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ABSTRACT
Neuroblastomas are common paediatric tumours derived from the sympathoadrenal 

lineage. Neuroblastoma cells may arise from neuroblasts, which failed to differentiate 

or which were not eliminated by apoptosis at an appropriate stage of development. 

The aim of this thesis was to identify the signalling pathway by which cis- 

diamminedichloroplatinum (II) (CDDP) a chemotherapeutic agent, triggers caspase 

activation and apoptosis in the SH-SY5Y neuroblastoma cell line. An understanding 

of this may prove to be useful for developing better therapeutic agents for treating 

neuroblastoma and for understanding mechanisms of drug resistance. CDDP was 

found to induce apoptosis in SH-SY5Y cells via the mitochondrial death pathway, 

with cytochrome c release and activation of caspases-9 and -3. CDDP, a DNA 

damaging agent, activates p53 in SH-SY5Y cells and p53 is known to induce 

apoptosis via the mitochondrial pathway.

Bcl-2 family members play a central role in the regulation of the mitochondrial death 

pathway and may have pro- or antiapoptotic activity. The pattern of expression of 

members of the Bcl-2 family following CDDP treatment was investigated to 

determine their regulatory role. PUMA (p53 upregulated modulator of apoptosis), a 

proapoptotic BH3-only protein and a direct transcriptional target of p53, was found to 

be upregulated at both the mRNA and protein levels during CDDP-induced apoptosis 

of SH-SY5Y cells. PUMA has three transcripts that encode PUMA- a , p and 5. 

PUMA-a and PUMA-P are proapoptotic and contain the BH3 domain. PUMA-a was 

identified as the transcript that increased during CDDP treatment in SH-SY5Y cells. 

Overexpression of PUMA-a in SH-SY5Y cells was sufficient to induce apoptosis.

To identify other genes regulated by CDDP, we performed oligonucleotide 

microarray analysis using Affymetrix human genome-U133A microarrays and RNA 

extracted from SH-SY5Y cells treated with DMSO, transplatinum (an isomer of 

CDDP which does not induce cell death) and CDDP. The results provide a detailed 

picture of the changes in gene expression that occur following CDDP treatment.
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Chapter 1: Introduction
1.1 Neuroblastoma

Neuroblastoma is one of the most common paediatric tumours and is the cause 

of approximately 7-10% of cancer-related deaths in children. The median age at 

diagnosis for neuroblastoma patients is about 18 months. About 40% are diagnosed 

by 1 year of age, 75% by 4 years of age and 98% by 10 years of age. There are 

approximately ninety new neuroblastoma cases each year in the UK (Bown, 2001). 

These extra-cranial, solid, malignant tumours are derived from the sympathoadrenal 

lineage of neural crest cells. Neuroblastomas express neuronal markers, such as 

neuron-specific enolase, tyrosine hydroxylase, dopamine p-hydroxylase, which 

suggest that neuroblastoma cells may have arisen from neuroblasts, which failed to 

differentiate, or which were not eliminated by programmed cell death at the 

appropriate stage of development (Packham et a l , 1996; Middlemas et a l , 1999). 

The primary sites for neuroblastoma development are predominantly the adrenal 

glands, followed by abdominal, thoracic, cervical and the pelvic sympathetic ganglia 

(Schwab, 1999).

The clinical hallmark of neuroblastoma is its variability. Approximately 75% 

of neuroblastoma cases with disseminated metastases (stage 4) are seen in children 

over the age of 1 year. These neuroblastomas are aggressive, chemo-resistant, and 

generally incurable. In contrast, infants with neuroblastoma tend to present with 

lower stage disease (stages 1, 2, and 4s), which are generally chemo-sensitive and 

high cure rates are obtained. A proportion of lower stage tumours show widespread 

dissemination in stage 4s disease (Bown, 2001).

Studies of genetic abnormalities show that there are close associations with 

tumour stage and aggressiveness. The three most important abnormalities associated 

with neuroblastoma tumours are chromosome lp loss, 17q gain and MYCN 

amplification. Except for MYCN status, the relationship of the other genetic events to 

the clinical path of neuroblastoma has not been established (Mora et al., 2001). 

Analysis of cell cycle defects has not yielded many clues for neuroblastoma 

tumourigenesis (Kawamata et al., 1996; Diccianni et a l , 1999).
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1.1.1 MYCN  Amplification

MYCN oncogene amplification or allelic loss at sites such as chromosome lp 

are linked with more aggressive neuroblastoma tumours and poor prognosis. The 

MYC-related oncogene, MYCN was found to be amplified in a group of 

neuroblastoma cell lines (Schwab et al., 1983). MYCN is a proto-oncogene normally 

expressed in the developing nervous system and other selected tissues (Maris and 

Matthay, 1999). It is a member of the MYC gene family, which encode transcription 

factors that regulate cell proliferation and apoptosis (Fulda et al., 1999). Addition of 

MYCN antisense RNA to MYCN-overexpressing neuroblastoma cell lines can 

decrease proliferation and/or induce differentiation (Maris and Matthay, 1999). 

MYCN amplification occurs in many primary neuroblastomas in untreated patients 

(Brodeur et a l , 1984). Amplification of MYCN is known to correlate with advanced 

stage disease, which has only been found in more aggressive malignant 

neuroblastoma variants but it is also associated with rapid tumour progression and a 

poor prognosis, even in infants and patients with lower stages of disease (Seeger et 

a l , 1985). It correlates with a greatly increased risk of fatal outcome and is therefore 

established as a powerful clinical marker of high-risk disease. Currently, MYCN is 

the only tumour genetic feature used as a basis for treatment stratification in 

neuroblastoma clinical trials (Bown, 2001). MYCN amplification is a frequent 

mechanism by which cells gain resistance against cytotoxic drugs (Niimi et a l , 1991).

There is minimal or no expression of caspase-8 in a substantial portion (25- 

35%) of neuroblastoma cell lines and patient samples. The caspase-8 gene (CASP8), 

which encodes a key initiator caspase in the death receptor pathway, is an anti

oncogene that can be completely inactivated by silencing through methylation or 

deletion exclusively in MYCN-amplified neuroblastoma (Teitz et a l, 2000).

1.1.2 Overexpression of Cyclin D1

Genetic defects and overexpression of cyclin D1 are found in many 

malignancies (Donnellan and Chetty, 1998). Approximately two thirds of 

neuroblastoma cell lines and tumours were identified as overexpressing cyclin D1 at 

both the RNA and protein levels (Molenaar et a l , 2003). D-type cyclins activate their 

cyclin-dependent kinase partners CDK4 and CDK6 during cell-cycle progression, 

which leads to the phosphorylation of the retinoblastoma protein and the regulation of
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the G1 to S cell cycle progression. This pathway is often deregulated in many 

tumours. Molenaar et al (2003) have also found a rearrangement in the 3'-UTR of 

the cyclin D1 gene in 1 out of 96 neuroblastoma tumours. These observations suggest 

a potential role for deregulated cyclin D1 gene activity in neuroblastoma 

tumourigenesis.

1.1.3 Trk A and neuroblastoma

TrkA, neurotrophin tyrosine kinase receptor type 1 is the receptor for nerve 

growth factor (NGF). TrkA is critical for the development and maturation of the 

central and peripheral nervous system, regulating proliferation, differentiation and 

programmed cell death (reviewed by Barbacid, 1994). Point mutations, deletions, or 

novel chimera formation due to chromosomal rearrangements causes oncogenic TrkA 

activation. Neuroblastoma cell lines are generally unresponsive to NGF (Azar et al., 

1990) and TrkA expression exhibits an inverse relationship to neuroblastoma 

aggressiveness, consistent with a potential marker of good prognosis (Nakagawara et 

al., 1992; Nakagawara, 2001). The idea that the exclusive role of TrkA in 

neuroblastoma cells is as a tumour suppressor, which is supported by TrkA gene 

transduction and restoration of NGF responsiveness, has been challenged by 

Tacconelli et al, (2004). Tacconelli et al identified a hypoxia-regulated mechanism 

for oncogenic TrkA activation which generates a novel constitutively active TrkAIII 

splice variant that exhibits oncogenic properties, antagonises antioncogenic 

NGF/TrkAI signalling, and is expressed by primary human neuroblastomas 

(Tacconelli et al., 2004).

1.1.4 Regression of neuroblastomas

Neuroblastomas either regress spontaneously, particularly in infants, or they 

mature into benign ganglioneuroma. Neuroblastoma has the highest rate of 

spontaneous regression observed in human cancers, so delayed activation of normal 

apoptotic pathways might be important in this phenomenon. Activation of 

programmed cell death can originate from various stimuli, such as the presence or 

absence of exogenous ligands or from DNA damage. The TNFR family may be 

involved in initiating apoptosis in neuronal cells and neuroblastomas. Intracellular 

molecules that are responsible for relaying the apoptotic signal include the Bcl-2
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family of proteins, and Bcl-2 is highly expressed in most neuroblastomas. The Bcl-2 

proteins might also be important in acquired resistance to chemotherapy (Dole et al., 

1994; Dole et a l , 1995). So neuroblastomas that are prone to undergoing apoptosis 

are more likely to spontaneously regress and / or respond well to chemotherapy.

1.1.5 Anti-cancer drugs and neuroblastoma

Currently used highly intensive chemotherapy regimens are better than 

previous methods but are ineffective in more than half of children with advanced 

disease. Therefore, the requirement for new additional approaches to treatment is 

essential. One of the major limitations to the use of drugs is when tumours that were 

initially responsive to the drugs acquire resistance. Possible mechanisms of acquired 

resistance include altered cellular drug transport, enhanced intracellular 

detoxification, increased DNA repair, and enhanced tolerance to platinum-DNA 

damage. Platinum-containing drugs, including cisplatin and carboplatin, are widely 

used in the treatment of solid tumours such as ovarian, testicular, head and neck, 

bladder and lung cancer. Understanding the cellular responses to platinum-based 

drugs is critical for determining mechanisms of drug resistance and for allowing the 

development of therapeutic approaches for increasing the effectiveness of cisplatinum 

or carboplatin treatment.

1.2 Cis-diamminedichloroplatinum (II)

Cis-diamminedichloroplatinum (II) (CDDP) is one of the most effective 

chemotherapeutic drugs used as part of combination therapy in neuroblastoma 

patients. However, many tumours are intrinsically resistant and even among initially 

sensitive tumours, acquired resistance develops commonly during treatments. The 

tendency of tumour cells to become resistant to CDDP with repeated exposure 

accounts for therapeutic failure in many cancer patients. A subpopulation of 

neuroblastoma is relatively resistant to chemotherapy. Approximately 10% of 

neuroblastoma patients show primary resistance to chemotherapy. CDDP is 

administered intravenously in multidrug therapy combined with other anti-tumour 

drugs (Gonzalez et al., 2001; Kartalou and Essigmann, 2001). The problems 

associated with CDDP treatment are the acquisition of resistance by initially
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responsive tumours and side effects such as kidney damage and provocation of nausea 

and vomiting.

Approximately 1% of intracellular CDDP reacts with nuclear DNA to yield a 

variety of adducts that include inter- and intra-strand DNA cross-links and DNA- 

protein cross-links (Figure 1.1). Intra-strand cross-links between adjacent guanines 

are the most common adducts (Perez, 1998). These irreparable lesions in the DNA 

are essential for the cytotoxic activity of the drug. The DNA adducts inhibit DNA 

replication and gene transcription (Sanchez-Perez et al., 1998).

The trans-isomer, trans-diamminedichloroplatinum (II) (TDDP) is 20-fold less 

cytotoxic than CDDP and ineffective against tumours (Sanchez-Perez et al., 1998). 

DNA adducts formed by TDDP are repairable and are of a different nature to those 

formed by CDDP. The majority of adducts formed by CDDP are intrastrand cross

links between the N7 atoms of adjacent purines. Due to its stereochemical limitations 

TDDP cannot form intrastrand cross-links but forms interstrand cross-links between 

complementary G and C residues (Gonzalez et al., 2001; Kartalou and Essigman, 

2001).

The DNA damage caused by CDDP is recognised by nucleotide excision 

repair, mismatch repair, DNA dependent-protein kinase and high mobility group 

proteins (Gonzalez et al., 2001). Adduct formation disrupts the cytoskeleton and 

affects actin polymerisation. CDDP also targets the phospholipids and the 

phosphotidylserines in the membrane and mitochondrial DNA (Gonzalez et al.,

2001). Genomic DNA is considered the critical pharmacological target of CDDP- 

induced cytotoxicity. Like other DNA damaging agents, CDDP triggers several 

cellular responses, including the activation of the p53 pathway and the induction of 

DNA damage-inducible genes such as gaddJ53, gadd45, p21, and c-jun (Wetzel and 

Berberich, 2001).

1.2.1 p53 and CDDP

The p53 tumour suppressor protein belongs to a family of related proteins that 

includes two other members: p63 and p73. Both p63 and p73 share the structural and 

functional hallmarks of p53, however, they are both involved in normal development 

whereas p53 plays a role in preventing tumour development. The loss of normal p53 

function occurs in almost all cancers (Hollstein et al., 1991). The processes induced
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Figure 1.1 The interaction of cisplatin with DNA.

The main adducts formed are (a) interstrand cross-link, (b) 1,2-intrastrand 

cross-link, (c) 1,3-intrastrand cross-link, (d) protein-DNA cross-link. Taken 

from Gonzalez et a l (2001).
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by p53 in response to stress signals that can cause oncogenic changes include cell- 

cycle arrest, apoptosis, senescence, differentiation and DNA repair. The cellular 

response to p53 depends on many factors, including cell type, cell environment and 

whether the cell has sustained other oncogenic alterations. Mutations in p53 are 

found in approximately 50% of all human tumours (Keshelava et a l, 2001; Hickman 

et a l , 2002), but are seen in only 2% of human neuroblastoma tumours examined 

(Vogan et a l, 1993). p53 protein has been found to be abundant in human

neuroblastoma cell lines (Davidoff et a l, 1992; Vogan et a l, 1993). It is possible that 

instead of mutations, cytoplasmic sequestration and defective translocation of p53 

could be alternate mechanisms involved, but previous studies have shown that p53 

function is intact in neuroblastoma cell lines (Keshelava et a l, 2001).

p53 is a transcriptional regulator protein whose target genes include: p21, 

MDM2, Gadd45, Bax, Noxa and PUMA (Keshelava et a l, 2001; Hickman et a l,

2002). Products of these genes are critical for cell cycle regulation, apoptosis and 

DNA repair. The p53 transcription factor directly activates the expression of genes 

that contain p53-binding sites within their regulatory regions. There are many genes 

that are regulated by p53, which can be divided into groups that might mediate a 

specific p53 function, such as inhibition of cell growth, DNA repair, and activation of 

apoptosis or regulation of angiogenesis (Vogelstein et a l, 2000). A number of studies 

have shown that a major role of p53 is in the induction of the apoptotic cascade that is 

associated with the release of proapoptotic proteins from the mitochondria, such as 

cytochrome c and SMAC (Schuler and Green, 2001). However, p53-inducible genes 

might also contribute to the induction of death-receptor signalling.

In addition to the activation of apoptotic target genes, p53 can repress gene 

expression and act independently of the regulation of transcription. Transcription- 

independent functions of p53 might include shuttling of death receptors to the cell 

surface (Bennett et a l, 1998) or activation of caspase-8 (Ding et a l, 2000). The 

identification of p53 in the mitochondria of some cells may provide a clue as to the 

nature of the transcription-independent activity of p53 (Marchenko et a l, 2000). 

Marchenko et al showed that a fraction of p53 protein localises to the mitochondria 

in tumour cells undergoing p53-dependent apoptosis. Another group also reported 

that a similar targeting of p53 to the mitochondria occurs in normal lymphocytes 

induced to die in response to ionising radiation (Mihara et a l, 2003). p53 that is 

excluded from the nucleus, and therefore transcriptionally inert, is still capable of
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triggering apoptosis in several different cell types. Mihara provided mechanistic 

insight by showing that p53 directly interacts with the antiapoptotic proteins B c1-xl 

and Bcl-2, which are known to bind to the proapoptotic family members Bak and Bax 

and inhibit the ability of these to induce cytochrome c release from the mitochondria. 

It is now proposed that the binding of p53 to B c1-xl and Bcl-2 liberates Bak and Bax, 

thereby allowing them to induce changes in the mitochondrial membrane leading to 

activation of the caspase cascade resulting in cell death (Mihara et al., 2003). 

However, mice with deficiency in either of the two direct transcriptional targets of 

p53, Puma or Noxa, showed no requirement of these genes for normal development 

and physiology but a decrease in DNA-damage induced apoptosis in fibroblasts was 

observed, although only the loss of PUMA protected the lymphocytes from cell death 

(Villunger et al., 2003). These results have led Villunger et al. to suggest that p53 

promotes apoptosis mainly through transcriptional activation rather than through the 

other mechanisms discussed above.

One of the key regulators of p53 stability is MDM2, a protein that functions as 

a ubiquitin ligase for p53, mediating ubiquitination of p53 and allowing it to be 

recognised and degraded by the proteasome (Kubbutat et al., 1997). Tumours that 

have wild-type p53 frequently harbour defects either in the pathways that allow for 

the stabilisation of p53 in response to stress, or in the effectors of the apoptotic 

activity of p53. MDM2 is a transcriptional target of p53 and is involved in an 

autoregulatory loop with p53, where p53 controls the expression of its own regulator. 

Different stress signals use different pathways to allow p53 to escape MDM2- 

mediated protein degradation, and defects in one of them might not be sufficient to 

prevent induction of p53 through another pathway. MDM2 is also a target for 

phosphorylation by the serine/threonine kinase Akt, which is activated by growth 

factor stimulation, and phosphorylation of MDM2 is associated with nuclear 

localisation of MDM2 and enhanced degradation of p53 (Mayo and Donner, 2001; 

Zhou et al., 2001). Apart from Akt, other components of signalling pathways 

associated with cell proliferation, such as c-Jun can also function to block p53 activity 

(Schreiber et al., 1999). p53 inhibition by Akt is counteracted by the ability of p53 to 

induce expression of PTEN, a phosphatase that can inhibit the activation of Akt 

(Stambolic et al., 2001). PTEN is a lipid phosphatase that de-phosphorylates PIP3 

and thus negatively regulates PI3K-dependent signalling. There is a p53 binding site
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directly upstream of the PTEN gene. Thus p53 can negatively regulate cell survival 

by activating the transcription of PTEN (Stambolic et a l, 2001).

Activation of p53 in response to stress signals is almost always accompanied 

by stabilisation of the p53 protein, and several pathways leading to the inhibition of 

MDM2-mediated degradation in response to stress have been described (Woods and 

Vousden, 2001). The interaction between MDM2 and p53 can be impaired by 

phosphorylation of p53 within the MDM2 binding region. Phosphorylation of these 

residues occurs in response to stress, such as DNA damage, mediated at least in part 

by the kinases Chkl, Chk2, ATM and ATR, that are activated by genotoxic damage 

(Appella and Anderson, 2001). DNA damage-induced phosphorylation of p53 

therefore allows stabilisation of p53 by reducing binding to MDM2.

p53 function is also regulated by controlling the cellular localisation of the 

protein. Since one of the key functions of p53 is the regulation of transcription, 

localisation of p53 to the nucleus plays an important role in the p53 response 

(Giannakakou et al., 2000). Once in the nucleus, regulatory mechanisms exist to 

control the export of p53 back out to the cytoplasm (Montes de Oca et a l, 1995). The 

ability of p53 to be exported is greatly enhanced by the action of MDM2 (Freedman 

et a l , 1999).

Cells possessing wild type p53 protein respond to exposure to DNA-damaging 

agents by elevating p53 protein levels (Wetzel and Berberich, 2001). Depending on 

the cell type and the type of DNA damage, increased p53 protein triggers either 

growth arrest or apoptosis (El Deiry, 1998; Gottlieb and Oren, 1998). Involvement of 

p53 in CDDP-induced apoptosis has been demonstrated in several cell types (Park et 

al, 2001). The effect of the loss of p53 function on sensitivity to CDDP is not the 

same in all cell types. This depends on cell type-specific interactions with other pro- 

or antiapoptotic pathways (Niedner et a l, 2001).

The p53 status of neuroblastoma tumours is unusual because these tumours are 

one of a small group of early onset tumours that do not have mutations in the p53 

gene, yet overexpression of p53 protein is the most universal change observed in the 

disease (Davidoff et al., 1992; Vogan et al., 1993; Castresana et a l, 1994; Hosoi et 

al, 1994). The overexpressed p53 accumulates in the cytoplasm of neuroblastoma 

cells and it was initially thought that p53 was excluded from the nucleus (Moll et a l, 

1995). However, more recent evidence has shown that p53 is not anchored in the 

cytoplasm, but continually exported from the nucleus by an MDM2-dependent
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pathway (Arriola et a l, 1999; Smart et a l, 1999; Stommel et a l, 1999; Lu et a l, 

2000).

1.3 Forms of cell death

1.3.1 Apoptosis

Apoptosis (derived from the Greek word meaning ‘falling down of leaves’) is 

an active, genetically programmed form of physiological cell death (Wyllie, 1994), 

which is essential for normal embryonic development and adult tissue homeostasis 

(Kaipia and Hsueh, 1997). The morphological characteristics of apoptosis differ from 

those of necrosis (Wyllie et a l, 1980).

Apoptosis characteristically affects scattered single cells, which condense and 

separate from their neighbours when degenerating (Wyllie, 1994). Initial events in an 

apoptotic cell include nuclear and cytoplasmic condensation with the development of 

cytoplasmic vacuoles, and pyknotic nuclei, but cell organelles remain intact (Jacobson
i 'y  i

et a l , 1997). DNA fragmentation occurs due to the activation of a neutral Ca /Mg - 

dependent endonuclease, which cleaves DNA into 185 bp multiples (Zeleznik et a l, 

1989), which appear as a DNA ladder when analysed by gel electrophoresis. The 

apoptotic cell breaks into a number of membrane-bound, ultrastructurally well- 

preserved fragments known as apoptotic bodies (Wyllie, 1994) which are 

phagocytosed by surrounding cells or macrophages, before any leakage of cell 

contents occurs (Figure 1.2a). This prevents an inflammatory response.

1.3.2 Necrosis

Cells typically die by necrosis following physical injury or trauma (Wyllie et 

al, 1980). For example, many necrotic cells are observed in the mammalian brain 

following a stroke. Necrosis is characterised by progressive loss of cytoplasmic 

membrane integrity, rapid influx of Na+, Ca2+, and water, resulting in cytoplasmic 

swelling and cell lysis (Wyllie, 1994; Berridge et a l, 2000) . DNA fragmentation in 

necrotic cells occurs at random so, when analysed by gel electrophoresis, the DNA 

appears as a smear rather than a DNA ladder (as observed in apoptotic cells). Unlike 

the tidy engulfment of apoptotic cells, the swelling of necrotic cells causes the 

lysosomal and granular contents to be released into the surrounding extracellular 

space initiating an inflammatory response (Scaffidi et a l, 2002) (Figure 1.2b).
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Figure 1.2

(a) Morphology of apoptosis

The characteristic morphological changes associated with apoptosis include:

(i) onset of apoptosis, (ii) chromatin condensation and cellular shrinkage, (iii) nuclear 

fragmentation and convolution of the cell membrane to form apoptotic bodies and 

finally, (iv) digestion by phagocytes and/or adjacent cells (Kerr et a l , 1994).

(b) Morphology of necrosis

The ultrastructural changes within a necrotic cell include:

(i) Swelling and increased eosinophilia, (ii) clumping of chromatin, increased 

swelling and appearance of flocculent densities within mitochondria and, finally, (iii) 

membrane disruption prior to phagocytosis (Kerr et al., 1994).
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1.3.3 Role of apoptosis in development and tissue homeostasis

The neat and efficient elimination of unwanted cells in a short period of time 

with no accompanying inflammation makes apoptosis an ideal process in cellular 

replacement and tissue remodelling (Wyllie et al., 1980). Apoptosis has a number of 

important functions during embryonic development, metamorphosis and tissue 

homeostasis (reviewed by Jacobson et al., 1997): 1) apoptosis is used to sculpt 

developing tissues, e.g. the death of interdigital web cells between developing digits; 

2) apoptosis is employed to eliminate structures that are no longer needed, e.g. 

regression of the tadpole tail when a tadpole becomes a frog; 3) apoptosis has an 

important role in controlling cell numbers, e.g. the number of neurons in the 

developing nervous system is matched to the number of target cells that they 

innervate, a process that is regulated by the limited availability of target-derived 

neurotrophic factors; 4) misplaced cells are eliminated by apoptosis because all cells 

are programmed to die by apoptosis in the absence of appropriate survival signals 

(Raff, 1992) and these signals are usually only available in the cell’s normal 

environment; 5) harmful cells, such as lymphocytes with auto-reactive antigen 

receptors or cells with badly damaged DNA are eliminated by apoptosis; 6) apoptosis 

has a role in the response to pathogens, e.g. cytotoxic T lymphocytes kill pathogen- 

infected cells by inducing apoptosis.

1.3.4 Apoptosis and disease

A number of human diseases are associated with alterations in apoptosis. 

Unscheduled apoptosis occurs in degenerative disorders. For example, neurons are 

thought to die by apoptosis during neurodegenerative diseases, such as retinal 

degeneration, Alzheimer's disease and Parkinson's disease. However, much of the 

evidence for this has come from experiments with cell culture or animal models and it 

has been difficult to demonstrate this in patient samples (Yuan and Yankner, 2000). 

Similarly, autoimmune disease can result from a failure to eliminate lymphocytes that 

have antigen receptors that recognise self. On the other hand, inhibition of apoptosis 

contributes to the development of cancer.
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1.4 Genetic regulation of apoptosis

1.4.1 Programmed cell death in Caenorhabditis elegans

Mapping of the cell lineages in C. elegans made this an ideal model in which 

to define the specific genes responsible for developmental cell fates (Sulston and 

Brenner, 1974; Brenner, 1974). Genetic studies of developmental cell death in the 

nematode worm C. elegans have provided much information about the core apoptotic 

pathway that executes cell death. The C. elegans hermaphrodite has 1090 somatic 

cells of which the same 131 cells die during development, leaving an adult nematode 

made up of 959 cells.

The core cell death pathway in C. elegans, which has been highly conserved 

during evolution, consists of four specific genes required for the regulation and 

execution of apoptosis in each of the 131 cells fated to die: egl-1, ced-3, ced-4 and 

ced-9 (reviewed by Metzstein et al.t 1998). Loss-of-function experiments with egl-1, 

ced-3 or ced-4 resulted in the survival of the 131 cells. This indicated that these genes 

are essential for the induction of apoptosis. However, inactivation of the ced-9 gene 

caused the majority of cells to undergo programmed cell death resulting in the early 

demise of the nematode during development. In gain-of-function experiments with 

ced-9, the 131 cells destined to die were prevented from undergoing cell death. These 

experiments suggest that ced-9 is an inhibitor of apoptosis. The CED-9 protein is 

homologous to mammalian Bcl-2, an antiapoptotic protein, and when Bcl-2 is 

expressed in C. elegans, it inhibits programmed cell death, indicating a conservation 

of function (Vaux, 1993).

Egl-1 encodes a proapoptotic protein, homologous to the BH3-only members 

of the Bcl-2 family, which binds the CED-9 protein at the mitochondria, displacing 

CED-4. This process of displacement of CED-4 from CED-9 requires the carboxy- 

terminal half of EGL-1 to cause structural rearrangements in CED-9 upon binding. 

This then results in the release of CED-4 from the CED-9/ CED-4 complex (Yan et 

a l , 2004). The egl-1 gene promotes apoptosis by inhibiting the antiapoptotic activity 

of ced-9. The ced-4 gene encodes an adaptor protein, which is homologous to Apaf-1 

in mammals and DARK in Drosophila. When CED-4 is displaced from CED-9 at the 

mitochondria by EGL-1, it translocates to the perinuclear region where it undergoes 

oligomerisation and binds to CED-3. The ced-3 gene encodes a cysteine protease,
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homologous to the mammalian interleukin - 1 p converting enzyme (ICE), a cysteine 

protease, which cleaves substrates after specific aspartic acid residues (a caspase).

Once, CED-3 has been activated, the execution phase of apoptosis occurs and 

this is followed by a process of engulfinent. Seven genes have been shown to be 

involved in the removal of apoptotic cells (Danial and Korsmeyer, 2004). These fall 

into two categories: the first group of genes are involved in the recognition of 

apoptotic cells; the second group of genes influences cytoskeletal remodelling. 

Mutations in one gene from each category in double-mutant animals were required for 

the most dramatic engulfinent defects to be seen. Genes in category one are ced-1, 

which encodes an engulfinent protein, ced-6, which is homologous to the mammalian 

PTB domain-bearing adaptor GULP and ced-7, which encodes a protein with 

homology to the ABC-1 transporter and is also unique out of all the engulfinent genes 

as it functions both in phagocytes and apoptotic cells. Category two comprises ced-2 

which is homologous to human Crkll protein, ced-5 (DOCK 180) and ced-12 

(ELMO), which all form a signalling complex in response to upstream engulfinent 

signals and activate another member of this category, ced-10 (Rac GTPase) to initiate 

rearrangement of the cytoskeleton which is necessary for the engulfinent of the cell 

corpse (reviewed in Danial and Korsmeyer, 2004).

1.4.2 Caspases and programmed cell death

The genetic studies with C. elegans revealed the importance of caspases for 

apoptosis. Most of the visible changes that characterise apoptotic cell death depend 

on the activation of caspases, the central executioners of the apoptotic pathway. 

Caspases are a family of cysteine proteases that cleave target proteins at specific 

aspartate residues. They are expressed as catalytically inactive proenzymes composed 

of an amino-terminal pro-domain and a protease domain, which contains a large 

subunit and a small subunit. Active caspases are heterotetramers of two large and two 

small subunits. A dozen or more caspases have been identified in humans but only 

two-thirds of these have a role in apoptosis.

In apoptosis, caspases function as both effectors and initiators in response to 

proapoptotic signals. Caspases that have long pro-domains are upstream, type I, 

initiator caspases, such as caspase-1, -2, -4, -5, -8, -9, -10, -11 and -12. Those with 

short prodomains such as caspase-3, -6 and -7 are downstream, type II, effector
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caspases that depend on the upstream initiator caspases for activation (Wang and 

Lenardo, 2000). Caspases can also be classified according to the sequence motifs in 

their pro-domains. Caspases with the death-effector domain (DED), which include 

caspase-8 and caspase-10, are activated by interacting with adaptor proteins that bind 

to the intracellular domains of death receptors, such as the Fas (Apo-1/ CD95) and 

tumour necrosis factor (TNF) receptors. Caspases with caspase-activating recruitment 

domains (CARDs), which includes caspases-1, -2, -4, -5, -9, -11 and -12, are most 

probably activated through an intracellular activating complex such as the cytochrome 

c /Apaf-1/ caspase-9 (apoptosome) complex. Caspases with short domains may be 

activated by most, if not all, caspase pathways (Hengartner, 2000).

The ced-3 gene was found to have sequence homology with the mammalian 

interleukin -lp  converting enzyme (ICE), which is involved in processing of 

proinflammatory cytokines and was the first member of the mammalian caspase 

family to be identified (caspase-1). However, studies of substrate specificity 

indicated that CED-3 was more like caspase-3 than caspase-1/ICE. Caspase-3 

activation leads to the processing of its substrates, cleavage of which causes most of 

the morphological changes associated with apoptosis: DNA degradation, chromatin 

condensation and membrane blebbing.

In mammals, elimination or mutation of caspases can slow or prevent 

apoptosis. Studies with caspase knockout mice have been informative. For example, 

inactivation of the caspase-3 or caspase-9 genes leads to an increase in the number of 

neurons in the brain due to a decrease in apoptosis during neural development (Kuida 

et a l , 1996; Kuida et a l , 1998). Studies with caspase-8 knockout mice indicate that 

caspase-8 is critical for early embryonic development, especially for the generation of 

heart muscle and haematopoietic progenitor cells (Wang and Lenardo, 2000).

1.4.3 Mechanisms of caspase activation

Caspases are activated by proteolytic cleavage by one of three mechanisms. 

Effector caspases are activated by being cleaved by upstream caspases, which is 

useful for the amplification and integration of proapoptotic signals. The other two 

mechanisms are used to activate the initiator caspases. One mechanism is known as 

the induced proximity mechanism, in which multiple procaspase molecules are 

brought into close proximity creating a high concentration of the zymogens allowing
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the various proenzyme molecules to mutually cleave and activate each other. This is 

the mechanism by which caspase-8 is activated by death receptors, such as Fas 

(section 1.5.1).

The other mechanism of caspase activation is exemplified by caspase-9 and 

involves its association with a regulatory subunit, Apaf-1, and cytochrome c released 

from the mitochondria to form an “apoptosome complex”. Apaf-1 transmits apoptotic 

signals from mitochondrial damage to activate caspases. Apaf-1 forms the 

apoptosome by binding to cytochrome c via its WD40 domains to be able to engage 

caspase-9 in the presence of ATP. This is mediated by the caspase recruitment 

domains (CARDs), which are present in both Apaf-1 and caspase-9. The CARD of 

Apaf-1 is bound by two of the WD40 domains, but is freed when cytochrome c binds 

to the WD40 within Apaf-1. Binding of ATP to Apaf-1, causes a conformational 

change forming a wheel-shaped heptamer - the apoptosome. Activated caspase-9 then 

cleaves and activates caspase-3 (Hengartner, 2000).

1.4.4 Caspase substrates

A large number of caspase substrates have been described. Cleavage of some 

of these can be related to the changes that typically occur in apoptotic cells. For 

example, CAD (caspase-activated DNase) cleaves nuclear DNA during apoptosis and 

is found in normal cells as an inactive complex with an inhibitory subunit ICAD. 

Caspase-3 mediated cleavage of ICAD results in the release of CAD, which can then 

cleave nuclear DNA.

Cleavage of another substrate, PAK2, a member of the p21-activated kinase 

family, leads to the blebbing characteristic of apoptotic cells (Rudel and Bokoch, 

1997). Other substrates such as nuclear lamins are cleaved for nuclear shrinking and 

budding; fodrin and gelsolin are cytoskeletal proteins that are cleaved resulting in the 

loss of cell shape.

Poly (ADP-ribose) polymerase-1 (PARP-1) is a 116 kDa zinc-fmger nuclear 

protein which is activated by DNA breaks. It has three distinct functional domains of 

which the DNA binding domain (DBD) located at the N-terminus contains a bipartite 

nuclear localisation sequence (NLS) and utilises two zinc-finger motifs that recognise 

either single or double stranded breaks. In response to DNA damage, PARP-1 

activity is rapidly increased and it takes part in DNA-base-excision repair.
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Caspases cleave PARP-1 at a DEVD site within the DBD, thus splitting the 

NLS and this cleavage of PARP-1 inactivates the poly (ADP-ribosylation) process. 

Poly (ADP-ribosylation) is a post-translational modification of proteins that, in 

eukaryotic cells, plays a crucial role in DNA repair and replication, transcription and 

cell death, and represents a cellular emergency reaction. Caspase-3 cleaves PARP-1 

during apoptosis (Tewari et a l , 1995).

Chromatin condensation may be regulated by post-translational histone 

modification. Mstl (mammalian sterile twenty-like) kinase is a 34 kDa caspase- 

cleaved apoptosis-induced H2B kinase. In mammalian cells, the only core histone 

modification that has been uniquely associated with apoptosis is histone H2B 

phosphorylation (Ajiro, 2000). H2B phosphorylation may be important for apoptotic 

chromatin condensation. Cheung et a l , (2003) identified an apoptosis induced 34 

kDa H2B S14 kinase as the caspase-3 cleaved form of Mstl. Furthermore, H2B S14 

phosphorylation is not dependent on CAD suggesting that this modification is 

associated with the apoptotic chromatin condensation pathway.

1.5 Caspase activation pathways

1.5.1 The extrinsic death-receptor pathway

Death effector domain-containing caspase-8 is the key initiator caspase 

activated by death-receptors, such as TNFR1, Fas (APO-1/ CD95) and DR4/5. These 

receptors depend on intracellular signalling proteins that contain the protein modules 

death domain (DD) and death effector domain (DED). The binding of ligands such as 

FasL and tumour necrosis factor (TNF) to Fas and TNFR1 respectively induces the 

formation of the death-induced signalling complex (DISC). The DISC contains 

adaptors such as FADD, which have both the DD and DED motifs, and so can bind to 

the DD of Fas and recruit caspase-8 via the DED motif. The activation of caspase-8 

in the DISC complex proceeds via the induced proximity model mentioned previously 

where the high localised concentration of procaspase-8 as a result of receptor 

trimerisation and recruitment of FADD or other adaptors which in turn recruit 

multiple caspase-8 molecules which then activate each other in trans (Figure 1.3).

Type I cells, e.g. thymocytes, and type II cells, e.g. hepatocytes, differ in 

which of two different Fas signalling pathways are used. In both type I and II cells,
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Figure 1.3 The two major apoptotic pathways in mammalian cells

The extrinsic death-receptor pathway is shown on the left-hand side of the figure and 

the intrinsic mitochondrial pathway is shown on the right. Both pathways converge at 

the mitochondria often due to the activation of a proapoptotic Bcl-2 family member. 

Figure taken from Hengartner, (2000).
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the mitochondria are activated during Fas-induced apoptosis. In type I cells, DISC 

formation activates a large amount of caspase-8 leading to swift cleavage of caspase-3 

prior to the loss of mitochondrial membrane potential (MMP) during apoptosis. 

However, in type II cells, DISC formation is considerably reduced and caspase-8 and 

caspase-3 activation occur subsequent to the loss of MMP. High levels of Bcl-2 

overexpression block caspase-8 and caspase-3 activation, and thus apoptosis, in type 

II but not type I cells. This is due to the requirement for a mitochondrial 

amplification loop wherein Bid cleavage by caspase-8 results in truncated Bid 

translocating to the mitochondria, inducing mitochondrial outer membrane 

permeabilisation leading to cytochrome c release and the execution of apoptosis. So 

Fas-mediated apoptosis in type I cells is independent of mitochondrial 

permeabilisation whereas type II cells are dependent on the mitochondrial pathway to 

initiate the executioner caspase cascade.

1.5.2 The intrinsic mitochondrial pathway

The mitochondrion serves as a fundamental integrator of many apoptotic 

pathways (Figure 1.3). Many proapoptotic molecules are located in the 

mitochondrial intermembrane space before being released into the cytoplasm 

following an apoptotic signal (Hengartner, 2000). Cytochrome c is one of the most 

important of these as it is one of the components, together with Apaf-1, required for 

activation of caspase-9 in the cytosol by formation of the apoptosome complex 

(section 1.4.3).

Apoptosis-inducing factor (AIF), also resides in the mitochondrial 

intermembrane space, translocates from the mitochondria to the nucleus and causes 

chromatin condensation and DNA-fragmentation. AIF functions with endo G, 

another mitochondrial protein which translocates to the nucleus causing DNA 

fragmentation. Overexpression studies of AIF and endo G indicated that together 

they have stronger cytotoxic activity than on their own (Wang et a l , 2002). They also 

both induce apoptotic changes in the presence of caspase inhibitors suggesting that 

they can function independently of caspases (Susin et al., 1999; Cande et al., 2002).

PARP-1 activity triggers the translocation of AIF from the mitochondria to the 

nucleus to promote cell death through a caspase-independent pathway. The use of 

caspase inhibitors did not prevent PARP-1 mediated cell death, however, AIF was
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found to translocate immediately after PARP-1 activation (Yu et al., 2002). So, AIF 

released from the mitochondria can function independently of caspases. In some cells 

when caspase-inhibitors are used and there is a lack of Apaf-1, which is required for 

caspase-dependent- cell death, cells die via an AIF-dependent mechanism (Cregan et 

al., 2002).

Smac / DIABLO and Omi/HtrA2 are also released from the mitochondria 

during apoptosis and are inhibitors of IAP proteins (section 1.6.2).

1.6 Regulators of caspase activity

1.6.1 Regulation by the Bcl-2 family

Members of the Bcl-2 family regulate the release of cytochrome c and other 

proapoptotic proteins from the mitochondria. The Bcl-2 family of proteins have a 

crucial role in intracellular apoptotic signal transduction. The family includes both 

antiapoptotic and proapoptotic proteins that contain one or more Bcl-2 homology 

(BH) domains. Mammalian Bcl-2, B c1-x l , Bcl-w, Mcl-1 and Al all promote cell 

survival (Figure 1.4). Bax, Bak and Bok are related to Bcl-2 at BH1-3 but instead 

promote cell death. BH3-only proteins, such as Bad, Bik, Hrk/Dp5, Bid, Bim, Noxa 

and PUMA, are members of the Bcl-2 family but have only one of the Bcl-2 

homology regions, BH3. These BH3-only proteins are essential initiators of 

apoptosis. Bcl-2 family proteins play a critical role in mammalian development 

(Huang and Strasser, 2000). The proapoptotic activity of BH3-only proteins is 

regulated by transcriptional and posttranscriptional mechanisms to prevent 

inappropriate cell death during development. Overexpression of Bcl-2 can promote 

cancer and affect sensitivity of tumour cells to chemotherapeutic drugs. Mutations in 

the BH3-only proteins or their regulators may therefore also be pathogenic (Huang 

and Strasser, 2000).

The bcl-2 (B cell lymphoma gene-2) oncogene was the first member of the 

Bcl-2 family to be identified. Early studies showed that unlike other oncogenes, Bcl- 

2 expression did not promote cell proliferation but inhibited cell death (Vaux et al., 

1988) thus establishing a link between apoptosis and tumourigenesis. Bcl-2 blocked 

all morphological characteristics of apoptosis and was found to localise to the 

mitochondria (Hockenbery et al., 1990).
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Figure 1.4 Three subfamilies of the Bcl-2 family proteins: 

antiapoptotic, proapoptotic and BH3-only families

In mammals, Bcl-2 has at least 20 relatives, all of which share at least one 

conserved Bcl-2 homology (BH) domain. The four domains (BH1-4) that are 

most highly conserved among the family members are shown, a l  - a9 

represent a-helical regions of the proteins. TM represents the transmembrane 

domain that enables the proteins to insert into intracellular membranes, such as 

the mitochondrial outer membrane. The BH3 domain of BH3-only proteins 

binds to a hydrophobic region on the surface of the Bcl-2 subfamily formed 

from the BH1, BH2 and BH3 domains. This is analogous to a ligand-receptor 

interaction. Figure taken from Cory and Adams, (2002).
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In C. elegans, the Bcl-2 homologue, CED-9 protects cells from dying by 

directly binding to and sequestering CED-4 (Metzstein et al., 1998). This interaction 

is not observed in mammals. However, Bcl-2 can rescue some cells in C. elegans 

from dying when expressed in ced-9 deficient mice (Vaux et al., 1992; Hengartner 

and Horvitz, 1994). This shows the conservation of function.

Plasmacytomas from bcl-2 transgenic mice contained rearrangements of the c- 

myc protoncogene (McDonnell and Korsmeyer, 1991; Strasser et al., 1993). c-myc on 

its own promotes abnormal cell proliferation and tumourigenesis (Adams et al., 

1985). Double transgenic mice (bcl-2/c-myc) developed undifferentiated 

hematopoetic leukemia (Strasser et al., 1990). Loss-of-functions studies in mice 

showed apoptosis of lymphocytes, developmental renal cell death and loss of 

melanocytes indicating that Bcl-2 is required for maintaining normal cellular 

homeostasis (Veis et al., 1993).

The bcl-2 gene was originally identified as a transcriptional unit linked to an 

immunoglobulin locus by chromosomal translocation in follicular lymphoma (Vaux et 

al., 1988) associating the activities of Bcl-2 and its homologues with cancer.

1.6.1.1 The antiapoptotic proteins

There are four other antiapoptotic homologues of Bcl-2: B c1-x l , Bcl-w, Al 

and Mcl-1. At least one of these Bcl-2 homologues is required to protect cells from 

undergoing cell death. Their hydrophobic carboxy-terminal domain enables them to 

target the mitochondrial outer membrane (MOM), the endoplasmic reticulum (ER) 

and the nuclear envelope. Their BH1, 2 and 3 domains form hydrophobic pockets at 

their surfaces, which play an important role in their inhibitory binding to the 

proapoptotic proteins, in particular, the binding of the BH3 domain of BH3-only 

proteins (Figure 1.5). Bcl-2 is always integrally inserted into the membranes in 

healthy cells whereas, B c1-xl and Bcl-w are found in a soluble, loosely attached form. 

Following a cytotoxic stimulus, B c1-xl and Bcl-w become tightly associated with the 

membranes (Janiak et al., 1994; Hsu et al., 1997; O'Reilly et al., 2001; Kaufmann et 

al., 2003).

Experiments with transgenic mice have shown that over-expression of the 

antiapoptotic proteins can promote tumourigenesis. Transgenic overexpression of
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a Bcl-i|_ b BcJ-x̂  + BM3 ligand C Bax

Figure 1.5 Three-dimensional structures of Bc1-xl and Bax showing their 

similarity

B c1-xl consists of a globular bundle of five amphipathic a-helices that surround two 

central hydrophobic a-helices (a), and a hydrophobic groove formed by residues from 

BH1, BH2 and BH3, can bind the BH3 a-helix (brown) of an interacting BH3-only 

relative (b). (c) Bax showing its c-terminal tail (yellow) tucked into the groove. 

Figure taken from Cory and Adams,. (2002).
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B c 1 -x l was shown to induce lymphomagenesis or development of pancreatic (3-cell 

lymphoma. Bcl-2 is required for the survival of kidney and melanocyte stem cells 

and mature lymphocytes (Veis et al., 1993), B c 1 -x l for neuronal and erythroid cells 

(Motoyama et al., 1995), Bcl-w for sperm progenitors in adult mice (Print et a l, 

1998; Ross et al., 1998), Al for neutrophils (Hamasaki et al., 1998) and Mcl-1 for 

zygote implantation (Rinkenberger et al., 2000). Mcl-1 is essential early in 

development and later in the maintenance of resting B and T-lymphocytes. 

Degradation of Mcl-1, which is needed prior to mitochondrial translocation of B c 1 -x l 

and Bax, initiated cytochrome c release following genotoxic damage of Hela cells 

(Nijhawan et al., 2003).

1.6.1.2 The proapoptotic multidomam proteins

The mitochondrion was thought to play an important role in apoptosis when 

Bcl-2 was found to localise there during inhibition of apoptosis (Hockenberry et al., 

1990). The proapoptotic proteins promote the release of cytochrome c from the 

mitochondrion whereas the antiapoptotic proteins function to prevent this by blocking 

MOM permeabilisation. Initially, the proapoptotic proteins: Bax, Bak and Bok were 

reported to target the MOM where they function to promote apoptosis. However, 

they are also found to localise to the ER.

Bax was the first proapoptotic homologue to be discovered and was identified 

by its interaction with Bcl-2 (Oltvai et a l, 1993). In healthy cells, Bax is found as a 

soluble protein in the cytosol but it translocates to and inserts into the MOM during 

apoptosis (Hsu et al., 1997; Wolter et al., 1997). Inactive Bax is located in the 

cytosol or is loosely attached to membranes and its pocket is covered by its c-terminal 

helix (Suzuki et al., 2000). When a death stimulus occurs, Bax inserts into the MOM. 

Bak, in its inactive state resides at the mitochondria but in response to a death 

stimulus, undergoes an allosteric conformational activation resulting in its 

oligomerisation and the permeabilisation of the MOM with release of the proteins in 

the intermembrane space of the mitochondria, such as cytochrome c.

Bax or Bak single knockout mice showed very few phenotypic abnormalities. 

In the case of box*' mice sympathetic and cerebellar granule neurons were protected 

against survival factor withdrawal-induced death (Deckwerth et al., 1996). However, 

in the case of double knockout mice cells deficient for both Bax and Bak were
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resistant to all tested intrinsic death pathway stimuli (Lindsten et a l , 2000; Wei et a l , 

2001). The direct activation of Bax/Bak-like proteins by BH3-only proteins generates 

mitochondrial membrane disruptions and apoptogenic factors, such as cytochrome c 

are released (Gross et a l , 1999).

1.6.1.3 The BH3- only proteins

The BH3-only members function as upstream sentinels that selectively 

respond to developmental signals or intracellular damage (Huang and Strasser, 2000). 

Their functions are death stimulus-specific and cell type-restricted. Different 

mechanisms such as sequestering, phosphorylation, proteolytic cleavage and 

transcriptional activation function to control individual BH3-only proteins. BH3-only 

proteins are sequestered in the cytoplasm, but are suggested to function in association 

with the multidomain Bcl-2 family members, which are located mainly in the MOM, 

ER and nuclear envelope.

Gene knockout studies in mice have shown that the BH3-only proteins and 

Bax/Bak-like proteins are both essential for programmed cell death and stress-induced 

apoptosis. Bcl-2 deficiency can bring about degenerative diseases (Veis et al, 1993), 

but all such degenerative defects can be rescued by simultaneous loss of its BH3-only 

antagonist Bim (Bouillet et al, 2001). However, overexpression of Bcl-2 or loss of 

Bim can promote tumourigenesis (Vaux et al., 1988; Strasser et al., 1990). Bim is 

essential for cytokine withdrawal-induced apoptosis (Bouillet et a l, 1999) and 

essential for neuronal death (Putcha et a l, 2001; Whitfield et al., 2001). Bmf is 

activated by loss of cell attachment (anoikis) (Puthalakath et al, 2001) a process that 

is thought to safeguard against metastatic tumours. Bim and Bmf are sequestered by 

forming complexes with two different dynein light chains (DLC1 or DLC2 

respectively) that are associated with the microtubular dynein motor complex (Bim) 

and actin-based myosin V motor complex (Bmf) (Puthalakath et a l, 1999; 

Puthalakath et a l, 2001).

In response to growth or survival factors, Bad undergoes phosphorylation by 

kinases such as Akt and protein kinase A which causes Bad to be bound by 14-3-3 

scaffold proteins (Zha et a l, 1996) which then promote its sequestration in the 

cytosol. Mice were generated with point mutations in the bad gene that abolish Bad 

phosphorylation at specific sites. These mice displayed no clear anatomical or
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developmental defects but were hypersensitive to various apoptotic stresses (Datta et 

al., 2002). This emphasises the importance of Bad phosphorylation in vivo.

Bid, is essential for amplifying death receptor signalling in the extrinsic 

apoptotic pathway. The activation of caspase-8 is required for the proteolytic 

cleavage of inactive Bid in the cytosol to form truncated Bid (tBid) which can 

translocate and participate in the intrinsic apoptosis pathway. tBid acts as a 

membrane-targeted ligand which translocates to the mitochondria where its BH3 

domain is required to interact and activate the oligomerisation of Bak or Bax to 

release cytochrome c (Desagher et al., 1999; Wei et al., 2001).

Like EGL-1 in C. elegans, Noxa, PUMA and Hrk/Dp5 are also controlled 

mainly at the transcriptional level. Noxa and PUMA are transcriptional targets of 

p53, which is activated in response to DNA damage. PUMA was initially identified 

as a gene activated by p53 in cells undergoing p53-induced apoptosis (Nakano and 

Vousden, 2001; Yu et al., 2001) and as a protein interacting with Bcl-2 (Han et al., 

2001).

1.6.2 Regulation by the IAP proteins

The release of proapoptotic factors from the mitochondria is often considered 

to be the point of no return in a cell’s commitment to the apoptotic programme. 

However, evidence indicates that occasionally cells can still be rescued at this stage. 

For instance, pharmacological inhibitors of caspases can often rescue cells from 

apoptosis, as can IAP proteins, an evolutionarily conserved protein family found in 

mammals, drosophila and some viruses, that encode powerful caspase inhibitors.

The characteristic structural motif of inhibitor of apoptosis proteins (IAPs) is 

the baculovirus IAP-repeat (BIR) of which IAPs contain between one and three of 

these 70 amino acid domains. IAPs can also have additional motifs such as the RING 

and CARD domains. Their role is to protect cells from false or accidental caspase 

activation. Strong anti-apoptotic activity has only been established for a subset of 

IAPs: XIAP (Liston et al., 1997; Vitte-Mony et al., 1997), cIAPl, cIAP2 (Deveraux 

et al., 1998) and ML-IAP (Vucic et al., 2000) in mammals. However, IAPs 

resembling mammalian survivin (Ambrosini et al., 1997) are required for 

chromosome segregation, the NAIP gene (Roy et al., 1995) appears to participate in
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the innate immune response and the exact role of BRUCE is not yet established in 

mammals.

XIAP, an extremely potent suppressor of apoptosis, binds directly to the small 

(carboxyl-terminal) subunit of caspase-9 via its BIR3 domain. Inhibition of caspase-9 

by the BIR3 domain of XIAP requires the cleavage of caspase-9. This would explain 

why caspase-9 is cleaved during caspase-9 independent apoptosis, when it is not 

required for its activation (Srinivasula et al., 2001). XIAP binds to caspase-3 and -7 

via its BIR2 domain thus preventing the normal substrates of these caspases from 

binding to them.

As a further safeguard mechanism, the IAPs have to be removed by additional 

mitochondrial proteins: Smac/DIABLO and Omi/HtrA2 which bind to and antagonise 

IAPs. These IAP antagonists are released from mitochondria before the executioner 

caspases can become fully active to produce the typical apoptotic morphology.

SMAC (secondary mitochondrial activator of caspase) /DIABLO (direct IAP- 

binding protein with low pi) is a mammalian IAP inhibitor which binds to IAP family 

members neutralising the antiapoptotic activity of IAPs. A cell will commit to 

apoptosis by releasing its mitochondrial contents. At this time, SMAC (in human, 

DIABLO in mice), a mitochondrial protein is released into the cytosol where it 

sequesters IAP proteins ensuring that they do not inhibit the apoptotic programme (Du 

et a l, 2000; Verhagen et al., 2000).

The addition of DIABLO to extracts in which XIAP is inhibiting a caspase, causes 

the release of caspase activity (Du et al., 2000). Overexpression of DIABLO in cells 

surviving by virtue of transfected XIAP causes them to undergo apoptosis (Verhagen 

et al., 2000). Major interaction of dimeric DIABLO with IAPs occurs via its 

processed N-terminal four residues that bind to a groove in BIR2 and BIR3 of XIAP.

Like DIABLO, HtrA2 is targeted to the mitochondrial inter-membrane space 

where the targeting peptide is removed to generate a GRIM, HID, REAPER, 

DIABLO-like N-terminus (Hegde et al., 2002).

IAPs are considered to be ‘the brakes’ of the caspase cascade during the execution 

phase of apoptosis. In Drosophila, cells are not preloaded with sufficient levels of 

IAP-inhibited processed caspases to achieve cell killing. This has led to a 'gas and 

brake ' model, whereby simultaneous input from Dark, together with removal of IAP 

inhibition, drives caspase activation to levels that exceed a threshold necessary for 

apoptosis (Rodriguez et al., 2002).
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1.7 Survival signalling pathways and apoptosis

All normal cells require survival signals to survive and die by apoptosis in 

their absence (Raff, 1992). The activation of cell survival signals that block apoptosis 

is associated with tumourigenesis and resistance to chemotherapeutic drugs. A 

number of signalling pathways that protect cells from apoptosis appear to block 

mitochondrial cytochrome c release, which is regulated in an antagonistic manner by 

pro- and antiapoptotic members of the Bcl-2 protein family (reviewed by Gross et al., 

1999). Also, trophic factors such as NGF, insulin-like growth factor I, or BDNF 

activate a variety of signalling pathways, including the phosphotidylinositol-3-OH 

kinase (PI3K)-Akt and Ras-mitogen-activated protein kinase (MAPK) pathways 

(Hunter, 2000).

1.7.1 The PI3K-Akt pathway

The PI3K-Akt pathway regulates the Forkhead box, class O (FOXO) 

subfamily of Forkhead transcription factors, FKHR (FOXOl), FKHRL1 (F0X03a) 

and AFX (F0X04). In 1999, three groups (Biggs et a l , 1999; Brunet et al., 1999; 

Kops et a l , 1999), provided evidence that in mammalian cells, Akt directly 

phosphorylates the FOXOs causing the relocalisation of these transcription factors 

from the nucleus to the cytoplasm. In the absence of survival factors, Akt activity is 

reduced, FOXO factors became dephosphorylated and relocalise to the nucleus and 

activate gene transcription. So the relocalisation of the FOXOs from the nucleus to 

cytoplasm, when AKT is activated in the presence of survival factors leads to the 

FOXOs being taken away from their target genes, which are consequently not induced 

(Biggs et a l , 1999; Brunet et a l , 1999; Kops et a l , 1999). The gene encoding FasL 

is one target of FOXO factors, as its promoter contains several FOXO binding sites. 

FOXO-induced apoptosis is diminished when FasL signalling is blocked (Brunet et 

al, 1999). Another target is the gene encoding Bim, a proapoptotic BH3-only protein 

induced in neurons following NGF withdrawal (Whitfield et a l, 2001). The Bim 

protein contains two FOXO binding sites and FOXO-induced apoptosis in neurons is 

blocked when Bim expression is inhibited by antisense oligonucleotides (Gilley et a l , 

2003).

As well as its effects on transcription, the PI3K-Akt pathway also directly 

regulates the apoptotic machinery. Akt has been proposed to act both prior to the
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release of cytochrome c, by regulating the activity of Bcl-2 family members and 

thereby mitochondrial function, and then after the release of cytochrome c, by 

regulating components of the apoptosome. Previously it was shown that Akt can 

phosphorylate procaspase-9 suggesting a mechanism for regulation of caspases by 

protein phosphorylation (Cardone et al., 1998). However, the Akt phosphorylation 

sites in procaspase-9 are not conserved across species.

The absence of survival factors leads to Bad forming a complex with the 

antiapoptotic Bcl-2 family member, B c1-x l , thus inhibiting B c1-xl  from promoting 

cell survival. In the presence of survival factors, when Akt is activated, it 

phosphorylates Bad, thereby inhibiting the proapoptotic functions of Bad (Datta et a l, 

1997; del Peso e ta l, 1997).

Bad phosphorylation occurs at a specific amino acid residue, serine 136, which 

creates a binding motif for the chaperone molecule 14-3-3. The binding of Bad to 14- 

3-3 allows survival factors to bring about a second phosphorylation event at serine 

155, which is necessary to promote the complete release of Bad from B c1-x l . The 

phosphorylation of serine 155, which is located within the BH3 domain of Bad, 

interferes with the interaction of Bad with B c1-x l , which then promotes cell survival 

by inhibiting the release of cytochrome c (Datta et al., 2000).

1.7.2 The Ras-Raf-MEK-ERK pathway

The MAP kinase family includes at least three major kinase cascades that control 

cellular responses to a wide variety of signals, including growth factors: the JNK, p38 

and ERK MAPK pathways. ERK1/2 are serine-threonine protein kinases. The 

activation of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) 

pathway is associated with protection of cells from apoptosis and the inhibition of 

caspase-3 activation (Erhardt et al., 1999; Le Gall et al., 2000; von Gise et al., 2001), 

despite release of cytochrome c from mitochondria (Erhardt et al., 1999; Tashker et 

al, 2002).

Recently, a group investigating the potential of signalling pathways to regulate 

caspase activation at the post-translational level, showed that the ERK MAPK 

pathway inhibits caspase-9 activity by direct phosphorylation (Allan et al., 2003). 

They showed using okadaic acid (OA), an inhibitor of protein phosphatases PP-1 and 

PP-2, that protein phosphatase activity was required for cytochrome c-induced 

activation of caspase-9 and subsequent activation of caspase-3. The phosphorylation

42



site on caspase-9 was found to be Thr 125, which is followed by a proline residue, a 

characteristic of sites phosphorylated by proline-directed kinases such as ERK. Thr 

125 is the main phosphorylation site for ERK2 but an additional minor 

phosphorylation site was also identified as Thr 107, which is followed by a proline 

residue as well. So the ERK2-mediated phosphorylation of Thr 125 on caspase-9 is 

sufficient to inhibit the processing of caspase-9 associated with its enzymatic 

activation and is an important mechanism by which ERK2 inhibits caspase-3 

activation. It may also be an important mechanism through which growth factor and 

survival signals that activate the ERK MAPK pathway can inhibit apoptosis.

This regulation of caspase-9 by ERK may play a role in the developmental control 

of cell death and suppression of apoptosis in tumourigenesis. Cancer cells, which 

often have a constitutively activated ERK MAPK pathway, will need to be examined 

to establish the extent of caspase-9-Thr 125 phosphorylation and whether this affects 

the cytotoxic response to chemotherapeutic drugs.

As well as phosphorylating procaspase-9, the ERK 1/2 pathway functions 

independently of the PI3-K pathway to inhibit the expression of the BH3-only protein 

BiniEL in order to prevent apoptosis due to serum withdrawal (Weston et a l , 2003). 

The activation of the ERK 1/2 pathway is required for BimEL to undergo 

phosphorylation making it a target for ubiquitination and degradation by the 

proteasome pathway (Ley et al., 2003). Following serum withdrawal, the rapid 

expression of BimEL occurs by the inactivation of the ERK 1/2 pathway which 

dephosphorylates and stabilises pre-existing and newly synthesised BimEL, together 

with an increase in bim mRNA due to JNK activation (Whitfield et al., 2001) or loss 

of PI3K (Dijkers et al., 2000) or ERK1/2 activity (Weston et al., 2003), depending on 

the cell type.

1.8 Aims of this thesis

Currently used highly intensive chemotherapy regimens are better than 

previous methods but are ineffective in more than half of children with advanced 

neuroblastoma. There are different types of neuroblastoma: a third of these have 

MYCN amplification and this correlates with advanced disease. Approximately 10% 

of neuroblastoma patients show primary resistance to chemotherapy. Therefore, the 

development of new approaches to treatment is essential. The aim of this thesis is to
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identify the signalling pathway by which CDDP, a chemotherapeutic agent that is 

used for treating neuroblastoma tumours triggers caspase activity and apoptosis in a 

representative human, SH-SY5Y neuroblastoma cell line.

The SH-SY5Y neuroblastoma cell line, is the third successive sub-clone of the 

parental neuroblastoma cell line, SK-N-SH, isolated from a bone marrow biopsy of a 

neuroblastoma patient. This cell line has no MYCN amplification. SH-SY5Y cells 

proliferate in serum containing medium. All trans-retinoic acid (RA) induces trkB 

expression in cultured human SH-SY5Y neuroblastoma cells (Kaplan et al., 1993; 

Matsumoto et al., 1995). The receptors are functional and mediate BDNF-induced 

morphologic differentiation. Under serum-free growth conditions, the RA-BDNF- 

treated cells appear to differentiate into neuron-like cells (Encinas et al., 2000).

It has previously been shown that CDDP treatment induces apoptosis in SH- 

SY5Y cells (Cece et al., 1995). Further understanding of the cellular responses to 

CDDP is critical for determining mechanisms of drug resistance and for allowing the 

development of therapeutic approaches for increasing the effectiveness of CDDP 

treatment or for developing new approaches.
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Chapter 2: Materials and Methods
2.1 Materials

2.1.1 Chemicals and equipment

List of suppliers

Affymetrix

Amersham Biosciences

ATCC

BDH Laboratory services

Beckton Dickinson 

Bio-Rad

Calbiochem

Citifluor Ltd

Difco

Gibco

Globepharm 

Hayman Ltd 

Insight Biotech

Human genome U 133A microarrays 

ECL western blotting detection reagents, ECL 

Plus western blotting detection reagents, 

Hybond-C extra nitrocellulose membrane, 

MOPS

SH-SY5Y human neuroblastoma cells 

Glycine (molecular biology grade), sodium 

chloride, sodium hydroxide pellets, Tris, 

methanol, isopropanol, chloroform, coverglass 

(13 mm diameter),

Bacto tryptone, Bacto agar 

Prestained Kaleidoscope marker, Mini Protean II 

electrophoresis system, minitransblot 

electrophoretic transfer cell, Bio-Rad protein 

assay, TEMED

Bisbenzamide H33342 fluorochrome, 

trihydrochloride (Hoechst dye)

Citifluor glycerol / PBS solution AF1 

Yeast extract

Sterile phosphate buffered saline (PBS) (for cell 

culture), Dulbecco's modified Eagle's medium 

(DMEM), Penicillin/streptomycin (100X), L- 

glutamine (100X), MEM (100X) non-essential 

amino acids, OptiMEM 

Foetal calf serum 

Absolute ethanol

Z-Val-Ala-Asp (Ome) -FMK (ZVAD-fmk), 

X-gal
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Invitrogen

Marvel

Molecular Probes 

National Diagnostics 

New England Biolabs

Oxoid

Promega

Qiagen

Roche

Sarstedt

Sigma

Techne

Whatman Scientific 

Zeiss

Lipofectamine 2000, TRIzol®, DH5a™ 

competent cells, 1 kb DNA Ladder, agarose 

Non-fat dried milk

Live/Dead® Viability/Cytotoxicity assay kit 

Protogel acrylamide solution, 10 X TBE 

T4 DNA ligase, T4 DNA ligase buffer, T4 

polynucleotide kinase (PNK), 10 X kinase 

buffer 

PBS tablets

Restriction enzymes, pGEM®-T Easy vector 

system

QIAprep spin miniprep kit, HiSpeed plasmid 

maxiprep kit, QIAquick gel extraction kit 

In Situ Cell Death Detection Kit, Fluorescein, 

GC-rich PCR System

Rohre 13 ml 95 X 16.8mm polypropylene 

centrifuge tubes

Cis-platinum(II)-diammine dichloride, Trans- 

platinum(II)-diammine dichloride, dithiothreitol, 

dimethyl sulphoxide, formaldehyde, formamide, 

goat serum, protease inhibitor cocktail, Tween- 

20, trypsin-EDTA, PBS (-Ca2+/Mg2+) (for cell 

staining), Ponceau S, ampicillin, kanamycin, 

sodium dodecyl sulphate, actinomycin D, Triton 

X-100, gelatin, bovine serum albumin, Red Taq, 

cyclohexamide

Touchgene gradient PCR machine 

3 mm paper

Axiovert SI 00 inverted fluorescence 

microscope, Axioplan 2 fluorescence 

microscope
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2.1.2 Antibodies

ANTIBODY SUPPLIER Cat / Clone No. Type

BAD (H-168) Santa Cruz SC-7869 Rabbit polyclonal

BAK NT Upstate Biotech. 06-536 Rabbit polyclonal

BAX NT Upstate Biotech. 06-499 Rabbit polyclonal

BCL-2 Santa Cruz SC-4096 Rabbit polyclonal

BCL-W Chemicon Int. MAB17002 Rat monoclonal

BCL-X (S-18) Santa Cruz SC-634 Rabbit polyclonal

BID (N-19) Santa Cruz SC-6539 Goat polyclonal

BIK/NBK (FL-160) Santa Cruz SC-10770 Rabbit polyclonal

BIM Chemicon AB17003 Rabbit polyclonal

BMF Alexis Biochemicals 210-831-R100 Mouse monoclonal

CASPASE-3 Upstate Biotech. 06-735 Rabbit polyclonal

CASPASE-8Ab-3 Oncogene AM46 Mouse monoclonal

CASPASE-9 Upstate Biotech. #05-572, 

CLONE 96-2-22

Mouse monoclonal

CYTOCHROME C Pharmingen 556432

CLONE 6H2.B4

Mouse monoclonal

ERK Cell Signaling Tech. #9102 Rabbit polyclonal

FLAG M2 Sigma A9469 Mouse monoclonal

HRK G.Nunez (University 

of Michigan)

Rabbit polyclonal

MCL-1 (S-19) Santa Cruz SC-819 Rabbit polyclonal

NOXA Eri Oda (University 

of Tokyo)

Rabbit polyclonal

P21 (C-19) Santa Cruz SC-397 Rabbit polyclonal

P53 (FL-393)-G Santa Cruz SC-6243 Goat polyclonal

P53 (Ab-1) Oncogene Research 

Products

Clone Pab421 Mouse monoclonal

PUMA Abeam AB9643 Rabbit polyclonal

ALPHA-TUBULIN SEROTEC MCAP77 Rat monoclonal

Table 2.1 Antibodies used for immunoblotting and immunocytochemistry
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SECONDARY

ANTIBODY

SUPPLIER Cat / Clone No.

GOAT IgG HRP Santa Cruz SC-2020

MOUSE Ig HRP Amersham NA931V

RABBIT Ig HRP Amersham NA934V

GOAT ANTI-RAT 

IgG HRP

Santa Cruz SC-2032

Table 2.2 Secondary antibodies used for immunoblotting 

and immunocytochemistry

2.1.3 Bacterial strains

DH5a competent cells -  F' <|>80/acZAM15 A(/acZYA-argF)U169 rec A l end AX 

h sd R llfa , mk+)phoA supE44 thi-1 gyrA96 relAl X'

2.1.4 Plasmids
pEGFP-Nl - Clonetech 

pcDNAl -  Invitrogen

pCMVneoBam, pCMVneoBam-FLAG-PUMA-a, pCMVneoBam-FLAG-ALRR- 

PUMA-a provided by K.Vousden, CRUK (Nakano and Vousden, 2001).

2.1.5 Stock Solutions
All solutions were prepared in MilliQ deionised water unless specified otherwise.

LB medium 1% w/v bacto-tryptone,

0.5% w/v yeast extract,

17 mM NaCl

LB-agar LB medium containing

1.5% w/v bacto agar

Ampicillin 100 mg/ml in water
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Kanamycin 100 mg/ml in water

Chloramphenicol 34 mg/ml in ethanol

Immunoblot transfer buffer 25 mM Tris base, 

192 mM Glycine, 

20% v/v methanol

SDS electrophoresis buffer (5X) 0.125 M Tris base,

0.96 M Glycine, 

pH 8.3, 0.5% SDS

TBS-T 20 mM Tris-Cl, pH 8.0, 

500 mM NaCl,

0.1% v/v Tween-20

6 X SDS sample buffer 1M Tris-Cl, pH 6.8,

10% w/v SDS 

30% v/v Glycerol,

0.6 M DTT,

1.2 mg/ml bromophenol blue,

make up to 10 ml with water, aliquots at -70°C.

150 mM NaCl,

0.5 mM EDTA,

1 mM EGTA,

1% w/v SDS,

2% v/v protease inhibitor cocktail (added just 

before use)

SDS lysis buffer 10 mM Tris-Cl, pH 7.6,

4 X Tris-Cl/SDS pH 6.8 0.5 M Tris base, 

0.4% w/v SDS
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4 X Tris-Cl/SDS pH 8.8 1.5 M Tris base, 

0.4% w/v SDS

4% paraformaldehyde 0.1 mM CaCl2,

0.1 mM MgCl2,

4% paraformaldehyde, pH 7.4

SH-SY5Y cell medium 10% FCS,

1% penicillin/streptomycin (100X),

1% glutamine (100X),

1% MEM (100X) non-essential amino acids, 

in Dulbecco's modified Eagle's medium

Immunoblot Stripping solution 100 mM 2-P-mercaptoethanol,

2% w/v SDS,

62.5 mM Tris-Cl, pH 6.7

TE buffer 10 mM Tris-Cl, pH 8.0 

1 mM EDTA

TNE buffer 0.1 MNaCl

10 mM Tris-Cl, pH 8.0

1 mM EDTA

Buffer PI

(resuspension buffer)

50 mM Tris-Cl, pH 8.0 

10 mM EDTA,

100 pg/ml RNase A

Buffer P2 

(lysis buffer)

200 mM NaOH 

1% w/v SDS

Buffer P3 3 M potassium acetate,
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(neutralisation buffer) pH 5.5

Buffer N3 (miniprep) contains guanidine hydrochloride 

Acetic acid

Buffer PB

(miniprep and QIAquick)

contains guanidine hydrochloride 

Isopropanol

QBT

(equilibration buffer)

750 mM NaCl 

50 mM MOPS, pH 7.0 

15% isopropanol (v/v) 

0.15% Triton® X-100 (v/v)

QC

(wash buffer)

1 MNaCl

50 mM MOPS, pH 7.0 

15% isopropanol (v/v)

QF

(elution buffer)

1.25 MNaCl

50 mM Tris-Cl, pH 8.5

15% isopropanol (v/v)

Buffer EB 10 mM Tris-Cl, pH 8.5

Buffer PN (QIAquick) sodium perchlorate 

Isopropanol

Buffer QG (QIAquick) guanidine thiocyanate
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2.2 Methods

2.2.1 Cell culture

SH-SY5Y human neuroblastoma cells were obtained from the ATCC and 

were cultured in DMEM (-glu-pyruvate) containing L-glucose at 4.5 g/L 

supplemented with 10% FCS (PAA; later changed to Globepharm), 2 mM glutamine, 

penicillin / streptomycin and non-essential amino acids. The cells were maintained in 

T25 or T75 flasks at 37°C in 5% CO2 and passaged when 80-100% confluent, usually 

once a week. Cells recovered from liquid nitrogen were passaged at least twice 

before being used for experiments. Medium in the flasks was changed every four 

days. Cells were used for up to 9 passages.

2.2.2 Treatment of SH-SY5Y cells with chemical compounds

2.2.2.1 CDDP and TDDP

The platinum compounds were weighed out carefully in a fume hood (because 

of their toxicity) and dissolved in DMSO. The dissolved compounds were mixed into 

the medium of SH-SY5Y cells grown on 3.5 cm or 9 cm tissue culture dishes or on

1.3 cm diameter glass coverslips placed in 3.5 cm dishes and left to incubate at 37°C 

in 5% CO2 for the required amount of time.

2.2.2.2 Other compounds

Actinomycin D (Act D) was dissolved in DMSO before being use to pre-treat 

the cells. Cyclohexamide (CHX) was diluted to the working concentration in 50% 

ethanol. Z-Val-Ala-Asp (OMe)-FMK (ZVAD-fmk) was dissolved in anhydrous 

DMSO to make up the stock and working concentrations. In the case of Act D, CHX 

and ZVAD-fmk, the SH-SY5Y cells were pre-treated for an hour at 37°C in 5% CO2 

with the compound, prior to treatment with CDDP or TDDP.

2.2.3 Live - Dead cell viability / cytotoxicity assay

The Live-Dead cell viability / cytotoxicity assay kit from Molecular Probes 

was used according to the manufacturer’s instructions. The two stains used in this 

assay are calcein AM, and ethidium homodimer-1. Calcein AM is converted by 

viable cells to calcein, which fluoresces green. Ethidium homodimer-1 is excluded by 

viable cells but taken up by apoptotic cells, which have lost membrane integrity

52



allowing the dye to bind to chromosomal DNA resulting in the apoptotic cells having 

red nuclei.

SH-SY5Y cells were plated at a density of 1 X 105 cells in 2 ml of medium per

3.5 cm tissue culture dish and grown at 37°C in 5% CO2 until 80-100% confluent. 

The medium was changed every four days and the final change of medium was added 

just before the cells were treated with the compounds under investigation.

A 10 X stock solution of calcein AM and ethidium homodimer in 0.8 ml of 

pre-warmed DMEM was prepared and 0.22 ml of this 10 X working solution was 

added to the cells in 2 ml of medium. Following incubation for 30 minutes at 37°C in 

5% CO2 , the cells were counted on a Zeiss Axiovert SI00 inverted fluorescence 

microscope on 40X magnification. The total number of live and dead cells was 

determined in 10 fields around the circumference of each dish.

% of viable cells = [N° of live cells / (N° of live cells + N° of dead cells)] X 100

2.2.4 TUNEL analysis
In order to detect which cells are committed to death, the TdT-mediated 

dUTP-nick end labelling (TUNEL) technique was used (Gavrieli et al., 1992). The 

process of apoptotic cell death results in DNA fragmentation and 3’OH-ends are 

generated, to which TdT catalyses template-independent addition of labelled 

deoxyuridine triphosphate (dUTPs). Labelling can be observed by fluorescence 

microscopy. Since necrotic and autolytic cells, along with apoptotic cells, generate a 

sufficiently high number of stainable DNA ends (Grasl-Kraupp et al., 1995), 

technique cannot differentiate between apoptosis and necrosis in cells (Grasl-Kraupp 

et al., 1995; Thomas et al, 1995). The use of Hoechst dye (bisbenzimide H33342 

fluorochrome trihydrochloride) to stain nuclear DNA enables the morphology of the 

nuclei to be clearly observed.

2.2.4.1 Coverslip sterilisation

Glass coverslips were incubated for two hours in 2N NaOH in a fume hood 

following vigorous tapping to release trapped air bubbles between the coverslips. The 

coverslips were washed extensively in tissue culture quality water prior to being 

stored in sterile 70% ethanol. Each coverslip was allowed to dry inside a class II 

tissue culture hood prior to use.
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2.2.4.2 Cell preparation

Cells were plated onto 1.3 cm coverslips placed in 3.5 cm tissue culture 

dishes. 4 X 104 cells in 100 pi of medium were plated onto each coverslip. The cells 

were allowed to attach to the coverslips by incubating for 2 hours at 37°C in 5% CO2 

before each dish was filled with 2 ml of medium. Medium was changed every four 

days. The final change of medium was added when the cells were 80-100% confluent 

and were ready to be treated with the compounds under investigation.

2.2.5 In Situ 3' -end DNA labelling

The quantity of each solution used in this assay was 100 pi and the coverslips 

were washed in PBS three times unless otherwise stated. Using a pair of forceps, 

culture medium was drained from the coverslips before they underwent three washes 

in PBS. Once the PBS had been drained away, the cells on each coverslip were fixed 

in 100 pi of 4% paraformaldehyde. Following incubation for 30 minutes at room 

temperature and washing in PBS, the cells were permeabilised in 0.5% Triton X-100 

in PBS for 5 minutes at room temperature.

After washing in PBS, 50 pi of the TUNEL reaction mixture was added to 

each coverslip and these were incubated at 37°C for 1 hour in a dark humidified 

chamber. The TUNEL reaction mixture was prepared with reagents supplied in the In 

Situ cell death detection kit supplied by Roche. The TUNEL reaction mixture was 

prepared immediately before use by adding 50 pi of enzyme solution (10 X TdT in 

storage buffer) to 450 pi of label solution (nucleotide mixture in reaction buffer). The 

components of the TUNEL reaction mixture were mixed carefully and stored on ice 

until used.

After the TUNEL reaction, the coverslips were washed in PBS before the cells 

were treated with Hoechst dye (10 pg/ml in water) for 5 minutes at room temperature 

in the dark. Following two washes in water, the coverslips were allowed to dry prior 

to mounting onto glass slides using Citifluor AF1 mounting solution. The edges of 

the coverslips were sealed with nail varnish. The glass slides were left for 30 minutes 

in the dark to dry before being examined on a Zeiss Axioplan 2 fluorescence 

microscope. Images were captured using a Photometrix Quantix digital camera and 

SmartCapture VP software. The files were exported as JPEG files for analysis in 

Adobe Photoshop 5.5.
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The Hoechst dye stains the nuclei blue. The nuclei with DNA fragmentation 

are stained green due to the incorporation of fluorescein-labelled dUTP. The slides 

were stored in the dark at 4°C.

2.2.6 Cytochrome c relocalisation assay

Cells undergoing apoptosis via the mitochondrial pathway release cytochrome 

c, which is required for caspase activation and thus DNA fragmentation and 

chromatin condensation. The release of cytochrome c from the mitochondria into the 

cytosol, can be visualised by performing immunocytochemistry with an anti

cytochrome c antibody (Neame et al., 1998).

2.2.6.1 Cell preparation and treatment

Cells were grown on coverslips as described in section 2.2.4.2. The quantity 

of each solution used in this assay was 100 pi per coverslip. The coverslips were 

washed in PBS three times unless otherwise stated. Using a pair of forceps, culture 

medium was drained from the coverslips before they underwent three washes in PBS. 

Once the PBS had been drained away, the cells on each coverslip were fixed in 100 pi 

of 4% paraformaldehyde. Following incubation for 20 minutes at room temperature, 

the coverslips were washed in two changes of 10 mM glycine in PBS, after which the 

cells were incubated in 100 pi of blocking / permeabilisation solution (50% goat 

serum, 0.5% Triton X-100, 0.2% gelatin, 0.5% BSA, 0.5 X PBS) for 30 minutes at 

room temperature. The blocking / permeabilisation solution was then drained off, and 

anti-cytochrome c monoclonal antibody diluted 1:100 in blocking/ permeabilisation 

solution was added to each coverslip and incubated for 2 hours at room temperature. 

The coverslips were washed in PBS, and fluorescein-conjugated anti-mouse IgG 

secondary antibody, diluted 1:100 in blocking/permeabilisation solution, was added. 

Following incubation with the secondary antibody for one hour at room temperature 

in the dark, the coverslips were washed three times in PBS before the cells were 

treated with Hoechst dye (10 pg/ml) for 5 minutes at room temperature in the dark. 

Following two washes in water, the coverslips were allowed to dry prior to mounting 

onto glass slides in Citifluor mounting solution. The glass slides were left for 30 

minutes in the dark to dry before being examined on a Zeiss Axioplan 2 fluorescence 

microscope. Images were captured using a Photometrix Quantix digital camera and

55



SmartCapture VP software. The files were exported as JPEG files for analysis in 

Adobe Photoshop 5.5.

The Hoechst dye stains the nuclei blue. The cytochrome c specific 

immunostaining will be green due to the binding of the anti-cytochrome c primary 

antibody and fluorescein-conjugated secondary antibody. The slides were stored in 

the dark at 4°C.

2.2.7 Protein analysis

2.2.7.1 Cell preparation

Cells (6.5 X 105) were plated in 10 ml of medium per 9 cm tissue culture dish 

and grown at 37°C in 5% CO2 until 80-100% confluent. The medium was changed 

every four days and the final change of medium was added just before the cells were 

treated with the compounds under investigation prior to protein extraction.

22.1.2 Protein extraction

The dishes containing the SH-SY5Y cells for protein extraction were placed 

on ice. The growth medium from the dishes (containing detached, apoptotic cells) 

was removed and transferred to centrifuge tubes, which were also kept on ice. The 

attached cells were harvested by scraping them off the dish in a small volume of ice 

cold PBS. The adherent and floating cells were pooled in one tube and pelleted by 

centrifugation at 738 x g for 5 minutes at 4°C. The pellet was resuspended in 1 ml of 

ice cold PBS and transferred to a microfuge tube to be spun for 5 minutes at 4°C at 

16,100 x g. The cell pellet was resuspended in 50-200 pi of SDS lysis buffer 

containing 2% v/v of a protease inhibitor cocktail (Sigma). The cell lysate was heated 

at 90°C for 20 minutes and then pipetted up and down to assist the disruption of the 

cells. Following centrifugation of the lysate for 20 minutes at 4°C at 16,100 x g, the 

supernatant was aliquoted into fresh tubes and snap-frozen in dry ice before being 

stored at -80°C.

2.2.12 Protein assay

Various concentrations of the standard, y-globulin, and 2 pi of each protein 

sample were diluted in 800 pi of water. Bio-Rad protein assay dye (200 pi) was then 

added and the samples were mixed well and incubated at room temperature for 10
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minutes. The absorbance at 595 nm was then measured using a spectrophotometer 

and protein concentration was calculated by drawing a graph using Cricket Graph 

software.

2.2.7.4 SDS-polyacrylamide gel electrophoresis of proteins

Protein extracts were mixed with SDS sample buffer and heated at 100°C for 

10 minutes before being separated on 10%, 12% or 15% SDS-polyacrylamide gels 

using a Bio-Rad mini Protean II electrophoresis system. Protein extract (15 pg) was 

loaded into each lane of the gel. After SDS-PAGE, the proteins were transferred onto 

Hybond-ECL nitrocellulose using a Bio-Rad minitransblot electrophoretic transfer 

cell. Success of the transfer was determined by staining the nitrocellulose with 

ponceau S for 5 minutes. Ponceau S was washed off with water and the stained 

nitrocellulose was photographed using a camera on a UV-doc gel imaging system.

2.2.7.5 Immunoblotting

The nitrocellulose membrane was blocked in 5% non-fat dried milk in 1 X 

TBS-T for one hour at room temperature and probed overnight with the primary 

antibody (Table 2.1). Antibody dilutions were according to the manufacturer’s 

instructions. Following three washes for 15 minutes each in 1 X TBS-T, the 

nitrocellulose was incubated for 2 hours at room temperature with a horseradish 

peroxidase-conjugated secondary antibody (Table 2.2). After washing three times for 

15 minutes each in 1 X TBS-T the proteins were detected by using enhanced 

chemiluminescence (ECL) reagents.

2.2.8 DNA Manipulations

2.2.8.1 Bacterial transformation

E.coli DH5a competent cells (50 pi) were thawed on ice and then mixed with 

0.5 ng of plasmid DNA. The mixture was incubated on ice for 30 minutes and then 

heat shocked at 37°C for 20 seconds to stimulate DNA uptake. Following a further 2 

minutes on ice, 400 pi of LB medium was added to the cells and incubated at 37°C 

for one hour to allow the transformed cells to recover. Using aseptic technique, 50- 

300 pi of the transformation mix was plated out onto LB agar plates containing 100
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fig/ml of ampicillin or 50 pg/ml of kanamycin (as appropriate) to select for antibiotic 

resistant transformants. The plates were then incubated overnight at 37°C.

2.2.S.2 Small-scale plasmid preparation (miniprep)

Small-scale purification of plasmid DNA was performed using the QIAprep 

spin miniprep protocol (Qiagen). This protocol is designed for purification of up to 

20 pg of high-copy plasmid DNA from 1-5 ml overnight cultures of E.coli in LB 

medium. Overnight cultures were prepared by inoculating single colonies into 3 ml of 

LB medium containing 100 pg/ml of ampicillin and then shaking overnight at 37°C. 

All the following steps were performed at room temperature.

Glycerol stocks were made by mixing 0.5 ml of the overnight culture with 0.5 

ml of 50% glycerol and storing at -70°C. The remainder of the overnight culture was 

harvested in a 1.5 ml tube by centrifugation at 16,100 x g for 10 minutes in a 

microcentrifuge. The supernatant was discarded and the pellet was resuspended 

vigorously in 250 pi of the cell resuspension solution, buffer PI until no cell clumps 

were observed and then 250 pi of cell lysis solution, buffer P2 was added. The 

solutions were mixed by gently inverting the tubes until the solution appeared clear 

indicating complete cell lysis. After 5 minutes, 350 pi of ice-cold neutralisation 

solution, buffer N3 was added to neutralise the reaction. The solutions were mixed 

thoroughly by gentle inversion. Following centrifugation for 10 minutes at 16,100 x 

g, the supernatant was transferred into the QIAprep spin column held within a 2 ml 

collection tube. The spin column was centrifuged at 16,100 x g for 30 -  60 seconds 

and the flow-through discarded. The spin column was washed by the addition of 0.75 

ml of buffer PE and centrifuged for 30 -  60 seconds. The flow-through was discarded 

and the column was centrifuged for a further 1 minute to remove any residual wash 

buffer. The spin column was transferred to a new tube and 50 pi of buffer EB was 

added to the column and left for 1 minute, after which the plasmid DNA was eluted 

by centrifugation at 16,100 x g for 1 minute.

Approximately 4 pi of the DNA was digested with restriction enzymes to 

determine the structure of the plasmid. The rest of the plasmid DNA preparation was 

stored at -20°C.
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2.2.8.3 Large-scale plasmid preparation (maxiprep)

Large-scale preparation of plasmid DNA was carried out using the HiSpeed 

plasmid maxi kit (Qiagen) and 400 ml of overnight culture inoculated with 500 pi of a 

5 ml overnight starter culture of bacteria in LB medium containing the appropriate 

selective antibiotic.

Using aseptic technique, a single colony was used to inoculate 5 ml of LB 

containing the appropriate selective antibiotic and shaken vigorously for 

approximately 8 hours at 37°C. An aliquot of this culture was used to inoculate 400 

ml of LB in a 2 litre flask containing the appropriate selective antibiotic. The cultures 

were grown overnight at 37°C in an orbital shaker at approximately 225 rpm.

In the case of some plasmids, such as pcDNAl, the yield was improved by 

chloramphenicol amplification. Cultures (400 ml) were grown to an OD6oo=1.5 and 

chloramphenicol was added to 170 pg/ml. The culture was then incubated for 12 - 16 

hours at 37°C.

The overnight culture was harvested by centrifugation at 6000 x g for 15 

minutes at 4°C. The resulting pellet was resuspended in 10 ml of cell resuspension 

solution, buffer PI (Tris-EDTA containing RNase A at 4°C). To help resuspension, 

the pellet was manually disrupted by pipetting up and down until clumps were no 

longer visible. The solution was then transferred to a 50 ml tube to which 10 ml of 

cell lysis solution, buffer P2 was added and the solutions were mixed by gently 

inverting the tube. After 5 minutes, 10 ml of ice-cold neutralisation solution, buffer 

N3 was added to the lysate and mixed immediately. The lysate was transferred into 

the QIAfilter cartridge (which completely removes SDS precipitates and clears 

bacterial lysates) and left to incubate for 10 minutes at room temperature to allow the 

precipitate to float so that filtration would be easy. The cell lysate was filtered into a 

HiSpeed Maxi Tip, which had been equilibrated with 10 ml of buffer QBT.

Once the cell lysate had entered the resin by gravity flow, the tip was washed 

with 60 ml of buffer QC. The DNA was eluted with 15 ml of buffer QF and 

precipitated by incubating for 5 minutes at room temperature with 10.5 ml (0.7 

volumes) of isopropanol.

The eluate-isopropanol mixture was passed through a QIAprecipitator maxi 

module that traps the precipitated DNA while the isopropanol-buffer mixture flows 

through. This allows the DNA to be washed by passing 2 ml of 70% ethanol through
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the module. The DNA was then eluted from the QIAprecipitator into a tube with 0.5 

-  1 ml of TE buffer or water. An aliquot of the DNA (5 pi) was used in a 1:100 

dilution to determine DNA concentration by measuring absorbance at 260 and 280 nm 

using a spectrophotometer. Pure DNA has an A260 / ̂ 2 8 0  ratio of 1.7-1.9.

2.2.8.4 Restriction endonuclease digestion

The restriction enzyme (lOU/pl) was added to a 1.5 ml tube containing 1 pg of 

the plasmid DNA diluted with distilled water and one-tenth of the total reaction 

volume of restriction enzyme buffer. After gentle mixing, the reaction was incubated 

at 37°C for 2 hours and then stopped by placing in ice for 5 minutes.

2.2.8.5 Agarose gel electrophoresis of DNA

This procedure was used to analyse the size and conformation of nucleic acids 

in samples, to quantify DNA and to separate and extract DNA fragments. Restriction 

enzyme-digested DNA was analysed by running against the uncut plasmid DNA and a 

1 kb DNA ladder, as a size standard, on a 1.5% agarose gel (made with 1 X TBE and 

0.5 pg/ml ethidium bromide) with loading dye at 80V. DNA was observed using a 

UV transilluminator and then photographed. The sizes of the bands observed were 

calculated by comparing them to the known DNA fragment lengths of the standard.

For gel extraction, the appropriate DNA fragments were excised from the gel 

and DNA extracted using the QIAQuick gel extraction kit (Qiagen). The 

manufacturer’s protocol was followed and the DNA was eluted in 30 pi of buffer EB 

(elution buffer). DNA was stored at -20°C.

2.2.8.6 Cloning of PCR products

For the cloning of PCR products, the pGEM®-T Easy vector system was used 

since these linearised vectors have single 3'-T overhangs at the insertion site. This 

significantly improves the efficiency of ligation of a PCR product into the plasmid by 

preventing recircularisation of the vector and providing compatible overhangs for 

PCR products. The vector also contains T7 and SP6 RNA polymerase promoters 

flanking the multiple cloning region within the a-peptide coding region of the enzyme 

p-galactosidase. Thus the presence of inserts can be detected using the blue-white 

colony screening.
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Ligation reactions were set up on ice using 50 ng of the pGEM®-T Easy vector 

in a 10 pi reaction with lpl of T4 DNA ligase, 1 pi of 10 X T4 DNA ligase buffer and 

the PCR product made up the remainder of the volume. The reaction was incubated at 

4°C overnight.

DH5a cells were allowed to thaw on ice and then 50 pi of these competent 

cells was added to 2 pi of the ligation reaction and mixed gently. The mix was 

incubated on ice for 20 minutes, heat shocked for 45 - 50 seconds at 42°C and 

allowed to cool for 2 minutes on ice. Next, 950 pi of LB was added to the 

transformed cells, which were incubated for 90 minutes at 37°C in a water bath. Each 

transformation culture was plated (100 pi) onto duplicate LB/ampicillin/IPTG/X-Gal 

plates and incubated overnight at 37°C. White colonies were selected for minipreps.

2.2.8.7 DNA sequencing

Each DNA sequencing reaction was prepared in a 200 pi PCR tube. 

Approximately 400 ng of double stranded DNA was added to 6 pi of BigDye 

Terminator and 2.4-3.2 pmoles of T7 primer and the total volume of the reaction was 

made up to 15 pi with PCR-grade water. Control reactions were also prepared using 

2 pi of pGEM-DNA supplied with the BigDye Terminator kit, 4 pi of M l3 primer 

(also supplied) and 6 pi of the BigDye Terminator and made up to 15 pi with PCR- 

grade water. Cycle sequencing of double stranded DNA was carried out using a 

Techne Touchgene thermal cycler according to the manufacturer's instructions.

The 15 pi reaction mixture was transferred to a 1.5 ml tube and 50 pi of 

absolute ethanol and 3 pi of 3M sodium acetate, pH 4.6, were added and mixed well. 

The DNA was left at -20°C for 30 - 45 minutes to precipitate. Following 

centrifugation at 16,100 x g for 45 minutes at 4 °C, the supernatant was discarded and 

the pellet was washed twice with 70% ethanol, first with 200 pi of 70% ethanol and 

then with 50 pi of ethanol. Each wash was centrifuged at 16,100 x g at room 

temperature for 20 minutes, and the supernatant was discarded. After the last wash 

step, the pellet was dried in a DNA concentrator for 1 - 2 minutes until dry. If 

necessary, the dried pellet was stored at -20°C until sequenced. The sequencing was 

carried out on an ABI 377 DNA Sequencer and the resulting DNA sequences were 

analysed using MacVector software.
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2.2.8.8 Transient transfection

Cells for transfection followed by immunofluorescence were grown on 

coverslips at a cell density of 8 X 105 per coverslip in 200 pi of SH-SY5Y medium. 

Coverslips were sterilised and dried as described in section 2.2.4.1, then each 

coverslip was placed in a well of a 24-well plate. After the 200 pi of cell suspension 

had been pipetted onto each coverslip, the 24-well plate was placed in a 37°C CO2 

incubator for 2 hours to allow cells to attach to the coverslip, after which 300 pi of 

SH-SY5Y medium was added to each coverslip making the total volume of plating 

medium 500 pi. If the next day, the cells were approximately 90-95% confluent, they 

were ready to be transfected. The total concentration of DNA used for transfecting 

each coverslip was 0.8 pg in 50 pi.

For PUMA-a overexpression experiments, the cells were co-transfected with a 

GFP expression vector to assess transfection efficiency. The other expression vectors 

were pCMVneoBam, pCMVneoBam-FLAG-PUMA-a, pCMVneoBam-FLAG- 

ALRR-PUMA-a (provided by K.Vousden, CRUK; Nakano and Vousden, 2001). 

Cells were transfected at a 1:3 ratio of GFP: PUMA expression vector. Therefore 0.2 

pg of GFP expression vector and 0.6 pg of DNA were mixed with 50 pi of 

OptiMEM. For each coverslip, 2 pi of Lipofectamine 2000 was mixed in 50 pi of 

OptiMEM and left to incubate for 5 minutes at room temperature. The diluted DNA 

was then added and left at room temperature for 30 minutes to allow the DNA- 

Lipofectamine 2000 complexes to form. During this incubation period, the SH-SY5Y 

medium covering the cells to be transfected was removed and the cells were washed 

with basic DMEM. Following aspiration of the DMEM, 400 pi of SH-SY5Y medium 

without antibiotics was added. DNA-Lipofectamine mixture (100 pi) was then added 

to the cells. The plate was rocked gently and then incubated at 37°C for 5 hours after 

which the transfection medium was aspirated and complete SH-SY5Y medium was 

added. In experiments to block caspase activity, ZVAD-fmk was added to the SH- 

SY5Y medium at a concentration of 100 pM after the transfection medium had been 

aspirated.

At 16 hours after transfection, the cells were viewed on a Zeiss Axiovert SI00 

inverted fluorescence microscope using 40X magnification. The number of green
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GFP-expressing transfected cells was counted in ten fields of view along the 

coverslip. Cells were then prepared for immunofluorescence (section 2.2.8.10).

2.2.8.9 siRNA

A pSUPER construct that expresses siRNA against human PUMA was 

designed using the human PUMA-a mRNA sequence (AF354654). Potential 19- 

nucleotide siRNAs were identified using Oligoengine software, out of which three 

sequences were selected: 437, 452 and 518. Sequence 518 relates to the sequence 

reported in Gu et al., 2003. Three pairs of 60-nucleotide oligos were designed using 

the selected sequences and incorporating Bglll and Hindlll restriction enzyme sites 

according to the Oligoengine design protocol (Figure 2.1). Oligos were made by 

Sigma Genosys and were dissolved in TE to a concentration of 1 pg/pl.

Phosphorylation of 0.5 pg of each oligo pair (forward and reverse) was 

performed using 10 X kinase buffer, 10 mM ATP and T4 polynucleotide kinase 

(PNK) made up to a total volume of 20 pi with water and incubated for one hour at 

37°C. The reaction contained a concentration of 50 ng of double stranded (ds) DNA 

per pi. The kinased ds DNA (100 ng) was annealed by mixing with 98 pi of TNE 

buffer to make a total volume of 100 pi and incubated in a 65°C water bath for 30 

minutes. The mixture was then allowed to cool slowly to room temperature in a 

container of water.

pSUPER was linearised by digestion with Bglll and Hindlll restriction 

enzymes simultaneously. The linearised vector was then dephosphorylated using calf 

intestinal alkaline phosphatase (CIP), 10 X CIP buffer and incubated for 30 minutes at 

37°C. Next, EGTA was added a final concentration of 20 mM and the reaction was 

incubated for 10 minutes at 65°C. The linearised vector was run on a 0.8% agarose 

gel to separate it from any undigested plasmid and the fragment between the Bglll and 

Hindlll sites. The CIP-treated pSUPER band was excised and purified using the 

QIAquick gel extraction kit and eluted in 30 pi of buffer EB.

The CIP-treated pSUPER vector and the phosphorylated oligos were ligated as 

described in section 2.2.8.6 but the ligation reaction was carried out at 16°C 

overnight. DH5a cells were transformed with the ligation reaction and plated onto 

LB agar plates containing 100 pg/ml of ampicillin and left to incubate overnight. 

Colonies were selected for inoculation of 5 ml overnight cultures for minipreps. The
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plasmid DNA was checked for the presence of the oligos by digesting with EcoRI and 

Hindlll. As a control, pSUPER was digested with the same restriction enzymes. The 

digested DNA was run on a 2% agarose gel and plasmids containing the oligos were 

identified and some of these were sequenced. Four siPUMA constructs with the 

correct sequences were selected: 437.1, 452.1, 452.2 and 518.6. Glycerol stocks of 

the correct siPUMA sequences were used to make overnight cultures for large scale 

plasmid preparation.

SH-SY5Y cells were co-transfected with FLAG-PUMA-a and siPUMA 

constructs for 16 hours with 50 pM ZVAD-fmk (to reduce PUMA-induced cell 

death). Cells for co-transfection followed by protein extraction were plated in 6 cm 

dishes at a cell density of 8 X 106 in 4 ml of medium to be approximately 90-95% 

confluent the next day for transfection. A total concentration of up to 8 pg of DNA is 

ideal for transfections. For the siRNA and PUMA-a co-transfections, 6 pg of total 

DNA was used in 500 pi of OptiMEM and 20 pi of Lipofectamine 2000 was used in 

500 pi of OptiMEM. The pBluescript vector was used to make up the volume of total 

DNA transfected to 6 pg. The transfection protocol in section 2.2.8.8 was followed. 

Protein extraction and immunoblotting was performed at 16 hours after transfection.
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(a) (B g lll)  T a rg e t  S eq u en ce : sense  (H a irp in )  T a rg e t  S eq u en ce : a n tisen se  

5  '  -G A T C C C C C G A C C T C A A C G C A C A 6 T A C T T C A A G A G A G T A C T 6 T G C G T T G A G G T C G T T T T T G G A A A -3 ’

3 ' -G G G G C T G G A G T T G C G T G T C A T G A A G T T C T C T C A T G A C A C G C A A C T C C A G C A A A A A C C T T T T C G A -5
( H in d l l l )

(B g lll)  T a rg e t  S e q u en ce : sense  (H a irp in )  T a rg e t  S eq u en ce : an tisen se  

5  '  -  GAT C C C CGTACGAGCGGCGGAGACAAT T C AAG AG A T T G T C T C C G C C G C T C G T A C T  T T T T GG A A A - 3 '

3 ' -G G G C A T G C T C G C G C G C T C T G T T A A G T T C T C T A A C A G A G G C G G C G A G C A T G A A A A A C C T T T T C G A -5
( H in d l l l )

(c)v 7 (B g lll)  T a rg e t  S eq u en ce : sense  (H a irp in )  T a rg e t  S eq u en ce : a n tisen se  

5 '  -  GAT C C C C T C T C A T C A T G G G A C T C C T G T  T C AAG AG A C A G G A G TC C C A TG A TG A G A T TTTTG G A A A - 3 •

3 ' -G G G A G A G T A G T A C C C T G A G G A C A A G T T C T C T G T C C T C A G G G T A C T A C T C T A A A A A C C T T T T C G A -5
( H in d l l l )

Figure 2.1 siPUMA sequences (a) 437, (b) 452 and (c) 518



2.2.8.10 Immunofluorescence

Cells grown on coverslips were fixed with 4% paraformaldehyde for 30 

minutes at room temperature. The paraformaldehyde was removed by washing the 

coverslips three times with PBS. The cells were then permeabilised using 0.5% 

Triton X-100 in PBS for 5 minutes at room temperature. Cells were washed three 

times in PBS before blocking with 50% goat serum in 1% BSA in PBS for 30 minutes 

at room temperature. Cells were washed three times in PBS prior to a one hour 

incubation at room temperature with the M2 monoclonal antibody diluted 1:200 in 1% 

BSA in PBS. The primary antibody was washed off with PBS and a Rhodamine- 

conjugated anti-mouse antibody diluted 1:100 in 1% BSA in PBS was added and left 

to incubate for one hour at room temperature in the dark. Following three washes 

with PBS, the cells were stained with 10 pg/ml of Hoechst dye in water for 5 -1 0  

minutes at room temperature in the dark. The cells were washed twice in water before 

mounting on to glass slides using Citifluor mounting solution. The coverslips were 

fixed to the slides with clear nail varnish. The glass slides were left for 30 minutes in 

the dark to dry before being examined on a Zeiss Axioplan 2 fluorescence 

microscope. Images were captured using a Photometrix Quantix digital camera and 

SmartCapture VP software. The files were exported as JPEG files for analysis in 

Adobe Photoshop 5.5.

2.2.9 RT-PCR

Sterile technique was used when working with RNA to minimise RNase 

contamination. Any isolated RNA was kept on ice. RNase-ffee water was used 

throughout the following procedures.

2.2.9.1 RNA Extraction

SH-SY5Y cells were grown and prepared for RNA extraction as described in 

section 2.2.4.7. The medium from the dishes was transferred into 50 ml tubes kept on 

ice and then centrifuged for 5 minutes at 738 x g to retain a pellet of the detached 

cells. Approximately 7 ml of TRIzol reagent, a monophasic solution of phenol and 

guanidine isothiocyanate was added to the attached cells in the dishes. A cell scraper 

was used to detach cells and these were transferred to the 50 ml tube containing the
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pellet. The tube was vortexed to completely resuspend the pellet. At this stage the 

extraction procedure could be paused by storing the cell suspension in TRIzol at -  

70°C. The samples were transferred to autoclaved 13 ml Sarstedt polypropylene 

centrifuge tubes to which 1.4 ml (20% of the volume of TRIzol used) of chloroform 

was added and mixed by vortexing. The solution was incubated at room temperature 

for 2-3 minutes and then centrifuged for 15 minutes at 4°C at 4,700 x g to separate the 

solution into aqueous and organic phases. The RNA containing aqueous upper phase 

was transferred into fresh centrifuge tubes and mixed with 10 pg of glycogen as 

carrier. Isopropanol (50% of the volume of TRIzol used) was added to the solution, 

mixed and left at room temperature for 10 minutes before centrifugation for 10 

minutes at 4°C at 5365 x g to precipitate the RNA. The RNA pellet was washed with 

75% ethanol and dried in a dessicator to remove all traces of ethanol. The pellet was 

resuspended in 50 pi of water and incubated at 42°C for 10 minutes to facilitate 

solution of the RNA.

The 50 pi RNA was treated with DNase I by adding 10X DNase I buffer (7 

pi), 10 pi of DNase I, water to 70 pi and incubating for 15 minutes at 37°C. An equal 

volume of phenol was added to the reaction and the tube was vortexed and 

centrifuged for 3 minutes at 16,100 x g. The upper phase was extracted and the 

phenol step was repeated with the remaining phenol phase. After the second 

extraction, an equal volume of TE (pH 8) was added and the tube vortexed. 

Following centrifugation for 4 minutes at 16,100 x g, the upper phase was transferred 

to a new 1.5 ml tube and the lower phase underwent repetition of the TE step until all 

of the RNA was recovered. To the total volume of recovered RNA, an equal volume 

of chloroform was added. The solution was vortexed and centrifuged at 16,100 x g 

for 4 minutes. The RNA was precipitated by adding 10 pg of glycogen as carrier, 

1/10 of the total RNA volume of 3M sodium acetate pH 5.2 and 2.5 volumes of 100% 

ethanol. The tube was vortexed and left to incubate for one hour at -20°C. Following 

a 15 minute centrifugation at 16,100 x g at 4°C, the recovered pellet was washed in 

100 pi of 70% ethanol by vortexing, and centrifuged at 16,100 x g for 5 minutes at 

4°C. The pellet was vacuum-dried and resuspended in 50 pi of water. The purified 

RNA was stored at -20°C or -70°C in water.
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2.2.92 Quantitative and qualitative analysis of RNA

RNA concentration was determined by measuring the absorbance at 260 nm 

(A260) in a spectrophotometer using a quartz cuvette. A solution of RNA whose A260  

= 1 contains 40 pg of RNA per ml.

RNA integrity was assessed by denaturing gel electrophoresis and ethidium 

bromide staining. Gel electrophoresis equipment was soaked in 3% hydrogen 

peroxide in MilliQ water for 10 minutes. A formaldehyde agarose gel was prepared 

by boiling 0.48 g of agarose, 28 ml of DEPC-treated water and 8 ml of 5 X MOPS 

and then cooling the solution until the container could be touched. Under a fume 

hood, 4 ml of formaldehyde was mixed into the cooled agarose and the 1.2% agarose 

gel mixture was poured into the gel tank and allowed to set.

The sample mix was prepared for loading using 0.8 pi of 5 X MOPS, 1.4 pi of 

formaldehyde, 4 pi of formamide, 1 pi of 0.5 pg/pl ethidium bromide and 100 ng - 1 

pg of RNA in a 1.5 ml tube. The sample mix was heated for 5 minutes at 65°C and 

placed on ice immediately afterwards. The contents were collected by briefly 

spinning the tube. The sample mix was mixed with 1 pi of loading dye and the 

samples loaded onto the gel. The gel was run at 70 V in 1 X MOPS running buffer 

and viewed using a transilluminator.

In undegraded RNA preparations, the 28S ribosomal RNA band should appear 

twice as intense as the 18S ribosomal RNA band. If the RNA is degraded, this would 

appear as a smear of smaller sized RNAs or the 28S and 18S ribosomal RNA bands 

will show equal intensities.

2.2.9.3 cDNA Synthesis

Superscript™ II RNase H' reverse transcriptase (Invitrogen) was used for first 

strand cDNA synthesis for RT-PCR. In a 1.5 ml tube, a mixture of 500 pg/ml of 

oligo (dT)i2-i8, 350 ng of total RNA and 1 pi of 10 mM dNTP mix made up to 12 pi 

with water was heated at 65°C for 5 minutes. The reaction mix was chilled quickly 

on ice and the contents collected at the bottom of the 1.5 ml tube by brief 

centrifugation. Next, 4 pi of 5 X First-Strand buffer and 2 pi of 0.1 M DTT were 

added, mixed and incubated at 42°C for 2 minutes. To this reaction, 1 pi of 

Superscript™ II RT was gently mixed in and the mixture was incubated for 50 

minutes at 42°C. The reaction was inactivated by heating at 70°C for 15 minutes.
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2.2.9.4 Primer Design

The PUMA primers used for RT-PCR were 

5-TGTAGAGGAGACAGGAATCCACGG-3' from exon 1 and 

5-AGGCACCTAATTGGGCTCCATCTC-3' from exon 4 as described in Nakano 

and Vousden, 2001. The GAPDH primer sequences (from Gabriella Pagnan) were 

5-ACCACAGTCCATGCCATCAC-3' for the forward primer and 

5'-TCCACCACCCTGTTGCTGTA-3' for the reverse primer. Primers were made by 

Sigma Genosys.

2.2.9.5 PCR product analysis

PUMA amplification was difficult due to a high GC content in the transcript 

so the GC-rich PCR system (Roche) was used to overcome this problem. The GC- 

rich PCR system contains a blend of thermostable Taq DNA polymerase and Tgo 

DNA polymerase a thermostable enzyme with a proofreading (3’-5' -exonuclease) 

activity. The GC-rich PCR reaction buffer in combination with the separately 

included GC-rich resolution solution allows efficient amplification of GC-rich targets. 

Titration of the GC-rich resolution solution indicated that its optimal concentration for 

amplification of PUMA transcripts was 0.5M. Standard conditions for the other PCR 

components were used according to the GC-rich PCR system protocol.

During optimisation of the PCR, multiple unspecific products were generated 

often to the exclusion or low amplification of the desired PUMA products. The PCR 

reaction was optimised using an approach similar to 'touchdown' PCR (Don et al., 

1991) to favour the amplification of the desired products and not artifacts or primer 

dimers. The programme designed involved multiple cycles where the annealing 

segments in sequential cycles ran at incrementally lower temperatures. The annealing 

temperature is generally set approximately 5°C below the Tm. The estimated Tm for 

the primers corresponding to PUMA exon 1 and PUMA exon 4 were 69.3°C and 

70.8°C respectively. The Tm was taken to be the average of the two, i.e. 70°C. So 

the annealing-segment temperature, which was initially set equal to the Tm, gradually 

declined and fell below 60°C. This strategy was used in the hope that the first primer- 

template hybridisation to occur involves only those reactants with the greatest 

specificity to PUMA thus amplifying the specific PUMA targets. Even though the 

annealing temperature eventually drops to the Tm of non-specific hybridisations, the
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specific targets would have already begun amplification and thus will be in a position 

to compete out any non-specific PCR products during remaining cycles.

The PCR programme used for the amplification of PUMA transcripts 

commenced using a preheated lid at 110°C and initial denaturing occurred at 96°C for 

5 minutes. Then a series of five cycle sequences were programmed starting with 

denaturing at 96°C for 30 seconds, annealing at 70°C for 30 seconds and extension at 

72°C for 4 minutes. Every following set of five cycle sequences had the same 

denaturing and extension conditions but the annealing temperature was dropped by 

2°C until the temperature reached 60°C when 25-30 cycles (depending on template) 

were performed. Final extension was carried out at 72°C for 5 minutes and the 

reaction was cooled to 10°C.

Following optimisation of conditions, the PCR for GAPDH amplification was 

performed using Red Taq (Sigma) at an annealing temperature of 58°C for 15 -  20 

cycles.

PCR reactions (10 pi) were run on a 1.5% agarose gel alongside the 1 kb DNA 

ladder until each of the amplified products was clearly separated. To identify each 

PCR product the DNA bands were excised from the gel and the DNA was extracted 

using the QIAquick gel extraction kit according to manufacturer's instructions. The 

PCR products were ligated as described in section 2.2.8.6 followed by minipreps to 

isolate the DNA for restriction enzyme digestion to determine the presence of PUMA 

transcripts. The restriction enzymes used were EcoRl (to release the PCR product 

inserts), Ncol (which specifically cuts PUMA-a), SacII (specific for PUMA-a and - 

p) and Rsal (specific for PUMA-8). PCR products with correct restriction enzyme 

digest results were selected for sequencing. The sequences were put through the 

NCBI Blast search to confirm the presence and identity of the PUMA transcripts.

2.2.10 Microarray analysis

Cells were grown and prepared as described in section 2.2.7.1. When 90% 

confluent, the dishes were treated with DMSO, CDDP and TDDP for 12 hours before 

RNA was extracted as described in section 2.2.9.1. RNA prepared for microarray 

analysis was not treated with DNase I and glycogen was not used as a carrier. Biotin- 

labelled cRNA was prepared from the total RNA using T7-(dT)24 primer using 

Superscript Choice system (Gibco), BioArray™ HighYield™ RNA transcript
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labelling kit (ENZO) and purified using Qiagen RNeasy columns. The purified 

labelled cRNA was fragmented and hybridised to the Human Genome U133A Array 

(Affymetrix, UK), which contains 22,215 human gene cDNA probes. Three 

independent experiments were performed to assess array reproducibility. The 

procedure of processing total RNA for Affymetrix GeneChip® Hybridisation was 

performed by Danielle Fletcher as described in the Affymetrix GeneChip® Expression 

Analysis Manual (Affymetrix, UK).

The arrays were analysed using GeneSpring 5 software.
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Chapter 3: Characterisation of CDDP treated 

SH-SY5Y neuroblastoma cells
3.1 Introduction

It has been previously shown that CDDP treatment induces apoptosis in 

SH-SY5Y cells (Cece et al, 1995). We wished to confirm this and further define 

the apoptotic process by analysing the biochemical changes that occur during 

CDDP-induced apoptosis. Although all cells contain the cell death machinery, in 

some situations activation of the cell death programme requires macromolecular 

synthesis, e.g. when sympathetic neurons are deprived of nerve growth factor, 

genes are induced that encode proteins that stimulate mitochondrial cytochrome c 

release and caspase activation (Putcha et al, 2001; Whitfield et al, 2001). Most 

of the visible changes that characterise apoptotic cell death depend on the 

activation of caspases, the central executioners of the apoptotic pathway. Caspase 

activation was studied by immunoblotting. Two major death pathways, the 

extrinsic and intrinsic pathways, can mediate the response to cytotoxic agents, and 

both rely on the ultimate activation of caspases. Approximately 70% of 

neuroblastoma cell lines do not express caspase-8 and are defective in the 

extrinsic pathway. The gene for caspase-8 is silenced or deleted and complete 

inactivation occurs in neuroblastoma cells with MYCN amplification (Teitz et al, 

2000). SH-SY5Y cells have no MYCN amplification.

To analyse the requirement for caspase activity in CDDP-induced 

apoptosis in SH-SY5Y cells I used the pan-caspase-inhibitor, ZVAD-fmk. The 

mitochondrion serves as a fundamental integrator of many apoptotic pathways. 

Many pro-apoptotic molecules are located in the mitochondrial intermembrane 

space before being released into the cytoplasm following an apoptotic signal 

(Hengartner, 2000). Cytochrome c is one of the most important of these because 

it is one of the components (with the apoptotic protease-activating factor 1, Apaf- 

1) required for activation of caspase-9 in the cytosol. Activated caspase-9 in turn 

cleaves and activates caspase-3 (Hengartner, 2000). I studied cytochrome c 

release by immunofluorescence using an anti-cytochrome c antibody (Neame et 

al, 1998).

Like other DNA damaging agents, CDDP triggers several cellular 

responses, including the activation of the p53 pathway and the induction of DNA
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damage-inducible genes, such as gaddl53, gadd45, p21, and c-jun (Wetzel and 

Berberich, 2001).

The p53 tumour suppressor is a transcriptional regulatory protein whose 

target genes include: p21, MDM2, Gadd45, Bax, Noxa and PUMA (Keshelava et 

al, 2001; Hickman et al, 2002). Products of these genes are critical for cell cycle 

regulation, apoptosis and DNA repair. Mutations of p53 are found in 

approximately 50% of all human tumours (Keshelava et al, 2001; Hickman et al, 

2002) but are seen in only 2% of human neuroblastoma tumours examined 

(Vogan et al, 1993). p53 protein has been found to be abundant in human 

neuroblastoma cell lines (Davidoff et al, 1992; Vogan et al, 1993). It is possible 

that instead of mutations, cytoplasmic sequestration and defective translocation of 

p53 could be alternate mechanisms involved but previous studies have shown that 

p53 function is intact in neuroblastoma cell lines (Keshelava et al, 2001). Cells 

possessing wild type p53 protein respond to exposure to DNA-damaging agents 

by elevating p53 protein levels (Wetzel and Berberich, 2001). Depending on the 

cell type and the type of DNA damage, increased p53 protein triggers either 

growth arrest or apoptosis (El Deiry, 1998; Gottlieb and Oren, 1998). 

Involvement of p53 in CDDP-induced apoptosis has been demonstrated in several 

cell types (Park et al, 2001). To measure p53 protein levels in CDDP and TDDP 

treated SH-SY5Y cells, I performed immunoblotting experiments with a p53- 

specific antibody.
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3.2 Results

3.2.1 Effects of cisplatinum and transplatinum on SH-SY5Y cells

SH-SY5Y cells adhere to tissue culture dishes and grow in clusters with 

multiple short, neuritic processes (Figure 3.1a). To determine the effect of 

cisplatinum and transplatinum on cell morphology, SH-SY5Y cells were plated in

3.5 cm dishes and treated with CDDP or TDDP (each at 30 pg/ml) for 24 hours. 

The morphology of the cells did not alter when they were treated with DMSO, the 

solvent used to dissolve the platinum compounds, (Figure 3.1a), or with TDDP 

(Figure 3.1c). However, cells treated with CDDP were found to round up and 

detach from the base of the dish and had a morphology characteristic of cells 

undergoing apoptosis (Figure 3.1b).

3.2.2 Dose-response and time-course of CDDP-induced death

To compare the effect of CDDP and its isomer TDDP on SH-SY5Y cells 

at different concentrations, a dose-response assay was performed. SH-SY5Y cells 

were grown until 80-100% confluent in 3.5 cm tissue culture dishes and treated 

with CDDP at 1, 3, 6, 10 and 30 pg/ml or TDDP at 3, 10 and 30 pg/ml for 24 

hours. Cell viability was then determined using the Live-Dead cell 

viability/cytoxicity assay (Figure 3.2a). After 24 hours of platinum treatment, 

CDDP at 10 pg/ml had killed approximately 45% of the SH-SY5Y cells and at 30 

pg/ml 67% of the cells had been killed. At higher concentrations of CDDP, the 

majority of cells detach from the dish and float around making it difficult to 

determine viability using the Live-Dead assay. On the other hand, the percentage 

of viable cells remained constant with increasing concentrations of TDDP. This 

indicates that TDDP, the isomer of CDDP is not cytotoxic. To determine the 

kinetics of CDDP-induced death, time course experiments were performed. Cells 

were treated with DMSO or CDDP at 10 pg/ml for various lengths of time up to 

48 hours. The Live-Dead cell viability assay was performed on the cells at 0, 8, 

16, 24 and 48 hours after treatment with DMSO or CDDP. The results are shown 

in Figure 3.2b. In this time-course experiment, 50% of the cells had died after 16 

hours of CDDP treatment whereas the cells treated with DMSO remained viable 

throughout the 48 hour time-course.
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Figure 3.1 Morphology of platinum-treated SH-SY5Y cells

SH-SY5Y cells were grown on 3.5 cm dishes until 80-100% confluent. The cells 

were then treated with (a) DMSO, (b) CDDP (30 pg/ml) and (c) TDDP (30 

pg/ml) for 24 hours. The cells were examined on a Nikon TMS-F microscope 

using 20X magnification and photographed using a Nikon camera and FP4 black 

and white film. The images shown are representative of the cell morphologies 

observed in several independent experiments.
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Figure 3.2 Dose-response and time-course of CDDP - induced death

SH-SY5Y cells were grown until 80-100% confluent in 3.5 cm tissue culture 

dishes and (a) treated with CDDP at 1, 3, 6, 10 and 30 (ig/ml or TDDP at 3, 10 

and 30 pg/ml for 24 hours and (b) cells were treated with DMSO or CDDP at 10 

jig/ml for 0, 16, 24 and 48 hours. Cell viability was then determined using the 

Live-Dead assay. Each graph represents the average of at least three independent 

experiments ± SEM.
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3.2.3 Requirement for macromolecular synthesis

Programmed cell death often (but not always) requires transcription and 

protein synthesis, e.g. the death of developing sympathetic neurons following 

NGF withdrawal (Martin et ol., 1988). To determine whether the CDDP-induced 

death of SH-SY5Y cells requires macromolecular synthesis, 1X105 cells were pre

treated for one hour with various concentrations of actinomycin D and 

cyclohexamide, inhibitors of transcription and protein synthesis respectively, 

before being treated with CDDP (10 fig/ml) and the compounds for 24 hours. 

Actinomycin D inhibits transcription by binding to DNA and blocking RNA 

polymerase movement. Cyclohexamide blocks the translocation reaction of 

protein synthesis on ribosomes in the cytosol but not on ribosomes in the 

mitochondria. A Live-Dead cell viability assay was used to quantitate the effects 

of these inhibitors on CDDP-induced death. The percentage of viable cells was 

plotted against the concentration of each inhibitor and each graph represents the 

average of at least three independent experiments ± SEM. Figure 3.3a shows that 

actinomycin D killed some of the cells when added on its own but up to 50% of 

the cells that would normally be killed by CDDP could be rescued by actinomycin 

D at 1 pg/ml. Figure 3.3b shows that approximately 50% of the cells killed by 

CDDP could be saved by cyclohexamide at 1-5 pg/ml. Cyclohexamide by itself 

was not cytotoxic. These results suggest that CDDP-induced death requires new 

gene expression, in part.

3.2.4 p53 protein levels increase in CDDP-treated SH-SY5Y cells

As mentioned previously, CDDP has been shown to induce an increase in 

the level of the tumour suppressor, p53 (section 1.2.1). To determine whether this 

is also the case in our line of SH-SY5Y cells, the pattern of p53 expression was 

investigated by performing immunoblotting experiments with protein extracts 

from SH-SY5Y cells treated over 24 hours with CDDP. Protein extracts were 

prepared, separated by SDS-PAGE and then transferred to nitrocellulose. 

Following blocking and overnight incubation with an appropriate primary 

antibody, the proteins were detected using ECL reagents. A representative 

immunoblot is shown in Figure 3.4a. The blot (Figure 3.4a) was stripped and 

incubated with an anti-ERK antibody as a loading control. The level of p53
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Figure 3.3 Effect of actinomycin D and cyclohexamide on CDDP-induced 

death

Approximately 1 X 105 SH-SY5Y cells were pre-treated for one hour with (a) 0, 

0.5, 1 and 2 pg/ml of actinomycin D or (b) 0, 1, 2 and 5 pg/ml of cyclohexamide, 

before being treated with CDDP (10 pg/ml) and the inhibitors for 24 hours. A 

Live-dead cell viability assay was used to quantitate the effects of these inhibitors 

on CDDP-induced death. The percentage of viable cells was plotted against the 

concentration of each inhibitor and each graph represents the average of at least 

three independent experiments ± SEM.

80



100

90

80
DMSO

70

60

50

40
CDDP

30

0.5

Actinomycin D concentration (iig/ml)
1.5

too

90

80 DMSO
70

50

CDDP
30

20

Cyclohexamide concentration ({4g/ml)

81



Figure 3.4 p53 protein levels increase during CDDP and TDDP treatment
SH-SY5Y cells (6.5 X 105) were grown in 10 cm dishes until 80-100% confluent. 

Cells were treated with CDDP (lOpg/ml) and TDDP (1 Opg/ml) for 0, 4, 8, 12, 16 

and 24 hours. The pattern of p53 expression was investigated by performing 

immunoblotting experiments with protein extracts from SH-SY5Y cells. A 

representative immunoblot is shown in (a). This blot was stripped and incubated 

with an anti-ERK antibody as a loading control, (b) ERK loading control is 

compared to the commonly used Tubulin loading control on the same blot that 

was stripped and reprobed. The two controls show distinct similarity in loading.

a
CDDP TDDP

b
CDDP TDDP

-TUBULIN
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remained constant between 0 - 8  hours of CDDP treatment but between 8 - 2 4  

hours, the level increased significantly. This is supported by the lower level of the 

loading control, ERK at 16 and 24 hours compared to 0 - 8 hours. ERK was a 

suitable loading control because ERK protein levels did not alter during CDDP or 

TDDP treatment and they mirrored tubulin levels. Figure 3.4b shows the 

comparison of protein levels of tubulin and ERK on the same blot. TDDP 

treatment also caused an increase in p53 level but this was much smaller than that 

seen after CDDP treatment. These results are in agreement with previous findings 

that p53 is expressed in SH-SY5Y cells and induced by CDDP (Tieu et al., 1999; 

Rodriguez-Lopez et al, 2001; Wetzel and Berberich, 2001).

3.2.5 CDDP induces biochemical changes characteristic of apoptosis in 

SH-SY5Y cells

As described in section 3.2.1, SH-SY5Y cells die when treated with 

cisplatin. It has previously been shown that cisplatin induces apoptosis in various 

cell types and the morphology of the dying SH-SY5Y cells was consistent with 

this. Most of the visible changes that characterise apoptotic cell death are 

dependent on caspases, the central executioners of the apoptotic pathway. 

Caspase-3-mediated cleavage of ICAD (inhibitor of CAD) activates caspase- 

activated DNase (CAD), which is the nuclease that cuts genomic DNA between 

nucleosomes, to generate DNA fragments with lengths corresponding to 185 base 

pairs. Eliminating caspase activity, either through targeted mutation of the 

caspase genes (in mice) or the use of small molecule inhibitors, such as ZVAD- 

fmk, will slow down or even prevent apoptosis.

3.2.5.1 CDDP induces nuclear DNA fragmentation

The TUNEL assay and Hoechst staining were used to study the nuclear 

changes in cells treated with CDDP at 30 pg/ml for 24 hours. Control cells were 

treated with DMSO. The cells were then examined by fluorescence microscopy. 

The results are shown in Figure 3.5. In the version of the TUNEL assay used 

here, nuclei in which DNA fragmentation has occurred are stained green due to 

the incorporation of fluorescein-labelled dUTP. The TUNEL assay cannot 

differentiate between apoptotic and necrotic death as both types of cell death can 

exhibit a high number of stainable DNA ends. However, bisbenzamide (Hoechst)
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Figure 3.5 CDDP induces nuclear condensation and DNA fragmentation.

SH-SY5Y cells (4 X 104) were grown on coverslips until 80-100% confluent. The 

cells were treated with 30 |ig/ml of CDDP (a and b) or DMSO as a control (c and 

d) for 24 hours and then fixed for immunocytochemistry. The TUNEL assay and 

Hoechst staining were used to study the nuclear changes in the cells. The stained 

cells were examined by fluorescence microscopy on a Zeiss Axioplan 2 

fluorescence microscope. Representative images of nuclei stained with Hoechst 

dye (a and c) and TUNEL staining (b and d) are shown. CDDP induced changes 

typical of apoptosis such as the appearance of pyknotic nuclei (arrows in a) and 

DNA fragmentation (b).
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dye, which stains the nuclei blue, can be used to study the morphology of the nuclei 

and identify morphological changes typical of apoptosis. CDDP induced changes 

typical of apoptosis such as the appearance of pyknotic nuclei (see arrows in Figure 

3.5a) and DNA fragmentation (Figure 3.5b). The control cells treated only with 

DMSO had nuclei with a normal morphology (Figure 3.5c) and did not exhibit DNA 

fragmentation (Figure 3.5d).

3.2.5.2 Procaspase-3 cleavage

The execution phase of apoptosis requires the activity of effector caspases 

such as caspase-3. To determine whether caspase activity was required for CDDP- 

induced death, SH-SY5Y cells were pre-treated for one hour with different 

concentrations of the broad-range caspase inhibitor ZVAD-fmk before one set of cells 

was treated with CDDP (10 fig/ml) and ZVAD-fmk for 24 hours. A Live-Dead cell 

viability assay was preformed as previously described (section 3.2.2) and the 

percentage of viable cells was plotted against the concentration of ZVAD-fmk. The 

results shown in Figure 3.6a represent the average of at least three sets of 

independent experiments ± SEM.

The results indicate that ZVAD-fmk on its own is not toxic to the cells and 

that at 50 (iM, it can rescue almost half of the cells that would have been killed by 

CDDP. At 100 |iM, most of the cells are protected. This indicates that caspase 

activity is required for the CDDP-induced death of SH-SY5Y cells. We confirmed 

that ZVAD-fmk had indeed inhibited caspase activity by examining procaspase-3 

cleavage (a caspase-dependent event) in immunoblotting experiments. SH-SY5Y 

cells were treated with 100 \iM ZVAD-fmk for one hour after which CDDP was 

added to one set of ZVAD-fmk pre-treated cells for 24 hours. Protein extracts were 

prepared, separated by SDS-PAGE and then transferred to nitrocellulose. Following 

blocking and overnight incubation with an anti-caspase-3 antibody, the proteins were 

detected using ECL reagents. A representative immunoblot is shown in Figure 3.6b. 

After treatment with CDDP for 24 hours, the cleavage of procaspase-3 into active 

caspase-3 is near to completion (Figure 3.6b). However, in extracts from the SH- 

SY5Y cells treated with ZVAD-fmk before and during CDDP exposure, there was 

little cleavage of procaspase-3 into active caspase and cells treated only with DMSO
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Figure 3.6 CDDP-induced apoptosis requires caspase activity and cleavage of 

procaspase-3 occurs after CDDP treatment

(a) Duplicate sets of SH-SY5Y cells were grown in 3.5 cm dishes until 80-100 % 

confluent. The cells were pre-treated for one hour with the broad-range caspase 

inhibitor ZVAD-fmk (at 0, 50 and 100 pM) before one set of cells were treated with 

CDDP (10 pg/ml) plus ZVAD-fmk, and the other with DMSO for 24 hours. A Live- 

Dead cell viability assay was performed and the percentage of viable cells was plotted 

against the concentration of ZVAD-fmk. The results shown represent the average of 

at least three sets of independent experiments ± SEM.

(b) SH-SY5Y cells (6.5 X 105) were grown in 10 cm dishes until 80-100% confluent. 

One set of cells was treated with 100 pM ZVAD-fmk for one hour after which CDDP 

(lOpg/ml) was added to the ZVAD-fmk pre-treated cells for 24 hours. The 

expression and cleavage of procaspase-3 was investigated by performing 

immunoblotting experiments with protein extracts from these cells. A representative 

immunoblot is shown.
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have no active caspase. Thus, caspase activity is required for CDDP-induced death of 

SH-SY5Y cells and, consistent with this, cleavage of procaspase-3, an executioner 

caspase, occurs after CDDP treatment.

3.2.6 Identifying the death pathway by which CDDP induces caspase-3 

activation
Cleavage and activation of caspase-3 can be induced via two upstream 

initiator pathways: the extrinsic death receptor signalling pathway involving 

procaspase-8 cleavage or the intrinsic mitochondrial death pathway involving the 

release of cytochrome c from the mitochondria and the cleavage of procaspase-9.

3.2.6.1 Procaspase-9 cleavage occurs in CDDP-treated SH-SY5Y cells

To investigate whether procaspase-8 and/or -9 were cleaved after CDDP 

treatment, protein extracts were prepared, separated by SDS-PAGE and then 

transferred to nitrocellulose. Following blocking and overnight incubation with an 

anti-caspase-8 antibody or an anti-caspase-9 antibody, the proteins were detected 

using ECL reagents. The results are shown in Figure 3.7. Neither procaspase-8 nor 

active caspase-8 were detected in SH-SY5Y cells. In this immunoblotting 

experiment, the positive control was a Jurkat cell extract that contained cleaved forms 

of caspase-8 because the cells had been treated for 6 hours with anti-Fas (CHI 1) IgM 

antibody to induce apoptosis. In contrast to caspase-8, procaspase-9 was expressed in 

SH-SY5Y cells. At 16 hours after CDDP treatment, the cleaved form of caspase-9 can 

be observed at 34 kDa, thus indicating the involvement of the mitochondrial pathway 

in CDDP-induced apoptosis in SH-SY5Y cells.

3.2.6.2 Cytochrome c is released from mitochondria during the CDDP-induced 

death ofSH-SY5Y cells.

To further investigate the role of the mitochondrial pathway in CDDP-induced 

apoptosis of SH-SY5Y cells, the distribution of cytochrome c was investigated by 

immunocytochemistry. SH-SY5Y cells grown on coverslips were treated with CDDP 

for 12 hours. Representative images of the cells stained with a monoclonal antibody 

against cytochrome c are shown in Figure 3.8. Cells were also stained with Hoechst
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Figure 3.7 Procaspase-9 cleavage occurs in CDDP-treated SH-SY5Y cells

SH-SY5Y cells (6.5 X 105) were grown in 10 cm dishes until 80-100% confluent. 

The cells were treated with CDDP (lOpg/ml) for 0, 4, 8, 16 and 24 and TDDP 

(lOpg/ml) for 0, 16 and 24 hours. The expression of caspase-8 and caspase-9 was 

investigated by performing immunoblotting experiments with protein extracts from 

these cells. Representative immunoblots are shown. In the case of caspase-8, an 

extract from Jurkat cells treated with anti-fas antibody (+ve) was used as a control. 

Following stripping procedures to remove the tubulin antibody from the caspase-9 

membrane, the tubulin can still be observed even though the two antibodies have 

different secondary antibodies.
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Figure 3.8 Cytochrome c is released from mitochondria during the CDDP- 

induced death of SH-SY5Y cells.
SH-SY5Y cells (4 X 104) were grown on coverslips until 80-100% confluent. The 

cells were treated with 30 pg/ml of CDDP (a and b) for 12 hours then fixed for 

immunocytochemistry. (a) Nuclear morphology detected by Hoechst staining. A 

pyknotic nucleus (arrowed) and a normal nucleus are shown. Cells were also 

incubated with cytochrome c antibody to detect cytochrome c distribution (b). The 

normal cell shows normal (punctate) cytochrome c staining excluded from the nucleus 

(see c) whereas the apoptotic cell (arrowed) has diffuse cytochrome c staining 

throughout the cytoplasm (b) and nuclear space (c). Representative images captured 

on a Zeiss Axioplan 2 fluorescence microscope are shown.
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dye to reveal the nuclear morphology. In normal cells, cytochrome c staining was 

predominantly cytoplasmic whereas in apoptotic cells, cytochrome c staining was 

diffused throughout the cytoplasm and nuclear space.

The caspase inhibitor, ZVAD-fmk inhibits caspase-3 cleavage in SH-SY5Y 

cells treated with CDDP (section 3.2.7). The effect of ZVAD-fmk on cytochrome c 

release was investigated by treating the SH-SY5Y cells grown on coverslips with 100 

pM ZVAD-fmk for one hour prior to and during CDDP treatment. The percentage of 

SH-SY5Y cells exhibiting normal or pyknotic nuclei, and normal or diffuse 

cytochrome c was determined for cells treated with DMSO alone, CDDP alone, or 

ZVAD-fmk alone, or ZVAD-fmk and CDDP (Figure 3.9). The results indicate that 

cytochrome c release in CDDP-treated SH-SY5Y cells is independent of caspase 

activity. CDDP treatment for 12 hours induces 20% of the cells to have pyknotic 

nuclei with a diffuse cytochrome c distribution. Treatment with both CDDP and 

ZVAD-fmk resulted in 10% of the cells having pyknotic nuclei with a diffuse 

cytochrome c distribution but 40% of the cells showed normal nuclei with diffuse 

cytochrome c. This indicates that caspase activity leading to nuclear condensation 

and fragmentation was inhibited by ZVAD-fmk but the release of cytochrome c from 

the mitochondria was not prevented. Thus cytochrome c release in CDDP treated SH- 

SY5Y cells is caspase independent.
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Figure 3.9 Cytochrome c release in CDDP-treated SH-SY5Y cells is 

independent of caspase activity.

SH-SY5Y cells (4 X 104) were grown on coverslips until 80-100% confluent. Some 

of the cells were treated with 100 pM ZVAD-fmk for one hour prior to and during 30 

pg/ml of CDDP for 12 hours. Other cells were treated with only DMSO or 30 pg/ml 

of CDDP for 12 hours. The cells were then fixed for immunocytochemistry with 

Hoechst dye and anti-cytochrome c. The graphs show the percentage of SH-SY5Y 

cells treated with (a) DMSO, (b) CDDP, (c) ZVAD-fmk and CDDP, and (d) ZVAD- 

fmk that exhibit either normal nuclear morphology and normal cytochrome c 

distribution (white bars), normal nuclear morphology and diffuse cytochrome c 

distribution (grey bar) or pyknotic nuclei and diffuse cytochrome c (black bars). The 

results shown represent the average of three independent experiments ± SEM.
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3.3 Discussion

In this chapter, I have described experiments in which I characterised some of 

the basic features of the cell death process initiated in CDDP-treated SH-SY5Y 

neuroblastoma cells (see hypothetical model Figure 3.10). I found that the cell death 

process triggered by CDDP was dose-dependent. CDDP at 10 pg/ml killed 

approximately 45% of SH-SY5Y cells in 16 hours whereas TDDP and DMSO were 

not cytotoxic. Higher concentrations or longer exposures to CDDP resulted in high 

levels of death and the majority of the cells would detach from the dishes or 

coverslips and therefore could not be quantified. Cells undergoing death were loosely 

attached to surfaces so in the case of cell staining processes involving multiple 

washing steps, many cells were lost. I therefore used 10 pg/ml as the standard CDDP 

concentration throughout the experiments but altered the number of hours of CDDP 

exposure according to the experiment involved. For example, with assays where the 

entire medium was collected, we were able to treat cells for up to 24 hours as 

detached cells were collected and used as part of the assay. In cell staining 

experiments, 16 hours was the maximum length of time the cells were exposed to 

CDDP.

I investigated the question of whether there is a requirement for new protein 

synthesis for the CDDP-induced death of SH-SY5Y cells by treating the cells with 

cyclohexamide and actinomycin D in a dose-dependent manner with 10 pg/ml of 

CDDP. These experiments indicated that CDDP-induced death in SH-SY5Y cells 

requires new gene expression in part.

The inability of both TDDP and DMSO to induce cell death in SH-SY5Y cells 

made them ideal controls for future experiments. TDDP causes DNA damage that is 

repairable so its non-toxic characteristic in SH-SY5Y cells may be due to the efficient 

action of DNA damage recognition and repair proteins. DNA damage by CDDP 

activates the checkpoint kinase, ATR (Damia et al., 2001; Zhao and Piwnica-Worms, 

2001) which phosphorylates the p53 protein at serine-15 to initiate activation of the 

p53 protein (Appella and Anderson, 2001). During genotoxic stress, a rapid 

stabilization of the p53 protein and its activation leads to cell cycle arrest and/or 

apoptosis; the arrest allows cells to repair damaged DNA, whereas apoptosis removes 

damaged cells from the replicative pool to maintain genome integrity (el-deiry, 2002).
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I found that both CDDP and TDDP treatment induces an increase in p53 

protein levels due to DNA damage. However, the level of p53 does not increase very 

much with TDDP compared to CDDP. The small increase in p53 protein in TDDP- 

treated cells may be sufficient to promote DNA repair protein activity rendering the 

repairable DNA damage caused by TDDP not to be cytotoxic. It is also possible that 

p53 levels probably need to be above a certain threshold to be cytotoxic. Since p53 is 

activated when SH-SY5Y cells are treated with CDDP, p53 target genes are likely to 

have a role in promoting cytochrome c release and apoptosis in SH-SY5Y cells. p53 

RNA levels were not measured so I cannot exclude that there might be some change 

in the rate of p53 transcription or a change in RNA stability.

Consistent with the results of previous studies (Cece et al, 1995), I found that 

CDDP induces apoptosis in SH-SY5Y cells as evidenced by TUNEL and Hoechst 

staining. I supported this further, by showing that caspase activity is required for 

CDDP-induced death of SH-SY5Y cells and that the executioner caspase, caspase-3 is 

cleaved after CDDP treatment. This would be predicted to lead to an increase in 

caspase-3 activity, which could be measured by performing a DEVD-ase assay. 

Alternatively, cleavage of poly (ADP-ribose) polymerase (PARP) could have been 

detected by western blotting.

I found that procaspase-9 was cleaved in SH-SY5Y cells treated with CDDP 

whereas no expression of active caspase-8 was observed. This indicates that the 

mitochondrial death pathway is activated in CDDP-treated SH-SY5Y cells whereas 

the death receptor pathway is not. To further investigate the involvement of the 

mitochondrial pathway, we characterised the translocation of cytochrome c from the 

mitochondria to the cytoplasm in CDDP-treated cells. Investigating the effect of 

ZVAD-fmk treatment on cytochrome c release and apoptosis showed that caspase 

activity was downstream of cytochrome c release and that many cells with diffuse 

cytochrome c were prevented from undergoing apoptosis. Cytochrome c release 

could have been measured by using biochemical fractionation to separate the cell 

extract into a mitochondrial (heavy membrane) fraction and cytosolic fraction to 

confirm the results of the immunostaining assay. Members of the Bcl-2 family 

regulate the release of cytochrome c and other proapoptotic proteins from the 

mitochondria. I therefore investigate the expression pattern and role of these proteins 

in CDDP-treated SH-SY5Y cells in the experiments described in the next chapter 

(Figure 3.10).
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Chapter 4: Role of Bcl-2 family proteins in CDDP- 

induced apoptosis of SH-SY5Y neuroblastoma cells
4.1 Introduction

In the previous chapter, I described results that suggest that CDDP induces 

apoptosis in SH-SY5Y cells by activating caspases via the intrinsic mitochondrial 

pathway with the release of cytochrome c. Members of the Bcl-2 family regulate 

the release of cytochrome c and other proapoptotic proteins from the 

mitochondria. The Bcl-2 family of proteins has a crucial role in intracellular 

apoptotic signal transduction. The family includes both antiapoptotic and 

proapoptotic proteins that contain one or more Bcl-2 homology (BH) domains. 

There are three subfamilies. The first includes Bcl-2, B c1-x l , Bcl-w, Mcl-1 and 

Al, which all contain BH1-4 domains and promote cell survival. The second 

group includes Bax, Bak and Bok and these are related to Bcl-2 at BH1-3, but 

instead promote cell death. The third group, the BH3-only proteins, such as Bad, 

Bik, Hrk/DP5, Bid, Bim, Noxa and PUMA, only have one of the Bcl-2 homology 

regions, the BH3 domain. These BID-only proteins are essential initiators of 

apoptosis. They play a critical role in mammalian development (Huang and 

Strasser, 2000). The proapoptotic activity of BH3-only proteins is regulated by 

transcriptional and post-translational mechanisms to prevent inappropriate cell 

death during development. Overexpression of Bcl-2 can promote cancer and can 

affect the sensitivity of tumour cells to chemotherapeutic drugs. Mutations in the 

BH3-only proteins or their regulators may therefore also be pathogenic (Huang 

and Strasser, 2000).

In the work described in this chapter, I investigated which Bcl-2 family 

members are expressed in SH-SY5Y cells and whether their level changes or post- 

translational modifications occur following CDDP treatment by performing 

immunoblotting and RT-PCR experiments.
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4.2 Results
4.2.1 The role of Bcl-2 family members in CDDP-induced apoptosis of 

SH-SY5Y cells
To investigate whether CDDP causes any change in the pattern of 

expression or in the size of Bcl-2 family members present in SH-SY5Y cells, 

immunoblotting experiments were performed with protein extracts from SH- 

SY5Y cells treated for up to 24 hours with CDDP and TDDP. Protein extracts 

were prepared at various times during treatment, separated by SDS-PAGE and 

then transferred to nitrocellulose. Following blocking and overnight incubation 

with an appropriate primary antibody, the proteins were detected using ECL 

reagents. Representative immunoblots are shown in Figure 4.1 for the 

antiapoptotic proteins and in Figure 4.2 for the multidomain proapoptotic and 

BH3-only proteins. In figure 4.1, Bcl-w appears to increase after 24 hours of 

CDDP treatment, this however was not observed when the experiment was 

repeated atleast three times. This blot was chosen due to its low background and 

clear visibility of the Bcl-w band.

No consistent change was observed in the level of any of the antiapoptotic 

members of the Bcl-2 family except Mcl-1, which decreased in level after 8 hours 

of CDDP treatment, whereas its level in TDDP-treated cells remained constant 

(Figure 4.1a). Any Bcl-2 family member that plays an essential role in the 

regulation of CDDP-induced apoptosis in SH-SY5Y cells is likely to function 

upstream of caspase activity since cytochrome c release is caspase-independent. 

Since the level of Mcl-1 altered during CDDP treatment, its expression was 

studied in SH-SY5Y cells treated with ZVAD-fmk alone or with ZVAD-fmk and 

CDDP. The results of this experiment are shown in Figure 4.1b. The level of 

Mcl-1 decreased after CDDP treatment, but in cells treated with the caspase 

inhibitor ZVAD-fmk for one hour before and during CDDP treatment, Mcl-1 

levels were similar to the controls. This indicates that the change in the level of 

Mcl-1 protein is a result of caspase activity and this rules out the decrease in Mcl- 

1 as a key event regulating cytochrome c release, since the latter occurs in a 

caspase-independent manner in SH-SY5Y cells treated with CDDP.

Immunoblots for the multidomain proapoptotic Bcl-2 family proteins are 

shown in Figure 4.2a. Bax and Bak did not consistently change in level after
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CDDP treatment. The BH3-only proteins are shown in Figure 4.2b. Bad, Bid, 

Bim, Noxa, Hrk and Bmf did not increase in level after CDDP treatment. 

However, the BH3-only protein, Bik, showed a decrease in the full length 32 kDa 

band at 16 and 24 hours after CDDP addition whereas a smaller band of 

approximately 23 kDa appeared after 16 hours of CDDP treatment and increased 

in level at 24 hours of CDDP treatment. Formation of a smaller form of Bik, by 

proteolytic cleavage for example, might alter its properties or subcellular 

localisation. The change in the Bik protein was also examined with ZVAD-fmk- 

treated SH-SY5Y cell extracts and the results indicate that the decrease in full 

length Bik required caspase activity (Figure 4.3). This therefore suggests that the 

change in Bik is unlikely to be one of the key events regulating cytochrome c 

release.

4.2.2 PUMA protein levels increase in CDDP-treated SH-SY5Y cells 

and this is independent of caspase activity
Another BH3-only protein, PUMA (p53 upregulated modulator of 

apoptosis), which is a direct transcriptional target of p53, was also analysed by 

immunoblotting. The PUMA antibody used recognises the BH3 domain of the 

PUMA protein. In the immunoblot shown in Figure 4.4a, it can be seen that the 

PUMA antibody recognises two bands. The higher molecular weight band 

increased in level during CDDP treatment but did not change with TDDP. This 

could either be PUMA-a or PUMA-0 which both contain the BH3 domain. The 

lower molecular band did not increase in level during CDDP or TDDP treatment 

and may be non-specific.

To identify which PUMA proteins these bands correspond to, expression 

vectors for the FLAG-tagged PUMA-a and -p isoforms were transfected into 

Cos-7 cells in duplicate. Protein extracts were prepared, separated by SDS-PAGE 

and transferred to nitrocellulose. Protein samples prepared from SH-SY5Y cells 

treated with CDDP for 8 hours and TDDP for 16 hours were run alongside the 

overexpressed PUMA protein samples. The blot was incubated overnight with the 

PUMA antibody and proteins were detected using ECL reagents. This blot 

(Figure 4.4.b) shows that the higher molecular weight band most likely 

corresponds to the 26 kDa PUMA-a protein and the lower molecular weight band
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Figure 4.1 Immunoblotting analysis of antiapoptotic Bcl-2 family proteins 

in SH-SY5Y neuroblastoma cells
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(a) Pattern of expression of antiapoptotic Bcl-2 family proteins in CDDP- 

treated SH-SY5Y cells

SH-SY5Y cells (6.5 X 105) were grown in 10 cm dishes until 80-100% confluent. 

Cells were treated with CDDP (lOpg/ml) for 0, 4, 8, 16 and 24 hours and TDDP 

(lOpg/ml) for 0, 16 and 24 hours. The pattern of expression of the Bcl-2 family 

members was investigated by performing immunoblotting experiments with 

protein extracts from SH-SY5Y cells. Representative immunoblots are shown in

(a), together with their tubulin or ERK loading controls (as indicated). Each 

experiment was performed more than once.
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(b) Mcl-1 expression in cells treated with ZVAD-fmk and CDDP

Caspase-3 was used as a control for the effect of ZVAD-fmk. The level of Mcl-1 

decreased after CDDP treatment, but in cells treated with the caspase inhibitor 

ZVAD-fmk before and during CDDP treatment, Mcl-1 levels were similar to the 

controls (DMSO or ZVAD-fmk alone). This indicates that the change in the level 

of Mcl-1 protein is a result of caspase activity and rules out Mcl-1 as a key 

regulator of cytochrome c release, which occurs in a caspase-independent manner 

in CDDP-treated SH-SY5Y cells.
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Figure 4.2 Pattern of expression of proapoptotic Bcl-2 family proteins in 

CDDP and TDDP-treated SH-SY5Y cells

SH-SY5Y cells were treated with 10 pg/ml of CDDP or TDDP for the 

times (hours) indicated. Protein extracts were prepared at each timepoint and 

immunoblots were performed with antibodies specific for each proapoptotic Bcl-2 

family protein (as indicated). Ponceau S staining or an ERK antibody were used 

to assess protein loading.

(a) The multidomain proapoptotic proteins

Bax and Bak did not change in level during CDDP and TDDP treatment of SH- 

SY5Y cells. Representative immunoblots are shown. Bax and Bak were probed 

on the same membrane following stripping. Tubulin is used as the loading control.

(b) The BH3-only proteins

Representative immunoblots are shown together with their corresponding loading 

controls (Tubulin, ERK or Ponceau S). Bad, Bid, Bim, Noxa, Hrk and Bmf did 

not consistently increase in level following CDDP or TDDP treatment. However, 

Bik showed a decrease in a 32 kDa band after 16 and 24 hours of CDDP treatment 

whereas a band of approximately 23 kDa appeared after 16 hours of CDDP 

treatment and increased in level at 24 hours of CDDP treatment.
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Figure 4.3 The CDDP-induced decrease in the level of full length Bik 

requires caspase activity

SH-SY5Y cells were treated with DMSO, lOpg/ml of CDDP, 100 pM 

ZVAD-fmk or CDDP together with ZVAD-fmk. Protein extracts were prepared 

after 16 hours and immunoblots were performed with antibodies specific for 

caspase-3 or Bik. Bik level decreased after CDDP treatment, but in cells treated 

with the caspase inhibitor ZVAD-fmk before and during CDDP treatment, Bik 

levels were similar to the controls. This indicates that the change in the level of 

Bik protein is caspase dependent and thus may not play a role in regulating 

cytochrome c release during CDDP-induced apoptosis in SH-SY5Y cells. 

Caspase-3 cleavage was studied in the same protein extracts as a control for the 

effect of ZVAD-fmk.
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Figure 4.4 PUMA-a protein levels increase in CDDP-treated SH-SY5Y cells

(a) SH-SY5Y cells were treated with 10 pg/ml of CDDP or TDDP and protein 

constructs were prepared at the times indicated (up to 24 hours). Immunoblotting 

was performed with an antibody that recognises PUMA-a and -p. A 

representative PUMA immunoblot is shown. The PUMA antibody detected two 

bands. One of these increased in level from 8 hours of CDDP treatment whereas 

the other band did not reproducibly change in level. No change was detected in 

either band following TDDP treatment. Tubulin was used as loading control and 

this showed that the amount of protein loaded in each lane was relatively equal.

(b) Identification of the PUMA-a band in SH-SY5Y cells. Expression vectors 

for FLAG-tagged PUMA-a and PUMA-p were transfected into Cos-7 cells. 

CMV-Neo was transfected as a negative control. Protein extracts were prepared 

and run alongside extracts from SH-SY5Y cells treated with CDDP (10 pg/ml) for 

8 hours (C8) or TDDP (10 pg/ml) for 16 hours (T16). The proteins were then 

transferred to nitrocellulose and immunoblotting was performed with the anti- 

PUMA antibody. The higher molecular weight band detected in the SH-SY5Y 

cells extracts is likely to be PUMA-a. The lower molecular weight band is larger 

than FLAG-tagged PUMA-P and is therefore non-specific.
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is probably non-specific since it was larger than the FLAG-tagged 18 kDa 

PUMA-p protein. So, PUMA-a increases in level in SH-SY5Y cells treated with 

CDDP starting between 8 to 12 hours (Figure 4.4a).

I next investigated whether the increase in PUMA-a levels was 

independent of caspase activity (Figure 4.5a). SH-SY5Y cells treated with 

CDDP with or without ZVAD-fmk were used to prepare protein extracts for 

immunoblotting experiments, with antibodies specific for p53 and its target 

PUMA. The proteins were detected using ECL reagents and there was no 

difference in pattern between the CDDP-treated and CDDP with ZVAD-fmk- 

treated cells. This indicates that changes in the level of both p53 and PUMA are 

upstream of caspase activation. PUMA could therefore play a role in regulating 

cytochrome c release, which leads to caspase activation in CDDP-treated SH- 

SY5Y cells.

Three independent PUMA immunoblots were quantitated on a 

densitometer and PUMA-a levels were normalised to the tubulin loading control 

to determine the relative level of PUMA protein at various times during CDDP 

and TDDP treatment. The average values and their standard error of the mean 

(SEM) were plotted (Figure 4.5b). The level of PUMA-a protein increased up to 

6-fold on average in CDDP-treated cells whereas there was no significant change 

in its level following TDDP treatment.

4.2.3 PUMA mRNA levels increase during CDDP-induced apoptosis in 

SH-SY5Y cells

To determine whether the increase in the level of the PUMA protein was 

due to an increase in the level of PUMA mRNA, RT-PCR experiments were 

performed with total RNA extracted from SH-SY5Y cells treated with CDDP and 

TDDP and primers specific for PUMA. The structure of the human PUMA gene 

is shown in Figure 4.6a. As a result of alternate splicing several different 

transcripts are produced which encode the proteins PUMA-a, -(3 and -8. PUMA- 

a  and -P are BH3-only proteins. The position of the RT-PCR primers used is 

indicated. These primers can detect the three transcripts which encode PUMA-a, 

p and 8. In the case of SH-SY5Y cells several PCR products were observed on 

agarose gels (Figure 4.6b). The different bands were extracted from the gel,
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Figure 4.5 The change in the level of PUMA-a protein is caspase- 

independent and PUMA increases in level by up to 6-fold after CDDP 

treatment.

(a) Induction of p53 and PUMA by CDDP is caspase independent

p53 and PUMA-a protein levels in cells treated with DMSO (D), lOpg/ml of 

CDDP (C) or CDDP (lOpg/ml) and ZVAD-fmk (CZ) were analysed by 

immunoblotting. No change was observed between CDDP treatment and 

treatment with both ZVAD-fmk and CDDP. This indicates that the changes in 

p53 and PUMA-a protein levels are independent of caspase activity. 

Representative immunoblots are shown.

(b) Quantification of PUMA induction

The level of PUMA-a protein was measured on a densitometer and normalised to 

the level of tubulin. PUMA-a increases in level by up to 6-fold during CDDP 

treatment whereas there is no significant increase with TDDP treatment in SH- 

SY5Y cells. The results shown are the average of three independent experiments 

± SEM. The level of PUMA-a protein was significantly higher in cells that had 

been treated with CDDP for 24 hours compared to time zero. * p<0.05, Student's 

t-test. In the case of cells treated with TDDP for 24 hours the level of PUMA-a 

was not significantly different to the level at time zero. p=0.792, Student's t-test.
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Figure 4.6 Characterisation of PUMA transcripts in CDDP-treated SH- 

SY5Y cells.

(a) Structure of the human PUMA gene

Alternate splicing of the PUMA mRNA generates the three transcripts shown, 

which encode PUMA-a, p and 8 as indicated as found by Nakano and Vousden, 

(2001) and transcript 4 was identified by Yu et al. (2001) to also encode PUMA- 

a. Exons are shown as orange boxes. The position of the RT-PCR primers used 

in my experiments is shown on Exon lb and Exon 4 (red arrows). Transcript 1 is 

the longest transcript containing two long open reading frames: one ORF starts in 

Exon 2 and encodes PUMA-a, the BH3 domain is in Exon 3 and the other 

initiates at exon lb to encode a protein with no known homology, PUMA-y. The 

other BH3-domain containing protein, PUMA-p is encoded by transcript 2 with 

its initiation codon in Exon lb. Transcript 4 described by Yu et al (2001) to 

encode PUMA-a contains Exon la and not Exon lb (as with Nakano and 

Vousden, 2001). The position of a p53 binding site in the PUMA gene is 

indicated. Transcript 3 contains Exons lb and 4 and encodes the PUMA-8 protein 

initiating from exon lb with no BH3 domain. This figure is based on Figure 1 in 

Nakano and Vousden, 2001.

(b) PUMA transcripts in CDDP-treated SH-SY5Y cells

RT-PCR was performed using PUMA-specific primers and total RNA extracted 

from CDDP-treated SH-SY5Y cells. The PCR products were run on a 1.5% 

agarose gel. The bands observed were extracted from the gel, cloned into the 

pGEM-T Easy vector and sequenced. The positions of the PUMA-a, -p and -8 

transcripts are indicated.
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cloned and sequenced to determine their identity. Figure 4.6b shows which of 

the bands correspond to the three PUMA transcripts that encode PUMA-a, -P and 

-8. The other bands between these PCR products varied in intensity from 

experiment to experiment and were usually less abundant. When cloned and 

sequenced, they were found to contain some regions of homology to PUMA but it 

was not possible to conclude whether they were artefacts of the PCR conditions 

used or genuine alternative transcripts present in SH-SY5Y cells.

Timecourse experiments were performed to determine whether the PUMA 

transcripts changed in level in SH-SY5Y cells treated with CDDP and TDDP 

(Figure 4.7). The PUMA-a transcript increased in level in CDDP-treated cells 

(Figure 4.7a). Three independent experiments were performed and the relative 

level of the PUMA-a transcript was determined (Figure 4.7b). The PUMA-a 

transcript increased within the first 8 hours after CDDP treatment and reached a 

peak after 16 hours. There was only a minor change in its level in TDDP-treated 

cells.

4.2.4 Overexpression of PUMA-a promotes apoptosis in SH-SY5Y 

cells

Since PUMA-a increased in level after CDDP treatment, I investigated 

whether overexpression of PUMA-a was sufficient to induce apoptosis in SH- 

SY5Y cells and whether the BH3 domain was required for this. To answer these 

questions, I transfected SH-SY5Y cells with a GFP expression vector, to mark the 

transfected cells, and the other expression vectors were pCMVneoBam, 

pCMVneoBam-FLAG-PUMA-a and pCMVneoBam-FLAG-ALRR-PUMA-a 

(provided by K.Vousden, CRUK; Nakano and Vousden, 2001). Cells were 

transfected at a 1:3 ratio of GFP: PUMA expression vector (Figure 4.8a). 

Representative images are shown in Figure 4.8a showing that the cells transfected 

with the Flag-tagged expression vector also co-express the GFP protein. Since the 

two proteins were co-expressed in transfected cells, I was able to simplify the cell 

staining procedure by omitting the incubation step with the FLAG antibody and 

its secondary mouse antibody. Consequently, I only counted the cells expressing 

GFP. In experiments to block caspase activity, ZVAD-fmk was added to the SH-
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Figure 4.7 RT-PCR analysis of PUMA mRNA induction in SH-SY5Y cells

(a) RT-PCR analysis of PUMA mRNA levels in CDDP-treated SH-SY5Y cells

Representative RT-PCR timecourse showing that PUMA mRNA levels increase in 

SH-SY5Y cells during CDDP-induced apoptosis. PUMA mRNA was amplified 

using the PCR primers specific for Exon lb and Exon 4 of the PUMA gene. PCR 

products were run on a 1.5% agarose gel alongside the 1 kb+ DNA ladder. RT- 

PCR reactions were also performed with GAPDH-specific primers as a control. 

The position of the PUMA-a transcript (transcript 1) is indicated.

(b) Relative level of the PUMA-a transcript compared to GAPDH in SH- 

SY5Y cells treated with CDDP and TDDP

The PUMA-a transcript at each timepoint was quantitated using the gel image 

(Figure 4.7a) and by setting the level of the most saturated PUMA-a band as the 

level to which the bands at other timepoints were compared. The values were 

normalised to the amount of GAPDH to give the relative level. The relative level 

of PUMA-a mRNA was then plotted against time after addition of CDDP and 

TDDP. The PUMA-a transcript increases up to 8-fold peaking at 16 hours of 

CDDP treatment. The graph represents the average of at least three independent 

RT-PCR experiments ± SEM.
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SY5Y medium at a concentration of 100 pM after the transfection medium had 

been aspirated.

At 16 hours after transfection, the number of transfected GFP-expressing cells 

(green cells) was determined by counting green cells in ten fields of view along 

each coverslip. This corresponded to 500-600 green cells on average for the empty 

pCMVneoBam vector (Figure 4.8b). Cells were then prepared for 

immunofluorescence and stained with Hoechst dye to visualise nuclear 

morphology. Around 200 GFP expressing cells were counted per coverslip and 

their nuclear morphology was recorded to calculate the percentage of attached 

transfected cells undergoing apoptosis (Figure 4.8c).

At first, it seemed as if the PUMA-a expression vector had a low transfection 

efficiency because the number of GFP positive cells in 10 fields was approximately 

100 times less than in the pCMVneoBam-FLAG-ALRR-PUMA-a and 

pCMVneoBam transfections. However, treatment with ZVAD-fmk showed that 

this low number of GFP positive cells is due to cells being lost through caspase- 

dependent apoptosis, which ZVAD-fmk rescued (Figure 4.8b). The percentage of 

apoptotic and normal nuclei in 200 of the transfected cells was also determined and 

the average of three independent experiments was plotted (Figure 4.8c). The 

results suggest that overexpression of PUMA-a tends to increase the percentage of 

pyknotic nuclei compared to the control vector and this is reversed by ZVAD-fmk. 

Furthermore the BH3-domain was essential, as a construct expressing the BH3 

mutant of PUMA-a did not induce an increase in the percentage of pyknotic nuclei 

or cell death in SH-SY5Y cells compared to the empty vector control. The number 

of cells transfected with the FLAG-PUMA-a vector that had apoptotic nuclei was 

higher than the controls, this difference was not significant (Student’s t-test) as 

might be expected. This could be due to the cell staining procedure which involves 

a number of washing steps during which it is possible that many cells at advanced 

stages of apoptosis were washed off.

4.2.S Construction and characterisation of PUMA siRNA expression 

vectors

It will be important to determine whether PUMA-a is essential for CDDP- 

induced apoptosis in SH-SY5Y cells. As a tool for such studies I constructed
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Figure 4.8 Overexpression of FLAG-PUMA-a in SH-SY5Y cells induces 

caspase-dependent cell death and this requires a functional BH3-domain

SH-SY5Y cells were transfected with a GFP expression vector together with 

pCMVneoBam, pCM VneoBam-FLAG-PUM A-a or pCMVneoBam-FLAG-ALRR- 

PUM A-a. Cells were transfected at a 1:3 ratio o f GFP: PUMA expression vector. 

ZVAD-fmk was added to the SH-SY5Y medium at a concentration o f  100 pM  to 

block caspase activity, as indicated.

(a) SH-SY5Y cells were transfected with the GFP expression vector and 

pCMVneoBam-FLAG PUM A -a and were fixed at 16 hours after transfection and 

stained with the FLAG-specific M2 monoclonal antibody and Rhodamine- 

conjugated anti-mouse antibody followed by Hoechst dye, as described in the 

Methods section. Representative images are shown o f transfected SH-SY5Y cells 

expressing FLAG-PUM A-a (A) and EGFP (B) and stained with Hoechst to reveal 

nuclear morphology (C). The arrow indicates a transfected cell co-expressing the 

Flag-tagged PUMA protein and EGFP (D). It has a pyknotic nucleus (C).
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Figure 4.8 (continued)

(b) At 16 hours after transfection, the number of green GFP-expressing transfected 

cells was determined in ten fields of view along each coverslip. In the case of cells 

transfected with the empty vector pCMVneoBam or the BH3 mutant expression 

vector (FLAG-ALRR-PUMA-a) there were 500-600 GFP positive cells per field. 

However, when cells were transfected with the PUMA-a expression vector there 

were 100 X fewer GFP positive cells. ZVAD-fmk treatment rescued nearly all of 

the cells transfected with the PUMA-a expression vector. The average ± SEM for 

three independent experiments is shown.

(c) After the number of GFP expressing cells had been determined, the cells were 

prepared for immunofluorescence and stained with Hoechst dye to reveal nuclear 

morphology. Around 200 cells per coverslip were counted and their nuclear 

morphology was recorded to calculate the percentage undergoing apoptosis. The 

number of apoptotic and normal nuclei in 200 of the transfected cells was 

determined and the average values for three independent experiments were plotted 

with the SEM. The figure shows that overexpression of PUMA-a induces a 

caspase-dependent increase in the percentage of pyknotic nuclei and this effect 

requires the PUMA BH3 domain. Even though the trend is towards an increase in 

pyknotic nuclei with PUMA-a overexpression but with the average of three 

experiments, this difference is not significant and more experiments are necessary.
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expression vectors for siRNAs specific for human PUMA-a. Using Oligoengine 

software, 64 nucleotide double stranded oligonucleotides were designed and cloned 

into pSUPER digested with Bglll and Hindlll (Figure 4.9a). The 19 nucleotide 

targets were selected according to the following criteria: to not contain stretches of 

four or more consecutive T or A residues, to have 30 -70% overall GC content, to 

lie within the coding sequence of the target, to begin with a G or C residue, to 

begin after an AA dimer in the 5' flanking sequence, to end just prior to a TT, TG 

or GT doublet in the 3' flanking sequence, to not contain Xhol or EcoRI restriction 

enzyme sites, to share minimal sequence identity with other genes (assessed by a 

BLAST search) and to not overlap with other 19 nucleotide targets selected from 

the same target sequence.

Plasmids with inserts were identified by digesting the miniprep DNA with 

EcoRI and Hindlll (Figure 4.9b). The constructs were then sequenced using the 

T3 and T7 primers to identify inserts with the correct DNA sequence. In order to 

find the most efficient siPUMA construct, initial experiments involved transfecting 

SH-SY5Y cells with the FLAG-PUMA-a expression vector and either pSUPER or 

the pSUPER siPUMA constructs for 16 hours with 50 pM ZVAD-fmk (to reduce 

PUMA-induced death). At 16 hours after transfection, protein was extracted and 

immunoblotting was performed using the PUMA antibody. Figure 4.9c shows a 

representative PUMA immunoblot. All of the siPUMA constructs tested reduced 

the level of the over-expressed FLAG-PUMA-a protein. Constructs 452.1 and

518.1 appeared to be the most effective and reduced the level of overexpressed 

PUMA-a by 67% (Figure 4.9d). Although I was not able to completely knock 

down the level of overexpressed PUMA-a with the siPUMA constructs in these 

pilot experiments the siPUMA vectors might have a greater effect on the 

endogenous PUMA-a, which is present at much lower levels during CDDP 

treatment. This could be investigated by co-transfecting SH-SY5Y cells with a 

GFP expression vector and pSUPER or the siPUMA constructs. The transfected 

cells would then be treated with or without CDDP for 16 hours to induce the 

endogenous PUMA protein and the transfected GFP expressing cells would be 

isolated by FACS. PUMA protein levels in the GFP positive cells would be 

determined by immunoblotting with the PUMA antibody. If the siPUMA 

constructs effectively knock down the level of the endogenous PUMA protein their
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effect on CDDP-induced death could be investigated using the GFP co-transfection 

assay described in Figure 4.8.
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Figure 4.9 Construction and preliminary characterisation of siPUMA 

expression vectors.

(a) Overview of how functional siRNA is produced by the pSUPER RNAi 

system

The silencing of a specific gene can be carried out by cloning a 64 nucleotide (nt) 

double stranded oligonucleotide, that contains a unique 19-nucleotide sequence 

derived from the mRNA transcript of the targeted gene, followed by a spacer and 

the inverse 19 nt sequence into the pSUPER vector between the unique Bglll and 

Hindlll enzyme sites. In this position, the oligo is downstream of the HI promoter 

and is transcribed to generate a transcript that can form a short hairpin structure 

with a 19 base-pair double-stranded region and a short loop formed by the spacer 

region. The hairpin has been designed to be an optimal substrate for the enzyme 

Dicer, which cleaves the hairpins to generate the short double-stranded siRNA.

(b) Screening for siPUMA constructs by restriction enzyme digestion

Plasmids with inserts of 285 bp were identified by digesting miniprep DNA with 

EcoRI and Hindlll and then running the digested DNA on a 2% agarose gel 

alongside the 1 kb DNA ladder. Eight DNA samples of each of the three siPUMA 

constructs (437, 452 and 518) were selected for restriction enzyme digest. The 

pSUPER construct (P) was digested with EcoRI and Hindlll to release a 227 bp 

band (indicated by 4c) and run alongside the miniprep DNA as a control.
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Figure 4.9 (continued)

(c) PUMA-a protein expression in co-transfected SH-SY5Y cells

SH-SY5Y cells were transfected with the FLAG-PUMA-a expression vector and 

either pSUPER or the pSUPER siPUMA constructs as indicated. The transfected 

cells were treated with 50 pM ZVAD-fmk to reduce PUMA-induced cell death. At 

16 hours after transfection, protein extracts were prepared and immunoblotting was 

performed with antibodies specific for PUMA or tubulin. The representative 

immunoblot shows a reduction in PUMA-a expression with the siPUMA 

constructs.

(d) Average level of PUMA-a protein

PUMA-a protein levels were determined by scanning immunoblots on a 

densitometer and were normalised to the level of tubulin. The average level of 

PUMA-a protein was calculated for three independent experiments. The siPUMA 

constructs 452.1 and 518.1 reduced FLAG-PUMA-a levels by 67%. The average 

± SEM for three independent experiments is shown.
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4.4 Discussion

Bcl-2 family proteins regulate the release of cytochrome c and other 

proapoptotic molecules from the mitochondria. In this chapter, I investigated 

which members of the Bcl-2 family might play a role in the regulation of 

mitochondrial permeability during CDDP-induced apoptosis of SH-SY5Y cells. 

Western blotting was performed to determine whether any changes occur in the 

pattern of expression of Bcl-2 family proteins. The antiapoptotic Bcl-2 family 

members Bcl-2, B c1-xl and Bcl-w, did not consistently change in level but Mcl-1 

levels decreased reproducibly after 8 hours of CDDP treatment. This change in the 

level of Mcl-1 protein is a result of caspase activity since it was prevented by 

ZVAD-fmk. However, we did not observe any of the Mcl-1 fragments generated 

by caspase cleavage that had been previously reported (Clohessy et al., 2004; 

Weng et al., 2005). There are two caspase cleavage sites in the human Mcl-1 

protein, which results in the formation of three fragments. The three fragments are 

an N-terminal fragment from amino acids 1 to 127, a long C-terminal fragment 

from amino acids 128-350 (A 127) and a shorter C-terminal fragment from amino 

acids 158-350 (A157). The Mcl-1 antibody used by the two groups is Santa Cruz 

sc-19, which was raised against a peptide from amino acid 121-139 in human Mcl- 

1 and which can detect the A127 fragment but not A157 fragment. However, in 

SH-SY5Y cells, A127 was not observed, even at longer exposure. This suggests 

that the caspase-regulated cleavage of Mcl-1 in CDDP-treated SH-SY5Y cells 

occurs by a mechanism different to that previously observed with other cell types. 

The decrease in Mcl-1 is unlikely to cause cytochrome c release because the latter 

is caspase-independent in CDDP-treated SH-SY5Y cells as shown by treatment 

with ZVAD-fmk.

The multidomain proapoptotic proteins Bax and Bak did not change in level 

in CDDP-treated cells. Bax has previously been reported to be a transcriptional 

target of p53 but this does not appear to be the case in SH-SY5Y cells. However, it 

would be interesting to investigate whether Bax translocates from the cytosol to the 

mitochondrial outer membrane by performing subcellular fractionation followed by 

immunoblotting or by immunocytochemistry. Indeed, Makin et al, (2001) 

demonstrated that CDDP induced translocation of Bax and exposure of the N-
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terminus of Bax in SH-SY5Y cells, even though Bax expression did not change 

under these conditions.

The BH3-only proteins Bad, Bid, Bim, Noxa, Hrk and Bmf did not show 

any consistent change during CDDP treatment in SH-SY5Y cells. It cannot be 

excluded that Bad phosphorylation changes during CDDP treatment and this would 

need to be assessed using appropriate phospho-Bad-specific antibodies. This is 

possible because it has previously been shown that p53 can activate the 

transcription of PTEN, a phosphatase that inhibits PI3K-Akt signalling (Stambolic 

et al, 2001). Bid did not increase during CDDP treatment and did not appear to be 

cleaved, which is consistent with the data presented in the previous chapter 

showing that SH-SY5Y cells do not express caspase-8.

A recent study suggests that Bik induction is required to initiate early release of 

Ca from the endoplasmic reticulum, mitochondrial fragmentation, and activation 

of the mitochondrial cytochrome c release pathway (Mathai et al., 2005). In SH- 

SY5Y cells, the level of Bik protein decreased after 8 hours of CDDP treatment but 

remained constant during TDDP treatment. A smaller molecular weight band 

appeared after 16 hours and this increased in level at 24 hours of CDDP treatment. 

Human Bik is a phosphoprotein that migrates as a doublet at 24-25 kDa in 

immunoblots (Verma et al., 2001). When SH-SY5Y cells were treated with both 

CDDP and ZVAD-fmk there was no decrease in Bik level suggesting that the 

CDDP-induced change in Bik depends upon caspase activity and thus Bik may not 

be a key regulator of cytochrome c release during CDDP-induced apoptosis in SH- 

SY5Y cells. I checked the human Bik protein sequence for the presence of 

potential caspase cleavage sites. Thirteen Asp residues were identified in the 

sequence and the three residues N-terminal to Asp were examined to identify any 

homology to known caspase cleavage sites (Thomberry et al., 1997). I identified 

three possible candidates ( SEED38, DEMD69 and DIRD102) with some similarity to 

the caspase-3 cleavage site DEVD. Future work could involve identifying which 

of these possible caspase cleavage sites may be involved in the down regulation of 

Bik during CDDP treatment in SH-SY5Y cells.

Since the aim of my work was to identify the Bcl-2 family member that 

regulates the release of cytochrome c, the role of Mcl-1 and Bik was not pursued 

further since their downregulation was reversed by ZVAD-fmk. Nevertheless, to
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have a complete understanding of the mechanism by which CDDP induces 

apoptosis in SH-SY5Y cells, it would be interesting to understand why Mcl-1 and 

Bik downregulation occurs. For example, does this contribute to the feed-forward 

amplification of the apoptotic signal once caspases are activated (clohessy, bjh, 

2004, weng, jbc, 2005)?

PUMA, another BH3-only protein and a direct transcriptional target of p53, 

increased in level by up to 6-fold during CDDP treatment but did not increase 

during TDDP treatment. PUMA-a mRNA levels increased within the first 8 hours 

after CDDP treatment and reached a peak after 16 hours. PUMA was initially 

identified as a gene activated by p53 in cells undergoing p53-induced apoptosis 

(Nakano and Vousden, 2001; Yu et al, 2001) and as a protein interacting with 

Bcl-2 (Han et al, 2001). The PUMA gene contains a p53 binding site in its first 

intron and rapid induction of PUMA mRNA showed PUMA to be a direct 

transcriptional target of p53. Nakano and Vousden, (2001) described four PUMA 

transcripts, whereas Yu et al. (2001) reported only one. Yu et al describe their 

transcript to contain exon la  and not exon lb (as with Nakano and Vousden, 2001) 

(Figure 4.6a). The exon la-containing transcript encodes the protein that Vousden 

and Yu name PUMA-a, which is functionally identical to PUMA-p. However, 

both groups identify the same p53 binding site so p53 dependent activation will 

lead to expression of a pro-apoptotic BH3 domain protein regardless of which first 

exon is used. Expression of the PUMA locus is complex due to extensive splicing 

and the presence of alternative open reading frames. Only PUMA-a and PUMA-P 

contain the BH3 domain, interact with Bcl-2 and B c1-x l , and localise to the 

mitochondria. However, this localisation is not dependent on the presence of the 

BH3 domain. The BH3 domain is essential for the efficient induction of apoptosis 

by both PUMA-a and PUMA-p. PUMA-8 does not contain the BH3 domain, does 

not interact with Bcl-2 and has no growth-inhibitory or apoptotic activity. Yu et al 

(2003) showed using colorectal cancer cells that PUMA-induced apoptosis depends 

on the presence of Bax, which undergoes multimerisation when PUMA is induced.

Overexpression of PUMA-a shows a trend towards an increase in apoptotic 

nuclei when compared to the normal and BH3-mutated constructs (Figure 4.8c). 

However, this increase is not significant and more experiments will be required. 

SH-SY5Y cells detach when they undergo apoptosis, so many of these dying cells
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would have been lost when counting the number of normal and apoptotic nuclei in 

PUMA-a overexpression without ZVAD-fmk. However, cells protected by 

ZVAD-fmk, will be attached and show normal nuclei even though PUMA-a 

overexpression may have already initiated apoptosis by cytochrome c release. This 

overexpression study needs to be supported by analysing cytochrome c release as 

shown in section 3.2.6.2.

Inhibition of PUMA expression will lead to a more comprehensive 

understanding of the role of PUMA-a in CDDP-induced apoptosis in SH-SY5Y 

cells. PUMA knockout mice replicate a majority of the apoptotic deficiencies 

observed in p53 knockout mice. Apoptosis induced by DNA-damaging drugs and 

y-irradiation (models for p53-induced apoptosis) were reduced by an extent similar 

to that observed inp53 knockout mice (Jeffers et al, 2003; Villunger et al., 2003). 

The similar phenotypes of PUMA knockout mice and p53 knockout mice suggest 

that PUMA is an essential p53 effector during apoptosis under some conditions. I 

aimed to study whether PUMA was essential for CDDP-induced apoptosis in SH- 

SY5Y cells by using RNA interference to suppress PUMA-a expression. I found 

that two of the four siPUMA constructs that I had designed and transfected into 

PUMA-a-overexpressing SH-SY5Y cells knocked down PUMA-a expression by 

two-thirds. The aim of future experiments will be to transfect one of these efficient 

siPUMA constructs into SH-SY5Y cells together with a GFP expression vector and 

then treat the cells with CDDP or DMSO. GFP-expressing transfected cells would 

be isolated by FACS and PUMA protein levels would be analysed by 

immunoblotting. If the siPUMA construct reduces the induction of PUMA-a by 

CDDP, I will investigate its effect on CDDP-induced death using the co

transfection assay described in section 4.2.5.

Another important question is to determine whether induction of PUMA in SH- 

SY5Y cells requires p53. RNAi technology could be used to suppress p53 

expression in SH-SY5Y cells using the previously characterised pSUPERp53 

construct developed by Agami et al., (2002). Studies involving the suppression of 

p53 expression to determine whether PUMA levels increase in CDDP-treated SH- 

SY5Y cells would answer whether PUMA is a direct transcriptional target of p53 

or whether as Melino et al. (2004) found in SAOS and HeLa cells, p73 contributes 

to PUMA induction and subsequent Bax translocation and cytochrome c release.
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It is possible that p53 activates the transcription of other proapoptotic genes in 

CDDP-treated SH-SY5Y cells. In the experiments described in the next chapter, I 

attempted to acquire some information about what other genes could possibly play 

a role in CDDP-induced death of SH-SY5Y cells by using Affymetrix microarrays 

to analyse the expression of a large number of genes in SH-SY5Y cells treated with 

DMSO, TDDP and CDDP. See summary of results thus far (Figure 4.10).
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Chapter 5: Microarray analysis of CDDP-induced 

apoptosis in SH-SY5Y cells

5.1 Introduction

I have shown in the previous chapters that CDDP induces apoptosis in SH- 

SY5Y cells via the intrinsic mitochondrial pathway with the release of cytochrome c 

leading to procaspase-9 cleavage and caspase-3 activation. I have also found an 

increase in the level of p53 protein during CDDP and TDDP treatment but to a much 

greater extent with the former. In the previous chapter, I described how PUMA-a 

RNA and protein levels increase during CDDP treatment and that overexpression of 

PUMA-a was sufficient to induce apoptosis in SH-SY5Y cells.

In this chapter, I describe experiments in which I used the Human Genome 

U133A microarray containing over 22,000 probe sets bound to a solid surface, each 

representing a single gene, splice variant, or other DNA element to study the gene 

expression profile of over 14,000 genes during treatment of SH-SY5Y cells with 

DMSO, TDDP and CDDP. The aim was to determine which mRNAs change 

significantly in level with CDDP but not with TDDP and DMSO treatment that could 

play a role in the apoptotic response in SH-SY5Y cells. Each high-density array 

provides multiple, independent measurements for each transcript. The multiple 

probes offer a complete data set with accurate, reliable, reproducible results from 

every experiment.
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5.2 Results

5.2.1 Cell preparation for microarray analysis

SH-SY5Y cells were grown in three 10 cm dishes and prepared as described in 

section 2.2.7.1. When 90% confluent, the cells were treated with DMSO, CDDP and 

TDDP for 12 hours before RNA was extracted as described in section 2.2.9.1. Since I 

required a triplicate set of RNA samples for microarray analysis, cells from three 

different passages were grown and treated with DMSO, CDDP or TDDP when 

confluent (Figure 5.1). RNA was extracted using Trizol and following the 

chloroform step, the RNA pellets from each cell passage were stored under 75% 

ethanol at -20°C until all the RNA from triplicate experiments had been collected. I 

then continued to process the RNA samples from the triplicate experiments all 

together to limit variability in the experiments as described in section 2.2.9.1, except 

that RNA prepared for microarray analysis was not treated with DNase I nor was 

glycogen used as a carrier.

RNA concentration was determined by measuring the absorbance at 260 nm 

(A260) in a spectrophotometer using a quartz cuvette. A solution of RNA whose A260 

= 1 contains approximately 40 pg of RNA per ml. RNA integrity was assessed by 

denaturing gel electrophoresis and ethidium bromide staining. The gel was run at 70 

V in 1 X MOPS running buffer and viewed using a transilluminator (Figure 5.2a). In 

undegraded RNA preparations, the 28S ribosomal RNA band should appear twice as 

intense as the 18S ribosomal RNA band. If the RNA is degraded, this would appear 

as a smear of smaller sized RNAs or the 28S and 18S ribosomal RNA bands will 

show equal intensities. The figure clearly shows that the RNA prepared for 

microarray analysis was undegraded. This was also confirmed by running the RNA 

on a Bioanalyser chip (data not shown). In addition, the RNA was used for RT-PCR 

with the PUMA-a primers to confirm that the quality of the RNA was good. Figure 

5.2b shows that following CDDP treatment the transcript encoding PUMA-a was 

present at higher concentrations than during TDDP treatment.
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Figure 5.1 Experimental Design

The aim of the experiments described in this chapter was to use Affymetrix 

GeneChip® arrays to identify genes that change greatly in expression during CDDP 

treatment of SH-SY5Y cells and slightly or not at all with TDDP and DMSO 

treatment and then to go on to identify any functional role such genes may play in 

CDDP-induced apoptosis of SH-SY5Y cells. Cells were grown until 90% confluent 

then treated with CDDP, TDDP and DMSO for 12 hours prior to the extraction of 

total RNA for microarray analysis. RNA integrity was assessed by denaturing gel 

electrophoresis and also by running the RNA on a Bioanalyser chip. RT-PCR was 

also carried out on the RNA with primers for PUMA. After verifying that the RNA 

was of good quality, it was processed for Affymetrix Genechip Hybridisation (the 

picture in Figure 5.2.1 is taken from www.affVmetrix.com) and the data was analysed 

for changes in gene expression during CDDP induced-apoptosis in SH-SY5Y cells 

compared to TDDP and DMSO treatment.
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Figure 5.2 Assessment of RNA integrity & quality

(a) Analysis of RNA integrity

RNA was run on a denaturing gel with ethidium bromide and analysed for 

degradation. Undegraded RNA shows a 2:1 ratio of the 28S: 18S ribosomal bands. 

Degraded RNA would appear as a smear of smaller sized bands or 28S and 18S 

would show similar intensities. The gel photo shows the integrity of the RNA from 

SH-SY5Y cells treated with CDDP (C), TDDP (T) or DMSO (D) in the triplicate set 

of experiments (I, II and III).

(b) PUMA-a mRNA expression

The level of the PUMA-a mRNA was greatly increased in the RNA samples prepared 

from CDDP (C) treated SH-SY5Y cells but was much lower following TDDP (T) or 

DMSO (D) treatment.
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5.2.2 Affymetrix GeneChip® Hybridisation

Biotin-labelled cRNA was prepared from the total RNA using a T7-(dT)24
TW 'TW

primer and the Superscript Choice system (Gibco), and BioArray HighYield 

RNA Transcript labelling kit (ENZO) and then purified using Qiagen RNeasy 

columns. The purified labelled cRNA was fragmented and hybridised to the

Affymetrix Human Genome U133A Array, which contains 22,283 human gene cDNA

probes. Three independent experiments were performed to assess array

reproducibility. The procedure of processing total RNA for Affymetrix GeneChip® 

Hybridisation was performed by Danielle Fletcher as described in the Affymetrix 

GeneChip® Expression Analysis Manual.

5.2.3 Statistical analysis o f microarray data

The data collected from the three independent experiments via Affymetrix
(fi)GeneChip Hybridisation was analysed using Genespring 5 software. All 22,283 

genes found (Figure 5.3a) were normalised to the median within and across the 

arrays. Genes detected in at least one treatment condition (DMSO, CDDP or TDDP) 

are shown in Figure 5.3b. 3,312 genes showed a greater than 1.5 fold change and 

PUMA was included in this (Figure 5.3c). However, in order to reduce the number 

of genes for analysis, stringency was increased to detect genes that showed a greater 

than 2 fold change between TDDP and CDDP. 1014 genes were detected and 864 

genes passed the MTC and Benjamini-Hochberg test (Figure 5.3d). These genes 

were analysed and classified according to their function and their average relative 

level during DMSO, TDDP and CDDP treatment. Some of the genes analysed are 

represented in Figure 5.4.
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Figure 5.3 Analysis of the SH-SY5Y microarray data

(a) All 22,283 genes detected

All genes found on the Human Genome U133A micro arrays were normalised to the 

median fluorescence. The figure shows the log of the normalisation to the median of 

intensity per-chip and per-gene. Normalising per chip was done where the signal of 

each gene is divided by the median intensity of the chip to control variations between 

the arrays and normalisation per gene was done to account for the difference in 

detection efficiency of each probe. This also scales the relative gene expression levels 

for comparison. The y-axis represents normalised intensity (log scale).

(b) Genes detected in at least one treatment condition

The data is filtered to remove the genes that show no change in gene expression 

during the three treatment conditions. The graph shows the median expression of the 

triplicate experiments for each gene during DMSO, TDDP and CDDP treatment. The 

yellow lines represent the expression of each gene during the three treatment 

conditions. Some of the genes with high expression during CDDP treatment are 

shown (white lines). The y-axis represents normalised intensity (log scale).
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(c) Genes showing greater than 1.5 fold change

3,312 genes showing a greater than 1.5 fold change in gene expression between 

TDDP and CDDP. PUMA expression is indicated by a red line. The y-axis 

represents normalised intensity (log scale).

(d) Genes showing greater than 2 fold change

All 22,283 genes found were normalised to the median within and across the arrays. 

The figure represents the intensity of 1,014 genes detected based on ANOVA and a 2- 

fold change in gene expression between TDDP and CDDP. White lines show some of 

the genes that are upregulated with CDDP treatment. 864 of these genes passed 

MTC and Benjamini-Hochberg tests. The y-axis represents normalised intensity (log 

scale).
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Figure 5.4 Representative gene lists from microarray data

The data from the microarray experiments was organised into lists of genes that were 

upregulated (a) or downregulated (b) during CDDP treatment. The name of the gene, 

its function, Affymetrix identity number and the average relative value during DMSO, 

TDDP and CDDP treatment are shown.

(a) Representative list of upregulated genes

The genes are listed according to the degree of induction during CDDP treatment 

starting with the most highly upregulated.

(b) Representative list of down regulated genes

The genes are listed according to the degree of repression during CDDP treatment 

starting with the most highly downregulated.
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(a) Representative list of upregulated genes Average Relative Value 
of:

Gene Name Affy. 
I.D. No.

Function DMSO TDDP CDDP

SNK Serum-inducible
kinase

201939
_at

ATP binding, 
protein-threonine 
kinase activity, cell 
cycle

1 1.8659 22.0712

PDF Prostate
differentiation
factor

221577
_x_at

downstream 
mediator of p53 
function

1 8.2797 76.8777

SSAT Spermidine/sper 
mine Nl- 
acetyltransferase

210592
s a t

role in apoptosis 1 1.1142 8.76014

HIS1 HMBA-inducible 202815
s a t

cyclin dependent 
protein kinase 
inhibitor activity, 
transcriptional 
repressor activity

1 1.4996 9.41317

ADXR Ferredoxin
reductase

207813
s a t

encodes a
mitochondrial
flavoprotein

1 1.5876 9.01499

NOXA Phorbol-12- 
myristate-13- 
acetate-induced 
protein 1

204286
s a t

mediates p53- 
dependent 
apoptosis, BH3- 
only protein

1 1.1781 6.36109

p21 Cyclin-dependent 
kinase inhibitor 
1A (p21, Cipl)

202284
_s_at

cell cycle arrest 1 2.6943 14.4121

FAS tumor necrosis 
factor receptor 
superfamily, 
member 6

204780
_s_at

death receptor 
activated by FasL 
binding

1 2.3974 12.4014

ATF3 Activating 
transcription 
factor 3

202672
s a t

p53 target, bZip 
transcription factor

1 1.1156 5.75011

PLGF Placental growth 
factor, vascular 
endothelial 
growth factor- 
related protein

209652
_s_at

molecular marker 
for inflammation

1 1.491 7.20465

NOXA Phorbol-12- 
myristate-13- 
acetate-induced 
protein 1

204285
s a t

mediator of p53- 
induced apoptosis

1 1.1852 5.3237

HEN2 Unknown helix 
loop helix 2

215228
_at

DNA binding 1 1.6743 6.70879
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PIG 10 Ectodermal- 
neural cortex 
(with BTB-like 
domain)

201341
_at

actin-binding, 
protein binding, 
p53 inducible gene

1 1.1587 4.56057

GADD45
a

Growth arrest & 
DNA-damage- 
inducible, alpha

203725
at

mediates activation 
of p38/JNK 
pathway under 
stress

1 1.2894 4.86002

GCLM Glutamate- 
cysteine ligase, 
modifier subunit

203925
at

cysteine
metabolism

1 1.0563 3.71407

SBBI48 Immediate early 
response 5

218611
at

mediating the 
cellular response to 
mitogenic signals

1 1.3711 4.78518

TOB1 transducer of 
ERBB2,1

202704
at

cell growth 
regulation

1 1.411 4.62197

PC3 BTG family, 
member 2

201236
_s_at

antiproliferative
properties

1 1.6708 5.4044

MDM2 Mouse double 
minute 2, human 
homolog of; p53- 
binding protein

217373
_x_at

p53 target, negative 
regulation of cell 
proliferation

1 1.0565 3.01307

DDB2 Damage-specific 
DNA binding 
protein 2 (48 kD)

203409
_at

required for DNA 
binding, NER

1 2.3317 6.50521

GNRH Gonadotropin-
releasing
hormone 1
(leutinizing-
releasing
hormone)

207987
_s_at

negative regulation 
of cell proliferation

1 0.8335 2.26512

PA26 P53 regulated 
PA26 nuclear 
protein

218346
s a t

responds to DNA 
damage stimulus, 
negative regulation 
of cell proliferation 
, cell cycle arrest

1 1.6569 4.32025

p57 Cyclin-dependent 
kinase inhibitor 
1C (p57, Kip2)

219534
_x_at

negative regulation 
of cell proliferation

1 0.8531 2.11076

DR5 Tumor necrosis 
factor receptor 
superfamily, 
member 10b

209295
_at

Death receptor, 
regulation of 
apoptosis

1 1.6537 3.97002

PIM2 Pim-2 oncogene 204269
_at

reverses BAD- 
induced cell death.

1 1.2526 2.94677
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BTG1 B-cell
translocation 
gene 1, anti
proliferative

200920
s a t

negative regulation 
of cell proliferation

1 1.1753 2.71482

RBBP6 Retinoblastoma- 
binding protein 6

205178
s a t

suppresses cell 
proliferation

1 0.9009 2.07273

CCNG Cyclin G1 208796
s a t

p53 target 1 1.093 2.47884

TP53TG1 TP53 target gene 
1

209917
s a t

DNA damage 
response

1 0.9844 2.15731

BAG-3 BCL2-associated 
athanogene 3

217911
_s_at

anti-apoptotic role 1 1.0458 2.25734

DUSP4 Dual specificity 
phosphatase 4

204014
at

negative regulator 
of MAPK pathway

1 1.2688 2.68438

PIG8 Etoposide- 
induced mRNA

208289
s a t

immediate-early 
induction target of 
p5 3-mediated 
apoptosis

1 0.9923 2.06562

BAG1 BCL2-associated
athanogene

202387
_at

binds to & 
enhances anti- 
apoptotic effects of 
Bcl-2

1 1.0838 2.01442

WIP1 Protein
phosphatase ID 
magnesium- 
dependent, delta 
isoform

204566
at

induced in p53- 
dependent manner, 
negative regulation 
of cell proliferation

1 1.5316 2.80301

WIG-1 P53 target zinc 
finger protein

219628
at

p53 target, p53- 
dependent growth 
regulatory pathway

1 1.6197 2.55892

CART1 TNF receptor- 
associated factor 
4

202871
_at

p5 3-mediated 
proapoptotic 
signalling, 
oxidative activation 
of M APK8/JNK

1 1.286 1.99849
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(b) Representative list of 
downregulated genes

Average Relative 
Value of:

Gene Name Affy.
I.D.
No.

Function DMSO TDDP CDDP

MAD1 MAD1 (mitotic arrest 
deficient, yeast, 
homolog)-like 1

204857
at

inhibited by p53, cell 
cycle control, tumour 
suppression

1 0.846 0.019

ADCY9 Adenylate cyclase 9 204497
at

catalyses the formation of 
cyclic AMP from ATP

1 0.926 0.028

SYT Synaptotagmin I 203998
s a t

Ca(2+) sensors in the 
process of vesicular 
trafficking & exocytosis

1 1.009 0.032

Mst2
/STK3

Mammalian STE20- 
like kinase 
2/Serine/threonine 
kinase 3

204068
_at

positive regulation of 
apoptosis, has caspase 
cleavage site

1 1.179 0.04

MYT1L Myelin transcription 
factor 1-like

216672
s a t

regulation of 
transcription, DNA 
dependent

1 1.053 0.04

OATP-D Solute carrier family 
21 (organic anion 
transporter), member 
11

219229
at

translocating
prostaglandins

1 1 0.039

HFAF1 Fas (TNFRSF6) 
associated factor 1

218080
_x_at

binds to FAS to initiate 
apoptosis or enhance 
apoptosis initiated by 
FAS antigen

1 0.877 0.041

TENS1 Tumor endothelial 
marker 6

217853
at

protein amino acid 
dephosphorylation

1 0.76 0.037

PARD3 Par-3 (partitioning 
defective 3, 
C.elegans) homolog

221527
_s_at

establishment &/or 
maintenance of cell 
polarity

1 0.883 0.044

ITPRl Inositol 1,4,5- 
triphosphate receptor, 
type 1

216944
_s_at

target for cdc2/CycB 
during cell cycle 
progression.

1 0.802 0.04

STAG1 Stromal antigen 1 202293
at

transcriptional target for 
p53, mediates p53- 
dependent apoptosis.

1 0.803 0.054

FUT8 Fucosyltransferase 8 
(alpha (1,6) 
fucosyltransferase)

203988
_s_at

Contributes to cancer cell 
malignancy & their 
invasive & metastatic 
capabilities

1 1.117 0.078

146



CUTL1 cut-like 1, CCAAT 
displacement protein 
(Drosophila)

214743
at

DNA binding protein, 
regulate gene expression, 
morphogenesis, 
differentiation, cell cycle 
progession

1 0.914 0.065

PFTAIR
El

PFTAIRE protein 
kinase 1

204604
at

ATP binding, protein 
serine/threonine kinase 
activity

1 1.067 0.085

R0B01 roundabout, axon 
guidance receptor, 
homolog 1 
(Drosophila)

213194
at

axon guidance receptor 
activity

1 0.909 0.076

GRK5 G protein-coupled 
receptor kinase 5

204396 
s at

G-protein coupled 
receptor kinase activity

1 1.298 0.117

BACH2 BTB & CNC 
homology 1, basic 
leucine zipper 
transcription factor 2

221234
s a t

regulation of 
transcription, DNA 
dependent

1 0.993 0.096

ADK Adenosine kinase 204119
_s_at

catalyzes the transfer of 
the y-phosphate from 
ATP to adenosine

1 1.104 0.113

ALK Anaplastic lymphoma
kinase
(Ki-1)

208212
_s_at

activates STAT3, 
protects from apoptosis

1 0.771 0.092

UNC5C Unc5 (C.elegans 
homolog) c

206189
_at

putative tumor 
suppressor controlling 
cell death commitment

1 1.315 0.167

MAP2K
5

Mitogen-activated 
protein kinase kinase 
5

211370
_s_at

protein-tyrosine kinase 
activity, oncogenesis

1 0.931 0.13

GTC90 Golgi transport 
complex 1 (90 kDa 
subunit)

203630
_s_at

intra-golgi transport 1 1.05 0.155

ABCC4 ATP-binding 
cassette, sub-family C 
(CFTR/MRP), 
member 4

203196
at

involved in multi-drug 
resistance, role in cellular 
detoxification as a pump 
for its substrate

1 1.035 0.162

SENP7 Sentrin/SUMO- 
specific protease

220735 
s at

protein sumoylation 1 1.041 0.166

FBXL7 F-box & leucine-rich 
repeat protein 7

213249
_at

phosphorylation- 
dependent ubiquitination

1 1.083 0.178

PLXNA
2

Plexin A2 213030 
s at

neuronal development 1 0.767 0.136

PTK2 PTK2 protein 
tyrosine kinase 2

208820
at

protein tyrosine-kinase 
activity

1 1.041 0.188

ELMOl Engulfment & cell 
motility 1 (ced-12 
homolog, C. elegans)

204513
_s_at

promote phagocytosis & 
cytoskeletal 
rearrangements during 
apoptosis

1 0.967 0.175
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NRCAM Neuronal cell 
adhesion molecule

204105 
s at

CNS development 1 0.847 0.155

RSP5 Neural precursor cell 
expressed, 
developmentally 
down-regulated 4-like

212445
_s_at

sodium channel regulator 
activity

1 1.098 0.205

ASAP1 Development & 
differentiation 
enhancing factor 1

221039
_s_at

regulation of GTPase 
activity

1 0.968 0.181

SPAK Ste-20 related kinase 202786
at

activates p38 pathway, 
has caspase cleavage site.

1 0.837 0.158

PDE4B Phosphodiesterase 
4B, cAMP-specific 
(dunce (Drosophila)- 
homolog
phosphodiesterase
E4)

211302
s a t

cAMP-specific 
phosphodiesterase 
activity, inhibitors 
promote apoptosis

1 0.935 0.18

ATBF1 AT-binding 
transcription factor 1

208033 
s at

neuronal differentiation 1 0.857 0.171

ADAM1
2

a disintegrin & 
metalloproteinase 
domain 12 (meltrin 
alpha)

213790
at

cell-cell & cell-matrix 
interactions including 
neurogenesis

1 0.675 0.135

ANK2 ankyrin 2, neuronal 202920
at

attach integral membrane 
proteins to cytoskeletal 
elements. Also bind to 
cytoskeletal proteins.

1 0.656 0.135

CHES1 Checkpoint 
suppressor 1

205022 
s at

suppression of sensitivity 
to DNA damage

1 0.877 0.182

NCAM1 neural cell adhesion 
molecule 1

212843
at

cell adhesion, cell-cell 
signalling

1 0.896 0.191

DAPK1 Death-associated 
protein kinase 1

203139
at

apoptosis induction 1 0.998 0.214

GULP1 GULP, engulfment 
adaptor PTB domain 
containing 1

215913
_s_at

required for efficient 
engulfment of apoptotic 
cells by phagocytes

1 0.823 0.184

IGF1R Insulin-like growth 
factor 1 receptor

203627
at

anti-apoptotic role 1 0.884 0.209

NAG Neuroblastoma- 
amplified protein

202926
at

co-amplified with 
MYCN in 
neuroblastomas

1 0.903 0.232

NAIP baculoviral IAP 
repeat-containing 1

204860
_s_at

suppress apoptosis 
induced by various 
signals

1 1.055 0.291

FAK PTK2 protein 
tyrosine kinase 2

207821 
s at

protein tyrosine-kinase 
activity

1 0.916 0.26

ATPIIA ATPase, Class II, 
type 9A

212062
at

ATPase activity 1 0.841 0.24
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ASK1 Mitogen-activated 
protein kinase kinase 
kinase 5

203837
_at

induction of apoptosis by 
extracellular signals

1 1.014 0.294

SMAD6 MAD (mothers 
against
decapentaplegic, 
Drosophila) homolog 
6

207069
_s_at

regulation of 
transcription, DNA- 
dependent

1 1.003 0.301

MAP4 Human microtubule- 
associated protein 4

243_g_
at

major non-neuronal 
microtubule-associated 
protein promotes 
microtubule assembly

1 0.91 0.278

BCL2 B-cell
CLL/lymphoma 2

203685
at

anti-apoptotic outer 
mitochondrial membrane 
protein

1 0.881 0.302

GPM6B Neuronal membrane 
glycoprotein M6-b

209170 
s at

neurogenesis 1 1.344 0.476

TSSC1 Tumor suppressing 
subtransferable 
candidate 1

217968
_at

Alterations in this region 
have been associated 
with many cancers

1 0.969 0.351

JNK3 c-Jun N-terminal 
kinase 3

204813
at

Phosphorylates & 
activates c-Jun

1 0.953 0.367

MAP3K
1

mitogen-activated 
protein kinase kinase 
kinase 1

214786
at

proteinserine/threonine 
kinase activity

1 1.025 0.414

TNFAIP
8

TNF-induced protein 210260
s a t

antiapoptotic molecule 
induced by the activation 
of the transcription factor 
NF-kappaB

1 0.864 0.369

CCND1 CyclinDl (PRAD1: 
parathyroid 
adenomatosis 1)

208712
_at

Activates CDK4 & 
CDK6

1 0.884 0.397

E4 Ubiquitination factor 
E4B (homologous to 
yeast UFD2)

215533
_s_at

strongest candidate 
neuroblastoma tumor 
suppressor gene

1 1.007 0.457

NOTCH
2

Notch homolog 2 
(Drosophila)

202443 
x at

anti-apoptotic 1 0.838 0.415

RSK Ribosomal protein S6 
kinase, 90kD, 
polypeptide 2

204906
at

controls cell growth & 
differentiation

1 0.922 0.477
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5.2.4 Validation of microarray data

The results from the microarray data were validated by studying the protein levels of 

selected genes. The average relative level of mRNA of the p53 gene target, p21 was 

calculated and graphically represented (Figure 5.5) showing an approximately 7 

times greater increase in expression during CDDP treatment compared to TDDP. In 

order to validate this mRNA data, p21 protein levels were analysed in 

immunoblotting experiments using protein extracts from SH-SY5Y cells treated for 

up to 24 hours with CDDP and TDDP. Protein extracts were prepared at various 

times during treatment, separated by SDS-PAGE and then transferred to 

nitrocellulose. Following blocking and overnight incubation with the p21 antibody, 

the proteins were detected using ECL reagents. A single immunoblot is shown 

alongside the tubulin loading control (Figure 5.6). In this experiment, p21 protein 

levels increased following CDDP treatment. Further experiments will need to be 

performed to determine how reproducible this result is.
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Figure 5.5 Microarray data for the p21 mRNA during 

CDDP-treatment in SH-SY5Y cells

The graph shows the average relative level of the p21 mRNA 

calculated from the triplicate microarray experiments. The SEM is 

also shown.

151



CDDP TDDP
0 4 8 12 16 2411 0 4 8 12 16 24

—  P21

TUBULIN

Figure 5.6 Validation of microarray data by immunoblotting 

p21 protein expression in CDDP- and TDDP- treated SH-SY5Y cells

SH-SY5Y cells were treated with CDDP for 0, 4, 8, 12, 16 and 24 hours and TDDP 

for 0, 16 and 24 hours. The pattern of p21 protein expression was investigated by 

performing immunoblotting experiments with protein extracts from SH-SY5Y cells. 

A representative p21 immunoblot is shown along with the tubulin loading control.
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5.3 Discussion

Asymetrix microarrays allow mRNA expression to be assessed on a large 

scale, where the expression of thousands of genes can be analysed in a single 

experiment. In this chapter, I have described microarray experiments which were 

performed on SH-SY5Y cells treated with CDDP, TDDP and DMSO in order to 

identify mRNAs that may significantly change in level with CDDP treatment 

compared to TDDP and DMSO.

The experiments were carried out independently and in triplicate under the 

three treatment conditions (CDDP, TDDP and DMSO) in order to separate genes that 

are truly differentially expressed from random changes. The data generated from the 

three independent experiments via the Affymetrix Genechip® Hybridisation was 

analysed using Genespring 5 software. All 22,283 genes found on the Human 

Genome U133A microarray were normalised to the median. This normalisation 

process is the first analytical step prior to statistical analysis. Normalisation of data is 

required in order to obtain the most accurate data possible, to be able to differentiate 

between real (biological) variations in gene expression levels and variations due to the 

measurement process. Normalising per chip was done where the signal of each gene 

is divided by the median intensity of the chip to control for variations between the 

arrays and normalisation per gene was done to account for the difference in detection 

efficiency of each probe, also allowing comparison of relative changes in gene 

expression levels and this also scales the relative gene expression levels for 

comparison. The triplicate set of experiments per treatment condition showed 

extremely identical patterns of gene intensity (Figure 5.2.3a) indicating the high 

reproducibility of the experiments. The gene intensity between the TDDP and DMSO 

samples are very similar as observed in Figure 5.2.3a whereas CDDP treatment 

shows a great difference from the other two treatments. This indicates that CDDP 

treatment induces a greater change in levels of gene expression when compared to 

TDDP and DMSO. The change observed shows more downregulated genes during 

CDDP treatment than upregulation.

Following normalisation the data is filtered to remove the genes that show no 

change in gene intensity during the three treatment conditions. The genes detected 

that showed an intensity change greater than 1.5 fold between TDDP and CDDP were 

selected for. PUMA was one of the 3,312 genes identified in these conditions. The
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low level of intensity observed with PUMA in the Affymetrix microarray experiments 

may be due to experimental anomalies or variability between some of the experiments 

that may have brought down the differences in intensity. Since there were still an 

enormous number of genes detected with a greater than 1.5 fold change, more 

stringent conditions were required.

Selecting for a two-fold change increased stringency. 1,014 genes showing a 

greater than two-fold change were detected. However, PUMA was not one of these. 

The question arises as to whether by being more stringent, we could lose or filter out 

important genes such as PUMA that may play a role in CDDP-induced apoptosis in 

SH-SY5Y cells. Prior to statistical analysis, filtering of unreliable genes needs to be 

done since multiple testing correction (MTC) is directly affected by the number of 

genes in the list. The Analysis of variance (ANOVA) test was used to determine 

whether drug treatment has a significant effect on gene expression behaviour and also 

these tests take away unwanted experimental effects. 864 genes passed both the MTC 

test, which keeps the error rate low, and the Benjamini-Hochberg false discovery rate 

test, which shows statistically significant differences in gene expression and 

protection against false positives.

Analysis of gene expression using microarrays has the potential to identify 

candidate genes involved in a variety of processes, to identify genes that are related, 

or to identify which genes cause disease. The microarray data showed that TDDP and 

DMSO had very similar gene intensities whereas in comparison, CDDP treatment 

induced a greater change in levels of gene expression. The data from the microarrays 

can be classified into functional groups such as genes involved in apoptosis, the cell 

cycle, cell survival, DNA damage response and p53 target genes. Many of the genes 

upregulated by CDDP treatment in SH-SY5Y cells were p53 target genes (e.g. SNK, 

p21, NOXA, PUMA, MDM2, ATF3, cyclin Gl, PIG8, WIP1, GADD45a), DNA 

damage response (e.g. TP53, PA26, DDB2), negative regulators of cell growth/ 

proliferation (e.g. MDM2, GNRH) and cell cycle arrest genes (e.g. p21, PA26) (see 

Figure 5.4a). Interestingly, I observed that the BH3-only family member and p53 

target gene, NOXA was induced by CDDP in the microarray experiments. However, 

in the immunoblotting experiments in chapter 4 ,1 did not detect a change in NOXA 

protein levels in CDDP, and TDDP treated SH-SY5Y cells. Perhaps the NOXA 

antibody I used did not recognise the right protein and these immunoblotting
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experiments will need to be repeated using better NOXA antibodies. A high level of 

expression of the death receptor FAS is also observed during CDDP treatment, 

however, we know that this is unlikely to play a role in SH-SY5Y cells because no 

caspase-8 expression was detected (Figure 3) in CDDP-treated SH-SY5Y cells.

A greater number of genes were downregulated during CDDP treatment of 

SH-SY5Y cells. Many of the down-regulated genes play a role in cell metabolism 

such as ATP binding genes, genes involved in calcium channel activity, protein- 

kinase activity, GTPase activity. SH-SY5Y cells undergoing apoptosis with CDDP 

lose mitochondrial function leading to matrix swelling and outer membrane ruptures 

and release of mitochondrial contents such as cytochrome c. It is possible that the 

loss of mitochondrial function might lead to a down regulation of genes responsible 

for maintaining cell metabolism, for example, ITPR1, ADCY9, OATP-D, PFTAIRE- 

1, ADK, etc (see Figure 5.4b). The gene showing the greatest level of 

downregulation with CDDP treatment is MAD1, which is inhibited by p53. Many 

genes that play a role in cell growth, cell cycle progression, and regulation of DNA- 

dependent transcription were also downregulated. Some genes involved in regulating 

apoptosis were also down regulated, for instance, anti-apoptotic Bcl-2, NOTCH2, 

TNFAIP8, CCND1 (reduced expression of which leads to apoptosis), and NAIP (an 

IAP family member).

Any genes of interest identified in these microarray experiments will need to 

be validated. p21 was the gene with the highest change in gene intensity during 

CDDP treatment and was used to validate the microarray data (Figure 5.6). Other 

genes of interest from these microarrays will be validated in a similar manner and 

their function investigated by overexpressing them in SH-SY5Y cells in the presence 

or absence of CDDP. The siRNA system could be used, as with PUMA (Chapter 4), 

to understand whether the genes of interest are essential for CDDP-induced apoptosis 

in SH-SY5Y cells. Validated microarray data has the potential for a variety of uses 

such as understanding the relationships between genes, their regulation and where 

they are in biochemical pathways.
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Chapter 6: Conclusions

The aim of this thesis was to identify the signalling pathway by which CDDP 

triggers caspase activation and apoptosis in the SH-SY5Y neuroblastoma cell line 

(Cece et al., 1995). Understanding the cellular responses to CDDP is critical for 

determining the mechanisms of drug resistance and for allowing the development of 

therapeutic approaches for increasing the effectiveness of CDDP treatment.

I have shown that CDDP treatment of SH-SY5Y neuroblastoma cells induces 

apoptosis via the intrinsic mitochondrial death pathway, in which the translocation of 

cytochrome c from the mitochondria to the cytoplasm triggers the cleavage of 

procaspase-9 leading to cleavage of the executioner caspase, caspase-3. This results 

in the apoptotic nuclear changes observed by TUNEL and Hoechst staining. CDDP 

also induced the upregulation of the p53 protein and its direct transcriptional target, 

PUMA. I showed that proapoptotic PUMA-a RNA and protein levels increase during 

CDDP treatment and that overexpression of PUMA-a was sufficient to induce 

apoptosis in SH-SY5Y cells. By using RNA interference to suppress PUMA-a 

expression, I aimed to study whether PUMA was essential for CDDP-induced 

apoptosis in SH-SY5Y cells. Another important question is to determine whether 

induction of PUMA in SH-SY5Y cells requires p53. This could be addressed by 

using RNAi technology to suppress p53 expression in SH-SY5Y cells.

Using the Human Genome U133A microarray, I attempted to acquire some 

information about what other genes could possibly play a role in CDDP-induced death 

of SH-SY5Y cells. Genes of interest from these microarrays will be studied further. 

The microarray analysis of the CDDP-sensitive SH-SY5Y cells could have been 

performed in parallel with a CDDP-resistant neuroblastoma cell line in order to 

compare and gain insights into the mechanisms of CDDP resistance in neuroblastoma. 

However, the use of data from a new experiment would introduce several 

experimental variables that would need to be considered during the statistical analysis 

of the data. With microarray analysis, it is best to minimise the variables at the 

beginning of the experiment rather than compensate statistically. The factors that 

play a role in the mechanisms of CDDP resistance differ between cancers and cell 

lines of the same disease. So even though there are commercially available CDDP-
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resistant cell lines such as BM1R2, it would be better to develop a resistant cell line 

from the SH-SY5Y cells by repeated exposure to CDDP.

The use of CDDP is limited due to inherent resistance to the drug in the case 

of some patients and the acquisition of CDDP resistance by initially responsive 

patients. The development of resistance to CDDP affects approximately 10% of 

neuroblastoma patients undergoing chemotherapy. Several mechanisms are thought 

to be involved in CDDP resistance, such as decreased intracellular drug uptake and 

increased efflux, increased levels of cellular thiols, increased DNA repair, change in 

the expression of oncogenes and tumour suppressors and inhibition of apoptotic 

pathways.

A decrease in intracellular CDDP accumulation arising from a decrease in 

uptake or increased efflux of CDDP has been frequently observed in CDDP-resistant 

cell lines (Andrews et a l, 1990; Parker et a l, 1991). There is evidence to suggest that 

CDDP enters the cell via passive diffusion (Binks and Dobrota, 1990). CDDP 

accumulation is potassium dependent even though CDDP is not transported into the 

cells through the sodium-potassium pump, suggesting that accumulation depends on 

cell membrane potential (Andrews et a l, 1988). Recent studies show that there is a 

direct link between the cellular management of copper and platinum concentrations. 

Deletion mutations of the yeast CTR1 (high affinity copper transporter) gene resulted 

in increased CDDP resistance and reduction of platinum levels in yeast. Similarly, 

mouse cells lines lacking one or both mouse CTR1 alleles exhibit increased CDDP 

resistance and decreased CDDP accumulation (Ishida et al., 2002). Decreased 

accumulation of CDDP may also occur due to increased efflux of the drug from cells. 

Copper-transporting p-type adenosine triphosphate (ATP7B), which has an important 

role in regulation of copper levels in cells, is associated with CDDP resistance in vitro 

and in various cancers (Komatsu et al., 2000; Nakayama et a l , 2002).

Increased expression of p-glycoprotein (p-gp), an ATP-dependent efflux pump 

expressed by the multidrug resistance -1 (MDR-1) gene (Chan et al., 1990; Kurowski 

and Berthold, 1998) is characteristic of multidrug resistance in chemotherapy of 

cancers. In neuroblastoma, the mechanism of multidrug resistance is thought to be 

associated with drug-pumping proteins such as P-glycoprotein encoded by the MDR-1 

gene (Bourhis et al., 1989), multidrug resistance-associated protein (MRP) (Bordow 

et a l , 1994), and canalicular multispecific organic anion transporter (cMOAT). In
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adult breast and ovarian cancer cells, the breast cancer resistant protein (BCRP) and 

the ATP-binding cassette gene have been reported to be associated with multidrug 

resistance ( Doyle et al., 1998; Maliepaard et a l , 1999). Other MRP family members 

have been identified as multidrug resistance-related proteins that alter 

chemosensitivity to CDDP.

The MDR-1 gene encodes a membrane-associated protein which belongs to 

the superfamily of ATP-binding cassette (ABC) transporters. The protein encoded by 

this gene is responsible for decreased drug accumulation in multidrug-resistant cells 

and often mediates the accumulation of resistance to anticancer drugs. 

Overexpression of another ABC transporter family member, ABCC2 (ATP binding 

cassette subfamily C2, also known as MDR2 or cMOAT) has been shown to enhance 

resistance to many chemotherapeutic drugs including CDDP where 10-fold resistance 

was seen (Cui et a l , 1999). In a recent study, the role of ABCC2 in platinum drug 

resistance was analysed using ovarian cancer cell lines, adrenocortical cell lines and 

melanoma cell lines (Matema et a l , 2005). The authors found that the use of anti- 

ABCC2 hammerhead ribozymes successfully downregulated the ABCC2-specific 

transcript and ABCC2 protein expression in these cell lines suggesting a potential 

gene therapy approach to overcome platinum-resistance in human cancers.

Another member of the same ABC transporter family, ABCC4 was identified 

as a down- regulated gene in my microarray data for SH-SY5Y neuroblastoma cells 

treated with CDDP (Figure 5.4b). ABCC4 (MDR4) shows a 6-fold decrease in 

expression with CDDP treatment compared with TDDP and DMSO treatment in 

CDDP-sensitive SH-SY5Y cells (Figure 5.4b). ABCC4 has not previously been 

associated with resistance to drugs used to treat solid tumours. Analysis of expression 

of the multidrug resistance genes in human cancer cell lines showed that ABCC4, 

which is expressed at low levels in a few tissues, was not found to be overexpressed 

in multidrug / CDDP-resistant cell lines (Kool et a l , 1997). Expression of MDR-1 is 

currently a marker of poor prognosis in neuroblastoma but a very recent study 

suggests that ABCC4 can also be a marker of poor prognosis for the same type of 

tumour. Norris et a l , 2005 found that ABCC4 was frequently overexpressed in 

aggressive primary neuroblastoma and that high ABCC4 expression correlated with 

MYCN oncogene amplification and was significantly associated with poor clinical 

outcome (Norris et a l , 2005). In SH-SY5Y cells, there is no MYCN amplification and
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my microarray result suggested that ABCC4 is downregulated during CDDP 

treatment. It would therefore be interesting to investigate whether, overexpression of 

ABCC4 would alter the sensitivity of these cells to CDDP.

Studies also suggest a role for the ATP-dependent glutathione S-conjugate 

export pump in effluxing CDDP that is covalently linked to glutathione and might be 

involved in reducing intracellular CDDP concentration in CDDP-resistant cells 

(Ishikawa et al., 1993). Conjugation with glutathione inhibits the conversion of mono 

adducts to cross-links, thus reducing the cytotoxic potential of the adducts. 

Glutathione maintains the dNTP pool size required for DNA repair, so it has been 

found that depletion of glutathione inhibits repair in CDDP-resistant ovarian cancer 

cells (reviewed in Kartalou and Essigman, 2000). Elevated levels of glutathione have 

been found in some CDDP-resistant cell lines and inhibition of glutathione levels 

increased CDDP sensitivity in some cell lines and not others (Godwin et al., 1992; 

Hromas et al., 1987; Kartalou and Essigman, 2000). Many studies indicate that an 

increase in glutathione levels is a likely factor involved in CDDP resistance but it is 

not an absolute requirement (reviewed in Jamieson and Lippard, 1999).

Another intracellular thiol is metallothionein, which is from a cysteine rich 

protein family that has also been associated with CDDP resistance. Metallothioneins 

bind to CDDP and may affect drug sensitivity (Andrews et al., 1987). Overexpression 

of metallothioneins sometimes leads to CDDP resistance but this is not a universal 

phenomenon.

An increase in DNA repair is another mechanism considered to play a part in 

CDDP resistance. Nucleotide excision repair (NER) is the main mechanism by which 

CDDP-DNA adducts are removed. The NER pathway is a network of many proteins 

that form the DNA repair system. The ERCC1 (excision repair cross complementing 

-  group 1) gene has a key role in the NER pathway and has been associated with 

resistance to platinum compounds. Other DNA repair proteins including ERCC1 can 

be overexpressed in resistant cell lines (Koberle et al., 1999). A number of studies 

have shown an increase in DNA repair in CDDP resistance cells such as human 

ovarian cancer cells lines, murine leukaemia cells, Chinese hamster ovary cells, cells 

found in human malignant glioma (Jamieson and Lippard, 1999). In my microarray 

study, an increase in the damage-specific DNA binding protein (DDB2) was observed 

in TDDP-treated cells but a three-fold greater increase was observed in CDDP-treated
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SH-SY5Y cells. NER consists of two subpathways, transcription-coupled repair and 

global genomic repair (GGR). DDB2 transcription increases after DNA damage in a 

p53-dependent manner (Tang et a l, 2000) and enhances GGR. DDB2 is a direct 

transcriptional target of p53 (Tan and Chu, 2002).

As further studies into CDDP resistance take place using microarray 

technology (Deng et a l , 2002; Roberts et al., 2005), this will provide a large pool of 

data to compare and analyse in the search to comprehend the mechanism of CDDP 

resistance. However, the amount of data presently available indicates that there are 

multiple mechanisms interconnected in a very complex way, which are responsible 

for CDDP resistance (Deng et a l, 2002).

CDDP triggers the induction of several cellular stress response signals. 

However, in my microarray experiments, the stress responsive kinases, apoptosis 

signal-regulating kinase (ASK) 1 and c-Jun N-terminal kinase 3 (JNK3) are both 

down-regulated. MAP kinase pathways can be activated by CDDP (sanchez-perez, 

oncogene, 1998). ASK1 activates the JNK and p38 MAP kinase cascades in response 

to environmental stress. Expression of JNK3 is mainly restricted to the nervous 

system and ASK1, JNKs and c-Jun promote apoptosis in sympathetic neurons 

following NGF withdrawal (Kanamoto et a l, 2000). However in CDDP-sensitive 

SH-SY5Y cells, downregulation of ASK1 and JNK3 occurs following CDDP 

treatment suggesting that they do not exhibit the same role in these cells, which are 

not postmitotic neurons.

Another gene of interest from the microarray data that could be a potential 

therapeutic target is the focal adhesion kinase (.FAK). FAK, the substrate and binding 

partner of the src oncogene, is a tyrosine kinase protein that plays a role in cancer 

pathology. FAK contains binding sites for many signalling proteins, regulates normal 

and tumour cell proliferation, motility and invasion in culture. The fak  gene shows an 

approximately 4-fold decrease in expression in CDDP-treated SH-SY5Y cells as 

compared with TDDP and DMSO treatment. Inhibition of FAK expression or 

signalling can induce apoptosis in cancer cells, but has little effect upon normal cells 

(Gabarra-Niecko et al., 2003). This makes FAK a candidate therapeutic target.

In breast cancer cells, inhibition of FAK by antisense oligonucleotides 

increased the sensitivity to camptothecins (Satoh et al., 2003). Oligonucleotides are
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used to selectively target tumour-associated genes or mutated genes leaving normal 

genes unaltered, which is essential for anticancer drugs. Over the last few years, 

research efforts have been centred on developing new selective anticancer drugs with 

less cytotoxic side effects and work on antisense oligonucleotides looks hopeful. 

However, the uptake of antisense oligonucleotides by cells is inefficient and is not 

cell-type specific. To increase blood stability, cellular uptake and specificity of 

antisense oligonucleotides, lipid-based delivery systems are used.

Another alternative to overcome tumour resistance is to engineer BH3-only 

mimetics to promote apoptosis. If after further investigation, PUMA expression is 

found to be essential for CDDP to induce apoptosis in neuroblastoma cells, a BH3- 

mimetic drug for PUMA could be engineered to overcome acquired resistance to 

CDDP in neuroblastoma patients. David Huang reported that the BH3-only proteins, 

Bim and PUMA bind to Bcl-2, Bc1-Xl, Bcl-w, Mcl-1 and Al making them potent 

killers compared to other BH3-only proteins which bound to fewer of these anti- 

apoptotic Bcl-2 family members (as presented at the 2004 Keystone Symposium on 

Programmed Cell Death).

The tumour suppressor, p53 is induced in SH-SY5Y cells treated with CDDP 

and many p53 target genes were found to be upregulated by CDDP treatment in my 

microarray analysis (Figure 5.4a). Experiments using a pSUPERp53siRNA 

expression vector could determine whether p53 is required for induction of p53 target 

genes by CDDP in SH-SY5Y cells. If p53 was not required, it would be important to 

determine whether another p53 family member, such as p73, or other transcription 

factors can substitute for p53. If p53 proves to be a key player in the CDDP-induced 

death of SH-SY5Y neuroblastomas cells, another potential therapeutic approach 

would be to interfere with the interaction between MDM2 using small molecule 

antagonists of MDM2 (Vassilev et al., 2004). This would be predicted to lead to 

stabilisation of p53 and p53-dependent growth arrest / apoptosis. This would 

eliminate the need to use p53-inducing DNA damaging drugs, such as CDDP.
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