LI0)
L (0 = 0.5)

A lod score o f 3 or more (or P < 0.001) indicates significant linkage between two loci, 

whereas a value o f -2 corresponds to exclusion o f linkage between the two. Pedigree sizes, 

particularly in families in which a genetic disease segregates, are often not large enough for 

results from a single family to reach a statistically significant level. As lod scores are 

logarithms, they allow data from a number o f families to be combined, improving the 

chances o f achieving statistically significant linkage. However, the possibility o f non-allelic 

genetic heterogeneity must be taken into account when combining linkage data from several 

different families. To remove this problem from linkage calculations, large pedigrees, that 

are themselves big enough to generate a statistically significant lod score, are required as 

locus homogeneity can only reliably be assumed within a single family.

Alternative gene mapping approaches include the affected sib pair (ASP) method and 

homozygosity mapping in consanguineous pedigrees. ASP is based on the assumption that on 

average a sib pair will share 0, 1 or 2 parental haplotypes with the respective frequencies o f 

0.25, 0.5 and 0.25. In an affected sib pair, chromosomal regions associated with the disease 

are expected to be shared at frequencies that deviate from this ratio; if  the disease is 

dominant, affected sibs will share at least one parental haplotype, and if  the disease is 

recessive, they will share both haplotypes more frequently (Strachan and Read, 1999). As a 

genetic model does not have to be specified to use this method (nonparametric), it is very 

useful for studying a disease for which the inheritance pattern is unclear. The requirement o f 

a large number o f affected sib pairs for detection o f significant linkage and the often large 

size o f candidate regions identified through this method make it unsuitable for use in our 

patient cohort. Homozygosity mapping has been used successfully to map a number o f BBS  

loci (Carmi et al., 1995b; Katsanis et al., 2000; Kwitek-Black et al., 1993; Sheffield et al., 

1994; Young et al., 1999a).
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3.1.2 Homozygosity mapping in BBS

In a consanguineous pedigree, an alternative to the lod score method for gene mapping can 

also be used. Individuals with a rare recessive disease are likely to be IBD for markers linked 

to the disease locus due to inheritance o f  the disease-associated haplotype from a recent 

common ancestor (Figure 1. 3). A genome screen, using polymorphic markers spaced 

throughout the genome, followed by haplotype analysis to identify haplotypes common to all 

affected individuals, can therefore be used to identify disease loci. This technique was used 

to map a number o f the BBS  loci, both in Bedouin pedigrees (BBS2, 3 and 4 (Carmi et al., 

1995b; Kwitek-Black et al., 1993; Sheffield et al., 1994)) and also in Newfoundland 

pedigrees (BBS5 and 6 (Katsanis et al., 2000; Young et al., 1999a)). For a summary on the 

mapping o f the individual loci, see 1.9.1 Mapping o f  BBS 1-5.

Shortly after the cloning o f BB S6 , Beales et al. (2000) performed haplotype analysis o f  a 

cohort o f 163 pedigrees to estimate the contribution o f each o f the known loci to all cases o f 

BBS and to refine the critical intervals o f BBS1-5. All known loci were accounted for within 

the cohort, but 14% o f pedigrees were found to be unlinked to BBS 1-6. A further 28% were 

unable to be assigned to the known loci due to small pedigree size and/or uninformative 

markers in some o f the critical intervals; a proportion o f these families may also be unlinked. 

These results provide strong evidence for additional BBS loci within the genome.

3.1.3 Positional cloning of mapped BBS genes

The process o f identifying a disease phenotype, mapping o f the locus and cloning o f the gene 

was initially referred to as ‘reverse genetics’ (Orkin, 1986; Ruddle, 1984). These methods are 

in fact part o f a classical genetics approach to disease gene identification. The transgenic or 

‘knock-out’ method, in which mutations are introduced into a novel gene that is then 

reintroduced into a model organism such as the mouse, is an example o f true reverse genetics 

(McKusick, 2002). For this reason, in 1992, Francis Collins recommended that the phenotype 

to locus to gene approach be known as positional cloning (Collins, 1992).
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Mapping o f a disease locus allows the search for the causative gene to be concentrated on a 

particular chromosomal region. Depending on the size o f  the interval and the density o f 

genes, a large number o f genes may exist within the critical interval. As screening o f all 

genes within an interval would be a costly and time-consuming process, it is necessary to 

prioritise the candidate genes for mutation screening. This can be done using a number of 

different criteria (Strachan and Read, 1999).

• Appropriate expression pattern -  A good candidate gene should have an expression 

pattern consistent with the disease phenotype. Expression o f the gene does not have to 

be restricted to the tissues or organs that are affected by the disease (such as the 

retina, kidney, developing limb bud and gonads in the case o f BBS), but must be 

expressed in the relevant areas. Analysis o f the BBS1 critical interval for possible 

candidate genes revealed that the RO M 1  gene, which is expressed in rod outer 

segments, was located within the interval. However, as the pattern o f  ROM1  

expression is very specific and restricted to only the retina, the gene was not 

considered to be a suitable candidate for BBS (Leppert et al., 1994).

• Appropriate function -  If  the function o f a gene within a critical interval is known, it 

can be used to determine if  the gene is a good candidate for the disease under study. 

The association o f a gene with a similar disease phenotype also indicates that the gene 

is a good candidate. Due to both the clinical and mapping overlap between MKKS 

and BBS, the MKKS  gene was proposed as a candidate for BBS. Detection o f 

pathogenic mutations in BBS patients, by two independent groups, provided 

confirmation that the MKKS gene was BBS6 (Katsanis et al., 2000; Slavotinek et al., 

2000).

• Homology to a known gene -  A high degree o f  similarity between a candidate gene 

and a gene that is already known to be associated with the disease is strong evidence 

for the candidate gene also being associated with the same disease. Based on its 

homology at the protein level to BBS2, the novel transcript encoding BBS1 was 

considered to be a strong candidate; pathogenic mutations in a number o f families 

confirmed that this gene was BBS1 (Mykytyn et al., 2002).
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• Homology to a gene in a model organism  -  If  a mouse model o f a disease exists, for 

which the causative gene has been identified, it is highly likely that the orthologous 

gene accounts for the disease in humans.

3.1.4 Conclusions

Previous linkage studies to map BBS1-6  highlighted the extensive genetic heterogeneity in 

BBS and also provided evidence that further loci for the disease must exist within the human 

genome. In order to understand more about the molecular mechanisms involved in this 

pleiotropic disorder and how, if  at all, the high degree o f heterogeneity at the genetic level 

contributes to the extensive variation in the clinical phenotype, it is essential to identify the 

genes responsible for the disease.
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3.2 Materials and methods

3.2.1 DNA samples

Patients from 17 consanguineous pedigrees were genotyped in the genom e-w ide 

homozygosity screen. Ten o f the pedigrees contained only a single affected offspring, the 

remaining seven contained two or more affected sibs. In two pedigrees with multiple affected 

sibs (PB011 and PB016), due to poor DNA quality for some patient samples, DNA from only 

one affected was included in the sample plate. I f  an area o f homozygosity was identified in 

either PB011 or PB016, where possible, the remaining affected offspring were also 

genotyped for the relevant markers. All pedigrees were o f Indian, Kurdish, Pakistani or 

Turkish origin. See Table 3. 1 for a summary o f  the pedigrees used. DNA from the 23 patient 

samples was extracted and aliquoted as described in 2.2. 1. 1 DNA extraction from  blood.

Pedigree No. of affecteds Origin
PB011* 2 Kurdish
PB012 3 Pakistani

PB016* 3 Kurdish
PB018 2 Kurdish
PB026 1 Indian
PB030 2 Pakistani
PB031 2 Pakistani
PB035 2 Pakistani
PB036 1 Turkish
PB040 1 Turkish
PB041 1 Turkish
PB042 1 Kurdish
PB049 1 Turkish
PB050 1 Pakistani
PB051 1 Pakistani
PB052 1 Turkish
PB053 1 Turkish

Table 3. 1: Summary o f pedigrees used in the genome screen. * Indicates a pedigree 
with multiple affected sibs, but only one affected offspring was included in the DNA 
sample plate.
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3.2.2 Microsatellite markers

Amplification, pooling and gel electrophoresis o f the markers used in the homozygosity 

screen was performed as described (See 2.2.2 Homozygosity mapping),followed by analysis 

using the Gene Scan v.3.1.2 and Genotyper v.2.5 programs (Applied Biosystems) (See 

2.2.2.5 Genotyping o f  markers)

3.2.3 Candidate gene identification and screening

Following identification o f a region o f homozygosity common to a number o f pedigrees, the 

area was analysed for the presence o f  possible candidate genes using the previously 

described criteria (See 3.1.3 Positional cloning o f  mapped BBS genes). In order to determine 

exon-intron boundaries, the genomic sequence was first identified by screening o f the nr 

hum an genom e database w ith the cDNA using the blastn function o f  BLAST 

(www.ncbi.nlm.nih.gov/BLAST/Blast.cgi). The genomic and cDNA sequences were then 

aligned using the bl2seq function (www.ncbi.nlm .nih.gov/blast/bl2seq/bl2.htm l). Primers 

were designed to amplify the ORF o f the candidate gene as described (See 2.1.3 Primer 

design ). Affected individuals from a pedigree that demonstrated IBD to the area were then 

screened for pathogenic mutations by direct sequencing (See 2.2.3 Direct sequencing).

The same approach was also used to identify and screen candidate genes within the critical 

intervals o f the known BBS loci (BBS1-5).
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3.2.4 Candidate genes screened

Two candidate genes located in a region o f homozygosity identified through the genome 

screen (14q23.3), were sequenced in pedigrees with haplotypes consistent with linkage to this 

area:

• HSPA2 (heat shock 70kDa protein 2) -  HSPA2, a heat shock protein with chaperone 

activity, was considered to be a good candidate for BBS based on its similarity to 

BBS6.

• SKIP  (SKI interacting protein) -  SKIP is a nuclear matrix-associated coactivator that 

can bind to retinoid receptors to enhance retinoic acid and oestrogen mediated gene 

expression. This gene was considered to be a candidate for BBS as it was found to 

interact with BBS4 on yeast-two-hybrid analysis (See 7.4.3.3 Ski-interacting protein  

(SKIP)).

Two candidates for the mapped BBS genes were also screened:

• STIP1  (stress-induced-phosphoprotein 1) -  ST IP 1 , encoding an Hsp70/Hsp90- 

organizing protein, was screened as a candidate for BBS1 based on its similarity to 

BBS6.

• TLE3  (transducin-like enhancer o f split 3) -  Transducin is a G-protein found 

specifically in rod outer segments where it mediates the activation o f  cyclic GTP- 

specific phosphodiesterase by rhodopsin. Based on its similarity to transducin, TLE3 

was considered to be a good candidate for BBS4.
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3.3 Results

3.3.1 Homozygosity screen

Three possible regions o f homozygosity, shared between a number o f families, were found 

during the genome-wide homozygosity screen.

3.3.1.1 Chromosome 4q25-31.2

Genotyping o f chromosome 4q markers from the ABI marker set revealed two consecutive 

markers, D4S402 and D4S1575, that were homozygous in four pedigrees (Table 3. 2). 

M arker D4S402 was homozygous in seven o f  the eight affecteds from these pedigrees 

(results were not achieved for this marker in individual PB016.2). M arker D4S1575 was 

homozygous in both sibs from pedigree PB031, but was homozygous in only one sib in 

pedigrees PB016, PB018 and PB030. Genotyping o f additional markers from the RG set 

revealed homozygosity in seven o f  the eight patients for marker D4S2394, located between 

the two ABI markers. Two flanking markers, D4S2623 and D4S1644, were heterozygous in 

seven and five patients respectively. The minimum stretch o f homozygosity shared by all 

individuals from the four pedigrees is between markers D4S2623 and D4S2394, a length o f 

~19.4Mb.

3.3.1.2 Chromosome 8q23.3-24.13

As several o f the ABI chromosome 8q markers in this region did not amplify, RG markers 

were also used. A potential region o f homozygosity was identified across three consecutive 

markers, D 8S1142, D8S592 and D8S514 in five pedigrees (Table 3. 3). Markers identified 

through GDB (D8S1694, D8S522 and D8S1802) were also genotyped in order to increase 

the density o f markers across this interval. Heterozygosity o f one or more o f these additional 

markers in most individuals, restricts the area o f homozygosity in this region to between 

markers D8S1694 and D8S522, a ~1.2Mb distance.
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3.3.1.3 Chromosome 14q22.3-24.3

Homozygosity o f ABI markers in five pedigrees lead to genotyping of further markers in this 

area o f chromosome 14q (Table 3. 4). Although the area o f homozygosity stretches for 

~23.0M b between D14S276 and D24S74 in two pedigrees (PB031 and PB041), the 

minimum region o f homozygosity, shared between all five pedigrees, is restricted to a 

-5 .6Mb distance between D14S63 and D14S588. The HSPA2 gene was found to be located 

within this interval, very close to D14S63 (0.3Mb distal to the marker), and was considered 

to be a good candidate for BBS as the protein is a heat shock protein with chaperone activity. 

SK IP , located within the wider interval o f homozygosity present in four o f the pedigrees 

(PB031, PB041, PB049 and PB053), was also screened as the SKIP protein was found to 

interact with BBS4 (See 7.4.3.3 Ski-interacting protein (SKIP)).

3.3.2 Candidate gene screen

No pathogenic mutations were identified in HSPA2, SKIP, STIPI or TLE3.
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Patient D4S2623 D4S402 D4S2394 D4S1575 D4S1644
ID (RG) (ABI) (RG) (ABI) (RG)

PB016.2 223/231 209 291/293 192/196
PB016.3 223 129 209 293 192/196
PB018.1 211/223 111 206/209 291/293 192/200
PB018.2 211/223 111 209 291 192/200
PB030.1 203/207 105 209 289/293 192/200
PB030.2 203/207 105 209 293 196
PB031.1 211/227 111 209 293 196
PB031.2 211/227 111 209 293 196

Table 3. 2: Genotyping results for chromosome 4q25-31.21 markers. Single allele 
sizes in red indicate homozygosity for the corresponding allele. - Represents no 
results.

Patient D8S1471 D8S1142 D8S1694 D8S592 D8S522 D8S1802 D8S514
ID (RG) (RG) (GDB) (RG) (GDB) (GDB) (ABI)

PB026.1 277/297 354 246/254 161 217/219 275 216/218
PB031.1 289/297 354 252 165 213 279 216/218
PB031.2 289/237 354 252 165 213 279 216/218
PB035.1 293/297 362 192/200 157 213 279/281 216
PB035.2 297 354 192 - 211/213 281 216
PB036.1 281/289 354 254/256 169 219 275/279 216
PB041.1 285/289 350/362 196/200 161 219/223 275/277 218

Table 3. 3: Haplotypes for chromosome 8q23.3-24.13 markers. An initial interval of 
homozygosity spanning three markers (D8S1142, D8S592 and D8S514) was found to 
not be continuous when the density o f markers in this region was increased.

Patient D14S276 D14S592 D14S63 D14S588 D14S258 D14S74
ID (ABI) (RG) (ABI) (RG) (ABI) (ABI)

PB031.1 235/239 247 180 121 199 295/299
PB031.2 235/239 247 180 121 199 295/299
PB040.1 237 250 180 117/121 193/199 -

PB041.1 237 247 184 121 189 299
PB049.1 239/243 241/247 182/186 125 195 301/305
PB053.1 239 235/247 180 119/121 191 289

Table 3. 4: Chromosome 14q22.3-24.3 haplotypes. Homozygosity across a 5.3Mb 
interval between markers D14S592 and D14S63 in five pedigrees lead to screening o f the 
candidate gene HSPA2. No mutations were identified.
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3.4 Discussion

3.4.1 Homozygosity screen

Evidence for the existence o f additional BBS loci has been provided in a number of recent 

studies on the contribution o f the known loci to BBS (Beales et al., 2001; Fauser et al., 2003; 

Katsanis, 2004). Using a subset o f consanguineous pedigrees from our cohort that had either 

been excluded from linkage to the known loci in a previous study (Beales et al., 2001), or 

were too small to perform linkage analysis, a genome-wide homozygosity screen was 

performed to map a novel BBS  locus. Patients from 17 different pedigrees o f Indian, 

Pakistani or Turkish origin were studied using markers spaced across the whole genome. No 

significant regions of homozygosity shared amongst all pedigrees were identified, indicating 

that a single novel BBS locus does not account for all currently unmapped cases o f BBS in 

pedigrees of Middle Eastern and Asian origin. Taking into account the high degree o f genetic 

heterogeneity observed in previous linkage screens and the relatively small contribution of 

the majority of the loci to disease (Katsanis, 2004), it is most likely that a number of rare loci 

are responsible for disease in these pedigrees.

Three regions o f homozygosity requiring further study were identified on the genome-wide 

screen. In one o f these regions, following genotyping of additional markers, the area o f IBD 

was found to only be continuous in one o f the five pedigrees initially thought to exhibit IBD 

across the region. Suitable candidate genes for mutation screening were only identified in one 

o f the regions; no pathogenic mutations were detected.

3.4.1.1 Chromosome 4q25-31.2

An area of homozygosity on chromosome 4q was present in four pedigrees, each o f which 

contained two affecteds. Genotyping results for the ABI marker set in all pedigrees revealed 

that marker D4S402 was homozygous in seven patients from four different pedigrees 

(PB016, PB018, PB030 and PB031, see Table 3. 2). The distal marker, D4S1575, was also 

homozygous in both affected sibs from pedigree PB031, but in the remaining three pedigrees,
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one sib was homozygous for the m arker and the other, heterozygous. Genotyping of 

additional markers from the RG set confirmed that the IBD region did not extend beyond 

D4S1575 in these three pedigrees, as five o f the six patients were heterozygous for marker 

D4S1644. Heterozygosity for marker D4S2394, located between D4S402 and D4S1575, in 

individual PB018.2, suggested that this marker is the distal boundary o f the IBD region 

shared by all four pedigrees. It was also possible to define the proximal boundary o f IBD 

using RG markers; marker D4S2623 was homozygous in only a single patient (PB016.2).

Although extending further in three pedigrees, the shared region o f IBD on chromosome 4q 

lies between markers D4S2623 and D4S2394 (4q25-28.2), a distance o f ~ 19.4Mb. Analysis 

o f known genes in this area at the time o f the genome screen did not reveal any candidate 

genes for BBS that demonstrated an expression pattern consistent with the clinical phenotype 

and/or similarity to BBS6 , the only cloned BBS  gene at the time. After completion o f the 

genome screen, the BBS7 gene was cloned on 4q27 based on its homology to BBS2 (Badano 

et al., 2003a). As BBS7 is located within this region o f IBD, pedigrees PB016, PB018, PB030 

and PB031 were screened for mutations in the BBS7  ORF. No coding sequence alterations 

were found in any patients from the four pedigrees.

There are a number o f possible explanations for these results:

• BBS7  mutations that were not detected by sequencing may exist in these pedigrees. 

Although this is possible, it is unlikely that all four pedigrees carry a regulatory 

element mutation or large deletion or rearrangement in BBS7.

• A second BBS  gene is located in this area, in close proximity to BBS7. To date there 

has been no evidence o f clustering o f BBS  genes in the human genome, but as more 

novel BBS genes are cloned, incidences o f clustering may yet be found.

• The identification o f a number o f  homozygous markers in the same chromosomal 

location as a recently cloned BBS  gene could also be coincidental and BBS7 may be 

the only BBS gene on 4q27.
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Genotyping o f additional markers in this area and a further analysis o f known genes and 

ESTs in the area would be required to determine if this region does contain a novel BBS 

gene.

3.4.1.2 Chromosome 8q23.3-24.13

Evidence for a small region o f homozygosity on chromosome 8q was also found in five 

pedigrees, although results from additional markers did not support the initial evidence for 

IBD (See Table 3. 3). Homozygosity o f two or all o f the consecutive markers D8S1142, 

D8S592 and D8S514 in five pedigrees (PB026, PB031, PB035, PB036 and PB041) lead to 

the generation of additional markers identified through GDB. Although results from these 

markers confirmed a ~10Mb stretch o f  IBD in PB031 (from D8S1471 to D8S514), 

heterozygosity was observed for one or more o f the GDB markers in each o f the other 

pedigrees.

These results suggest therefore that the area o f homozygosity common to all five pedigrees is 

restricted to only a 1.2Mb interval between D8S1694 and D8S522 (8q24.11 -8q24.12). This 

may correspond to a novel BBS locus but, in some pedigrees (PB026, PB035 and PB041), the 

interval represents homozygosity at only a single marker, D8S592. As the heterozygosity of 

this marker is relatively low (0.67), it is possible that the observation o f homozygosity for 

this marker in five o f 17 pedigrees is coincidental. Genotyping o f further markers with higher 

heterozygosities is required to establish whether this is in fact a true BBS locus.

3.4.1.3 Chromosome 14q22.3-24.3

Haplotypes from chromosome 14q revealed a number o f homozygous markers in six 

individuals from five different families (Table 3. 4). The distal boundary o f the region was 

defined by heterozygosity for the marker D14S588 in two patients (PB040.1 and PB053.1), 

and the proximal boundary by marker D14S63 that was heterozygous in PB049.1. Analysis 

o f this ~5.6Mb interval for suitable candidate genes, lead to the identification o f H SPA2 , a 

gene encoding a heat shock protein (HSPA2), located 0.3Mb distal to D14S63. Mutation
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screening of the gene in pedigrees exhibiting linkage to this area did not reveal any 

pathogenic coding mutations. The SK IP  gene, located just proximal to D14S74 in the 

extended region o f IBD that is shared between four o f the pedigrees (PB031, PB041, PB049 

and PB053), was also sequenced. Sequence analysis o f the ORF in these pedigrees did not 

result in the detection o f any mutations.

3.4.1.4 Marker density

It is possible that novel BBS loci have been missed in this screen due to a lack o f complete 

coverage o f the genome. Despite an average spacing of l OcM between loci in the marker set 

used for the screen (ABI PRISM, Applied Biosystems), some areas o f the genome were not 

well covered. Gaps between markers were greater than 20cM in 11 cases and in four o f these, 

the distance was greater than 25cM. On chromosome 9q32 there was only a single marker in 

an interval o f 41.7cM and on chromosome 8q24, the neighbouring markers to D8S258 were a 

distance o f 19. lcM  (proximal) and 24cM (distal) away.

3.4.2 Candidate gene screens

It was initially expected that the cloning o f the first BBS gene would aid the identification of 

the remaining mapped genes. As BBS6 shows similarity at the amino acid level to the 

chaperonin family (Stone et al., 2000), genes within the critical intervals o f BBS1-5 that also 

demonstrated this similarity were considered to be good candidates (Sheffield et al., 2001). In 

addition to screening o f two candidate genes identified through the homozygosity screen, 

genes were also screened as possible candidates for BBS4 (TLE3) and BBS1 (STIPI). Since 

the candidate gene screen, both BBS4  and BBS I have been cloned (Mykytyn et al., 2001; 

Mykytyn et al., 2002) and were found to be novel transcripts o f unknown function. As BBS2, 

7 and 8 have now also been cloned (Ansley et al., 2003; Badano et al., 2003a; Nishimura et 

al., 2001) and more information about the probable function o f some o f the BBS proteins is 

known, new criteria when selecting candidate genes for BBS is available. Although 

expression levels within the affected organs such as retina and kidney are high, all the
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recently cloned BBS  genes were found to be widely expressed and have not shown any 

similarity to chaperones (Ansley et al., 2003; Badano et al., 2003a; Mykytyn et al., 2001; 

Mykytyn et al., 2002; Nishimura et al., 2001).

3.4.3 Mutations identified in unlinked pedigrees

To assess the contribution o f the cloned BBS  genes to our cohort o f patients, all patients, 

including those from the homozygosity screen, were screened for mutations in BBS1, 2, 4 , 7 

and 8 by direct sequencing (See Chapter 4 Mutation screening o f  known BBS genes and  

identification o f  a novel gene BBS8). O f the 17 consanguineous pedigrees from the genome 

screen, one (PB026) was found to carry a homozygous 2bp deletion in BB S2 , a second 

(PB012) defined the BBS8  locus and in a third (PB053), a single mutation in BBS1 was 

identified (See Table 4. 1). The remaining 14 pedigrees do not carry mutations in any o f the 

known BBS genes.

3.4.4 Summary

No major novel BBS  loci were detected in our cohort o f consanguineous pedigrees. Three 

regions o f IBD were found to be shared amongst a small number o f families but further work 

is required with additional highly informative markers to establish whether these regions 

represent novel loci, or are merely chance associations o f homozygosity for consecutive 

markers in different pedigrees. Further information on the structure and function o f the BBS 

proteins will allow more accurate selection criteria to be used when looking for candidate 

genes for BBS.
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Chapter 4 Mutation screening of known BBS 
genes and identification of a novel gene, 

BBS8

4.1 Introduction

Since the identification o f pathogenic mutations in the newly cloned M KKS  gene (Stone et 

al., 2000) in BBS patients, defining the BBS6  gene (Katsanis et al., 2000; Slavotinek et al.,

2000), considerable progress has been made in the identification o f BBS genes; three more of 

the known BB S  genes (B B S 1 , 2 and 4 (Mykytyn et al., 2001; M ykytyn et al., 2002; 

Nishimura et al., 2001)) have now been identified and a novel, unmapped, gene (BB S7  

(Badano et al., 2003a)) has also recently been cloned (See Appendices 1-6 for schematics of 

BBS1, 2, 4, 6, 7 and 8) . B B S 1 , 2 and 4 were identified using a conventional positional 

cloning approach involving mutation screening o f candidate genes and ESTs within the 

critical intervals o f the respective loci. The presence of pathogenic coding mutations in the 

consanguineous pedigrees that were used to map the loci and in additional unrelated families 

(in the case o f BBS1 and 2) confirmed that mutations in these novel genes result in BBS. In 

contrast, the B B S!  gene was a strong candidate owing to its location within the critical 

interval and its shared homology with the previously identified BBS2 protein (BBS1 and 

BBS2 are 40% similar over a 192-amino acid region, (Mykytyn et al., 2002)). BBS7 was also 

suggested as a candidate gene for BBS based on its similarity to known BBS proteins (BBS7 

is 42.5% similar to BBS2 across a 252-amino acid region which partly overlaps with the 

region o f shared homology between BBS2 and BBS1); two missense mutations and one 

frameshift mutation in a cohort o f BBS patients confirmed BBS7  as a novel BB S  gene 

(Badano et al., 2003a).
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4.1.1 Spectrum of mutations reported in BBS genes

Several types o f mutations including missense, nonsense, splice junction, frameshift and 

whole exon deletions have been reported in BBS genes (Mykytyn et al., 2001; Mykytyn et al., 

2003; Mykytyn et al., 2002; Nishimura et al., 2001). To date no whole gene deletions have 

been reported in any of the known genes. In addition, no nonsense mutations have been 

reported in either BBS4 or 7, but as these loci account for only a small percentage o f cases of 

BBS (the combined contribution o f BBS4 and 7 is estimated to be <5% (Katsanis, 2004)) this 

is likely to be purely a reflection o f the small number o f mutations reported in these genes; 

frameshift and missense mutations have been reported in all BBS  genes (Badano et al., 

2003a; Katsanis et al., 2000; Mykytyn et al., 2001; Mykytyn et al., 2003; Nishimura et al.,

2001 ).

A 6kb deletion o f exons 3 and 4 (IVS2 IVS5) has been reported in BBS4 in two pedigrees, 

one Italian and the other Israeli-Arab (M ykytyn et al., 2001). Although the deletion 

breakpoints in the two families were identical, haplotype analysis o f the pedigrees using 

microsatellite markers surrounding the BBS4 gene indicated that the mutations had occurred 

independently. As the breakpoints are located in Alu  repeat sequences in introns 2 and 4 it is 

likely that this deletion occurred through unequal homologous recombination between Alu  

sequences. Deletions or duplications involving Alu  sequences have been reported in multiple 

genetic conditions and may account for as much as 0.3% o f all human genetic disease 

(Deininger and Batzer, 1999). Analysis o f the BBS4  sequence by Mykytyn et al. (2001) 

identified 40 Alu sequences throughout the gene, with a particularly high frequency in intron 

2 ( 12 Alu  sequences were identified in this intron alone); the authors therefore suggest that 

BBS4 may be predisposed to /1/w-associated mutations and that further mutations o f this type 

are likely to be identified in future mutation screens o f the gene. High numbers o f Alu repeats 

have not been reported in other BBS genes.

In addition to a variety o f types o f mutation reported, the distribution o f  mutations 

throughout the ORF o f the BBS1, 2, 4 and 6 genes appears to be relatively uniform, with little 

or no indication of mutation hotspots within the genes. Two nonsense mutations in exon 8 of

83



BBS2 (R272X and R275X) were however reported by Nishimura et al. (2001), and none of 

the five mutations reported in this study were located in the C-terminal third o f the protein. It 

is possible that the close proximity o f the nonsense mutations and high incidence o f 

mutations towards the N-terminus is a true representation of the distribution o f mutations 

within the BBS2 gene, but it may also be coincidental and influenced by the small number o f 

mutations detected in the study. In contrast to the other BBS genes, BBS7 does appear to 

show clustering o f mutations towards the middle o f the protein, but again the sample size is 

very small (Badano et al., 2003a). Only three mutations have been reported in BBS7 to date; 

all three are located within a 112-amino acid stretch in the centre o f the 621-amino acid 

protein, in a region o f shared homology with BBS2.

With the exception of M390R, a common missense mutation in BBS1 (M390R accounts for 

80% of cases o f BB S I and over 30% o f all cases o f BBS (Mykytyn et al., 2003)), the 

majority o f BBS mutations are either private (reported in a single family) or segregate with 

disease in only a small number o f pedigrees. The M390R mutation has primarily been 

reported in patients of North European origin but Mykytyn et a l  (2002) has also reported the 

mutation in affected members o f Puerto Rican BBS families in both compound heterozygote 

(in association with other BBS1 mutations) and homozygote individuals. Haplotype analysis 

o f the M390R mutation suggests that it is an ancient mutation as it is present on a single 

haplotype both within and across populations (Mykytyn et al., 2003).

4.1.2 TTC8 as a candidate gene for BBS

Despite the recent success in the cloning o f BBS genes, mutations in the five known genes do 

not account for all cases o f BBS. The percentage o f patients that remain unlinked to any of 

the known loci has been reported to range from 14-42% (Badano et al., 2003a; Beales et al., 

2001; Katsanis et al., 2001b) and in one particular study, only 43% o f patients were 

accounted for by mutations in BBS1, 2, 4 and 6 (Fauser et al., 2003). With so many patients 

unaccounted for by the known loci, further BB S  loci must be present within the human 

genome. It is possible that there is only one further locus that accounts for all currently

84



unlinked cases o f BBS but, as no significant regions o f homozygosity were detected in the 

genome-wide homozygosity screen (See 3.3.1 Homozygosity screen), this is unlikely. The 

existence o f a number o f additional, less common, loci is therefore more likely. In the 

absence of extended consanguineous pedigrees, that are themselves large enough to generate 

statistically significant linkage, mapping o f novel, rare BBS loci is very difficult. Following 

the successful cloning of BBS1 and BBS7 based on their homology to BBS2, this alternative 

method is an effective way of cloning new BBS  genes, particularly in a cohort o f patients 

from small, non-consanguineous pedigrees.

In a similar approach to that used by Badano et al. (2003a) to clone the BBS7 gene, 

fragments of the BBS4 protein sequence were used to screen the conceptual translation of the 

human genome and dbEST. As BBS4 contains at least ten tetratricopeptide repeats (TPRs) 

that are involved in protein-protein interactions, several TPR containing proteins were 

identified. One particularly good match, the hypothetical protein TTC8, showed a stretch of 

homology that included three consecutive TPR domains and, although not located within a 

mapped BBS locus (the TTC8 gene maps to chromosome 14q32.11), was considered to be a 

strong candidate for BBS based on this degree of homology to BBS4 (Ansley et al., 2003).

4.1.3 Conclusions

To determine the contribution o f the known loci to our patient cohort and potentially identify 

novel mutations within the known BBS  genes, 120 affected individuals were screened for 

mutations in BBS1, 2, 4 and 7 by direct sequencing. The same patient cohort was also 

screened for mutations within the ORF of TTC.8 to establish whether this was a novel BBS  

gene.
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4.2 Methods

4.2.1 Patient Cohort

A cohort o f 120 affected individuals was screened for mutations in BBS I, 2, 4 and 7. A large 

number of this patient cohort had previously been screened for mutations in BBS6 during an 

earlier study (Beales et al., 2001). Patients recruited after that study were screened for BBS6 

mutations using the MCHA technique (See 6.3.2 Identification o f  alterations in new cases o f  

BBS and in NPHP patients). All patients were screened for the four genes regardless of any 

haplotype inferred chromosomal assignment from previous linkage studies. Patient DNA 

samples were either received directly from clinicians or were extracted from blood samples 

as described earlier (See 2.2.1.1 DNA extraction).

4.2.2 PCR and cycle sequencing reactions

All PCR, sequencing reactions and sequence analysis were carried out in a 96-well format as 

described earlier (See 2.2.1.2 PCR reactions and 2.2.3 Direct sequencing). Following 

identification o f a mutation in a patient, all available members o f the family were screened to 

check the segregation pattern o f the change. Where possible mutations were also confirmed 

using a restriction digest with the relevant enzyme (See 2.2.1.4 Restriction digests); M390R 

(BBS1) -  BspHl, Y24X (BBS2) -  Bfal and R275X (BBS2) -  Bsl\.
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4.3 Results

4.3.1 BBS1 mutations

At least one mutant BBS1 allele was identified in 30 o f the 120 pedigrees (25.0%) screened 

by direct sequencing, confirming that BBS1 is the most common BBS  gene (Beales et al., 

2003). Despite complete coverage o f the ORF and splice junctions o f the gene, single mutant 

alleles were detected in four o f the 30 pedigrees (13.3%). Both previously published 

(missense, frameshift and nonsense) and novel (missense) mutations were identified in this 

patient cohort (Table 4. 1 and Appendix 1)

4.3.1.1 Previously published mutations

As described in previous mutation screens o f B B S1 (Mykytyn et al., 2001; Mykytyn et al., 

2003), common missense mutation (M390R) was the predominant BBS1 mutation within 

our cohort (Table 4. 1). The majority o f  M 390R mutations were found to segregate with 

disease in a recessive manner within small, outbred pedigrees o f European descent. The 

M390R mutation, caused by a T>G transversion in exon 12, was seen in homozygous form in 

eleven isolated cases o f BBS, for whom DNA from family members was not available, and 

also in six pedigrees (17/30, 56.7% o f all BBS I mutations, (Beales et al., 2003)). Despite 

being unaffected, the fathers o f two o f these pedigrees (PB006 and PB029) were found to be 

homozygous for the M 390R mutation. M 390R alleles were also seen in compound 

heterozygous form in association with another BBS1 mutation in four pedigrees (13.3%) and 

in heterozygous form without a second BBS1 mutation in three pedigrees (10.0%). In one 

Turkish pedigree (PB086), three affected individuals in one branch o f the family (individuals 

07, 08 and 09) were found to carry a compound heterozygous mutation involving M390R 

and a c. 1318C>T nonsense mutation in exon 13 (R440X, Table 4. 1). The affected individual 

in the other branch o f the pedigree (01) carried only the R440X mutation, in homozygous 

form (Figure 4. 1). Interestingly, despite the fact that the parents o f 01 (individuals 05 and

06) are first cousins, both R440X alleles in 01 have not been inherited from a common
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ancestor. A heterozygous R440X mutation was also identified by MCHA in an isolated new 

case o f BBS (F820, See 6.3.2 Identification o f  alterations in new cases o f  BB S and in NPHP 

patients). A second compound heterozygous mutation involving M 390R was found in 

association with a lbp  deletion in exon 10 (Y284fsX288) in a single English pedigree 

(PB008) comprising male monozygotic twins and an affected sister (Table 4. 1). The same 

frameshift mutation was also seen in homozygous form in a consanguineous Libyan pedigree 

(PB110). In three cases (PB074, PB097 and PB125), affected individuals w ere found to be 

heterozygous for the M390R mutation but no second pathogenic mutation within the BB S1 

ORF was identified.

4.3.1.2 Novel missense mutations

In addition to the identification o f previously reported BBS1 mutations w ithin our patient 

cohort, novel m utations, all m issense, were also identified. In a single Pakistani 

consanguineous pedigree (PB034), a c.442G>A substitution in exon 5 (D148N) was present 

in hom oi gous form in the two affected offspring and in heterozygous form in both parents 

(Table 4. 1). The aspartic acid at position 148 o f the BBS1 protein is conserved in Mus 

musculus, Rattus norvegicus, Pan troglodytes, Canis familiar is and Anopheles gambiae. Two 

other novel missense mutations were found in compound heterozygous individuals in 

association with M390R; a c. 157A>G substitution in exon 3 (K53E) was identified in an 

English pedigree (PB017) with two affected offspring, and a contiguous c. 1508-1509TT>AC 

substitution (L503H) was identified in a single individual (PB077, Table 4. 1). A 

heterozygous c. 104A>G missense mutation in exon 2 (H35R) was also identified in a 

consanguineous pedigree (PB053); in this pedigree no second mutation was identified (Table 

4. 1). Like D148, the histidine residue at position 35 is conserved in M us musculus, Rattus 

norvegicus, Pan troglodytes, Canis fam iliaris and Anopheles gambiae.

See Appendix 1 for a schematic showing the distribution o f the known and novel BBSl 

mutations identified in the patient cohort.
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Figure 4. 1: Pedigree PB086. A consanguineous pedigree in which a homozygous nonsense 
mutation (R440X) segregates with disease in one branch of the family and in the other the 
heterozygous R440X mutation is associated with M390R.
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4.3.2 BBS2 mutations

Recessive mutations, including a deletion, nonsense and missense mutations, in BBS2 were 

identified in six individuals (5.0%) from the patient cohort (Table 4. 1 and Appendix 2).

4.3.2.1 Previously reported mutations

Only a single known BBS2 mutation was detected in our patient cohort. A C>T substitution 

in exon 8 (R275X), resulting in prem ature term ination o f the protein, was seen in 

homozygous form in one individual (PB065) and also in two affected sisters from a small 

English pedigree (PB005). This same m utation was also seen in association with 

heterozygous novel mutations in two compound heterozygous individuals (Table 4. 1).

4.3.2.2 Novel mutations

Three novel mutations were identified during the mutation screen of BBS2 (Table 4. 1). A 

homozygous c.51 l-512delTT deletion in exon 4 (D170fsX171) was identified in the affected 

individual in a consanguineous Indian pedigree (PB026, Table 4. 1). A c.72C>G nonsense 

mutation in exon 1 (Y24X) was identified in homozygous form in a single family (PB0020) 

and also in heterozygous form, in combination with R275X, in a small outbred family 

(PB087, Table 4. 1). In this second family the Y24X mutation appeared to segregate with 

genital malformations in some o f the otherwise unaffected relatives o f the proband, 

indicating possible partial disease manifestation in heterozygous Y24X carriers in this family 

(Figure 4. 2). A second compound heterozygous mutation involving R275X was observed in 

an Irish ped. a maternally inherited heterozygous c.522T>A missense mutation (D174E). In 

this pedigree, the D174E mutation was discovered by MCHA (See 6.3.2 Identification o f  

alterations in new eases o f  BBS and in NP HP patients) due to an altered peak profile in exon 

4 of BBS2  in the patient sample Sequence analysis o f the exon revealed the cause of the
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MCHA result to be a T>A substitution which, on sequencing of the parent samples, was 

found to have been inherited from the mother.

See Appendix 2 for the position o f the BBS2 mutations in the gene.
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Figure 4. 2: Pedigree PB087. An English pedigree in which three relatives (04, 06 and
07) of the patient (01) have genital malformations in association with a heterozygous 
Y24X mutation.
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Pedigree Number of 
affecteds

Consanguineous,
origin Gene Mutations

PB003 IF, 1M No, English BBSl [M390R] + [M390R]
PB006 2F No, English BBSl [M390R1 + [M390R]
PB008 IF, 2M (MZ twins) No, English BBSl [Y284fsX2881 + [M390R1
PB013 1F, 1M (cousins) No, English BBSl [M390R1 + [M390R1
PB017 2M No, English BBSl [K53E1 + [M390R1
PB027 2M No, English BBSl [M390R1 + [M390R1
PB028 2F No, English BBSl [M390R1 + [M390R1
PB029 2M No, English BBSl [M390R1 + [M390R1
PB034 2M Yes, Pakistani BBSl TD148N1 + [D148N1
PB037 2M (cousins) No, English BBSl [M390R1 + [M390R1
PB038 IF No, Holland BBSl [M390R1 + [M390R]
PB053 1M Yes, Turkish BBSl [H35R1 + [?1
PB073 1M No, English BBSl [M390R1 + [M390R1
PB074 1M No, English BBSl [M390R1 + [?1
PB076 IF No, English BBSl [M390R1 + [M390R1
PB077 IF No, English BBSl TM390R1 + [L503H1
PB079 IF No, English BBSl [M390R1 + [M390R1
PB080 IF No, English BBSl [M390R] + [M390R]
PB086a IF Yes, Turkish BBSl [R440X] + [R440X]
PB086b 3M Yes, Turkish BBSl [M390R] + [R440X]
PB096 IF No, Turkish BBSl [M390R1 + [M390R1
PB097 IF No, English BBSl [M390R] + [?]
PB100 IF No, English BBSl [M390R1 + [M390R]
PB110 1M Yes, Libya BBSl [Y284fsX288] + [Y284fsX288]
PB125 IF No, English BBSl [M390R] + [?]
PB139 1M No, English BBSl [M390R1 + [M390R1
PB150 IF No, Aus/Scottish BBSl [M390R1 + [M390R1
PB154 1M No, English BBSl TM390R1 + [M390R]
PB174 IF No, English BBSl [M390R1 + TM390R1
PB180 1M No, English BBSl TM390R1 + [M390R1
F820 1M No, German BBSl [R440X] * + [?]

PB005 2F No, English BBS2 [R275X1 + [R275X1
PB020 IF, 1M No, English BBS2 [Y24X1 + [Y24X1
PB026 IF Yes, Indian BBS2 fD170fsX171] + fD170fsX1711
PB065 IF No, Irish BBS2 [R275X1 + [R275X1
PB069 1M No, Irish BBS2 [D174E1 * + [R275X1
PB087 1M No, English BBS2 [Y24X1 + [R275X1
F523 IF No, Turkish BBS6 [I339V] * + [?]

PB054 IF Yes, Turkish BBS7 TK237fsX2961 + [K237fsX2961
PB012 3M Yes, Pakistani BBSS [IVSlOdelTGCl + [IVSlOdelTGCl

Table 4. 1: Recessive mutations identified in BBS patients. F - females, M - males, * - 
mutations that were identified using MCHA, all others were identified by direct sequencing. 
[?] indicates pedigrees in which a single mutant allele was identified.
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4.3.3 BBS4 mutations

No mutations in BBS4 were found to segregate with disease in any individuals from the 

patient cohort. Sequence alterations that did not conform to a classic recessive model of 

inheritance were however discovered; these alterations will be discussed in Chapter 5 

Complex inheritance in BBS and a related syndrome.

4.3.4 BBS7 mutations

Only a single BBS7 mutation was detected in our patient cohort. A c.711-714delGAGA 

deletion in exon 7 (K237fsX296) of the gene was identified in a consanguineous Turkish 

pedigree (PB054, Table 4. 1 and Appendix 5). This mutation, which results in a frameshift 

identical to the one reported by Badano et al. (2003a), is located within the 112-amino acid 

region of the BBS7 protein where all known BBS7 mutations have been reported and that is 

shared exclusively between BBS7 and BBS2.

See Appendix 5 for a schematic showing the position of the frameshift mutation in the BBS7 

gene.

4.3.5 TTC8 mutations

Sequencing of the ORF of TTC8 revealed a 3bp deletion resulting in the abolition of the 

splice donor site of exon 10 (IVS10+2-4delTGC) in a consanguineous Pakistani pedigree 

(PB012, Table 4. 1 and Appendix 6), identifying TTC8 as an eighth locus for BBS. The three 

affected members of the pedigree were all homozygous for the mutation; single copies of the 

mutation were present in the parents (obligate heterozygotes) and also in an unaffected sister. 

A possible consequence of this mutation is the skipping of exon 10, resulting in an in-frame 

deletion of 111 bp. However, RT-PCR analysis of cDNA from cultured renal tubular cells 

from the patients using primers located in exons 9 and 13 of BBS8, suggest that the mutant
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BBS8 transcript is degraded by nonsense mediated decay as no product was detectable in the 

patient samples, but was present in both their unaffected sister and an unrelated positive 

control (Ansley et al., 2003). Identification of mutations in TTC8 that segregate in a recessive 

manner with BBS has resulted in this gene being referred to as BBS8, although it is still 

denoted TTC8 by the nomenclature committee (Ansley et al., 2003).

See Appendix 6 for a schematic of BBS8 including the position of the IVS10+2-4delTGC 

mutation.
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4.4 Discussion

Mutation screening of the known BBS genes BBSl, 2 , 4 and 7, and the novel gene BBS8, 

revealed that recessive mutations in these genes account for a relatively small portion 

(31.7%) of the cases of BBS within our patient cohort (38 of 120 patients screened had 

recessive mutations in BBSl, 2, 7 or 8).

4.4.1 Mutations identified in BBS1

Mutational analysis of the BBSl gene in our cohort supported previous studies confirming 

that it is the gene most frequently associated with BBS, and that a common missense 

mutation (M390R) accounts for the majority of cases of BBSl (Mykytyn et al., 2001; 

Mykytyn et al., 2003). Thirty patients (25.0% of pedigrees) had at least one mutation in BBSl 

including the previously reported M390R, Y284fsX288 and R440X mutations, and the four 

novel missense mutations H35R, K53E, D418N and L503H. The expected contribution of 

this locus to BBS was calculated by earlier linkage studies and haplotype analysis to be 36- 

56% (Bruford et al., 1997; Katsanis et al., 1999). The lower frequency of mutations seen 

amongst our patients, which was supported by a parallel screen conducted by our 

collaborators (at least one BBSl mutation was identified in 37 of 147 (25.2%) pedigrees 

(Beales et al., 2003)) may be explained by several different possibilities. A subset of 

mutations that would have been missed through our mutation screening approach may exist 

within our patient cohort. Mutations that would be missed by direct sequencing of the ORF 

and splice junctions include large deletions or insertions, heterozygous exonic deletions and 

also regulatory element or cryptic splice site mutations. This is a possibility, and may explain 

the absence of a second mutant BBSl allele in some pedigrees from our cohort (a single 

BBSl mutant allele was found in 16.7% (5/30) of families with BBSl mutations), but it is 

unlikely that undetected mutations in our cohort are able to account for such a large 

difference between the observed and expected contributions. A second possibility is that 

mutations exist within either additional exons of the BBSl gene, that were not detected on 

initial cloning of the gene, or in a second BBS locus located in close proximity to the BBSl 

gene on 1 lql3. The position of the BBSl gene outside both the Young et al. (1999b) and the

96



wider Katsanis et al. (1999) BBSl critical intervals raises the question as to whether there 

may be a second BBS locus proximal to B BSl. One pedigree from our cohort (PB010) and 

two from our collaborator's (AR37 and AR603) that showed linkage to the critical interval 

on 1 lql3 published by Katsanis et al. (1999), do not have coding mutations in BBSl (Beales 

et al., 2003). The occurrence of pedigrees that do not segregate BBSl mutations and are 

linked to the region proximal to the BBSl gene suggest that a second BBS gene may exist in 

this region on chromosome 11, a possibility that Mykytyn et al. (2001) do not exclude. 

Finally, it is also possible that initial calculations of the contribution of BBSl were an over 

estimation. Mykytyn et al. (2003), in their larger study of 129 pedigrees, report BBSl 

mutations in 32.0% (41/129) of their cohort, indicating that between a quarter and a third of 

all BBS cases can be accounted for by mutations in BBSl.

4.4.1.1 Contribution of M390R to BBS1

The contribution of M390R to BBSl in our cohort was similar to that of Mykytyn et al. 

(2003); of pedigrees from our cohort containing at least one M390R allele, 73.1% (19/26) 

were homozygotes in comparison to 69.2% (27/39) of the cohort studied by Mykytyn et al. A 

large difference was found however in the number of pedigrees in the two study groups 

containing a single M390R allele with no evidence for a second BBSl mutant allele 

segregating with disease. In two of the 12 (16.6%) M390R heterozygotes studied by 

Mykytyn et al. (2003), no second BBSl mutation was identified. The frequency of only a 

single M390R allele observed in a pedigree was higher in our cohort; of seven M390R 

heterozygotes, three (42.9%) did not have a second BBSl mutation. In addition, Mykytyn et 

al. (2003) did not report any incidences of unaffected relatives that were M390R 

homozygotes, an occurrence that was observed twice within our cohort (in both cases in a 

pedigree containing two affected offspring which were homozygous for M390R, the 

unaffected father was also found to be an M390R homozygote). Cases of patients with single 

mutant alleles and unaffected family members that carry two mutant alleles in a BBS gene 

may be a reflection of the complex inheritance which is seen in some BBS pedigrees (See 

Chapter 5 Complex inheritance in BBS and a related syndrome for a further discussion of 

complex inheritance in BBS).
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4.4.1.2 Analysis of novel mutations

In addition to the detection of known BBSl mutations amongst pedigrees, four novel 

missense mutations (H35R, K53E, D148N and L503H) were also identified in our cohort. In 

order to determine the potential pathogenicity of the novel alterations, they were assessed 

using the following criteria:

• Segregation of the alteration with disease in the pedigree.

• Absence of the alteration in at least 200 matched control chromosomes.

• Whether or not the substitution is at a conserved residue.

• Analysis using the SIFT (Sorting Intolerant From Tolerant) program 

(http://blocks.fhcrc.org/sift/SIFT.htmn to predict the effect of the substitution on 

protein function.

The novel missense mutations identified in BBSl all segregated with disease in the pedigrees 

in which they were found, were not seen in control samples and were also all at residues that 

were conserved in a number of species including mouse, rat, dog, chimp and mosquito. The 

SIFT program (Ng and Henikoff, 2002), which uses sequence homology between related 

proteins to predict whether an amino acid substitution will affect protein function, was used 

to determine whether the substitutions found in BBSl were likely to be deleterious. Using the 

program, the human BBS 1 sequence was aligned with sequences from C. elegans (Accession 

number - AL 132876), A. gambiae (AAABO1008807), D. melanogaster (AE003560) and P. 

pygmaeus (CR858140). The leucine at amino acid position 503 was found to be highly 

conserved among the homologous proteins; it is therefore predicted that the L503H 

substitution (seen in a single pedigree from the cohort, in compound heterozygous form with 

M390R) has a deleterious effect on the BBSl protein. Despite in some cases resulting in a 

change of group, for example, the substitution of lysine for glutamic acid (K53E) results in 

the exchange of a basic amino acid for an acidic one, the remaining substitutions were 

predicted to be tolerated at the positions at which they were found within the protein. As little 

is known about the function of the BBSl protein, it is possible that these substitutions, 

although not deleterious, may have a more subtle effect on the interaction between BBSl and 

its interactors, or may lie in an as yet undetermined functional domain. In addition to the
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absence of all novel missense mutations in a group of control individuals, further support for 

the pathogenicity of the D148N mutation was achieved by the observation of a second family 

segregating the mutation in the cohort of our collaborator (Beales et al., 2003).

4.4.1.3 Frequency and distribution of mutations in the BBS1 ORF

To date 30 different mutations (nine missense, eight nonsense, six frameshift, five splice site 

and two in-frame deletions) have been reported in BBS1 (Beales et al., 2003; Fauser et al., 

2003; Mykytyn et al., 2003; Mykytyn et al., 2002). Despite this number and range of 

mutations, with the exception of M390R, each mutation has been reported in a very small 

number of families; three Y284fsX288 alleles, one homozygous and one heterozygous 

pedigree, were detected within our cohort and also within the cohort of Mykytyn et al. (2003; 

2002), and only two homozygous D148N pedigrees were identified, one in each of our cohort 

and that of our collaborator (Beales et al., 2003).

The mutations found in our cohort are distributed relatively evenly throughout the ORF of 

the BBS1 gene, although no mutations in exons 6 to 9 were identified in our patients 

(Appendix 1). Only two mutations, an in-frame deletion (I200_T201del) and a missense 

mutation (c.699G>A, E234K) both in exon 8, have been identified in this region of the gene 

(Beales et al., 2003; Mykytyn et al., 2003), suggesting that this region may be part of an 

important functional domain and therefore less tolerant of mutations.

4.4.2 Mutations identified in BBS2

Although the second most common locus in BBS, the contribution of BBS2 is considerably 

lower than that of BBS1 (BBS2 is estimated to account for only 8-16% of all cases of BBS 

(Katsanis, 2004; Katsanis et al., 2001b)) and therefore fewer mutations have been reported in 

BBS2. A slightly lower than expected frequency of BBS2 mutations were found in our cohort; 

recessive mutations were identified in 5.0% of our pedigrees (6/120). Of the four different 

mutations present in the cohort, only one mutation (R275X) had been previously reported
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(Nishimura et al., 2001) and was the most common BBS2 mutation present in our patients. 

Affected individuals in two cases were homozygous for the nonsense mutation and in two 

other pedigrees, patients were found to be compound heterozygotes for R275X and a second 

BBS2 mutation (Y24X or D174E). Identification of a homozygous R275X mutation in one of 

these pedigrees (PB005) confirmed haplotype analysis conducted in a previous study 

indicating linkage of this pedigree to the BBS2 locus (Beales et al., 2001).

4.4.2.1 Novel BBS2 mutations

A novel deletion, nonsense and missense mutation were all identified in our cohort. The 

known nonsense mutation R275X was present in two pedigrees in association with novel 

mutations. In one family, a maternally inherited D174E missense mutation was present with 

a paternally inherited R275X mutation. The D174E substitution was not predicted to be 

deleterious using the SIFT program but, was not present in at least 200 control chromosomes 

(screened by collaborators) and segregated with disease in the family, suggesting that it is 

likely a pathogenic alteration. In the second pedigree, an R275X allele was present in 

combination with an additional nonsense mutation, Y24X. In this pedigree (PB087, Figure 4. 

2) there was a single child that was suspected of having BBS based on the presence of 

obesity, polydactyly, speech delay and hypospadias (as the child was only 18 months of age 

on initial presentation, key diagnostic features such as RP had yet developed). In an attempt 

to confirm the diagnosis of BBS, DNA from the child was screened for mutations in BBS1,2, 

4 and 6 by direct sequencing. The identification of two nonsense mutations in BBS2 (the 

paternally inherited R275X, and the maternally inherited Y24X) confirmed the diagnosis and 

provided the ability to offer a prenatal diagnosis on a second pregnancy in the family. 

Mutational analysis of a fetal sample taken by chorionic villus sampling (CVS), determined 

that the fetus did not carry either of the mutations in BBS2 and a healthy child was bom at 

term. In this family there was also evidence for the co-segregation of genital malformations 

with the Y24X mutation in unaffected relatives. The maternal grandmother and two of her 

three siblings, all of whom were heterozygous for the Y24X mutation, were found to have 

genital malformations. The Y24X mutation was also present in homozygous form in one 

other pedigree (PB020) of our cohort in which the affected individual also has genital

100



malformations. The observation of an association between the Y24X mutation and genital 

malformations raises questions as to whether heterozygous relatives of BBS patients have an 

increased risk of genital malformations relative to the general population, similar to the 

increased incidence of renal malformations and CC-RCC seen in some unaffected carrier 

relatives ((Beales et al., 2000) See 1.7 Heterozygous effects). It is possible that the link 

between genital malformation and a single BBS2 mutant allele in this pedigree is a general 

one between mutations in BBS2 and genital malformations, or may be a more specific 

relationship restricted to the Y24X mutation itself. Functional studies are required to 

determine the effect that this nonsense mutation has on the BBS2 protein product; one 

possible outcome is translational reinitiation after the Y24X termination codon, leading to an 

N-terminally truncated protein (Kozak, 2001). Further studies of relatives of patients with 

BBS2 mutations, in particular Y24X, for the presence of genital malformations and 

mutational analyses of isolated cases of genital malformation in the general population would 

be required to determine if this is a common occurrence or is particular to this family. It was 

previously assumed that, due to the genital malformations seen in MKKS patients, BBS 

patients exhibiting genital abnormalities were most likely to have mutations in BBS6 

(MKKS), these results suggest that this is not the case and that the presence or absence of 

genital malformations in a BBS patient is not locus-specific. BBS mutations may also confer 

a susceptibility to genital malformations on the general population.

4.4.3 Recessive mutations in BBS4

Mutations in BBS4 account for fewer than 3% of BBS cases (Katsanis, 2004) and only five 

different recessive mutations (a deletion of exons 3 and 4, one missense and three splice site 

mutations have been reported to date (Katsanis et al., 2002; Mykytyn et al., 2001)). Despite 

the expectation of further ̂ /w-associated mutations being identified within BBS4, due to the 

high number of Alu repeats present within the BBS4 genomic sequence, the deletion of exons 

3 and 4 (IVS2 IVS5) remains the only ^/w-associated mutation reported in the gene. No 

recessive BBS4 mutations were identified in our cohort.
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4.4.4 A novel deletion in BBS7

A single BBS7 ffameshift mutation (K237fsX296) was found in a Turkish pedigree from our 

cohort. Although the deletion in our patient results in an identical frameshift to that identified 

by Badano et al. (2003a) in a Saudi pedigree, the deleted bases are not identical; in the Saudi 

pedigree, the 4bp deletion involves bases 709-712 (c.709-712delAAGA), whereas the 

Turkish deletion encompasses bases 711-714 (c.711-714delGAGA). It is possible therefore 

that this region of the BBS7 gene is unstable and prone to deletions.

4.4.5 Identification of a novel BBS gene, BBS8

The identification of a splice site mutation in the TTC8 gene (now known as BBS8) in a 

consanguineous BBS pedigree from our cohort proves that this novel transcript is a BBS 

gene. The detection of a 6bp deletion (E187_Y188del) in two unrelated Saudi pedigrees from 

the cohort of our collaborator provides independent confirmation that this is an eighth BBS 

locus (Ansley et al., 2003). The structure and function of the BBS8 protein is the first of the 

known BBS proteins to provide clues as to a possible disease mechanism underlying BBS. 

The protein, which shares homology with BBS4, contains a several TPR motifs lying 

towards the C-terminus and shows significant similarity to the prokaryotic pilF  domain 

which is involved in twitching mobility and type IV pilus assembly (Appendix 6). This 

feature of the protein suggests that BBS may be caused by a defect in the function of cilia or 

flagella. Interestingly, one of the three affected individuals with a splice site mutation 

(IVS10+2-4delTGC) in BBS8 has situs inversus in addition to BBS. Situs inversus is a defect 

of left-right asymmetry, known to be caused by dysfunction of the nodal cilia. The presence 

of situs inversus in one of three affected individuals indicates a randomisation of left-right 

asymmetry caused by this mutation. The function of BBS8 and the involvement of cilia in 

BBS will be discussed further in Chapter 8 Expression analysis o f BBS4 and BBS8 in mouse 

tissues.
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4.4.6 Summary

Mutational analysis of the known BBS genes and a newly cloned gene in our patient cohort 

has demonstrated the extensive genetic heterogeneity observed in BBS. Recessive mutations 

in five of the BBS genes (BBS!, 2 ,4, 7 and 8) account for -30% of the 120 cases screened in 

this study. With the exception of BBS1, each of the other loci accounts for less than 10% of 

cases. Taking into account the rarity of the majority of the BBS loci, it is possible that a large 

number of additional loci exist amongst the remaining cases of BBS that are not yet 

accounted for by mutations in known genes. It is only with the cloning of the latest BBS gene 

(BBSS) that a potential mechanism that, when defective, results in the pleiotropic phenotype 

of BBS has been identified.
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Chapter 5 Complex inheritance in BBS and a 
related syndrome

5.1 Introduction

BBS was traditionally considered to be an autosomal recessive disorder based on segregation 

patterns observed within pedigrees and populations. It was also initially expected that 

mutations at a single genetic locus would account for all cases o f BBS but genetic 

heterogeneity was apparent from the initial linkage study to map B B S1 and has steadily 

grown, resulting in the identification o f eight known BBS  loci (BBS 1-8) with evidence for 

additional loci within the human genome (See 1.9 The genetics o f  BBS for a summary o f the 

mapping and cloning o f BBS 1-7 and for a discussion o f the cloning o f the most recent BBS 

gene). Mutation analysis in a large cohort o f patients has provided evidence for a possible 

non-Mendelian inheritance pattern in BBS involving mutations at more than one locus in 

some families (Beales et al., 2003).

5.1.1 Initial evidence for complex inheritance in BBS

In 2000 the BBS6  gene was cloned independently by two different groups (Katsanis et al., 

2000; Slavotinek et al., 2000). In both screens, the majority o f mutations in BBS6 were found 

to be null alleles including fram eshift mutations (D143fsX157 and F94fsX103) and a 

nonsense mutation (Y264X). It should be noted however, that there was an overlap in the 

patients studied by both groups (three Newfoundland pedigrees were shared between the 

cohorts). As different mutation nomenclature was used by each group, including different 

reference points in the same MKKS  sequence designated as base 1 for the numbering of 

mutations, the overlap in patient samples was not initially apparent. All mutations were 

found to reside in exon 3, the largest and first coding exon o f BBS6. This was in contrast to 

the less severe mutations within the gene that had been reported in MKKS patients (Stone et
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al., 2000), suggesting that milder hypomorphic alleles result in the phenotype of MKKS, 

whereas truncating mutations result in the more severe phenotype of BBS (Katsanis et al.,

2000). Slavotinek et al. (2000) were able to detect 100% (8/8 alleles) of mutant BBS6 alleles 

within four different pedigrees, whereas in the slightly larger screen by Katsanis et al. 

(2000), only 93% (13/14) of mutant alleles were identified in seven pedigrees. Following the 

identification of causative BBS6 mutations in a small number of families, a large-scale screen 

of 163 pedigrees was carried out by the same group to ascertain the contribution of the BBS6 

locus to all cases of BBS from their cohort (Beales et al., 2001). Mutations were detected in 

eight pedigrees. In contrast to previous screens, all but one of the nine mutations identified 

were missense mutations, all of which were absent from 188 control chromosomes. The 

majority of the mutations were located in exon 3 (6/9 mutations), but three missense 

mutations were also present in exon 6. In seven of the eight pedigrees (87.5%) containing 

mutations, only a single mutant allele was identified. There were a number of possible 

explanations for this high number of pedigrees with single mutations:

• The single mutations may be polymorphisms rather than pathogenic mutations.

As the majority of mutations identified in this cohort were missense mutations it is 

possible that these sequence alterations are non-pathogenic polymorphisms. This is 

unlikely as one of the heterozygous mutations was a nonsense mutation (Q147X) and 

is therefore predicted to be severe, suggesting that the single mutations are likely to 

be pathogenic. Also one of the missense alterations (A242S) had previously been 

reported in an MKKS pedigree (Stone et al., 2000) and is therefore likely to be a 

disease-causing mutation. None of the single mutations were found in a sample of 

matched control chromosomes.

• ‘Missing ’ mutations may exist in regulatory regions, cryptic splice sites or may be 

deletions o f  part o f  the gene

Although additional mutations that would have been missed by sequencing of the 

BBS6 ORF may have existed in some families, not all cases of single mutant alleles 

detected in the screen could be explained in this way. In the consanguineous pedigree 

B14 (See Figure 1. 4), the A242S allele was identified in the affected individual (03) 

and was also found to be carried by his unaffected sister (04). Haplotype analysis
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indicated that this pedigree was excluded from linkage to the BBS6  locus as both 

offspring had identical haplotypes across the BBS6 interval, ruling out the possibility 

o f a second, unidentified, BBS6  mutation existing within this pedigree in only the 

affected individual. Analysis o f markers across the BBS2 critical interval showed a 

stretch o f IBD in only the affected individual, suggesting linkage to BBS2. In 

addition, two other pedigrees (AR-301 and AR259) with heterozygous B B S6  

mutations (one o f which was the nonsense mutation Q147X present in pedigree AR- 

259) were consistent with linkage to BBS2 (Beales et al., 2001).

• Mutations at more than one locus may be both necessary and sufficient to cause BBS 

in some pedigrees.

The identification o f a number o f pedigrees with a single BBS6  mutation which, in 

some cases, have been shown to be excluded from BBS6 but show possible linkage to 

other BBS  loci, suggests that a complex form o f inheritance (oligogenic inheritance) 

involving multiple m utations at more than one locus may exist in BBS. This 

possibility is supported by evidence from a second consanguineous pedigree that was 

found to be IBD for both the BBS2 and BBS4 loci (Beales et al., 2001). Although this 

may be a chance occurrence o f  two regions o f  homozygosity at two BB S  loci (in 

offspring o f a first cousin union, the probability o f any region being homozygous is 1 

in 16), it may also indicate the presence o f mutations at both loci within this pedigree.

5.1.2 Evidence of possible oligogenic inheritance in NPHP

In addition to BBS, evidence for oligogenic inheritance has been found recently in another 

recessive condition, nephronophthisis (NPHP), which shares similarities with BBS. NPHP is 

the most common cause o f ESRD in children (Fanconi et al., 1951) and is characterised by 

clinical features including an inability to concentrate the urine, cyst formation and an 

increased echogenicity on renal ultrasound (Hildebrandt, 1999; Hildebrandt et al., 1997b; 

Waldherr et al., 1982), all features reported in BBS patients (See 1.4.3 Renal abnormalities 

for a review o f the renal phenotype o f BBS patients). Extra-renal defects are also found in 

association with the NPHP renal phenotype; Joubert syndrome combines NPHP with
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congenital hepatic fibrosis and cerebellar vermis aplasia (Boichis et al., 1973; Hildebrandt et 

al., 1998), Senior-LOken syndrome (SLS) is the association o f the NPHP renal phenotype 

with RP (Loken et al., 1961; Senior et al., 1961) and developmental bone defects and situs 

inversus have both also been reported in patients with NPHP (Hildebrandt et al., 1992; Otto 

et al., 2003). Four NPHP genes have now been identified with a specific genotype-phenotype 

relationship associated with each locus; NPHP I (juvenile form) maps to 2ql2.3 (Hildebrandt 

et al., 1997a), 1NVS (NPHP2, infantile) maps to 9q31 (Otto et al., 2003), NPHP3 (adolescent) 

maps to 3q22 (Olbrich et al., 2003) and NPHP4 (adolescent) maps to lp36 (Otto et al., 

2002). NPHP and BBS also share similarities at the cellular level; BBS4 and the recently 

identified BBS8 protein have both been shown to localise to the basal body o f the cilia in 

ciliated tissues such as the renal primary cilia (Ansley et al., 2003; Kim et al., 2004), as have 

some o f the NPHP proteins (Otto et al., 2003) (See Chapter 8 Expression analysis o f  BBS4 

and BBS8 in mouse tissues for further discussion on the function o f BBS8).

In addition to clinical and cellular similarities, NPHP shares similarities at the genetic level 

with BBS. Both conditions show extensive genetic heterogeneity with a number o f cloned 

genes already identified in each condition (BBS -  eight known genes, NPHP -  four known 

genes), with evidence for further loci in both cases (-57%  o f BBS cases do not carry 

mutations in the known genes (Katsanis, 2004), 65% o f NPHP do not have mutations in 

NPHP 1-4 (Hildebrandt, F. Personal communication)). Mutational analysis o f known NPHP  

genes has also resulted in the identification o f pedigrees in which single mutant alleles were 

found. During a screen o f patients for mutations in IN  VS, the gene responsible for NPHP2, 

homozygous mutations were identified in six pedigrees and a single heterozygous mutation 

was identified in a seventh family (Otto et al., 2003). Mutations in NPH P3 were found in 

nine pedigrees from the same patient cohort, but both mutant alleles were found in only three 

o f these pedigrees (Olbrich et al., 2003). Analysis o f the NPHP4 gene by another group also 

resulted in the discovery o f single alleles; two o f five pedigrees with mutations in the gene 

had heterozygous mutations (Mollet et al., 2002).
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5.1.3 Conclusions

The existence o f families in which single mutant alleles occur in BBS, and also in NPHP, 

indicates that the inheritance pattern in these diseases may not be exclusively autosomal 

recessive as was previously thought. Mutations at more than one locus may be necessary to 

cause disease, or the phenotype resulting from mutations at one locus could be influenced by 

additional mutations at a second locus. To study whether non-Mendelian inheritance does 

exist in BBS, and the extent to which it occurs within our cohort o f patients, mutational data 

for B B S / ,  2, 4 , d, 7 and 8 for all patients from the cohort was analysed. In view o f the 

similarities between BBS and NPHP, the possibility o f oligogenic inheritance involving the 

BBS and NPHP genes was also studied.
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5.2 Methods

5.2.1 Mutational data

All sequence data generated from the direct sequencing o f B B S7, 2, 4 , 6 , 7 and 5 in the 

patient cohort as described in Chapter 4 was analysed using the Sequencher v .4 .1 program 

(See 2.2.3.5 Sequence analysis) to identify any mutations present in the BBS genes.

5.2.2 Restriction digests

Some mutations associated with oligogenic inheritance in BBS pedigrees were confirmed by 

restriction digest. All digests were perform ed as described in section 2.2.1.4 Restriction 

digests using the following enzymes; R275X (BBS2) -  BslI, T558I (BBS2) -  Sspl and A364E 

(B B S4)-M boL

5.2.3 Microsatellite analysis of chromosome 11

In one pedigree from the cohort (PB056), both the affected mother and her affected daughter 

were found to be homozygous for the M390R mutation (BBS1). As the father o f the affected 

child was unavailable, it was not possible to determine the segregation pattern o f the 

mutation within the pedigree. To rule out the possibility o f uni-parental disomy (UPD) o f 

chromosome 11 from the mother or hemizygosity for part, or all, o f the chromosome in the 

child, genotyping o f both mother and daughter using microsatellite markers spaced evenly 

across the length o f chromosome 11 was carried out. The markers used were: D l l  SI 984, 

D11S2362, D 11 S I999, D11S1981, ATAE08, PYGM, D11S2371, D11S4960, D11S1979, 

D11S4952, D11S2000, D11S1986, D11S1998, D11S4464, D11S4463 and D11S2359. 

Amplification, pooling and gel electrophoresis o f markers was carried as described in section 

2.2.2 Homozygosity mapping.
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5.2.4 Mutational analysis of NPHP patients

To test the hypothesis that oligogenic inheritance may exist between BBS  and NPHP genes, a 

cohort o f 95 NPHP patients were studied through a collaboration with Prof. Friedhelm 

Hildebrandt at the University o f Michigan. The patients had previously been screened for 

mutations in the known NPHP  genes by direct sequencing (at the University of Michigan). 

Patients with mutations in NPHP1, 2, 3 or 4 , and also patients that fulfilled diagnostic criteria 

for NPHP or associated syndromes (SLS, Joubert etc.) but did not carry mutations in the 

known genes were included in the cohort. MCHA was used to screen the cohort for 

mutations in BBS1, 2, 4 and 6 (See 2.2.4 MCHA).
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5.3 Results

5.3.1 Evidence for oligogenic inheritance in BBS

Evidence for non-M endelian inheritance in BBS was found in four pedigrees from our 

cohort.

5.3.1.1 Pedigree PB056

Pedigree PB056 (Figure 5. 1) consists o f  an affected mother (individual 02) and daughter 

(01). Sequence analysis revealed that both patients were homozygous for the M390R (BBS I ) 

mutation. As the father o f the affected child (01) from this pedigree was not available, it was 

not possible to confirm that the child had inherited a single copy of the M390R mutation 

from each parent. It was therefore necessary to rule out UPD o f chromosome 11 from the 

mother by genotyping o f m icrosatellite markers along the length o f the chromosome in 

individuals 01 and 02. Microsatellite analysis indicated that UPD had not occurred as the 

affected child was found to have inherited one haplotype from her mother and another 

haplotype, different to that o f the other maternal haplotype, which was presumed to have 

been inherited from her father (who must therefore carry at least one copy o f the M390R 

mutation). Hemizygosity for all or part o f  the BBS1 gene would have given an appearance 

identical to that o f a homozygous T>G base substitution at codon 390 o f BBS1 (M390R) on 

sequence analysis. To rule out the possibility o f hemizygosity across the exon 12 region of 

BBS1, coding SNPs (c.SNPs) within BBS1 were also analysed; heterozygosity for both SNPs, 

either side o f exon 12, supports the microsatellite analysis and suggests that the child has 

inherited two copies o f the M390R mutation, one from each parent. The heterozygosity o f the 

SNPs flanking the M390R mutation also suggest that the missense mutation has arisen 

independently on different haplotypes.
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Figure 5. 1: Triallelic inheritance in pedigree PB056. Genotyping o f microsatellites 
along the length o f chromosome 11 excluded the possibility o f UPD of a maternally 
inherited chromosome or hemizygosity o f the chromosome in the region surrounding 
BBS1 in individual 01.
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This pedigree was screened for the presence o f mutations in BBS4 by MCHA (See 6.3.2 

Identification o f  alterations in new cases o f  BBS and NPHP patients). Both patients were 

found to be heterozygous for a novel M 472V missense mutation in exon 15 o f BBS4. 

Sequence analysis o f both BBS1 exon 12 (M390R) and BBS4 exon 15 (M472V) in a sample 

from the maternal grandmother (individual 03) confirmed that she was a heterozygote for 

M390R and wt for the M472V mutation. It is therefore assumed that the second M390R 

allele and the M472V mutation were inherited from the maternal grandfather. As a sample 

from this individual was not available, this can not be confirmed by sequence analysis.

Mutational data from BBSI and BBS4 suggests that in this pedigree three mutations (a 

homozygous M390R mutation and a heterozygous M472V mutation) appear to be required 

for the disease to be manifest.

5.3.1.2 Pedigree PB043

Pedigree PB043 (Figure 5. 2) is a consanguineous Turkish pedigree in which one o f the five 

offspring is affected by BBS. In a previous study the affected individual (01) in this pedigree 

was shown to exhibit IBD across both the BBS2  and BBS4 critical intervals (Beales et al.,

2001). Sequence analysis o f BBS2 revealed a homozygous c.1673C>T missense mutation 

(T558I) in the affected individual. This substitution creates an Sspl site within the BBS2 exon 

14 fragment. Analysis o f the others members o f the pedigree by restriction digest indicated 

that the father (06) and one o f the sibs (02) were heterozygous for the substitution. Despite 

being unaffected by disease, the m other (07) and the three remaining sibs (03, 04 and 05) 

were homozygous for the mutation. Sequence analysis o f BBS4 in the affected individual of 

the pedigree revealed the presence o f  a second homozygous BBS  m issense mutation, 

c.1091C>A (A364E). Again this substitution affected a restriction site; in this case the 

substitution creates a Mbo\ site within the BBS4 exon 13 fragment. By digest, both parents 

(06 and 07) and two o f the sibs (02 and 04) were found to be heterozygous. The remaining 

two sibs (03 and 05) had not inherited the mutation from either parent and were wt for the 

change.
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In this pedigree, owing to the presence o f two homozygous missense mutations in the patient 

and three mutant alleles (homozygous T558I (B B S2 ) and heterozygous A364E (BBS4) 

mutations) in two asymptomatic individuals (04 and 07), four mutant BBS alleles would 

appear necessary for disease manifestation.
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Figure 5. 2: Tetrallelic inheritance in pedigree PB043. The affected individual (01) has 
inherited two homozygous missense mutations; c. 1673C>T (T558I) in BBS2  and 
C.1091OA (A364E) in BBS4. Segregation of both mutations in the pedigree was carried 
out by restriction digest. In the presence o f the T558I mutation, 68 and 175bp fragments 
are generated following digestion with Sspl. The A364E allele generates a 33bp fragment 
on digestion with Mbo\. Both a sib (04) and the mother (07) have inherited three mutant 
alleles but are asymptomatic (Katsanis et al., 2002).
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5.3.1.1 Pedigree PB009

Pedigree PB009 (Figure 5 .3 )  contains three affected individuals. From the BBS1 screen all 

three affected individuals (01, 02 and 03) were found to be homozygous for M390R (BBS1) 

and both parents (04 and 05), heterozygous. The three affected sibs in the pedigree were 

screened for mutations in BBS2  by MCHA (See 6.3.2 Identification o f  alterations in new 

cases o f  BBS and NPHP patients). On analysis o f the exon 9 fragment in individuals 01 and 

02, an altered peak profile was seen (See Figure 6. 5). Individual 03 did not have the same 

altered profile and, by comparison with the control fragment, was considered to be wt. 

Sequence analysis o f the fragment in 01 and 02, and the parents, revealed the cause of the 

altered peak profile to be a paternally-inherited heterozygous c,1045T>G transversion, 

resulting in a L349W substitution. As predicted from the MCHA analysis, this mutation was 

not present in individual 03.

In this pedigree, the three affected individuals show a large degree o f variability in 

phenotype, in particular with respect to the retinal component o f the disease, with individual 

03 less severely affected than her two sibs. It is therefore possible that in this family the 

presence o f the third mutation, in BBS2 (L349W), modifies the phenotype resulting from the 

homozygous M390R (BBSI) mutation.

PB009-01 PB009-02 PB009-03
Sex Female Male Female

Age at onset o f  
nightblindness

17 years 13 years 32 years

Age at onset o f  RP 20 years 15 years 34 years
Obesity (BMI) 33 33 29

Behaviour Disinhibited Disinhibited Normal

Table 5. 1 Phenotypic characteristics o f affected individuals in pedigree PB009 
(Badano et al., 2003b). Progression o f  retinal degeneration in individual 03 is 
significantly slower than in her two sibs (01 and 02).
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Figure 5. 3: Pedigree PB009. All affected offspring have inherited two copies o f the 
M390R mutation in BBS1. A third mutant allele, a heterozygous L349W mutation in 
BBS2 , has also been inherited by individuals 01 and 02 from their father (04). This 
additional allele was not present in individual 03, the least severely affected of the 
offspring (Badano et al., 2003b).
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5.3.1.2 Pedigree PB061

Pedigree PB061 (Figure 5. 4) contains three offspring, two o f which are affected by BBS. 

Sequencing o f the ORF o f BBS2  identified a homozygous nonsense mutation (R275X) in 

both affected individuals (01 and 02). Confirmation o f the mutation was carried out by 

digestion o f the BBS2 exon 8 fragment with Bsl\\ the mutation was found to be present in 

both parents (04 and 05) and also the unaffected child (03) in heterozygous form.

Sequence analysis from individual 02 in the BBS1 mutation screen identified an additional 

mutation in this individual. A heterozygous T>C mutation at the +2 position o f the splice 

donor site o f exon 15 (IVS15+2T>C) was present in this patient. Analysis o f the other 

members o f the pedigree revealed that the mutation had been inherited by both 02 and the 

unaffected sib (03) from the m other (05), who was heterozygous for the change. The 

mutation was not present in the second affected offspring (01), or the father (04).

Similar to pedigree PB009, the phenotype in this family is variable; of the two BBS sibs, 02 

is the more severely affected. It would appear from this pedigree that the combination of the 

splice site mutation in BB SI with R275X (BB S2 ) results in a more severe phenotype than 

R275X alone.

PB061-01 PB061-02
Sex Female Male

Development: sit 9 months 11 months
Development: walk 15 months 21 months
Development: speak 12 months 25 months

Learning Normal Severe delay
Obesity (BMI) 24 -  no diet 25 -  strict diet

Table 5. 2: Phenotypic differences between PB061-01 and PB061-02 (Badano et al., 
2003b). In comparison to individual 01, individual 02 shows developmental delay and 
requires a strict diet to maintain a BMI o f 25.
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Figure 5. 4: A modifier mutation in PB061. The affected sibs (01 and 02) in the 
pedigree are both homozygous for the R275X (B B S2 ) nonsense mutation. The 
segregation of the mutation has been confirmed by restriction digest; the presence of 
the mutation in 01 and 02 abolishes a Bsl\ site. A maternally inherited splice site 
mutation in BBS1 (IVS15+2T>C) is also carried by individuals 02 and 03 (Badano et 
al., 2003b).
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5.3.2 Examples of possible oligogenic inheritance in BBS

5.3.2.1 BBS patients with single mutations

In addition to pedigrees in which multiple BBS  mutant alleles were present, patients with 

single heterozygous mutations were also identified in the cohort. In three cases o f BBS from 

our cohort (PB074, PB097 and PB0125, See Table 4. 1) a heterozygous M390R (BBS1) 

mutation was the only coding sequence alteration identified following mutation screening of 

BBS1, 2, 4, 6, 7 and 8. A single H35R (BBS1) allele was also identified in a BBS patient from 

a consanguineous pedigree (PB053). In a further two cases that were screened for mutations 

in all genes by MCHA, a heterozygous R440X (B BS!) nonsense mutation (individual F820) 

and an I339V (BBS6) missense mutation (individual F523) were found. (Due to low DNA 

concentrations available for F820 and F523, the presence o f a second B B S 1 and BBS6 

mutation, respectively, in these individuals can not be ruled out at this stage).

5.3.1.3 Unaffected individuals with homozygous BBS1 mutations

Unaffected individuals with homozygous BBS! mutations were also identified in the cohort. 

In two cases (PB006 and PB029), the unaffected father o f patients who were M390R (BBS!) 

homozygotes was also found to be homozygous for this common mutation.

5.3.2 Evidence for oligogenic inheritance between BBS and NPHP

Three cases o f oligogenic inheritance involving mutations in both NPHP  and BBS  genes in 

patients affected with NPHP and RP (SLS) were identified from a screen o f 95 NPHP 

patients.
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5.3.2.1 Individual F712 11-1

Individual F712 II-1 is affected by SLS, developing ESRD at the age o f 15 years. Mutation 

analysis o f the NPHP genes in this individual revealed a homozygous gene deletion of 

NPHP1 (the most common mutation reported in NPHP1 , occurring in -85%  of patients (Otto 

et al., 2000). Screening o f BBS1, 2, 4 and 6 in this individual revealed the presence o f a novel 

heterozygous c.147A>G missense mutation (K46R) in BBS4.

5.3.2.2 Individual F408 11-1

A second SLS patient was also found to be heterozygous for a novel missense mutation in 

BBS4 , in this case a c.1322A>C substitution (K441T). This patient is also heterozygous for a 

missense mutation (L343F) within a novel gene predicted to cause NPHP, NEK8, and 

therefore may represent an example o f digenic inheritance.

5.3.2.3 Individual F194 11-1

A novel c.67A>G heterozygous mutation (R23G) in BBS6  was also identified in an SLS 

patient from the NPHP cohort. Mutation analysis o f the NPHP  genes in this patient identified 

a heterozygous nonsense mutation, R585X, in NPHP I.
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Individual Allele 1 (gene) Allele 2 (gene) Allele 3 (gene) Allele 4 Phenotype
PB056-01 M390R (BBS1) M390R (BBS1) M472V (BBS4) BBS
PB056-02 M390R (BBS!) M390R (BBS1) M472V (BBS4) BBS
PB056-03 M390R (BBS1) Unaffected
PB043-01 T558I (BBS2) T558I (BBS2) A364E (BBS4) A364E (BBS4) BBS
PB043-02 T558I (BBS2) A364E (BBS4) Unaffected
PB043-03 T558I (BBS2) T558I (BBS2) Unaffected
PB043-04 T558I (BBS2) T558I (BBS2) A364E (BBS4) Unaffected
PB043-05 T558I (BBS2) T558I (BBS2) Unaffected
PB043-06 T558I (BBS2) A364E (BBS4) Unaffected
PB043-07 T558I (BBS2) T558I (BBS2) A364E (BBS4) Unaffected
PB009-01 M390R (BBS1) L349W (BBS2) Unaffected
PB009-02 M390R (BBSJ) Unaffected
PB009-03 M390R (BBS!) M390R (BBS1) L349W (BBS2) Severe BBS
PB009-04 M390R (BBS1) M390R (BBS!) L349W (BBS2) Severe BBS
PB009-05 M390R (BBSJ) M390R (BBSJ) Mild BBS
PB061-01 R275X (BBS2) Unaffected
PB061-02 R275X (BBS2) IVS15+2T>C 

(.BBS1)
Unaffected

PB061-03 R275X (BBS2) R275X (BBS2) IVS15+2T>C 
(.BBS1)

Severe BBS

PB061-04 R275X (BBS2) R275X (BBS2) Mild BBS
PB061-05 R275X (BBS2) IVS15+2T>C 

(.BBS1)
Unaffected

PB006-04 M390R (BBS1) M 390R (BBS1) Unaffected
PB029-04 M390R (BBS1) M 390R (BBS1) Unaffected
F712II-1 Del (NPHP1) Del (NPHP1) K46R (BBS4) SLS
F408 II-1 L343F (NEK8) K441T (BBS4) SLS
F194 II-l R585X

(.NPHP1)
R23G (BBS6) SLS

Table 5 .3 : Mutations involved in complex inheritance in BBS and NPHP patients. 
Cases o f potential triallelic and tetrallelic inheritance were identified in the patient 
cohort in addition to two cases where inheritance o f a third mutant BBS allele 
modifies the phenotype. Missense mutations in BBS4 and BBS6 were also identified 
in SLS patients.
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5.4 Discussion

Mutation screening o f our cohort o f BBS patients for mutations in all known BBS genes has 

lead to the identification o f several cases o f oligogenic inheritance involving mutations at 

more than one locus and/or a segregation pattern o f mutations that does not conform to 

standard Mendelian laws o f recessive inheritance. A study o f a cohort o f NPHP patients also 

identified incidences o f oligogenic inheritance involving mutations in both BBS  and NPHP  

genes resulting in an NPHP phenotype. See Table 5. 3 for a summary o f mutations associated 

with complex inheritance identified in our cohort and Appendices 1 - 4  for the position of 

the mutations within the BBS genes.

5.4.1 Triallelic inheritance in BBS

Following the identification o f pedigrees with single BBS6 mutant alleles and evidence in 

some o f the pedigrees for linkage to other BBS loci, questions o f possible complex 

inheritance involving mutations at more than one BBS locus were raised (Beales et al., 2001). 

The cloning o f BBS2 in 2001 allowed this hypothesis to be tested by screening all pedigrees 

from the cohort for mutations in BBS2, regardless o f any haplotype inferred chromosomal 

assignment or mutational data for the pedigree. Like the BBS6 mutation screen, in addition to 

recessive BBS2 mutations in six pedigrees (including three pedigrees, PB005, PB020 and 

PB026 from our own cohort, see 4.3.2 BBS2 mutations for a discussion o f the recessive 

mutations in these pedigrees), single BBS2 mutant alleles were also detected in the cohort, in 

eight pedigrees (Katsanis et al., 2001a). To investigate the possibility o f a second 

unidentified mutation (such as a large deletion or regulatory element mutation) in these 

pedigrees, linkage analysis was carried out using microsatellite markers around the locus to 

establish whether the pedigrees were linked to BBS2. Six o f the eight pedigrees were large 

enough to perform linkage. One pedigree, in which a single nonsense allele (Y24X) was 

detected, was cons’ tent with linkage to BBS2  but, the remaining five pedigrees were all 

excluded from BBS2 based on either sharing o f only a single haplotype between affected 

sibs, or sharing o f identical haplotypes between affected and unaffected sibs.
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Analysis o f all mutational data for BBS2 and BBS6  in the 163 patients from the cohort led to 

the identification o f several pedigrees in which three mutant alleles (a homozygous mutation 

in BBS2  with a heterozygous mutation in BBS6, or vice versa) segregated with disease 

(Katsanis et al., 2001a), resulting in a triallelic digenic inheritance pattern (Rivolta et al., 

2002). In three pedigrees, homozygous or compound heterozygous BBS2  mutations and a 

heterozygous mutation in BBS6  were found to segregate with disease. In pedigree B14, one 

o f the pedigrees that initially led to questions over the inheritance pattern o f BBS (See Figure 

1. 4), a homozygous Y24X (BBS2) nonsense mutation in the affected individual was detected 

in addition to the A242S heterozygous mutation carried by both the affected individual and 

his unaffected sib. In a second pedigree the affected individual was a compound heterozygote 

for frameshift (V158fsX170) and nonsense (R216X) BBS2  mutations, with a third mutant 

allele in BBS6  (C499S). In both these pedigrees it is possible that the third allele, a BBSS  

missense mutation in each case, is in fact a SNP rather than a pathogenic mutation. This is 

unlikely though as the A242S mutation has been reported in an MKKS patient (Stone et al., 

2000) and neither the A242S or C499S substitutions were found in 384 matched control 

chromosomes (Katsanis et al., 2001a). Due to small pedigree sizes it is not possible to say 

that three mutations are required for disease in these pedigrees as there are no unaffected 

individuals that harbour two mutant alleles at the same locus. In the third pedigree (AR259, 

Figure 5. 5) however, it is possible to say that three mutant alleles are required to manifest 

disease. A compound heterozygous mutation involving two nonsense mutations (Y24X and 

Q59X) in BBS2 was present in both the affected individual (03) and his unaffected sib (05). 

Analysis o f B B S6  mutation data in this pedigree revealed that only 03 carried a third 

nonsense mutation (Q147X).

In a fourth pedigree, a single N70S (BBS2) mutation was identified in combination with a 

homozygous Y37C (BBSS) mutation in both affected individuals. The pathogenicity o f the 

third mutation in this case has been questioned as it has been suggested that it may be a SNP. 

The fact that the change was never observed in 384 control chromosomes, the asparagine at 

residue 70 is highly conserved and the substitution o f a serine (or any other amino acid) at 

this position is predicted as intolerant using the SIFT analysis program (Ng and Henikoff, 

2002), all suggest that the change may be pathogenic. Functional studies would be required
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to determine whether this change is benign or disease-causing. These data suggest that, in a 

subset of BBS pedigrees, two mutant alleles at a single BBS locus are not always sufficient to 

cause disease.

AR259-SSS2

Wt wt

05 
wt wt

03
Q147X wt

04
wt wt

04
24X '24Xwt

Q5^Xlwt

Figure 5. 5: Triallelic inheritance in AR259. In this pedigree three mutations are 
required for disease as the unaffected individual 05 is a compound heterozygote for 
two nonsense mutations in BBS2 but does not carry the third nonsense allele in BBS6 
that has been inherited by his affected brother (03) (Katsanis et al., 2001a).

5.4.2 Prevalence of triallelic inheritance in BBS

Triallelic inheritance is not restricted to only BBS2 and BBS6. Triallelism has been reported, 

to varying degrees, in all cloned BB S  genes with the exception of BBS8  (as only three 

pedigrees with mutations in B B SS  have been reported at present, cases o f triallelism 

involving this new gene may still be discovered). If triallelic inheritance occurs at a BBS 

locus, certain observations are expected to occur (Beales et al., 2003):

1. A homozygous mutation at the locus (locus A) with a single mutation at a second 

BBS locus (locus B) in an affected individual.
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2. A single mutant allele at locus A with a homozygous mutation at locus B in an 

affected individual.

3. A single mutant allele at locus A with no evidence for additional mutations at any of 

the known loci in an affected individual.

4. Unaffected individuals with two mutant alleles (a homozygous or compound 

heterozygous mutation) at locus A.

Although the majority o f cases o f B B S I  are accounted for by recessive mutations (for -80%  

o f B B S I  mutations, two mutant alleles are sufficient to cause disease (Katsanis, 2004)), 

several pedigrees with B B S I  mutations have been identified in which one or more o f the 

expected observations o f triallelic inheritance have been noted. Three o f the expected 

observations were identified within pedigrees from our own cohort. In pedigree PB056 a 

homozygous B B S I  mutation (M 390R) was found in combination with a heterozygous 

missense mutation in B B S4  (M472V) in both affected individuals. In this pedigree, as there 

are no unaffected individuals with two B B S I  mutant alleles, it is not possible to say that three 

mutant alleles are required to m anifest disease. However due to the high level o f 

conservation o f the methionine at codon 472 (it is conserved in several species including 

cow, chicken and xenopus) and the absence o f the substitution from control chromosomes, it 

is unlikely that this change is a benign polymorphism (Beales et al., 2003).

No single BBSI  mutations in combination with homozygous mutations at a second BBS  locus 

were identified in our cohort, but were present in the cohort o f our collaborator; a 

heterozygous B B S I  m issense m utation (E234K) was present in combination with a 

homozygous B B S 7  missense mutation (T21II) in one family and a single M390R allele was 

present in association with a complex B B S 2  mutation ([R315Q + IVS1 + 1G>C)] + [R315Q]) 

in a second family (Beales et al., 2003). In three pedigrees from our cohort, single M390R 

( BBSI )  alleles were identified, with no additional sequence variations detected in either BBS]  

or any of the other known B B S  genes in affected individuals. Also, only a single H35R 

( BBSI )  allele was detected in a small consanguineous pedigree despite complete coverage of 

the B B S I  ORF; no fu .her mutations in B B S 2 , 4, 6 , 7  ox 8  were identified in this pedigree. 

There may be a second B B S I  mutation in these pedigrees which was not detected by direct 

sequencing, but it is also possible that the pedigrees are examples o f triallelism with a
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homozygous mutation in a novel BBS gene. (Single R440X (BBS1) and I339V (BBS6) alleles 

were also identified in two isolated cases o f BBS. These individuals may represent cases of 

triallelism, but as it was not possible to achieve complete coverage o f the ORF o f the 

respective genes, the occurrence o f a second mutation and a recessive pattern o f inheritance 

in these patients can not be ruled out.)

5.4.3 Tetrallelic inheritance in a consanguineous pedigree

The results from mutation screens o f the known BBS  genes within our cohort, and that of our 

collaborator, have provided examples o f segregation o f three mutant alleles with disease in a 

subset o f families (Badano et al., 2003a; Beales et al., 2003; Katsanis, 2004; Katsanis et al., 

2001a). Mutational data from a consanguineous Turkish family from our cohort suggest that 

three alleles may not always be sufficient to cause BBS. The affected individual from 

pedigree PB043 is homozygous for two missense mutations; T558I in BBS2 and A364E in 

BBS4. Restriction digest analysis in other members o f the pedigree revealed inheritance o f 

three mutant alleles (T558I homozygous mutation with a heterozygous A364E mutation) in 

an unaffected sib and the mother. As both mutations in this pedigree are missense, the 

pathogenicity o f each is hard to predict. One explanation for the occurrence o f unaffected 

family members segregating three BBS  mutant alleles is that the T558I substitution in BBS2 

is a rare polymorphism and that the only disease causing sequence alteration in this family is 

the A364E allele in BBS4, which has a segregation pattern consist with standard recessive 

inheritance. The other explanation is that, in this pedigree, four mutant alleles (tetrallelic 

inheritance) are required to manifest disease. Neither the T558I nor the A364E substitutions 

were present in control chromosomes and both residues are at highly conserved positions 

within the respective proteins (Katsanis et al., 2002). A functional assay would be required to 

confirm whether it is only the A364E allele that accounts for disease in this pedigree or 

whether both missense mutations contribute to the BBS phenotype in the affected individual.
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5.4.4 Mutations that modify the BBS phenotype

Initial findings o f oligogenic inheritance in BBS suggested that, in pedigrees in which 

triallelism occurs, three mutations were required for disease. Individuals that have inherited 

only the homozygous or com pound heterozygous mutation at one locus were therefore 

expected to be asymptomatic, as was the case in pedigree AR259 (See Figure 5 .5 ). Further 

screening o f all BBS pedigrees for m utations in the known genes has resulted in the 

identification o f two pedigrees from our cohort in which the third allele, rather than having 

an ‘all-or-nothing’ effect on the BBS phenotype, seems to modify the disease phenotype 

resulting from a homozygous mutation at a single BBS  locus.

Pedigree PB009 contains three affected individuals that are all M390R (BBSI) homozygotes. 

The phenotype o f the three sibs shows considerable variation, in particular in relation to the 

retinal features o f the disease (See Table 5. 1). Individuals 01 and 02, aged 32 and 35 years 

respectively, each developed RP in the second decade o f life (01 at 20 years o f age, 02 at 15 

years o f age) and are now registered legally blind. In contrast, RP did not develop until the 

age o f 34 years in individual 03, who, at the age o f 37, stills enjoys good vision by day. 

Individuals 01 and 02 are also considered to be disinhibited and developed obesity early in 

infancy; both currently has a BMI o f  33kg/m 2. Individual 03 does not share the altered 

behavioural phenotype o f her sibs and, with a BMI o f 29kg/m2, is the least overweight o f the 

three. A possible explanation for the more severe phenotype seen in individuals 01 and 02 is 

the inheritance o f  a third mutation, a paternally inherited L349W (BBS2) allele, present in 

these patients but not in their less severely affected sibling. The variability o f the retinal 

phenotype in this pedigree is much greater than that seen in other pedigrees segregating one 

or two M390R alleles. Analysis o f  ten M 390R pedigrees, each containing two or more 

affected sibs, that exhibit ‘recessive’ BBS (no evidence for a third mutant allele) revealed 

that the mean intrafamilial variation in the age o f onset o f RP was 2.3 years with a standard 

deviation o f 1.7. In pedigree PB009, although the variation between individuals 01 and 02 

was within the normal range (five years), the maximum variation in this pedigree o f 19 years 

was well outside this range. The most likely explanation for this much higher degree of 

variation in this pedigree is the presence o f  the third allele in individuals 01 and 02. To
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investigate how this additional m utation results in a more severe phenotype, functional 

studies o f the effect o f the L349W  mutation on the BBS2 protein would be required. Using 

the SIFT analysis program (Ng and Henikoff, 2002), the substitution o f a tryptophan for the 

leucine residue at codon 349 is predicted to be deleterious, suggesting that this allele does 

contribute to the severity o f the phenotype (Badano et al., 2003b).

A modifier mutation at a second BBS  locus was also identified in another pedigree from our 

cohort. In this pedigree (PB061), both patients were homozygous for the R275X (BBS2) 

nonsense mutation, which is also present in the unaffected sib in heterozygous form. 

Analysis of BBSI sequence data in this pedigree revealed the presence o f a third allele, a 

splice site mutation (IVS15+2T>C) inherited from the mother, in individual 02. This third 

mutation was not present in the other affected individual (01) in the pedigree but was present 

in the unaffected offspring (03) who is therefore a double heterozygote for the R275X 

(BBS2) and IVS15+2T>C {BB SI) mutations. In this pedigree, similar to PB009, there is an 

apparent co-segregation o f the third allele with a more severe BBS phenotype, in this case in 

relation to developmental delay and weight control (See Table 5. 2). Individual 01 exhibited 

a slight delay in reaching developmental milestones, but was within the normal range (sat at 

nine months, walked at 15 months, first words spoken at 12 months), she performed well at 

secondary school, requiring only m inor support for her visual impairment, and has never 

suffered with obesity. In contrast, her brother (02) showed considerable developmental delay 

(sat at 11 months, walked at 21 months, first words spoken at two years o f age), required 

support throughout schooling due to considerable learning difficulties and is only able to 

control his weight with a strict diet (Badano et al., 2003b). The most common outcome of 

donor splice site muations such as the IVS15+2T>C in this pedigree, is skipping o f the exon 

containing the donor site mutation, in this case exon 15, corresponding to an in-frame 

deletion o f 135bp (Attanasio et al., 2003; Brose et al., 2004).
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5.4.5 Oligogenic inheritance in NPHP involving mutations in NPHP 
and BBS genes

Owing to the similarities between NPHP and BBS (including clinical features, protein 

function, degree o f genetic heterogeneity and inheritance pattern, see 5.1.2 Evidence o f  

possible oligogenic inheritance in NPHP, for a comparison o f NPHP and BBS), a cohort of 

95 NPHP patients were screened for mutations in the BBS  genes to investigate the possibility 

o f oligogenic inheritance between the two disease genes families. Three SLS patients who 

had NPHP mutations (NPHPI and NEK8) with an additional heterozygous mutation in a BBS 

gene (BBS4 or 6) were identified. These results indicate that oligogenic inheritance may exist 

between the two syndromes. It is not known at this stage whether the B B S  mutation is 

required to manifest NPHP and RP in these pedigrees or if  the additional mutation modifies 

the phenotype caused by mutations at the NPHP  locus. Further studies including segregation 

o f all mutations within the pedigree and screening o f additional NPHP patients for BBS 

mutations will be required to establish if  the BBS mutation is essential and if  there is a 

specific phenotype associated with mutations in both NPHP  and BBS  genes. Functional 

studies are also required to determine what effect the novel missense mutations (K46R and 

K441T in BBS4 and R23G in BBS6) have on the BBS proteins; the substitutions may reside 

in important functional or interaction domains within BBS4 and BBS6 and may disrupt 

potential interactions between the NPHP and BBS proteins. A parallel study o f BBS patients 

for mutations in the NPHP genes is currently underway.

5.4.6 Further examples of non-Mendelian inheritance in BBS

Mutation analysis o f BBS patients by other groups has also provided evidence o f a non- 

Mendelian pattern o f inheritance in BBS. Following a study o f 27 BBS and MKKS patients 

for mutations in the BBS6 (MKKS) gene, Slavotinek et al. (2002) reported the identification 

o f five BBS pedigrees in whic*1 only a single BBS6  mutant allele was identified. To 

investigate the possibility o f triallelic inheritance o f BBS6 and BBS2 in these pedigrees, all 

patients with heterozygous BBS6 mutations were screened for coding sequence alterations in
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the BBS2 gene. No pedigrees with mutations in both genes were found, however the authors 

confirm that the detection o f only a single mutant allele in four pedigrees does suggest that 

inheritance of BBS may be more complex than first thought (Slavotinek et al., 2002).

A study o f twenty-one patients o f European origin by Fauser et al. (2003) resulted in the 

identification o f pedigrees with mutations at more than one BBS  locus. All patients were 

screened for the presence o f sequence alterations in BBSI, 2, 4 and 6. Recessive inheritance 

o f mutations in BBSI and 6 were identified in six patients (four had compound heterozygous 

mutations in BBSI, one was homozygous for M390R {BBSI) and the sixth pedigree had a 

homozygous mutation in BBS6). Mutations in BBS2, 4 and 6 were identified in a further three 

individuals, however these mutations did not fit with a recessive model o f inheritance. A 

novel heterozygous D492N missense mutation (BBS6) was identified in one individual with 

no evidence for a second BBS6  mutant allele. In two individuals heterozygous mutations in 

B B S2 were found in combination with heterozygous mutations in BBS4. A nonsense 

mutation (R413X) in BBS2 and a missense mutation (P503L) in BBS4 were present in one 

individual, and in the other, missense mutations in both BBS2 (R643H) and BBS4 (K46R). 

The segregation pattern o f mutations in two individuals from this cohort do not conform to 

the pattern observed in the triallelic pedigrees from our own cohort but do support a model of 

oligogenic inheritance in BBS in which mutations at more than one BBS locus are required 

in some pedigrees.

In 2003, Mykytyn et al. (2003) reported that there was no evidence for oligogenic inheritance 

involving BBSI in their cohort. To assess for oligogenic inheritance, 43 unrelated individuals 

with two BBSI mutations were screened for additional sequence alterations in BBS2, 4 and 6. 

In total eight sequence variations were identified; 1123V and A504V {BBS2), K46R, I70V 

and T354I (BBS4) and R517C and G532V (.BBS6). All eight alterations were deemed to be 

SNPs by the authors based on the conservative nature o f the change, the presence o f the 

alteration in a sample o f controls or a segregation pattern that does not fit with disease. 

Although applicable to recessive conditions, these criteria are not an appropriate means of 

assessing the pathogenicity o f a sequence alteration within a gene associated with a complex 

form of inheritance. Given that alleles involved in complex inheritance are expected to have 

a higher carrier frequency in the general population than those associated with a recessive
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condition, the observation o f an allele in a sample o f control chromosomes does not 

necessarily mean that the alteration is not pathogenic. As the authors do not state the number 

o f control chromosomes that were screened or the frequency with which any o f the eight 

alterations were observed, it is not possible to determine whether the alterations were present 

at a high frequency (expected if  the alteration is a benign polymorphism) or at a low 

frequency which could be accounted for by an elevated carrier frequency.

In addition to a higher carrier frequency, oligogenic alleles will not conform to the 

segregation pattern o f mutations involved in recessive inheritance and may therefore be 

present in unaffected individuals. As the authors do not fully elaborate on the segregation 

pattern o f the alterations within the pedigrees in which they were detected, assessment of 

whether the segregation pattern is consistent with either triallelic inheritance or a modifier 

allele is not possible. Following the study by Mykytyn et al. (2003) the K46R allele in BBS4 

has been both identified in one o f the NPHP patients from our NPHP-BBS oligogenicity 

study, and also reported in a BBS patient from the Fauser et al. (2003) study, suggesting that 

this mutation is likely to be associated with disease rather than a benign polymorphism.

Finally, in 16.7% (2/12) of families that were found to be heterozygous for the M390R allele 

in the Mykytyn et al. (2003) cohort, no second B B SI allele was reported. A single BBS4 

heterozygous mutation (V195fsX209) was also detected in a small consanguineous pedigree 

during the cloning of the gene by this group (Mykytyn et al., 2001). All o f these factors are 

highly suggestive that more complex patterns o f inheritance may in fact exist within this 

patient cohort.

5.4.7 Summary

Research into the genetics o f BBS in recent years has uncovered a much higher degree o f 

complexity than anticipated in what was initially thought to be a single gene recessive 

disorder. Eight BBS loci are now known, with evidence for at least one additional locus in the 

human genome and no genotype-phenotype relationship. Examples o f triallelic, and
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potentially tetra-allelic, inheritance in which multiple mutant alleles at two loci are required 

to manifest disease have been identified in a subset of families. The presence o f a third 

mutation in certain pedigrees has also been found to co-segregate with a more severe BBS 

phenotype. The majority o f known BBS  genes have already been shown to participate in 

triallelic inheritance. The occurrence o f single mutations in BBS  genes with no additional 

mutations at the remaining known loci suggests that novel BBS genes may also play a part in 

this complex mode of inheritance. Examples o f complex inheritance involving mutations in 

the BBS genes is not only restricted to the BBS phenotype. Heterozygous BBS mutations 

have also been detected in com bination with m utations in the NPHP genes in 

nephronophthisis patients.

133



Chapter 6 Multiplex Capillary Heteroduplex 
Analysis (MCHA) as a mutation 

detection technique for BBS

6.1 Introduction

Direct sequencing is considered the gold standard for mutation detection but with a high cost 

per sample and the requirement for a strong, purified PCR fragment it is not always suitable 

for routine screening o f a large number o f samples. There were several reasons why an 

alternative to sequencing was required for screening our cohort o f BBS patients. The 

occurrence o f complex inheritance, involving mutations at more than one locus in some 

families, means that linkage analysis is no longer a reliable means o f locus assignment and 

therefore all new cases o f BBS must be screened for mutations in all known B B S  genes. 

Almost 100 fragments are required to screen each patient for mutations in B B S I , 2, 4 , 6, 7 

and 8 and with over half o f patients unlinked to any of these known loci, mutation screening 

o f a patient for mutations in known, and newly identified, BBS  genes by sequencing is 

prohibitively expensive.

6.1.1 Mutation detection techniques

Mutation screening techniques can be classified as either specific, identifying defined 

changes within a short segment o f DNA, or scanning, detecting uncharacterized alterations 

usually in longer DNA fragments. Specific techniques including prim er extension, 

oligonucleotide ligation assay and allele-specific amplification are used to detect common 

pathogenic mutations in genes that account for the majority of cases o f a given disease. This 

is not the case in BBS as several types o f mutations including missense, nonsense, frameshift 

and whole-exon deletions have been described in association with disease, with no evidence 

for positional clustering o f mutations or population specific genes or alleles. There are also
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very few common mutations in BBS  genes, the most common of which is the missense 

M390R in B B SI (Beales et al., 2003; Mykytyn et al., 2003; Mykytyn et al., 2002). The 

majority o f mutations are therefore either private or segregate with disease in only a small 

number of families. A scanning method, that will detect known and novel mutations, is 

therefore more appropriate for screening new cases o f BBS.

The characteristics o f a good scanning technique combine high sensitivity, throughput, low 

cost with a quick and simple protocol (Cotton, 1997). The majority o f scanning techniques 

utilise the properties o f heteroduplex species that are formed due to the presence of a 

mismatch or small insertion/deletion in a double-stranded DNA (dsDNA) fragment. In 

comparison to a homoduplex fragment, heteroduplexes have an abnormal denaturing profile 

that is used in denaturing gradient gel electrophoresis (DGGE) and denaturing high 

performance liquid chromatography (DHPLC). The slower mobility o f heteroduplexes in a 

non-denaturing gel is used in heteroduplex analysis (HA). The chemical cleavage of 

mismatches (CCM) method exploits the fact that mismatched bases in a heteroduplex are 

more sensitive to cleavage by chemicals.

All scanning methods have advantages and disadvantages making them suited to particular 

applications (See Table 6. 1). Single strand conformation polymorphism (SSCP), DHPLC 

and DGGE require considerable initial optimisation o f primers, temperature, pH, and, in the 

case o f DGGE, the denaturing gradient used. These factors mean that these techniques are 

most suited to screening a large number o f patients for a small number o f different fragments, 

the conditions for which have been individually optimised. The protein truncation test (PTT) 

only detects nonsense mutations and will therefore not pick up benign polymorphisms, a 

disadvantage o f most scanning methods, but it will also miss potentially pathogenic missense 

mutations. The lack o f optimisation required for individual fragments when using HA makes 

it a popular method, suitable for screening a cohort o f patients for mutations in a number of 

different fragments.
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Name Features Advantages Disadvantages Reference
Denaturing High 

Performance 
Liquid 

Chromatography 
(DHPLC)

Differential retention of 
heteroduplex and 

homoduplex DNA in a 
separation matrix under 

partially denaturing 
conditions.

High sensitivity in 
fragments from 

150-700bp. 
Useful for 

screening large 
number of 
samples.

Requires extensive 
optimization. 
Surrounding 

sequence may 
affect detection 

ability.

Liu et al, 
1998.

Xiao and 
Oefiier, 
2001.

Denaturing 
Gradient Gel 

Electrophoresis 
(DGGE)

Differential migration 
of heteroduplex and 
homoduplex DNA 

fragments through a 
denaturing gradient gel.

High sensitivity 
and specificity. 

Fragments can be 
pooled to improve 

throughput.

Labour intensive 
design and testing 

for a range of 
primers for gene 

of interest.

Guldberg 
and Guttler, 

1993. 
Hofstra et al, 

2004.

Chemical 
Cleavage of 
Mismatches 

(CCM)

Mismatched bases are 
sensitive to cleavage by 
certain chemicals such 

as potassium 
permanganate.

Gives indication 
of position of 

mismatch.

Chemicals used 
are highly toxic 
and technique 

requires some skill 
to obtain good 

results.

Smooker and 
Cotton, 
1993. 

Lambrinakos 
et al, 1999.

Protein 
Truncation Test 

(PTT)

Uses in vitro 
transcription/translation 
from amplified RNA to 

identify premature 
termination codons 

resulting in a truncated 
protein product.

Only functional 
mutation 

detection method.

Requires RNA 
from patient. 
Only detects 

nonsense 
mutations.

van der Luijt 
et al 1994. 

Den Dunnen 
and van 
Ommen, 

1999.

Single Strand 
Conformation 
Polymorphism 

(SSCP)

Single stranded 
fragments of DNA that 
differ by a single base 
will have a different 

secondary structure and 
hence mobility in a 
non-denaturing gel.

Simple, non-toxic 
or radioactive 

protocol

Sensitivity can be 
influenced by 

electrophoresis 
conditions, 
position of 

mismatch and 
fragment length

Orita et al, 
1989. 

Highsmith et 
al, 1999b.

Heteroduplex 
Analysis (HA)

Heteroduplexes will 
have a slower mobility 
than homoduplex DNA 
in a non denaturing gel.

Simple protocol, 
requires little 

optimization for 
different 

fragments.

Nature of 
mismatch affects 
detection ability. 
Optimal fragment 

length <700bp.

Highsmith et 
al, 1999a. 
Ganguly, 

2002.

Table 6. 1: Comparison o f commonly used mutation scanning techniques.
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6.1.2 Heteroduplex species

The presence of a mutation in a dsDNA fragment can result in two different types of 

heteroduplexes depending on the nature of the mutation. In the case of a small insertion or 

deletion a ‘bulge’ is formed as a result o f a number of unmatched bases, whereas in the case 

of base substitutions the corresponding mismatched bases result in a ‘bubble’ (Bhattacharyya 

and Lilley, 1989). Fragments containing a bulge have a large retardation through a gel, 

caused by bending of the DNA at the site of the bulge, making them easy to detect by HA. 

The larger the insertion/deletion, the greater the degree of bending and hence the greater the 

retardation of the fragment. The effect of a bubble on the mobility of a fragment is subtler, 

owing to less bending of the DNA, and can be influenced by several factors including the 

length of the fragment and the nature and position of the mismatch within the fragment 

(Highsmith et al., 1999a). In an individual with a heterozygous mutation, naturally occurring 

heteroduplexes will be present in the PCR product amplified from the patient DNA. In an 

individual with a homozygous mutation the patient amplified PCR product must be mixed 

with the PCR product amplified from control DNA, denatured and allowed to reanneal 

slowly to generate four species; a wild-type (wt) homoduplex, a mutant homoduplex and two 

heteroduplexes (Figure 6. 1).

w t  :

MUT

-A-
-T- Mix, denature 

and reanneal

-A-
-T-
A

~C

Jo.

T

WT HOMO 

A:C HET

6:T  HET

MUT HOMO

Figure 6. 1: Heteroduplex formation. In the above example, an amplified sample from 
an individual with a homozygous A>G substitution is mixed with a wt sample, 
denatured and allowed to reanneal slowly. Four species are then formed, a wt 
homoduplex, a mutant homoduplex and two heteroduplexes; one containing an A:C 
mismatch and the other, a G:T mismatch.
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The occurrence of heteroduplex fragments with a retarded mobility in a polyacrylamide or 

agarose gel was first reported by Nagamine (1989) as a PCR artefact but has since been 

developed as a mutation detection technique. Traditional slab-gel HA is performed using 

standard gel electrophoresis apparatus with subsequent silver or ethidium bromide staining to 

visualise the bands. In 1998 Ganguly et al. modified the technique for use on a fluorescent 

platform; fragments labelled with either 6-FAM, HEX or NED were resolved using an ABI 

377 sequencer. To improve the sensitivity and resolution o f fluorescent HA further, Rozycka 

et al. (2000) adapted the technique for use on a single capillary fragment analyser (ABI 310) 

and were able to achieve high sensitivity in fragments o f <350bp. Increases in throughput 

have been made possible by using a 96-well capillary sequencer, the MegaBACE 1000 

( Amersham Biosciences), and pooling o f several different sized fragments in each capillary. 

Following these modifications to standard HA this new technique has been named multiplex 

capillary heteroduplex analysis (MCHA).
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6.2 Methods

6.2.1 Primer modification

Primers designed for the mutation screening o f BB SI, 2, 4, 6 and 7 were adapted for use with 

the MCHA technique by the addition o f a fluorescent label (FAM, HEX or TET) to the 5’ of 

the forward primer o f each pair. The colour o f  the label was selected to allow optimal 

pooling o f fragments based on size and colour o f label. See Appendices 7-12 for information 

on the size o f the amplicons and the colour o f label used.

6.2.2 Amplification and heteroduplex formation

All PCR reactions were carried out for both patient and control samples as described in 

section 2.2.1.2 PCR reactions. Following amplification, patient samples were mixed with the 

control sample, denatured and allowed to reanneal slowly to generate heteroduplexes (See 

2.2.4.1 Heteroduplex formation).

6.2.3 Identification of base substitution or insertion/deletion

Following a positive MCHA result (additional peaks or altered peak profile in comparison to 

the control sample), the patient samples were re-amplified for the exon o f interest using 

unlabelled primers and sequenced to identify the underlying alteration in the patient sample 

(See 2.2.3 Direct sequencing).
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6.3 Results

6.3.1 Sensitivity testing

To test the sensitivity o f  the M CHA m ethod, known alterations including small 

insertion/deletions, missense and nonsense mutations in BBSI (D148N, Y284fsX288 and 

M390R), BBS2 (D170fsX171 and R275X), BBS4 (A364E) and BBS7 (K237fsX296) and 

several single nucleotide polym orphism s (SNPs) in BB S6  (P39P, 11781, c.985+16T>G, 

c.985+33G>C and c.l 161+58A>G) were used. These alterations (with the exception of the 

SNPs) were selected as DNA from both homozygous and heterozygous individuals was 

available for each mutation, thus perm itting us to test the efficiency o f the heteroduplex 

formation step by comparison o f  the artificially created heteroduplexes (a homozygous 

sample mixed with wt) with the naturally occurring heteroduplexes (a heterozygous sample). 

In all cases the artificially created heteroduplexes gave an identical pattern to those o f a 

heterozygous individual (See Figure 6. 2).

Eleven o f the 12 known changes were successfully detected using the initial primer set and 

run conditions. The only change that was not detected was the M390R mutation in the 

B B S  l x \ 2  fragment. In an attem pt to detect this change, in both heterozygous and 

homozygous individuals, the MCHA run temperature was increased by 5°C to 30°C. Despite 

this change, the sequence alteration remained undetected. When a plate o f all known changes 

was run at both 25°C and 30°C, no difference in peak profile was observed, indicating that a 

difference o f 5°C, under standard run conditions for all changes tested, has no effect on the 

sensitivity o f the assay. As altering the run conditions did not improve the ability to detect 

this change, the forward primer for the B B S lx \2  fragment was redesigned, increasing the 

size o f the fragment (from 368bp to 458bp in length), decreasing the GC content slightly 

(from 54.5% to 52.5%) and changing the position o f the mismatch within the fragment (from 

0.59 to 0.67). Following the design o f a new forward primer, and resulting alteration to the 

B B S l x \ 2  fragment, the M 390R m utation was detected in all known heterozygous and 

homozygous individuals, giving a sensitivity o f 100% for all known changes (Figure 6. 3).
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Figure 6. 2: Electropherograms showing a 2bp deletion in BBS2x4. a) A homozygous 
patient sample mixed with wt, giving a mutant homoduplex, a wt homoduplex and 
two heteroduplexes, b) A sample from a parent of the patient who is heterozygous for 
the mutation, c) Mutant homoduplex from the patient sample, d) wt homoduplex. ET- 
Rox size standard (red) was also added to the samples.
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6.3.2 Identification of alterations in new cases of BBS and in 
NPHP patients

As a very high sensitivity was achieved for the assay, the MCHA technique was 

subsequently used to screen new cases o f BBS for mutations in BBSI, 2, 4 and 6. All samples 

with altered peak patterns were reamplified and sequenced. A nonsense mutation in BBS1 

(R440X) and four potentially pathogenic missense mutations, three o f them novel, (D174E 

and L349W in BBS2, M472V in BBS4 and I339V in BBS6) were identified, each in a single 

family. In addition five patients with peak profiles similar to that o f the pattern observed in 

the presence o f the M390R mutation were confirmed on sequencing to be heterozygous 

(three patients) or homozygous (two patients) for the mutation. As part of a study on possible 

oligogenic inheritance involving the N PH P  and BBS  genes in nephronophthisis (NPHP) 

patients, a cohort of 95 NPHP patients were screened for mutations in the four BBS  genes, 

three novel missense mutations (K46R and K441T in BBS4  and R23G in BBS6) were 

identified. SNPs and intronic changes were also identified in B B SI, 2 and 4 in both cohorts of 

patients. See Table 6. 2 for a summary o f all changes.
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Amplicon
GC 

content of 
amplicon

Local
GC

content
Alteration Result of 

change

Position of 
alteration
(5’>3’)

Hetero
duplexes

BBSI x5+6 59.8% 55.0% c.442G>A D148N 0.33 (138/417) A:C T:G
BBSI x7 48.2% 55.0% C.519-760T Intronic 0.23 (88/381) A:C T:G

BBSI xlO 57.0% 60.0% c.851delA Y284fsX288 0.50 (214/432)
BBSI xl2 52.5% 55.0% C.1169T>G M390R 0.67 (306/458) G:A C:T
BBSI xl3 56.0% 60.0% C.13180T R440X 0.61 (280/460) A:C T:G
BBSI x l7 64.1% 60.0% c.l 782+7A>G Intronic 0.70 (332/472) A:C T:G

BBS2 x4 39.7% 45.0% c.511-
512delTT D170fsX171 0.51 (123/239)

BBS2 x4 39.7% 40.0% c.522T>A D174E 0.54(130/239) A:A T:T
BBS2 x5 37.5% 45.0% C.612+120A Intronic 0.79 (190/240) G:A C:T
BBS2 x8 36.6% 25.0% c.805-20A>G Intronic 0.28 (98/349) A:C T:G
BBS2 x8 36.6% 55.0% c.823C>T R275X 0.39 (136/349) A:C T:G
BBS2 x9 50.0% 50.0% C.1045T>G L349W 0.56 (173/308) G:A C:T
£&S4xl 64.3% 60.0% C .1-170A Intronic 0.35 (120/343) G:A C:T
BBS4x3 38.4% 30.0% c. 147A>G K46R 0.48 (164/343) A:C T:G

BBS4 x5 44.4% 35.0% c.332+27-
28insA Intronic 0.78 (326/417)

5554x13 46.0% 40.0% c.1061T>C T354I SNP 0.67 (214/318) A:C T:G
5 5 5 4  xl3 46.0% 55.0% c.1091C>A A364E 0.77 (244/318) G:A C:T
5554x15 49.9% 40.0% c. 1249-33G>C Intronic SNP 0.23 (108/473) C:C G:G
5554x15 49.9% 35.0% c.l322A>C K441T 0.46 (216/473) G:A C:T
5554x15 49.9% 55.0% c.1414A>G M472V 0.65 (308/473) A:C T:G
5554x16 42.6% 35.0% C.1452-450T Intronic SNP 0.30 (129/429) A:C T:G
5556 x3a 39.6% 65.0% c.67A>G R23G 0.42 (209/492) A:C T:G
5 5 5 6  x3a 39.6% 55.0% c.117C>T P39P SNP 0.53 (260/492) A:C T:G
5 5 5 6  x3c 39.5% 50.0% c.534C>T 11781 SNP 0.23 (91/392) A:C T:G

5 5 5 6  x3d 40.5% 40.0% c.985+16T>G Intronic
SNP 0.71 (298/421) G:A C:T

5 5 5 6  x3d 40.5% 30.0% c.985+33G>C Intronic
SNP 0.75 (315/421) C:C G:G

5556x4 34.9% 45.0% c.1015A>G I339V 0.28 (135/475) A:C T:G

5 5 5 6 x 4 34.9% 31.0% C.1161+58A>G Intronic
SNP 0.71 (339/475) A:C T:G

5 5 5 7 x 7 27.0% 40.0% c.711-714del
GAGA K237fsX296 0.32 (151/468)

Table 6. 2: Table o f changes studied using the MCHA method. Local GC content 
relates to the GC content o f the lObp either side o f the change. Known changes that 
were used to test the sensitivity o f the technique are in bold, all others are novel 
changes that were detected using the technique.
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Figure 6. 3: Electropherograms showing the peak profile of the M390R (BBSI) 
mutation, a) A heterozygous individual with a G:A mismatch in the 458bp FAM 
labelled BBSJx\2 fragment, b) a wt homoduplex.
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Figure 6. 4: Pooling of multiple fragments improves the throughput of MCHA. Three 
fragments (BBS6x3c, BBS6x3d and BBS6x3a) from the same individual are pooled in the 
same capillary, a) Results from an individual who is heterozygous for SNPs in BBS6x3c 
(11781) and BBS6x3a (P39P), b) wt homoduplexes for each fragment.
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Figure 6. 5: MCHA is able to detect novel alterations. Peak profile of a novel T>G 
substitution (L349W) in BBS2x9, a 308bp FAM labelled PCR fragment, a) Sample from 
a heterozygous patient, b) a wt homoduplex.
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Figure 6. 6: A novel C>T intronic substitution in BBS4x 16, a 429bp TET labelled 
fragment, a) Heterozygous patient sample, b) wt sample.
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6.4 Discussion

6.4.1 MCHA is a simple protocol

When designing a new mutation scanning technique for BBS it was important that the 

method would be a quick and cheap alternative to sequencing with a high throughput and 

comparable sensitivity. MCHA has proved to be a simple and adaptable protocol. Primer sets 

previously designed for mutation screening of BBSI, 2, 4 and 6 by direct sequencing were 

easily modified for the MCHA method by addition of a fluorophore to the forward primer. 

For each amplicon the colour of the fluorophore was selected based on the size of the 

fragment for optimal multiplexing. The ability to multiplex several different fragments in 

each capillary has greatly increased the throughput of HA on a capillary sequencer (Figure 6. 

4). The genotyping protocol on the MegaBACE 1000 instrument was adapted by lowering of 

the run temperature to 25°C and use of a 3% non-denaturing LPA matrix with standard LPA 

buffer. Analysis of results by comparison of the patient electropherogram with a control 

DNA electropherogram containing a single homoduplex peak is straightforward and requires 

no additional computer software. MCHA has a very high sensitivity for both 

insertion/deletions and single base substitutions and by mixing of patient-amplified and 

control DNA PCR products it is possible to pick up both heterozygous and homozygous 

mutations.

6.4.2 Sensitivity testing

Conventional HA is known to have a high sensitivity for insertion/deletion mutations owing 

to the large effect that these alterations have on the mobility of a fragment through a gel 

matrix. The level of sensitivity for detecting single base substitutions is thought to be lower 

and influenced by a number of different factors relating to the fragment in which the 

mismatch is located such as the fragment length, the GC content and the nature of the 

mismatch. To test the sensitivity of the MCHA method, known alterations in five BBS genes 

(BBSI, 2, 4, 6 and 7) including missense, nonsense and small insertions/deletions mutations,
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and SNPs were used. Eleven of the 12 alterations (three deletions and eight base 

substitutions) tested were successfully detected in both heterozygous and homozygous 

individuals under standard run conditions using the initial primer set. The single alteration 

that was not detected was the M390R missense mutation, a T>G transversion, in BBSlxM. 

On analysis of the fragment it was not immediately clear why this alteration was not 

detected; the length and GC content of the fragment and the position of the mismatch within 

the fragment were all within the range in which mismatches had been detected in other 

fragments. A T>G transversion had also been successfully detected in another fragment (a 

further T>G mutation was also detected as a novel mutation during the screen of new BBS 

patients), suggesting that the nature of the mismatch was not the reason for non-detection. As 

modification of the run conditions by increasing the run temperature to 30°C still did not 

allow detection of this change, the forward primer of the pair was redesigned. Performing 

MCHA on PCR products generated from the new primer pair allowed detection of the 

mutation in all patients tested (Figure 6. 3); an overall sensitivity for the technique 

approaching 100%. The new forward primer had a modest effect on the properties of the 

BBSlxM  fragment; the greatest difference, an increased length by 92bp. In addition the GC 

content decreased slightly from 54.5% to 52.5% and the position of the mismatch within the 

fragment was changed from 0.59 to 0.67 (5’ to 3’).

6.4.3 High Specificity

In addition to a high sensitivity, MCHA also has a low false positive and negative rate. 

Situations that may lead to a false positive result include excess salt in the sample or a peak 

intensity outside the optimal range. Prior to the ‘Matrix Fill and Prerun’ step on the 

MegaBACE 1000, the ‘Preinject Samples’ protocol is performed to remove excess salt from 

the samples. If this step is omitted high salt levels can generate spurious peaks in the patient 

electropherogram. In my judgement, the optimal peak intensity for any sample is between 

5,000 and 60,000U. Peaks with a low intensity resulting from weak PCR products often have 

a ragged appearance and a very high intensity can lead to splitting of the tip of the peak, both 

of which could result in a false positive result. Mixing of patient and control DNA PCR
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products is an effective way of generating heteroduplexes in the case of a homozygous 

mutation but this step is also a source of potential false negative results. It is important to 

ensure that both the patient and control PCR products are of equal intensity, as failure or poor 

yield of either PCR will mean no heteroduplexes will be formed and mutations will be 

missed. To test the true false negative rate further known alterations must be tested.

6.4.4 Factors that influence sensitivity and peak shape

Several studies have tried to establish which mismatches are most easily detected by HA and 

what factors have the greatest effect on the ability to detect a mismatch. Ganguly (2002) 

studied a group of 12 fragments of identical size each containing a mismatch in the centre of 

the fragment and found that the different mismatches showed differing degrees of retardation 

when subjected to slab-gel HA, but that there was no relationship between the nature of the 

mismatch and the level of retardation. In a larger study, Highsmith et a/.(1999a) generated a 

DNA toolbox consisting of several different fragments, each containing a specific mismatch, 

and varying in length, GC content and position of the mismatch. Each fragment was 

subjected to slab-gel HA, with ease of detection determined by the degree of separation 

between homoduplex and heteroduplex species. Fragment length (to 600bp), position of the 

mismatch and GC content were all found to have no effect on the ability to detect a 

mismatch. The nature of the mismatch was the main factor that influenced the degree of 

separation between duplexes, the separation order of the mismatches being: G:G/C:C > 

A:C/T:G = A:G/T:C > A:A/T:T.

The properties of all fragments in which alterations were detected using MCHA, either 

known mutations and SNPs (highlighted in bold) or novel alterations, are shown in Table 6. 

2 .

148



6.4.4.1 Fragment length

In our samples the fragment length appears to have little effect on the ability to detect 

mismatches, consistent with the findings of Highsmith et al. (1999a). The length of the 

fragments ranges from 239 to 492bp with little or no reduction in sensitivity at either end of 

the spectrum. In the longest fragment, BBS6x3a, two transitions were detected, an A>G at 

base 209 and a C>T at base 260. Although detected, these substitutions had very subtle 

effects on the shape of the BBS6x3a. peak and were the hardest alterations to detect. This may 

be due to the effect of the bending of the DNA around the mismatch being obscured by the 

inherent flexibility of longer DNA fragments (Ganguly, 2002): BBS6x3c, a 392bp fragment 

of a similar GC content to BBS6x3a (GC content of 39.5% and 39.6% respectively), also 

contains a C>T transition which causes greater separation between the duplex peaks and 

hence easier detection (Figure 6. 4). Alternatively, the subtleness of the change to the peak 

could be a feature of the individual BBS6x3a fragment as all substitutions in the BBS4x 15 

fragment (a G>C transversion and, A>G and A>C transitions), only 19bp shorter in length, 

were easily detected.

6.4.4.2 Position of the mismatch

The position of the mismatch within the fragments ranges from 0.23 to 0.79 (as calculated 

from the 5’ end of the forward primer). Slab-gel HA has a low sensitivity for mismatches 

within 50bp of the ends of a fragment (Rozycka et al., 2000); using MCHA it was possible to 

detect a C>A transversion located 50bp from the 3’ end of the BBS2x5 fragment (240bp). 

When creating a set of oligos for mutation screening of a new BBS gene the primers are 

positioned such that there will be 50bp or more of intronic sequence flanking the exon on 

either side, or, where necessary, large exons will be divided into several overlapping 

fragments. Designing primers in this way ensures that no potentially pathogenic exonic 

alterations will be missed by a reduction in sensitivity in the final 50bp of a fragment.

149



6.4.4.3 GC content

The GC content of fragments containing single base substitutions ranges from 34.9% to 

64.3% (the BBS7x7 fragment has a lower GC content, 27.0%, but contains a 4bp deletion). 

As with other factors, there does not appear to be a direct link between GC content of the 

fragment and ease of detection of a mismatch. The local GC content surrounding the 

alteration (calculated from the lObp either side of the mismatch and shown in Table 6. 2) is 

likely to have a larger effect than the overall GC content. Ganguly (2002) observed a better 

resolution between duplexes when mismatches were located in an AT-rich sequence context 

and in earlier studies was unable to detect three substitutions in a GC-rich area of the 

COL3A1 gene (Ganguly et al., 1993). There does appear to be a slight correlation between 

local GC content and ease of detection in our fragments: some of the alterations with the 

highest local GC contents (R23G and P39P in BBS6x3a. and the intronic SNP in the B B Slxll 

amplicon) do show only slight separation between duplexes, but others with a comparable 

local GC content show good separation. In addition the local GC content is the only factor 

that did not change on redesigning of primers for the B B Slxll fragment, suggesting that it is 

not the only factor to affect the detection ability of a particular substitution.

6.4.4.4 Nature of the mismatch

The presence of anng a A:T match, a mutant homoduplex containing a G:C match and two 

heteroduplexes, one containing an A:C mismatch and the other a G:T mismatch will be 

formed (See Figure 6. 1). Of the 12 possible base substitutions, nine were detected in our 

fragments with varied frequencies (see Table 6. 3). It is likely that the three substitutions that 

were not detected (C>G, A>T and G>T) were simply not present in any of the fragments as 

the heteroduplex species that form as a result of these changes were successfully detected for 

other substitutions. For example, A:G and C:T heteroduplexes are created in the presence of 

four different substitutions: A>C, C>A, T>G and G>T. Seven base substitutions were 

detected due to the differential migration of G:A and C:T heteroduplexes in various sequence 

contexts and fragment lengths (see Table 6. 2) suggesting that had a G>T substitution been 

present in any of the fragments it would have been successfully detected.
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Original
nucleotide

Number of times substituted b>/
T C A G Total

T - 1 1 3 5
C 6(4) - 3 0 9
A 0 1 - 7 8
G 0 2 1(1) - 3

Total 5 5 5 10 25

Table 6. 3: Table showing frequency of each substitution in studied fragments. 
Substitution numbers in bold represent transversions, those in plain text, transitions. 
Numbers in brackets correspond to CG>TG or CG>CA transitions resulting from 
deamination of 5-methylcytosine (5mC).

Of the 25 base substitutions studied the majority (60%) were transitions, consistent with the 

proportion of transitions present in an analysis of all mutations recorded in the Human Gene 

Mutation Database (HGMD) in 1997 (Krawczak et al., 1998). One reason for the increased 

occurrence of transitions in any set of alterations is the relatively high incidence of CG>TG 

and CG>CA substitutions caused by deamination of methylcytosine (5mC). In eukaryotic 

genomes 5mC occurs primarily within CpG dinucleotides and is susceptible to undergo 

deamination to form thymine leading to CG>TG transitions. CG>CA substitutions occur if, 

following deamination of 5mC in the antisense strand, there is miscorrection of G to A in the 

sense strand. The frequency of mutations at CpG dinucleotides varies between genes, in the 

ADA gene the rate is as high as 50% whereas in the fi-globin and HPRT genes it is as low as 

10% (Antonarakis et al., 2001). From analysis of the HGMD, Krawczak et a l (1998) found 

these mutations to account for 23.0% of all substitutions and 36.9% of transitions, consistent 

with this, 20% of substitutions and 33.3% of transitions within our fragments were accounted 

for by deamination of 5mC. Of the remaining transitions the majority were A>G 

substitutions (70%), with five of the seven substituted adenines preceded by another adenine. 

This high incidence of AA>AG transitions within our fragments may be as a result of a 

higher sensitivity of MCHA for detection of A>G substitutions, which, by coincidence, were 

most commonly preceded by adenine, or may be due to a more complex mutation mechanism 

specific to the BBS gene family.
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6.4.5 Summary

Analysis of the alterations detected using MCHA shows that the technique has a high 

sensitivity for both insertion/deletions and base substitutions by differential migration of each 

of the four types of heteroduplex formed in the presence of a substitution (A:A/T:T, 

C:C/G:G, A:C/T:G and G:A/C:T). Rather than being determined by a single factor it is likely 

that the ability to detect a mismatch, and the shape of the peak resulting from such a 

mismatch, will be influenced by a variety of factors including fragment length, position and 

nature of the mismatch and the GC content of both the fragment and the area directly 

surrounding the mismatch. For this reason although it is not possible to predict the nature of a 

mismatch from the shape of the peak, individual mismatches do have characteristic shapes 

(Figures 6.6 and 6.7). MCHA also has a low false negative and positive rate and a quick and 

simple protocol making it an ideal mutation screening method for mutations in BBS genes.
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Chapter 7 Functional analysis of BBS4

7.1 Introduction

The first steps in the functional analysis of a novel gene are often a study of the nucleotide or 

polypeptide sequence using database searches. Homology of all or part of the sequence to a 

protein of known function often provides initial clues about the functional properties of the 

protein. Motif searches can also be used to identify short sequences that indicate specific 

functions carried out by the protein. If no similarity to known polypeptides is found, it is also 

possible to ascertain a potential function for the protein through identification of its 

interactors by protein-protein interaction studies such as the yeast two-hybrid system.

7.1.1 The yeast two-hybrid system

The yeast two-hybrid system is a commonly used method to study protein-protein 

interactions in eukaryotes (Chien et al., 1991; Fields and Song, 1989). The system can be 

used either to test a direct interaction between two known proteins or to identify novel 

interactors of a protein of interest through a library screen. The method utilises properties of 

the GAL4 protein, a yeast transcriptional activator with a separate DNA binding (DBD) and 

activation domain (AD). The DBD binds to specific upstream activating sequences (UASs) 

within yeast promoters and transcription is activated by the acidic regions of the AD. In 

practice, to identify novel interactors, two plasmids are constructed that both encode hybrid 

proteins. The first consists of the DBD of GAL4 (residues 1-147), fused to the protein of 

interest (the bait), and the second, of the GAL4 AD (residues 768-881) fused to a protein (the 

prey) encoded by a clone from a library of cDNA fragments. Both constructs are introduced 

into a Saccharomyces cerevisiae yeast strain containing a reporter gene under the control of a 

GAL4-inducible promoter with a phenotype that is easy to score. If there is an interaction
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between the bait and prey proteins, the two domains of the GAL4 protein will be in close 

proximity to one another, resulting in transcription of the reporter gene (Figure 7. 1). The 

system was initially tested using two yeast proteins, SNF1 and SNF4, which were known to 

interact. High levels o f transcription o f the reporter gene occurred only when both hybrid 

proteins were introduced into yeast (Fields and Song, 1989).

Figure 7. 1: The yeast tw o-hybrid system, a) The GAL4 protein is a yeast 
transcriptional activator with separate DNA binding (DBD) and activation (AD) 
domains, b) and c) Binding o f the GAL4 DBD-bait hybrid protein alone is not 
sufficient to activate transcription o f the reporter gene (b), it is only when there is an 
interaction between the bait and prey proteins (c) that the reporter gene will be 
transcribed.

AD

Reporter gen*

— T Reporter gene
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The system is technically very simple to carry out, but a specially modified yeast strain is 

required. Firstly, the yeast chromosomal copies o f the GAL4  and GAL80 genes must be 

deleted. Endogenous expression o f GAL 4 would result in constitutive expression o f the 

reporter gene regardless o f whether there is an interaction between the bait and prey proteins; 

as GAL80 is a repressor o f GAL4, the gene must be deleted to allow transcription o f the 

reporter gene(s). The yeast must also be deleted or mutated for any endogenous copies of 

genes that are to be used for selection o f the bait plasmid, prey plasmid or positive colonies 

in which a protein-protein interaction has occurred. Genes encoding enzymes required for 

biosynthesis o f amino acids such as ADE2, HIS3 and LJRA3 are commonly used for selection; 

the ability to grow on media that is lacking in the relevant amino acid indicates a positive 

colony. If the gene is to be used as a reporter gene to identify positive colonies in which the 

bait and prey proteins have interacted, the native promoter o f the gene must be removed and 

replaced with a promoter containing a UAS. Another common reporter gene is the E. coli 

lacZ  gene; positive colonies are easily distinguished by the development o f a blue colour on 

culturing o f the yeast in m edia containing Xgal (5-Bromo-4-chloro-3-indolyl-p-D- 

galactosidase). The lacZ  gene fused to the GAL1 promoter was used as the reporter in the 

initial study describing the two-hybrid system (Fields and Song, 1989).

7.1.1.1 Autoactivation and false positives

The two-hybrid system is a very effective way o f identifying potential interactors o f a protein 

o f interest, but there are a number o f problems that can occur when using the system, and any 

interaction detected through a library screen should be confirmed by other means such as 

coprecipitation or GST pulldown. Before embarking on a library screen, it is essential to test 

the ability o f the bait protein alone to activate the GAL4 system. Approximately 5-10% of 

proteins, particularly those containing a high proportion o f acidic residues, are able to induce 

transcriptional activation when fused to a DBD (Toby and Golemis, 2001). If autoactivation 

o f the system does occur, it is necessary to map the autoactivation domain o f the bait protein 

and use fragments o f the protein that do not contain this region to perform the screen. 

Another problem is the high frequency o f false positives that are often detected. False 

positives are colonies in which the reporter gene is transcribed even when the bait and prey
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do not themselves interact. To overcome the problem of interaction between a prey protein 

and the promoter o f the reporter gene, it is possible to use a number o f different selective 

markers, each under the control o f a different GAL4-inducible promoter. Lists o f commonly 

occurring false positives that have been detected in screens using a variety of different 

proteins are available online

(www.fccc.edu/research/labs/golemis/lnteractionTrapInWork.htmiy

7.1.2 BBS4 function

As the polypeptide sequence did not show homology to any known proteins, very little was 

known about the function o f  the protein at the time o f  cloning o f the BBS4 gene (Mykytyn et 

al., 2001). Analysis o f the protein using the SMART protein domain database identified a 

number o f tandem tetratricopeptide repeat (TPR) domains within the protein (Kim et al., 

2004; Schultz et al., 2000, Appendix 3). TPR domains typically consist o f 34 amino acids, 

have been found in a number o f organisms (bacteria, fungi, plants and humans) and perform 

a variety of functions including protein-protein interactions (Blatch and Lassie, 1999).

7.1.3 Conclusions

As very little can be deduced about the function o f the BBS4 protein by analysis o f the 

polypeptide sequence, it is therefore necessary to perform functional studies to deduce a 

putative function for the protein. As the protein is known to consist o f a number o f TPR 

domains, it is highly likely that BBS4 is involved in protein-protein interactions o f some 

form. A yeast two-hybrid library screen was performed, using BBS4 as the bait, to identify 

interactors of the protein.
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7.2 Methods

7.2.1 pGBDU-BBS4 bait plasmid

Full-length BBS4 cDNA was cloned into the EcoRl and BamHl sites o f the multiple cloning 

site (MCS) o f pGBDU by Dr. Alison Ross (James et al., 1996). The pGBDU plasmid 

contains an Ampicillin resistance gene (Ampr) for selection in bacteria and a nutritional 

( URA3) marker for selection in yeast.

7.2.2 Library screen

The library screen was carried out as described in 2.2.5 Yeast two-hybrid using the PJ69-4A 

strain of S. cerevisiae (James et al., 1996), the BBS4 protein as the bait and the Human 

kidney MATCHMAKER cDNA library as the prey (Clontech). The transfection efficiency 

was tested, as described in 2.2.5.3 Transfection efficiency, to ensure that complete coverage 

o f the library was achieved.

7.2.3 Identification of positive clones

Prey plasmids were extracted from positive clones as described in 2.2.5.6 Isolation o f  prey  

plasmid. The insert was amplified using pACT2 primers and the PCR product sequenced as 

described in 2.2.5.7 Amplification and identification o f  the prey cDNA sequence. The identity 

o f the clone was determ ined using BLAST (www.ncbi.nlm.nih.gov/BLAST/Blast.cgiy 

Following identification o f the clone, the correct reading frame was determined to ensure that 

the cDNA was in frame with the GAL4 AD within the pACT2 vector.
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7.3 Results

7.3.1 Transfection efficiency

The transfection efficiency o f the library plasmid was calculated to be 4 .8xl07, indicating 

that complete coverage o f the ~3.5xl 06 independent clones from the cDNA library was likely 

to be achieved.

7.3.2 First round of selection

Following the introduction o f both the bait and prey plasmids into the yeast, cells were plated 

on SD-Ura-Leu-His+3AT agar for the first round o f selection. If  an interaction between the 

bait (BBS4) and a clone from the cDNA library (the prey) had occurred, the GAL1-HIS3 

reporter gene was transcribed and the yeast able to survive on the media, in the absence of 

histidine. After 4-5 days growth at 30°C, 300 colonies were present on the plates.

7.3.3 Second round of selection

After the initial selection for positives in which a protein-protein interaction had occurred, 

the colonies were transferred to SD-Ura-Leu-Ade plates for the second round o f selection. 

Following a 4-5 day incubation at 30°C, 13 o f the 300 colonies, had failed to grow in the 

absence o f adenine. A further 14 colonies were able to grow but developed a red colour, 

indicating that they were false positives, able to synthesize adenine through an alternative 

pathway. In order to identify the interacting clones, the prey plasmid was isolated from the 

273 positive colonies, the insert amplified by PCR and sequenced.
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7.3.4 Identity of positive clones

Although 273 positive clones were found through the library screen, it was not possible to 

identify all clones; only 62 clones were successfully amplified and sequenced. O f these 62 

clones, 40 were in frame with the GAL4 AD polypeptide and therefore presumed to generate 

a functional polypeptide. See Table 7. 1 for a summary o f the clones that were identified.
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Interactor

Length of 
canonical 

ORF 
(Amino 
acids)

Amino acids 
present in 

clone

Number
of

copies

1 Pericentriolar material 1 (PCM1) 2024 1845-2024 3
2 Pericentriolar material 1 (PCM1) 2024 1967-2024 2
3 Nuclear receptor interacting protein 1 (NRIP1) 1158 4 4 2 -? 1
4 Nuclear receptor interacting protein 1 (NRIP1) 1158 547-716 1
5 Nuclear receptor interacting protein 1 (NRIP1) 1158 647-953
6 Nuclear receptor interacting protein 1 (NRIP1) 1158 648-810

7 SMRT/HDAC1 Associated repressor protein 
(SHARP) 3651 1104 -  ? 1

8 SMRT/HDAC1 Associated repressor protein 
(SHARP) 3651 1148 -  ? 1

9 SMRT/HDAC1 Associated repressor protein 
(SHARP) 3651 1243-? 1

10 Betaine-homocysteine methyltransferase (BHMT) 406 230-384 1
11 Betaine-homocysteine methyltransferase (BHMT) 406 2 3 7 -? 1
12 Betaine-homocysteine methyltransferase (BHMT) 406 252-406 1
13 SKI-interacting protein (SKIP) 536 1-159
14 SKI-interacting protein (SKIP) 536 241-461 1
15 Ecotropic viral integration site 1 protein (EVI1) 1395 539-694
16 Ecotropic viral integration site 1 protein (EVI1) 1395 6 1 4 -? 1
17 Nuclear receptor coactivator 4 (NCoA4) 615 2 3 1 -? 1
18 Nuclear receptor coactivator 4 (NCoA4) 615 2 5 3 -? 1
19 Aldolase B fructose-bisphosphate (ALDOB) 364 108-? 1
20 Aldolase B fructose-bisphosphate (ALDOB) 364 115-248 1
21 DNA mismatch repair protein (MLH3) 1437 982 - ? 1
22 DNA mismatch repair protein (MLH3) 1437 1033-? 1
23 Estrogen receptor binding protein (ERBP) 736 373-504 1
24 Estrogen receptor binding protein (ERBP) 736 510-634 1
25 SF21 protein 513 329-513
26 p l5 0 CJIUOd 1170 1022-1170 1

27 Phosphoenolpyruvate carboxykinase 2 
(mitochondrial) 640 478-640 1

28 Catalase (CAT) 527 3 30-527 1
29 Glycine decarboxylase (P-protein) 1020 883 -  1020 1

30 Alpha thalassemia/mental retardation syndrome X- 
linked 2492 2182-2310 1

Table 7. 1: Summary o f  BBS4 interactors identified through a yeast two-hybrid 
screen. Interactors in italics are predicted to be false positives. ? denotes clones in 
which it was not possible to determine the exact size o f the clone due to poor 
sequence quality at the C-terminal end.
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7.4 Discussion

Through a yeast two-hybrid screen o f a human kidney cDNA library it was possible to 

identify several potential interactors o f  the BBS4 protein.

7.4.1 Pericentriolar material 1 (PCM1)

One o f the most common interactors identified through the two-hybrid screen was 

pericentriolar material 1 (PCM1). Two independent clones that were in frame with the GAL4 

AD were identified. Both clones were from the C-terminal portion o f the protein; the larger 

clone o f 179 amino acids (1,845 -  2,024) was detected three times, and the smaller clone of 

only 57 amino acids (1,967 -  2,024) was detected twice. Interestingly, a further eight PCM1 

clones were also identified; analysis o f  these fragments revealed that they were not in frame 

with the GAL4 AD (ORF1), or each other (four were ORF2 and four, ORF3); in total, 21% 

o f all clones that were successfully sequenced were found to be PCM1, but less than half 

were in frame. Despite appearing to be out-of-frame, it is likely that the levels o f PCM 1 that 

are transcribed from these clones by low-level ribosomal frameshifting are sufficient to 

rescue the yeast phenotype.

PCM1 is a 228kDa protein with a distinct cellular localization; the protein is localised to 

centriolar satellites throughout the cell cycle, except during the G2/M phase when the cell is 

preparing for mitosis, at which point PCM1 disperses into cytoplasmic foci (Balczon et al.,

1994). The concentration o f  the protein also fluctuates during the cell cycle, with high levels 

in interphase and lower levels during mitosis (Zimmerman and Doxsey, 2000). The 

centrosome is the largest non-membrane bound organelle in most cells and is involved in 

several important cellular functions including spindle function, determination o f cell shape 

and the organization and transport o f cytoplasmic organelles (Zimmerman et al., 1999). It has 

a complex structure consisting o f a pair o f centrioles surrounded by a matrix o f centrosome- 

associated proteins such as PCM1, pericentrin, y-tubulin and centrin making up the PCM 

(Andersen et al., 2003; Zim m erm an and Doxsey, 2000). PCM1 is transported to the
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centrosome by dynein-mediated transport through indirect binding o f PCM 1 to the p l50Glued 

component o f dynactin. Adaptor proteins mediating the link between PCM1 and dynactin 

include Huntingtin-associated protein 1 (H A Pl), which has been shown to interact with both 

PCM1 and p l5 0 Glued by two-hybrid analysis and is thought to be involved in vesicle 

trafficking within cells (Engelender et al., 1997). Due to their association with pericentriolar 

satellites and increased concentration during experimental induction o f cilia, PCM1 particles 

are also thought to be involved in the process o f ciliogenesis (Kubo et al., 1999).

Following the two-hybrid screen, several lines o f evidence have been found to support the 

interaction between BBS4 and PCM1. In a parallel yeast two-hybrid screen using BBS4 as 

bait to screen a fetal brain cDNA library using the CytoTrap method (Aronheim et al., 1997), 

two of five positive clones were found to be PCM1 (Kim et al., 2004). The clones identified 

in the CytoTrap screen were independent from each other, and the clones identified using the 

GAL4 method, encoding slightly larger fragments o f PCM1 (1,574-2,024 and 1,744-2,024 

amino acids). Confirmation o f the interaction between BBS4 and PCM1 was provided by the 

coprecipitation o f HA-tagged PCM1 (PCM 1-HA) with Myc-tagged BBS4 (BBS4-Myc) in 

mammalian kidney cells (HEK293) (Kim et al., 2004). Cellular localisation studies in a 

number o f different cultured mammalian cells also confirmed that the BBS4 and PCM1 

proteins co-localise to centriolar satellites and the basal body o f ciliated cells. As BBS4 was 

consistently found to be associated with the centrosome throughout the cell cycle, unlike 

PCM1, these results suggest that BBS4 localises to centriolar satellites in a PCM1- 

independent manner (Kim et al., 2004).

7.4.2 p150G,ued

The pl50Glued subunit o f the dynactin complex was also found to be a potential interactor of 

BBS4. A single clone encoding a C-terminal fragment (amino acids 1,022 to 1,170) was 

identified.
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A p l50Glued dimer, with nine other proteins including the actin-related protein centractin 

(Arp-1), forms the macrom olecular dynactin complex (W aterman-Storer et al., 1995), a 

complex that has been found to interact with the dynein complex and be required for dynein- 

mediated vesicle motility along microtubules in an in vitro assay (Gill et al., 1991; Vaughan 

and Vallee, 1995). p l5 0 G,ued is one o f  the best characterised components o f the dynactin 

complex and has been shown to bind directly to microtubules, centractin and the intermediate 

chains (ICs) o f  cytoplasm ic dynein through distinct domains within the protein. The 

microtubule-binding domain is located at the N-terminal o f the peptide (amino acids 39-150), 

with the centractin-binding domain defined by a highly conserved cluster o f charged amino 

acids (KKEK), known to be involved in actin binding, towards the C-terminus (Waterman- 

Storer et al., 1995). The IC-interacting domain is located between amino acids 200 and 811, a 

region containing a predicted coiled-coiled domain. The N terminal region o f ICs that is 

responsible for the association with p l5 0 Glued, also contains a coiled-coiled domain and a 

serine-rich cluster, indicating that this interaction may be regulated by phosphorylation 

(Vaughan and Vallee, 1995). The domain o f p l5 0 Glued mediating the interaction with BBS4 is 

C-terminal to all o f these known interaction domains.

The coprecipitation o f GFP-tagged p l5 0 Glued with Myc-tagged BBS4 in HEK293 cells and 

the mislocalisation o f  BBS4 in cells overexpressing M yc-tagged p50-dynamitin, an 

antagonist of dynactin, confirmed the interaction between p l50Glued and BBS4. These results 

also indicate that the dynein-dynactin machinery is responsible for transporting BBS4 to the 

PCM and that the BBS4 protein may function as an adaptor protein to transport PCM1 to its 

appropriate cellular location (Kim et al., 2004).

7.4.3 Nuclear receptor interacting proteins

In addition to PCM1 and p l5 0 Glued, BBS4 was also found to interact with a number o f 

nuclear receptor interacting proteins.
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7.4.3.1 Nuclear receptor interacting protein 1 (NRIP1)

A total o f eight clones o f nuclear receptor interacting protein 1 (NRIP1, also known as 

RIP 140) were identified in the two-hybrid screen. Two clones of the 1,158 amino acid 

polypeptide, one beginning at codon 442 and the second at codon 547, were present in single 

copies. The remaining two clones, beginning at amino acids 647 and 648, were each 

identified three times.

NRIP1 was first identified as an estrogen receptor (ER) interacting protein (Cavailles et al.,

1995), and has since been shown to interact with a variety o f nuclear receptors, including the 

retinoic acid receptor (RAR), through different interaction domains (Wei et al., 2001). RAR 

is a member o f the nuclear hormone receptor (NHR) superfamily and, like many other 

members o f this group, forms heterodim ers with the retinoid X receptor (RXR). The 

interaction between NRIP1 and RAR: RXR dimers is mediated through a m otif present in the 

C-terminal region o f NRIP1. Rather than activate expression o f target genes, the strong 

ligand-dependent interaction between NRIP1 and RAR:RXR results in suppression o f RA- 

regulated genes (Lee and Wei, 1999). A potential mechanism for this suppressive role o f 

NRIP1 is through interaction o f the N-terminal region o f NRIP1 (amino acids 78-303) with 

components o f the histone deacetylase complex (HDAC). NRIP1 is able to interact directly 

with HDAC1 and HDAC3, resulting in the recruitment o f HDACs to RA-responsive 

promoters by the NRIP1:RAR:RXR complex, and subsequent suppression o f transcription of 

target genes (Wei et al., 2000).

N rip l is widely expressed in tissues and cells (Lee et al., 1998) and has been shown to be 

essential for female fertility (White et al., 2000). The study o f transgenic mice has confirmed 

the importance of nuclear receptors in female fertility and ovarian function. Mice lacking the 

gene for ER a are viable, but female mice are infertile and males have a greatly reduced 

fertility (Lubahn et al., 1993). ERp knockout male mice have a normal level o f fertility whilst 

females have fewer and smaller litters in comparison to wt mice, due to a reduced rate of 

ovulation (Krege et al., 1998). H om ozygous N rip l knockout mice (RIPKO) are 

morphologically normal but were found on average to be 15-20% smaller than their
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heterozygous and wt littermates. Mature homozygous female RIPKO mice were found to be 

completely infertile whereas male RIPKO mice were able to sire offspring. Histological 

analysis of the ovaries from RIPKO mice identified the cause o f the infertility to be a failure 

in the release o f oocytes at ovulation. This defect in ovulation in RIPKO mice suggests that 

Nripl plays an important part in the spatial and temporal activation o f nuclear receptors 

required in ovarian cells for ovulation to occur (White et al., 2000).

7.4.3.2 SMRT/HDAC1 associated repressor protein (SHARP)

Three independent clones o f SMRT/HDAC1 associated repressor protein (SHARP) were 

identified, beginning at amino acids 1,104, 1,148 and 1,243 o f the 3,651 amino acid protein. 

Each clone was identified once.

SHARP was initially cloned through a yeast two-hybrid screen using the C-terminal region 

o f the nuclear corepressor SMRT (silencing mediator of retinoic acid and thyroid hormone 

receptor) (Shi et al., 2001). Like SMRT, and the related nuclear corepressor N-CoR, SHARP 

is able to bind to the ligand-binding domain o f RAR in the absence o f its ligand, all trans 

retinoic acid (ATRA), and recruit components o f the HD AC, bringing about repression of 

RA-inducible genes. Binding o f  ATRA to RAR results in a change in conformation, 

disrupting this association and allowing transcription to occur (Ordentlich et al., 1999). In 

addition to acting as a transcriptional repressor, SHARP can also act as an activator, through 

interaction with the steroid receptor RNA activator (SRA). SRA is an RNA coactivator that 

binds to SHARP through three RNA recognition motifs (RRMs) (Shi et al., 2001). 

Interaction between SHARP and SRA attenuates the hormone response from the ER by a 

combination o f sequestration o f SRA and recruitment o f SMRT (Lanz et al., 2002).

7.4.3.3 Ski-interacting protein (SKIP)

Three clones, two beginning at the start methionine and a third beginning at codon 241, of 

Ski-interacting protein (SKIP) were found to interact with BBS4.
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SKIP is a bifunctional nuclear receptor coregulator that interacts with components o f a 

number o f key signalling pathways, indicating that it may play an important role in 

development and oncogenesis. SKIP was identified through its ability to interact with the 

oncoprotein Ski (Dahl et al., 1998) and is involved in vitamin D-mediated transcription 

(Barry et al., 2003; Baudino et al., 1998). Like RAR, the vitamin D receptor (VDR) is a 

member of the NHR superfamily and forms heterodimers with RXR. SKIP is able to bind 

VDR:RXR heterodimers in a ligand-enhanced manner and, acting synergistically with the 

coactivator GRIP1, augment VDR-mediated transcription. In the absence o f ligand (1,25- 

dihydroxyvitamin D3 (l,25(OH)2D3)), both SKIP and VDR interact with the corepressors N- 

CoR and SMRT, thereby repressing VDR-mediated transcription (Barry et al., 2003). In 

addition to its bifunctional role in NHR-dependent transcription, SKIP is also known to be a 

coregulator o f the Notch signalling pathway. CBF1 (a DNA binding protein) binds promoters 

containing the sequence GTGGGAA and also interacts with SKIP. NotchIC competes with 

an SMRT repressor complex including Sin3A, HDAC1 and HDAC2 for binding sites on 

CBF1 and SKIP; when the SMRT repressor complex is bound, transcription from the 

corresponding promoter will be repressed, whereas when NotchIC is bound, transcription 

will be active (Zhou et al., 2000).

7.4.4 Problems and further work

Although 273 positives were present after the second round o f selection, only 22.7% 

(62/273) o f interacting clones were successfully identified by sequencing. O f the 62 clones 

that were successfully sequenced, 40 (65%) were found to be in frame with the GAL4 AD. If 

a similar percentage o f the unidentified clones were found to be in frame, 137 additional 

clones would be expected to generate an active peptide. Although a number o f these clones 

are likely to be replicates o f the interactors already identified, it is possible that, due to the 

low rate o f identification, a number o f potentially interesting novel interactors o f BBS4 have 

been missed. As a large number o f clones failed at the PCR amplification stage, prior to 

sequencing, it is possible that the size o f some o f the inserts were too large to be amplified by
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PCR. As the Human Kidney M ATCHM AKER cDNA library (Clontech) contains clones 

ranging in size from 0.5 -  4.0kb, a large number o f these will be too large to amplify by 

conventional PCR. Sequencing drectly from the prey plasmid would eliminate this problem 

and would allow identification o f a greater number o f potential interactors.

Repeating the screen, possibly in an alternative library, would be useful for both the 

identification o f novel interactors and also to confirm the interaction between BBS4 and 

some o f the potential interactors identified through this screen; if  an interactor is identified in 

two separate screens carried out in different prey libraries it is much more likely that it is a 

true interactor o f the bait. D irect interaction studies between BBS4 and some o f the 

commonly occurring interactors such as NRIP1, SHARP and SKIP are required to confirm 

whether these interactions are real and whether BBS4 may interact with a subgroup of 

nuclear receptor interacting proteins in addition to its confirmed interactions with both PCM1 

and p l50Glued.

7.4.5 Summary

By performing a yeast two hybrid screen it has been possible to establish a putative function 

for the BBS4 protein through identification o f proteins with which it interacts. Interaction 

with both PCM1 and p l5 0 Glued suggest that BBS4 is involved in the transport o f PCM1 to 

centriolar satellites o f cells by the dynein-associated machinery. The colocalisation o f BBS4 

with PCM1 at centrosomes and at the basal bodies o f ciliated cells indicates that BBS4 may 

also be involved in the process o f  ciliogenesis. The identification o f a number o f nuclear 

receptor interacting proteins as potential BBS4 interactors is also interesting, but requires 

further work to establish if these interactions are real and how BBS4 may contribute to the 

activating and/or repressive effects o f nuclear receptors.
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Chapter 8 Expression analysis of BBS4 and 
BBS8 in mouse tissues

8.1 Introduction

Expression analysis o f a novel gene at both the cellular and tissue level is an important step 

in the characterisation o f the gene and its corresponding protein product. Expression of a 

gene in a particular organ can be demonstrated by reverse transcriptase PCR (RT-PCR) on 

total RNA extracted from the tissue. These data however, only give an indication o f the gross 

expression of a transcript in the organ or tissue and is therefore unable to provide information 

about individual cell populations in which the gene is expressed within the organ. To obtain 

detailed data on the spatial expression pattern o f the gene, analysis o f RNA or protein levels 

within the tissue o f interest is required.

Analysis of RNA in tissues by in situ  hybridisation (ISH) can be used to determine levels of 

gene expression within a tissue sample and to establish the specific population o f cells in 

which the gene is transcribed. In practice, RNA probes (riboprobes) ranging in length from a 

few bases to 1 -2kb are synthesized from a vector using RNA polymerase and labelled with 

radioactivity or fluorescence. The probe is then incubated on the tissue sample, allowing the 

probe to anneal to its complementary DNA target sequence (Harvey, 2001). Although ISH 

can be a very useful tool for studying gene expression within tissues, it does also have its 

disadvantages. RNA suffers from an inherent instability due to the presence o f RNases in the 

environment. Despite good laboratory practice, and the use o f certified RNA-free solutions 

and equipment, RNases can be very difficult to control and inactivate, making the riboprobe 

susceptible to degradation. An alternative to ISH for the analysis of gene expression in tissue 

samples is to use antibodies to observe the localisation o f the protein (the antigen) within 

tissues by immunohistochemistry.
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8.1.1 Antibody structure and production

Antibodies consist of four polypeptide chains, two light chains and two heavy chains, held 

together by covalent bonds and, depending on the type of heavy chain, can be divided into 

five classes; IgA, IgD, IgE, IgG and IgM. Both light and heavy chains consist of a constant 

C-terminal region (-110 amino acids long in the light chain and 330-440 amino acids in the 

heavy chain) and a variable N-terminal region (-110 amino acids in both chains). Each 

antibody contains two antigen-binding sites, made up of the variable regions of both the light 

and heavy chains (Figure 8. 1), allowing for a high degree of diversity in antigen-binding 

sites (Alberts et al., 1994). The hinge region provides the antibody with flexibility, allowing 

the distance between the binding sites to vary.

Voriabk reg.or of

Figure 8. 1: Schematic showing the main characteristics of an antibody.

Antibodies to human proteins are routinely produced by repeated injection o f an animal, 

usually a rabbit, with a suitable immunogen and subsequent recovery of antibodies from the 

serum. Commonly used immunogens include synthetic peptides of 20-50 amino acids in 

length or fusion proteins generated from a short N-terminal bacterial sequence and the 

mRNA for the protein of interest. Both techniques have advantages and disadvantages. The 

synthetic peptide technique is very simple but the success rate in producing a functional, 

specific antibody is hard to predict as the short peptide may not fold correctly and the amino
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acid sequence to be used in the peptide must be carefully selected to ensure that the antibody 

will not cross-react with other related proteins. As a fusion protein includes the majority of 

the polypeptide, the chance o f producing a specific antibody is much higher. This method 

however, involves more work and, although short, the bacterial sequence may interfere with 

the study protein (Strachan and Read, 1999).

Although IgG is the most abundant class o f antibody in the blood during the secondary 

immune response, IgM is the first detectable antibody in the serum following immunisation 

o f the animal. The period from injection o f the immunogen to production o f the first IgM in 

the blood is referred to as the latent period and usually lasts approximately one week. After a 

second injection, IgG will begin to predominate in the serum and, although IgG has a longer 

half-life (approximately three weeks compared to five days for IgM), regular injections of 

immunogen are required to maintain high production levels o f the antibody (Boenisch, 

2001a). Following bleeding o f the animal, polyclonal antibodies, raised to a number of 

different epitopes on the antigen, can be isolated in the form o f stabilised antisera. The 

immunoglobulins can then be purified as required; salt precipitation and ion exchange 

chromatography can be used to remove additional proteins from the serum followed by 

affinity chromatography to isolate antibodies specific to the immunogen, reducing the risk of 

cross-reactivity with other antigens.

8.1.2 Immunohistochemistry staining methods

Initial immunohistochemistry experim ents used a direct method o f staining where the 

antibody to the protein o f interest (the primary antibody) is labelled (Figure 8. 2a). Coon et 

al. (1951) developed the immunofluorescent method by the addition of a fluorescent label to 

the primary antibody allowing visualisation o f the antibody using a fluorescent microscope. 

An alternative technique developed by Nakane and Pierce (1967) uses enzyme-substrate 

reactions to convert colourless chromogens into coloured end products. Immunologically and 

enzymatically active conjugates are generated and used to localise the antigen within the 

tissue. A good enzyme for immunoenzymatic staining must be stable in solution, maintain its
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activity when conjugated to an antibody or protein and have an end product that is both stable 

and easily detectable (Boenisch, 2001c). Two enzymes that fulfill these criteria, and are 

commonly used for staining, are ca lf  intestinal alkaline phosphatase and horseradish 

peroxidase (HRP). HRP, isolated from the root o f the horseradish plant, forms a complex 

with its substrate, hydrogen peroxide, causing it to decompose into water and oxygen. In the 

presence o f an electron donor, the enzyme-substrate complex will bring about oxidation of 

the donor. Electron donors that, when oxidised, are converted from a colourless substance to 

a coloured one and become insoluble are also referred to as chromogens and are useful in 

immunohistochemistry. 3,3-diaminobenzidine tetrahydrochloride (DAB) produces a brown 

end product and is highly insoluble in organic and aqueous solvents, making it a popular 

chromogen.

Direct methods, although very quick and simple to perform, do not allow a very high level of 

sensitivity due to little amplification o f the signal. The majority o f methods in use today are 

indirect, and incorporate at least one signal amplification step. In the simplest indirect 

methods, an unlabelled primary antibody is applied to the sample followed by a labelled 

antibody to the primary antibody (the secondary antibody, Figure 8. 2b). As the secondary 

antibody is raised against the IgG o f the animal in which the primary antibody was produced 

(for example anti-rabbit IgG), the antibody will bind to several epitopes on the primary 

antibody, providing amplification o f the signal. To further amplify signals, methods such as 

the avidin-biotin complex (ABC) method are used (Figure 8. 2c). Avidin is a glycoprotein 

tetramer found in egg whites that contains four binding sites for biotin, a coenzyme of 

decarboxylase that is present in a number o f organs. The high affinity o f avidin for biotin, 

and the ease with which biotin can be conjugated to a range o f antibodies or enzymatic and 

fluorescent labels, m akes ABC a highly effective and adaptable m ethod for 

immunohistochemical staining. Initial incubation o f the primary antibody on the sample is 

usually followed by application o f a biotinylated secondary antibody. Avidin-biotin 

complexes and avidin-HRP conjugates are then added to the sample, followed by the final 

addition o f the chromogen. The ABC technique was initially developed for improved 

sensitivity in electron microscopy o f  proteins in the membranes o f Acholeplasma laidlawii 

(Heitzmann and Richards, 1974) but is now routinely used in both electron and light 

microscopy and is available in kit form.
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Figure 8. 2: Staining methods, a) The direct method, in which the primary antibody is 
labelled, b) The indirect method, in which a labelled secondary antibody is used, and 
c) The ABC method.

8.1.3 Sample preparation

Immunohistochemistry can be carried out on samples prepared in a variety of different ways. 

In most cases, formalin fixed tissues are embedded in paraffin wax and sectioned on a 

microtome prior to staining. For small blocks o f tissue (<5mm thick) it is also possible to 

perform whole mount staining to allow a 3D analysis o f protein localisation, but this
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technique requires extensive optim isation o f  the staining procedure to ensure complete 

penetration of the sample with staining reagents. As formalin fixation and embedding can 

sometimes damage antigens, tissue sam ples may also be frozen and cryosectioned. 

Cryosection processing is the best way to preserve antigens but suffers from poor 

morphological detail and resolution, particularly at high magnifications. As an alternative it 

is also possible to treat a formalin-fixed sample by either enzyme digestion or by the use of 

microwaves to increase exposure o f the antigen whilst preserving the histology.

8.1.4 Background staining

Non-specific background staining is a common problem in immunohistochemistry and can 

be caused by a number o f factors (Boenisch, 2001b). Some o f the major causes o f non

specific staining include:

• Hydrophobic interactions -  Hydrophobic interactions occur between macromolecules 

when their surface tensions are less than water. Hydrophobicity is a property shared 

by a number o f different types o f proteins, mediated predominantly through the 

neutral aromatic amino acids phenylalanine, tyrosine and tryptophan. The shared 

hydrophobicity o f these residues causes them to link to each other, expelling water 

and conferring stab ility  to the polypeptide. Tissues fixed in form alin or 

glutaraldehyde exhibit an increased hydrophobicity resulting in background staining 

in certain tissues including connective tissues, squamous epithelium and adipocytes. 

Immunoglobulins, particularly the subclasses IgGi and IgG3, also tend to have a high 

hydrophobicity that increases if  the antibody is not stored correctly, leading to the 

formation of aggregates. The cross-linking between hydrophobic tissue samples and 

antibody aggregates can be controlled by optimisation o f fixation procedures for 

individual tissue sam ples and appropriate storage and use o f the antibody. 

Appropriate blocking, both before and during the primary antibody incubation step, 

with a protein that will compete sufficiently with IgG for hydrophobic sites within the 

tissue, is also an effective means o f reducing background. The addition of 1% BSA to
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a solution containing serum from the animal in which the secondary antibody was 

raised is a commonly used blocking buffer.

• Endogenous enzyme activity -  Endogenous enzyme activity can also be a cause of 

background staining when using enzyme-mediated detection methods. Haemoglobin, 

myoglobin, cytochrome and catalases all exhibit peroxidase activity with interstitial 

activity resulting from diffusion o f the blood prior to fixation o f tissue. An effective 

means o f blocking endogenous peroxidase activity is by incubation o f 3% hydrogen 

peroxide on the sample prior to the blocking of non-specific sites.

• Endogenous avidin binding activity (EABA) -  The use o f the ABC staining method 

also introduces additional forms o f background. Non-specific staining can be caused 

by binding o f avidin-HRP conjugates to endogenous biotin and also to lectin-like and 

negatively charged tissue components. High levels o f biotin are present in the liver, 

kidney and lymphoid tissue, and, due to its four biotin binding sites, binding of avidin 

molecules to endogenous biotin increases levels o f the protein in tissue by the 

recruitment o f a further three biotin molecules with the binding o f each avidin 

molecule. The high isoelectric point (pi) and carbohydrate composition (10%) of 

avidin can lead to non-specific binding o f the glycoprotein by ionic interactions with 

tissue proteins. Artificial reduction o f the pi o f avidin or the substitution o f avidin for 

streptavidin, an analogous protein found in the bacteria Streptomyces avidinii, in 

ABC staining kits has largely eliminated this type of background staining.

8.1.5 Conclusions

Immunohistochemistry can be used to perform a detailed analysis o f expression patterns of a 

gene and its protein product within tissues, providing information about particular cell 

populations in which the gene is expression. Knowledge o f spatial and temporal expression 

patterns of BBS  genes may provide evidence for possible functions o f the proteins and give
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clues as to how mutations in a number o f different genes can lead to the complex pleiotropic 

phenotype o f BBS.
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8.2 Methods

8.2.1 Sample preparation

Slides o f mouse tissues were either made from paraffin embedded blocks of tissue (BBS4 - 

eyes) or purchased from Novagen (BBS8 - testis, eye, E l4 embryo and olfactory epithelium). 

Eyes were dissected from adult wt female mice and fixed as described in 2.2.6.1 Fixation o f  

mouse tissues. Four different fixatives (100% methanol, 2%  paraformaldehyde (PFA), 4% 

PFA and Camoy’s fluid) were tested to determine what effect, if  any, the fixative had on the 

quality of the staining o f BBS4. The microwave antigen retrieval step was also tested; slides 

from each different fixative were microwaved for 0, 4, 7 or 10 minutes in 0.01M citric acid 

as described in 2.2.6.4 Antigen retrieval. Slides that were not microwaved were placed in 

0.01M citric acid for 10 minutes

8.2.2 Staining protocol

BBS4 and BBS8 affinity purified antisera were used as the primary antibody in the staining 

experiments. The ABC method was used for signal amplification (ABComplex, DAKO), as 

described in 2.2.6.5 Immunohistochemistry staining. To allow smaller quantities o f antibody 

to be used and different antibody dilutions on sections on the same slide, a PAP pen (Ted 

Pella, Inc.) was used to draw a water repellent barrier around each section. As a control, one 

section on each slide was designated ‘no prim ary’; in place o f the primary antibody, block 

solution was applied to the section.
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8.3 Results

8.3.1 Fixatives - BBS4

The type o f fixative used (100% methanol, 2% PFA, 4%  PFA and Carnoy’s fluid) did not 

appear to have a large effect on BBS4 staining, but did affect the quality o f sections produced 

from the tissue. 100% methanol is a mild fixative and was therefore expected to have the 

least damaging effect on the BBS4 antigen within tissue. During the sectioning process, 

tissue fixed in 100% methanol appeared to fragment, resulting in tom and damaged sections. 

The sections were used in staining experiments and did show BBS4 expression, but due to the 

poor quality o f  the sections, the results were hard to interpret. Tissues fixed in PFA (2% and 

4%) produced good sections and a good staining pattern. The best histology however was 

seen with tissues fixed in Cam oy’s fluid. This may be due to the fixative alone or may also 

be influenced by other steps in the embedding and sectioning process. As only two eyes were 

tested for each fixative, a larger number o f  samples o f different tissue types are required to 

establish if Cam oy’s fluid is the best fixative for routine use.

8.3.2 Antigen retrieval -  BBS4

In addition to different fixatives, the microwave oven antigen retrieval step was also tested. 

BBS4 staining was comparable in sections that had been microwaved for 0, 4 or 7 minutes. 

Some sections from slides that had been microwaved for 10 minutes, in particular 100% 

methanol sections, began to become detached from slides, suggesting that times o f seven 

minutes or less is the optimum time for microwaving, depending on the antigen.
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8.3.3 BBS4 expression

BBS4 expression was studied in the mouse eye and was present throughout the layers of the 

retina (Figure 8. 3a and b). High levels o f expression were also seen in the cornea (Figure 8. 

3c) and the ciliary muscles (Figure 8. 3d). DAB staining was not seen in these layers in the 

‘no primary’ control sections. W estern blot analysis was not performed which would have 

given an indication o f the antibody specificity but subsequent experiments using the same 

BBS4 antibody have shown a more specific pattern o f expression in the outer nuclear layer 

and the inner segments, where BBS4 colocalses with PCM1 (Kim et al., 2004). This does not 

however demonstrate or confirm the specificity o f the antibody.

8.3.4 BBS8 expression

BBS8 expression was observed in ciliated structures in mouse tissues. In adults, BBS8 was 

present in maturing flagellated spermatids (Figure 8. 4a) and also in the connecting cilium 

(CC) of the retina between the inner and outer segments o f photoreceptors (Figure 8. 4b). In 

the embryo, BBS8 was seen in the developing telencephalon (TE, Figure 8. 4c), olfactory 

epithelium (OE) and olfactory sensory neurons (OSN, Figure 8. 4c and d) (Ansley et al.,

2003).
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Figure 8. 3: Expression o f BBS4 in the mouse eye. a) Retina, showing highest levels 
of expression in the inner (IS) and outer segments (OS) of the photoreceptors and the 
outer nuclear layer (ONL) (RPE -  retinal pigment epithelium), b) Higher 
magnification of a BBS4 stained retina, c) High levels of BBS4 expression was also 
seen in the cornea and d) the ciliary muscles. All sections are from Camoy’s fluid 
fixed tissue with four minutes microwaving and five minutes DAB reaction. Scale 
bars represent 100pm in a), c) and d), and 50pm in b). e) Schematic of retinal layers.
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Figure 8. 4: 5&S# expression in adult and embryonic mouse tissues, a) BBSS expression was 
seen in maturing spermatids (Sp) surrounding the lumen (LU) of the seminiferous tubule 
from a 12 day old mouse, b) In the retina, BBS8 was found to be exclusively expressed in the 
connecting cilium (CC). c) In embryonic tissue expression was seen in the olfactory 
epithelium (OE) and developing telencephalon (TE) in an E 14 embryo, and also, d) in the OE 
and olfactory sensory neurons (OSN) in an E l6 embryo (Ansley et al., 2003). All images are 
from Novagen slides with a four minute microwave step and five minutes DAB reaction. 
Scale bars represent 200pm in a) and b), 500pm in c) and 100pm in d). e) Western to show 
specificity o f the BBS8 antibody. The BBS8 antibody, but not the preimmune serum, was 
able to specifically immunoprecipitate (IP) BBS8-Mycfrom BBS8-Myc transfected HEK293 
cells. Lane 1 -  Untransfected cells, 2 - Empty vector, 3 -  Preimmune IP, 4 -  BBS8 antibody 
IP, 5 -  cell lysate (Ansley et al., 2003).
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8.4 Discussion

8.4.1 Expression of BBS genes in mouse tissues and cells

Analysis of BBS4 in tissues revealed that the gene is widely expressed in the mouse eye, with 

high levels observed in several retinal layers including the inner and outer segments of the 

photoreceptors and the outer nuclear layer, in the ciliary muscles (muscles that relax the 

fibres holding the lens in position and enable it to change shape during accommodation) and 

also in the cornea (Figure 8. 3). This expression pattern is consistent with the ocular 

phenotype reported in patients (See 1.4.1 Retinal dystrophy); retinal degeneration is the most 

common feature of BBS and strabismus has also been reported in patients (Beales et al.,

1999). In a larger, parallel immunohistochemical study of BBS4, the protein was shown to 

colocalise with PCM1 (a BBS4-interacting protein, see 7.4.1 Pericentriolar material 1 

(PCM1)) in a subset of cell populations such as the hippocampus, columnar epithelium of the 

lung and the olfactory epithelium in the adult mouse and in the developing pericardium and 

limb bud of an El 6 stage embryo (Kim et al., 2004). Data on the localisation of the protein in 

layers of the retina from the two studies overlaps to some degree; expression was detected in 

the inner segments and outer nuclear layer in both studies, however outer segment expression 

was only observed in this study. This discrepancy may be due to differences in the fixation 

and processing of the tissue (tissue fixed in Carony’s fluid and paraffin embedded versus 

‘hybridisation-ready’ slides purchased from Novagen) or differences in the staining protocol. 

Further work is required to determine whether the expression in the outer segments 

represents true expression o f the protein or is background staining. The absence of DAB 

staining in the outer segment in control sections suggests that this signal is more than merely 

background.

BBS8 was found to be almost exclusively expressed in ciliated tissues (Figure 8. 4), 

consistent with the cellular localisation o f the protein (Ansley et al., 2003). In adult mouse 

testes, BBS8 expression was observed in flagellated spermatids surrounding the lumen of 

seminiferous tubules. Defects in the length or function of sperm flagella caused by mutations 

in BBS genes may explain the lower levels of fertility observed in some male patients
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(Mykytyn et al., 2004). In the retina BBS8 was found to have a more restricted expression 

pattern than BBS4, present only in the connecting cilium of the photoreceptors. The 

connecting cilium, located between the inner and outer segments, is the region of the 

photoreceptor through which newly synthesised components o f the rods and cones are 

transported from their site o f synthesis (the inner segment) to the outer segment where they 

are required to maintain the cell. As photoreceptor components are continually turned over at 

a high rate, ~2,000 opsin molecules are required every minute to maintain the rods, defects in 

this form of intraflagellar transport (IFT) leads to a degeneration o f the rods and cones 

(Rosenbaum and Witman, 2002). In the embiyo, expression was seen in the developing 

telencephalon, particularly at the ciliated ependymal cell layer, and the olfactory epithelium 

and olfactory sensory neurons.

Immunocytochemical analysis o f the cellular localisation o f BBS4 and BBS8 revealed that 

both proteins colocalise to the centrosome in a number of cultured mammalian cells, 

including HEK 293 and NIH 3T3 cells (Ansley et al., 2003; Kim et al., 2004). In ciliated 

cells, one of the pair of centrioles (the mother centriole) is recruited to the cell surface to 

form the basal body of the cilium. Analysis o f BBS4 and BBS8 in the ciliated murine kidney 

cell line IMCD3 revealed expression o f both proteins at the basal body of the cilium and also 

at the centrosome, associated with the daughter centriole.

8.4.2 Improvements to the staining protocol

Although promising results were achieved with BBS4 and BBS8 antibodies, further 

experiments are required to confirm that the staining pattern observed is a true reflection of 

the expression pattern of the genes and are not affected by non-specific background staining. 

Blocking of endogenous peroxidase activity and non-specific sites was carried out prior to 

the primary antibody incubation step, eliminating certain types of background. Blocking of 

EABA was not carried out in these experiments but, as EABA-induced DAB staining would 

be uniform between sections incubated with primary antibody and those without, and no 

DAB staining was present in the control sections, it is likely that EABA in tissues such as the
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eye, testis and olfactory epithelium is not sufficient to cause background staining. ‘No 

primary’ is a commonly used negative control however, a better control is to test whether 

staining is inhibited by adsorption of the antibody with the peptide to which the antibody was 

raised, but not with an unrelated peptide. If staining is successfully blocked by adsorption, it 

indicates that staining is specific to the protein in question, rather than being caused by a 

contaminating antibody also present in the antisera. Additional experiments using the EABA 

block and the adsorption control would be helpful to establish the reliability of the results 

already achieved and the specificity of the BBS4 and BBS8 antibodies.

8.4.3 Summary

Immunohistochemical staining methods are an effective way o f analysing expression of 

genes within tissues and determining specific cell populations in which expression levels are 

highest. Optimisation of fixation and staining protocols are essential to ensure a high level of 

specific expression with a low level of non-specific background staining. BBS4 expression 

was observed throughout the eye, whereas BBSS expression was restricted to the connecting 

cilium. BBS8 expression was also studied in the testis and embryonic tissues and was present 

in maturing spermatids and the developing telencephalon and olfactory epithelium 

respectively.
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Chapter 9 General discussion

9.1 Cloning of B B S  genes

BBS is a highly heterogeneous disease with eight cloned loci (BBS 1-8). In recent years 

considerable progress has been made in the identification of the disease-causing genes by 

conventional and more novel gene mapping methods (Table 9. 1). The first BBS genes to be 

cloned (BBS2, 4 and 6) were identified using conventional positional cloning methods 

involving mutation screening of candidate genes or transcripts in the pedigrees used to map 

the loci (Katsanis et al., 2000; Mykytyn et al., 2001; Nishimura et al., 2001; Slavotinek et al.,

2000). Following the successful cloning o f the most common BBS gene, BBS1, by a 

combination of positional cloning and sequence homology to BBS2 (Mykytyn et al., 2002), 

the BBS7 and BBS8 genes were recently cloned based on their homology to BBS2 and BBS4, 

respectively (Ansley et al., 2003; Badano et al., 2003a).

At the time of cloning, the majority o f BBS genes (.BBS1, 2, 4 and 7) were novel transcripts 

of unknown function (Badano et al., 2003a; Mykytyn et al., 2001; Mykytyn et al., 2002; 

Nishimura et al., 2001). The BBS6 gene, mutations in which also cause the related disorder 

MKKS, is predicted to be a type II chaperonin based on its similarity to archeobacterial 

chaperonins (Stone et al., 2000). Little knowledge of potential targets of the BBS6/MKKS 

protein however makes verification of this putative function very difficult. Recent functional 

studies on other BBS proteins have been more successful. BBS4, BBS6 and BBS8 have all 

been shown to localise at the centrosome and basal body in ciliated cells (Ansley et al., 2003; 

Kim et al., 2004). BBS4, BBS7 and BBS8 are expressed in a specific set of ciliated head and 

tail neurons in the nematode C. elegans and, like many other genes expressed in ciliated 

structures in the organism, contain an upstream 14bp sequence known as the X-box which is 

a binding site for the RFX transcription factor DAF-19, suggesting a role for BBS proteins in 

cilia assembly, maintenance or function (See 9.5 The role o f cilia in BBS) (Ansley et al., 

2003; Blacque et al., 2004; Kim et al., 2004).
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A greater understanding of the putative function of known BBS proteins has also aided the 

cloning o f the BBS3 and BBS5 genes that, until very recently, remained unidentified. Due to 

the small number of families linked to both loci and, in the case of BBS3, the position of the 

gene at the centromere, an area of little recombination, it was only with the aid of functional 

data on other BBS proteins that it has been possible to clone both genes. Li et al. (2004) used 

a comparative genomics approach to clone the BBS5 gene. The proteome of the non- 

flagellated plant Arabidopsis was subtracted from the proteome shared by Chlamydomonas 

(a single-celled organism with flagella) and humans, giving a flagellar apparatus-basal body 

(FABB) proteome. Using this method, 688 genes specifically expressed in organisms with 

basal bodies or flagella were identified. In addition to five of the previously cloned BBS 

genes (BBS I, 2, 4, 7 and 8), two genes, one known to be involved in IFT (IFT139) and the 

other unknown (NM 152384), located within the BBS5 critical interval were present in the 

gene list. Mutational analysis o f both transcripts resulted in the identification of pathogenic 

alterations including splice site (IVS6+3A>G), insertion/deletion (c.263- 

272indelGCTCTTA), nonsense (W59X and L142X) and missense (N184S and R207H) 

mutations, in the novel gene (NM_152384), now referred to as BBS5. Analysis of the C. 

elegans ortholog of BBS5 (bbs-5) revealed the presence of an X-box in the promoter of the 

gene and an expression pattern similar to that of other BBS orthologs, with specific 

expression of the gene in the ciliated head and tail neurons (Li et al., 2004).

Shortly after the cloning of BBSS, the BBS3 gene was identified by two groups (Chiang et al., 

2004; Fan et al., 2004a). Chiang et al. (2004) used a similar approach to that of Li et al. 

(2004), identifying ARL6, a member o f the ARL (ADP-ribosylation factor (ARF) - like) 

family of small GTP-binding proteins, as a candidate for BBS3 by comparative genomics of 

ciliated and non-ciliated organisms. Mutation screening of the gene in a large Bedouin 

pedigree linked to the locus revealed a homozygous nonsense mutation (R122X) segregating 

with disease in 13 affected individuals. Using an alternative approach, Fan et al. (2004a) 

analysed the C. elegans genome for genes containing X-box sequences, based on the 

assumption that all C. elegans orthologs of BBS genes will be under the control of DAF-19. 

Of 368 C. elegans genes, 168 were found to have a human ortholog. Three of these genes, 

ESRRBL1 (probably the human ortholog of the C. elegans gene che-13), ARL6 and ARL2L1,
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were located in the BBS3 critical interval. Sequencing of a large cohort of patients identified 

several ARL6 missense mutations (T31M, T31R, G169A and L170W) in pedigrees of various 

ethnicities (Saudi Arabian, Irish, Newfoundland and North American), providing 

independent confirmation that ARL6 is BBS3 (Fan et al., 2004a).

Locus Mapping Position Cloning Contribution* Function

BBS1 Linkage in 
outbred pedigrees l lq l3 Positional cloning/ 

homology to BBS2 23.2% Unknown

BBS2 IBD in Bedouin 16q21 Positional cloning 8.1% Unknown

BBS3 IBD in Bedouin 3pl3 Positional cloning/ 
comparative genomics 0.4% GTP-binding

protein

BBS4 IBD in Bedouin 15q23 Positional cloning 2.3% Centrosomal/ 
basal body

BBSS IBD in 
Newfoundland 2q31 Positional cloning/ 

comparative genomics 0.4% Basal body

BBS6 IBD in 
Newfoundland 20pl2 Positional cloning 5.8% Putative

chaperonin
BBS7 Not mapped 4q32 Homology to BBS 1/2 1.5% Basal body

BBS8 Not mapped 14q31 Homology to BBS4 1.7% Centrosomal/ 
basal body

Table 9. 1: Summary o f known BBS genes. * contribution data from Katsanis (2004). 
See Appendices 1 - 6 for schematics o f the genomic orginisation, position of  
mutations and protein structure of BBS 1 ,2 ,4 ,6 ,7  and 8.

9.2 Mapping of novel B B S  loci

Despite the recent cloning of eight BBS genes (Table 9. 1), over half the cases of BBS are 

unaccounted for by mutations in the known genes (Katsanis, 2004). A genome-wide 

homozygosity screen carried out in this project attempting to map a novel BBS locus in 

pedigrees of Middle Eastern origin was unsuccessful. With the exception o f BBS1, the main 

BBS locus, each of the remaining loci are responsible for a small fraction of the disease, with 

four of the loci (BBS3, 5, 7 and 8) estimated to each account for fewer than 2% of cases 

(Katsanis, 2004). This high degree of genetic heterogeneity makes combining data from a 

number of different families in genome-wide screens very difficult, as it is unlikely that a
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region o f homozygosity shared by a number o f pedigrees will be identified. Large 

consanguineous pedigrees in which locus homogeneity can be reliably assumed are therefore 

required, as were used to successfully map a number of the known loci (Carmi et al., 1995b; 

Katsanis et al., 2000; Kwitek-Black et al., 1993; Sheffield et al., 1994; Young et al., 1999a). 

The lack o f such a large pedigree in our cohort meant that it was necessary to combine data 

from a number of small consanguineous pedigrees, each with only one or two affecteds. As 

all the pedigrees used in the screen were o f Middle Eastern origin (Indian, Kurdish, Pakistani 

and Turkish), it was hoped that the screen would define a novel locus, common to Middle 

Eastern pedigrees. No significant regions of homozygosity shared between all 17 pedigrees 

were identified, suggesting that a degree o f genetic heterogeneity exists even within this 

population group. Surprisingly high levels o f heterogeneity have also been reported in the 

two populations in which BBS is most common, on the island of Newfoundland and in the 

Bedouin of Israel. At the time o f the initial mapping studies, when all cases of BBS were 

assumed to be caused by mutations at the same genetic locus, three large Bedouin pedigrees 

were studied, expecting to allow the mapping and cloning of the causative gene. Linkage 

analysis in the different kindreds however revealed that each was mapped to a different 

locus, resulting in the mapping of BBS 2 ,3  and 4 (Carmi et al., 1995b; Kwitek-Black et al., 

1993; Sheffield, 2004; Sheffield et al., 1994). The high incidence of BBS on Newfoundland 

was initially thought to be a result of a founder effect Results from haplotype and mutational 

analysis of the BBS pedigrees on the island have in fact shown this to not be entirely the 

case. In addition to the BBS1,2 , 3 , 5  and 6 genes being represented on the island (Beales et 

al., 2001; Katsanis et al., 2000; Young et al., 1999a; Young et al., 1999b; Young et al., 1998), 

multiple different mutations in the genes in Newfoundland patients have demonstrated the 

presence of both genetic and allelic heterogeneity in this BBS population (Beales et al., 2001; 

Fan et al., 2004a; Fan et al., 2004b; Katsanis et al., 2000; Li et al., 2004).

9.3 Complex inheritance in BBS

Genetic diseases are commonly classified as monogenic, caused by mutations at a single 

locus, or polygenic, resulting from the combination of mutations at multiple loci. For a
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growing number o f  disorders that were initially classed as monogenic, recent research has 

shown that this may not be true, and that the disease phenotype is influenced by mutations at 

more than one locus (Badano and Katsanis, 2002; Burghes et al., 2001). Suspicions about 

whether BBS might be inherited in a non-M endelian manner were first raised due to the 

relatively high frequency o f  single mutant BBS6  alleles identified on mutation screening of 

the gene in a large patient cohort (Beales et a l ,  2001). In seven o f eight pedigrees in which a 

BBS6 mutation was identified, only a single mutant allele was detected. It was not until the 

cloning o f the second BBS  gene, BBS2, that the hypothesis o f multiallelic inheritance in BBS 

could be tested. Mutation screening o f  the ORF o f  BBS2 in the same cohort o f 163 patients 

provided evidence for digenic triallelic inheritance, two mutant alleles at one locus with a 

third mutation at a second locus (Rivolta et al., 2002), in a subset o f families (Katsanis et al., 

2001a). Mutation screening o f  all newly cloned BB S  genes in the patient cohort has shown 

that triallelic inheritance is not restricted to only B B S 2 and 6; incidences o f triallelic 

inheritance have been reported in all known BBS  genes, with the exception o f BBS8 (Beales 

et al., 2003; Fan et al., 2004a; Katsanis et al., 2001a; Katsanis et al., 2002; Li et al., 2004). 

Participation in triallelic inheritance varies for the different BBS  loci; BBS2  and 6 are 

frequently involved in com plex inheritance, whereas over 70% o f BBS1 mutations are 

inherited in a recessive manner (Katsanis, 2004).

As an extension to the triallelic hypothesis, in a consanguineous Kurdish pedigree two 

homozygous mutations, T558I in BBS2  and A364E in BBS4  were found to segregate with 

disease (Chapter 5, Katsanis et al., 2002). As both mutations in this case are missense, 

functional studies are required to confirm the pathogenicity o f the mutant alleles. The nature 

o f mutations involved in triallelic inheritance is variable, with nonsense, frameshift, splice 

site and missense mutations all reported in association with complex inheritance (Table 9. 2). 

In the majority o f cases, at least one or two missense mutations are involved, raising the 

question o f whether the alterations are pathogenic or merely polymorphisms. In one North 

American pedigree, AR259 (Fig 5.5), the segregation o f  three bona fid e  loss o f  function 

mutations (Y24X and Q59X in BBS2, and Q147X in BBS6) with disease, leaves little doubt 

about the pathogenicity o f  each o f  the mutations present in this family (Katsanis et al., 

2001a).
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In the majority o f  cases o f  com plex inheritance in BBS, three mutant alleles are both 

necessary and sufficient to cause disease, with siblings or parents in some cases segregating 

two mutant alleles at one locus despite being asymptomatic (Beales et al., 2003; Katsanis et 

al., 2001a). In some cases however, the presence o f  the third allele has a modifying rather 

than causative effect (Table 9. 2). Badano et al. (2003b) described three pedigrees, each with 

multiple affected sibs and a high degree o f intrafamilial variation in the phenotype; a third 

allele was found to segregate with the more affected sib in each case. A modifying allele in 

ARL6 (BBS3) was also found to segregate with the more severely affected o f two sisters with 

BBS, each o f whom also carry a  homozygous M390R (BBS1) mutation (Fan et al., 2004a).

The occurrence o f  complex inheritance in a proportion o f BBS families makes genetic 

counselling challenging. In a recessive monogenic condition, following the identification of 

homozygous or compound heterozygous mutations at one locus, mutational analysis is 

usually considered to be complete and the pedigree assigned to the respective locus. With the 

lack o f any genotype-phenotype relationship in BBS, added to the lack o f  any phenotypic 

characteristics allowing recessive pedigrees to be distinguished from triallelic ones, it is 

necessary to screen a new cases o f BBS for mutations in all known BBS  genes to ensure that 

no potentially pathogenic mutations will be missed. Sensitive, quick and cheap mutation 

screening methods that will detect both heterozygous and homozygous, and known and novel 

mutations is therefore required. The M CHA technique has been shown to have a high 

throughput and sensitivity at a considerably lower cost than direct sequencing, making it 

highly applicable for this function (C hapter 6, Hoskins et al., 2003). However, the 

development o f a mutation or SNP chip will aid future diagnosis.

Although questioned by some (M ykytyn et al., 2003), supporting evidence for a digenic 

inheritance pattern in BBS has been reported by Fauser et al. (2003). In their cohort o f 21 

patients no cases o f triallelic inheritance were found, but two cases o f suspected digenic 

diallelic inheritance between BBS2 and 4 were identified (Table 9. 2). In addition, a single 

heterozygous BBS6 mutation was also identified in one patient. As the BBS3 and 5 genes had 

not yet been cloned at the tim e o f  this study, it is possible that this patient may have 

additional mutations in either o f these genes or in a novel, as yet unidentified BBS  gene.
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Allele 1 Allele 2 Allele 3 Phenotype Inheritance Reference
BBS1 (R) BBS1 (R) BBS2(M) BBS Modifier (Badano et al., 2003b)
BBS1 (R) BBS1 (R) BBS3 (M) BBS Modifier (Fan et al., 2004a)
BBS1 (R) BBS1 (R) BBS4(M) BBS Triallelic (Beales et al., 2004)
BBS1 (R) BBS1(R) BBS5 (M) BBS Triallelic (Li et al., 2004)
BBS] (N) BBS1 (R) BBS6 (M) BBS Triallelic (Beales et al., 2004)
BBS I (fs) BBS1 (R) BBS6 (M) BBS Triallelic (Beales et al., 2004)
BBS1 (fs) BBS1 (R) BBS6 (M) BBS Modifier (Badano et al., 2003b)
BBS2 (Sp) BBS2(M) BBS1 (R) BBS Triallelic (Beales et al., 2003)
BBS2 (N) BBS2 (N) BBS1 (Sp) BBS Modifier (Badano et al., 2003b)
BBS2 (M) BBS2 (M) BBS4 (M)* BBS Tetra-allelic (Katsanis et al., 2002)

BBS2 (N) BBS2 (N) BBS6 (N) BBS Triallelic (Katsanis et al., 
2001a)

BBS2 (fs) BBS2 (N) BBS6 (M) BBS Triallelic (Katsanis et al., 
2001a)

BBS2 (N) BBS2 (N) BBS6 (M) BBS Triallelic (Katsanis et al., 
2001a)

BBS7 (M) BBS7 (M) BBS1 (M) BBS Triallelic (Beales et al., 2003)
NPHP I (del) NPHP1 (del) BBS4 (M) SLS Triallelic Chapter 5

NPHP I (N) BBS4(M) - SLS Digenic 
diallelic ? Chapter 5

NEK8 (M) BBS6 (M) - SLS Digenic 
diallelic ? Chapter 5

BBS2 (N) BBS4 (M) - BBS Digenic
diallelic (Fauser et al., 2003)

BBS2 (M) BBS4(M) - BBS Digenic
diallelic (Fauser et al., 2003)

Table 9. 2: Summary o f triallelic allele combinations. R -  M390R, M  -  missense 
mutation, N -  nonsense mutation, fs -  frameshift mutation, Sp -  splice site mutation, 
del -  whole gene deletion, SLS -  Senior Loken syndrome.

In addition to contributing to non-Mendelian inheritance in BBS patients, BBS4 and 6 have 

also been found to be associated with complex inheritance in a related disorder, Senior Ldken 

syndrome (SLS). SLS is composed o f nephronophthisis (NPHP) and RP and, like BBS, is a 

heterogenic condition caused by mutations in several known genes {NPHP 1, IN  VS, NPHP3 

and NPH P4) and also additional, as yet unmapped, genes. Evidence for non-Mendelian 

inheritance has been reported recently in SLS and isolated NPHP; single mutant alleles were
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detected in patients from mutation screens for INVS (NPHP2), NPHP3 and NPHP4 (Mollet 

et al., 2002; Olbrich et al., 2003; Otto et al., 2003). The similarity in phenotype, and also 

protein function (See 9.6.3 Nephronophthisis (NPHP)), prompted the screening o f a cohort of 

NPHP and SLS patients for mutations in BBS genes. One case o f  triallelic inheritance 

between NPHP I and BBS4 was detected and two cases o f potential digenic diallelic 

inheritance, one between NPHP1 and BBS6 and the other between NEK8, a recently cloned 

NPHP gene, and BBS4, were also found (Table 9. 2, Chapter 5).

9.4 BBS protein function

9.4.1 BBS4

The BBS4 protein is composed o f  several TPR domains and in recent functional studies, has 

been shown to be a centriolar protein that colocalises and interacts with pericentriolar 

material 1 (PCM1) (Chapter 7, Kim et al., 2004). In ciliated IMCD3 cells, BBS4 is associated 

with both the mother centriole at the centrosome and also with the daughter centriole at the 

basal body o f the cilium. Depletion o f BBS4 by RNA interference (RNAi) results in dispersal 

o f PCM 1 into the cytoplasm o f  the cell, a  failure o f  microtubule anchoring at the centrosome, 

and increased levels o f  apoptosis. In addition to PCM1, BBS4 also interacts with the 

p l50glued subunit o f dynactin (Chapter 7, Kim et al., 2004). As the dynactin complex interacts 

with dynein and is required for dynein-associated movement along the microtubules, these 

results suggest that BBS4 may function as an adaptor molecule to transport PCM1 to 

centrosomal satellites. Yeast-tw o-hybrid analysis also identified a number o f nuclear 

receptors as potential interactors o f  BBS4 (Chapter 7). As these results have not yet been 

confirmed, their significance is hard to interpret at present.
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9.4.2 BBS8

As BBS8 was cloned based  on its hom ology to BBS4, the two proteins share several 

functional features. BBS8 colocalises w ith BBS4 and PCM1 at the centrosome and basal 

body and interacts directly w ith the same region o f PCM1 that mediates the BBS4-PCM1 

interaction (the C-terminal) (Ansley et al., 2003). BBS8 expression in mouse tissue samples 

showed that the protein is expressed in ciliated structures and tissues in the developing and 

adult mouse, including the connecting cilium  o f  the retina, flagellated spermatids and the 

olfactory epithelium (C hapter 8, A nsley et al., 2003). BBS8 is highly conserved and, like 

several other BBS genes (BBS1, 2, 3, 5 and 7), has an ortholog in C. elegans (bbs-8). The 

expression pattern o f bbs-8 is very specific; the protein is present exclusively in the ciliated 

structures o f  the head and tail neurons and the midbody PDE neuronal cell in hermaphrodites 

and also in the tail-ray neurons o f  the  male. Analysis o f the 5’ untranslated region (UTR) of 

bbs-8 identified an X -box sequence, indicating that bbs-8 is under the control o f DAF-19, or 

RFX in mammals (Ansley et al., 2003; Blacque et al., 2004).

9.4.3 ARL6 (BBS3), BBS5 and BBS7

Like bbs-8, C. elegans orthologs o f  ARL6 (BBS3), BBSS and BBS7 (arl-6, bbs-5 and bbs-7) 

are specifically expressed in head and tail neurons and are under the control o f DAF-19 

(Ansley et al., 2003; Blacque et al., 2004; Fan et al., 2004a; Li et al., 2004).

9.5 The role of cilia in BBS

Several lines o f evidence from functional studies on BBS proteins support a role for these 

proteins in cilia assembly or function, implicating ciliary dysfunction as a possible cause of 

BBS (Ansley et al., 2003; Blacque et al., 2004; Fan et al., 2004a; Kim et al., 2004; Li et al., 

2004). Cilia are divided into two classes: motile, which have an internal structure composed 

o f two central microtubules surrounded by nine outer microtubule doublets (9+2 structure),
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or non-motile, which contain the nine outer doublets but lack the central microtubule pair 

(9+0 structure) (Rosenbaum and Witman, 2002). Non-motile, or primary cilia, are present on 

almost all m am m alian cells and are thought to play important roles in development, 

homeostasis and sensation (Snell et al., 2004). In C. elegans cilia perform a chemosensory 

role, allowing the animal to  sense its surroundings and locate potential mates (Igarashi and 

Somlo, 2002). They also perform a sensory role in humans with the outer segments o f the rod 

cells, a modified cilium, responsible for photoreception and the odorant receptors located on 

the cilia o f the olfactory neurons responsible for odorant signalling. Renal primary cilia act as 

mechanosensors in the kidney epithelium, causing an increase in intracellular calcium on 

bending (Snell et al., 2004).

A cilium is made up o f a basal body, derived from the mother centriole at the centrosome, 

and the ciliary axonem e along w hich protein components are transported by IFT for 

assembly and m aintenance o f  the cilium. M ovement towards the tip o f the cilium 

(anterograde transport) is mediated by kinesin II, a plus end-directed microtubule motor, 

whereas dynein is responsible for movement towards the cell body (retrograde transport) 

(Rosenbaum and W itman, 2002). IFT proteins in C. elegans localise to the axoneme and 

transition zone o f  the cilium, a structure at the base o f  the cilium that is analogous to the 

basal body. Using tim e-lapse microscopy, the proteins have also been shown to move 

bidirectionally along the axoneme (Blacque et al., 2004). Mutations in IFT genes result in 

chemosensory defects and abnormal cilia in C. elegans (Snell et al., 2004).

Analysis o f BBS  orthologs in C. elegans has identified several features that support the 

hypothesis for the involvem ent o f  BBS proteins in cilia biogenesis and/or maintenance 

(Ansley et al., 2003; Blacque et al., 2004; Fan et al., 2004a; Li et al., 2004):

• The expression patterns o f  bbs-1, 2, 3, 5, 7 and 8 overlap with those o f known C. 

elegans IFT genes including osm-5, osm-6, xbx-1, and che-13.

• All C. elegans bbs genes contain an X-box sequence, a binding site for DAF-19, 

which is present in cilia-specific genes.

193



• Loss o f bbs-7 and/or bbs-8 result in structural and functional ciliary defects, including 

shortened, abnormal cilia, chemosensory defects and decreased IFT.

• Knockdown o f Bbs5 in Chlamydomonas results in an inability to form flagella.

In addition to an overlapping expression pattern, BBS-7, BBS-8 and ARL-6 (BBS3) have 

also been observed moving in an anterograde and retrograde direction along the axoneme of 

the cilium in a manner similar to that o f  other IFT proteins (Blacque et al., 2004; Fan et al., 

2004a). ARL6 is known to be involved in membrane-associated intracellular trafficking 

processes in its role as a small GTP-binding protein. The observation o f  ARL-6 moving 

along the ciliary axoneme therefore extends this trafficking property to include IFT (Fan et 

al., 2004a). To establish if  BBS proteins are involved in the movement o f other IFT proteins 

in C. elegans, Blacque et al. (2004) analysed the movement o f three known IFT proteins, 

OSM-5, CHE-2 and CHE-11, in bbs-7 and bbs-8 mutant nematodes. In the bbs-8 mutant, 

OSM-5 and CHE-11 levels in the axoneme were greatly reduced, with a number o f animals 

showing accumulation o f OSM-5 in the transition zone. Similarly, in the bbs-7 mutant, 

axonemal OSM-5 appeared disorganised and levels o f CHE-11 were significantly reduced. 

Expression o f CHE-2 was not affected by loss o f  function o f bbs-7 or bbs-8. The ability of 

BBS-7 and BBS-8 to transport proteins within the cilia, and for BBS4 to transport PCM1 to 

the centrosome and basal body (Kim et al., 2004), suggests that BBS proteins may share a 

common function as adaptor proteins m ediating trafficking o f  a number o f  cellular 

components. A common pathway is one explanation as to how mutations in a number of 

different genes can give the indistinguishable phenotype seen in BBS.

The expression o f BBS8 in ciliated structures in mammalian tissues and the colocalisation of 

BBS4 and BBS8 with PCM1 at centriolar satellites and basal bodies in cultured cells also 

support the cilia/basal body hypothesis (Ansley et al., 2003; Kim et al., 2004). Certain 

features o f the BBS phenotype can be easily explained by the ciliary dysfunction hypothesis. 

Structural and functional renal abnormalities are known to be caused by defects in cilia (See 

9.6 Ciliary dysfunction in human disease). IFT is essential to maintain the outer segments of 

the photoreceptor; mice with mutations in IFT genes K ifta  and Polaris (Tg737) develop 

retinal degeneration (Pazour et al., 2002). Situs inversus, a feature seen in some patients

194



(A nsley et al., 2003; Lorda-Sanchez et al., 2000), results from defects in the nodal cilia or 

nodal flow, resulting in abnorm alities in left/right patterning (Capdevila et al., 2000). 

A nosm ia, a recently recognised secondary feature o f BBS, results from a reduced ciliated 

border o f the olfactory epithelium and disorganisation o f  the dendritic microtubule network 

in B b s l  and Bbs4 knockout mice (Kulaga et al., 2004).

9.6 Ciliary dysfunction in human disease

B B S is not the only human disease thought to be caused by a defect in cilia. Recently ciliary 

dysfunction has been implicated in several diseases, primarily conditions with a strong renal 

component (Snell et al., 2004; Watnick and Germino, 2003).

9.6.1 Autosomal dominant polycystic kidney disease (ADPKD)

A utosom al dominant polycystic kidney disease (ADPKD) is a common cause o f renal 

fa ilu re , affected between 1 in 500 and 1 in 1,000 children and adults. The condition is 

characterised by the growth o f  fluid-filled cysts in the kidneys and also other organs 

including the liver, ovaries and occasionally the pancreas. ADPKD can be caused by 

m utations in either PKD1, which encodes the protein polycystin 1 (PCI), or PKD2, encoding 

polycystin 2 (PC2). The polycystins, which are known to heterodimerise, are involved in a 

n u m b e r o f  im portan t p rocesses inc lud ing  fertilisa tion , ion translocation  and 

m echanosensation and their C. elegans orthologs (LOV-1 and PKD-2) are essential for 

m ating (Igarashi and Somlo, 2002). PCI and PC2 have both been shown to colocalise with 

the  ciliary markers acetylated a-tubulin , in the axoneme o f the cilium, and y-tubulin at the 

basal body (Nauli et al., 2003). PC2 functions as a calcium channel and PCI may function as 

a  m echanosensor, sensing the bending o f  the cilium by fluid flow, resulting in a 

conform ational change in the protein and subsequent activation o f PC2 channels. Loss of 

function  o f PC I or PC2 may bring about cyst development by the inability to sense 

mechanical cues and hence regulate tissue morphogenesis (Nauli et al., 2003).
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9.6.2 Autosomal recessive polycystic kidney disease (ARPKD)

Autosomal recessive polycystic kidney disease (ARPKD) combines renal cysts with 

congenital hepatic fibrosis and is rarer than ADPKD, with an incidence o f between 1 in 6,000 

and 1 in 40,000. The phenotype is variable and can present as perinatal, neonatal, infantile or 

juvenile (Igarashi and Somlo, 2002). The homozygous orpk mouse, which has a mutation in 

Polaris (Tg737), is a model for ARPKD and provided the first indication o f a link between 

polycystic kidneys and ciliary defects (M oyer et al., 1994). The Chlamydomonas ortholog of 

Polaris, IFT88, is essential for flagellar assembly; cells deficient in IFT88 grow at the same 

rate as wt cells but lack flagella (Pazour et al., 2000). Analysis o f the cilia in orpk mice 

revealed that the renal cilia are shorter than in wt mice. Rod outer segments in these mice are 

also affected and a progressive retinal degeneration develops caused by apoptosis o f the 

photoreceptor cells (Pazour et al., 2002). Mice lacking the gene completely die in utero due 

to absence o f the nodal cilia (Pazour et al., 2000).

9.6.3 Nephronophthisis (NPHP)

Mutations in INVS, a gene known to cause cystic kidney disease and situs inversus in mice 

(Mochizuki et al., 1998), were recently found to be responsible for NPHP2, the infantile form 

o f NPHP (Otto et al., 2003). Inversin is localised to varicosities along the length o f the ciliary 

axoneme and shows partial colocalisation with nephrocystin, the protein product o f the 

NPHP1 gene. In addition to interacting with nephrocystin (Otto et al., 2003), inversin has 

also been shown to interact w ith Apc2, a subunit o f  the anaphase promoting complex 

responsible for the ubiquitintation o f  cell regulators at metaphase-anaphase and mitosis-Gl 

transitions (Morgan et al., 2002). The identification o f NPHP3, the gene responsible for 

adolescent NPHP, as being orthologous to the gene mutated in the pcy  polycystic kidney 

mouse model, further supports the hypothesis o f NPHP being caused by a defect in cilia 

(Olbrich et al., 2003). In addition, the NPHP4 gene was found to be present in the FABB 

proteome generated by Li et al. (2004).
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9.7 BBS mouse models

In order to further understand the pathogenesis o f BBS and determine how defects in cilia 

contribute to the obesity, polydactyly and genital abnormalities present in patients, it is 

necessary to study mouse models o f  the disease. Preliminary studies on a BBS4 knockout 

mouse (Bbs4'/') demonstrated that the animal develops some characteristics o f BBS; mice 

develop obesity, retinal degeneration and fail to reproduce (Mykytyn et al., 2004). At birth 

Bbs4*A mice appear sm aller than their w t litterm ates but by 12 weeks o f age weigh 

significantly more than wt mice. Further examination o f the retina o f the mice confirmed that 

retinal development is normal, but photoreceptors begin to degenerate at six weeks as a result 

o f increased apoptosis. Analysis o f  renal epithelium from both knockout and wt mice showed 

that normal cilia form in the absence o f Bbs4, suggesting that the protein is not required for 

cilia assembly. Bbs4 may however be required for the formation o f flagella; histological 

examination o f  the seminiferous tubules in Bbs4'/' mice revealed a complete absence of 

flagella, providing an explanation for the inability o f  male Bbs4~ m i c e  to sire offspring 

(Mykytyn et al., 2004). A more recent study on anosmia in mice deficient for Bbs4 or Bbsl 

(Bbsl'1') reported these mice to have a highly variable phenotype, with obesity observed in 

only -10%  o f animals by 10 weeks o f  age and retinal degeneration in 30% (Kulaga et a l ,

2004). Examination o f the olfactory epithelium in the mice revealed a reduced ciliated border 

and trapping o f cilia-enriched olfactory proteins such as type III adenylyl cyclase (ACIII) and 

the signal transduction protein Gyb . In both studies, polydactyly and renal abnormalities were 

absent (Kulaga et al., 2004; M ykytyn et al., 2004). It will also be interesting to use mouse 

models to test the hypothesis o f  triallelic inheritance. Crossing o f different mutant mice may 

result in the development o f  additional features o f the disease, producing a phenotype that 

more fully models the human disease.
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9.8 Candidate genes for BBS

Owing to the recent success in m apping B B S  genes by homology based approaches, it is 

likely that these mapping methods could be used to clone the gene(s) responsible for the 

cases o f BBS which are unaccounted for by the eight known genes (BBS 1-8). Genes 

encoding flagellar or basal body proteins identified by Li et a l  (2004) are good candidates 

for BBS  genes. As there was a strong enrichment for genes containing X-box motifs and 

proteins containing TPR domains in this dataset, combined with the fact that both features 

are present in a number o f  the known BBS proteins, transcripts predicted to include such 

sequences would also be good candidates for BBS. The identification o f incidences of 

potential multiallelic inheritance involving mutations in B B S4 and 6 in cases o f SLS, 

combined with the shared function o f  the NPHP and BBS proteins, raises the possibility of 

mutations in NPHP genes accounting for some cases o f BBS. Interestingly, a Libyan BBS 

patient has been reported with a pericentric inversion o f chromosome 1 (p36.3q23) in the 

region in which NPHP4 is located (Tayel et al., 1999). It is possible therefore that the disease 

in this patient is a result o f  a heterozygous mutation in combination with a disruption o f 

NPHP4 caused by the translocation.
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Appendix 1: a) Genomic organisation and position of mutations in BBS1. Missense and neutral variants are shown above the gene and 
deleterious mutations below, b) Primary protein structure of BBS 1.
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Appendix 2: a) Genomic organisation and position of mutations in BBS2. Missense and neutral variants are shown above the gene and 
deleterious mutations below, b) Primary protein structure of BBS2. The protein contains two FG:GAP repeats (Pfam Accession 
number: PF01839) which are predicted to fold into beta propeller structures and are commonly found at the N-terminus of integrin 
alpha chains, and a coiled-coil domain (Pfam Accession number: PF05710).



a)
c.332-27-28insA

c.l-17C>A

c.1452-45C>T 

c.1249-33G>C 

A364E

T3541

10 11 12 13 14

M47?Vj 

K441T TAA

15 16

b) 67-100
135-168 202-235 304-337

519

101-134 169_2Q1 270_303 338-371

TPR domain

Appendix 3: a) Genomic organisation of BBS4. Missense and neutral variants are shown above the gene, no 
deleterious mutations were identified in BBS4 in our patient cohort, b) Protein structure of BBS4. The protein 
contains a number of tandem TPR domains (Pfam Accession number: CL0020) which consist of a degenerate 
sequence of -34 amino acids.
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Appendix 4: a) Genomic organisation of BBS6. Missense and neutral variants are shown above the gene, no deleterious mutations 
in BBS6 were identified in our patient cohort, b) Protein structure of BBS6. The protein shows similarity to the Cpn60/TCP-l 
chaperonin family (Pfam Accession number: PF00118). The 60kDa chaperonins (Cpn60) form a structure composed of two stacked 
rings, each made up of seven identical subunits. Mg2+-ATP is required for assembly of the ring structures. The TCP-1 family of 
proteins act as molecular chaperones for tubulin, actin and probably some other proteins.
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Appendix 5: a) Genomic organisation of BBS7. A single frameshift mutation was identified in BBS7 in the patient 
cohort, b) The protein contains a coiled-coil domain in a region of shared homology with BBS2.
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Appendix 6: a) Genomic organisation of BBS8. A single splice site mutation was identified in the BBS8 gene, b) 
Protein structure of BBS8. Like BBS4, the BBS8 protein contains a number of TPR domains.



Primer Sequence Size
(bp)

HA
label PCR

BBS]xlF  
BBS] xlR

ATTCCTCAACCCAGGAAGGT
GCGACCTCCAGACACACATA 401 TET TD

BBS! x2+3F 
BB S!x2+3R

CCTGGACTTGTACCCAGACG
TTTCAGCCGTCAGGAAATCT 460 FAM TD

BBS]x4F 
BBS] x4R

TT GGT GC AGGAATG A A T G A A 
ATAGCTGACCTCCTGCCACC 523 FAM TD

BBS1 x5+6F 
BBS] x5+6R

GGAGGCAGAGACCAAGAGGT
TCCATCATTCTGGCACATTC 417 FAM TD

BBS! x7F 
BBS] x7R

CCATCCAGTCACTCAGGTAAG 
T GGCTGG A AGGG AT AT AGC A 381 TET TD

BBS] x8F 
BBS] x8R

TCTTCTGTCACATCTCTGATATTTCC
ACAAGGAACATATATATTACCCAGAAC 396 FAM TD

BBS] x9F 
BBS] x9R

GCTTTT GCT AA ATGTTGCCC 
AAATTCCAGCCTTAAAGCCC 417 FAM TD

BBS] xlOF 
BBS1 xlOR

GTTTTCCAAGGCCACACATT 
G AA AG A ACGGTTTCT GGGGT 432 FAM TD

BBSJ xl IF 
BBS] xl 1R

GAGAGAGTCCTCTGGCTTCCC 
AAGG AGG AGT G AGT GGC AGA 323 TET PCR71

BBS] xl2F  
BBSI xl2R

TATTAGGAGGTTGACCCCA
AGGCCTTACTTTCCACACCC 458 FAM TD

BBS] xl3F  
BBS! xl3R

CTCGTCTGGAAGACGGATGT 
T GGATTT GC AGAGGT G AGT G

460 TET TD

BBS] xl4F  
BBS1 xl4R

GCAGACTCCTCCTGCAGCAC 
CT G AGTT GGCTT GGAATTGG 408 TET TD

BBS1 xl5F 
BBS1 xl5R

TT GAGT AGGAGGAGGGGACA 
CTGGTCTGTGGTGGGAGAGT 431 FAM TD

BBS] xl6F 
BBSI xl6R

TGGGAGTCCAGAGGTCTAGG
CTCCACTGTGCAGATACCC

457 FAM TD

BBSJ xl7F 
BBS1xl7R

GACATCATCAAGGTAGGCCC 
GGGT GCTT A AG AGAGGGGAG

472 TET TD

Appendix 7: BBS1 primer sequences including amplicon size, colour o f MCHA label and 
PCR conditions. M l3 tags (Forward -  TGTAAAACGACGGCCAGT, Reverse -  
CAGGAAACAGCTATGACC) were added to all primer pairs to improve stability.
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Primer Sequence Size
(bp)

HA
label PCR

BBS2x IF 
BBS2 xlR

GCGTGAGGCCAGCTCCGCTGC
GCGCGGCCGGCGGAGATCCTG 254 FAM FAILSAFE

-H
5552 x2F 
5552 x2R

TTTT AAGGGAAT GT AATT AGT 
T GG AC ATT AAT GAGT AATGAC 325 TET TD

BBS2 x3F 
5552 x3R

CT GTTTT ACT C AAAATCT GCTC AG 
TT AGCT AC AT G A AGG AG AGG ATT AC 409 FAM PCR61

BBS2 x4F 
BBS2 x4R

AATCCTCTCCTTCATGTAGCT 
GG AG AAGCTT AC ACTT CT GTC 239 FAM TD

BBS2 x5F 
BBS2 x5R

AGAAGCAGCATGCAAAGTACT 
T CAT CT GAC AGT ACT G ATCT A 240 FAM TD

5552 x6F 
5552 x6R

T AT AAAGCCGT ACTTGACAGT 
CAATAACTATCAAGCGCCTGA 222 FAM TD

BBS2 x7F 
5552 x7R

TATTGTGAGACTTCTGTGCTA
TGTTACTGTTCTAAGTCCTAC

213 TET TD

5552 x8F 
BBS2 x8R

AG AAT ACT CTT G AAAACT GCT 
ATCTCGGT AC A AAT ACTT C AG 349 FAM TD

5552 x9F 
5552 x9R

T AAG AGC AGGT AATT GAT GAC 
CCCTGGCAATGACACTCTCAT 308 FAM TD

5552 xlOF 
5552 xlOR

GGCTCTGTCTTTTGAAGCTGA
CCAAGACAGAGGAAGACTCTG 338 FAM TD

5552x1 IF 
5552 x llR

ACCTCCTGACCTCGTGATCTG 
CCCC AAGAAT CC ACT GGGC AT

344 FAM TD

5552 xl2F 
5552 xl2R

CCTT AAAT AT C AATT GAT GAC 
ACT GCT ACC AAT AT AAC AC AT

344 TET TD

5552 xl3F 
5552 xl3R

GAATGTTACTTAAGAGCATAG 
CT G AAT GGT AAAC ACC AC AT G 481 FAM TD

5552 xl4F 
5 5 5 2 xl4R

GCT AAGTTT GT CT AAC AT CT G 
AC AT AAGT AC ATTT GT AGT AC

281 FAM PCR55

5552 xl5F 
5552 xl5R

TT AATT GGT AT AAGCG AAC AG 
TTATACTTCTATTGGTAACAT 330 TET TD

5552 xl6F 
5552 xl6R

TAAGCTTGCCATATCAACATG 
AT AT G AATT ATT GG AT GCT AC

291 TET TD

5552 xl7F 
5552 xl7R

TTGTTTT AAAACTGACGT CT A 
ATTCAGCAACAGTACTACTAC

389 FAM TD

Appendix 8: BBS2  primer sequences. FAILSAFE -  H corresponds to the FAILSAFE PCR 
program and enzyme mix with buffer H.
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Primer Sequence Size
(bp)

HA
label PCR

B B S4x 1F 
5 5 5 4 xlR

GAGCAGACCCTAATCCTCCC
CAGTTCCCGGGACAGTAAAA 343 TET TD

BBS4 x2F 
BBS4 x2R

TT GC AT AATT GGT GAGCT ACT GA 
AGGTGGCAGTGAGCCAAGAT 300 FAM TD

BBS4 x3F 
BBS4 x3R

T GT G ATATT GC AGT AT GTTT ATGGT 
T C ACT ACC AT AGC AAAAGAT AACC AG 343 FAM TD

BBS4 x4F 
BBS4 x4R

CAT AAT CT GCCTGCCTTGGT 
T C AC AC AAT GAC AAAATT GCC 371 FAM TD

BBS4 x5F 
BBS4 x5R

T GT C AGC AGTTTTGGTTGTTG 
ACCATTCCCCCACTTGTGTA 417 FAM PCR63

BBS4 x6F 
BBS4 x6R

GCAGCTTCACTGACCAAACC
CAGCAATGCCTGCAAAGTTA 413 TET PCR63

BBS4x7F 
BBS4 x7R

AAAAAGCTGACTGT AAT GC AT AGTTT 
CAAGCAGAAAACAACAGATGAA 376 HEX PCR63

BBS4 x8F 
BBS4x8R

GGCTGTTTGCTGAAATGTGA
TCTACCTTATTGAAGCTACTGGGA 417 FAM PCR63

BBS4 x9F 
BBS4 x9R

CACCAGGGTTGAGATGACCT 
GCTTCC AATTT AA ATGC AGA A AA 418 HEX PCR63

5554 xlOF 
B BS4xlOR

ATGTTGGTCAGGCTGGTCTC 
TTT C AAAT AAGAAGAGCC ACCTTT 389 FAM TD

5554x1 IF 
5554 x llR

CTGATGGGCCT GCT GAGT AT 
T GC ATGGT C AAAT GGAC AAG 434 FAM PCR63

5554 xl2F 
5554 xl2R

TGGAATGTGTTTCTTTGGCA
CAGGATCTCTAAGGGAATGGC 420 FAM PCR63

5554 xl3F 
5554 xl3R

GGAT GC AT AGAACCT GGC AACTG 
CACCTCATGGCTTTGGAGAGTCC 318 FAM PCR71

5554 xl4F 
5554 xl4R

TT AACC AGTTTT GTTTT GTTTTT GT G 
T GG ATTT GGAT GATCTGGGCTT G 321 HEX TD

5554 xl5F 
5554 xl5R

TTT GAT AAGT ACTTCCTGCCTC AA 
TCCCCTTGTGGCCAATACTA 473 FAM TD

5554 xl6F 
5554 xl6R

GGC AAACTT GACT GTTGCTTT 
CTTAGGCTCAACTGCTGGCT 429 TET TD

Appendix 9: BBS4 primer sequences, amplicon sizes, MCHA label and conditions.
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Primer Sequence Size
(bp)

HA
label PCR

BBS6 x3aF 
BBS6 x3aR

G ATTTT AT AGCC AC AATGCT 
AT G AC AGT GGT GGGTGTC AA 492 FAM TD

BBS6 x3bF 
BBS6 x3bR

TCT GGT G AGC AT AC AGGC AG 
CGTTT GG AAGCT A AGAAGCC 498 FAM TD

BBS6 x3cF 
BBS6 x3cR

GATCCTCCTTTGTTTGGTGC 
GGTT AAGC AGCT GGT CC AAG 392 FAM TD

BBS6 x3dF 
BBS6 x3dR

AATCAACTGCCCTCAAGGTG 
CCTTT GCT GCC AG AAAT GAT 421 HEX TD

BBS6 x4F 
BBS6 x4R

AT GCTT GT GGGGCTTTT AT G 
AAT GGCAACACATGC CAAAT 475 HEX TD

BBS6 x5F 
BBS6 x5R

GC ACC AC AC AAGTTTT GTT C 
CCTATACATGCACCCCTGAA 378 TET TD

BBS6 x6aF 
BBS6 x6aR

GT GCC AGACCCC AAATT AAA 
CC AGTT GAGTT CTT CCTGGC 391 TET TD

BBS6 x6bF 
BBS6 x6bR

GGC AGATT CTCCCT GT GTT G 
GC ATTT CC ATT C ACGAAT C A 447 TET TD

Appendix 10: BBS6 primer sequences, amplicon sizes, MCHA label and conditions.
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Primer Sequence PCR
B BS7x  IF 
B B S7xlR

GCCCTATCCCTTGGGTTT
GTCTGGGGTCTCTGTGGA TD

B B S 7x2F 
B B S7x2R

TGTAAAACGACGGCCAGTGCCAGTCATCTTACACAAC
AGGAAACAGCTATGACCAAATGTCCCTTGGTATTCCAG TD

B B S7x3F 
BBS7 x3R

TT ACTTTT GTGCT ACCCG 
GG AAC A AAAT CT AT GGCC TD

B B S7x4F 
B B S7x4R

TTCCAGAAAGCCTATTAA
AAAAACCTGAAGACCTGC TD

B B S7x5F 
B B S7x5R

TTCAGCTTTCAAAATCAA
TTTCCACATGTTTATAAA TD

BBS7 x6F 
BBS7 x6R

CGT GCT GTT AGTT ACT GG 
T GC A A AATT GCT AAC AAA TD

5557 x7F * 
B B S7x7R

AG AT AAAT C AAGGT GT GA 
A AT GGGG AA AT GTCTT AT TD

5557 x8F 
5557 x8R

T CCT GCTT AAAGGC AAGA 
TT GCT C ACC ATTCTGAGT TD

5557 x9F 
5557 x9R

T G AGGTTT GAGGCTT CCA 
TTCCT GCC ATTT GTT C AA TD

5557x1 OF 
5557x1OR

C AGC ACTT ACGCT AATTT 
GAT ATT GGT GGAC AAAGG TD

5557x1 IF 
5557 x llR

AAAACGACGGCCAGTACTCCAGTCTAGGTGACAGAGT 
AAAC AGCT AT GACCC ATTTT GT AAAAGC AAAT G TD

5557xl2F 
5557xl2R

CCGACACAGATTTTGAAG 
T AAGGGGGT GGT GAGAGA TD

55 5 7 x13F 
5557xl3R

GAG ATT GT GGT GT GGGCT 
CAT GTTT GAAAAGCGCT G TD

5557xl4F 
5557xl4R

TCCAACTCAAACCAGCCT 
GG AAAC AGCT ATG ACCTGAATT GGAAC AGAGT GGG AC TD

5557xl5F 
5557xl5R

TCAATCAGATTACTCACA 
AGC AC AGGT GC AGGT AT A TD

555 7 xl6F 
5557xl6R

GTCCACGACGACACATGT
CAATTTCCTTCTACAGCT TD

5557 xl7F 
55 5 7 xl7R

ACG ACGGCC AGT GT CTTT C AAGAT GT GC AGGTT 
GG AAAC AGCT ATGAAAAGGAAAATTAACCTC TD

5557xl8F 
5557x18R

TAAAACG ACGGCC A ACT GATT CAT GACTGGTTC A 
GAAACAGCTATGACCACATGTGTCGTCGTGGACTGG TD

Appendix 11: Primer sequences and conditions for BBS7. For MCHA, BBS7x7¥ was labelled 
with FAM, resulting in a 468bp labelled fragment.
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Primer Sequence PCR
BBS8x  IF 
B BS8x  1R

AGTTCT GCTT GCGGTTGTTT 
CGCTAGTCACAGCTCCACAA TD

BBSS x2F 
BBSS x2R

AGTTTTT GAC AT GGCCCTTTA 
TTTTT CAT C ATTTTT GTTTC ATGTC TD

BBS8 x3F 
BBS8 x3R

CATCTCCCTAAAATACATTTCTTGC
AATGGGTCTTCCAGCTTGTG TD

BBSS x4F 
BBSS x4R

ACGTCTTTGAAACTCCCTGG
AATCACCTTCAAAAATCTTCCA TD

BBSS x5F 
BBSS x5R

T CCCCTGTT GTT AT AGT GGAGAA 
TT CT G ACT G ACCTT CCTT AACTC A TD

BBSS x6F 
BBSS x6R

TG AGC ATTCC AGTTTGT ATTCTG 
CAGAAACTGAGGGTGGATTTT TD

BBSS x7F 
BBSS x7R

GTAAGAAGGCCAGTGTGGCT 
T G AAG AAAAGGATTTT GCT GCT TD

BBSS x8F 
x8R

CCATCTGGAAACATGAGCAA 
TTCTT ATT GCT ACCCT GT GATT G TD

BBSS x9F 
x9R

A AC AT GTT AATTT AT GT GT ATGT GC AA 
TCCCTTGCTGTAAAGAAAAACA TD

BBSSxlOF 
xlOR

CTCCCAAAATGCTGGGAATA
TGTTCCCAAAACAAAGAAAAGA TD

M « x l  IF 
BBS8 xl 1R

TT CAT ATT GT ATCCCC AGGGT C 
TC AGT GTT G AC ATTT GAGTTT CAT TD

flflS8xl2F 
5AS8 xl2R

GG AGT ATC A AAA AT C AC AAG AT GAA 
AAGC AATCCT CCT GCTTC AG TD

BBS8x  13F 
££SSxl3R

TCCACTTACGTAGAATTCACATTG 
C AAC AG AGCT GGG ATT C AAA TD

££S£xl4F 
BBS8 xl4R

TCATGAGGAATGTTGTCGGT 
T GCT GT CCCTT G AAGT AAAG A TD

£AS8xl5F
£&S#xl5R

TTT GAGTT AT GAT GTT AGTT GT GGG 
T GC ATT AC AC ATTCTGT GT C ACC TD

Appendix 12: BBSS primer sequences and conditions. M l3 tags were added to all primers for 
increased stability.
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