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ABSTRACT

In 1924, Spemann and Mangold (Spemann and Mangold, 1924) demonstrated the 

instructive effect of the vertebrate organiser, located in the dorsal lip of the blastopore 

in amphibia, in the acquisition of neural character during early development. This 

discovery led to much interest in the process of neural induction. More recently, a 

“default model” was proposed to account for neural induction, which postulates that 

ectoderm cells acquire a neural fate autonomously, if they receive no signal. However, 

this neural fate is inhibited by BMPs, which induce epidermis. The organiser in turn 

secretes BMP antagonists, which release neighbouring cells from inhibition. However, 

other results suggested that neural induction is more complex, comprising several 

sequential and/or parallel signals, which cooperate to induce neural fates.

One such finding was that chick epiblast cells do not respond to BMP 

antagonists unless they are first exposed to an organiser for at least 5 hours, 

suggesting that other signals are required upstream of BMP inhibition. To identify the 

differences between cells that have or have not received such signals, a differential 

screen was performed. Among 15 genes isolated, only 3 correspond to previously 

known genes: Defender Against Cell Death (Dad1), Polyubiquitin II (Ubll) and Heavy 

chain ferritin (hcf). All 3 of these had been implicated in Programmed Cell Death 

(PCD). This project was designed to investigate whether PCD is important in neural 

induction and to study the role of these three proteins in both processes. First, the 

distribution of apoptotic cells was examined at different stages of development using 

TUNEL staining. It was found that PCD is random at first, but by the time the neural 

plate starts to be established PCD becomes concentrated at its lateral and anterior 

border. The expression patterns of the three genes were studied: all three are 

expressed in the neural plate around the time of neural induction, however they are not 

exclusive markers of the neural plate. The ability of the organiser (Hensen’s node) to 

induce their expression within 5 hours was confirmed, and the ability of FGF signals to 

mimic this was also tested. The effects of the overexpression of the genes outside their 

normal expression domain were then examined, scoring both for changes in the 

distribution of PCD and for the expression of markers for neural, epidermal and border 

(prospective neural crest) territories. This revealed that overexpression of hcf leads to 

an increase in the number of cells undergoing PCD, but this effect is not cell 

autonomous. Finally, the expression patterns of the pro-apoptotic gene Cas9 and of
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the death effector Cas3 were tested and compared to the apoptotic patterns. An 

increase in PCD was observed in the region where expression of Cas3 and Cas9 

overlaps and which is free from Dad1, consistent with the notion of an amplification 

loop between Caspase 3 and Caspase9, and with a possible involvement of DAD1 in 

the regulation of this process.

3



To my mum

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Professor Claudio Stern - the most impressive 

chick man on the planet - and wonderful human being; thank you for welcoming me to 

your lab, for teaching me the importance of hypothesis, trying to implant in me an idea 

of logical thinking and for not giving up on me.

I like to thank Professor Steve Wilson for giving me the opportunity to work in his 

Zebrafish lab and allowing me to discover and fall in love with science. This would not 

have been possible without my friends in his lab Jacquie Hoyle, Tetsu Kudoh and Diz 

Bailey.

I would also like to thank Anukampa Barth, my first supervisor and friend who not only 

taught me everything I know about bench work but also tried to keep me fit and sane 

with her yoga classes.

My thanks also go to Carol Bartell, Marg Glover, Ian Blaney and Steve Townsend for 

all the help they gave me throughout my PhD years and during my degree in 

Neuroscience.

Thank you to every single member of our lab, but especially to: Irene de Almeida for 

being Irene and for teaching me in ovo electroporation, Federica Bertocchini and 

Claudia Linker for moral support; Octavian Voiculescu for providing me with pCA(5 

construct containing lacZ and introducing us to the history and culture of Romania, 

Ricardo Correa for NFkappaB idea, Ferran Lloret Vilaspasa for his great dry humour 

and for introducing me to Catalonian wine, Costis Papanayotou for understanding my 

struggle in obtaining any meaningful results and being a good friend, Ali Ghanem for 

reminding me that I should always follow my dreams, Pamela Simonsson for her smile 

and friendliness, Sharon Boast not only for her technical support and her friendship but 

also for being such a special person and of course Guojun "Godrung" Sheng for his 

scientific and spiritual guidance.

Amanda Albazerchi a true friend - the only person able to share and fully appreciate 

my sense of humour, without her, my time in the lab would not be the same.

I would also like to thank Stephen Price for his advice and help and Professor 

Takeharu Nishimoto for anti-DAD1 antibody.

The work in this thesis was sponsored by BBSRC studentship.

4



I have to thank my family and friends without whom my life and work would be 

meaningless especially, the late Peter Luff, my brother Chris and my sister Anja, Caron 

Bottali, Gina Gortatowicz, Monika Krause, Anita Szerszen, Guy and Jo Eaton, Marcus 

Smithwick, Galazka and Marian Kos, Professor Tadeusz Kowalak, Andos Pasznik, 

Pani Nogi and Rafal Deja, Malgosia Maszycka, Professor Wiesiu Grochowski, Neil 

Gibson, Leigh Bernard, Lisa Sewell and her wonderful family, especially: Teresa Anne 

and Hugh Henry "Charles" and Laura Jones. Pawel Sitarz for giving me a push when I 

needed it.

Muhamed Hawadle for restoring my belief in me, my molecular biology abilities and 

reminding me what is important in life - molecular biology and sense of humour. My two 

late cats Clarrence and Knobie for all their love and moral support - I could not have 

done it without them.

5



CONTENTS
C HAPTER 1 :.......................................................................................................................... 8
General In troduction............................................................................................................. 8

1.1. Introduction to chick embryology..............................................................................9
1.1.1. Strengths o f the chick as an experimental system.............................................9
1.1.2. B rie f description o f early chick development.................................................  10

1.1.2.1. From blastula to early gastrula: formation o f the prim itive streak  10
1.1.2.2. Formation o f the definitive germ layers: ectoderm, mesoderm and 
endoderm..................................................................................................................  14
1.1.2.3. Hensen’ s node............................................................................................  16
1.1.2.4. Patterning o f the ectoderm: neurulation..................................................  17

1.1.3. Summary o f the stages used to classify early chick development...............  18
1.2. Neural induction.........................................................................................................20

1.2.1 The default model................................................................................................21
1.2.2 Some evidence against the default model.........................................................24

CHAPTER 2 : ........................................................................................................................29
M aterials and M ethods...................................................................................................... 29

2.1. Eggs and embryos...................................................................................................... 30
2.2. Embryo culture and transplantation experiments................................................... 30
2.3. Application o f FGF or its inhibitor SU5402 and other secreted factors...............30
2.4. Electroporation...........................................................................................................32
2.5. In situ RNA hybridisation......................................................................................... 32
2.6. Whole mount immunohistochemistry...................................................................... 33
2.7. Wax embedding and sectioning................................................................................ 34
2.8. Photography................................................................................................................ 34
2.9. Polymerase Chain Reaction (PCR) and sequencing...............................................34
2.10. Plasmid transfection into competent bacteria........................................................35

C HAPTER 3 : ........................................................................................................................36
D efender Against Cell Death (Dad1).............................................................................36

3.1. Introduction.............................................................................................................37
3.2. Materials and methods..........................................................................................39

3.2.1. Bioinformatic analysis........................................................................................39
3.2.2. Riboprobe transcription..................................................................................... 40
3.2.3. Constructs for electroporation..........................................................................40
3.2.4. Design o f morpholinos...................................................................................... 41
3.2.5. DAD1 antibody staining.................................................................................... 42

3.3. Results.........................................................................................................................42
3.3.1. Identification o f D u d l ........................................................................................42
3.3.2. Expression o f Dudl during early development................................................ 43
3.3.3. Time-course o f induction o f Dudl by Hensen’s node..................................... 44
3.3.4. Dudl does not affect neural, neural crest or epidermal fates..........................45

3.4. Discussion.................................................................................................................. 53
C HAPTER 4 : ........................................................................................................................55
Polyubiquitin II (Ubll)..........................................................................................................55

4.1. Introduction............................................................................................................... 56
4.2. Materials and Methods............................................................................................. 62

4.2.1. B ioinformatics....................................................................................................62
4.2.2. Riboprobe transcription..................................................................................... 62
4.2.3. Constructs for electroporation.......................................................................... 63

6



4.3. Results......................................................................................................................... 63
4.3.1. Identification o f U bll......................................................................................... 63
4.3.2. Expression o f Ubll and UbI in normal development...................................... 65
4.3.3. Time-course o f induction o f Ubll by Hensen’ s node and induction by FGF8b
 66
4.3.4. Ubll does not affect neural or neural crest fa te ................................................ 66

4.3. Discussion...................................................................................................................78
CHAPTER 5 : ........................................................................................................................ 80
Heavy Chain Ferritin (hc f)................................................................................................. 80

5.1 Introduction.............................................................................................................. 81
5.2. Materials and Methods..............................................................................................85

5.2.1. Bioinformatic analysis........................................................................................ 85
5.2.2. Riboprobe transcription...................................................................................... 85
5.2.3. Constructs for electroporation...........................................................................85
5.2.4. Electroporation.................................................................................................... 86
5.2.5. HCF antibody staining....................................................................................... 86

5.3. Results........................................................................................................................ 86
5.3.1. Cloning and identification o f h c f ...................................................................... 86
5.3.2. FNpression of/? t/during early development....................................................87
5.3.3. Induction o f hcf by Hensen's node................................................................... 88
5.3.4. /?c*/ does not affect neural, neural crest or affects the Ubll expression 88

CHAPTER 6 : ........................................................................................................................ 97
Apoptosis and neural induction ....................................................................................... 97

6.1. Introduction................................................................................................................ 98
6.2. Materials and Methods............................................................................................. 103

6.2.1. Bioinformatic analysis.......................................................................................103
6.2.2. Riboprobe transcription.................................................................................... 103
6.2.3 Terminal deoxynucleotidyl transferase mediated nick-end labelling (TUNEL) 
 103
6.2.4 Caspase inhibition.............................................................................................. 104
6.2.5. Constructs for electroporation......................................................................... 104

6.4 Results..................................................................................................................... 104
6.3.1. Bioinformatic analysis...................................................................................... 104
6.3.2. Localisation o f cells undergoing apoptosis during normal development.... 105
6.3.3. Expression o f Cas3 during early development.............................................. 106
6.3.4. Expression o f Cas9 during early development.............................................. 107
6.3.5. Neural induction is accompanied by downregulation o f PCD......................107
6.3.6. Inhibitors............................................................................................................ 107
6.3.7. Can DAD1 rescue cells from PCD?................................................................108
6.3.8. Do h c f or Ubll affect PCD?............................................................................. 108

6.4. D iscussion............................................................................................................. 122
CHAPTER 7 : ...................................................................................................................... 127
General d iscussion and conclus ions........................................................................... 127
R E F E R E N C E S ..................................................................................................................132

7



CHAPTER 1:

General Introduction



1.1. Introduction to chick embryology

1.1.1. Strengths of the chick as an experimental system

The embryo of the domestic fowl, Gallus gallus domesticus is probably the oldest 

model used to study embryonic development (Stern, 2004c) and still remains a popular 

choice today. In some respects (such as having a flat blastoderm rather than a 

cylinder, as well as some surprisingly close similarities in the genome), chick embryos 

resemble human embryos at early stages of development more closely than rodents 

(mouse and rat). Particularly attractive features of chick embryos for modern 

developmental biology include their large size, easy access and and manipulation. 

They can also be grown in culture in such a way that they lend themselves to fate 

mapping and lineage analysis using localised injections of fluorescent and other vital 

dyes, that it has a very compact genome with few repetitive sequences (Boardman et 

al., 2002; Wallis et al., 2004) and that DNA constructs and morpholino oligonucleotides 

are easy to introduce in specific places and stages by electroporation.

For studies on induction, where it is especially important to distinguish cells 

derived from the grafted inducing tissue from the responding cells of the host, the use 

of quail-chick chimaeras has been especially useful. This technique was first 

introduced by Le Douarin (Le Douarin, 1969; Le Douarin and Teillet, 1973) who took 

advantage of the characteristic accumulation of heterochromatin in quail nucleoli, 

detected by Feulgen-Rossenbeck staining. Since then, detection of quail cells has 

been made easier and more reliable by the availability of an antibody (QCPN) that 

recognises a perinuclear antigen in all quail cells (see Chapter 2).

The earliest stages of chick embryo development, from fertilisation to the 

equivalent of the early blastula stage, occur while the egg is still in utero. The egg is 

laid when the embryo already has some 10,000-20,000 cells and the central area 

pellucida has separated from the peripheral area opaca, the precursor cells that will 

give rise to the hypoblast have already segregated to the ventral side of the embryo, 

and other regional structures have appeared such as the presence of a marginal zone 

and special regions posteriorly posterior marginal zone (PMZ) and a Koller’s sickle 

(Stern, 2004a). This makes it difficult to study pre-blastula stages of development in the 

chick, but the system excels for studies of processes occurring from this stage 

onwards.

New techniques still continue to be developed, promising even more exciting 

times for chick embryology in the future. This includes the newly available chicken 

embryonic stem cells (Horiuchi et al., 2006; Pain et al., 1996; Petitte et al., 2004; van 

de Lavoir et al., 2006), and a newly-described method for producing transgenic birds
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(Sang, 2004; Stern, 2005b). And although mutants affecting development of domestic 

fowl started to be identified long ago, even the most interesting ones have still not been 

studied; a notable exception is the talpid-3 mutant (Buxton et al., 2004), which displays 

defects in limb development, for which the gene responsible has recently been 

identified by positional cloning and shown to encode a novel member of the Hedgehog 

signalling pathway (Davey et al., 2006). The recent completion (May 2004) of the 

chicken genome sequencing project (ICGS Consortium) to a resolution of 6.6x, along 

with a large number of expressed sequence tags (ESTs) and a growing number of 

single nucleotide polymorphisms (SNPs) (Stern, 2005b) will simplify all of these tasks 

even further in the near future.

1.1.2. Brief description of early chick development

1.1.2.1. From blastula to early gastrula: formation of the primitive streak.

At the time of laying, the chick embryo comprises a disc shaped, single cell thick 

blastoderm of up to 20,000 cells (Stern, 2004a). It is already possible to distinguish two 

clear regions: an outer area opaca “opaque area” and an inner area pellucida 

“translucent area”, despite the fact that the epiblast (dorsal most layer) is continuous 

across the entire blastoderm and its cells have almost identical shapes in both regions 

(Bancroft and Bellairs, 1974). Ventral (towards the yolk) to this continuous epiblast 

layer, the area opaca is made up of multiple layers of very large, yolky cells. This is 

called the germ wall and constitutes an extra-embryonic endodermal layer. The germ 

wall cells closest to the epiblast adhere very tightly to the latter in the most peripheral 

area (area opaca proper) but much less in a rim immediately outside the area 

pellucida. This generates a “flap” of yolky cells, called the germ wall margin (Stern, 

1990), some of which will later give rise to the endoblast (see below). The deepest 

cells of the area opaca are tightly linked to the underlying yolk, while the central area 

pellucida stretches over a sub-germinal cavity containing "white yolk" originating from 

the nucleus of Pander and located in the middle of the yolk latebra (Callebaut, 2005). 

The epiblast above the germ wall margin, which defines a narrow ring separating the 

inner area pellucida from the outer area opaca, is called the Marginal Zone (Eyal- 

Giladi, 1984; Eyal-Giladi et al., 1992; Eyal-Giladi and Kochav, 1976; Stern, 2004a), 

whose fate is also entirely extra-embryonic (Bachvarova et al., 1998).

Underlying the area pellucida epiblast at around the time of laying are scattered 

“islands” of yolky cells (but which are smaller than those of the area opaca). The 

density of these islands is higher towards the future caudal (posterior) end of the 

embryo and decreases rostrally (anteriorly). These islands have been proposed to form
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by polyinvagination, or cell shedding, from the area pellucida, starting from the 

prospective posterior region of the embryo (Eyal-Giladi, 1984; Fabian and Eyal-Giladi, 

1981; Kochav et al., 1980; Peter, 1938) although the shedding process has never been 

demonstrated directly by cell labelling or direct observation.

Separating the area pellucida from the Marginal Zone, at the posterior edge of 

the former, is a ridge of small cells, tightly adherent to the epiblast, which forms a sickle 

shaped region describing a 60° arc. This is called Koller’s sickle (Callebaut and Van 

Nueten, 1994; Eyal-Giladi et al., 1992; Vakaet, 1984), and its cells are destined to 

contribute largely to the early primitive streak (Bachvarova et al., 1998). However the 

bulk of the primitive streak also contains cells derived from elsewhere in the epiblast 

(see below).

With incubation after laying, the islands gradually merge together, in a posterior 

to anterior direction, to form a loose, single-cell thick layer, the hypoblast, whose fate is 

to contribute to the yolk sac stalk and is therefore also extraembryonic (Stern, 2004a). 

The entire embryo is derived from the epiblast layer present in the area pellucida at this 

stage (which also contributes some cells to extraembryonic lineages, especially 

mesoderm). Just before the beginning of gastrulation (marked by the appearance of a 

primitive streak), the hypoblast is displaced by a new ventral layer, also extraembryonic 

in fate: the endoblast (also called “secondary hypoblast” and “junctional endoblast”). 

These cells arise from a subset of posterior germ wall margin progenitors and gradually 

migrate centripetally, causing the hypoblast to become confined to an anterior domain 

(the germinal crescent) (Stern, 2004a). This domain is thought to contain the future 

primordial germ cells that will give rise to the male and female gametes.

Remarkably, even at this stage, the embryo is highly regulative. It is possible to 

fragment the blastoderm by cutting it into up to 8 pie-shaped slices, each of which is 

capable of developing independently into a smaller but apparently normal embryo 

(Spratt and Haas, 1960). Despite this, even finer regional differences can be detected 

in both the area pellucid and in peripheral, extraembryonic regions at this stage. 

Several genes are expressed in various regions and structures. For example, the 

Posterior Marginal Zone (the posterior portion of the Marginal Zone, just outside 

Koller’s sickle) (Bachvarova et al., 1998; Eyal-Giladi et al., 1992; Skromne and Stern, 

2002; Stern, 1990) is characterised by its expression of Vg1 (Seleiro et al., 1996; Shah 

et al., 1997; Skromne and Stern, 2002). The cells of Koller's sickle express gooscoid 

(Izpisua-Belmonte et al., 1993; Shah et al., 1997), FGF8 and Chordin (Streit et al., 

1998; Streit and Stern, 1999a). And the anterior area pellucida epiblast, perhaps 

equivalent to the “anti-sickle” region of the rabbit embryo (Viebahn, 2004), expresses 

the transcription factors Gata2 and Gata3 (Sheng and Stern, 1999).
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Likewise in the ventral layers, various tissues can be distinguished. The 

(primary) hypoblast (Stern, 1990; Vakaet, 1970) expresses, for example: H ex  

(Yatskievych et al., 1999); Cerberus/Caronte (Bertocchini and Stern, 2002), Otx2 

(Foley et al., 2000) and C rescent (Pfeffer et al., 1997). This tissue is therefore 

comparable in its movements, fate and genetic markers, to the anterior visceral 

endoderm (AVE) of the mouse (Bertocchini and Stern, 2002; Foley et al., 2000). The 

endoblast cells do not express any of the above markers (Bachvarova et al., 1998; 

Bertocchini and Stern, 2002; Foley et al., 2000) or indeed any other known markers 

(Bertocchini and Stern, 2002).

As mentioned above, neither the hypoblast, nor the endoblast, nor the PMZ 

contribute to the embryo proper (Rosenquist, 1966; Rosenquist, 1972). However all 

three of them separately or in combinations (along with Koller's sickle) have been 

implicated in the process of induction of the primitive streak (Bachvarova et al., 1998; 

Bertocchini and Stern, 2002; Callebaut et al., 2003; Callebaut et al., 1998; Shah et al., 

1997). Despite controversy over some time about the precise mechanisms and 

sources of signals responsible for inducing the primitive streak as the site of 

gastrulation in the avian embryo (Bellairs, 1986), the events, signals and tissues 

involved are finally becoming clear (Stern, 2004a). Briefly, the Posterior Marginal Zone 

(PMZ) has been proposed to be the functional equivalent of the amphibian Nieuwkoop 

centre (Bachvarova et al., 1998) in that it is able to induce an axis including the 

“organizer” (see below) without making a direct cellular contribution to the latter 

structure. The main signal responsible for initiating this is the TGF_ factor Vg1, which 

requires Wnt activity in order to induce downstream events (Skromne and Stern, 2001; 

Skromne and Stern, 2002). A key target of Vg1+Wnt activity emanating from the PMZ 

is Nodal, whose expression is induced as a patch in the area pellucida epiblast just 

inside Koller’s sickle. Together with FGF8 (emanating from Koller’s sickle), Nodal 

induces mesoderm formation and the nascent primitive streak (Bertocchini et al., 2004; 

Stern, 2004a).

Given that the whole embryo periphery can initiate formation of a complete 

embryonic axis when isolated from the rest of the embryo, there must be mechanisms 

to prevent the formation of ectopic axes elsewhere than at the normal posterior site. 

One such mechanism has been shown to involve the Nodal antagonist Cerberus, 

which is expressed in the hypoblast. The displacement of the hypoblast away from the 

posterior edge of the area pellucida by the incoming endoblast (which does not 

express Cerberus) appears to be a key event in initiating primitive streak formation 

(Bertocchini and Stern, 2002).

Morphologically, the primitive streak emerges as a conical thickening in the
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posterior region of the area pellucida that extends and elongates toward the centre of 

the embryo to become a straight longitudinal structure with tightly packed cells 

between epiblast and endoblast (Bellairs, 1986; Eyal-Giladi et al., 1992; Vakaet, 1984). 

The cells contributing to this early streak originate from Koller's sickle (Bachvarova et 

al., 1998; Izpisua-Belmonte et al., 1993; Wei and Mikawa, 2000), with the addition of 

some cells of epiblast origin which appear to poly-ingress and become incorporated 

into the early streak primordium (Canning et al., 2000; Canning and Stern, 1988; Mogi 

et al., 2000; Stern and Canning, 1988; Stern and Canning, 1990). As the primitive 

streak elongates, it incorporates progressively more cells of central epiblast origin 

(Hatada and Stern, 1994; Izpisua-Belmonte et al., 1993; Joubin and Stern, 1999; Streit 

et al., 2000). At the tip of the primitive streak when fully elongated (stages 3+ to 4), the 

“organizer”, Hensen's node, will form as a thickened bulb involving all 3 layers (Streit et 

al., 2000). Hensen's node is derived from "posterior" (originating from Koller's sickle) 

and "central" cells (epiblast cells from the middle of the blastoderm) (Hatada and Stern, 

1994; Izpisua-Belmonte et al., 1993; Selleck and Stern, 1991; Selleck and Stern, 1992; 

Streit et al., 2000).

The cellular events responsible for elongation of the primitive streak are still 

controversial. One group has claimed that this is largely due to highly oriented cell 

divisions (Wei and Mikawa, 2000). However this mechanism has been considered 

unlikely to be sufficient by mathematical models of cell behaviour (Bodenstein and 

Stern, 2005), and another group has invoked positive and negative chemotaxis of cells 

towards centres of attraction and repulsion (Chuai et al., 2006; Cui et al., 2005). 

Although the latter group has dismissed cell intercalation and the Wnt planar cell 

polarity pathway (PCP) that has been implicated in similar movements in amphibian 

and fish embryos, these mechanisms have not yet been formally excluded as playing a 

role.

Extensive morphogenetic movements of the epiblast also precede the formation 

of the primitive streak. These take the form of “Polonaise” movements by which cells

converge to the posterior edge of the area pellucida and then move anteriorly along the 

midline. These movements were first revealed by pioneering time-lapse filming studies 

(Graper, 1929; Vakaet, 1970; Wetzel, 1929) and can also be demonstrated by 

comparing fate maps of the epiblast at different stages (Hatada and Stern, 1994).

During primitive streak elongation, the streak changes from a triangle (stage 2)

to a solid, parallel-sided rod (stage 3). This is quickly followed (stage 3+) by the

formation of a groove running along the midline of the primitive streak. At this stage the 

epiblast lateral to the streak migrates more coherently towards the midline and cells 

ingress through and adjacent to the groove to colonise the deeper layers of the
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embryo. This process is gastrulation proper and generates the 3 germ layers of the 

embryo: epiblast, mesoblast (mesendoderm) and definitive endoderm. The cells of the 

latter insert among the endoblast cells that formed the early deep layer of the embryo 

and displace them to the periphery of the blastoderm (Kimura et al., 2006; Stern, 

2004a).

1.1.2.2. Formation of the definitive germ layers: ectoderm, mesoderm and 

endoderm

The formation of the endoderm (the lower/inner layer) has been a challenge to 

scientists and it took some considerable time to appreciate that the early lower layer 

(hypoblast/endoblast) does not contribute to the definitive (gut lining and associated 

organs) endoderm, as originally thought. The first studies to demonstrate that the 

endoderm is of epiblast origin, via the primitive streak, were the pioneering fate 

mapping experiments of Bellairs (Bellairs, 1953a; Bellairs, 1953b; Bellairs, 1955; 

Bellairs, 1957). Since then it has been confirmed that in all vertebrate Classes the 

definitive (gut) endoderm is derived during gastrulation by ingression through the 

blastopore/primitive streak (Fukuda and Kikuchi, 2005; Grapin and Constam, 2004; 

Stainier, 2002). The ingression of cells into this endodermal layer occurs at the anterior 

tip of the primitive streak, including Hensen’s node (Selleck and Stern, 1991) and the 

routes by which they migrate to colonise the deep layer have recently been elucidated 

by careful fate mapping (Kimura et al., 2006). This study revealed, somewhat 

unexpectedly, that cells ingressing at the anterior primitive streak colonise the 

endoderm not directly, but only after migrating laterally some distance within the middle 

layer, which at these early stages contains both mesoderm and endoderm precursors 

(“mesendoderm”). By stage 4, no endoderm precursor cells can be found in the 

epiblast even at the midline of the embryo (Selleck and Stern, 1991), but ingression 

into the deep layers continues until stages 5-6, via the middle layer.

There is a correlation between the time of incorporation of cells into the lower 

layer with their ultimate fate. The earliest endoderm formed from stage 2-3 gives rise to 

the mid- and hindgut region (Kimura et al., 2006). The foregut and especially its ventral 

part do not emerge from the streak until stage 4 (Kimura et al., 2006).

At the time of formation of the endoderm, the hypoblast becomes confined to 

the anterior germinal crescent (containing future germ cells) in the most anterior-lateral 

region underlying the border of the area pellucida. The migrating endoderm replaces 

the hypoblast and the endoblast, and becomes the most ventral layer of the embryo 

proper. It has been suggested that the formation of the endoderm is regulated by the 

TGF-p family of signalling molecules, and specifically Nodal as it has been reported in
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vertebrates (Mizoguchi et al., 2006; Poulain and Lepage, 2002). However other 

signalling pathways, such as Bmp and Writ have also been implicated (Grapin and 

Constam, 2004; Stainier, 2002).

Formation of the mesoderm begins with the appearance of a middle layer, 

which condenses at the primitive streak but this appears to contain a mixture of cells 

destined for both endoderm and mesoderm (see above). However during gastrulation 

prospective endoderm cells become quickly confined to the most anterior regions of 

the primitive streak, and ingression of cells elsewhere through the streak contributes 

exclusively to mesoderm (both embryonic and extra-embryonic).

Within the forming mesodermal layer, cells migrate anteriorly to form the prechordal 

mesoderm and notochord. Cells migrating a little more laterally (on either side of the 

notochord at the midline) contribute to somites and to the paraxial mesoderm of the 

head, and those that migrate yet more laterally give rise to the intermediate mesoderm, 

heart and lateral plate (Brand-Saberi et al., 1996; Christ and Ordahl, 1995; Psychoyos 

and Stern, 1996; Rosenquist, 1966; Schoenwolf, 1992; Selleck and Stern, 1991). The 

intermediate mesoderm extends longitudinally between somites (medially) and lateral 

plate mesoderm, and eventually gives rise to the mesonephric duct and all kidney 

tissue and part of the gonads (James et al., 2006; Schultheiss et al., 1995; Yoshioka et 

al., 2005).

The lateral plate mesoderm becomes split into a superficial, somatic layer and a 

deep, splanchnic mesoderm -  the former attaches firmly to the epiblast (to form the 

somatopleure) while the latter becomes fused with the underlying endoderm 

(splanchnopleure). The cavity formed between them is the coelom (Linask et al., 1997), 

which defines the Coelomata and distinguishes these animals from lower Acoelomata. 

The somatic mesoderm will contribute to the formation of the pleural, pericardial, and 

peritoneal cavities, while splanchnic mesoderm from both sides of the embryo 

contributes to the formation of the heart in the medial region of the embryo. In addition 

to these embryonic structures, the lateral plate mesoderm also contributes to blood 

vessels and haematopoietic blood islands in the embryo and outside it, as well as to 

other extraembryonic components.

The cardiogenic mesoderm that contributed to the splanchnic mesoderm is 

present in the primitive streak as early as stage 4/4+. Some of these cells contribute to 

the endocardium and some differentiate into heart muscle (Andree et al., 1998; Lints et 

al., 1993; Schultheiss et al., 1995; Zaffran and Frasch, 2002). It has been recently 

reported that cranial paraxial mesoderm, as well as lateral plate mesoderm also 

contribute to myocardium and endocardium (Tirosh-Finkel et al., 2006).

The order of ingression and migration of the mesoderm through Hensen's node
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and the primitive streak is directly correlated with the medio-lateral (axial/lateral, also 

called dorsoventral patterning) patterning of the mesoderm: the more anterior the site 

of ingression, the more medial/axial/dorsal the mesodermal contribution (Freitas et al., 

2001; Lopez-Sanchez et al., 2001; Psychoyos and Stern, 1996; Sawada and Aoyama, 

1999; Schoenwolf et al., 1992). The BMP signalling pathway is one critical factor in 

determining these fates, as high levels of BMP specify lateral mesoderm, while low 

levels specify paraxial and possibly axial mesoderm (James and Schultheiss, 2005; 

Streit and Stern, 1999b; Tonegawa et al., 1997).

The ingression of cells that contribute to mesoderm and endoderm ceases 

through the anterior part of the primitive streak at stage 4 (Gallera and Nicolet, 1969; 

Garcia-Martinez et al., 1997; Hatada and Stern, 1994; Joubin and Stern, 1999; Nicolet, 

1965; Nicolet, 1970; Psychoyos and Stern, 1996). The transcription factor Churchill, 

acting via Sip1 (Smad interacting protein 1) has been recently identified as key 

regulators of this ingression, and specifically as being responsible for stopping the 

ingression of cells at the end of gastrulation (Sheng et al., 2003). This phase of early 

development (stage 4) thus demarcates the end of gastrulation proper and the 

beginning of the "neurula" stage. However it should be remembered that cell ingression 

in a process analogous to early gastrulation continues to take place through the tail 

bud and the remnants of the primitive streak as it regresses, primarily to generate 

lateral mesoderm (Knezevic et al., 1998).

1.1.2.3. Hensen’s node

Hensen's node is the amniote equivalent of the amphibian organiser in that it can 

induce a complete central nervous system when transplanted into a competent region 

at an appropriate stage of development (see below). Despite its heterogeneous cell 

origin (see above), it can be defined by the expression of many genes including 

Goosecoid, Chordin, HNF3/3 and Not1. Since cells enter and leave Hensen’s node 

continuously during gastrulation, yet these genes remain expressed in this particular 

region, there must be mechanisms responsible for ensuring such regional expression 

independent from cell lineage. Indeed, complex interactions between BMP, Vg1, Wnt 

and ADMP signalling as well as possibly Nodal have been implicated in this dynamic 

regulation of gene expression (Joubin and Stern, 1999).

In addition to the transient cell populations that make up Hensen’s node, there 

also appear to be some permanent resident cells. Single cell lineage analysis of the 

superficial (epiblast) layer of the node revealed that descendants of some single cells 

can populate very large regions of the axis (contributing to notochord and/or somites) 

while one descendant of the originally labelled cell remains in place in the node
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(Selleck and Stern, 1991; Selleck and Stern, 1992), These observations are consistent 

with the idea that the node contains a resident population of stem-cell-like cells which 

act as founders for cells that will gradually (in a head-to-tail direction) colonise the 

entire length of the embryonic axis in these mesodermal structures.

At stage 5, the node becomes morphologically asymmetric, with a visible tilt to 

the left (the position of the primitive pit, corresponding to the tip of the groove of the 

primitive streak, does not occupy a perfectly central position within the node). This 

morphological asymmetry is accompanied by left and right differences in gene 

expression, independent of the morphology. Thus HNF3fi, Sonic hedgehog and Nodal 

are expressed on the left whilst ActRlla is expressed on the right (Levin et al., 1995). 

Importantly, the asymmetric expression of some of these genes (all of the above 

except Nodal) precede the appearance of morphological asymmetry, indicating that the 

processes setting up left-right asymmetry are already underway by the time of 

Hensen's node formation.

1.1.2.4. Patterning of the ectoderm: neurulation

After the end of gastrulation proper (following stage 4), the next developmental stage is 

called “primary neurulation” and is characterised by the emergence of the notochord 

and head process from the node (in the middle layer), at the same time as the 

ectoderm (epiblast) thickens in the central region and elevates to form the neural plate. 

This subsequently folds to generate the neural tube. “Secondary neurulation” is said to 

take place at the later stages of the development (stage 16-35) in the caudal mass in 

the posterior regions of the embryo. The mechanisms of neural tube formation appear 

to differ in this region, where a medullary cord (continuous with the neural tube arising 

from primary neurulation) progressively hollows as the secondary neural tube is formed 

(Uehara and Ueshima, 1988; Yang et al., 2003). However the term neurulation is 

usually used exclusively to refer to the embryonic stages at which primary neurulation 

occurs, rather than the entire process of neural tube formation (just as “gastrulation” 

also refers to a stage of development rather than the process of cell ingression through 

the primitive streak, which continues at much later stages).

Neurulation first becomes apparent with morphological and molecular changes 

taking place in the ectoderm, starting just after stage 4. The molecular aspects of early 

neurulation are discussed in detail below (section 1.2 Neural Induction). Formation of 

the neural plate is characterised by changes in cell shape; epiblast cells destined to 

form the neural plate become columnar, a process that is accompanied by the onset of 

expression of the “definitive” neural marker Sox2 (Rex et al., 1997). Formation of the 

neural tube is preceded by elevation of the lateral borders of the neural plate (with a
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medial hinge in the midline and dorsal hinges at the top of emerging neural folds). This 

is followed by convergence of neural folds that eventually fuse in a rostral to caudal 

direction. Closure of the neural tube gives rise to the roof plate and the ectoderm 

overlying it (Schoenwolf, 1982) and also defines the site of neural crest formation (Di 

Virgilio et al., 1967; Steffek et al., 1979).

1.1.3. Summary of the stages used to classify early chick development

A particularly important advantage of the chick embryo over other species is the 

availability of an extremely fine and accurate staging system. For stages from the initial 

appearance of the primitive streak (stage 2) to hatching (stage 46), the system of 

Hamburger and Hamilton (Hamburger and Hamilton, 1951) is used. For pre-primitive 

streak stages there are 14 (l-XIV) additional stages (Eyal-Giladi and Kochav, 1976).

The stages of development relevant to this study are briefly introduced below: 

Eyal-Giladi and Kochav (1976) stages:

X (20 hours after fertilisation - freshly laid egg): clear area pellucida and area opaca, 

islands of hypoblast visible on the ventral side. Koller’s sickle distinguishable 

posteriorly.

XI: Islands of hypoblast begin to fuse, making a layer that covers 1/4-1/3 of the area 

pellucida (posteriorly)

XII: Hypoblast now covers 1/2 of the surface of the area pellucida.

XIII: Hypoblast covers entire lower surface of the area pellucida, with a well-defined 

posterior edge at Koller’s sickle.

XIV (this appears to be a very short stage) formation of a “posterior bridge”, just 

posterior to Koller's sickle but which may incorporate part of the sickle itself -  this may 

be the very early primordium of the primitive streak.

Hamburger and Hamilton (1951) stages (intermediate stages denoted by + or -)

2. (6-7 hours after laying approximately) primitive streak clearly visible as a triangular 

thickening at the posterior edge of the area pellucida;

3. (12-13 hours approximately) the primitive streak is a parallel-sided solid rod, with no 

groove in the epiblast above it.

3+. (14-17 hours approximately) a groove develops in the epiblast overlying the midline 

of the primitive streak. Mesendoderm cells start to emerge laterally forming the lateral 

plates. No distinct node is yet visible at the anterior tip of the streak.

4.(18-19 hours) a distinct bulbous thickening becomes apparent at the tip of the 

primitive streak (Hensen's node). No mesoderm visible in front of the node. In some 

embryos the area pellucida changes shape into an inverted pear-shape (thinnest 

posteriorly) but this is not seen in all cases.
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4+. a triangular condensation of mesendodermal cells is visible just anterior to the 

node, with its apex in contact with the node and its base extending anteriorly from it. 

This is the primordium of the prechordal mesendoderm.

5. (19-22 hours) a rod of mesoderm (the head process, or cephalic notochord) extends 

forwards from the node, with the triangular prechordal mesendoderm at its anterior tip. 

No head fold yet apparent.

6. (23-25 hours) the head fold begins to form anterior to the head process and 

prechordal mesendoderm.

7. (23-26 hours) appearance of the first pair of somites; beginning of the formation of 

blood islands.

8. (26-29 hours) 4 pairs of somites, blood islands clearly present posteriorly in the 

proximal area opaca; neural folds elevating and starting to fuse at the level of the 

hindbrain; the process of neural tube formation extends from this region posteriorly and 

to a lesser extent anteriorly.

9. (29-33 hours) 7 pairs of somites, the cephalic neural tube starts to subdivide into: 

prosencephalon, mesencephalon and rhombencephalon; primary optic vesicle can be 

detected; ventrally: fusion of the heart primordia, omphalomesenteric (vitelline) vein 

and margin of the anterior intestinal portal visible.

10. (33-38 hours), 10 pairs of somites, the first pair starts to disperse, clear division of 

cranial part into 3 brain vesicles; optic vesicle clearly visible in the prosencephalon; first 

signs of cranial flexure; rhombomeres become apparent; heart bends to the right.

11. (40-45 hours) 13 pairs of somites; cranial flexure more apparent; optic vesicle 

starts to converge at the base; prosencephalon divides into telencephalon and 

diencephalon, rhombencephalon divides into metencephalon and myelencephalon, 5 

rhombomeres clearly visible; heart bent to the right

12. (45-49 hours) 16 pairs of somites; cranial flexure to the left; telencephalon covered 

with fold of amnion; primary optic vesicle has a stalk, auditory pit is visible; heart takes 

a S shape form.

13. (48-52 hours) 18 pairs of somites; head turning to the right, fold of amnion extends 

posteriorly; telencephalon is enlarged;

14. (50-53 hours) 22 pairs of somites; telencephalon positions itself at a right angle to 

the diencephalon; first and second branchial arch visible; invagination of the primary 

optic vesicle and formation of the lens placode; constriction of the auditory pit opening; 

amnion covers anterior part of the embryo to the level of 7th pair of somites.
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1.2. Neural induction

“Induction” has been defined as “an interaction between one (inducing) tissue and 

another (responding) tissue, as a result o f which the responding tissue undergoes a 

change in its direction of differentiation" (Gurdon, 1987). The idea of embryonic 

induction as a main player in determining the territories occupied by cells with different 

ultimate fates was first proposed over a century ago. Herbst suggested that normal 

development requires "formative stimuli (...) exerted from one part o f the embryo to 

another3', he even believed in "the possibility o f a complete resolution o f the entire 

ontogenesis into a sequence of such inductions" (Herbst, 1901) - translation from 

online companion to (Gilbert, 2006: http://8e.devbio.com/article.php?ch=10&id=110). 

The first evidence supporting this idea came from the lab of Hans Spemann working on 

the formation of the lens in amphibians, who found that the lens failed to develop when 

the optic stalk was removed and that grafts of the optic stalk to certain positions 

resulted in the formation of ectopic lenses (Spemann, 1901). However these 

experiments could not distinguish graft- from host-derived cells and therefore the 

contribution of the former to the new structure remained unclear. Some years later 

(Spemann, 1921), Spemann gave his PhD student Hilde Mangold the task of repeating 

earlier experiments by Warren Lewis (Lewis, 1907) in which Lewis had obtained 

supernumerary axes after implanting the dorsal lip of the blastopore in frog (Rana). In 

the absence of markers to distinguish donor and host cells, Lewis concluded that the 

nervous system arose from the grafted dorsal lip. Spemann and Mangold used a 

different approach: they combined differently pigmented species of newts (Triturus 

taeniatus, T. cristatus and T. alpestris) to distinguish between donor and host tissue. 

The results of these experiments allowed them to conclude that the donor graft can 

induce in the host a secondary axis containing a complete nervous system composed 

almost entirely of host cells, rather than being due to the differentiation/contribution of 

the donor cells (Spemann and Mangold, 1924). Spemann and Mangold (1924) 

proposed the name “organiser” for the dorsal lip of the blastopore, because of its ability 

to induce a fully patterned axis in the host. This was the first formal demonstration of 

the phenomenon of embryonic induction, which attracted considerable attention for 

many decades thereafter. This demonstration became one of the most pivotal 

experiments in the history of developmental biology. However, well over half a century 

had to elapse before any clue to the molecular mechanisms underlying it started to 

emerge. Indeed during Spemann's time, it was still being debated whether the 

“formative stimulus” from the organiser was chemical at all; Spemann himself favoured
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a vitalistic explanation, a more holistic, or non-material notion of induction (Oppenheim, 

2001; Oppenheimer, 1936; Stern, 2004b).

Soon after the landmark experiment of Spemann and Mangold (1924), regions 

with a similar activity were discovered in other vertebrate Classes: the embryonic shield 

in teleosts (Luther 1935, Oppenheimer 1936), the distal tip of the primitive streak 

(Hensen's node) in birds (Waddington, 1932; Waddington, 1933; Waddington, 1937) 

and mammals (Beddington, 1994; Blum et al., 1992; Waddington, 1936; Waddington, 

1937). It was also established not only that all vertebrate Classes possess equivalent 

regions, but also that grafts of the organizer from one Class could induce an ectopic 

nervous system in another Class: fish to newt (Oppenheimer, 1936), chick to rabbit 

(Waddington, 1934), Xenopus to chick (Kintner and Dodd, 1991), chick to zebrafish 

(Hatta and Takahashi, 1996), rabbit to chick or duck (Waddington, 1937), chick to 

Xenopus (Kintner and Dodd, 1991), mouse to frog (Blum et al., 1992) and rabbit and 

mouse to chick (Knoetgen et al., 2000; Zhu et al., 1999). These findings imply that 

ectodermal cells are responsive to organiser-derived signals from other 

species/Classes, strongly suggesting a common mechanism for neural induction 

conserved across the Vertebrates.

Since Spemann’s day, a huge literature has accumulated on neural induction 

mainly concerned with the identification of the putative inducing signals. It is not until 

the mid-1990s however that the first clues started to emerge, mainly from experiments 

performed in Xenopus.

1.2.1 The default model

The first plausible model for the molecular basis of neural induction was based on 

research in Xenopus rather than newts, because it turned out that the latter were very 

easy to neuralise with a number of non-specific stimuli (Stern, 2005). The first new 

insights arose from the observation that when the animal cap of the Xenopus blastula 

is dissociated into single cells, and after a few minutes the cells are reassociated and 

allowed to develop, the explant differentiates into neural tissue (Born et al., 1989; 

Godsave and Slack, 1989; Grunz and Tacke, 1989; Saint-Jeannet et al., 1990; Sato 

and Sargent, 1989). This surprising finding was initially interpreted to mean that some 

factor present between the cells may be removed by dissociation, and that such a 

factor might act as an antagonist of neural differentiation. The next important 

observation was made by Hemmati-Brivanlou and Melton, who reported that a great 

increase in the size of the neural plate is produced when embryos are injected with a 

dominant negative receptor for a factor then thought to be activin (this was later shown 

to inhibit many members of TGFp family, including BMPs) (Hemmati-Brivanlou and
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Melton, 1994). The same treatment also prevented formation of mesoderm (Hemmati- 

Brivanlou and Melton, 1992). The authors interpreted these results as implying that 

activin or related factors were required for mesoderm formation, but also normally 

inhibit neural plate formation.

However the model started to take shape only through several more or less 

simultaneous discoveries. In Richard Harland’s laboratory, a screen for new dorsalising 

factors led to the identification of a novel protein, Noggin, capable when injected into 

an early embryo of dorsalising the embryo and of generating a large excess of tissue 

expressing neural markers (Lamb et al., 1993; Smith and Harland, 1992; Smith et al., 

1993). These authors found that Noggin binds BMPs and to inhibit their activity and 

that it is expressed in the organizer, implicating BMP in the inhibition of neural fates 

predicted by the dissociation and dominant-negative “activin” receptor experiments 

mentioned above. Meanwhile, the laboratory of De Robertis discovered another 

protein, Chordin (homologous to Drosophila short gastrulation, or sog), which is also 

able to dorsalise the embryo when overexpressed, to bind to and inactivate BMPs (just 

like Sog binds to and inhibits the BMP homologue, Dpp) and which is expressed in the 

organiser (De Robertis and Sasai, 1996; Fainsod et al., 1997; Hawley et al., 1995; 

Piccolo et al., 1996; Sasai et al., 1995; Sasai et al., 1994; Zimmerman et al., 1996). At 

the same time, the Hemmati-Brivanlou laboratory uncovered a third protein expressed 

in the organiser and with the ability to inhibit various TGF_ molecules including both 

activin and BMPs: Follistatin (Hemmati-Brivanlou et al., 1994). Finally, Hemmati- 

Brivanlou demonstrated that addition of BMP4 protein to freshly dissociated animal cap 

cells prevented the neuralising effects of dissociation, and induced epidermal markers 

instead (Wilson and Hemmati-Brivanlou, 1995). Together, this collection of 

observations converged on the influential “default model” (Hemmati-Brivanlou and 

Melton, 1997), which proposes that ectodermal cells in the animal cap have an 

endogenous tendency to become neural, but BMPs (especially BMP4, which is present 

ubiquitously in the animal cap at the blastula stage of Xenopus) normally inhibit this 

fate and instead induces them to become epidermal. The organiser produces a variety 

of BMP antagonists which are proposed to diffuse into the animal cap such that cells 

close to this region (at the dorsal side of the embryo) receive little BMP and can 

express their “default” neural fate, while cells remote from the organiser (ventral) are 

exposed to high amounts of BMP and become epidermal.

This model was received very favourably almost immediately because of its 

great simplicity and because it appeared at first sight to provide a definitive and 

compelling explanation for the whole phenomenon of neural induction by the organiser 

as well as explaining how the neural plate forms in normal development. Further
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support quickly followed, including observations that animal caps from embryos not 

able to convey the BMP signal (after injection of a dominant negative receptor for BMP, 

or of non-cleavable forms of both BMP4 and BMP7, or injected with morpholinos 

against BMP4) undergo neural differentiation (Hawley et al., 1995; Hemmati-Brivanlou 

and Melton, 1994; Sasai et al., 1995; Xu et al., 1995). These observations are also 

consistent with earlier findings that xBMP (DVR4) signalling has a potent ventralising 

effect (Dale et al., 1992; Jones et al., 1992). The expression patterns of BMP4  

transcripts also suggest that the lifting of the BMP inhibition could be a step in 

"releasing" neural character: BMP4 is ubiquitously expressed in the ectoderm of the 

Xenopus blastula but disappears from the region of the forming neural plate at early 

gastrula stage (Fainsod et al., 1994). Furthermore, as the transcription of BMP is 

regulated by the activity of BMP protein in Drosophila (Biehs et al., 1996) and zebrafish 

(Schulte-Merker et al., 1997), these patterns of BMP expression are likely to reflect 

changes in BMP activity in different regions. Similar results are obtained when the 

patterns of expression of other downstream targets of BMP signalling are analysed: 

Smad5 (Suzuki et al., 1997a), m sxl (Suzuki et al., 1997b), S m ad l (Wilson et al., 

1997). It was also reported recently that removal of all three BMP inhibitors (noggin, 

chordin and follistatin) causes a great expansion of the ventral structures and almost 

complete failure of dorsal structures - including neural plate - to form (Khokha et al.,

2005) and more dramatically, that removal of three BMPs (-2, -4 and -7) along with a 

related TGF_ factor expressed dorsally, ADMP, causes almost the entire animal cap to 

become neuralised (Reversade and De Robertis, 2005)

Since the initial proposal of the default model, other secreted 

molecules, some of which are expressed either in the organiser or in some of its 

derivatives have been identified as BMP antagonists: Cerberus (Bouwmeester et al., 

1996; Belo et al., 1997), - Gremlin (Hsu et al., 1998; Khokha et al., 2003), Dan (Eimon 

and Harland, 2001), Drm (Dionne et al., 2001; Pearce et al., 1999) and Ogon/Sizzled 

(Wagner and Mullins, 2002; Yabe et al., 2003).

Thus, the default model is supported by an overwhelming number of 

experimental results and is still regarded by many as the best model to explain the 

processes taking place during neural induction. However many observations are not 

entirely consistent with the model in its simplest form, and suggest considerably more 

complexity than the proposals of the default model.
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1.2.2 Some evidence against the default model

Soon after the default model was proposed in Xenopus based on the experiments 

described above, data mainly from chick embryos started to suggest that the default 

model could not be a sufficient explanation for neural induction, at least in this species. 

First, most of the molecular players implicated in this model in Xenopus (especially 

BMPs -2, -4 and -7, Noggin, Chordin and Follistatin) are not expressed in the chick as 

might be expected from the Xenopus findings. The BMPs are not expressed 

ubiquitously to start with, and although transcripts are absent from the later neural 

plate, they are especially high at the border of the neural plate, corresponding to the 

future neural crest and placode territory (Streit et al., 1998). This territory has been 

proposed to be defined by intermediate levels of BMP signalling in Xenopus (Marchant 

et al., 1998), which is inconsistent with the endogenous expression patterns of these 

genes in both Xenopus  and chick at the stages when neural crest induction is 

presumed to take place. Likewise BMP antagonists are not expressed appropriately: 

neither Follistatin nor Noggin is expressed in the chick node at all, at any stage. 

Follistatin does not appear to be expressed until much later stages of development, 

while Noggin appears at stage 5 in the head process but excluding the node (Streit et 

al., 1998; Streit and Stern, 1999a; Streit and Stern, 1999b). This timing is especially 

significant since careful time-course experiments with node grafts (Fig. 1.1) from 

differently aged donors and hosts revealed that the competence of the host to respond 

to neural induction disappears rapidly between stages 4 and 4+, while the inducing 

ability of the node declines to about half at precisely the same stage, strongly 

suggesting that neural induction by the organiser is normally finished by stage 4+ (Dias 

and Schoenwolf, 1990; Storey et al., 1992). Perhaps more compellingly, misexpression 

of BMP4 in the prospective neural plate of the chick does not completely block the 

expression of the early neural marker Sox3 (Linker and Stern, 2004; Streit et al., 1998) 

although it does block expression of the later neural marker Sox2; (Linker and Stern, 

2004) and misexpression of Chordin or Noggin (Streit et al., 1998; Streit and Stern, 

1999b), or of powerful intracellular antagonists of BMP signalling like Smad6 and/or 

dominant-negative BMP receptor in competent epiblast does not induce expression of 

any neural marker, either alone or in combination with the secreted inhibitors (Linker 

and Stern, 2004).
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quail embryo chick embryo

Fig. 1.1
Node graft. A quail node is transplanted to the inner 1/3 of the anterior part of the area opaca. 

This region of the embryo, despite its extraembryonic fate (Gallera, 1970) is able to respond to 

inducing signals from the node at stages 3+ to 4 (Dias and Schoenwolf, 1990; Storey et al., 

1992; Streit et al., 1997).

Notably, neural induction requires a long period of contact between the 

organiser and the responding tissue. Timed node removal experiments revealed that 

as long as 13 hours of contact are required before the responding tissue is committed 

to a neural plate fate i.e. forms a neural plate after removal of the graft (Gallera and 

Nicolet, 1969). Moreover, molecular markers for the neural plate are expressed in the 

responding epiblast at different time points after the graft -  thus Sox3 is induced after 3 

hours, while Sox2 is induced only after 9 hours of contact (Streit et al., 2000; Streit et 

al., 1998; Streit and Stern, 1999a). These observations make it unlikely that neural 

induction could consist of a single step.

The ability to perform carefully timed grafts in the chick embryo enabled an 

investigation of whether signals other than BMP antagonists might be required 

upstream of BMP inhibition. Since BMP antagonists have no detectable effect when 

misexpressed in the area opaca, a node was grafted into this region and removed at 

various times before replacing it with a graft of Chordin-secreting cells. After 3 hours, 

Sox3 was induced but if the node was removed Sox3 expression was lost and no 

neural plate developed. However if the node was removed after 5 hours and cells 

secreting Chordin placed in its place, Sox3 expression was maintained, although no 

mature neural plate developed (Streit et al., 1998). This result strongly suggested that 

factors other than BMP antagonists, secreted by the organiser, are required before 

T cells can respond to BMP antagonists (Streit et al., 1998; Streit et al., 2000).

To characterise the molecular differences between cells that have or have not 

been exposed to an organiser for 5 hours (and thus identify steps required upstream of
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BMP inhibition during neural induction), a differential screen was designed (Streit et al 

2000) using a method devised by Dulac and Axel (Dulac and Axel 1995). A stage 3+ 

quail node was grafted into the area opaca on one side of a single chick host embryo 

at stage 3+ (Fig.1.2 a). After 5 hours (Fig.1.2 b) the node was removed and discarded 

(Fig. 1.2 c). Host epiblast cells that had been in contact with the node were excised and 

control cells from an identical position on the opposite side (which had not received a 

graft) similarly excised. Each explant was dissociated into single cells, and 5 small 

groups of cells from each were selected to generate cDNA libraries from the induced 

and control sides (Fig. 1.2 d). Radioactive probes made from both libraries were used to 

perform a differential screen, in which both upregulated and downregulated genes 

were selected for analysis. In all, 15 genes with differential expression were identified.

a. b.

chick embryoquail embryo 5 hours

cells exposed 
to the — 1 
organiser

area opaca 
Hensen’s node 
area pellucida 
primitive streak

v  v
differential screen

cDNA from 1 □ cell populations
from each tissue

Fig. 1.2

A screen for early responses to signals from the organiser.
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Of these 15 genes, two have so far been studied and the results published: 

Churchill turned out to encode a novel zinc finger transcriptional activator whose target 

is Sip1 (Smad-interacting protein 1; see above). Churchill is induced after 4-5 hours’ 

contact with the node and is involved in preventing continued cell ingression through 

the primitive streak at the end of gastrulation (see above), ensuring that some cells can 

remain on the surface and become part of the neural plate (Sheng et al., 2003). The 

second gene is induced much more quickly by the node (in just 1-2 hours) and was 

therefore named ERNI (Early Response to Neural Induction). ERNI expression is first 

detected in normal embryos long before gastrulation begins, at stages XII-XIII. It was 

shown that ERNI cannot be induced by BMP antagonists but can be induced by FGF8 

independently of induction of Brachyury (Streit et al., 2000). Prior to primitive streak 

formation, FGF8 is expressed both in the hypoblast and in Koller’s sickle, and both of 

these structures can induce ERNI expression when grafted into the area opaca, with 

the same time course as a grafted node (Streit et al., 2000; Albazerchi and Stern,

2006). Moreover, induction of ERNI (as well as of Sox3 and Churchill, and even the 

later neural plate marker Sox2) requires FGF signalling as node grafts in the presence 

of the FGF inhibitor SU5402 or with cells secreting a competitive antagonist (isolated 

ligand-binding domain of the FGF receptor) completely abolish induction of these 

genes and properties by a grafted node (Streit et al., 2000). These findings, together 

with explant experiments from early embryos (Wilson et al., 2000) suggested that the 

earliest steps of neural induction begin very early, even before gastrulation, and are 

mediated by FGF signalling.

Apart from these two genes, a further 13 isolated from the screen remain to be 

studied. Among them, 3 clones upregulated by the node (with initial denominations A4, 

C4 and F5) turned out to encode previously described genes: data base searches 

revealed that they represent chicken homologues of Heavy chain Ferritin (hcf), 

Defender against Apoptotic Death 1 (Dad1 ) and Polyubiquitin 2 (U bll). There is 

evidence (reviewed elsewhere in this thesis) that all three genes have roles in 

controlling cell death in other systems. Since all three are expressed in the early 

developing neural plate, this raised the possibility that these genes, and perhaps the 

regulation of apoptosis, may play an important role in the early stages of neural 

induction. For these reason they were chosen for further study and constitute the 

subject matter of this thesis.

Here we establish the exact expression patterns of those genes and investigate 

their possible roles in the process of neural induction. We also investigated the 

distribution of apoptotic cells at early stages of chick development with special 

emphasis on the correspondence of apoptotic death and neural induction. We also

27



investigate the expression and functional activities of Cas3 and Cas9 and compare 

these to the patterns of PCD. Overall although this study did not uncover essential 

roles for any of these genes in neural induction, it does provide evidence that tight 

regulation of programmed cell death may accompany the early stages of neural 

induction, and results suggesting that the early neural plate is protected against 

apoptosis (probably partly by Dad1) and that cell death thus becomes concentrated at 

the edges of the neural plate, where the neural crest will later form.
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CHAPTER 2:

Materials and Methods
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2.1. Eggs and embryos

Fertilized Brown Bovan Gold hens’ eggs were obtained from Henry Stewart & Co. 

Fertilized quails’ eggs were obtained from B.C. Potter - Rosedean farm. Eggs were 

incubated at 38°C to the desired stages, which were determined according to Eyal- 

Giladi and Kochav for pre-streak stages (Roman numerals, X-XIV) (Eyal-Giladi and 

Kochav, 1976) and to Hamburger and Hamilton in Arabic numerals for later stages 

(Hamburger and Hamilton, 1951).

2.2. Embryo culture and transplantation experiments

For embryo culture, a modified version of the New (New, 1955) technique was used 

(Stern and Ireland, 1981). Embryos were explanted from the eggs in Pannett-Compton 

saline (Pannett and Compton, 1924) and cultured on glass rings over a pool of egg 

albumen in 35mm plastic dishes as previously described (Stern and Ireland, 1981). 

Transplantation of Hensen's node was performed as described previously (Stern, 

1999; Storey et al., 1992). The quail donor embryos were explanted and placed in a 

dish of Pannett-Compton saline (Pannett and Compton, 1924). Hensen’s nodes were 

obtained from stage 3+/4 embryos by cutting the extreme tip of the primitive streak 

using fine mounted insect pins or G21 hypodermic needles. The most posterior part of 

the primitive streak of the same embryo was dissected to act as negative control in 

some experiments. Following excision, the graft was transferred to the host embryo in 

modified New culture and transplanted under a flap of yolky extraembryonic endoderm 

in the area opaca so as to be in contact with the ectoderm of this region. All such grafts 

were placed into the inner 1/3 of the area opaca at or above the level of the host node. 

Following transplantation, cultured embryos were incubated at 38°C in a humid 

chamber to the required stage (usually between 1.5-5 hours, or overnight).

2.3. Application of FGF or its inhibitor SU5402 and other 

secreted factors

When purified protein factors were available, these were delivered using plastic beads 

as vehicle. This was the case for FGFs. FGF4 or FGF8b (Streit and Stern, 1999a) 

were adsorbed onto heparin-coated acrylic beads (Sigma) as described (Streit et al., 

2000). These were soaked at 4°C for 1-2 hours with murine FGF8b (R&D Systems, 

Sigma) at 25pg/ml or 50pg/ml in PBS, rinsed in PBS and transferred to the host 

embryo for grafting as described for Hensen’s node grafts. PBS coated heparin-acrylic 

beads were used as controls.

FGF8b from (R&D Systems) and (Sigma) were tested and the results compared. It was
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found that different batches of FGF8b had different activities in terms of its ability to 

induce Sox3 and Bra in area opaca epiblast. At 25^g/ml, FGF8b from either Sigma or 

R&D did not induce brachyury (10/10) (except perhaps extremely weakly -  see Fig. 2.1 

a and b). At 50j&g/ml, FGF8b from R&D usually did not induce brachyury whereas 

Sigma FGF8b did, although in some cases the opposite was found (Fig. 2.1 a and b). 

However, FGF8b from both sources induced Sox3 (20/20) (Fig. 2.1 c and d).

FGF8b [SIGMA] 
50ug/ml 25ug/ml

FGFBb [R&D Systems] 
50ug/ml 25ug/m l

2
CD

b  /

So
x3

c  N

Fig. 2.1

Expression of Sox3 and brachyury following application of different batches and concentrations 

of FGF. Arrows indicate the position of the grafted beads; hn - Hensen's node and ps - 

primitive streak.

To test whether FGF signalling is required for induction of different markers, the FGF- 

receptor inhibitor SU5402 (Mohammadi et al., 1997) (Calbiochem) was used. A stock 

at 1mM in Dimethylsulphoxide (DMSO) was diluted in PBS to a concentration of 2 ^ M  

and this incubated with AG1X2 (BioRad) ion exchange beads for 1-2 hours at 4°C. 

Beads were kept on ice during loading and rinsed in PBS prior to transplantation. As a 

control for possible toxic effects of DMSO, pure DMSO-incubated AG1X2 beads were 

used, after rinsing in PBS. Beads were grafted as described for FGF and the embryos 

cultured in the same manner.
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2.4. Electroporation

When purified factors were not available, when a non-secreted protein was to be 

tested, or for morpholino loss-of-function experiments, in vivo electroporation 

(Muramatsu et al., 1997; Sheng et al., 2003; Tur-Kaspa et al., 1986) was used to 

introduce an expression construct or fluorescein-labelled morpholinos into selected 

cells in living whole embryos. Chick embryos at stage 3+/4 were explanted in Pannett- 

Compton saline and placed in a plastic chamber containing a platinum cathode 

embedded in the bottom but exposed to the saline through a 1.5 mm diameter window. 

The embryo was positioned over the window, dorsal side up. For expression plasmids, 

DNA at a concentration of in water containing 0.04% Fast Green and 6%

sucrose was applied using a pulled micro-capillary pipette just above the dorsal side of 

the embryo. A movable anode electrode (sharpened Platinum wire insulated except for 

the tip) was lowered over the region to be electroporated (Fig.2.2). Three or four 50 

millisecond pulses (500 milliseconds apart) of 5.5-6 Volts were given with a TSS10 

pulse generator (Intracel). Following electroporation embryos were placed onto a 

vitelline membrane as for New culture (New, 1955; Stern and Ireland, 1981) and grown 

to the desired stage at 38°C.

Fig 2.2

Schematic representation of the electroporation chamber.

2.5. In situ RNA hybridisation

To detect cells expressing various genes, whole-mount in situ hybridisation with 

digoxigenin- (DIG) or fluorescein-labelled riboprobes was used, following the protocols 

described (Stern, 1998; Streit and Stern, 2001). Embryos were fixed in 4% 

paraformaldehyde (PFA) containing 2mM EGTA in Ca++/Mg++-free PBS, pH 7.5 for 1 

hour at room temperature or 4°C overnight. Labelled antisense riboprobes were
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transcribed from each DNA construct after digestion with the appropriate restriction 

enzyme to generate a linear template as follows: cGata2 and cGata3 (Sheng and 

Stern, 1999) cloned in pGEM T easy were linearised with Ndel and transcribed with T7 

polymerase. cMsxl (Suzuki et al., 1991) (kind gift of Karel Liem, Jessell lab) cloned in 

pBlueScript was linearised with Bgl-ll and transcribed with T3. cDlx5 (Pera et al., 1999) 

cloned in pBlueScript was linearised with Ncol and transcribed with 17. cCaspase3 

(Johnson and Bridgham, 2000) cloned in pBlueScript was linearised with Nco I and 

transcribed with SP6. cSox2 (Uwanogho et al., 1995) (kind gift of Paul Scotting) - in 

pBlueScript was linearised with Xbal and transcribed with 11. cSox3 (Uwanogho et al., 

1995) (kind gift of Paul Scotting) in pBlueScript was linearised with Pstl and transcribed 

with 11. cERNI (Streit et al., 2000) cloned in pBlueScript was linearised with Kpnl and 

transcribed with T3.

For in situ hybridization with two probes, one probe was detected using Nitro Blue 

Tetrazolium (NBT) and Bromo-Chloro-lndole-Phosphate (BCIP) as alkaline- 

phosphatase substrates to yield a deep purple colour. The other probe was detected 

using BCIP alone to give a light blue colour. In some cases lodophenyl-Nitrophenyl- 

Phenyl-Tetrazolium Chloride (INT)-BCIP was used as an alternative to the latter to give 

a brick-red colour. The chromogens (all obtained from Roche) were diluted in 100mM 

Tris-Buffered saline (pH 9.5) containing 50mM Mg++ and 1% Tween-20 (NTMT): 4.5pl 

NBT stock (75pg/ml in 70% dimethylformamide, DMF), 3.5pl BCIP stock (50mg/ml in 

100% DMF) per 1.5 ml for dark purple, 7.5pl BCIP stock: (50mg/ml in 100% DMF) per 

ml for light blue or 7.5pl INT-BCIP per ml for brick-red colour.

2.6. Whole mount immunohistochemistry

To detect quail cells after grafting into chick embryos, or to detect Green Fluorescent 

Protein (GFP) from an expression plasmid, embryos were subjected to whole-mount 

immunohistochemistry based on previously described protocols (Streit et al., 1998). 

For GFP detection, a rabbit anti-GFP (Molecular Probes) antibody diluted 1:2,500 in 

blocking buffer was used, followed by horseradish peroxidase (HRP) coupled goat anti­

rabbit (Santa Cruz) secondary antibody diluted 1:2,500 in blocking buffer. Quail cells 

were detected with mouse (IgG) monoclonal antibody QCPN (anti-quail perinuclear 

antigen) (developed by Dr B.M. Carlson and obtained from the Developmental Studies 

Hybridoma Bank, maintained by the Department of Pharmacology and Molecular 

Sciences, The John Hopkins University School of Medicine, Baltimore, MD 21205, 

under contract N01-HD-2-3144 from NICHD) following published protocols (Streit et al.,

1997). Anti-mouse IgG antibody conjugated to HRP (Jackson) was used as secondary
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antibody, diluted 1:2,500 in blocking buffer. All HRP-labelled antibodies were detected 

using diaminobenzidine (DAB) in the presence of H20 2 as previously described (Stern,

1998).

2.7. Wax embedding and sectioning

Following in situ hybridisation, TUNEL staining and/or immunochemistry, embryos 

were rinsed in PBS and dehydrated with alcohol washes (5 minutes in 100% methanol 

and 10 minutes in 100% propan-2-ol). They were then cleared in absolute 

tetrahydronaphthalene for 30 minutes at room temperature. Paraffin wax was added at 

1:1 ratio and embryos were placed at 60-65 °C for 30 minutes. Three changes of 30 

minutes each in paraffin wax followed, after which embryos were placed into moulds 

and allowed to set at room temperature. 8pm thick sections were cut on a microtome 

(Zeiss Microm) and mounted on gelatin-albumen-coated glass slides. After drying 

overnight, they were de-waxed using Histoclear and mounted in Canada Balsam under 

a glass coverslip.

2.8. Photography

Photographs were taken using a SMZ-2 dissection microscope or a Vanox-T Olympus 

compound microscope fitted with an AxioCam (Zeiss) camera and Zeiss AxioVision 3.1 

software. Composite images were prepared using Adobe Photoshop CS.

2.9. Polymerase Chain Reaction (PCR) and sequencing

To amplify various plasmids for cloning, the Polymerase Chain Reaction (PCR) (Saiki 

et al., 1988) was used. A hot start of 5 minutes was carried out at 95°C when a library 

was used as a template. After this, an initial incubation for 5 minutes was carried out at 

95°C in a PCR mix containing 1^M of appropriate reverse and forward primers, 0.2mM 

of each dNTPs, 1x magnesium-free buffer, 1.5mM MgCI2 and of 2.5 units/50|4l Taq 

Polymerase. Unless otherwise specified, all PCR reactions involved 32 cycles of: 3 

minutes at 95°C, 1.5 minutes at 49°C and 1.5 minutes at 72°C using a DNA Thermal 

Cycler 480 (Perkin Elmer). After the last cycle the samples were kept at 72°C for 10 

minutes and then cooled down to 4°C.

When sequencing of DNAs was required, this was performed by the Advanced 

Biotechnology Centre at Imperial College London from PCR products.
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2.10. Plasmid transfection into competent bacteria

DH5 a competent cells (40-50 p.l) were transformed with 50ng cDNA by standard 

techniques (Sambrook et al., 1989). Colonies were picked, cultured overnight at 37°C 

in LB broth containing ampicillin (50^g/ml). Plasmids were extracted using Mini or Maxi 

Prep kits (Qiagen), following the manufacturer’s instructions.
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CHAPTER 3:

Defender Against Cell Death (Dad1)
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3.1. Introduction

Defender Against Cell Death (Dad1) (Fig. 3.1) was first identified as a gene responsible 

for apoptotic cell death in temperature-sensitive mutants (tsBN7) of the hamster 

BHK21 cell line (Nakashima et al., 1993). In tsBN7 mutants, Dad1 has a point 

mutation, where a G>A substitution results in the conversion of glycine-38 into arginine 

(Nakashima et al., 1993). It has been suggested that DAD1 could be involved directly 

in mechanisms regulating programmed cell death (PCD) (Hauptmann et al., 2006; 

Makishima et al., 1997; Nakashima et al., 1993; Sugimoto et al., 1995). Since then, 

homologues of Dad1 have been identified in other species, and the orthologues from 

human (Nakashima et al., 1993; Sugimoto et al., 1995), mouse (Makishima et al., 

1997), Xenopus (Sugimoto et al., 1995) and nematode (Sugimoto et al., 1995) can all 

rescue the phenotype of the tsBN7 mutation in the hamster cells. Dad1 is not even 

restricted to animals; strikingly, even the Arabidopsis (Gallois et al., 1997) and rice 

(Makishima et al., 1997) genes can complement the tsBN7 mutation.

Ectopic expression of human or nematode DAD1 prevents over 20% of PCD 

that would otherwise take place during normal embryogenesis in C. elegans (Sugimoto 

et al., 1995). The only known Dad1 homologue not able to complement the tsBN7 

mutation is from the yeast Saccharomyces cerevisiae (Makishima et al., 2000). In all 

species, Dad1  codes for the ^.-subun it (called O s t 2  in yeast) of the 

oligosaccharyltransferase complex OST (Kelleher and Gilmore, 1997; Makishima et al., 

1997; Silberstein et al., 1995). There is evidence that DAD1 is required for the function 

- including catalytic activity (Makishima et al., 1997; Sanjay et al., 1998; Silberstein and 

Gilmore, 1996) and structural integrity of OST (Makishima et al., 1997; Sanjay et al., 

1998; Silberstein et al., 1995). This complex is involved in the initial step of N-linked 

glycosylation (Kaplan et al., 1987; Silberstein and Gilmore, 1996; Tanner and Lehle, 

1987), a highly conserved post-translational modification required for the effective 

transport of proteins through the secretory pathway and many other activities (Guan et 

al., 1985; Herscovics and Orlean, 1993; Kornfeld and Kornfeld, 1985; Riederer and 

Hinnen, 1991; Winther et al., 1991). During this process the oligosaccharyl core, rich in 

mannose, (Gly3Man9GclNAc2) is transferred from the lipid carrier dolichol 

pyrophosphate to asparagine residues within a consensus site (Asn-X-Ser/Thr) in 

polypeptide chains (Gavel and von Heijne, 1990). Certain mutations in Dad1 or other 

components of the OST complex can cause under-glycosylation of membrane bound 

and soluble glycoproteins (Makishima et al., 1997; Sanjay et al., 1998; Silberstein and 

Gilmore, 1996).
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Disruption of the Ost2 locus is lethal in yeast (Silberstein et al., 1995) and in 

homozygous mutant mice (Brewster et al., 2000; Hong et al., 1997; Hong et al., 2000; 

Nishii et al., 1999). However the phenotypes of different mutations in the Dad1 gene 

differ significantly. Mutants with a disrupted open reading frame (at the site of the first 

membrane-spanning domain) have more severe abnormalities and do not survive 

beyond E7.5 (Nishii et al., 1999). Another mutation was made by replacing Exon 1 of 

Dad1 with a NeoR cassette. Homozygous mice carrying this mutation die at the 

blastocyst stage, before implantation (Brewster et al., 2000). Heterozygotes do not 

show visible defects but have a tendency towards increased apoptosis when cultured 

in vitro, compared to the wild type (Brewster et al., 2000). In a third mutation, N&26, 

homozygous animals carrying a deletion of Exon 3 (which is not translated) of Dad1 

start to deteriorate by E10.5 (Hong et al., 1997). N&26 embryos are characterised by a 

slower rate of development and shortened, underdeveloped posterior axes by E8.5, but 

do have a head fold, a beating heart and somites (Hong et al., 2000). All three mutants 

die from excess apoptosis (Brewster et al., 2000; Hong et al., 2000; Nishii et al., 1999) 

confirming an important requirement for DAD1 as an anti-apoptotic protein. 

Interestingly in N#26 mutants, apoptosis takes place mainly in the mesoderm and 

ectoderm and especially at the distal tip of the primitive streak (Hong et al., 2000), 

suggesting a requirement for inhibition of cell death in the organizer. Heterozygous 

mice are also mildly affected, having a partially penetrant phenotype including soft 

tissue syndactyly and mild thymic hypoplasia (Nishii et al., 1999).

Only two of these mutations were tested for the presence of N-glycans to 

assess for possible changes in the activity of the OST complex. Surprisingly, 

homozygous mice with a mutation in the open reading frame of Dad1 seem to retain 

some N-linked glycosylation function (Nishii et al., 1999). The opposite is true for N&26 

embryos, where membrane and secreted proteins are significantly underglycosylated 

(Hong et al., 2000).
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Fig 3.1
Schematic representation of cellular topography of DAD1; (based on Makishima et al., 1997).
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The exact mechanisms by which DAD1 is involved in the process of apoptosis 

are still not known. Proposed interactions with a known anti-apoptotic protein myeloid 

cell leukemia-1 (MCL-1) cannot explain this process (Makishima et al., 2000). DAD1 

binds to the anti-apoptotic protein MCL-1 in vitro; however a mutant version still able to 

interact in this way, but lacking the last 4 amino acids from the C-terminus, disrupts N- 

linked glycosylation and prevents the rescue of the tsBN7 mutation in BHK21 hamster 

cells (Makishima et al., 2000). However, some controversy remains concerning the 

requirement for N-linked glycosylation for preventing apoptosis: on one hand, the 

above study (Makishima et al., 2000) reports that tunicamycin treatment (to disrupt N- 

linked glycosylation) does not mimic the phenotype. On the other hand, another group 

showed that the same treatment does cause apoptosis in this cell line (Yoshimi et al., 

2000), in agreement with observations in yeast and other mammalian cell lines 

(Hauptmann et al., 2006; Lin et al., 1999; Miyake et al., 2000; Perez-Sala and 

Mollinedo, 1995; Walker et al., 1998). Additionally, the use of different GFP-fusion 

constructs of DAD1 also suggested that the C terminus is important for the correct 

functioning of the protein, since fusions at the C-terminus disrupt DAD1 function 

(Nikonov et al., 2002). These data support the hypothesis that a function in 

glycosylation by DAD1 is responsible for its anti-apoptotic activity. It has also been 

suggested that N-linked glycosylation plays an additional role in protein quality control, 

where accumulated misfolded proteins can be detected by endoplasmic reticulum 

chaperones and targeted for degradation (Helenius, 1994). In addition, DAD1 may 

have yet another role, because its overexpression in mouse transgenics causes 

proliferation in the peripheral immune system and overexpression in the thymus does 

not prevent naturally occurring apoptosis (Hong et al., 1999).

The exact role of DAD1 during normal development has not been studied so 

far. The finding from the screen presented in the Introduction (Chapter 1) that this gene 

is induced within 5 hours’ exposure of epiblast to signals from Hensen’s node suggests 

a role of this protein, and perhaps of apoptosis, in neural induction. This chapter 

explores these functions using a variety of embryological and molecular approaches.

3.2. Materials and methods

3.2.1. Bioinformatic analysis

Three main databases containing chick genome information were accessed: 

www.ensembl.org,www.ncbi.nlm.nih.gov and www.genome.ucsc.edu. To analyse and 

align sequences, ClustalW (www.ebi.ac.uk/clustalw) was used and the results 

visualised using Jalview 2.08.1 (Clamp et al., 2004). The degree of amino acid identity
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was calculated using MUSCLE -  a multiple sequence alignment with high accuracy 

and high throughput (Edgar, 2004). The results were calculated using the Kyte and 

Doolittle hydrophobicity scale (Kyte and Doolittle, 1982) and also visualised using 

Jalview 2.08.1. Further analysis of the protein structure and intracellular localisation 

was performed in the ExPASy (www.expasy.org) database. The promoter searches 

were performed using Gene2Promoter program, and putative transcription factor 

binding sites identified using Matlnspector (both in www.genomatix.de).

3.2.2. Riboprobe transcription

The Dad1 cDNA was cloned into the pBlueScript vector. To generate antisense 

riboprobes for in situ hybridisation, the plasmid containing Dad1 was linearised by 

digestion with Xhol and transcribed with T3 RNA Polymerase. In situ hybridisation was 

performed as described in Chapter 2.

3.2.3. Constructs for electroporation

To investigate the possible function of Dad1 in vivo, Dad1 was over- or misexpressed 

using in vivo electroporation. The pCAp vector, containing the ubiquitously expressed 

chick p-actin promoter, a CMV enhancer followed by the cloning site and then by an 

Internal Ribosome Entry Site (IRES) to direct translation of Green Fluorescent Protein 

(GFP) was digested with BsmBI and Clal and gel-purified using a Gel Extraction Kit 

(Qiagen). The reading frame of chick Dad1 was amplified by PCR from two chick cDNA 

libraries (stage 2-4 and 18-20, respectively). Primers (Forward: GATCAGCGGCCGC 

ATGTCGGGCACGGCGGG; Reverse: TGCTCATCGATTCAGCCAACAAAATTGATA) 

were designed to incorporate recognition sites for digestion by Notl and Clal 

(underlined, respectively, in the two sequences above). This made the PCR product 

compatible for ligation into the product of the BsmBI / Clal digestion of pCAp. The 

insert was ligated with purified vector using T4 DNA ligase (Promega).

The ligation products were transformed into DH5a competent cells. Plasmids 

were harvested from different colonies and sequenced. Despite numerous attempts, 

each plasmid containing a full length Dad1 cDNA in pCAp had some mutations. Two 

plasmids, designated 11 and 8 with complementary error free regions were selected 

and digested with Notl / BamHI and BamHI / Clal respectively. These were cloned into 

pGEM T-Easy (Promega, according to the manufacturer’s instructions) and again cut 

with Notl / BamHI and BamHI / Clal respectively. A three way ligation between purified 

fragments 11,8 and the BsmBI / Clal digested fragment of pCAp allowed the creation 

of a mutation free vector for electroporation. The sequence was verified against the 

chick genome sequence contained in Ensembl.
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To test whether any potential role of DAD1 in early development requires N- 

linked glycosylation (which requires the C-terminus of the protein), a mutated version of 

Dad1 lacking the C-terminal 6 amino acids (VINFVG) was constructed by the same 

method using the same forward primer as above and a new reverse primer (TGC 

TCATCGATTCAGACGAGATGCAGGATGGT), again containing a Clal recognition site 

(underlined). Plasmids were sequenced with: pCAp forward primer (GCC 

TCTGCTAACCATGTT) and IRES reverse primer (CTTATTCCAAGCGGCTTC). The 

resulting sequences were analysed using NCBI Blast.

The pCA_ vectors described above were introduced by electroporation into 

stage 3+/4 embryos as described in Chapter 2. The electroporated embryos were 

grown for 6 hours (to study short term effects) or to stages 8-12 (for longer-term 

consequences). At the end of this period embryos were fixed as described for in situ 

hybridisation (Chapter 2) and processed for in situ with various markers including Sox3 

(Rex et al., 1997), Sox2 (Rex et al., 1997), Dlx5 (McLarren et al., 2003; Streit and 

Stern, 1999a; Yang et al., 1998), Pax7 (McLarren et al., 2003; Otto et al., 2006) and 

Gata2 (Sheng and Stern, 1999). After in situ hybridisation, antibody staining against 

GFP was used to reveal the cells that had been electroporated using the procedures 

described in Chapter 2.

3.2.4. Design of morpholinos

To test whether Dad1 is required for normal development of the early nervous system, 

morpholino-mediated knock-down experiments were performed. Electroporation of 

fluorescein-labelled morpholino antisense oligonucleotides (GeneTools; www.gene- 

tools.com) was chosen as a method for preventing DAD1 translation in vivo.

The chick Dad1 sequence (Ensembl and GenBank; accession numbers AAC60276.1 

and U83627 respectively) was confirmed by sequencing a fragment of genomic DNA 

containing the Dad1 gene.

Extraction of genomic DNA: one embryo at stage 20 was collected and washed 3 times 

in PBS. The PBS was replaced with 500 \x\ of lysis buffer (50mM Tris pH8.0, 100mM 

NaCI, 100m EDTA, 1% SDS with 25 \x\ 10mg/ml Proteinase K) and incubated overnight 

at 56°C. The following day the lysed embryo solution was mixed for 5 minutes or more 

on the shaker. 170 \x\ of 5M NaCI solution was added. Following a further 5 minutes on 

the shaker the solution was spun for 5-10 min at 14,000rpm in an Eppendorf benchtop 

Microfuge at room temperature. The supernatant was removed to a new tube and 500 

jxl of propan-2-ol was added. The solution was mixed by inversion and centrifuged for 

10 min at 14,000rpm at room temperature. The pellet was washed twice with 70% 

ethanol and centrifuged for 5 min and the supernatant discarded. The dried pellet was

41





resuspended in 200^1 of 1XTE and placed for at least 2 hrs at 37 °C with occasional 

shaking to allow the DNA to dissolve.

A fluorescein-tagged morpholino (CACCCGAACCCGCCGTGCCCGACAT) 

targeting the first 25 bases of the coding sequence was designed by Dr. Paul Morcos 

(Gene Tools) and purchased from Gene Tools. A fluorescein-labelled standard control 

morpholino (sequence CCTCTTACCTCAgTTACAATTTATA) (Gene Tools) was used 

as a negative control. Each morpholino was used at 2mM in water containing 0.01% 

Fast Green and 6% sucrose, mixed with empty pCAp at a final dilution of 1 (ig/^il (used 

as a carrier and as an additional marker for the electroporated cells) was introduced 

into cells by electroporation as described above (Kos et al., 2003; Sheng et al., 2003).

3.2.5. DAD1 antibody staining

To detect DAD1 protein, a rabbit anti-DAD1 antibody (Nakashima et al., 1993) (kind gift 

of Professor Takeharu Nishimoto; raised against the peptide sequence: 

NPQNKADFQGISPER was used - for comparison, the corresponding sequence of 

chick DAD1 is: NPQNKGEFQGISPER). The antibody was diluted in blocking buffer 

(see Chapter 2) at 1:300 dilution, and goat anti-rabbit HRP (Santa Cruz) as secondary 

antibody was used.

3.3. Results

3.3.1. Identification of Dad1

A cDNA clone, originally designated C4, containing an insert of 734 bp was obtained 

from the screen (see Chapter 1). Database searches were conducted to identify this 

clone and found that a 510 bp region of this insert contained a putative complete open 

reading frame (372 bp), highly homologous to chicken Dad1. Subsequent screening of 

a stage 3-4 chick embryo cDNA library resulted in the isolation of a full-length clone 

containing, in addition to the entire open reading (ORF) frame, 9 bp putative 5’ UTR and 

215 bp of 3’ UTR, adding up to 734 bp, suggesting that no untranslated sequences exist 

either up- or downstream of those contained in the clone originally isolated. This 

sequence is almost identical to the cDNA deposited under EMBL accession number 

U83627, with 9 separate single base pair differences in ORF.

The genomic locus of chicken Dad1 is found on chromosome 27 at location 

74,837—77,599 (Ensembl gene id: ENSGALG00000000196). The only variation 

identified to date (July 2006) in Dad1 genomic sequence is a single non-synonymous 

SNP (Single Nucleotide Polymorphism) affecting V9 > Y. The gene contains three
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exons (250 bp, 149bp and 198bp) separated by 2 introns. There appears to be 9 bp 5’ 

UTR and a longer (225 bp) 3’ UTR (contained at the end of exon 2 and the whole of 

exon 3, nt 372-597). The transcript is predicted to encode a 123 amino acid protein.

As previously discussed (see Introduction above), the protein sequence of 

DAD1 is conserved through evolution (Table 3.1, Fig. 3.1). There is over 80% 

conservation between vertebrates. The vertebrate proteins also share over 40% amino 

acid identity with plant species, over 50% with nematode and over 60 % with fly. The 

lowest homology is with yeast, which is less than 40% identical to all except the fly.

Chicken Nematode Hamster Mouse Human Cress Fly Rice Dog

Yeast 31.45 37.72 36.21 36.21 36.52 34.43 40.7 32.2 37.82

Dog 81.42 61.06 99.12 99.12 99.11 48.67 68.7 47.8

Fly 60.71 62.50 68.75 68.75 68.75 45.54

Cress 46.55 48.67 47.79 47.79 48.21

Human 82.14 61.61 100.00 100.00

Mouse 81.42 61.95 100.00

Hamster 81.42 61.95

Nematode 59.29

Table 3.1

Relative identity between the amino acid sequences of DAD1 from different organisms.

A Neighbour Joining tree (Fig. 3.2) was constructed using PID (the percentage 

identity between two sequences at each aligned position) from MUSCLE also 

illustrates the predicted phylogenetic relationships between DAD1 sequences in these 

species. Given that the degree of amino acid identity between the different species is in 

some cases not particularly high, the sequences were aligned and the amino acids 

assigned different colours according to their hydrophobicity (Fig. 3.3). This shows very 

strong conservation among all the species compared including yeast. Notably the C- 

terminal-most amino acid is N in yeast (hydrophilic), whereas this position is occupied 

by G in other homologues, which is neutral.

3.3.2. Expression of Dad1 during early development

To determine the spatial and temporal pattern of expression of Dad1 during early 

development in normal embryos, and especially to find out whether its expression is 

consistent with the finding that Dad1 may be induced as an early response to signals
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from Hensen’s node, whole mount in situ hybridisation was used. Virtually no 

expression could be detected in any region before stage 4 (Fig. 3.4 a-c). At stage 4 

(Fig. 3.4 d), Dad1 is upregulated in the epiblast especially around Hensen’s node (Fig.

3.4 d, arrow). Higher levels of expression are detected in the lips of the entire primitive 

streak except in Hensen’s node (Fig. 3.4 d). Expression is also seen in the epiblast in 

a region corresponding to the area already colonised by mesoderm (Fig. 3.4 d, k). The 

most anterior-lateral epiblast does not reveal expression and the mesoderm and 

endoderm show barely detectable expression (Fig. 3.4 k).

During neurulation and early somite stages, Dad1 is expressed weakly, 

predominantly in Hensen’s node (Fig. 3.4 e, arrow), the forming neural plate (Fig. 3.4 

e-g) and in somites (Fig. 3.4 f-j). Some expression is also seen in the lateral 

mesoderm (Fig. 3.4 I, arrows) and in the primitive streak (Fig. 3.4 e-h).

At stages 1 2 - 1 4  Dad1 is still expressed in the neuroepithelium, especially 

dorsally (Fig. 3.4 i, j, m and n, arrow). In the notochord, expression varies along the 

axis. The most rostral regions do not display expression (not shown), which is followed 

by strong expression in the hindbrain and upper trunk (Fig. 3.4 s, r and q) and finally 

the most caudal regions do not express Dad1 (Fig. 3.4 o). There is also marked 

expression in the forming mesonephric rudiments (Fig. 3.4 j, q and r).

In conclusion, Dad1 is expressed in early nervous system for a brief period 

(around stage 4), but it is not exclusive to this region and transcripts are also found 

elsewhere and at later stages.

3.3.3. Time-course of induction of Dad1 by Hensen’s node

The original screen that led to the isolation of Dad1 was conducted after 5 hours’ 

contact between the Hensen’s node graft and the responding epiblast. To confirm that 

Dad1 is indeed induced by the node and to determine the timing of induction more 

precisely, Hensen’s node grafts were performed in time-course and the expression of 

Dad1 analysed. The previous section showed that Dad1 is expressed very weakly 

indeed during early stages of normal development, therefore it was not surprising that 

its induction by the node was also barely detectable (Fig. 3.5). No expression at all is 

seen after 1.5 hours following a Hensen’s node graft (0/9; Fig. 3.5 a and e). Very weak 

expression is first seen after 3 hours (9/13; Fig. 3.5 b and f) which only barely intensifies 

at 4 (9/11) and 5 hours (11/13) Fig. 3.5 c-d, g-h). Control grafts (posterior primitive 

streak) did not induce Dad1 at any time point: 1.5 (0/5), 3 (0/10), 4 (0/4) or 5 (0/9) hours 

following grafting. Identification of quail donor cell by QCPN antibody staining confirmed 

that node-derived cells do not contribute to the induced ectodermal cells expressing 

Dad1.
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In conclusion, these results suggest that if the node can induce Dad1 in the 

epiblast, this induction is extremely weak.

3.3.4. Dad1 does not affect neural, neural crest or epidermal fates

To establish whether expression of Dad1 might influence cell fate choices at early 

stages of neural development, it was misexpressed using in vivo electroporation. 

Ectopic expression of DAD1 does not induce the neural markers Sox3 (21/21; Fig. 3.6 

a, f) or Sox2 (19/19; Fig. 3.6 d, i), the neural crest and neural plate border markers 

Dlx5 (15/15; Fig. 3.7 b, g) or Pax7 (9/9; Fig. 3.7 e, j) or the epidermal marker Gata2 

(8/8; Fig. 3.7 b, e). In addition, the effects of Dad1 misexpression on the other two 

genes {Ubll and hcf) that are the subject of this thesis were tested. Neither gene was 

induced or repressed by ectopic Dad1 (Ubll: 8/8; Fig. 3.9 b, f; hcf: 13/13; Fig. 3.9 c, g). 

Finally, the effects of misexpression of a putative inhibitory construct (Dad1 lacking the 

extreme 3’ end which encodes the C-terminal 6 amino acids) were studied. Again there 

were no effects on the expression of Sox3, Sox2, Dlx5, Gata2 or hcf (Fig. 3.6 e, j; Fig. 

3.6 e, j; Fig. 3.7 c, h; Fig 3.8 c, f; Fig. 3.9 d, h). Control electroporation (empty pCAp 

vector) does not alter patterns of expression of any genes tested (some shown Fig.3.6 

c, h; Fig.3.7 a, f, d, i; Fig.3.8 a, d; 3.9 a, e)

In conclusion neither overexpression, nor ectopic expression nor expression of 

a putative dominant-negative form of DAD1 could be demonstrated to change cell fates 

(in terms of a decision between epidermis, neural crest / neural plate border and neural 

plate) during early chick development.
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Fig. 3.4
Expression patterns of Dad1 in a pre-primitive streak stage embryo (a) and at stages 3 (b), 4' 

(c), 4 (d), 6 (e), 7 (f), 8 (g), 12 (i) and 14 (j), k: section through the embryo shown in d; I: section 

through the embryo in f; m, n, o, p: sections through the trunk of a stage 12 embryo; q, r: 

sections through the trunk of the embryo at stage 14; s: section through the hindbrain of a stage 

14 embryo. Arrowheads in b, c and d point to the anterior region of the epiblast not expressing 

Dad1; the area with higher levels of Dad1 in the neural ectoderm is shown in k and by an arrow 

in d. Node at stage 6 is indicated by an arrow in e; somatic mesoderm (p - r) and somites (q, r, 

f  - j) also express Dad1 indicated by arrow in h. arrow in I, most later endoderm arrowheads in 

k - m and the posterior endoderm (arrow in m). There is a strong expression in the tips of the 

neural folds (arrow in n) and the most dorsal region of the neural tube (arrows o - s). 

ap - area pellucida; ao - area opaca; ps - primitive streak; n - Hensen's node; nf - neural 

folds; nt - closing neural tube; s - somites; mr- mesonephric rudiment; sm - somatic mesoderm; 

fp - floor of the pharynx and N - notochord.
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Fig. 3.5

Induction of Dad1 in the area opaca by a graft of Hensen’s node: no induction is seen sfter

1.5 hours (a), and only extremely weak induction after 3 hours (b). Induction is still weak after 4 

hours (c) and 5 (d) hours; e-h: sections at the level of the graft, showing graft-derived quail cells 

stained brown by QCPN antibody after 1.5 hours (e), 3 hours (f), 4 hours (g) and 5 hours (h) 

incubation following the graft.
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Fig. 3.6
Effects of DAD1 electroporation on Sox3 and Sox2 expression.
Sox3 expression (blue) following electroporation of DAD1 is shown after 6 hours (a) and overnight (f) incubation.
The effects of electroporation of truncated DAD1 on Sox3 expression are shown after 6-7 hours (b) and overnight (g). 
Sox2 expression (blue) is own following electroporation of a control, empty pCAB vector (c, h), of DAD1 (d, i) 
and of truncated DAD1 (e, j), before (c-e) and after (h-j) staining with anti-GFP antibody (brown).
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Fig. 3.7
Effects of DAD1 electroporation on Dlx5 and Pax7 expression.
Dlx5 expression (blue) following electroporation of a control, empty pCAB vector (a, f), of DAD1 (b, g) 
and truncated DAD1 (c, h) before (a-c) and after (f-h) staining with anti- Gfp antibody (brown).
Pax7 expression (blue) is shown following electroporation of a control, empty pCAB vector (d, i) 
and DAD1 (e, j) before (d-e) ad after (i-j) staining with anti-GFP antibody (brown).
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mtDadl - IRES-GFP

Fig. 3.8

Effects of DAD1 electroporation on Gata2 expression. Gat a 2 expression (blue) following 

electroporation of a control, empty pCAfi vector (a, d), of DAD1 (b, e) and DAD1 (c, f) before 

(a-c) and after (d-f) staining with anti- GFP antibody (brown).
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mtDadl - IRES-GFP

Fig. 3.9
Effects of DAD1 electroporation on Ubll and hcf expression.
Ubll expression (blue) following electroporation of a control, empty pCAB vector (a, e) 
and of DAD1 (b, f) before (a-b) and after (e-f) staining with anti- GFP antibody (brown). 
hcf expression (blue) following electroporation of DAD1 (c, g) and truncated DAD1 (d, h); 
shown after overnight incubation before (c-d) and after (g-h) staining with anti- GFP antibody (brown).
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3.4. Discussion

To qualify as an “early response to neural induction” as defined by the screen, a gene 

must (a) be induced by a grafted Hensen’s node within 5 hours, and (b) be expressed 

within the future neural plate of the normal embryo. The findings presented in this 

chapter reveal that the normal expression of Dad1 before stage 4 (when neural 

induction is thought to take place (Stern, 2005a; Streit et al., 2000) is only extremely 

weak, not entirely confined to the future neural plate and also does not cover the entire 

prospective neural plate. For example, the most anterior part of the prospective 

neuroectoderm (future forebrain) does not express Dad1 at stage 4 (Fig. 3.3 d). 

Concerning the time-course of induction by the node, the low levels of normal 

expression were mirrored by a similarly low levels induction and made this analysis very 

difficult. Nevertheless the earliest change detected was at 3 hours following the graft, 

with maximal induction (still very weak) seen at 4-5 hours. This is comparable to the 

time required for a node to induce Churchill (Sheng et al., 2003) but longer than 1 hour 

required for ERNI induction (Streit et al., 2000).

Even if its expression is weak and only feebly induced, it is still possible that it 

plays a role in early neural development. To assess this Dad1 was misexpressed 

outside the neural plate, overexpressed in various regions and a putative inhibitory form 

misexpressed prior to examining the effects on early neural, epidermal and border 

markers. None of these treatments revealed any changes in the expression of any of 5 

markers for these cell fates, nor any effect on the expression of the other two genes 

studied in this thesis (Ubll and hcf). Since DAD1 is a subunit of an enzyme complex and 

therefore requires other proteins for its activity (Makishima et al., 1997; Sanjay et al., 

1998; Silberstein and Gilmore, 1996), it is conceivable that ectopic expression of this 

single component is not sufficient to exert any effect. In the case of the truncated form 

of DAD1 (predicted to lack activity; Makishima et al., 2000) it is likewise possible that 

there is sufficient wild-type, functional DAD1 within these cells to fulfil this function 

without interference by the mutated form.

As a further test for a possible requirement for DAD1 in the process of neural 

induction, knock-down experiments using Dad1 morpholino were attempted. To 

determine whether the DAD1 protein is successfully down-regulated by this treatment, 

an antibody against DAD1 was used. Unfortunately, these experiments failed for two 

reasons: first, antibody staining did not produce a clear enough pattern to assess the 

efficiency of down-regulation by the Dad1 morpholino. This might have been expected 

given its low level of expression at the mRNA level. In addition, the antibody used had 

been raised against a specific peptide within human DAD1 (NPQNKADFQGISPER),
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whose sequence contains 2 amino acid differences with the chick counterpart and it 

may therefore not recognise the chick protein. Second, in these experiments, 

electroporation of the standard control morpholino gave false-positive results: induction 

of Sox2. For these various reasons it was not possible to use this approach to assess 

the requirement for DAD1 function in early neural development.

Had these approaches worked, it might have been interesting to test whether 

the reported polymorphism (SNP) of Dad? might affect its function. Tyrosine is an 

unusual amino acid in that it contains a protruding carbon ring (the only other amino 

acid like this is phenylalanine), a property not shared by valine; whilst Y>F changes 

usually do not affect protein function, it would be surprising if V>Y did not.

In Chapter 6, further studies of DAD1 function will be presented in the context of 

its possible roles in regulating apoptosis during early neural development.
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CHAPTER 4: 

Polyubiquitin II (Ubll)
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4.1. Introduction

Ubiquitin, the most conserved protein known (Ozkaynak et al., 1984; Sharp and Li,

1987) was identified as a 74 amino acid polypeptide (first called Ubiquitous 

Immunopoietic Polypeptide (UBIP)) involved in lymphocyte differentiation (Goldstein et 

al., 1975). Homologues were almost immediately identified in mammals, chick, fish 

(Goldstein et al., 1975), yeast (Goldstein et al., 1975; Ozkaynak et al., 1984), bacteria 

(Goldstein et al., 1975), higher plants (Goldstein et al., 1975), insects (Gavilanes et al., 

1982) and Xenopus (Dworkin-Rastl et al., 1984). For example, yeast ubiquitin differs 

from that of animal ubiquitin by only 3 amino acids (Ozkaynak et al., 1984). This high 

degree of conservation suggests the existence of strong evolutionary pressures 

preventing changes in this protein (Lazar et al., 1997; Sharp and Li, 1987; Wilkinson et 

al., 1986). Mita and colleagues proposed that numerous ubiquitin genes existed before 

speciation occurred; at certain genomic locations, fusions are proposed to have 

occurred with neighbouring genes to generate different proteins (Mita et al., 1991). 

However, the previously reported existence of monoubiquitin genes at multiple 

locations in the genome (Wiborg et al., 1985) was later shown to be incorrect (Lund et 

al., 1985; Salvesen et al., 1987) perhaps with the exception of potato, which does 

contain a single monoubiquitin gene (Accession number: 031C02). In humans (Wiborg 

et al., 1985), proposed monoubiquitin loci were later shown to encode a fusion protein 

including ubiquitin and an additional 80 amino acid peptide at the C-terminus (Lund et 

al., 1985; Salvesen et al., 1987). In yeast (Bond and Schlesinger, 1986), UBI3 encodes 

ubiquitin fused to a 76 residue protein, while UBI1 and UBI2 have identical 52 amino 

acid tails (Ozkaynak et al., 1987). In human (Lund et al., 1985; Mori et al., 1987; 

Salvesen et al., 1987) and chick (Mezquita et al., 1988; Rocamora and Agell, 1990), 

their homologues Ub-t52 and Ub-t80 are fused, respectively, to 52 and 80 amino acids 

to generate proteins involved in ribosomal assembly (Finley et al., 1989; Mezquita et 

al., 1997). Other proteins which appear to have originated from ancestral fusions of 

ubiquitin and other genes have also been identified; these are grouped together as a 

subclass of Ubiquitin-like (UBL) proteins (Glickman and Ciechanover, 2002). Despite 

similarity to ubiquitin in their structure and involvement in the regulation of the same 

processes, including the proteasome proteolytic pathway, most UBLs appear to lack 

the characteristic Gly-Gly sequence at the Carboxy-terminus that is critical for 

ubiquitination, nor are they processed by de-ubiquitinating enzymes (DUB- like 

proteases) (Glickman and Ciechanover, 2002). The Small Ubiquitin-related Modifiers 

(SUMOs), which are among the members of the UBL family, have recently been the 

subject of considerable attention due to their role in the regulation of protein functions
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(Bossis and Melchior, 2006; Kerscher et al., 2006; Kroetz, 2005).

Typically, however, ubiquitins are found in the genome as polyubiquitins (Hunt 

and Dayhoff, 1977; Ozkaynak et al., 1984), which encode tandem repeats of the 76 

amino acid Ubiquitin sequence monomer. They are thought to be a result of 

duplications of an ancestral gene (Mita et al., 1991). The number of ubiquitins in each 

can vary; for example, there are forms with 3 (Bond and Schlesinger, 1986; Mezquita 

et al., 1987); or 4 (Bond and Schlesinger, 1985) in chicken, 5 in yeast (Ozkaynak et al., 

1984), 9 in humans (Wiborg et al., 1985), 8 in Xenopus (NCBI: NM_001006687) and 

10 or 14 in Drosophila (NCBI: CG11624 and AT20865p). The genome may also 

contain several polyubiquitin loci, whose number also differs between species. While 

only one has been described in yeast (Finley et al., 1987) and Plasmodium falciparum 

(Horrocks and Newbold, 2000), there are two in chicken (Bond and Schlesinger, 1986; 

Mezquita et al., 1987) and human (UBB, and UBC) (Baker and Board, 1987; Wiborg et 

al., 1985), and 4 in the multicellular green algae Volvox carteri (Schiedlmeier and 

Schmitt, 1994). In addition, there also appear to be a number of pseudogenes with 

related sequences: in human, 4 pseudogenes related to of UBB have been described 

(Cowland et al., 1988).

The last amino acid in the C-terminal ubiquitin of Polyubiquitin differs between 

species and even between different Polyubiquitin proteins within a species. For 

example, cysteine occupies this position in Human UBB (Baker and Board, 1987), 

while asparagine is found in chick Ubll and tyrosine in chick Ubl (Bond and 

Schlesinger, 1986; Mezquita et al., 1987).

Ubiquitins can be added to other proteins in a process called “ubiquitination” (or 

“ubiquitinylation”). Recently, the former (ubiquitination) has been used to designate 

processes leading to selective targeting and degradation by the ubiquitin-proteasome 

system while the latter (ubiquitinylation) is used to refer to the now expanding field of 

non-turnover-related post-translational modifications by ubiquitin (Abriel and Staub, 

2005; Emre and Berger, 2004; Haglund and Dikic, 2005; Huang and D'Andrea, 2006; 

Liu et al., 2005; Staub and Rotin, 2006). Although conjugation of ubiquitin to target 

proteins may occur at a variety of positions, it usually involves Gly76 of ubiquitin and a 

Lys residue in the substrate. For example, k B a  is ubiquitinated at Lys-21 or Lys-22, 

while p53 is modified at Lys-372, Lys-373 or Lys-381, and histone H2A at Lys-119 or - 

120 (Busch and Goldknopf, 1981; Goldknopf and Busch, 1977; Thorne et al., 1987) 

according to the species, while Histone H2B is ubiquitinated at Lys-123 in yeast 

(Robzyk et al., 2000). There are also other variations involving the polybiquitin chain 

itself. For example, polyubiquitin chains with Lys48-linkages act as signals for 

degradation, while Lys63-linkages are implicated in the DNA damage response
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(Glickman and Ciechanover, 2002; Pickart, 2001; Sun and Chen, 2004; Ulrich, 2003).

An additional role of ubiquitinylation in chromatin modification was observed 

long ago (Andersen et al., 1981; Cary et al., 1980; Goldknopf and Busch, 1975; Matsui 

et al., 1979). Ubiquitin is either covalently conjugated to the C-terminus of e-amino- 

group of histone H2A (Andersen et al., 1981; Cary et al., 1980; Goldknopf and Busch, 

1975; Levinger and Varshavsky, 1982; Watson et al., 1978) or found in the free form in 

association with chromatin (Hunt and Dayhoff, 1977; Mezquita et al., 1982). Since 

then, great progress has been made in understanding the mechanisms regulating 

ubiquitinylation of core histones (H2B and H3), the linker H1 and the variant H2A.Z 

(Osley, 2004). Additionally other proteins involved in DNA replication and/or 

transcription, and especially in DNA repair processes that require ubiquitinylation have 

been identified. For example, proliferating cell nuclear antigen (PCNA), plays different 

role in protecting genomic stability depending on whether it is mono- or 

polyubiquitinylated (Chiu et al., 2006; Haglund and Dikic, 2005). Monoubiquitination of 

other substrates, like FANCD2 or Translation DNA Synthesis (TLS) polymerase r\ is 

required for homologous recombination and TLS (Huang and D'Andrea, 2006). 

Polyubiquitinylation of DNA-damage-binding protein 2 (DDB2) or RNA polymerase II is 

necessary for nucleotide-excision repair (Huang and D'Andrea, 2006; Ribar et al., 

2006). Polyubiquitination is also required for the action of transcription factors, which 

are activated or inactivated directly or indirectly by the destruction of specific co-factors 

(Chen et al., 2006; Pickart, 2001; Salghetti et al., 2001).
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Fig. 4.1

Ubiquitin modification and their cellular functions; (modified from Haglund and Dikic, 2005 and 

Pickart, 2001).
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The ubiquitin pathway mediates selective degradation (Fig .4.1) and is therefore 

extremely important for the continuous turnover of proteins necessary for structural, 

catalytic and regulatory functions, signal transduction, transcriptional regulation, 

receptor down-regulation, cell cycle progression (Nakayama and Nakayama, 2006) 

and endocytosis (reviewed in Glickman and Ciechanover, 2002; Hershko and 

Ciechanover, 1998; Pickart, 2001). Ubiquitinylation by addition of a single ubiquitin 

plays a role in many crucial cell functions (Fig. 4.1), including intracellular membrane 

events such as nuclear trafficking (Deroo et al., 2002; Hochstrasser, 2000) and 

targeting proteins for release from the endoplasmic reticulum (ER) (Hitchcock et al., 

2003; Staub and Rotin, 2006). ER-associated protein degradation (ERAD) involves re­

translocation of misfolded proteins back to the ER and selection for the cytosolic 

proteasome by polyubiquitination (Bays et al., 2001; Hitchcock et al., 2003). 

Monoubiquitin modification also plays a role in endocytosis, both for protein sorting 

(Urbe, 2005) and for the internalisation of integral plasma membrane proteins (Hicke, 

2001; Staub and Rotin, 2006). Ubiquitin conjugation is also crucial for cell cycle 

progression (Nakayama and Nakayama, 2006).

MONOUBIQUITINATION

SUBSTRATE

POLYTUBIQUITINATION

PROTEASOME

PEPTIDES

C f Z ®

Fig. 4.2

The ubiquitin-proteasome pathway; (modified from Cooper, 2000 and Pickart, 2001).
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Protein ubiquitination for non-lysosomal degradation is an ATP-dependent 

(Ciechanover et al., 1984; Hershko, 1983; Wilkinson et al., 1980) multi-step process 

(Fig.4.2) involving the catalytic action of three classes of enzymes: E1, E2 and E3. The 

first step is called activation and involves adenylation of glycine (Hershko et al., 1981) 

at the C-terminus of ubiquitin and the formation of a thiol ester linkage with E1. This is 

the ATP-dependent step and involves E1 (Ciechanover et al., 1982; Ciechanover et al., 

1981; Haas et al., 1982). Activated ubiquitin is transferred to the conjugating enzyme 

E2 (to form a thiol bond) and is then transacylated to the cysteine residue of E3 (a 

ligase), which is bound to the target protein directly or via ancillary proteins (Hershko et 

al., 1983; for review see Glickman and Ciechanover, 2002). E3 catalyses the transfer 

of ubiquitin to the e-NH2 group at an internal lysine or to the terminal «-NH2 group of the 

target (reviewed in Glickman and Ciechanover, 2002). E3 also recognises a “degron” 

(a substrate degradation signal) on the target protein (An et al., 2006; Bachmair et al., 

1986; Finley et al., 1989; Varshavsky, 1996).

Recently a novel group of enzymes, designated E4, was proposed to be 

involved in the elongation of the ubiquitin chain together with E1, E2, E3 or other 

ubiquitin-conjugating factors (Hoppe, 2005; Kuhlbrodt et al., 2005). Yeast UFD2 

(ubiquitin fusion degradation protein-2), was the first E4 protein to be described 

(Conforti et al., 2000), which has since also been identified in other species (Caren et 

al., 2006; Hatakeyama et al., 2001), including plants (Azevedo et al., 2001). Elongation 

of the ubiquitin chain involves formation of an isopeptide bond between the side chain 

at Lys48 and the carboxyl Gly76 group of the C-terminus of ubiquitin (Cook et al., 

1994; for review see Glickman and Ciechanover, 2002). Proteins modified by more that 

3 ubiquitins are transferred to large 26S proteasome complexes for degradation, while 

the released ubiquitin units themselves are recycled by ubiquitin C-terminal hydrolases 

or isopeptidases (Hershko and Ciechanover, 1998). In general there is a single copy of 

E1 in the genome, with very few exceptions, for example wheat (Hatfield and Vierstra,

1992). The specificity of the process, i.e. the target protein or the type of linkage chain 

used is ensured by the specific combination from among various E2- and E3-group 

enzymes (Glickman and Ciechanover, 2002; Hicke, 2001; Pickart, 2001).

Ubiquitins also provide protection from environmental stress. They are involved 

in the Heat Shock Response of cells exposed to extreme conditions (Bond and 

Schlesinger, 1987; Ritossa, 1962; Schlesinger et al., 1982). Their high degree of 

stability towards pH and temperature changes (Lenkinski et al., 1977) make them 

ideally suited for this function, comparable to chaperones such as the Heat Shock 

Proteins (HSPs) (Diller, 2006; Lindquist and Craig, 1988; Neidhardt et al., 1984; Yost 

and Lindquist, 1991). At first, proteolytic degradation was proposed to be the main

60



mode of action of ubiquitin during the responses to heat shock and stress 

(Ciechanover et al., 1984; Finley et al., 1984). However, later studies (Bond et al.,

1988) suggested that protein degradation does not take place until after the stress 

conditions have ceased. One reason why ubiquitins are such abundant proteins is that 

several proteins expressed at high levels need to be degraded very rapidly in certain 

conditions; among them, histone H2A is quickly degraded in response to heat shock 

(Bond et al., 1988). The existence of heat shock-specific transcription factors has also 

been proposed, which are themselves ubiquitinated during normal conditions and de- 

ubiquitinated during the heat shock response (Munro and Pelham, 1985). Through the 

targeted mutation experiments it has been established that the position of the ubiquitin 

linkage determines the exact type of stress protection (Fujimuro et al., 2005). For 

example Lys-48 and Lys-63 linked chains play role in the stress response to ethanol, 

H20 2 and methyl methanesulfonate (MMS) treatment, but only Lys48-linked 

polyubiquitin is required for HSR triggered by heat shock (Fujimuro et al., 2005).

Polyubiquitins have been found to be expressed in a tissue specific way or 

upregulated depending on the states of the cell. In yeast, for example, UBI4 (consisting 

of 5 repeats) is critical for the stress response and survival during starvation (Finley et 

al., 1987), while in chick, Ubl and Ubll and their fusion products differ in their 

expression during chick testis maturation (Agell and Mezquita, 1988; Mezquita et al., 

1987; Mezquita et al., 1997; Rocamora and Agell, 1990). It has been proposed that 

birds, where spermatogenesis occurs at the internal body temperature (38-39°C), need 

to protect these cells against the higher temperature as compared to mammals whose 

external testes allow spermatogenesis to proceed at lower temperatures (Mezquita et 

al., 1993). Chick Ubll has been implicated in this protective function.

Some tissue specific expression can be accounted for by differential splicing 

and/or alternative translation initiation sites, which allows production of stage- and 

tissue-specific mRNAs and proteins (Mezquita et al., 1993). For example, it has been 

reported that the translation initiation site of Ubll is different in chick embryos at day 4 

and in adult kidney than in the mature chicken testis (Mezquita et al., 1993). In addition 

to different translation start sites, there is also differential splicing. During 

spermatogenesis there is mainly intronless transcription of Ubll, while in kidneys and 

embryos at day 4 a 448bp intron is included in the transcript. In some cases mRNAs 

with longer 5’ UTR were found, initiated upstream of the TATA box (Mezquita et al.,

1993).

Some attempts have been made to characterise the regulatory regions 

controlling different aspects of the expression of ubiquitins. In chick, a heat-responsive 

element directing expression of Ubl has been located to a position -369 to -359
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upstream of the transcription start site (Bond and Schlesinger, 1986). Regulatory 

regions directing Ubll expression have also been identified (Mezquita et al., 1993). 

Both Ubl and Ubll have proximally located unmethylated CpG islands in their 5’ UTR. 

In the distal regions methylation differs for Ubl (hypermethylated in mature testis) and 

Ubll (where 3’ CCGG is only 50% methylated) (Rocamora and Agell, 1990).

Given the importance of ubiquitins in a large number of normal cell functions, as 

well as pathological changes, and the huge amount of information available about the 

control of their expression and relationships with other proteins, it is very surprising that 

there is almost no information about the expression or functions of ubiquitins and 

polyubiquitins in early development in normal embryos.

4.2. Materials and Methods

4.2.1. Bioinformatics

Translation of the sequence was performed by the ExPASy (www.expasy.org) 

database. To align and analyse sequences, ClustalW (www.ebi.ac.uk/clustalw) was 

used and the results visualised using Jalview 2.08.1 (Clamp et al., 2004). The degree 

of amino acid identity was calculated using MUSCLE (Edgar, 2004). Translation of the 

sequence was performed in the ExPASy (www.expasy.org) database. Comparisons 

with other sequences in the public domain were made through standard sites 

(Ensembl, Genbank, UCSC genome server).

4.2.2. Riboprobe transcription

To distinguish between almost identical sequences of Ubl and Ubll, antisense 

riboprobes were designed to incorporate 3’ UTR sequence, which differs between for 

these genes. The fragments were isolated by PCR from a mixture of two cDNA libraries 

(stage 2-4 and stages 18-20). The following primers were used: Ubl: Forward: 

ACTACAACATCCAGAAG; Reverse: ATGTGCAACAGAAAAACT. Ubll: Forward: 

CCTGTCTGACTACAACATC; reverse: GGATGCAAGAACTTTATTG. PCR fragments 

were extracted, cloned into pGEM T-easy and transformed into competent bacteria 

(Promega) according to the manufacturer’s protocol. After sequencing to validate the 

clones and to determine the orientation of the insert, they were digested with Ncol and 

transcribed with SP6 RNA Polymerase to generate antisense riboprobes.
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4.2.3. Constructs for electroporation

To investigate the possible functions of U b ll in vivo, Ubll was misexpressed by 

electroporation. The pCAp vector, containing the ubiquitously expressed chick p-actin 

promoter, a CMV enhancer followed by the cloning site and then by an Internal 

Ribosome Entry Site (IRES) to direct translation of Green Fluorescent Protein (GFP), 

was digested with BsmBI and Clal and gel-purified using a Gel Extraction Kit (Qiagen). 

The open reading frame of chick Ubll was amplified by PCR from two chick cDNA 

libraries (stage 2-4 and 18-20). The following primers were used:

Forward: GATCAGCGGCCGCGACCAACATGCAGATCTTC:

Reverse: TGCT AATCG ATT CTT CAGTTACCACCCCT G

These were designed to incorporate recognition sites for digestion by Notl and 

Clal (underlined, respectively, in the two sequences above). This made the PCR 

product compatible for ligation with the product of BsmBI/Clal digestion of pCAp. The 

insert was ligated with purified vector using T4 DNA ligase (Promega). The ligation 

products were transformed into DH5« competent cells. Plasmids were harvested and 

sequenced.

The pCA_ vectors described above were introduced by electroporation into 

stage 3+/4 embryos as described in Chapter 2. The electroporated embryos were 

grown for 6 hours (to study short term effects) or to stages 8-12 (for longer-term 

consequences). At the end of this period embryos were fixed as described for in situ 

hybridisation (Chapter 2) and processed for in situ hybridisation with various markers 

including Sox3 (Rex et al., 1997), Sox2 (Rex et al., 1997), ERNI (Streit et al., 2000) 

and Pax7 (McLarren et al., 2003; Otto et al., 2006). After in situ hybridisation, antibody 

staining against GFP was used to reveal the cells that had been electroporated as 

described in Chapter 2.

4.3. Results

4.3.1. Identification of Ubll

The original “early response screen” (see Chapter 1) identified clone F5 as one such 

early response gene. It contains an insert of 843 bp, found by NCBI BLAST analysis to 

match a 329 bp (except for 11 separate differences, corresponding to 96% nucleotide 

identity) sequence corresponding to Ubll (X58195), located on chromosome 15 (UCSC 

4,480,251-4,481,721; Ensembl 4,480,852-4,481,364).

No SNPs have been reported in this sequence by the Beijing Genomics 

Institute. The Ubll sequence in Ensembl (ENSGALG00000002977) does not contain 

the whole sequence of the open reading frame. However the Ensembl database does
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report a number of SNPs (synonymous SNPs in positions L69>K and V70>S of the first 

ubiquitin of Ubll and non-synonymous SNPs at T12>N and K48>R in the last ubiquitin 

repeat).

During database searching it became apparent that F5 is also related, but more 

distantly so, to another chick ubiquitin gene. NCBI BLAST reveals 88% identity (283 

bp; 33 differences in sequence) with Ubl (M14693), found on chromosome 19 

(6157729 to 6158054).

As discussed above (Section 4.1), there is extreme conservation of the amino 

acid sequence of Ubiquitins but a variable number of repeats in polyubiquitin genes. In 

chick, seven ubiquitin monomers contribute to two polyubiquitin genes (4 in Ubl and 3 

in Ubll). These were compared to each other (Fig 4.3), excluding the extreme 3’ 

terminal codon and stop codon in each gene. Within Ubl, monomers Ubl 1 and Ubl3 are 

the most similar at the nucleotide level. In some regions conservation is shared by all 

four Ubl monomers, for example in the region 78-114. An Average Distance Tree (Fig 

4.4) generated by ClustalW Multiple Sequence Alignment (Thompson et al., 1994) 

illustrates these relationships. Perhaps surprisingly, according to this level of analysis, 

the divergence in nucleotide sequence appears to occur before the division into two 

polyubiquitin genes, suggesting that the last two ubiquitins in Ubll are more closely 

related to all four monomers in Ubl than to the fist ubiquitin of Ubll.

For analysis between species and among related genes within a genome, only 

the last ubiquitin (including the unique terminal amino acids and stop codon) was 

selected for analysis of conservation. Alignment of the nucleotide (Fig. 4.5) and amino 

acids (Fig. 4.6) sequences show strong conservation. The only amino acid 

substitutions are at position 19, where a “small” Proline is replaced by a “tiny” Serine 

(these terms used as described by (Livingstone and Barton, 1993) in all plant species. 

Amoeba has a “tiny” hydrophobic Glycine at position 20 instead of Serine; at position 

28 a “tiny” hydrophobic Alanine is substituted by a polar Glutamine in tobacco and 

Amoeba, while spurge has a Serine instead of a negatively charged Asparate at 

position 39 and in all plant species there is an Alanine instead of a Serine at position 

57. The last amino acid following the characteristic Gly-Gly sequence also differs 

between species: some have more than one amino acid (parsley and potato have 

Aspartate followed by an aromatic Phenylalanine, Amoeba has positively charged 

Histidine and Cysteine, while fly polyubiquitin terminates with three amino acids: an 

aliphatic Isoleucine, a charged Glutamine and Alanine). The average distance tree 

using % identity based on MUSCLE alignment (Fig. 4.7) illustrates the corresponding 

phylogenetic relationships. Chick Ubl is more closely related to the UbB polyubiquitin of 

rat, while chick Ubll has more in common with the equivalent sequence in mosquito. It
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is worth mentioning that different trees are obtained by comparing nucleotide 

sequences from comparisons of amino acid sequences; comparison of nucleotide 

sequences yield a tree that more closely resembles the phylogenetic relationships 

between the species, with possible exception of tobacco and beetle (Fig. 4.8).

In conclusion, sequence analysis strongly suggests that the F5 clone encodes 

part of the open reading frame of the Ubll gene, whose sequence is represented in part 

by several incomplete entries in the databases (X58195, Z14958,

ENSGALG00000002977 and X06580). Subsequent screening of a stage 3-4 chick 

embryo cDNA library resulted in the isolation of a single, full-length clone containing 

the entire open reading frame (ORF) of Ubll, representing three tandem repeats of 76 

long-long ubiquitin sequences with an additional N residue just before the end of the 

ORF.

4.3.2. Expression of Ubll and Ubl in normal development

To begin to assess whether Ubll could play a role in the early stages of neural 

development, its expression was analysed by whole mount in situ hybridization. No 

expression was found in pre-primitive streak stage embryos (Fig. 4.9 a). Expression is 

first detected at stage 3+/4- (Fig. 4.9 b). Initially, Ubll is almost exclusively transcribed 

in the epiblast of the area pellucida especially in the anterior half of the embryo, in a 

region roughly corresponding to the future neural plate but extending a little laterally, 

especially at the posterior boundary of this domain (Fig. 4.9 c, h, i). A striking apical 

localisation of the mRNA is seen in neural plate show increased expression in many 

embryos (Fig. 4.9 d).

At stage 5 (Fig. 4.9 e) Ubll becomes stronger and more restricted to the neural plate. 

Outside the epiblast, some expression is also seen in the mesoderm and endoderm, 

although this is somewhat variable from one embryo to another. In most cases the 

lateral plate and lateral endodermal layer appear to have increased expression 

compared to more medial regions (Fig. 4.9 I). At this time the mRNA appears to lose 

its apical localisation and is instead distributed throughout the cytoplasm (Fig. 4.9 m- 

n). At stages 6-7 (Fig. 4.9 f), expression is still seen throughout the neural plate and 

more weakly in the lateral mesoderm. In addition there is expression in the forming 

head fold and in the middle section of the primitive streak as well as in the forming 

somite (stage 7).

At stage 11-12 (Fig. 4.9 g), expression is still seen in the neural tube especially 

in the hindbrain, midbrain and forebrain. A stream of cells at the level of rhombomere 

2, probably corresponding to neural crest cells, also show expression. Weaker levels 

of transcript can be seen in the mesoderm. At this stage, sections reveal that the
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mRNA localisation in the neural tube has shifted to become stronger at the basal 

aspect of the neuroepithelial cells (Fig. 4.10 a, arrow b). Additional expression is seen 

in the floor of the pharynx (Fig. 4.10 a and b) and weakly in the somites and notochord 

(Fig. 4.10 c-e).

For comparison, the normal expression of Ubl was also studied. To ensure lack 

of cross-reaction between the two probes, riboprobes were made against the 3’ 

untranslated regions of the two cDNAs, which is not conserved. At least at early 

stages, the expression of Ubl is very similar or identical to that of Ubll (Fig. 4.11).

In conclusion, Ubll transcripts are predominantly seen in the epiblast from the 

late primitive streak stage, becoming concentrated in the neural plate and its 

derivatives. Lower levels of expression are seen in other layers.

4.3.3. Time-course of induction of Ubll by Hensen’s node and induction by 

FGF8b

To confirm the results of the screen (discussed in the Introduction) and in order to

establish the exact timing of the Ubll induction by Hensen's node, a quail node was

grafted to the area opaca of a chick host and the induction of Ubll examined at different 

times following the graft (for details see Chapter 2). No induction is detected either after 

1.5 hours following a node graft (0/8; Fig. 4.12 a) or with a control graft (posterior 

primitive streak) and any time tested (0/18). Weak induction of Ubll is first apparent 

after 3 hours (13/13; Fig. 4.12 b), which becomes stronger at 4 hours (9/9; Fig. 4.12 c) 

and 5 hours (10/10; Fig. 4.12 d) following a node graft.

Since several genes isolated in the early response screen turned out to be 

inducible by FGF8b (Sheng et al., 2003; Streit et al., 2000) the ability of this factor to 

induce Ubll expression was also tested in time-course. Again, there is no induction of 

Ubll at 1.5 hours (right arrow Fig. 4.12 e), or with control bead grafts at any time point 

(right arrows Fig. 4.12 e-f). Weak induction by FGF8b in the area opaca is first seen 

after 3 hours (11/11; left arrow Fig. 4.12 f), and the response increases after 4 hours 

(8/8; Fig. 4.12 g) and 5 hours (12/12; Fig. 4.12 h). Under these conditions, and with the 

same batches of FGF8b, there is no induction of the mesendodermal marker Brachyury 

(Fig. 2.1), suggesting that the induction of Ubll by FGF8b is not due to prior induction of 

mesendoderm.

In conclusion, Ubll is induced in the epiblast of the early chick embryo after 3-4 

hours of exposure to either a node graft or to FGF8b-soaked beads.

4.3.4. Ubll does not affect neural or neural crest fate

To explore a possible role of Ubll in neural induction, Ubll was misexpressed in vivo.
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Since electroporation even of an empty pCAp vector can induce expression of ERNI 

(Fig. 4.13 a and g), almost as strongly as electroporation of Ubll (5/5; Fig. 4.13 b and 

h), the later and more reliable early neural markers Sox3 and Sox2 were analysed. 

Ubll electroporation does not induce either Sox3 (9/9; data not shown) or Sox2 (16/16; 

Fig. 4.13 d-f and j-l), either after 6 hours or after overnight incubation of the embryos 

(Fig. 4.13 d-f and j-l). To investigate whether Ubll could affect the fate of cells at the 

border between the neural plate and epidermis (prospective neural crest), Pax7 

expression was analysed. Again this is not induced by ectopic expression of Ubll (7/7; 

Fig. 4.14 d and h). Electroporation with a control empty pCAp vector did not induce 

Sox3, Sox2, or Pax7 (Fig. 4.13 a, c, g and i and Fig. 4.14 a, c, e and g) at the same 

time points. As an additional control, a mutated version of Ubll lacking the last two 

ubiquitin monomers was electroporated; no changes in Sox2 expression were detected 

(Fig. 4.14 b and f).

In conclusion, ectopic expression of Ubll is not sufficient to induce early neural 

or neural crest markers.
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Fig. 4.5
Alignment of nucleotide sequences of the last monomer of Ubs from different organisms or related Ubs within the genome.
Accession numbers: hUBC (NM_021009), hUBB (NM_018955), cUbll (X58195), cUbl (M14693), Xenopus (NM_001006687), tobacco (AJ223330), 
spurge (DQ011576), rat (NM_138895), potato (DQ252482), poplar (AB182939), parsley (X64345), mosquito (L36067), maze (S94466), 

o> Japanese rice (AY954394), Indian rice (X76064), fly (AY118702), dog (XM_536651), beetle (NM_001039417) and Amoeba (AF034789).



bUBB/1-77 
D o r /1 -7 7  
Rmt/1-77 
cUbI/1-77 
Fly/1 -79 
hUBC/1-77 
Xenopus/1-77 
Beetle/1-77 
cUbII/1-77 
Mosquito/1-77 
Parsley/1-78 
Potato/1-78 
J.rice/1-77 
Poplar/1-77 
I.nce/1 -77 
Maize/1-77 
Sp u tr c /1 -7 7  
Tobacco/1-77 
Amoeba/1-78

Fig. 4.6
Alignment of amino acid sequences of last monomers of Ubs from different organisms or related 
Ubs within a genome. Accession numbers: hUBB (NP_061828), dog-UbB(XP_536651), rat-ubB 
(NP_620250), cUbl (AAA49128), fly (AAM50562), hUBC (NP_066289), Xenopus 
(NP_001006688), beetle (NP_001034506), cUbll, mosquito (AAA29362), parsley (CAA45622), 
potato (ABB55360), Japanese rice (AAX40652), poplar (BAD26592), Indian rice (CAA53665), 
maze (AAB21994), spurge (AAY33920), tobacco (CAA11269) and Amoeba (AAB87694).
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Fig. 4.7
Average Distance Tree using % identity based on amino acid sequences alignment of last 
monomers of Ubs from different organisms or related Ubs within a genome. Accession 
numbers: beetle (NP_001034506), dog-UbB(XP_536651), hUBB (NP_061828), fly 
(AAM50562), mosquito (AAA29362), cUbll, rat-ubB (NP_620250), cUbl (AAA49128), hUBC 
(NP_066289), Xenopus (NP_001006688), Indian rice (CAA53665), maze (AAB21994), 
Japanese rice (AAX40652), parsley (CAA45622), potato (ABB55360), poplar (BAD26592), 
spurge (AAY33920), tobacco (CAA11269) and Amoeba (AAB87694).
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Fig. 4.8
Average Distance Tree using % identity based on nucleotide sequences alignment of last 
monomers of Ubs from different organisms or related Ubs within a genome.
Accession numbers: beetle (NM_001039417), dog (XM_536651), hUBB (NM_018955), rat

(NM _138895), cUbl (M14693), cUbll (X58195), hUBC (NM_021009), Xenopus

(NM_001006687), Indian rice (X76064), maze (S94466), Japanese rice (AY954394), fly

(AY118702), mosquito (L36067), parsley (X64345), poplar (AB182939), potato (DQ252482),

spurge (DQ011576), Amoeba (AF034789) and tobacco (AJ223330)
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Fig. 4.9

Normal expression patterns of Ubll in the pre-primitive streak stage embryo (a) and at stages 

3(b), 4'(c), 5'(d), 5(e), 7(f), 12(g), section through the anterior (h) and the posterior region (i) of 

embryo shown in c; section through the lateral region (j) and the primitive streak (k) of embryo 

shown in d; I section of embryo shown in e; m-n sections through stage 7 embryo shown in f.
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Fig. 4.10

Normal expression patterns of Ubll. Sections through stage 12 embryo at the stage of 

hindbrain (a-b), somite (c) and posterior regions of the trunk (d-e).
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Fig. 4.11

Normal expression patterns of Ubl in a pre-primitive streak stage embryo at stages 3(a), 3+(b), 

4'(c) and 4(d).
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Fig. 4.12
Induction of Ubll in the area opaca by a graft of Hensen's node: 
no induction is seen after 1.5 hours (a) weak induction after 3 hours (b), 
induction of Ubll after 4 hours (c) and 5 (d) hours.
Induction of Ubll expression in the area opaca by FGF8b secreting beads; 
weak induction (left arrow) after 3 (f), 4 (g) and 5 (h) hours; 
e: no induction is detected after 1.5 hours of exposure to FGF8b (left arrow), 
no induction by negative control (right arrow),



Fig. 4.13
Effects of UBII electroporation on ERNI and Sox2 expression.
ERNI expression (blue) is shown following electroporation of a control, empty pCAB vector (a, g) and of 
UBII (b, h) before (a-b) and after (g-h) staining with anti- GFP antibody (brown).
Sox2 expression (blue) following electroporation of UBII is shown after 9 hours (d, j) and overnight (e, f, k, I) 
incubation. The effects of electroporation of a control, empty pCAB vector on Sox2 expression are shown 
after overnight incubation (c, i) before (c-f) and after (i-l) staining with anti-GFP antibody (brown).
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Fig. 4.14
Effects of electroporation of the first ubiquitin of UBII (UBII1) on Sox2 expression and UBII on Pax7 expression.
Sox2 expression (blue) is shown following electroporation of a control, empty pCAB vector (a, e)
and of the first ubiquitin of UBII (UBII1) (b, f) before (a-b) and after (e-f) staining with anti-GFP antibody (brown).
Pax7 expression (blue) is shown after 9 hours incubation following electroporation of a control,
empty pCAB vector (c, g) and of UBII (d, h) before (c-d) and after (g-h) staining with anti-GFP antibody (brown).



4.3. Discussion

The experimental data presented in this chapter demonstrate that Polyubiquitin II (Ubll) 

fulfils the requirements of an early response to neural induction by a grafted node. It is 

expressed in the neural plate of the normal embryo at around the time of neural 

induction, and is induced in the epiblast of the area opaca after 3-4 hours’ contact with 

a grafted Hensen's node. Additionally, this process can be mimicked by FGF8b with 

the same time course as a node graft. However, to test whether FGF signalling is 

required for the node to induce Ubll expression, a node should be grafted together with 

beads soaked in SU5402, an inhibitor of the FGF-receptors (Mohammadi et al., 1997), 

as previously done for ERNI (Streit et al., 2000) and Churchill (Sheng et al., 2003). 

Unfortunately in the case of Ubll, the low level of ubiquitous expression would make 

such an experiment difficult to interpret.

The results in this Chapter are compatible with the idea that some aspect 

involving ubiquitination and/or de-ubiquitination may be involved in the early stages of 

neural induction, since polyubiquitin II expression is rapidly upregulated under the 

influence of signals from Hensen’s node. Since almost all proteins in the cell are likely 

to be regulated by a ubiquitin-dependent mechanism, it is impossible a priori to 

determine which are the most likely targets. However, one interesting possibility worthy 

of future investigation is raised by the presence of several SUMOylation sites revealed 

by ELM analysis in the protein encoded by the ERNI gene (unpublished observations). 

ERNI is currently the earliest gene to be up-regulated by signals from Hensen’s node, 

being induced in just 1-2 hours following the graft, and its expression is quickly 

downregulated again just before expression of the stable neural plate marker, Sox2 at 

stage 4+ (Stern, 2005a; Streit et al., 2000). Other unpublished observations in the lab 

implicate ERNI as an antagonist of neural plate development through its inhibition of 

Sox2 expression, and further suggest that the level of ERNI transcripts are regulated 

by ERNI activity (Papanayotou et al., submitted). An interesting possibility therefore is 

that very early signals from Hensen’s node first induce ERNI expression, followed more 

slowly (3-4 hours) by Ubll, which in turn contributes to downregulate the expression of 

ERNI after this initial time point.

Moreover, two HMG proteins related to Sox2 (Drosophila SoxN and human 

Sox3) are also modified by SUMOylation (Savare et al., 2005). There is some evidence 

that several transcription factors can be alternatively regulated by SUMOylation and by 

ubiquitinylation. The absence of good working antibodies against ERNI, Sox2 or Sox3 

prevented direct investigation of the effects of Ubll misexpression or loss of function on 

the levels of these proteins. However since it is possible that transcript levels of
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particular genes are regulated by the activity (and thus the level) of the protein 

encoded by them (as appears to be the case for both ERNI, see above, and for BMPs), 

the effects of Ubll misexpression on the levels of transcripts of Sox2, Sox3 and ERNI 

(as well as Pax7 as a marker of cells situated between neural plate and epidermis) 

were analysed. No effects were found. Although this does not allow any conclusions to 

be drawn concerning the roles of UBII in regulating the levels of the proteins encoded 

by these genes, they do suggest that UBII overexpression is not sufficient to affect the 

levels of their mRNAs.

An interesting feature of the expression of Ubl l  at the early stages of 

development is the localisation of the mRNA within the cells at different stages of 

neural plate development: message is found concentrated at the apical surface of 

future neural plate cells at stages 3+/4, while at later stages (9-11) the mRNA appears 

to move to a predominantly basal position in the neuroepithelium, passing through a 

stage (stage 5-7) when the mRNA does not appear to be localised. This raises the 

possibility that sub-cellular compartmentalisation of ubiquitination processes may be 

involved in some aspect of neural plate induction or of its later development, in 

particular the transition from a flat neural plate to a neural tube, which is the period at 

which the localisation of the message appears to change most dramatically. 

Interestingly, ferritin (another candidate early response gene isolated from this screen 

and discussed in Chapter 5) is also localised apically at the earliest stages (stages 

3+/4), as is another candidate gene isolated from the same screen, Obelix (Pinho, in 

preparation).

Together, although it was impossible to pin-point a precise role for Ubll in the 

early stages of neural plate development, the present results do raise the possibility 

that localised ubiquitin-dependent processes, restricted both in space and time in the 

embryo and even within the cells, may be an important and hitherto unexplored 

mechanism in these early events of neural development.
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CHAPTER 5:

Heavy Chain Ferritin (hcf)



5.1 Introduction

Iron is a crucial as well as potentially extremely toxic element in cell biology. It takes 

part in a number of enzymatic reactions important for critical cell functions such as the 

cell cycle, the conversion of ribonucleotides to deoxyribonucleotides, electron transfer 

and oxygen metabolism (Quintana et al., 2004; Torti and Torti, 2002) In mammals 

there are no mechanisms for iron excretion other than through bleeding or loss of the 

mucosal/skin cells; therefore the absorption, transport, storage and metabolism of iron 

are very tightly regulated (Le Gall et al., 2005; Mladenka et al., 2005). Ferritins play a 

critical role in iron sequestration in cells (Torti and Torti, 2002) and are responsible for 

storage of 90% of non-haeme iron (Quintana et al., 2004). The crucial, general 

importance of ferritin is demonstrated by the phenotype of ferritin mutants in mouse. 

For example, Fth('A> (HCF in mice) mutants die between E3.5 and E9.5 (heterozygous 

embryos develop normally) (Ferreira et al., 2000).

There are two main types of ferritins in animals: heavy (HCF) and light chain 

(LCF) encoded by different genes of common origin (Harrison and Adams, 2002; 

Harrison et al., 1998). An additional M subunit has been identified only in amphibians 

(Bou-Abdallah et al., 2005; Dickey et al., 1987; Ha et al., 1997)

HCF is a highly conserved protein found in the plastids (chloroplast) of plants 

(van der Mark et al., 1983a; van der Mark et al., 1983b), in the hemolymph and 

vascular system of most insects (Dunkov et al., 2002; Dunkov et al., 1995; Kim et al., 

2004a) and mainly in the cytoplasm of chordates (Hasan et al., 2006; Kim et al., 2004b; 

Surguladze et al., 2005). HCF has also been reported to be present in the cell nucleus 

in some tissues, for example, in corneal epithelium in chick (Cai et al., 1997; 

Linsenmayer et al., 2005). In insects, ferritins appear to exist in a secretable form, with 

both H and L types containing -special modifications such as unique disulfide bonds 

that generate a more spherical configuration (Hamburger et al., 2005).

In the chicken genome, there is only a single hcf gene and no pseudogenes 

have been reported to date (NCBI) (see also Stevens et al., 1987). Despite earlier 

reports (Stevens et al., 1987) of the existence of numerous copies in other genomes, 

for example in human, most of them were found to be pseudogenes (Cragg et al., 

1985; Percy et al., 1995; Quaresima et al., 1994; Zheng et al., 1997; Zheng et al., 

1995) and only the H-ferritin gene (BC000857.1), located on chromosome 11, encodes 

a functional protein. One of the genes originally thought to be a human pseudogene 

was later identified as a mitochondrial ferritin (Drysdale et al., 2002; Levi et al., 2001) 

and later found in other species, for example mouse (Levi and Arosio, 2004; Nie et al., 

2006), Drosophila (Missirlis et al., 2006) and plants (Zancani et al., 2004). The ratio of
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HCF and LCF expression varies between different tissues (Cairo et al., 1991) and often 

depends on the physiological state of the cell. HCF and LCF form a spherical, 

apoferritin shell, consisting of 24 small subunits (held together by hydrogen and ionic 

bonds), with a total mass of 480 kDa and a diameter of 12 nm surrounding an internal 

cavity of 256 nm3 (Ford et al., 1984; Harrison and Arosio, 1996; Theil, 2003). In plants 

and bacteria the 24 unit core is formed from the single type of ferritin expressed in 

these organisms (Bou-Abdallah et al., 2005). HCF plays an important role in the 

regulation of iron homeostasis and is vital in coping with states that could otherwise be 

disastrous for cell iron/oxygen chemistry (Theil, 2003). In vertebrates, the heavy chain 

is responsible for accelerated oxidation of toxic Fe (II) to Fe(lll), which is less toxic to 

cells (Fig. 5.1) (Levi et al., 1989a; Levi et al., 1989b; Quintana et al., 2004). LCF 

enables formation of the apoferritin shell and possibly contains sites for nucleation and 

aids stabilisation of the protein complex (Bou-Abdallah et al., 2005; Harrison and 

Arosio, 1996; Levi et al., 1989b). An iron inorganic core capable of storing large 

quantities of iron (around 4500 atoms) is found inside the apoferritin shell (Ford et al., 

1984; Harrison and Arosio, 1996; Levi et al., 1992; Torti and Torti, 2002). Each shell 

contains either the very labile ferrihydrite (Ft), or the more stable haematite (ht), or a 

hybrid magnetite/maghemite phase (with both ferrous and ferric ions) (Quintana et al., 

2004). Ferrihydrate is the main type of apoferritin core seen under normal physiological 

conditions, while nanocrystals with cubic magnetite/maghemite phase and face- 

centered-cubic (fee) structure predominate in the pathology of Alzheimer and other 

neurodegenerative diseases (Quintana et al., 2004). Other characteristics of the 

apoferritin shell are 8 entry and exit channels and 12 mineral attachment sites (Theil, 

2003). Prior to the deposition in the core, the sequestered iron undergoes a number of 

chemical modifications. Each HCF subunit forms 4 a-helices surrounding the 

ferroxidase centre (Lawson et al., 1991; Lawson et al., 1989) - it is the site of formation 

of oxo-bridged Fe(lll) dimers that represent an intermediate in the formation of the 

ferrihydrite core (Bauminger et al., 1991; Levi et al., 1992).

Human heavy chain ferritin (HuHF) can oxidise up to 48 Fe(ll), two per each 

ferroxidase centre, to Fe(lll) (Bou-Abdallah et al., 2005; Zhao et al., 2003). The 

ferroxidase activity of each site is regenerated during the process of iron oxidation in 

HuHF (Bou-Abdallah et al., 2005).
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Fig. 5.1
Ferroxidase site reaction in HCF (from Theil, 2003).

The main mode of hcf regulation is post-transcriptional and the same levels of 

mRNA can result in a 10-fold difference in protein level (Stevens et al., 1987; Zahringer 

et al., 1975). This regulation involves interaction between a conserved 28 bp Iron 

Regulatory Element (IRE) sequence, located within the 5’ untranslated region (UTR) of 

the mRNA, which forms a hairpin loop, and the Iron Regulatory Proteins (IRPs) 1 and 2 

(Fig. 5.2) (Eisenstein, 2000; Harrell et al., 1991; Kim et al., 1995; Theil, 1990; Thomson 

et al., 1999). Both IRPs repress HCF translation when the level of iron is low. However 

their regulation differs: IRP1 acts as a cytosolic aconitase responsible for the 

enzymatic conversion of citrate into isocitrate with an iron sulphate cluster [4Fe-4S] 

that completely dissociates when the level of iron is low, in order to bind to the IRE 

(Clarke et al., 2006; Pantopoulos, 2004; Philpott et al., 1994). IRP2 is also regulated by 

iron; high levels catalyse the oxidation of IRP2, which is the signal for its ubiquitination 

for proteasome degradation (Iwai et al., 1998; Pantopoulos, 2004). IRPs are also 

responsible for the coordination between HCF activity (responsible for iron 

sequestration) and transferrin receptor TR stability (involved in the internalisation of 

transferrin and the intracellular release of iron) (Fig. 5.2) (Ponka et al., 1998). The 

mechanisms regulating TR stability are also mainly iron dependent and involve the 

interaction between IRPs and an IRE located in the 3' UTR of TR (Hentze and Kuhn, 

1996; Klausner et al., 1993; Thomson et al., 1999). Depletion or targeted deletion of 

IRP2 causes an imbalance in iron metabolism and leads to neurodegenerative disease 

(LaVaute et al., 2001; Smith et al., 2004), while IR P I^ J R P ^  double-mutant mice do 

not survive beyond the blastocyst stage (Smith et al., 2006).
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Fig. 5.2

Post-transcriptional regulation of HCF and TR by IRP1 and IRP; (modified from Torti and Torti,

2002).

There is evidence that HCF production is also regulated at the transcriptional 

level (for example, as a result of TNF, cAMP, c-myc and oxidative stress), as well as 

post-transcriptionally in an IRP-independently manner (in this case it is regulated by 

haemin, phorbol ester or IL-1(3) (Santamaria et al., 2006; Torti and Torti, 2002). Some 

aspects of these modes of regulation as well as a more detailed look into the roles of 

ferritin in the protection against oxidative stress will be presented in Chapter 6.
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5.2. Materials and Methods

5.2.1. Bioinformatic analysis

Comparisons with other sequences in the public domain were made through standard 

sites (Ensembl, Genbank, UCSC genome server). To align and analyse sequences, 

ClustalW (www.ebi.ac.uk/clustalw) (Thompson et al., 1994) was used and the results 

visualised using Jalview 2.08.1 (Clamp et al., 2004). The degree of amino acid identity 

was calculated using MUSCLE (Edgar, 2004).

5.2.2. Riboprobe transcription

The hc f cDNA was cloned into the pBlueScript vector. To generate antisense 

riboprobes for in situ hybridisation, the plasmid containing hcf were linearised by 

digestion with Xhol and transcribed with T3 RNA Polymerase. In situ hybridisation was 

performed as described in Chapter 2.

5.2.3. Constructs for electroporation

To study the possible functions of hcf in early chick development, hcf was 

misexpressed by electroporation. The pCAp vector, containing the ubiquitously 

expressed chick p-actin promoter, a CMV enhancer followed by the cloning site and 

then an Internal Ribosome Entry Site (IRES) to direct translation of Green Fluorescent 

Protein (GFP), was digested with BsmBI and Clal and gel-purified using a Gel 

Extraction Kit (Qiagen). A cDNA containing the entire open reading frame of chick hcf 

and the iron regulatory element (IRE) present in the 5’ UTR was amplified by PCR from 

two chick cDNA libraries (stage 2-4 and 18-20). The following primers were used: 

Forward: GATCAGCGGCCGCGATTGGGACGGAACCGGC 

Reverse: TGCTCATCGATGCCTTCAGCTGTCACTTTCCCCG

These were designed to incorporate recognition sites for digestion by Notl and 

Clal (underlined, respectively, in the two sequences above). This made the PCR 

product compatible for ligation with the product of BsmBI/Clal digestion of pCAp. The 

insert was ligated with purified vector using T4 DNA ligase (Promega). The ligation 

products were transformed into DH5a competent cells. Plasmids were harvested and 

sequenced.

To avoid possible effects of the IRE on translation of hcf, the ORF of hcf lacking 

5' UTR sequences was amplified using primers:

Forward: GATCAGCGGCCGCGCCATGGCTACGCCTCC 

Reverse: TGCT CATCGAT GCCTT CAGCT GT CACTTT CCCCG
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5.2.4. Electroporation

The pCA_ vectors described above were introduced by electroporation into stage 3+/4 

embryos as described in Chapter 2. The electroporated embryos were grown for 6 

hours (to study short term effects) or to stages 8-12 (for longer-term consequences). At 

the end of this period embryos were fixed and processed for in situ hybridisation 

(Chapter 2) with various markers including Sox 3 (Rex et al., 1997), Sox2 (Rex et al., 

1997), Dlx5 (McLarren et al., 2003; Streit and Stern, 1999a; Yang et al., 1998) and Ubll 

as described in Chapter 4. After in situ hybridisation, antibody staining against GFP or 

fluorescence microscopy was used to reveal the cells that had been electroporated as 

described in Chapter 2.

5.2.5. HCF antibody staining

To detect HCF proteins in vivo in chick embryos were subjected to whole-mount 

immunohistochemistry based on previously described protocols (Stern, 1998). An 

affinity-purified, rabbit anti-human HCF antibody (FERH13-A, Alpha Diagnostic) was 

used, which had been raised against a 15aa peptide near the amino-terminus of HCF, 

which is 100% conserved in mouse, rat, human, bovine monkey and chicken HCF. 

This antibody was diluted 1:250 in blocking buffer and was detected using HRP- 

coupled goat anti-rabbit (Santa Cruz) antibody diluted 1:2,500 in blocking buffer. HRP 

activity was revealed using diaminobenzidine (DAB) in the presence of H20 2 as 

previously described (Stern, 1998); see Chapter 2.

5.3. Results

5.3.1. Cloning and identification of hcf

The “early response screen” identified one clone (A4) with a 551 bp insert. BLAST 

analysis of this sequence revealed strong homology with accession number Y14698 

(heavy chain ferritin, HCF), with only 6 separate nucleotide differences in 547 bp. The 

A4 clone contains the entire 5' UTR (150bp) and the product of the first two exons and 

17 bp of exon 3 (401 bp) of the 539 bp open reading frame (ORF) of Heavy chain 

ferritin (NCBI: Y14698). To obtain a full-length clone, a stage 3-4 chick embryo cDNA 

library was screened and full-length clone was isolated. It contained 150 5’ UTR and 

the entire ORF (539 bp). This sequence is identical to the cDNA deposited under 

accession number NCBI: Y14698.

In the chicken genome, Hcf (ENSGALG00000007220) is found on chromosome 

5 at location 14,161,743-14,167,779. There are no SNPs reported (Ensembl, UCSC). A
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CpG-rich region is located in the 5'UTR (UCSC) in accordance with published data 

(Stevens et al., 1987).

To compare chick HCF with the corresponding sequences in other species, an 

Average Distance tree was constructed using PID (the percentage identity between 

two sequences at each aligned position) in MUSCLE (Fig. 5.3). The relationships 

between the genes compared closely resemble the phylogenetic relationships between 

the species, with the surprising exception of the pig sequence, which has substitutions 

(Fig. 5.4) in the Glu-61 and Glu-62, two of the four residues that act as ligands in the 

intermediate step of formation of the iron core (Lawson et al., 1991; Levi et al., 1992).

5.3.2. Expression of hcf during early development

To establish the spatial and temporal pattern of expression of hcf 'm early embryos and 

to validate the results of the screen, whole mount in situ hybridisation was used. In 

early embryos (prior to about stage 5), expression seems fairly ubiquitous and weak, 

with some variability in staining between embryos. This was also seen by whole-mount 

immunostaining (data not shown). In pre-primitive streak embryos, hcf transcripts are 

found at very low levels throughout the epiblast (Fig. 5.5 a, j). At stage 3, the level of 

expression appears to decrease, with transcripts concentrated mainly in the epiblast of 

the primitive streak (Fig. 5.5 b, k) and in more anterior epiblast (Fig. 5.3 b, I). Within the 

epiblast, hcf transcripts are found predominantly in the apical region (Fig. 5.5 k, I). At 

stages 3+/-4 considerable variability is seen, including embryos that show fairly uniform 

staining throughout the area pellucida (e.g. Fig. 5.5 c, d, m, n) and others in which the 

central portions of the area pellucida show low expression while the anterior-lateral 

borders show higher levels (Fig. 5.5 e). By stage 5, the pattern becomes more 

consistent. While hcf expression is still relatively ubiquitous (long periods of staining 

resulting in uniformly stained embryos), shorter staining reveals strong localisation of 

mRNA in the lateral plate mesoderm at the border between area pellucida and area 

opaca (Fig. 5.5 e-g), which quickly resolves to the forming blood islands of this region 

(Fig. 5.5 g, h, r, s). Within the embryo proper, relatively weak expression in the 

prospective neural plate is seen at stage 5 (Fig. 5.5 f), and this quickly becomes 

confined first to the future midbrain and hindbrain territories (Fig. 5.5 g, h) and then to a 

specific rhombomere within the hindbrain, possibly r3 or r4 at stage 10 (Fig. 5.5 i). In 

sections, closure of the neural tube is accompanied by an apparent shift of the mRNA 

from an initial apical to a basal localisation within the neuroepithelium (c.f. Fig. 5.5 k, I, 

o with 5.5 q, s).

In conclusion, although hcf is expressed in the future nervous system, it is not a 

good marker for prospective neural plate cells. Its expression throughout the neural
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plate is very transient, being broader at earlier stages and much more restricted at later 

stages. Furthermore, the strongest expression observed is in blood islands at almost 

all stages tested.

5.3.3. Induction of hcf by Hensen’s node

For the other genes studied in this thesis, a time-course of the induction of transcripts 

by a graft of Hensen’s node and/or FGF was conducted. In the case of hcf, however, 

expression in the neural plate is so transient and weak (see above) that these 

experiments would be meaningless. This is especially problematic since short time- 

courses (less than about 6 hours) following a node graft at stage 3+ would only allow 

the host to develop to stage 4-4+, at which stage hcf expression is too variable. For 

these reasons, the induction of hcf by grafted nodes was not studied.

5.3.4. hcf does not affect neural, neural crest or affects the Ubll expression

To establish whether hcf might influence cell fate choices at early stages of neural 

development, it was introduced into the embryo in vivo by electroporation. Two 

different constructs were tested for activity: a cDNA containing the entire ORF as well 

as the 5’ untranslated sequence that encodes the iron regulatory sequence (IRE), and 

the ORF alone, without 5’ UTR sequences. Successful electroporation and expression 

of HCF was assessed by immunohistochemistry with an antibody against HCF (data 

not shown) as well as by fluorescence of the GFP in the pCA_ vector. Neither construct 

induced the neural markers Sox3 (15/15; Fig. 5.6 c, h, e, j and 14/14; Fig. 5.6 b, g, d, I) 

or Sox2 (9/9; Fig. 5.7 c, f and 11/11; Fig. 5.7 b, e) nor the neural crest and neural plate 

border marker Dlx5 (9/9; Fig. 5.8 d, I and 7/7; Fig 5.8 e, j) after 6 hours (for Sox3), 9 

hours (for Sox2) or overnight (for Sox3 and D/x5) culture.

It has been reported (LaVaute et al., 2001) that the iron regulatory protein IRP2 

is a main regulator of HCF synthesis in the nervous system, and that IRP2 levels are 

regulated by ubiquitin-mediated degradation. To assess the possibility of a feedback 

loop by which HCF and ubiquitin-related genes might regulate each other’s expression, 

the effects of overexpression of hcf on the expression patterns of Ubll were tested. No 

changes were found in the normal expression pattern of Ubll after missexpression of 

hcf, with or without the IRE sequence (Fig. 5.8 c, h and b, g). Control electroporation 

(empty pCAp vector) does not alter patterns of expression of any genes tested (Fig. 5.6 

a, f, fig 5.7 a, d and Fig. 5.8 a, f). In conclusion, these experiments do not reveal an 

effect of hcf misexpression on the expression of early neural markers or on Ubll.

8 8



9.03 cress

5.26 Xenopus

2.53 pig

0.19
quail

2.74 1.33
19

chick

1.00
1.35 mouse

0 17 Q.82172 dog

chimp 

0J0 0.10
r  orangutan

0.10
- human

87.31  nematode

Fig. 5.3

Average Distance Tree of HCF protein sequences from different organisms, 

cress (BAE98576), Xenopus (AAH77674), pig (NP_999140), quail (AAT01287), chicken 
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Fig. 5.5

Normal expression patterns of chick h c f  in the pre-primitive streak stage embryo (a) and at 

stages 3(b), 4'(c-e), 5(f), 6(g), 9(h), 12(i); j: longitudinal section through pre-streak embryo 

shown in a; section through the posterior primitive streak (k) and the anterior region (I) of 

embryo shown in b; section through the node (m) and anterior- lateral region (n) of embryo 

shown in d; o: section through trunk at stage 7; p: section through the anterior region of stage 8; 

section through the hindbrain (q) and through trunk (r-s) of the stage 9 embryo shown in h.
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Fig. 5.6
Effects of HCF electroporation on Sox3 expression (blue) following electroporation of a control, 
empty pCAB vector (a, f) and HCF is shown after 6 hours (b, g) and overnight (d, i) incubation.
The effects of elecroporation of HCF construct containing IRE on Sox3 expression are shown after 
6 hours (c, h) and overnight (e, j) before (a-e) and after (f-j) staining with anti-GFP antibody (brown).
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Fig. 5.7
Effects of HCF electroporation on Sox2 expression (blue) 
following electroporation of a control, empty pCAB vector (a, d) 
and HCF is shown after 9 hours (b, e) and overnight (d, i) incubation. 
The effects of elecroporation of HCF construct containing IRE on 
Sox3 expression are shown after 6 hours (c, f) before (a-c) and 
after (d-f) staining with anti-GFP antibody (brown).



HcF-GFP

Fig. 5.8
Effects of HCF electroporation on Ubll expression (blue) following 
electroporation of a control, empty pCAB vector (a, f), HCF (b, g) and of 
HCF construct containing IRE (c, h) are shown after 12 hours incubation. 
The effects of elecroporation on Dlx5 expression are shown after 9 hours: 
HCF (c, h) and HCF construct containing IRE (e, j) after 9 hours incubation. 
The expression is shown before (a-e) and after (ff-j) staining 
with anti-GFP antibody (brown).



5.4. Discussion
Hcf was isolated from the screen conducted to identify genes whose expression is an 

early response to neural induction by a grafted node. As explained in Chapters 1, 3 

and 4, two criteria are expected to be satisfied for any such gene to be considered as 

an “early response to neural induction”: if the expression of the gene is upregulated by 

the node graft, this should be verifiable by in situ hybridisation within a 5 hour window 

following the node graft into the area opaca, and the gene should normally be 

expressed at higher levels in the prospective neural plate at early stages of neural 

induction. In this case, weak ubiquitous expression of hcf at early stages made it 

impractical to assess whether it can be induced or upregulated by a grafted node or by 

FGF8. Furthermore, its normal expression prior to stage 4+ (when neural induction is 

thought to end, Dias and Schoenwolf, 1990; Storey et al., 1992) is weak as well as 

variable from embryo to embryo.

Although it is not possible to test whether hcf fulfils these criteria to be an early 

response gene, it is expressed at higher levels in the neural plate from stage 5 and 

remains upregulated in the developing nervous system (and especially within the 

hindbrain), consistent with some role in early development of the neural plate. The 

possibility that iron metabolism or intracellular regulation of iron levels could be 

important in very early stages of neural plate development has not been considered 

before, and the present results, although purely descriptive at this stage, do raise this 

interesting possibility even though they did not provide information to help identify what 

these roles might be.

It has been reported that in vitro and in vivo overexpression of hcf without or 

mutated the 5’ IRE sequence results, in a sustained upregulation of HCF (Cozzi et al., 

2000; Picard et al., 1996; Wilkinson Iv et al., 2006). In experiments conducted for this 

project there was an upregulation of the synthesised HCF measured by 

immunochemistry for both electroporated constructs: hcf and hcf and IRE, however 

there was no effect on the expression patterns of the neural or crest markers tested. 

These results suggest that HCF alone is not sufficient to affect the expression of these 

markers. However, it is possible that other elements involved in iron homeostasis are 

required along with HCF for it to exert its functions. One way to test whether the 

intracellular levels of ferric iron (oxidised Fe(lll) often found bound to ferritin) are 

affected by electroporation would have been to use Prussian Blue staining (LaVaute et 

al., 2001), but this method is quite crude and insensitive as compared with more 

quantitative methods using radioactive Fe isotopes (Cozzi et al., 2000). It might also 

have been interesting to test whether the levels of transferrin receptor (another main
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player in iron regulation) are affected. Likewise, it has been shown that overexpression 

of h c f in vitro causes an increase in the activity of IRP, which binds to the IRE 

sequence in hcf. However this mechanism is not dependent solely on HCF but rather a 

consequence of decreasing levels of the LIP (Labile Iron Pool) in cells following 

sequestering of iron by excess ferritin (Cozzi et al., 2000; Picard et al., 1996). Other 

experiments in which HCF was overexpressed without its ferroxidase activity (E62>K 

and H65>G) (Bauminger et al., 1991; Cozzi et al., 2000) in HeLa cells has been 

reported to have almost no effect on the cells (Cozzi et al., 2000). This makes it 

unlikely that such mutated forms of HCF could function as dominant-negative versions 

that might otherwise have been used to abrogate HCF function in vivo.

In conclusion, the lack of obvious effects of overexpression of HCF on the early 

neural markers studied could either indicate that iron metabolism plays no role in the 

regulation of expression of these markers, or that overexpression of this component 

alone is not sufficient to alter the levels of intracellular iron sufficiently to cause a 

detectable effect.
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CHAPTER 6:

Apoptosis and neural induction



6.1. Introduction

The term "apoptosis" (from the Greek words apo = from and ptosis = falling) was 

introduced in 1972, initially to distinguish this form of naturally occurring, predictable 

cell death from necrosis (Kerr et al., 1972) (for details of morphological descriptions of 

these processes see Table.6.1). Apoptosis is the most common form of Programmed 

Cell Death (PCD) (Kroemer et al., 2005) and in this thesis the two terms are used 

interchangeably.

APOPTOSIS NECROSIS

• Chromatin condensation

• DNA fragmentation

• Cell Shrinkage and Pyknosis

• P reservation of O rganelles and 

Cell membranes

• Blebbing and Budding 

Engulfment by neighbouring cells 

preventing inflammation

• Cell swelling

• Disruption of Organelles

• Increase of permeability, rupture 

of cells and release of the cellular 

content

• Coagulation, shrinkage

• Inflammatory response

Table 6.1

Apoptosis versus necrosis comparison of morphological events.

Caspases (cysteinyl aspartate-specific proteases) belong to the family of cysteine 

proteases capable of specific cleavage of proteins at the C-terminal of the peptide 

bond next to an aspartate residue (Earnshaw et al., 1999; Riedl and Shi, 2004; 

Zhivotovsky, 2003). All caspases are synthesised as an inactive precursor, a pro- 

caspase also called zymogen. It consists of a prodomain at the N-terminus of the 

caspase chain (short or long) and two subunits (Fig. 6.1). The long chain prodomain is 

required for the activation of initiator caspases and contains interaction domains: DEDs 

(death effector domains) in pro-caspases -8 and -10 and CARDs (caspase-recruitment 

domains) found in pro-caspases -2, -9 and in initiator caspases involved in 

inflammation -1, -4, -5 (Budihardjo et al., 1999; Riedl and Shi, 2004; Zhivotovsky,

2003). The active site of Caspases consists of a Cysteine (underlined) located in the 

conserved pentapeptide sequence: QACXG (Zhivotovsky, 2003). Caspases also have 

high substrate specificity cleavage sites summarised in the Fig. 6.1 (Thornberry et al., 

1997).
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32-66 kOa

Asp-X QACXG

- I -c
Pro-doman 
(2-25 kDa)

Large subunit Small subunit 
(17-21 kDa) (10-13 kDa)

Initiator caspases Effector caspases
Active caspase

Caspase-2 Caspase-8
Caspase-9 Caspase-10
mCaspase-12 (?)

Caspase-3 
Caspase-6 
Caspase-7

Cleavage specificity

Group I (Caspases 1.4. 5.13) (Inflammation) 
Group li (Caspases 3, 7) (Apoptosis)

(W/UEHD
DEXD
VDVAD
(VL/V)EXD

(Caspase 2)
Group III (Caspases 6 ,8 .9,10) (Apoptosis)

Fig. 6.1

Mammalian procaspases, their structure, activation and substrate specificity - from (Thornberry 

et al , 1997).

Cleavage of proteins by Caspases can result in activation or inactivation of the protein. 

The substrate proteins can be divided into: cytoplasmic (mainly cytoskeletal and 

intermediate fusion proteins), nuclear (structural, RNA-binding, chromosome 

scaffolding), and/or may be involved in DNA metabolism and repair, in the regulation of 

the cell cycle, of proliferation and differentiation, in signal transduction, mainly via 

protein kinases and in the cleavage of proteins directly involved in apoptosis (including 

some pro-caspases, Bcl-2, Bcl-X L, Bid and Bax to name a few) (Earnshaw et al., 

1999; Fischer et al., 2003; Zhivotovsky, 2003).

A wide range of regulators of caspase activity exist, which can be classified as 

belonging to two pathways: extrinsic (death receptor activation) and intrinsic (for 

example: transcriptional regulation, post-transcriptional modifications, including nitric 

oxide (NO) and possibly phosphorylation, cytochrome c release, MAC - second 

mitochondria-derived activator of caspases, Smac/DIABLO - direct inhibitor of 

apoptosis, lAPs inhibitor-of-apoptosis proteins, lAP-binding protein with low pi, AIF 

apoptosis-inducing factor, EndoG endonuclease G and OMI/HTRA2 high-temperature- 

requirement protein). The intrinsic pathway is also activated in the response to the 

DNA damage, activity of oncogenes and heat stress (Earnshaw et al., 1999; Riedl and 

Shi, 2004; Zhivotovsky, 2003).
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The first caspase to be identified was interleukinl-converting enzyme (ICE - later 

recognised as Caspasel), which has been studied for its role in inflammation - (Bensi 

et al., 1987; Gray et al., 1986; Telford et al., 1986). ICE was found to be homologous to 

a protein later identified in C. elegans, CED3 (cell-death abnormality 3) (Henkart, 1996; 

Yuan et al., 1993) suggesting that process of PCD is conserved throughout evolution. 

Work from Horvitz's group that led to discovery and subsequent studies of PCD in C. 

elegans (Hengartner et al., 1992; Xue and Horvitz, 1997; Yuan et al., 1993; Yuan and 

Horvitz, 1990) were of great importance in the process of understanding programmed 

cell death in vertebrates (Hengartner and Horvitz, 1994; Metzstein et al., 1998). 

Recently homologues of caspases have also been identified in insects: Drosophila 

melanogaster (Fraser et al., 1997; Song et al., 1997), Spodoptera frugiperda (Ahmad 

et al., 1997; Forsyth et al., 2004) and yeast (Madeo et al., 2002). There are also 

suggestions that caspases may exist in plants (Hatsugai et al., 2004; Rojo et al., 2004; 

Woltering et al., 2002).

Among the homologs of CED3, Caspase9 (Apaf3/Mch6/ICE-LAP6 - the main initiator of 

the intrinsic pathway) and Caspase3 (CPP32/Yama/apopain - the main converging 

effector of intrinsic and extrinsic pathways leading to PCD) have attracted a great deal 

of attention over the last decade. It has been demonstrated that Caspase9 is the most 

upstream caspase that triggers apoptosis in the response to the release of cytochrome 

c from mitochondria (Li et al., 1997). Following the release of cytochrome c Caspase9 

binds to Apafl via an NH2 domain in presence of dATP (Li et al., 1997). The activation 

of Caspase9 takes place in the presence of the ternary complex the "apoptosome" 

(Chinnaiyan, 1999) and involves autoprocessing (Fig. 6.1) that results in the formation 

of an active oligodimer (Bratton et al., 2001; Chao et al., 2005; Donepudi and Grutter, 

2002; Pop et al., 2006; Rodriguez and Lazebnik, 1999; Shi, 2002; Zhivotovsky, 2003). 

Different models of apoptosome involvement in this process have been reviewed (Bao 

and Shi, 2006; Shi, 2004). Recently, another, apoptosome-independent pathway for 

Caspase9 activation and for the execution of PCD has been reported (Aleo et al., 

2006).

Caspase9 (Table.6.1) is responsible for the intra-chain cleavage of pro-caspases 

Caspase3 and other effector caspases (-6 and -7) resulting in their activation (Fujita et 

al., 2001; Kuida, 2000; Li et al., 1997; Pan et al., 1998). Effector caspases exist in 

homodimer form even before full activation and therefore are capable of performing 

their functions. However the conformational changes following cleavage increase 

Caspase 3 activity by several fold (Riedl and Shi, 2004). It has also been demonstrated
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that Caspase3 directly or indirectly regulates processing of Caspases2, -6, -8 and 10 

as well as to some degree Caspase 9 (Slee et al., 1999), revealing the amplification 

loop later demonstrated in vivo by (Fujita et al., 2001). Recent data from mice fibroblast 

cells lacking both Caspase3 and Caspase7 function Cas3( / ) /Cas7(/) suggest that 

these caspases can play an important role in the amplification of the mitochondrial 

death signal (Lakhani et al., 2006).

Caspase 3 is required for chromatin condensation and DNA fragmentation, two of the 

main morphological hallmarks of apoptosis (Janicke et al., 1998b; Woo et al., 1998). 

However, Caspase3 activity is dispensable for cleavage of a number of death 

substrates (with the exception of alpha-fodrin and topoisomerase I) and for PCD in 

certain cell types (Janicke et al., 1998a; Samejima et al., 1999; Woo et al., 1998).

The interactions between caspases, their activators and inhibitors are complex. The 

actions of individual caspases depend on many factors, including tissue specificity, 

developmental stage and the kind of apoptotic signals, often limiting the relevance of 

the data available to certain types of cell or to the specific apoptotic trigger used. The 

fact that many caspases play redundant functions in the cell death machinery makes 

understanding the exact functions of individual caspases even more difficult. In 

addition, even "death" caspases often play functions not related to this process (Fadeel 

et al., 2000; Riedl and Shi, 2004; Zhivotovsky, 2003). PCD can also be triggered and/or 

executed in caspase-independent way (Broker et al., 2005). Our present understanding 

of the action of Caspases 3 and 9 in living animals is limited. In vivo results often give 

surprising results, for example Cas3(/) mutant mice (Kuida et al., 1996) have defects 

mainly affecting the nervous system but are born viable and die in the 1-3 week of their 

life, while Cas9( / ) mutant mice have similar but much more severe defects that result in 

embryonic lethality for the majority of embryos (Kuida et al., 1998). In this study we 

investigate the expression of Caspase3 and Caspase9 and their possible role in the 

process of PCD and neural induction in early chick development. Our data suggest a 

possible link between Caspase3 and neural development and implicate Caspase9 

and/or interaction between both of them in PCD at the early stages of neural 

development in chick.

PCD has been considered an important and necessary part of normal 

development (Jacobson et al., 1997; Vaux and Korsmeyer, 1999), and was originally 

envisaged as a process of elimination of embryonic cells for “phylogenetic, histogenetic 

and morphogenetic” purposes (Glucksmann, 1951). There have been extensive
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studies investigating the role of apoptosis in the formation of various structures and 

organs, for example, the limb bud (Garcia-Martinez et al., 1993; Hurle et al., 1995; 

Zuzarte-Luis and Hurle, 2005), heart (Pexieder, 1975; Poelmann and Gittenberger-de 

Groot, 2005); tail bud (Miller and Briglin, 1996; Sanders et al., 1986; Schoenwolf, 

1981); eye (Linden et al., 2005; Silver and Hughes, 1973; Vecino et al., 2004; Yan et 

al., 2006; Young, 1984) and neural crest (Ellies et al., 2002; Graham et al., 1993; 

Graham et al., 1996; Homma et al., 1994; Jeffs et al., 1992; Jeffs and Osmond, 1992; 

Lawson et al., 1999; Lumsden et al., 1991; Wakamatsu et al., 1998). In mammalian 

embryos; apoptosis is thought to play a role during pre-implantation development, as 

the ratio of apoptotic to non-apoptotic cells seems to be related to successful 

implantation (Betts and King, 2001; Hardy, 1999; Jurisicova and Acton, 2004; Levy et 

al., 2001).

In the chick embryo, cells with all the hallmarks of apoptosis during early chick 

embryogenesis were described as early as 1961, based on electron microscopical 

observations (Bellairs, 1961). Subsequently, apoptosis has been investigated during the 

early stages of chick development (from pre-primitive streak stages) (Hirata and Hall, 

2000); however this study largely ignores gastrulation and early neurulation, and then 

concentrates on later stages. More detailed comparative studies of PCD patterns during 

gastrulation in chick and mouse are also available (Sanders et al., 1997). However the 

published data did not investigate how the domains of increased apoptosis correlate 

with neural patterning events taking place in early embryonic development, or especially 

whether apoptosis could play any important role in neural induction or the subsequent 

patterning of the neural plate. These relationships have been analysed in more detail in 

Xenopus (Hensey and Gautier, 1998; Yeo and Gautier, 2003; Yeo and Gautier, 2004). 

In particular, these authors proposed that apoptosis could play a role in adjusting the 

size of the neural plate and in regulating neuronal differentiation.

Of the 15 genes identified by the “early response screen” performed in our 

laboratory, four encoded previously studied proteins: Dad1, ferritin, polyubiquitin and a 

metallothionein. We were interested in that all four of these have been implicated in the 

regulation or execution of cell death in a variety of systems (see previous chapters), 

either as pro- or anti-apoptotic factors, raising the possibility that an early response to 

neural induction involves tight regulation of cell death in the responding tissue. In 

Chapters 3-5, the possible involvement of three of these proteins in neural induction 

was investigated. This chapter explores their roles in the control of cell death, and the 

possible relationships between apoptosis and neural induction.
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6.2. Materials and Methods

6.2.1. Bioinformatic analysis

Genome information about chick caspases and those from other species were accessed 

from the three main databases (www.ensembl.org, www.ncbi.nlm.nih.gov and 

w ww .genom e.ucsc.edu). To analyse and align sequences, C lustalW  

(www.ebi.ac.uk/clustalw) was used and the results visualised using Jalview 2.08.1 

(Clamp et al., 2004). The degree of amino acid identity was calculated using MUSCLE -  

a multiple sequence alignment with high accuracy and high throughput (Edgar, 2004).

6.2.2. Riboprobe transcription

To establish the expression patterns of caspase 3 (Cas3) and caspase (Cas9) during 

normal early development, Cas3 and Cas9 cDNA (both in pGEMTeasy) were linearised 

by digestion with Ncol and transcribed with SP6 RNA Polymerase to generate 

antisense riboprobes. In situ hybridisation was performed as described in Chapter 2.

6.2.3 Terminal deoxynucleotidyl transferase mediated nick-end labelling (TUNEL)

To detect cells dying by apoptosis in the embryo, the TUNEL method was used, 

modified from published protocols (Gavrieli et al., 1992; Wijsman et al., 1993). 

Embryos were fixed in 4% PFA in PBT (0.1% Tween-20 in PBS, pH 7.5) as for in situ 

hybridisation, and stored overnight in 100% methanol at -20°C. They were then 

rehydrated gradually back to PBT and washed in this for 1 hour. Embryos were placed 

in TdT buffer (30 mM Tris pH 7.4,100 mM Na cacodylate, 1 mM CoCI2) for 30 min and 

rocked gently. The TdT buffer was replaced with 400J of TdT reaction mix (TdT buffer, 

0.5 _l DIG-dUTP, 2_l terminal transferase; all from Roche) for 4 hours at room 

temperature. To stop terminal transferase activity embryos were rinsed several times 

and then washed 3 times for 1 hour in TBST at 65 °C and four times for 1 hr at room 

temperature. They were then placed in blocking buffer (Tris-buffered saline, pH 7.5, 

containing 5% heat-inactivated goat serum and 1 mg/ml bovine serum albumin) for 3-6 

hours. Anti-DIG-Alkaline Phosphatase (Roche) antibody (1:5000) was added and 

embryos incubated overnight at 4°C. Post-antibody washes and the subsequent 

staining procedure were identical to those described in Chapter 2 for in situ 

hybridisation (Stern, 1998; Streit and Stern, 2001).

103

http://www.ensembl.org
http://www.ncbi.nlm.nih.gov
http://www.genome.ucsc.edu
http://www.ebi.ac.uk/clustalw


6.2.4 Caspase inhibition

The Caspase inhibitors Z-DEVD-FMK (specific for Caspase-3) (R&D Systems, BD 

PharMingen), Z-VAD(OMe)-FMK (general Caspase inhibitor) (R&D Systems) and a 

negative control for Caspase inhibitors (Z-FA-FMK) (R&D Systems, Calbiochem) were 

dissolved in dimethylsulphoxide (DMSO) at 10mM or 20mM according to the 

manufacturers’ instructions, and aliquots stored at -20  °C. These stocks were diluted in 

PBS to final concentrations between 2pM-10^iM. The embryos were soaked in 1 ml 

inhibitor solution in a small Petri dish before rinsing in PBS. In some instances the 

reagent was added to the albumen pool of the New culture for 1-2 hrs and the embryos 

incubated at room temperature before transferring the cultures to 38°C. The embryo 

was then grown for 6 hours or overnight. TUNEL staining and/or in situ hybridisation 

were performed as described above.

6.2.5. Constructs for electroporation

These were described in Chapter 2 (empty pCA_; negative control), Chapter 3 (Dad1 

and truncated Dad1), Chapter 4 (UBII) and Chapter 5 (HCF with or without its Iron 

regulatory Element, IRE). A construct containing lacZ in pCAp with a CMV immediate- 

early enhancer (kind gift of Dr. Voiculescu) was also used as an additional negative 

control. To visualise _-galactosidase activity, embryos were fixed for 20-30 minutes in 

4% PFA and incubated in PBS containing: 4 mM K4[Fe(CN)6], 4 mM K3[Fe(CN)6], 4 mM 

MgCI2 and 200 mg/ml of X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) 

until the colour reaction was fully developed.

6.4 Results

6.3.1. Bioinformatic analysis

Caspase9 is located on chromosome 21 (UCSC) of the chick genome, whilst Caspase 

3 is located on chromosome 4 (Ensembl; gene id: ENSGALG00000010638). The latter 

consists of 8 exons; there is one non-synonymous Single Nucleotide Polymorphism 

(SNP) but it does not result in any change to the amino acid sequence (position 160); 

there are 3 variations in the 3' untranslated region.

To compare chick Caspase3 and Caspase9 to the homonymous sequences in other 

species, an Average Distance tree was constructed using PID (the percentage identity 

between two sequences at each aligned position) in MUSCLE (Fig. 6.2 and Fig. 6.3).
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For both alignments, nematode CED3 was used, as it is the only C. elegans 

homologue of the numerous vertebrate caspases. The results show that the CED3 

sequence is also more similar to Caspase3 than Caspase9, as reported for nematode 

CED3 in comparison with mammalian Caspases (Xue and Horvitz, 1997). It has also 

been demonstrated that CED3 is a functional ortholog of Caspase 9 (Riedl and Shi,

2004).

6.3.2. Localisation of cells undergoing apoptosis during normal development

TUNEL staining is a method for identifying cells dying by programmed cell death (PCD) 

based on one of its most important characteristics: DNA fragmentation, which 

accompanies PCD but not necrosis (Gavrieli et al., 1992; Wijsman et al., 1993). The 

distribution of TUNEL positive cells until stage 4 seems to be random (Fig.6.4 a-h), 

although there are no major differences between embryos in the overall number of 

cells undergoing apoptotic death at these stages. As development proceeds, the 

number of cells undergoing PCD appears to increase. Very few TUNEL-positive cells 

are seen at pre-primitive streak stages (Fig. 6.4 a); by stage 3 the number increases 

substantially but the distribution remains random (Fig. 6.4 c-d). TUNEL positive cells 

are found in all three germ layers at these stages (Fig.6.4 g-h). A reproducible pattern 

begins to become apparent from stage 4+-5 in the epiblast (Fig.6.4 i-j), when apoptotic 

cells start to become concentrated as an arc surrounding the forming anterior neural 

plate and extending latero-caudally (Fig.6.4 j-k). This is also occasionally seen in 

embryos as young as stage 3+ (Fig.6.4 g, h). Other locations also contain apoptotic 

cells patterns at these stages, but there is considerable randomness in the patterns 

observed.

As the embryo elongates antero-posteriorly and narrows medio-laterally (stages 

5-14), the apoptotic arc expands caudally and almost converges posteriorly at the 

primitive streak (Fig.6.4 k-l), reminiscent of the patterns of expression of BMP4 and 

BMP7 (see Streit et al., 1998; Streit and Stern, 1999a). In some embryos at stages 6-8, 

the anterior arc is missing and this is replaced by an arc with its centre at the caudal tip 

of the embryonic axis (Fig.6.4 I). More frequently, from stage 9, TUNEL-positive cells 

are seen in the remnants of the primitive streak at the caudal tip of the axis (Fig.6.4 m- 

n). The dorsal midline of the neural tube shows an increase in the number of TUNEL 

positive cells in regions where the neural folds are fusing (Fig.6.4 l-p). In addition, there 

are two regions of concentrated apoptosis, one in the rhombencephalon (Fig.6.4 o) 

which later becomes restricted to rhombomeres 3 and 5 (Fig.6.4 n-p; see (Graham et 

al., 1993) and another in the olfactory region at stages 9 -14 (Fig.6.4 n-q) (see also 

(Yang et al., 1998)). Finally, at stage 13, a line of dying cells is seen at the edge of the
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anterior intestinal portal at the level of the future sinus venosus (Fig.6.4 q). The arc of 

TUNEL staining is retained in the anteriormost epidermis and extraembryonic ectoderm 

in front of the head (Fig.6.4 p, q).

Hensey and Gautier (Hensey and Gautier, 1998) observed a similar arc of dying 

cells in Xenopus embryos at neurula stages, and interpreted it as being within the 

neural plate. To investigate the precise position of the arc in chick embryos, TUNEL 

staining was combined with in situ hybridisation for neural plate markers Sox3 and 

Sox2 (Fig.6.5), with the neural/epidermal border markers Dlx5 and Msx1 (prospective 

neural crest and pre-placodal regions; (McLarren et al., 2003) and with the early 

epidermal markers GATA2 and GATA3 (Fig.6.6). Comparison with neural plate 

markers reveals that there are indeed some apoptotic cells within the neural plate in 

some embryos, but the strongest and most consistent patterns do localise at the 

neural-epidermal border (Fig. 6.6 c, d). Compared with expression of border markers, 

apoptotic cells can clearly be seen both outside and inside of the border, but again the 

pattern is more concentrated in a region overlapping with the border as defined by 

Msx1 and Dlx5 expression (Fig.6.6 a, d, h-i, k-l). The correspondence between these 

regions becomes particularly evident during closure of the neural plate (stages 8-10), 

when PCD is particularly concentrated in the Msx1/Dlx5-expressing neural folds 

(F ig.6.4 I and Fig. 6.6 i, I) and prospective olfactory region (Fig.6.4 n-q). Finally, 

comparison with epidermal markers shows some overlap with the restricted epidermal 

region expressing GATA2 and GAT A3, but also some apoptosis both inside and 

outside this domain (Fig.6.6 g-j, b-c, e-f). In conclusion, the arc seems to be mainly 

centered at the neural-epidermal border but does extend both centrally and 

peripherally to overlap with the neural plate and the epidermal domains.

6.3.3. Expression o f Cas3 during early development

Apoptotic death is believed to be controlled by the activity of specific Caspases. To 

determine whether the localisation of TUNEL staining corresponds to areas of high 

caspase expression, we first examined the expression of Caspase 3 (Cas3) (the most 

downstream caspase in the cascade; Assefa et al., 2004; Faleiro et al., 1997; Li et al., 

1997) by whole mount in situ hybridisation. Virtually no expression could be detected 

in any region before stage 4 (Fig.6.7 a). At stage 4 (Fig.6.7 b), Cas3 starts to be 

concentrated especially in the future neural plate, a pattern that becomes clearer as 

development proceeds. Higher levels of expression are detected in the lips of the 

primitive streak and especially in Hensen’s node (Fig.6.7 b-e). However, as described 

for TUNEL staining, there is considerable variation among embryos of the same stage 

especially for the earliest stages. Unlike TUNEL staining, which is concentrated at the
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neural/epidermal border, Cas3 expression appears to be concentrated progressively 

to the neural plate itself, becoming strongest in the elevating neural folds at around 

stage 8 (Fig.6.7 g). This is especially evident after double-staining for TUNEL and 

Cas3 (Fig. 6.7 i-k, compare 6.7 c and j), which reveal that TUNEL staining is elevated 

at the very edge of the Cas3-expressing domain.

6.3.4. Expression of Cas9 during early development

A more upstream caspase was also examined, Cas9 (Srinivasula et al., 1998). Its 

expression is weak and fairly ubiquitous, but from stage 5 a region of slightly 

upregulated expression is seen surrounding the neural plate, not unlike the domain 

revealed by TUNEL staining (Fig.6.8 a-c). Therefore the expression of Cas9 appears to 

correlate more closely with TUNEL staining patterns than does Cas3.

6.3.5. Neural induction is accompanied by downregulation of PCD

Is the localisation of Cas3 in the neural plate a result of neural induction? To test this, a 

graft of Hensen's node was placed into the area opaca and the resulting ectopic axis 

tested by in situ hybridisation for Cas3. Cas3 expression in the secondary axis mirrors 

that in the normal neural plate Fig. 6.8 d-e). To test whether this can be induced by 

FGF, FGF8b beads were placed in the same location -  weak induction of Cas3 was 

seen in the vicinity of the beads after 5 hours (Fig.6.8 f). In cases when the induced 

axis falls close to or overlaps with the arc of TUNEL staining of the normal embryo, 

apoptosis sharply decreases in the induced region -  in some cases the TUNEL 

staining region is displaced away from the induced neural plate, and becomes confined 

to a sharp border between the induced region and the host embryo (Fig. 6.8 g). 

Despite considerable variation from embryo to embryo both in normal development and 

after a node graft (Fig.6.4 and Fig.6.8 g-i), the absence of apoptosis from the area 

surrounding the grafted node within a few hours of the operation is a consistent feature 

of neural induction, and resembles the relatively lower levels of TUNEL staining within 

the normal neural plate than in surrounding regions.

6.3.6. Inhibitors

To test whether caspase activity is required for PCD and/or neural plate development, 

embryos were exposed to pharmacological inhibitors of caspases and the effects 

analysed by TUNEL staining. No decrease in the number of TUNEL positive cells was 

found (Fig.6.9 a-f). Surprisingly, inhibition of CAS3 activity seems to increase PCD 

rather than the reverse. In addition, in most cases the incidence of PCD was clearly 

higher in control embryos treated with the control inhibitor Z-FA-FMK (Fig.6.9 b, e).
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Therefore, these results do not allow any firm conclusions to be reached about whether 

or not Caspase activity is required for either PCD or for the formation of the neural plate 

(based on in-situ hybridisation for Sox2 - data not shown).

6.3.7. Can DAD1 rescue cells from PCD?

DAD1 was initially isolated (and named) as an antagonist of cell death (see Chapter 3). 

The present experiments suggested that Dad1 is expressed in the newly-induced neural 

plate where it overlaps with caspase expression, perhaps preventing caspase-mediated 

cell death in this region. PCD is concentrated at the edge of the Cas3 domain, where 

Dad1 expression may be lower than in the neural plate itself. To test the possibility that 

Dad1 is responsible for preventing cell death in the early stages of neural plate 

formation, we first investigated the relationship between Dad1  expression and 

apoptosis. As more direct tests for the requirement of Dad1 function, we introduced a 

truncated inhibitory form of DAD1 (Fig. 6.11 c, f and i, I) (Makishima et al., 2000) as well 

as attempted to use morpholinos against Dad1 (data not shown) and examined the 

effects by TUNEL staining.

Dad1 is only very weakly expressed at early stages; in addition the patterns of 

PCD vary considerably at stages 4-4+. However, at stage 5-6 there seems to be a higher 

concentration of TUNEL positive cells in the neural/non neural border, areas of lower 

expression of Dad1 (Fig.6.10). This correlation supports the notion that DAD1 may 

contribute to inhibit cell death within the young neural plate.

However, electroporation experiments did not succeed in demonstrating a clear 

role for DAD1 in apoptosis at these stages (Fig.6.11 a-i). There were no obvious 

differences between the effects of electroporation of either a negative control (empty 

pCA|3), or of Dad1, or of truncated Dad1, or of morpholino against Dad1 or of a standard 

control morpholino (data not shown). Although cell counts were attempted, the variation 

between embryos receiving any one treatment (or among controls) was so great as to 

swamp any possible effects due to the inhibitory treatments.

6.3.8. Do hcf or Ubll affect PCD?

To test whether hcf is able to alter apoptosis, the two constructs used in Chapter 5 were 

tested. Cells undergoing PCD were identified by TUNEL staining and the electroporated 

cells visualised by antibody staining against GFP. In some cases, a construct encoding 

_-galactosidase (lacZ ), rather than GFP, was used for the control side, while the 

experimental vector contained GFP as a marker. This helped in cases where it would 

otherwise have been difficult to distinguish cells electroporated with control and 

experimental vectors in the same embryo.
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No obvious changes were found in the patterns of TUNEL staining when 

electroporated embryos were incubated for 6 hours (data not shown), or in embryos 

electroporated with the control pCAp vector (Fig.6.12 a, d). However, after overnight 

incubation following hcf electroporation, an increase in number of PCD cells is seen in 

the electroporated area (Fig.6.12 b, e). This effect does not seem to be cell-autonomous 

as some TUNEL-positive cells are not stained by anti-GFP antibody. Furthermore, not 

all cells electroporated with hcf (either with or without the 5’ untranslated sequence 

containing the iron regulatory sequence, IRE) are TUNEL-positive (Fig.6.12 b, c, e, f). 

Strikingly this effect is only seen in the ectoderm of the embryo proper and especially 

the in the neuroectoderm (Fig.6.12, compare regions marked by an arrow to those 

indicated by an arrow-head) suggesting that HcF has differential effects on apoptosis in 

different domains of the epiblast.

To test whether overexpression of U bll affects PCD, a U bll vector was 

electroporated as described above. Unlike what was found with hcf (above), no 

significant differences were seen in the number of TUNEL positive cells between 

embryos electroporated with control constructs (Fig.6.13 a-c), or with Ubll, either after 6 

hours of incubation (Fig. 6.13 b) or after overnight incubation (Fig.6.13 c).

Taken together, these results presented in this Chapter suggest that the 

regulation of PCD may indeed be important in the early stages of neural induction. Not 

only is the anti-apoptotic gene Dad1 induced as a very early response to neural 

induction, but the pro-apoptotic genes Caspase3 and Caspase9 are also expressed in 

partly overlapping domains, with a border in the region where PCD becomes 

concentrated (the edge of the neural plate). Moreover, hcf overexpression increases 

apoptosis preferentially in the neural plate of early embryos. We also show that 

induction of a secondary axis by a graft of Hensen’s node is accompanied not only by 

induction of several genes with pro- and anti-apoptotic activity, but also with an overall 

inhibition of cell death in the forming neural plate. These effects are especially prominent 

when the induced region is close to the host’s neural plate and its border. In this case, 

PCD becomes strongly concentrated to a sharp line separating the host and induced 

domains.
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Alignment and Average Distance Tree of protein sequences of Caspase 3 from different organisms: chick (AAC32602), fall armyworm (AAE01643), 
fly (CAA72937), human (NP_004337), mouse (NP_033940), nematode (AAG42045), rat (NP_037054), zebrafish (NP_571952).
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Alignment and Average Distance Tree of protein sequences of Caspase 9 from different organisms: fly (CAB53565), Xenopus (BAA94750), 
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Fig. 6.4

TUNEL. The distribution of TUNEL positive cells during a normal early development in the pre­
primitive streak (a) and at stages 1-12 (b-q).

The differences in the number and the position of T+ve cells between individual embryos at 
stages 3- 4+; h: embryo shown in (g) after removal of the hypoblast; o: details: cephalic region, 
anterior somites and neural tube of the embryo shown in (n); p: the increased number of T+ve 
cells in the rhombomere 3 and 5 and olfactory region at stage 12 (dorsal view); q: ventral view 
at stage 13.
ap - area pellucida; ao - area opaca; ps - primitive streak; n - Hensen's node; nt - closing 
neural tube; olf - olfactory region; rh3, rh5 - rhombomere 3, 5 and aip - anterior intestinal 
portal.
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Fig. 6.5

Expression patterns of Sox3 (a-b) and Sox2 in dark purple (c) combined with TUNEL staining 
in brick-red at stages 4‘ (a), 5 (b) and 6 (c). 
ps - primitive streak; n - Hensen’s node.
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Fig. 6.6
Expression patterns of Dlx5 (a, d), Gata3 (b-c, e-f), Gata2 (g, f) and Msx1 (b-c, e-f) combined 

with TUNEL staining before (a-c, g-i) and anti-GFP antibody staining.

ps - primitive streak; n - Hensen's node; nf - elevated neural folds prior to the fusion to form the 

neural tube, bl - forming blood islands.
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Fig. 6.7

Normal expression of chick Cas3 during early development at stages 3 (a), 4' (b), 4(c), 5(d), 

6(e), 7(f), 8(g) and 9(h). Cas3 expression combined with TUNEL staining in dark brick-red at 
stags 4 (I, j) and 7(k) before (c, f) and after the anti-GFP antibody staining (i-k). 

ps - primitive streak; n - Hensen's node; nt - closing neural tube; s - somites.
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Fig. 6.8

Normal expression of chick Cas9 during early development at stages 3+ (a), 4(b), 4(c). 
Expression patterns of Cas3 in the induced secondary axis at stage 5 (d) and 6 (e); arrows 

indicate the similarities to the Cas3 expression seen during normal development. Induction of 

Cas3 expression in the area opaca by FGF8b secreting bead (indicated by arrow) after 5 hours; 

no induction by negative control (arrow head). TUNEL staining following graft of Hensen’s node 

in the area opaca indicated by arrows, seen after 8 hours (g) and 18 hours (h and i - the detail 

of embryo seen in h).
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Fig. 6.9

TUNEL staining following 1 hour's exposure to 10pM solution of DMSO (a, d), negative control 

for caspase inhibition Z-FA-FMK (b, e) and inh ib ito r of Caspase 3 Z-DEVD-FMK, following 5 

hours (a-c) and 8 hours (d-f) incubation
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Fig. 6.10
Expression patterns of Dad1 and PCD during early development.
Dad1 in dark purple before (a-d) and after TUNEL staining in brick-red (e-h).
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mtDadl - IRES - GFP

Effects of DAD1 electroporation on PCD.
The distribution of TUNEL positive cells (dark blue) following electroporation of a control, empty 
pCAp vector (a, d, g, j), of DAD1 (b, e, h, k) and of DAD1 mutant lacking the C-terminal 6 
amino acids (c, f, i, I) is shown after 6 hours (a-f) or 12 hours incubation (g-l). PCD patterns are 
shown before (a-c, g-i) and after staining (brown) with the anti-GFP antibody (d-f, j-l).
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Fig. 6.12

Effects of HCF electroporation on PCD.

The distribution of TUNEL positive cells (dark blue) following electroporation of a control, empty 

pCAp vector (a, d), of HcF (b, e, i, j) and of vector containing HcF with IRE (c, f, g, h) is shown 

before (a-c, g, i) and after (d-f, h, j) staining (brown) with the anti-GFP antibody; g and h are 

details of embryo shown in b and e panel. Arrow-heads indicate areas of increased PCD 

following electroporation of HcF with (g, h) or without IRE (I, j), while arrows point to not affected 

the regions.
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Fig. 6.13
Effects of Ubll electroporation on PCD.
The distribution of TUNEL positive cells (dark blue) following electroporation of an empty 
pCAB vector expressing GFP (a) or Ubll (b-c) with control empty pCAB - lacZ vector 
in the same embryo in order to allow quantification of experimental and control data after 6 (b) 
or 12 hours (a, c) following anti-GFP (brown) antibody staining and 
visualisation of Beta-galactosidase activity (turquoise)
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6.4. Discussion

The patterns of apoptosis described in this study confirm some of the data for TUNEL 

staining previously described in the chick (Hirata and Hall, 2000; Sanders et al., 1997), 

and especially those from the group of Sanders. This group also reports some 

apparent randomness in the staining patterns, including observations such as 

increased PCD in the tip of the streak and left-right asymmetric patterns in a small 

number of embryos (Sanders et al., 1997) (see Fig.6.4 d-e in this thesis), suggesting 

that these patterns are a rare but nevertheless reproducible feature at early stages of 

chick development. Significant discrepancies are found when our data were compared 

to the other study on early embryos (Hirata and Hall, 2000); for example, the increased 

PCD in the posterior marginal zone and Koller’s sickle (“embryonic shield”, as 

described by Hirata) was not observed in any of more than 10 embryos stained at this 

stage (see Fig.6.4 a). Likewise, Hirata described the notochord as a site of increased 

PCD at stages 8-14 (Hirata and Hall, 2000), which was seen in only a few cases (6 out 

of more than 60 analyzed).

In Xenopus, although some of the figures of the studies of (Hensey and Gautier, 

1998; Yeo and Gautier, 2003) look very similar to the results described in this thesis, 

the authors interpreted these as implying that the neuroectoderm is a region of elevated 

cell death, unlike the present study (and those of Sanders’s laboratory; see above), 

which suggest that the neural plate is an area of decreased or even almost absent PCD 

(Sanders et al., 1997). At later stages of Xenopus development, increased PCD is seen 

in stripes of primary neurones, in the developing sensory placodes and then later in 

sensory organs and in the spinal cord (Hensey and Gautier, 1998). However, the 

patterns of PCD in Xenopus show even greater variability than in chick; for example 

only 67% of Xenopus embryos at neural plate stages (stage 13) and 52% of embryos at 

stage 37 contained more than 5 TUNEL cells per embryo (Hensey and Gautier, 1998). 

The same authors suggested that Pax6 might be an important regulator of PCD, as its 

expression overlaps with the patterns of PCD in Xenopus (Hensey and Gautier, 1998). 

However, this hypothesis was not tested experimentally. Blocking apoptosis by 

overexpression of human Blc2 in Xenopus led to defects in neurogenesis; however, 

defects were also seen outside the neural plate, suggesting that a role of apoptosis is 

not exclusive to neural cells (Yeo and Gautier, 2004). It has been suggested (Hensey 

and Gautier, 1998; Merino et al., 1998) that one possible role for PCD in early neural 

plate development is to sharpen the boundaries between neural and non-neural 

territories. The present results, demonstrating progressively increasing numbers of 

dying cells primarily at the neural/non-neural border, support this suggestion.
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Several secreted factors have been implicated in regulation of cell death in a 

non-cell-autonomous manner. They include BMPs and FGFs (Macias et al., 1996; 

Merino et al., 1998; Merino et al., 1999; Montero et al., 2001; Yokouchi et al., 1996) for 

the limb bud, and especially BMP4 as an effector for the localisation of apoptosis to 

rhombomeres 3 and 5, which has been suggested as an important mechanism to 

ensure that these rhombomeres do not produce neural crest cells (Graham et al., 1994; 

Jeffs et al., 1992).

Published data on PCD at early stages of development in other animal species 

is very incomplete. In mouse, TUNEL positive cells are scarce and randomly distributed 

(Sanders et al., 1997). In zebrafish, the only data on early PCD concern earlier (Negron 

and Lockshin, 2004; Yabu et al., 2001b) or later stages of development (Cole and 

Ross, 2001); however, for those stages at which it has been studied, the results 

correspond closely to the observations presented here for the chick at equivalent 

stages (from 5 somites) (Cole and Ross, 2001). It is also important to take into account 

that in lower vertebrates, which possess a clear mid-blastula transition (MBT), embryos 

appear to be incapable of undergoing apoptosis prior to this transition. This has been 

established in zebrafish (Ikegami et al., 1999; Negron and Lockshin, 2004), Xenopus 

(Hensey and Gautier, 1997) and sea urchin (Mizoguchi et al., 2000). However since 

MBT occurs at the mid-blastula stage (equivalent perhaps to stage XIl-XIII in the chick), 

and since at these stages PCD is random as well as infrequent in the chick, this is not 

a particularly significant difference.

At gastrulation stages of the zebrafish, cells undergoing apoptosis have only 

very low levels of active caspase3 (Negron and Lockshin, 2004; Yabu et al., 2001a; 

Yabu et al., 2001b), despite Cas3 being present in the pool of maternal factors as well 

as being expressed during gastrulation and later in development (Yabu et al., 2001a). 

The patterns of Cas3 expression in zebrafish (Yabu et al., 2001a) are comparable to 

those seen in our study of early chick development, including the low levels of 

expression (Yabu et al., 2001a). Nether the less, the strong similarity of Cas3  

expression and of PCD distribution in zebrafish and chick strongly suggest that they 

are causally linked and that their functions have been conserved during vertebrate 

evolution.

It is unfortunately impossible to interpret the present results using Caspase 

antagonists because it was not possible to demonstrate that the antagonists actually 

blocked Caspase3 activity. Given more time, it would have been interesting to establish 

first whether caspase3 is active at gastrula and early neurula stages of normal chick 

development, for example using the fluorescent substrate Ac-DEVD-AFC for caspase3. 

Then, we could have determined the concentrations at which this activity can be
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blocked by the inhibitors Z-DEVD-FMK (specific for Caspase 3), Z-VAD(OMe)-FMK (for 

all Caspases) in comparison with the negative control Z-FA-FMK. Finally the effects of 

caspase activity inhibition on the incidence of TUNEL staining and on expression of 

neural markers would have been tested. It might also have been interesting to test 

whether overexpression of Cas3 is sufficient to cause PCD, as has been done in 

zebrafish (Yabu et al., 2001b).

The expression patterns of Cas9 and Cas3 overlap significantly; Cas9 is expressed 

more ubiquitously but at low levels. However there is a region of increased Cas9 

expression that surrounds the prospective neural plate and which seems to correspond 

to the main sites of cells undergoing PCD. Dad1 appears to be located within this 

domain, raising the interesting possibility that a Dad1 protects cells against apoptosis 

within the newly induced neural plate, while a narrow region expressing Cas3 and 

Cas9 but devoid of Dad1 ensures that PCD becomes restricted to the edge of the 

neural plate (prospective neural crest and placode territory).

It has been reported that the “initiator" Caspase9 is auto-activated by Apafl mediated 

oligomerisation (Srinivasula et al., 1998) before it activates the “executor" Caspase3 

(Hu et al., 1999; Saleh et al., 1999; Zou et al., 1999). In addition an amplification 

feedback loop between Caspase9 and Caspase3 has been suggested (Fujita et al., 

2001; Slee et al., 1999). It has been proposed that Caspase3 is not required for 

autoactivation of Caspase9 but is necessary for its full activation via this amplification 

loop. The results presented in this study are consistent with a Caspase9-Caspase3 

amplification loop around the time of neural induction The results of Caspase3 activity 

assay already suggested for inhibition experiments and data gathered from inhibition 

experiments themselves could provide further evidence for the existence of such co­

operation between these two caspases in the initiation and execution of PCD in early 

chick development.

The partial overlap between the expression domains of Dad1 and that of Cas3 

around the time of neural induction, leaving a border of Cas3 expression free of Dad1 

(see above) would be worth investigating in the context of a possible link between 

DAD1, the activation of Caspase3 (possible amplification loop) and apoptosis. An 

attempt to investigate this was made using morpholino antisense oligonucleotides 

against Dad1, electroporated into the early neural plate (where Dad1 is normally 

expressed). Unfortunately these experiments did not show the expected increase in 

PCD. However, it was not possible to confirm that the morpholino succeeded in
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lowering the levels of DAD1 protein because the available antibody against DAD1 does 

not recognise the chick protein (see Chapter 3). In addition it has been reported that 6 

hours are necessary for complete turnover of intracellular DAD1 protein when its 

synthesis is prevented (Makishima et al., 2000). This finding suggests that for complete 

downregulation of DAD1, it may be necessary to introduce the morpholino at an earlier 

stage (stage 3 or even earlier, rather than 3+/4' as done here).

Similarly, the lack of effect on PCD of experiments in which the truncated form 

of Dad1 was electroporated does not help to address the question of whether the last 4 

amino acids are crucial for the antiapoptotic action of DAD1, as previously suggested 

(Makishima et al., 2000). One reason may be that the mutated DAD1 is not truly 

dominant-negative, and/or that insufficient levels of the mutated version are expressed 

to interfere with endogenous, functional DAD1 protein in the electroporated cells. We 

also were not able to demonstrate clearly a decrease in the number of apoptotic cells 

following ectopic expression of Dad1. However in other studies, DAD1 was only able to 

rescue around 20% of cells undergoing apoptosis in C. elegans (Sugimoto et al., 

1995), where the number of cells undergoing PCD is much more predictable than in 

the chick. The great variability in the number of TUNEL-positive cells in the chick would 

make it very difficult to detect such weak effects. Therefore it cannot be excluded that 

ectopic Dad1 might have rescued a subset of cells from apoptosis.

Apart from the well-documented connection between Dad1 and programmed 

cell death, there are also some isolated reports suggesting involvement of polyubiquitin 

and ferritin in the regulation of apoptosis. For example, a link between PCD and 

increased expression of polyubiquitin has been made in the intersegmental muscles of 

the tobacco hawkmoth (Haas et al., 1995; Schwartz et al., 1990). However in 

vertebrates, although polybiquitin is upregulated during apoptosis in non-neural cell 

cultures (Cai et al., 2004; Delic et al., 1993; Kugawa and Aoki, 2004; Young et al., 

1998) this was not the case for embryonic sympathetic neurons undergoing PCD as a 

result of NGF deprivation (D'Mello and Galli, 1993). These findings suggest, not 

unexpectedly, that although polyubiquitin may have some role in PCD, it is not the only 

regulator of apoptosis. In the present experiments, our results did not reveal changes 

in apoptotic patterns after either overexpression or ectopic expression of Ubll, 

suggesting that upregulation of ubiquitin is not sufficient to induce PCD during early 

chick development.
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As for polyubuiquitin, HCF can have both pro- and anti-apoptotic functions. It 

has been reported to protect nuclear proteins in the chick cornea from the effects of 

oxidative stress (Cai et al., 1997). Cytoplasmic HCF is also involved in protection 

against PCD in hepatocytes and endothelial cells in response to some apoptotic 

inducers (Theil, 1987 662, Cairo, 1995# 663). Up-regulation of heavy chain ferritin 

during B-lymphocyte differentiation reduces free iron levels and also increases their 

resistance to oxidative damage (Cozzi et al., 2000 648; Epsztejn et al., 1999 660), 

whilst down-regulation increases free iron, is associated with increased apoptosis 

(Yang et al., 2002) and is also critical for cell transformation by c-MYC in certain types 

of tumour cells (Wu et al., 1999). In all of these studies, altered levels of HCF resulted 

in changed intracellular free iron concentrations, and HCF was proposed to be 

responsible for the pro- or anti-apoptotic action of ferritin. Our experiments revealed an 

increase in the incidence of PCD (especially in the prospective neuroectoderm) 

following overexpression of Hcf (either with or without the 5’ untranslated sequence 

containing the iron regulatory sequence, IRE). The results are especially apparent after 

prolonged incubation, consistent with a pro-apoptotic function of HCF in these cells. It 

is worth pointing out that the effects were not cell autonomous, as some cells that had 

apparently not been electroporated with the plasmid displayed TUNEL staining, 

suggesting that the link between HCF and apoptosis might be indirect, via secreted 

factors.
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CHAPTER 7:

General discussion and conclusions



As outlined in Chapter 1, studies mainly performed in the chick embryo have cast some 

doubt on the “default model” as a sufficient explanation for neural induction. The default 

model predicts that inhibition of BMP signalling in ectodermal cells should be sufficient 

to assign neural fates to these cells. However, ectopic expression of BMP antagonists, 

even in combination with other factors, turned out to be unable to induce competent 

epiblast to acquire expression of neural markers in a variety of experiments (Linker and 

Stern, 2004; Streit et al., 2000). Hensen’s node grafts followed by removal of the graft at 

various time points revealed that while 13 hours of contact with the graft are required for 

stable induction of a neural plate, some genes such as Sox3 are induced after 3-5 

hours, yet this induction is transient if the node is removed (Albazerchi and Stern, 2006; 

Streit et al., 2000). If epiblast is exposed to a node for 5 hours and the node then 

removed and replaced by a graft of cells secreting a BMP antagonist, then the latter is 

able to stabilise the otherwise transient expression of Sox3 (Albazerchi and Stern, 

2006; Streit et al., 2000), although even this combination is insufficient to induce later 

markers like Sox2 or the formation of a morphological neural plate. These findings 

suggested that 5 hours of exposure to signals from the organiser are required before 

epiblast cells become sensitive to BMP signalling or its inhibition. To begin to identify 

these upstream signals, it was essential first to establish the molecular differences in 

cells that have been exposed to an organiser for 5 hours (which should now be 

sensitive to BMP antagonists) from those that have not. To this end, a differential 

screen was conducted between one small group of cells that had been in contact with a 

grafted node for exactly 5 hours and another, otherwise identical group of cells, which 

had not been adjacent to a grafted node (Sheng et al., 2003; Streit et al., 2000). 

Differential screening between the cDNA libraries made from these two cell populations 

uncovered 15 genes with differential expression. Of these, most encoded novel 

predicted proteins, including ERNI (Streit et al., 2000) and Churchill (Sheng et al., 

2003), both of which revealed important and previously unappreciated aspects of the 

early stages of neural induction.

The early onset of expression of ERNI both in normal embryos and after a node 

graft, as well as correspondence between its expression and that of FGF8, suggested 

that FGF8 might represent at least one upstream factor required before cells become 

sensitive to BMP inhibition. Indeed, FGF8 is sufficient to induce both ERNI and Sox3, 

and it does so in a transient manner (Albazerchi and Stern, 2006; Streit et al., 2000). 

Moreover, inhibition of FGF signalling abolishes the induction of both of these genes as 

well as later steps of neural plate development, showing that FGF signalling is required 

for neural induction. Last, exposure of epiblast to FGF8 followed by a graft of Chordin- 

secreting cells is able to mimic the effects of exposure to a node for 5 hours followed by
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Chordin: Sox3 expression is induced and maintained (Albazerchi and Stern, 2006; Streit 

et al., 2000). As yet we know nothing about the possible roles of ERNI in neural 

induction, except that it is also expressed in chick embryonic stem cells (Acloque et al., 

2001).

Churchill turned out to be just as informative on the early steps of neural 

induction. It is normally expressed in the prospective neural plate starting at stage 4/4+ 

(just before the onset of Sox2 expression) and is also induced by a node graft and by 

FGF8, but more slowly than ERNI and Sox3: 4-5 hours’ exposure to either stimulus are 

required to induce Churchill. Paradoxically, although Churchill expression is induced by 

FGF8, experiments in both chick and Xenopus  revealed that its activity blocks 

“immediate-early” effects of FGF signalling in mesoderm induction, such as expression 

of the T-box genes Brachyury and Tbx6L (Sheng et al., 2003). The timing of this activity 

and the onset of expression of Churchill correlate very well with the time at which 

epiblast cells adjacent to the anterior end of the primitive streak cease to ingress 

through the streak to form the deep layers and instead remain on the outside to 

contribute to the neural plate. It was therefore proposed that an important role of 

Churchill is to ensure that some cells remain on the surface of the embryo, available to 

generate a neural plate. Importantly, this study revealed that neural induction involves 

not just a decision between neural and epidermal fates, but also between neural and 

mesendodermal fates (Sheng et al., 2003). Last, it was shown that Churchill acts by 

inducing the target Sip1 (Smad-interacting Protein 1), originally isolated from a 2-hybrid 

screen for binding partners of the BMP effector Smadl, and which had been shown to 

inhibit Brachyury in Xenopus (Postigo et al., 2003). Moreover, Sip1 only binds to Smadl 

when the latter is phosphorylated (Postigo et al., 2003), suggesting that Sip1 could act 

as a sensor for the BMP signalling status of the cell. This provides an attractive 

explanation for the original observation that epiblast cells become sensitive to BMP 

signalling after 5 hours’ exposure to FGF or to a grafted node (Sheng et al., 2003).

Of the remaining genes isolated from the screen, only 3 turned out to encode 

known products: Heavy Chain Ferritin (Hcf), Polyubiquitin (Ubll) and Defender against 

Apoptotic cell Death (Dad1). Since all three of these genes had been implicated as 

either pro- or anti-apoptotic factors in other contexts, this raised the interesting 

possibility that the regulation of programmed cell death could play a role in the early 

stages of neural induction. This study was designed to answer the questions of whether 

apoptosis is connected with these stages of neural induction in the chick, as well as to 

study the possible involvement of these three genes in both processes.

The original design of the screen aimed to identify genes induced (or repressed) 

by a grafted node within 5 hours’ exposure to the graft. In the case of induced genes, if
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these play a role in the normal process of neural plate development, then they should 

normally be expressed in the prospective neural plate at some early stage in 

development corresponding to when cells are receiving the signals required upstream 

of BMP inhibition. Therefore an important criterion for the significance of any gene 

found to be upregulated by a node graft within 5 hours is that it should be expressed in 

the prospective neural plate of the early embryo.

In this study we demonstrate that Dad1 and Ubll are indeed induced within 5 

hours in response to a node graft: Dad1 and Ubll are induced after 3-4 hours. The exact 

timing of hcf induction could not be determined, as the normal expression patterns 

obscured the results. Importantly, all three are expressed in the neural plate around the 

time of neural induction (stages 3-5). However, misexpression and preliminary loss-of- 

function experiments of different types were unable to demonstrate either an essential 

role of any of these three genes in the process of neural induction, or sufficiency of any 

of them to cause induction of other early neural markers such as Sox3, Sox2 or other 

genes identified from the screen.

Programmed cell death (PCD), has been considered an important and 

necessary part of normal organism development (Jacobson et al., 1997). A number of 

mechanisms implicated in the regulation of PCD have been identified and some 

processes taking place during PCD are understood in great detail. These data came 

from whole spectrum of animal models (Riedl and Shi, 2004; Vaux, 1993). However, the 

majority of these published analyses cover later stages of embryogenesis.

Here we conducted a detailed study of apoptosis at very early stages of chick 

development and the results are correlated with neural induction and the early stages 

of neural plate development. An “arc" shape region where apoptotic cells become 

concentrated was discovered to overlap, or even coincide with the prospective border 

between neural and epidermal territories. Although PCD is not restricted to this 

domain, the incidence of apoptotic cells is especially low within the neural plate.

Using double in situ hybridisation we reveal an interesting correspondence 

between the area of increased PCD with a region where 3 genes already implicated in 

the execution of PCD show complementary expression: Cas3, Cas9 and Dad1. The 

former two are involved in the execution of cell death while the latter has anti-apoptotic 

functions. Interestingly, it appears that Dad1 is expressed within the neural plate but in 

a slightly smaller domain than the Caspases, leaving a narrow border where the latter 

are expressed but the anti-apoptotic factor is absent. This appears to correspond to the 

position of increased cell death at the border of the neural plate. Our data are also 

consistent with previous proposals of a feedback amplification loop between Caspase3 

and Caspase9 (Fujita et al., 2001; Slee et al., 1999), and Dad1 could be involved in the
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regulation of this process. However assays of Caspase3 activity will be required to test 

this directly as well as successful downreguation of Dad1. Alternatively overexpression 

of Cas3 and/or Cas9 could be conducted in the area presumed to be protected by 

Dad1 and outside of its domain. It should also be possible to determine whether the N- 

linked glycosylating activity of Dad1 is required for its anti-apoptotic functions using a 

Dad1 construct lacking the domain required for glycosylation, as has been done in 

other systems (tsBN7 mutation in BHK21 hamster cells Makishima et al., 2000).

The expression pattern of Caspase3 in the early neural plate is consistent with 

the idea that it may play roles other than as an executor of apoptosis during early 

development of the nervous system. Interestingly, our results raise the possibility that 

Caspase3 (perhaps also Caspase9) are themselves “early response genes to neural 

induction”: the former is induced by FGF8b and most probably also by node within 5 

hours, along with Dad1 and Ubll.

In this study we demonstrate that overexpression of hcf increases the incidence 

of PCD, especially in the neuroectoderm, while it has almost no effect in other regions. 

Based on published reports (Cozzi et al., 2000; Epsztejn et al., 1999; Wu et al., 1999; 

Yang et al., 2002) that hcf can alter the levels of intracellular free iron, our data suggest 

that iron imbalance (most likely depletion) can be detrimental for neuroectodermal 

cells. We also observed that this process is not cell autonomous and probably involves 

a secreted factor. Taken together, our findings suggest that the regulation of apoptosis 

may indeed be important for the early steps of neural induction in the chick.
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