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Summary

The CDKN2a  locus encodes two important tumour suppressors, p l6 1NK4a and 

ARF. The two genes share a common exon which is translated in different 

reading frames. p l6 ,NK4a binds to CD K4 and CDK6, preventing them from 

forming active complexes with D cyclins. As a result, pRb does not undergo 

the phosphorylation necessary for the transition from the G1 to S phase of the 

cell cycle. A RF inhibits the ubiquitination of p53 by MDM2, thereby causing 

the accumulation of p53.

There is a growing awareness that the CDKN2a  locus plays a central role in 

the cellular defences against transformation, and in the cellular response to 

stress. For example, p l 6 INK4a is involved in senescence, a permanent cell cycle 

arrest triggered in primary human fibroblasts in response to many stresses, 

including the overexpression of oncogenes. However, little is known about 

the regulation of p l 6 INK4a under these circumstances, and work in this thesis 

investigates this issue using overexpression of Myc as a model.

The thesis also describes the characterisation of human diploid fibroblasts 

(Milan cells) from a patient homozygous for the R24P mutation of p l6 INK4a. 

As this mutation is in exon l a ,  A RF is unaffected. The mutant p l6 INK4a cannot 

bind to CDK4, but retains some capacity to bind to CDK6. Milan cells have 

also been used in combination with shRNA targeting A RF to investigate the 

relative roles of p l6 INK4a and A RF in the prevention of transformation. A 

panel of Milan cells were produced expressing telomerase, with combinations

2



of Myc, Ras and shRNA targeting ARF, and the ability of the cells to grow in 

soft agar was assessed. A similar panel of Milan expressing p53 shRNA was 

also built up. These cells were used to investigate whether ablation of A RF 

can substitute for the loss of p53 function often associated with 

transformation, and to help identify which aspects of the p53 pathway are 

activated in the defence against transformation.
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Chapter 1

Introduction

1.1 General

Cell proliferation is a tightly regulated process, and a cell integrates many 

signals both internal and external before committing to divide. Cancer arises 

when this process becomes deregulated and a clone of cells becomes capable 

of proliferation in inappropriate circumstances. The evolution of a cancer is 

often viewed as a Darwinian process, with cells sustaining random mutations, 

followed by selection for those that are advantageous to the cell. For cancer to 

occur it has been argued that a cell needs to accumulate between four and 

seven mutations (Hanahan and Weinberg 2000). These mutations can either 

inactivate tumour suppressor genes and overcome barriers to proliferation, or 

activate proto-oncogenes allowing the cell to gain a beneficial characteristic. 

Mutations in tumour suppressor genes are usually recessive, and in most cases 

both copies of the gene need to be inactivated before the gained characteristic 

becomes apparent. However, with some tumour suppressor genes, a mutation 

in one copy of the gene results in haploinsufficiency with the remaining wild- 

type allele producing insufficient gene product to maintain a normal 

phenotype. In contrast, mutation which activate proto-oncogenes are always 

dominant and have effects on the cell irrespective of the presence of a normal 

allele.
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It has been suggested that cancer-promoting mutations allow a cell to gain six 

characteristics; a self sufficiency in growth signals, evasion of apoptosis, 

insensitivity to anti-growth signals, sustained angiogenesis, limitless 

replicative potential, and tissue invasion and metastasis (Hanahan and 

Weinberg 2000; Hahn and Weinberg 2002). Other mutations can be regarded 

as permissive rather than causative and give rise to cancer by promoting the 

accumulation of advantageous mutations, for example through genomic 

instability. Formation of a tumour may also be influenced not only by 

changes to the clone of cells forming the tumour, but also to the surrounding 

cells which can undergo changes to support the tumour formation for example 

by neo-vascularisation of the tumour.

While a fascinating subject to study in its own right, it is necessary to 

understand the process of cancer evolution in order to design appropriate and 

targeted treatments. Many cancer cells are aneuploid, and have sustained 

multiple mutations, some of which are necessary for the formation of the 

cancer, while others may have arisen as a consequence of tumorigenic events. 

This makes it very difficult to deduce from a cancer cell which mutations are 

incidental and which are essential. It is therefore attractive to approach the 

problem from the opposite direction and to investigate the barriers to 

tumorigenesis present in normal cells and to determine what combination of 

genetic alterations allows a normal cell to become tumorigenic. Interest in this 

approach has been renewed as new techniques and resources have become 

available making it possible to sustain the proliferation of normal cells. This 

thesis describes an approach using fibroblasts from rare individuals whose
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cells are genetically predisposed to form cancers via the loss of a tumour 

suppressor gene.

1.2 CDKN2a  locus

The CD KN2a , or INK4a/ARF  locus, is located on chromosome 9p21 in 

humans and was first discovered by linkage studies searching for a melanoma 

susceptibility gene known to be located in this region (Kamb et al. 1994; 

Nobori et al. 1994; Okamoto et al. 1994; Wainwright 1994; Ranade et al. 

1995). As well as being involved in familial melanoma, the locus was 

subsequently found to be frequently mutated in spontaneous tumours 

(discussed in more detail below). The product of the locus was initially found 

to be a 16 kDa protein which had been previously described as a inhibitor of 

CD K 4 (INK4) (Serrano et al. 1993; Xiong et al. 1993), and the protein was 

named p l 6 INK4a. The locus was officially designated CDKN2a, and p l 6 INK4a 

was found to be encoded by three exons, l a ,  2 and 3 (1.1). Unusually, the 

locus was also found to contain another transcript with a separate promoter 

and first exon, exon ip , which was also encoded by exon 2 using a different 

reading frame (Figure l . l)(S tone et al. 1995). While initially thought to be 

another variant of p l 6 INK4a, this transcript was later found to encode a 

functional protein (Quelle et al. 1995b) which bears no similarity to p l6 INK4a at 

the amino acid level. This unusual protein was named ARF, for its use of the 

alternative reading frame. Within 30 kb of the INK4a  gene is the INK4b  gene 

encoding p 15INK4b, another member of the same gene family as INK4a, which 

was first observed during the positional cloning of INK4a  (Kamb et al.
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P1 6INK4jI p 1 5 INK4b

CH
Exon 1 Exon 2 Exon 1 $ Exon 1a  Exon 2 Exon 3

ARF

Figure 1.1 S truc tu re  of the CDKN2a  and CDKN2b  loci
The CDKN2a  locus encodes the tumour suppressors p l6 INK4a and ARF. 
p l6 ,NK4a is encoded by exons l a ,  2 and 3, while ARF is encoded by exons 
ip , and exon 2. The genes have separate promoters, while the common 
second exon is translated in different reading frames. The CDKN2b  locus 
lies upstream of exon lp  and comprises two exons, exon 1 and exon 2, 
which encode p l5 INK4b, a member of the same protein family as p l6 INK4a.



1994). INK4b  is encoded by two exons (Figure 1.1), and though to have 

arisen by gene duplication, accounting for the presence of two members of the 

gene family within the same chromosomal region.

The structure of the locus is conserved between mouse and humans, but 

interestingly it was found that while chickens express p l 5 INK4b and ARF, they 

lack an INK4a  gene (Kim et al. 2003). It was also observed that differences in 

the splicing of the chicken gene result in the production of an 60 amino acid 

A RF protein that is encoded solely by exon ip  (Kim et al. 2003). Indeed, exon 

ip  appears to be sufficient for many functions of A RF in both mouse and 

humans (Quelle et al. 1997; Llanos et al. 2001), but the gene sequence is not 

well conserved between species with mouse and human ARF sharing only 

50% identity at the amino acid level (Stott et al. 1998). The origin of the ARF 

protein remains obscure as it bears little resemblance to any known proteins, 

and any possible advantages of the unusual structure of the CDKN2a  locus are 

not immediately apparent.

1.3 Functions of ARF

ARF is a highly basic protein comprising 169 amino acids in mice, (19kDa),

and 132 amino acids (14kDa) in humans. ARF is reputed to bind to a variety

of cellular proteins including the transcription factors E2F-1, D PI, and Myc

(Eymin et al. 2001; Martelli et al. 2001; Datta et al. 2002; Mason et al. 2002;

Qi et al. 2004). A RF has also been reported to bind to a wide range of other

proteins such as B23, Topoisomerase I, WRN, Ubc9, H IF l -a ,  TBP-1, Bcl-6,

and P ex l9p  (in mice), and affect a number of cellular processes such as

ribosome biogenesis, apoptosis, the response to irradiation and the activity of
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the ATR and ATM  pathways (Fatyol and Szalay 2001; Karayan et al. 2001; 

W adhwa et al. 2002; Itahana et al. 2003a; Sugimoto et al. 2003; Suzuki et al. 

2003; Ayrault et al. 2004; Li et al. 2004b; Pollice et al. 2004; Woods et al. 

2004; Andrique et al. 2005; Korgaonkar et al. 2005; Rizos et al. 2005; Rocha 

et al. 2005; Suzuki et al. 2005).

However, the most functionally relevant activity of A RF is to bind to M D M 21 

causing activation of the p53 pathway. In the absence of ARF, MDM 2 binds 

to p53 and acts as an E3 ubiquitin ligase marking p53 for proteasomal 

degradation. MDM2 also causes relocation of p53 from the nucleoplasm to 

the cytosol where it is degraded. A RF stabilises p53 by binding to and 

inhibiting M DM2 (Figure 1.2) (Stott et al. 1998; Sharpless and DePinho 1999; 

Sherr and Weber 2000; Brooks and Gu 2004) resulting in an accumulation of 

p53 and the activation of downstream effectors of p53 such as p21CIP1. Several 

feedback loops govern this pathway, with p53 activating expression of M DM 2 

and inhibiting the expression of ARF.

However, mice deficient in both p53 and A RF exhibit a different spectrum of 

tumours than either of the single knockouts alone, and p53 deficient MEFs 

still arrest in response to overexpressed ARF (Carnero et al. 2000; Weber et al. 

2000a). It has been suggested that this provides evidence that ARF can

1 MDM2 or Murine double minute protein, is often referred to as HDM2 in 

human cells. However for ease of understanding, during this text it will be 

referred to as MDM 2 regardless of the cell type of origin.
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Figure 1.2 p53-M DM 2 loop
MDM2 ubiquitinates p53 marking it for degradation. This ubquitination 
is inhibited by the binding of ARF to MDM2, causing an accumulation 
of p53 in response to increased levels of ARF. In turn, p53 negatively 
regulates the expression of ARF, and positively regulates the expression 
of MDM2

MDM2
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contains p l5 INK4b, p l8 INK4c, and p l9 1NK4d(Ruas and Peters 1998). All m em bers 

of the fam ily share similar functional properties and are structurally similar, 

containing ankyrin-like repeats. p l6 1NK4a contains 4  ankyrin-like repeats 

consisting o f a (3-strand, extended strand, helix-tum -helix, extended strand, p- 

strand elem ent (Ruas and Peters 1998). This structure is hypothesised to act 

as a scaffold for protein-protein interactions. Until recently, the only known 

function o f p l6 ,NK4a was to bind to CD K4 and CDK6 (Serrano et al. 1993; 

Xiong et al. 1993; Parry et al. 1995; Serrano et al. 1995), the catalytic partners 

of the D-type cyclins, D l, D2 and D3. A ccording to current models, the D- 

type cyclins are thought to act as growth factor sensors (M assague 2004), and 

are required for the transition of cells from  quiescence (G0) into the S-phase of 

the cell cycle (Figure 1.3). The transition from G0, through G lt to S phase 

involves the phosphorylation o f the retinoblastom a protein (pRb), and its 

fam ily members, p l0 7  and p l3 0 , and it is during this transition that the cell 

becomes com m itted to divide.

At the beginning o f the G, phase of the cell cycle, pRb is present in a 

hypophosphorylated state. In this state, the protein is present at the prom oters 

of E2F responsive genes bound to E2F proteins. This inactivates E2Fs 

converting them into repressors, and HDACs (histone deacetylases) are 

recruited to these loci rem odelling the chromatin into a repressive 

conform ation (Sherr and M cCorm ick 2002; M assague 2004). Phosphorylation 

of the pRb fam ily of proteins by cyclin/CDK  is undertaken by the cyclin D 

and cyclin E dependent kinases. This phosphorylation relieves the repression 

by causing pRb to release the E2F proteins, allowing the E2F-dependent
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Increased p16

C yclin  E

C yclin  E
CDK 4/6

C yclin  E 

CD
CDK 4/6

CDK 4/6
CDK 4/6

CDK 4/6
C yclin  E CDK 4/6CDK 4/6

C yclin  E

Figure 1.4 D iagram m atic rep resen ta tion  of subunit rearran g em en t 
triggered  a t senescence
When levels of p l6 ,NK4a increase, the binding of p l6 INK4a to CDK4 and 
CDK6 displaces p21CIP1 which is then free to bind to Cyclin E/CDK2 
complexes inhibiting their function. (Active Cyclin-CDK complexes are 
denoted by the presence o f a yellow star.)



transcription which is required for cell cycle progression. 

p l6 INK4a impacts on these events in two ways. p l6 INK4a binds to CD K4 and 

CDK6 preventing their binding to D-type cyclins to form  active kinase 

complexes. This inhibition occurs because binding of p l6 INK4a to the cyclin- 

dependent kinase causes an allosteric change, altering its binding site with 

Cyclin D and reducing its affinity for A TP (Pei and Xiong 2005). However, 

as most cyclin D-CDK com plexes contain m em bers of the p21cipi and p27KIP1 

fam ily of CDK inhibitors, binding of p l6 1NK4a to Cyclin D/CDK com plexes 

displaces p21CIP1 and p27K1P1. In turn, these CDK inhibitors are redistributed to 

CDK2/Cyclin E com plexes and CDK2/Cyclin A com plexes respectively, 

causing inhibition o f these com plexes (Figure 1.4) (Ortega et al. 2002). 

H owever, this is a simplisitic view of the regulation o f the Gj to S phase 

transition, and recent observations suggest that the situation is more complex. 

Recent reports in the literature describe the generation o f CD K4 and CD K6 

double-knockout mice, and D-type cyclin triple knockout mice (Kozar et al. 

2004; M alum bres et al. 2004). The mice were not viable, but died after many 

organs had already undergone normal developm ent. M EFs from  these mice 

were able to proliferate, albeit at a slower rate (K ozar et al. 2004; M alum bres 

et al. 2004), suggesting that cell division can occur in the absence of Cyclin 

D/CDK com plexes. In turn, CDK2 has also been shown to be non-essential 

for cell proliferation (Berthet et al. 2003). W hile some com pensation by the 

remaining Cyclin/CDK com plexes has been observed in cells from  these 

knockout mice, some evidence suggests that there may be other m echanism s 

that can control the G, to S phase progression. However, the consensus model 

still form s a relevant fram ew ork for considering new advances.
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Figure 1.5 Sum m ary  of the pR b and  p53 pathw ays
The pRb and p53 pathways are linked by the activation of ARF 
transcription by E2F-1, and the inhibition of CDK4 and CDK6 by p21clpl. 
(Inhibitory interactions are shown in red, and interactions which promote 
the function of a protein are shown in green.)



Thus, elevated expression of p l6 INK4a causes cells to arrest in the G, phase of 

the cell cycle, an arrest which is dependent on the presence of functional pRb. 

Overexpression of A RF also causes a cell cycle arrest by stabilising p53 

resulting in an increase in its dow nstream  effector p21CIP1. A RF also links the 

p53 and Rb signalling pathways as inactivation of pRb by phosphorylation 

causes the release of E2F, which in turn leads to increased transcription of 

ARF and subsequent activation of the p53 pathway (James and Peters 2000) 

(Figure 1.5).

1.5 Senescence and stasis

A lthough p l6 1NK4a and A RF both impact on cell cycle regulation, they are not 

essential com ponents of the cell cycle. Indeed, under normal circum stances 

levels of both proteins remain low in primary cells and do not fluctuate during 

the cell cycle. In fact, studies on the function of these genes in primary cells 

led to the realisation that the CDKN2a  locus was im plicated in senescence and 

the cellular defences against stress (Ruas and Peters 1998; Drayton and Peters 

2002).

Tum our cell lines containing genetic aberrations are immortal and their 

growth in tissue culture can be continued indefinitely. In the 1960s it became 

apparent that in contrast, cultures of primary human diploid fibroblasts 

(HDFs) which were genetically ‘norm al’ had a finite lifespan (Hayflick and 

Moorhead 1961; Hayflick 1965). Depending on the individual and tissue from  

which the fibroblasts were derived, cultures of HDFs typically undergo 

between 60 and 80 divisions before undergoing an irreversible arrest in the G t 

phase of the cell cycle (M athon and Lloyd 2001). This arrest is named
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replicative senescence or M ortality Stage 1 (M l)  (Figure 1.6). Cells which 

have undergone senescence are metabolically stable and continue to be viable. 

The arrest is accompanied by phenotypic changes in the cell, which becom es 

larger taking on a flattened appearance. The arrest is also accompanied by an 

increase in endogenous P-galactosidase activity (which is com m only used as a 

m arker of senescence), increased production of extracellular matrix, a more 

prom inent nucleolus and an altered gene expression profile (Ruas and Peters 

1998; M athon and Lloyd 2001). Senescence in HDFs can also be 

accom panied by the form ation of senescence associated heterochromatin foci 

(SA H F) suggesting widespread changes in gene expression that are controlled 

at the level o f chrom atin structure (Narita et al. 2003). The formation of 

SA H F is dependent on pRb and may silence E2F responsive promoters.

Strains of fibroblasts seem to retain a ‘m em ory’ of the number of cell 

divisions they have undergone, as they always undergo senescence after a 

predeterm ined num ber of cell divisions even if the replication o f the cells has 

been tem porarily halted. This suggests that fibroblasts must have an intrinsic 

counting m echanism  which triggers senescence, and the most likely candidate 

for this internal clock is the telomeres. The telom eres com prise units of 

TTAGG G  repeats located on the ends of all chrom osom es, which are bound 

by specialised binding proteins (Stewart and W einberg 2002). The telomere 

consists of several kilobases of double stranded DNA with a 3 ’ overhang 

com prising several hundred bases of single-stranded (ss) DNA (Ben-Porath 

and W einberg 2004). This single-stranded DNA is protected from  the cellular 

machinery which recognises ssDNA as dam aged DNA, by the form ation of a 

protective T-loop structure where the ssDNA invades the double-stranded
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DNA 5 ’ of the stretch of single-stranded DNA (Ben-Porath and W einberg 

2004). This structure is stabilised by the binding of telom ere binding proteins 

such as TRF1, TRF2 and PO T l.

During DNA replication, the lagging strand is replicated by the use of Okazaki 

fragm ents to prime the replication of this strand. However, this strategy cannot 

com pletely replicate the telom eres, and due to this end replication problem, 

successive cell divisions lead to erosion of the telom eres (Stewart and 

W einberg 2002). It is thought that senescence is not triggered by telom eres 

reaching a critically short length, rather it is the ‘uncapping’ of the telom ere or 

the disruption of the structure at the end of the telomere which is responsible 

for triggering the arrest (K arlseder et al. 2002; Ben-Porath and W einberg 

2004). This has been confirm ed using oligonucleotides hom ologous to the 

telom ere 3 ’ overhang to mimic disruption of the telomere structure which 

results in a senescence-like arrest (Li et al. 2003; Li et al. 2004a). The 

structure o f the T loop can also be disturbed using a dom inant negative form  

of the telom ere binding protein TRF2, which triggers senescence in HDFs (de 

Lange 2002). A fter disruption of the T loop structure the unprotected 

telom ere end is seen as damaged DNA, and this triggers a DNA damage 

checkpoint response.

As cells reach senescence they accum ulate DNA dam age foci at the 

telomeres. These foci are sim ilar to those seen at the site of DNA double 

strand breaks and contain several markers of DNA dam age including 

phosphorylated histone H2AX, 53BP1, M DC1, NBS1, R adl7 , M re ll and 

ATM  (d'Adda di Fagagna et al. 2003; Takai et al. 2003). Subsequent 

signalling occurs through the A TM /Chk2 DNA dam age pathway activating
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the p53 and p21CIPI pathway, although signalling can occur through the ATR 

pathway at a low er efficiency if ATM  is disabled (d'Adda di Fagagna et al. 

2003; Takai et al. 2003; Gire et al. 2004; Herbig et al. 2004).

In addition to the accumulation of p21clpl observed at senescence there is also 

an increase in p l6 ,NK4a at senescence (A lcorta et al. 1996; Hara et al. 1996). 

W hilst the involvem ent of p21CIPl in the arrest triggered by a signal from the 

telom eres is universally agreed upon, the involvem ent of p l6 1NK4a is more 

controversial. Several reports in the literature dem onstrate that p l6 ,NK4a 

expression is upregulated via an unidentified pathway in response to a signal 

from  the telom eres at senescence (de Lange 2002; Sm ogorzewska and de 

Lange 2002; Jacobs and de Lange 2004), but other labs present conflicting 

evidence (H erbig et al. 2004). The differences between different reports may 

be due to the kinetics o f the response, with p l6 INK4a being activated 

significantly after p21CIPI(Alcorta et al. 1996), or may be due to the difference 

in oxygen levels in which the cells were cultured in different studies, with 

pl£iNK4a piay jng a more prom inent role under conditions in which the cells are 

oxidatively stressed.

The arrest o f HDFs at replicative senescence can be overcom e, for example by 

expression o f the viral oncoprotein SV40 Large T antigen, or a com bination of 

the Human Papillom a virus oncoproteins E6 and E7. Both strategies disable 

the pRb and p53 pathways, and the culture continues to divide before entering 

a second stage termed crisis or M ortality stage 2, M2 (Figure 1.6). Here cells 

attem pt to replicate but unsuccessful cell division results in cell death (W right 

et al. 1989; Bond et al. 1999; Wei and Sedivy 1999). This is due to continued 

telom ere erosion resulting in the form ation o f chrom osom al fusions and the
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breakage of chromosom es, which eventually trigger apoptosis. The role of the 

telom eres in senescence is confirm ed by the ability of exogenous hTERT, the 

catalytic subunit of the telomerase gene, to allow fibroblasts to bypass the 

senescence arrest (Bodnar et al. 1998; Vaziri and Benchimol 1998).

However, not all cell types can be im m ortalised by expression of hTERT. 

Human epithelial cells such as mammary or prostate epithelial cells undergo 

an arrest before reaching senescence, termed MO. Cells escaping this arrest 

are found to have silenced p l6 1NK4a expression by methylation (Brenner et al. 

1998; Foster et al. 1998; Huschtscha et al. 1998; Jarrad et al. 1999). A fter 

overcom ing this arrest, cultures continue growing until they undergo a 

telom ere-based arrest which has been proposed to be M2 (Romanov et al.

2001) (Figure 1.6). Human epithelial cells can be immortalised by the 

expression of hTERT providing they have bypassed MO. Unlike human cells, 

mouse somatic cells express telom erase and have relatively long telomeres 

(Sherr and DePinho 2000). However, mouse em bryonic fibroblasts undergo 

only a few population doublings in culture before undergoing an arrest (Figure

1.6), suggesting that telomere attrition is not responsible for this arrest. The 

spontaneous outgrowth of immortal clones happens with a much higher 

frequency than in cultures of human cells, and usually results from  the loss of 

A RF or p53.

These observations suggest that cells grown using conventional tissue culture 

techniques are being subjected to stress causing activation of cell cycle 

inhibitors such as p l6 INK4a and ARF. If this was true, the arrest could be 

avoided by reducing the stress to which the cells are subjected. The MO arrest 

o f human epithelial cells can be bypassed by growing cells on feeder layers
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Figure 1.6 Curves showing the behaviour of HDFs, MEFS, and 
HMECS while undergoing growth in tissue culture
Human diploid fibroblasts (H DFs) arrest a t M l, but upon ablation of 
the p53 and pRb pathways can continue grow ing until they reach crisis. 
M ouse em bryonic fibroblasts (M EFs) undergo a stress induced arrest 
from  which immortal clones arise w ith a high frequency, w hile human 
mammary epithelial cells (H M EC s) undergo a stress induced arrest 
called MO which can be overcom e by m ethylation o f p l6 INK4a, or 
growth in more favourable culture conditions. This allows H M ECs to 
continue growing until they undergo a telom ere based arrest.
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(H erbert et al. 2002). Senescence in M EFs is due to oxygen sensitivity as they 

do not arrest when grown in physiological oxygen conditions (Parrinello et al.

2003), and can even be im m ortalised by increased expression of the glycolytic 

enzym e PGM which reduces the oxidative stress suffered by the cells (Kondoh 

et al. 2005). The behaviour of these different cell types illustrates that cells 

from  different origins are sensitive to differing sources of stress.

The behaviour of different cell types in culture shows that senescence can 

occur not only in response to a critically short telomere, but also in response to 

other triggers. It is becom ing increasingly clear that the induction of 

senescence is a program m e which can be put into action in response to a 

variety o f cellular stresses (Figure 1.7). W hen cells suffer from stress or 

dam age, they can decide to undergo a transient cell cycle arrest, apoptosis or 

stasis (a senescence-like arrest triggered by stress) (Ben-Porath and W einberg

2004). Senescence can be triggered in young cells by a variety of acute 

stresses such as culture shock, DNA damage, histone deacetylase inhibitors, 

and by oxidative dam age such as treatm ent with H20 2 or hyperoxia (Figure

1.7) (Campisi 2001). More relevant for a role in tum our suppression is the 

observation that senescence can also be triggered by aberrant oncogenic 

signalling, for exam ple in response to activated Ras (Serrano et al. 1997; 

Drayton et al. 2003). Several stimuli which trigger senescence such as 

hydrogen peroxide treatm ent or oncogenic Ras can cause the production of 

reactive oxygen species (ROS) (Lee et al. 1999) and it has been hypothesised 

that these ROS cause DNA dam age, particularly in the telom eres which are 

especially sensitive due to their high guanine content (W right and Shay 2002).
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Indeed long telom eres increase the sensitivity of cells to hydrogen peroxide 

treatm ent (Rubio et al. 2004).

It is becom ing clear that exposure to more than one form  of stress, or repeated 

exposure to stress, is necessary to trigger senescence. Some studies have 

shown that repeated onslaughts, such as two subsequent treatments with 

hydrogen peroxide, may be needed to activate the senescence programm e 

(Chen et al. 2001; Chen et al. 2004a). During replicative senescence, DNA 

dam age signal may need to be coupled to m itogenic stim ulation with the cell 

being prim ed to divide before the senescence program m e can be triggered 

(Satyanarayana et al. 2004). A recent report has suggested that freshly 

explanted human fibroblasts do not arrest in response to oncogenic Ras, and 

that previous culture or oxidative stress may be needed to sensitise fibroblasts 

before prem ature senescence can occur in response to Ras (Benanti and 

Galloway 2004). This suggests that cellular stress may need to reach a 

threshold level before a programme of senescence is implemented. It has been 

shown that within a culture cells undergo senescence at different times, 

probably in response to different stimuli, and this would reflect the differing 

levels of stress that individual cells have been subjected to (Brookes et al. 

2004; Herbig et al. 2004; M artin-Ruiz et al. 2004).

W hilst many of the circumstances leading to activation of the senescence 

program m e are known, it is unknown how the senescence programme is 

triggered at the biological level. It has been proposed that stimuli could 

converge on a common pathway which triggers senescence and one candidate 

for this is the M APK p38 (Iwasa et al. 2003). However, it remains clear that 

im plem entation o f the arrest involves p l6 ,NK4a and ARF.
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1.6 R egulation of lNK4a  and ARF

The CDKN2a  locus obviously responds to stress signals, but the mechanism 

by which the locus is regulated remains unclear. A RF expression is activated 

in mouse and human cells in response to a variety of factors including Myc, (3- 

catenin, AP-1 dimers, and the viral oncoprotein E l A, while D m pl, Abl and 

oncogenic Ras can cause expression of A RF in mouse cells (de Stanchina et 

al. 1998; Palm ero et al. 1998; Radfar et al. 1998; Zindy et al. 1998; Inoue et al. 

1999; Schm itt et al. 1999; Damalas et al. 2001; A m eyar-Zazoua et al. 2005; 

Sreeram aneni et al. 2005). Most intriguing is the activation of A RF expression 

by E2F-1 (Bates et al. 1998; Dimri et al. 2000) which links the p53 and Rb 

signalling pathways (Figure 1.5). Inactivation o f pRb by phosphorylation 

causes the release of E2F, which in turn leads to increased transcription of 

A RF and subsequent activation of the p53 pathway (James and Peters 2000). 

This may have im plications for viruses which would need to disable the pRb 

pathway to drive cell proliferation, but may also need to disable the p53 

response which would be consequently activated. New work has shown that 

in addition to the activation of ARF expression by E2F1, another m ember of 

the E2F family, E2F3b, may repress A RF expression in normally proliferating 

mouse fibroblasts (Aslanian et al. 2004), and A RF expression is activated in 

cells in which E2F3b is lost. However, it remains clear that aberrant E2F 

activity results in the activation of ARF.

ARF expression in mouse and human cells can also be repressed by a variety 

of agents in addition to pRb and E2F3b, including feedback by p53, Twist, 

Tbx2, Tbx3 and the polycomb group genes Cbx7 and B m il, while A RF 

repression by Tw ist has been dem onstrated in mouse cells (Robertson and
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Jones 1998; Jacobs et al. 1999a; M aestro et al. 1999; Jacobs et al. 2000; 

Lingbeek et al. 2002; Aslanian et al. 2004; Gil et al. 2004; M aeda et al. 2005). 

Indeed the ability of B m il to cooperate with Myc in mouse lym phom agenesis 

has been attributed to its effects on A RF expression (Jacobs et al. 1999b). 

Expression of INK4a  is also repressed by the polycomb group proteins Bmi-1, 

and Cbx7 (Jacobs et al. 1999a; Itahana et al. 2003b; Gil et al. 2004). The 

CDKN2a  locus is clearly subject to epigenetic silencing by DNA methylation 

during cancer (Herm an et al. 1995; M erlo et al. 1995; O tterson et al. 1995; 

Costello et al. 1996; Lo et al. 1996) and this, in com bination with the 

involvem ent of polycom b group proteins, suggests that repression of the locus 

is mediated by chrom atin remodelling. Consistent with this suggestion, it has 

been proposed that cells exposed to histone deacetylase inhibitors undergo 

accelerated senescence, and a senescence specific form  of HDAC-2 has been 

described (W agner et al. 2001; M unro et al. 2004). The physiological 

im portance of repression of the locus is dem onstrated by the proliferative 

defects observed in B m il-deficient haem atopoetic stem cells which is due to 

derepression of the CDKN2a  locus in these cells (Leesard and Sauvageau 

2003; Park et al. 2003). There is also evidence that p l6 INK4a is repressed by 

pRb in human cells (Hara et al. 1996), and the direct binding of Tbx2, Tbx3 

and TA L1-SC L to the INK4a  prom oter represses transcription (Jacobs et al. 

2000; Lingbeek et al. 2002; Hansson et al. 2003).

It is well established that expression of oncogenic Ras activates p l6 ,NK4a 

expression both by activation of the M KK3/6-p38 MAPK pathway (W ang et 

al. 2002; Deng et al. 2004), and by the well docum ented activation of the Ras- 

Raf-M EK pathway (Serrano et al. 1997; Ohtani et al. 2001), resulting in
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binding of Ets2 to the lNK4a  prom oter and subsequent activation of 

transcription. Ets proteins are also im plicated in the control of p l6 INK4a 

expression at senescence. In older fibroblasts E tsl replaces Ets2 at the 

p l6 iNK4a promoter, and E tsl has been reported to increase in aging rodent cells 

causing transcription of both p l6  and A RF (Krishnam urthy et al. 2004). The 

activation of p l6 INK4a transcription by the Ets proteins is antagonised by Id 1, 

which is downregulated at senescence, as is its affinity of binding to E47 

which itself binds to an E box region in the p l6 INK4a prom oter (Alani et al. 

2001; Ohtani et al. 2001; Zheng et al. 2004). Several other factors have also 

been reported to activate p l6 INK4a transcription including junB , Snf5, Myc, 

p21clP1 and S p l, 14-3-3a, and a dom inant negative form  of the telomere 

binding protein TRF2 (Dellam bra et al. 2000; Passegue and W agner 2000; 

Betz et al. 2002; Smogorzewska and de Lange 2002; Drayton et al. 2003; 

O ruetxebarria et al. 2004; Xue et al. 2004).

p l6 INK4a RNA is known to be very stable (Hara et al. 1996), and recent 

evidence suggests the RNA may be even more stable at senescence due to a 

decrease in the binding of AUF1, a protein im plicated in decreasing mRNA 

stability, to a region in the 3 ’ UTR of the mRNA (Hara et al. 1996; W ang et 

al. 2002). Recent research has suggested that in addition to regulation at the 

level of INK4a  transcription, p l6 INK4a can also be post-translationally 

modified. p l6 INK4a can be phosphorylated on serines 7, 8, 140 and 152. 

Endogenous p l6 INK4a associated with CD K4 was shown to be phosphorylated 

on position 152, although this does not affect its ability to bind to CD K4 

(Gum p et al. 2003). Although, p l6 INK4a is naturally lysine-less, it can be
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degraded by the ubiquitin system, potentially via N terminal ubiquitination 

(Ben-Saadon et al. 2004).

1.7 Relative roles of INK4a  and ARF

The structure of the CDKN2a  locus is conserved between humans and mice.

This led to the use of mouse knockout experim ents to address the relative

contributions o f the INK4a  and A R F  genes to tum our suppression. The initial

mouse model lacked exon 2, which therefore affected both products of the

locus (Serrano et al. 1996). These mice were viable, but developed tum ours at

an early age (average 29 weeks), and had an increased sensitivity to

carcinogenic treatment. The fibroblasts from  these knockout mice did not

undergo senescence and were transform ed by the expression of a single

oncogene, H-Ras, in contrast to wild-type MEFs which require the expression

of tw o cooperating oncogenes for transform ation. However, although exon ip

is sufficient for many functions of A RF (Quelle et al. 1997), the knockout of

exon 2 did not delineate the separate functions of these two genes. Knockouts

of exon ip  (K am ijo et al. 1997; Kamijo et al. 1999), and exon l a  (Sharpless et

al. 2001), in com bination with a mouse model expressing a truncated form  of

pl£iNK4a (K rim penfort et al. 2001) attempted to address this problem. MEFs

from  mice deficient solely in AR F  were transform ed by the expression of

oncogenic Ras, whereas MEFs deficient in INK4a  arrested. This implies that

A RF and p53 play a central role in stasis in MEFs. From these experiments it

was also clear that A/?F-null mice were highly tum our prone, similar to p53

knockout mice, while /A A ^a-deficient mice were not tum our prone w ithout

the addition of carcinogens. These experim ents were conducted in different
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genetic backgrounds and experim ents looking at the individual knockouts of 

INK4a  and A R F  in the same genetic background suggested that mice deficient 

in both genes had a greater tum our predisposition than either of the single 

knockouts alone (Sharpless et al. 2004). This suggested that INK4a  also plays 

a role in tum our suppression in mice, an idea which was supported by further 

studies using a Ras-induced model of m elanom a (Sharpless et al. 2003). The 

role of A R F  has also been studied by engineering mice in which the coding 

sequence of exon 1|3 was replaced by a sequence encoding G FP (Zindy et al. 

2003). In M EFs from  these mice, an accum ulation of green cells was 

observed upon serial passaging, and tum ours form ed in these mice were green 

showing that expression o f A RF had been activated as a tum our suppressive 

m echanism  (Zindy et al. 2003). The importance of the CDKN2a  locus in 

tum our suppression was confirm ed by a reciprocal experim ent in which ‘super  

lN K 4a/ARF ’ mice expressing an extra copy of the entire locus were generated. 

These mice were found to have a higher cancer resistance than normal mice, 

and an increased resistance to in vitro im mortalisation and transformation, 

while retaining normal aging (M atheu et al. 2004).

Experim ents to address the relative contributions of INK4a  and ARF  in human 

cells have, through necessity, taken different approaches. Initially, the relative 

roles o f the pRb and p53 pathways in the senescence of human cells were 

addressed using viral oncoproteins. Overcom ing the p53 pathway using the 

viral oncoprotein HPV E6 allows cells to grow to an intermediate stage 

between senescence and crisis known as M l.5 (Bond et al. 1999; M orris et al.

2002). In contrast, overcom ing the pRb pathway using HPV E7 (which also 

disables p21clpl and activates ARF), allows cultures to reach a stage which
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more closely resembles crisis than senescence (Bond et al. 1999), although it 

occurs after few er population doublings. Experim ents have also been 

undertaken to look at the role of the CDKN2a  locus in the transform ation of 

human cells. Initial experim ents were carried out using viral oncoproteins 

such as SV40 Large T antigen and a com bination of HPV E6 and E7 to disable 

the pRb and p53 pathways. This allowed the cells to be transformed by a 

com bination of hTERT (to bypass the telomere dependent arrest), H-Ras and 

SV40 small t antigen (Hahn et al. 1999; Hahn et al. 2002).

O verexpression o f CD K4 and CDK6 insensitive to p l6 INK4a allows cells to 

bypass senescence and continue growing before arresting at M l.5 (M orris et 

al. 2002). The R24C variant of CDK4 that is insensitive to p l6 INK4a in 

com bination with cyclin DI has also been used to model loss of p l6 1NK4a 

during transform ation, and has been used in com bination with a dominant 

negative form  of p53 to overcom e the p53 pathway (Hahn et al. 2002; Wei et 

al. 2003b).

A nother approach has used gene targeting in HDFs to produce fibroblasts 

deficient in p21CIPl. These cells are reported to continue dividing until they 

reach crisis (Wei and Sedivy 1999), and fibroblasts heterozygous for p21CIP1, 

p53 or pRb have been shown to undergo spontaneous loss of heterozygosity, 

silencing the remaining copy of the gene before continuing to divide until they 

reach crisis (Wei et al. 2003a). Fibroblasts deficient in p53 and p21CIP1 were 

used to investigate the role of these genes in transform ation (Wei et al. 2003b), 

and loss of p 16INK4a was modelled in these experim ents using a cyclin D l-  

CD K 4R24C fusion protein which is resistant to p l6 INK4a. These experim ents also 

found that deletion of p53 com bined with loss of p l6 INK4a function was
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necessary for transformation. The construction of fibroblasts deficient in 

p l6 ,NK4a using gene targeting has not been possible due to the structure of the 

locus and its proximity to the p l6 1NK4a hom ologue p l5 INK4b.

The recent advent of siRNA technology has allowed the specific ablation of 

p l £ i N K 4 a  a n ( j  a r p  j n  human cells. Loss of p l6 INK4a allows an extension of the 

lifespan of HDFs (Bond et al. 2003; Wei et al. 2003a), while there is still no 

evidence for the involvem ent of A RF during the replicative senescence of 

human cells (Wei et al. 2001). The role of p l6 1NK4a in the defences of human 

cells against transform ation was confirm ed using siRNA targeting p53 in 

com bination with siRNA targeting p l6 ,NK4a or pRb (V oorhoeve and Agami

2003). This report also looked at the tum our suppressive role of ARF in 

human cells, and confirm ed that in contrast to the situation in mice, p l6 INK4a 

was the m ajor tum our suppressor of the human CDKN2a  locus.

This observation is confirm ed by the epidemiological evidence from  human 

cancer. G erm line mutations of this locus are predom inantly associated with 

familial melanoma, although patients carrying mutations in this locus are also 

predisposed to other tum our types including glioma, HNSCC, bladder, 

cervical, breast, pancreatic cancer, NSCLC and NHL (Ruas and Peters 1998). 

Most of the mutations have been found to affect INK4a, or both of the genes, 

and m utations affecting only A R F  are very rare. A germline mutation of AR F  

has been described, but this is thought to confer less susceptibility to 

m elanoma than germline mutation of INK4a , and mutation of both genes may 

be needed for melanoma to develop in these patients (H ewitt et al. 2002).

This locus is also frequently mutated in spontaneous human tumours. 

M utations usually affect both genes, but many mutations have been described
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affecting only INK4a, and there are a few recorded mutations where only A R F  

is affected. M utations of the locus include point mutations, deletions and 

insertions, with some deletions causing a fram eshift with the resulting protein 

continuing in a different reading frame. M utations in exon 2 change the 

coding sequence of both genes, but may leave A RF functionally unimpaired, 

as exon 1|3 appears to be sufficient for many functions of A RF (Llanos et al. 

2001). The CDKN2a  locus is also frequently affected by promoter 

m ethylation, and loss of heterozygosity at this locus is frequently accompanied 

by methylation of the rem aining allele (Ruas and Peters 1998).

O ur laboratory has investigated the relative roles of INK4a  and AR F  in 

senescence and transform ation by exploiting two strains of human dermal 

fibroblasts, Q34 and Leiden, from  rare patients who carry germline mutations 

in both alleles of the CDKN2a  locus. These cell strains are operationally p 16- 

deficient, whilst retaining functional ARF. Q34 cells come from  a patient 

with a familial history of cancer, including m elanom a (Huot et al. 2002). The 

cells are heterozygous for two independent missense mutations (Figure 1.8). 

The first mutation causes a M et to Thr change at am ino acid 53 of p 16INK4a 

whilst the second mutation causes an Asp to Asn mutation at amino acid 108. 

Only the second mutation affects ARF, causing a change near its carboxy 

term inus which does not appear to affect the function of the protein. The 

Leiden patient comes from a m elanom a-prone fam ily and is homozygous for a 

19 base pair deletion in exon 2 (Brookes et al. 2002). This causes the deletion 

o f 6 am ino acids, and also results in a fram e-shift. As a result, the cells express

49



Leiden homozygous for 19 bp deletion in exon 2

p-ARF/p16 

a - p 1 6 / X 64

Q34 compound heterozygote

INK4a M53T D108N

No change R122Q

Figure 1.8 Schem atic illustra ting  the p l6 INK4a and ARF 
pro teins expressed by the Leiden and Q34 cells
The Leiden patient is homozygous for a 19bp deletion which causes 
a frameshift. AS a result, Leiden cells express an A R F/pl6INK4a 
fusion protein which retains known functions of ARF, and a 
p l6 iNK4a/X fusion protein that is non-functional. The Q34 patient is 
a compound heterozygote, carrying two point mutations affecting 
the CDKN2a  locus. Q34 cells are also operationally deficient in 
p l6 ,NK4a and retain functional ARF.



two fusion proteins, a -p l6 /X  com prising the 74 residues of p l6 1NK4a followed 

by a further 74 residues in the +1 reading frame, and P -A R F/pl6  containing 

the first 88 am ino acids of ARF fused to the last 76 am ino acids of p l6 INK4a 

(Figure 1.8). a -p l6 /X  is non-functional, but P -A R F/pl6  seems to retain the 

known functions of ARF.

The Leiden and Q 34 strains of p l6 INK4a-deficient fibroblasts have a partially 

extended lifespan before undergoing senescence at M l.5 (Brookes et al.

2004). This can be explained using the subunit rearrangem ent model. Loss of 

functional p l6 1NK4a prevents the displacem ent o f p21clP1 from  CDK4 and 

CD K 6 com plexes onto CDK2 com plexes which would otherwise occur at 

senescence and inhibit the function of CDK2. p l6-deficient fibroblasts, unlike 

‘norm al’ human diploid fibroblasts, do not arrest in response to oncogenic 

Ras, E ts l, or Ets2 (Brookes et al. 2002; Huot et al. 2002; Drayton et al. 2003), 

suggesting a central role for p l6 INK4a in the response to aberrant oncogenic 

signalling. Expression of exogenous Myc or Ras in p i 6-deficient fibroblasts 

expressing telom erase partially transform s the fibroblasts, making them 

capable of anchorage independent growth. Leiden cells expressing exogenous 

telom erase and Myc and Ras in com bination form  larger anchorage 

independent colonies in soft agar than the cells expressing either Myc or Ras 

alone. The cells expressing a com bination of Myc and Ras are also capable of 

tum origenicity in nude mice (Drayton et al. 2003). This is in contrast to the 

findings of other groups where loss of p53 function was necessary for 

transform ation. However tum our form ation was inefficient and occurred after 

a significant time-lag, and analysis o f the karyotypes of the tumours showed 

that the tum ours were form ed from  three clones of cells which had been
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present in the parental population. A lthough the tum ours had wild-type p53, 

several had silenced ARF.

However, some residual concerns remain about the ARF proteins expressed in 

Leiden and Q34 cells, and it has been suggested that the A RF expressed in 

Leiden cells is overactive (Wei et al. 2003b), while that expressed in Q 34 cells 

is partially impaired. This thesis describes the characterisation of a novel 

strain of fibroblasts from  a patient with a family history of melanoma. These 

cells are hom ozygous for a point mutation in exon l a ,  and express the R24P 

variant of p l6 INK4a, while ARF is com pletely unaffected in these cells.
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Chapter 2

Materials and Methods

2.1 Solutions

M edia, some com m only used solutions, and clean glassware were provided by 

Cancer Research UK Cell Services. Electrophoresis buffers were kept as a 

com m on laboratory stock. Some plasmid DNA preparations were kindly 

donated by members of the laboratory. Chem icals were usually purchased 

from  Sigma or VW R International (BDH M erck Eurolab). W ater was purified 

using a M illipore reverse osmosis system and autoclaved. Solutions were 

made up in w ater (unless otherwise stated), before being autoclaved or filtered 

through a 0.22pM  filter where appropriate.

Solutions used in this thesis are described below:

6x agarose gel loading buffer 30% (v/v) glycerol

0.1% (w/v) bromophenol blue

20x agarose gel electrophoresis buffer 0.8M  Trizm a base

0 .1M sodium acetate 

0.02M  EDTA 

5% (v/v) glacial acetic acid 

adjust pH to 7.6
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Annealing buffer

Blocking solution

Citric acid/ Na2H P 0 4 buffer

2x Hepes Buffered Saline (HBS)

High salt buffer

L-Broth

lOOmM potassium acetate 

30mM  HEPES-KOH pH7.4 

2mM  magnesium acetate

PBSA

0.2% (v/v) Tw een-20 

5% (w/v) dried milk (M arvel)

36.85% (v/v) 0 .1M citric acid 

63.15%  (v/v) 0.2M  Na2H P 0 4 

verify pH is 6.0

280 mM NaCl 

lOmM KC1 

1.5mM Na2H P 0 4 

12mM dextrose 

50mM  Hepes 

adjust pH to 7.05

0.5M  NaCl 

50mM  Tris pH8.0 

1% (v/v) NP40

1% (w/v) NaCl
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NP40 lysis buffer

PBSA

lOOOx Protease inhibitor cocktail

lOx Protein gel electrophoresis buffer

1% (w/v) bacto-tryptone 

0.5%  (w/v) yeast extract

150mM NaCl

50mM  Tris-HCl (pH 8.0)

1% (v/v) NP40

8.06mM  Na2H P 0 4 

0.8% (w/v) NaCl 

1.47mM KH2P 0 4 

0.025%  (w/v) KC1 (pH 7.2)

A EBSF 20mM  

10 mM EDTA 

Bestatin 1.3mM 

E-64 140pM 

Leupeptin lOpM 

A protinin 3pM

3.8M glycine 

0.5M  Trizm a base 

0.07M  SDS

Protein gel transfer buffer 10% (v/v) protein

electrophoresis buffer



20% (v/v) methanol

SA-Pgal staining solution

lx  Sample buffer

2x Sample buffer

SOC medium

1 mg/ml X-gal in

dim ethylform am ide

20% (v/v) 0.2M citric acid/

Na2H P 0 4 buffer

5mM  potassium ferrocyanide

5mM  potassium ferricyanide

150mM NaCl

2mM  M gCl2

62.5m M  Tris-HCl (pH 6.8)

2% (w/v) SDS 

5% (v/v) 2-mercaptoethanol 

0.002%  (v/v) glycerol

125mM Tris (pH 6.8)

4% (w/v) SDS

10% (v/v) 2-mercaptoethanol

0.04%  (w/v) bromophenol blue

solution

0.004%  (v/v) glycerol

2% (w/v) tryptone 

0.05%  (w/v) yeast extract
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0.006%  (w/v) NaCl 

0.002%  (w/v) KC1 

0.02%  (w/v) M gCl2 

0.025%  (w/v) M gS 04 

0.036%  (w/v) D-Glucose

T E  buffer lOmM Tris-HCl (pH8.0) 

Im M  EDTA (pH8.0)

Trypsin 0.8% (w/v) NaCl

0.01% (w/v) Na2HPC>4

0.1% (w/v) D-Glucose

0.3% (w/v) Trizm a base

0.2%  (v/v) KC1 (19% stock)

0.15%  (v/v) phenol red (1%

stock)

0.006%  (w/v) Penicillin 

0.01%  (w/v) Streptomycin 

0.25%  (w/v) trypsin (Difco 1:250 

stock)

HC1 to pH 7.7

Versene 0.02%  (w/v) EDTA in PBSA (pH 

7.2)

0.0015%  (w/v) phenol red
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2.2 Cell culture

2.2.1 Human cell strains

BOSC 23 Ad5-transformed human em bryonic kidney 293 cell line 

expressing gag-pol and env genes for ecotropic retrovirus 

packaging (Pear et al. 1993)

Hs68 Neonatal foreskin fibroblast strain (ATCC number CRL-1635)

Leiden Adult dermal fibroblast, p l6 1NK4a deficient (Brookes et al. 2002)

Milan A dult dermal fibroblast, p l6 ,NK4a com prom ised (characterised in

the thesis)

Q 34 A dult dermal fibroblast, p l6 INK4a deficient (Huot et al. 2002)

Ras G P+E G P+E cell line stably producing retrovirus encoding H-Ras 

G12V

TIG3 Foetal lung fibroblast strain (Provided by E Hara)

UZU Child fibroblast strain (Ian Kerr, Cancer Research UK)

U 20S  Human osteosarcom a cell line (ATCC number HTB-96)

904 A dult dermal fibroblast strain

Fibroblast strains were infected with an amphotropic retrovirus (pW XL-Neo- 

Eco) encoding the murine basic am ino acid receptor, and selected in 200pg/m l 

G418 (M cConnell et al. 1998). Expression of this cell surface receptor allows 

subsequent infection of the fibroblasts using ecotropic retroviruses.
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2.2.2 General cell growth conditions

Cells were grown as monolayers in 10cm dishes (Corning) at a constant 

tem perature of 37°C, and maintained in 5-6% carbon dioxide. Cells were fed 

every two to three days with fresh warmed ‘m edium ’, consisting of E4 

(D ulbecco’s modified eagles medium), supplem ented with 10% foetal bovine 

serum (PAA Clone). Cells were grown until confluent and then passaged. To 

passage, cells were rinsed with 4  mis versene, and incubated at 37°C with 1 ml 

trypsin/versene (1:3 mix) until all cells were detached. A fraction of the cells, 

(usually a half, a quarter, or an eighth) were then replated in 10 mis of fresh 

medium. A 1:2 split was taken to be equivalent to 1 population doubling 

(PD).

2.2.3 Storage and recovery o f  cells

Cell m onolayers were washed once with versene, and incubated with 1 ml 

trypsin/versene (1:3) mix at 37°C until the cells were detached. Cells were 

resuspended in fresh medium and centrifuged for 5 minutes at 1500g. The 

supernatant was removed, and the cell pellet resuspended in 1 ml of E4, 

supplem ented with 20% foetal bovine serum and 10% DMSO. Cells were 

wrapped in multi-layered tissue and cooled slowly to -70°C. Cells were then 

placed in liquid nitrogen for long term storage.

Cells were recovered by thawing quickly in a waterbath at 37°C, before the 

dropwise addition of cold medium. Cells were spun down for 5 minutes at 

1500g, and the supernatant removed. The pellet was resuspended in fresh 

medium, and plated out.
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2.2.4 Production o f  retroviral stocks

(i) Transient transfection o f BOSC23 cells

Retroviral stocks were produced using the BOSC23 packaging cell 

line. After transient transfection with a plasmid containing retroviral 

LTR sequences and the gene of interest, this cell line produces 

ecotropic virus encoding the gene. BOSC23 cells were plated out at a 

density of 6 x l0 6 cells per 10cm dish. 24 hours later, the medium on 

the BOSC23 cells was changed to 5 mis medium supplemented with 

25pM  chloroquine. 10pg of plasmid DNA in 440pl of 0.1 xTE was 

added to 60pl of CaCl2 solution. W hilst air was being bubbled through 

the DNA solution, 500pl of 2xHBS was added in a dropwise fashion. 

This solution was then added to the BOSC23 cells. After 7 hours, the 

m edium was replaced with 10 mis of fresh medium. At least 7 hours 

before taking a retroviral harvest, the medium on the plate of BOSC23 

cells was decreased to 5 mis. To harvest, the virus-containing medium 

was collected and filtered through a 0.45 pM  PVDF membrane 

(M illipore).

(ii) GP+E cells

For experim ents using pBabebleo retrovirus expressing H-Ras, better

infectivity was obtained when stably transfected GP+E cells were

used. These cells were grown in m edium containing 200g/ml zeocin,

to maintain selection for the H-Ras plasmid. A t least 7 hours before
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infection, the medium on these cells was replaced with 5 mis of fresh 

medium. To harvest, the virus-containing m edium was collected and 

filtered through a 0.45pM  filter.

2.2.5 Infection o f  fibroblasts with ecotropic retrovirus

The day before infection, fibroblasts were split appropriately to reach between 

50 and 75% confluence the next day. To infect, the medium on the cells was 

replaced with filtered viral harvest containing 4pg/m l polybrene. For multiple 

infections, additional harvests were made from  the virus producing cells and 

added to the fibroblasts during the day of infection. The following day, the 

m edium on the fibroblasts was replaced and 24 to 48 hours after infection, 

selection was initiated in m edium containing the appropriate antibiotic. 

(Purom ycin 1.25pg/ml, zeocin 50-200pg/m l, hygromycin B 50pg/m l, 

blasticidin 1.25-2.5pg/m l.)

2.2.6 Senescence-associated beta-galactosidase staining (S A -fg a l staining)

Endogenous SA-Pgal staining at pH 6.0 is used to identify senescent cells. In 

the presence of a suitable substrate, X-gal, this activity produces a 

characteristic ‘blue’ colour, allowing the identification of senescent cells. Cell 

monolayers were washed twice with PBSA before fixing with 2% 

form aldehyde and 0.2% gluteraldehyde in PBSA for 5 minutes at room 

temperature. Cells were washed twice with PBSA before the addition of 

sufficient staining solution to cover the cell monolayer. The cells were then 

incubated overnight at 37°C in normal atm ospheric conditions.
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2.2.7 Immunofluorescence

Im m unofluorescence was used to follow the induction of proteins at an 

individual cell level, and was performed using the M olecular Probes Image-iT 

FX kit with Alexa Fluor secondary detection conjugates according to the 

m anufactuer’s protocol. Briefly, cells were plated on glass cham ber slides 

(LabTek), and treated as required. At the appropriate timepoint, the media 

was removed and cells were washed in PBSA before being fixed in warm 

(37°C) 3.7% formaldehyde for 10-15 minutes at room temperature. Cells were 

rinsed 3-4 times in PBSA, and the cells were permeabilised using 0.2% Triton 

in PBSA for 5 minutes at room temperature. Cells were then rinsed 3-4 times 

in PBSA, and the samples were covered with several drops of Image-iT FX 

signal enhancer, before being left for 30 minutes at room temperature. 

Samples were rinsed 3-4 times in PBSA, before the addition of primary 

antibody diluted in blocking solution to the concentration used for western 

blotting (detailed below). Samples were then incubated with primary antibody 

at 4°C overnight. Samples were rinsed thoroughly before the addition of the 

secondary conjugate (Alexa Fluor goat anti rabbit 555nm, or goat anti-mouse 

488nm ) diluted to 5pg/m l in blocking solution. After 90 minutes at room 

temperature, samples were rinsed in PBSA before being mounted using the 

ProLong Gold antifade reagant with DAPI (M olecular Probes) to stain the cell 

nuclei. Slides were stored at -20°C, until cells were visualised using 

microscopy.
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2.2.8 Immunohistochemistry

Im m unohistochem istry was performed using the DakoCytom ation EnVision 

System -AP kit according to the m anufacturer’s protocol. Cells grown in 

cham ber slides (LabTek), were rinsed 3-4 times in PBSA before fixing in a 

1:1 mixture of methanol and acetone for 20 minutes at -20°C. Cells were 

rinsed 3-4 times in PBSA, and incubated overnight at 4°C with primary 

antibody diluted in blocking solution to the concentration used for western 

blotting (detailed below). Cells were then rinsed 3-4 times in PBSA before 

the addition of alkaline phosphatase labelled polym er for 30 minutes. 

Sam ples were then washed thoroughly in PBSA as before, before the addition 

of substrate chrom ogen solution for 30 minutes. Samples were then washed in 

distilled water, before mounting using ProLong Gold AntiFade reagent with 

DAPI (M olecular Probes) to stain the cell nuclei. Slides were stored at -20°C, 

until microscopy was used to visualise the cells.

2.2.9 Incorporation o f  BrdU

Cells were seeded in 35mm glass-bottomed dishes (M atTek Corporation).

W hen cells reached approxim ately 50% confluency, the medium was replaced

with BrdU labelling medium. After 18-24 hours growth in the labelling

medium, the cells were washed twice with PBSA before fixing for at least 20

minutes at -20°C using 70% ethanol in 50mM  glycine buffer pH 2.0. BrdU

incorporation was then assayed using the Boehringer M annheim kit following

the m anufacturers adherent cell protocol. Briefly, the cells were incubated

with an anti-BrdU monoclonal antibody in the presence of nucleases to allow

access of the antibody to the DNA. The cells w ere then incubated with anti-
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m ouse-Ig-akaline phosphatase. In the presence o f colour substrate solution, a 

brown product was produced indicating the presence of incorporated BrdU in 

the DNA. The percentage of cells with incorporated BrdU was scored using a 

light microscope. Several fields of view were counted, with a minimum of 

300 cells being assayed.

2.2.10 Proliferation assay using crystal violet staining

The relative proliferation rate of different cell cultures was monitored over a 

period of time by staining viable cells with crystal violet. Triplicate samples 

of 5x103 cells per well were plated out in a 24 well plate. For each timepoint, 

one plate was required. At the specified time, each well was washed twice 

with 1 ml PBSA and fixed with 500pl of 10% (v/v) formaldehyde. After five 

minutes, the wells were washed twice with 1 ml water, and stained with 250pl 

0. l% (w /v) crystal violet. After 30 minutes, the cells were washed four times 

with 1 ml water, and the stain was extracted from  the cells using 1 ml 10% 

(v/v) acetic acid. This was then diluted with an equal volume of water, and 

the A 590nm of this solution measured. This value was averaged for the 

triplicates of each cell type, and normalised to the A590nm at day 1. The first 

reading taken to be day 1, was usually made 18- 24 hours after the cells were 

plated.

2.2.11 Anchorage independence assay

The ability of cells to grow in 0.2% agarose was used as a measure of 

transformation. An agarose base was form ed using 2 mis of a 1:1 mixture of
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2xE4 (supplem ented with 20% FBS), and 2% agarose, warmed to 60°C, in 

each well of a six well plate. Samples of lx lO 4 cells were prepared in 1 ml of 

2xE4 supplemented with 20% FBS. 1 ml of 0.4%  agarose, warmed to 55°C, 

was added and the mixture plated into a well. Duplicate wells of each cell 

type were set up. Cells were fed weekly with 2 mis of a 1:1 mixture of 2xE4 

with 20% FBS, and 0.4% agarose per well. A fter 4  to 6 weeks the percentage 

of cells form ing colonies was counted using a light microscope.

2.2.12 Giemsa staining o f  anchorage independent colonies

To im prove photographic imaging, anchorage independent colonies were 

stained with Giem sa stain. Giemsa stain (Fluka) was diluted 1:5 in a 5:24 mix 

of glycerol and methanol. Six well plates containing anchorage independent 

colonies were incubated with the solution for 20 minutes whilst agitating. 

Excess dye was removed by repeated rinsing with distilled water.

2.3 Protein biochemistry

2.3.1 Preparation o f  total cell lysates

(i) Lysis in SDS sample buffer

Cells were lysed in SDS lysis buffer to provide total protein samples 

for western blotting. Cell monolayers were washed twice with PBSA, 

before the addition of lOOpl of lx  sample buffer (without bromophenol 

blue or 2-mercaptoethanol). Cells were scraped using a cell scraper 

(Corning), and the lysate collected into a 1.5ml centrifuge tube.
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Samples were boiled for 10 minutes, and aliquots taken to determine 

the protein concentration. Samples containing a fixed am ount of 

protein were aliquotted. A quarter of the sample volume was calculated 

and this am ount of bromophenol blue and 2-mercaptoethanol mixture 

was added to the protein sample to form  1 x sample buffer. Samples 

were stored at -20°C.

(ii) Lysis in NP40 buffer

NP40 lysis buffer was used when protein samples were required for 

im m unoprecipitation, or when the status of protein phosphorylation 

was to be determined by western blotting. Cells were trypsinised and 

resuspended in medium. Cells were spun down for 5 minutes at 

1500g, the supernatant removed, and the cells resuspended in cold 

PBSA. This was repeated, and the supernatant removed. Cells were 

resuspended in 150pl cold NP40 lysis buffer containing freshly added 

protease inhibitors (at 1 in 1000 dilution). Lysates were snap frozen in 

dry ice and stored at -70°C. Before protein quantification, samples 

were centrifuged for 15 minutes at 18000g and 4°C to clear the lysate. 

The supernatant was collected on ice before aliquots were taken for 

protein quantification.

2.3.2 Protein quantification

Protein concentration was determined using the Pierce BCA system. This 

system uses a copper sulphate solution as a source of Cu2+ ions. In the 

presence of protein and under alkaline conditions, these ions are reduced to 

form  C u1+ ions which then react with the BCA reagent, exhibiting absorbance
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at 562nm. lOpl duplicates of total protein sample were assayed according to 

the manufacturers instructions, against a series of standards of known protein 

concentration.

2.3.3 Immunoprecipitation

Depending on the experiment, fixed amounts (500pg -  lm g) of total protein 

were aliquotted and made up to a total volum e of 500p l-l ml of NP40 lysis 

buffer containing protease inhibitors (at 1 in 1000). Antibody (2-20pl) and 

20pl of protein A or G beads were added. (Protein A beads were used in 

conjunction with a rabbit polyclonal antibody and Protein G beads with a 

mouse monoclonal antibody). The samples were rotated at 4°C overnight. The 

beads were washed 4  tim es with 1 ml of cold NP40 lysis buffer containing 

protease inhibitors. The beads were then boiled for 10 minutes in the presence 

of 25pl of 2x sample buffer to release bound proteins from the beads. The 

released proteins in 2x sample buffer were then separated using SDS-PAGE.

2.3.4 Separation o f  proteins by SDS-PAG E

Polyacrylam ide gels (13x14x0.075cm ) were poured using the Hoeffer HIS 

vertical slab gel system. The resolving gel contained 30% acrylamide mix 

(37.5:1 acrylam ideibis-acrylam ide, Anachem) diluted in 375mM Trizm a base 

(pH 8.8), 0.1% (w/v) SDS, 0.1% (w/v) am monium persulphate and 0.04% 

(v/v) TEM ED. The acrylamide mixture was protected from the air with 

isopropranol while polymerisation occurred. When the gel was polymerised, 

the isopropanol was removed and the gel was rinsed with water to remove
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residual alcohol. A stacking gel was then poured containing 5% acrylamide in 

125mM Trizm a base (pH 6.8), 0.1% (w/v) SDS, 0.1% (w/v) am monium 

persulphate and 0.1% (v/v) TEM ED. Samples of 15-35pg of total protein in 

lx  sample buffer, or im munoprecipitated proteins in 2x sample buffer were 

applied to the gel along with l4C labelled rainbow markers (Amersham) to 

facilitate gel orientation and protein size determination. Electrophoresis was 

performed in lx  protein electrophoresis buffer in water-cooled tanks at a 

constant current of 35mA with unlimited voltage. Gels were run until the dye 

front reached the bottom of the gel.

2.3.5 Im munoblotting fo r  proteins (western blotting)

A fter separation by SDS-PAGE, proteins were transferred from the gel to a 

PVDF Im m obilin-P membrane (M illipore), using the Atta semi-dry blotting 

method. The membrane was cut to the size o f the gel, pre-treated with 

methanol for 30 seconds, rinsed with water for 2 minutes, and equilibrated in 

transfer buffer for at least 5 minutes prior to use. 6 pieces of 3MM filter paper 

cut to 13x14cm were soaked in transfer buffer. The gel was placed on the 

membrane, between a sandwich of 3MM in the transfer cassette. Bubbles 

were removed by ‘rolling’ a plastic pipette across the sandwich, and spare 

transfer buffer was poured on to keep the membrane wet. A constant current 

of 0.27mA was passed through the electrodes for 1 hour. The membrane was 

rinsed in PBSA, before rocking in blocking buffer for 1 hour at room 

temperature, or overnight at 4°C.

To detect proteins by im m unoblotting, the membrane was sealed in a plastic 

bag with primary antibody diluted in 10 mis of blocking buffer and rocked for
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either 1 hour at room temperature or overnight at 4°C. Primary antibodies 

were usually used at 1 in 1000 dilution if purified, or 1 in 5 for monoclonal 

antibodies obtained as tissue culture supernatant. The membrane was washed 

with 6x200 mis of PBSA containing 0.2% (v/v) Tw een-20 to remove excess 

antibody, whilst rocking for at least 1 hour in total. The membrane was then 

incubated for 45 minutes at room temperature with the appropriate HRP- 

linked secondary antibody (Amersham) diluted to 1 in 2000 in 10 mis of 

blocking buffer. A fter washing as before, the bound antibody was visualised 

using enhanced chem ilum inescence (ECL, Amersham Pharmacia Biotech) to 

detect the presence of HRP. The membrane was incubated for 1 minute in a 

1:1 mix of detection reagents 1 and 2. H yperfilm  MP (Amersham Pharmacia 

Biotech) was exposed to the blot in a Hypercassette (Amersham Pharmacia 

Biotech) for an appropriate length of time (between 1 second and overnight) 

before developing the film.

To reprobe, membranes were rinsed in PBSA to remove ECL before 

incubating with a different primary antibody. M embranes were stored in 

Saran wrap at -20° C. M embranes were stripped by rocking for 15 minutes at 

room tem perature in 30mls o f Restore western blotting stripping buffer 

(Pierce). M embranes were rinsed twice in PBSA, before reblocking for 1 hour 

at room temperature in blocking buffer.
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2.3.6 Antibodies

Target

protein

Name Type Source

A rf 54-75 Rabbit

polyclonal

David Parry, DNAX

CD K4 SC601 Rabbit

polyclonal

Santa Cruz

CD K4 DCS 31 Mouse

monoclonal

Neomarkers

CDK6 SC 177 Rabbit

polyclonal

Santa Cruz

CDK6 K6.83 Mouse

monoclonal

Neomarkers

Cyclin D1 287.3 Rabbit

polyclonal

David MacAllan, our laboratory

Cyclin D1 DCS6 Mouse

monoclonal

Neomarkers

Cyclin D2 SC754 Rabbit

polyclonal

Santa Cruz

HA tag 12CA5 Mouse

monoclonal

Central services, Cancer Research UK

MDM2 4B11 Mouse

monoclonal

Oncogene Science

MEK1/2 Rabbit Cell Signalling Technology
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polyclonal

Myc 9E10 Mouse

monoclonal

Central Services, Cancer Research UK

p l6 ,NK4a JC8 Mouse

monoclonal

Cancer Research UK (originally from  

Jim Koh and Ed Harlow)

p l6 ,NK4a DCS50 Mouse

monoclonal

Cancer Research UK (Jiri Bartek)

p l6 INK4a DPAR12 Rabbit

polyclonal

David Parry, our laboratory

p l6 ,NK4a SC468 Rabbit

polyclonal

Santa Cruz

p21CIP1 SC397 Rabbit

polyclonal

Santa Cruz

p53 DO-1 Mouse

monoclonal

Santa Cruz

Ras Pan-Ras Mouse

monoclonal

Oncogene Research Products

T ab le  2.1 A ntibodies

JC8 recognises an epitope in the N-terminal half of p l6 INK4a and was routinely 

used to detect the protein by western blotting. However, JC8 was incapable of 

detecting the Milan (R24P) form  of p l6 INK4a. This was detected using either 

the Santa Cruz rabbit polyclonal raised against p l6 INK4a, or DCS50. DCS50 

recognises the C term inus of p l6 ,NK4a and was also capable of detecting the 

Leiden A R F /p l6 INK4a fusion protein by western blotting. DPAR12 was a



polyclonal antibody raised against full length His-tagged p l6 1NK4A and was 

used for immunoprecipitation.

2.4 DNA techniques

2.4.1 Plasmid vectors

pBabe This vector allows the production of ecotropic

retroviruses when transiently transfected into an 

appropriate packaging cell line. It is based on the 

Moloney murine leukaemia virus (M orgenstern and 

Land 1990). The gene of interest is expressed from a 

promoter contained in the LTR region, and an antibiotic 

resistance gene is expressed from  an SV40 early region 

promoter. The plasmid also contains an ampicillin 

resistance gene for selection in bacteria. 

pRetroSuper This vector is based on the pMSCV retroviral plasmid

and the pSUPER shRNA expressing plasmid 

(Brumm elkam p et al. 2002b). An shRNA hairpin 

targeting the gene of interest is expressed from  the RNA 

polymerase-III promoter (Brumm elkam p et al. 2002a). 

The plasmid contains an antibiotic resistance gene for 

selection in eukaryotic cells, and an am picillin 

resistance gene allowing selection in bacteria.
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pW ZL This vector allows the production of ecotropic

retroviruses when transiently transfected into an 

appropriate packaging cell line.

2.4.2 Transformation o f  chemically competent bacteria

To obtain bacterial vectors containing the requisite plasmid, the DNA was 

introduced into One Shot TOPIO chem ically com petent cells (Invitrogen) 

were used. Bacteria were stored at -70°C  and thawed on ice prior to 

transfection. DNA ( lp l  of plasmid preparation or 5pil o f ligation mixture) was 

added to the cells and they were incubated on ice for 30 minutes. Cells were 

heat shocked in a waterbath at 42°C for 30 seconds. 250pl of SOC medium 

was added to the cells and they were incubated at 37°C and 200rpm for one 

hour, before plating out on L-agar plates containing lOOpg/ml ampicillin. 

Plates were incubated overnight at 37°C.

2.4.3 Sm all scale preparation o f  plasm id DNA (minipreps)

Small scale DNA purification was used to screen bacterial colonies to identify 

clones expressing the correct plasmid. 4  ml cultures of L-broth with lOOpg/ml 

ampicillin were inoculated with single colonies picked from the 

transform ation plate. Cultures were incubated at 37°C overnight in a shaking 

incubator. Bacteria were pelleted by centrifugation and the supernatant 

discarded. The pellets were then processed by the staff o f the London 

Research Institute Equipment Park, and the DNA was purified using the
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Qiagen DNA purification system (described below), and a Qiagen liquid 

handling robot.

2.4.4 Large scale preparation o f  plasm id DNA (m axipreps)

200ml cultures of L-broth containing lOOpg/ml am picillin were inoculated 

with a single colony picked from  a transformation plate, and incubated at 37°C 

in an incubator (Innova 4430) which rotates the cultures at 200rpm. Bacterial 

cells were harvested by centrifuging for 15 minutes at 4°C and 6000g in a 

Beckman Coulter Advanti J-20 XP centrifuge. Plasmid DNA was then 

purified using the Qiagen M axiprep kit according to the manufacturers 

protocol. Briefly, bacterial cells were lysed in NaOH-SDS buffer in the 

presence of RNase A, before neutralising the lysate by the addition of acidic 

potassium acetate. The lysate was cleared by running through a QIAfilter 

cartridge to remove insoluble complexes form ed by protein-DNA aggregates. 

The cleared lysate was then passed through a QIAGEN-tip to enable the DNA 

to bind to the matrix. The tip was washed with a medium salt buffer, before 

elution of the DNA in a high salt buffer. The DNA was then desalted and 

concentrated by isopropanol precipitation. A fter centrifugation, the DNA 

pellet was washed in 70% ethanol, before re-centrifuging. The DNA pellet 

was then dried and resuspended in TE buffer, and plasmid DNA preparations 

were stored at 4°C. The concentration of the DNA preparation was quantified 

using a spectrophotometer. The absorbance of the DNA solution at a 

wavelength of 260nm was measured, and the DNA concentration was 

calculated based on the inform ation that a m easurement of 1.0 is equivalent to
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50pg/m l of double stranded DNA. A m easurem ent of absorbance at 280nm 

was also made to check the purity of the DNA.

2.4.5 Restriction enzyme digests o f  plasm id DNA

Plasmid DNA was digested by restriction enzym es to check its identity, or to 

isolate a DNA fragm ent for use in cloning, lp g  or lOpg of DNA respectively, 

were digested in a final volume of 20pl or 50pl. 20-100 units of restriction 

enzym e (New England Biolabs) were used with less than 10% of the final 

volume being enzyme. The digestion buffer supplied with the enzyme was 

used to provide suitable salt conditions. BSA was added when suggested by 

the m anufacturer. Digests were incubated in a waterbath at 37°C for between 

2 and 4  hours, and the DNA fragm ents were then resolved by agarose gel 

electrophoresis.

2.4.6 Agarose gel electrophoresis o f  DNA fragm ents

1% (w/v) agarose (SeaKem) in lx  DNA electrophoresis buffer, was boiled in a 

m icrowave until completely dissolved. After the addition of ethidium bromide 

at 0 .5pg/m l, the gel was cast using the Hoeffer system. DNA loading buffer 

was added to the DNA samples at a ratio of 1:6. Once set, the gel was placed 

in a tank containing lxDNA electrode buffer. DNA samples were loaded on 

the gel alongside lp g  of com mercially supplied size markers ( l kb  and lOObp 

ladders) from  New England Biolabs. Electrophoresis was performed at a 

constant voltage of 80-100V for between 30 minutes and 1 hour. DNA 

fragm ents were visualised using a UV transilluminator.
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To purify DNA fragments for use in a ligation reaction the appropriate 

fragm ents were excised from  the gel under UV light, and DNA was isolated 

using the QIAquick gel extraction kit following the manufacturers 

m icrocentrifuge protocol to remove the enzyme and salts present in the 

restriction enzyme digests. The DNA fragments were separated by 

electrophoresis in a 1% agarose gel as described and visualised to verify the 

fragm ent size.

2.4.7 Ligation o f  plasm ids

A small aliquot (2pl) of purified plasmid and insert DNA were used to 

estimate the relative amounts of DNA present based on the intensity of the 

bands under UV light and the size of the fragments. Between four and six 

times more insert than vector was used in the ligation reaction. Ligation 

reactions were set up containing the DNA, lp l T4 DNA ligase (New England 

Biolabs) and 2pl 10xT4 DNA ligase buffer (New England Biolabs) in a total 

volume of 20pl. The reactions were incubated at 16°C overnight in a DNA 

thermal cycler (MJ Research).

2.4.8 Generation o f  plasm id constructs

(i)Retroviral vectors for shRNA expression

O ligonucleotides containing a hairpin targeting human Myc were 

cloned into the retroviral expression vector pRetroSuper. The 

oligonucleotides contained a 20bp unique sequence and the reverse 

com plim ent sequence separated by a loop (7bp). The oligonucleotides 

also contained BamHI and Xhol restriction sites for cloning into the
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vector. Transcription of the insert from  the vector would result in the 

synthesis of a positive strand transcript which would fold to form  an 

shRNA hairpin structure. The oligonucleotides were synthesised as 

forw ard and reverse 64-m ers and are described below:

Forward: GAT CCCCG AT G AGG A AG A A AT CG AT GTT CA AG AG A 

CAT CG ATTT CTT CCT CAT CTTTTT GG A A A 

Re verse: AGCTTTT CCA A A A AG AT G AGG A AG A A AT CG AT GT CT 

CTTGAACATCGATTTCTTCCTCATCGGG

lp l of each oligonucleotide (200pM  in water) and 48pl of annealing 

buffer were incubated for 4  mins at 95°C and 10 mins at 70°C before 

slowly cooling to 4°C to allow the oligonucleotides to anneal. 

O ligonucleotides were phosphorylated using T4 Polynucleotide kinase 

(New England Biolabs), and ligated into vector which had previously 

been digested with EcoRI and H indlll and purified. Successfully 

ligated plasmids were isolated as described above and sequence 

verified.

2.4.9 O ligonucleotides

Oligonucleotides were used as primers for sequencing. Primers were 

synthesised by the ICRF/Cancer Research UK oligonucleotide synthesis 

service, and were supplied purified with a calculated T m. Oligonucleotides 

were diluted in water to form stocks of lpg/pT  Sequences of primers used are 

contained in the table below:
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Name Sequence

pBabeFl CGT CT CT CCCCCTT G A ACC

pBabeF2 CCCCGCCTCAATCCTCC

pBabeRl CCTGGGG ACTTT CCACACC

pBabeR2 CTG C C TG C rG G G G A G C C

K4SEQ1 TG TA GACCAGGACCTAAGGAC

K4SEQ2 CCGT GGTT GTT ACACT CT GG

pRSF T ACAT CGT G ACCT GGG A AGC

pRSR T A A AGCGCAT GCT CCAG ACT

T ab le  2.2 O ligonucleotide primers used for sequencing

2.4.10 Sequencing

Sequencing was carried out using the ABI PRISM  Dye Term inator Cycle 

sequencing kit (Applied Biosystems). The DNA to be sequenced is used as a 

tem plate for a PCR reaction incorporating dye-labelled dNTPs into the 

product. Sequencing reactions contained 150-300ng of template DNA, 8pl of 

Big Dye Term inator mix (Applied Biosystems), and lp l primer (O.Olpg/pl) in 

a final volume of 20pl. These were initially heated in a DNA thermal cycler 

(MJ Research) to 96°C for 1 minute to separate the DNA strands. The 

reaction was then subjected to 25 cycles of melting at 96°C for 10 seconds, 

annealing at x°C for 5 seconds, and elongation at 60°C for 4  minutes. The 

annealing temperature was calculated by using a temperature 4°C below the 

estimated melting temperature of the oligonucleotide. If the template DNA 

contained hairpin sequences, (for exam ple if shRNA vectors were being
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sequenced), 5%  DM SO was added to the sequencing reaction and the melting 

temperature was increased to 98°C.

The DNA product was purified to remove excess labelled dNTPs using the 

DyeEx 2.0 kit (Qiagen) according to the m anufacturer’s protocol. The 

products of the sequencing reaction were applied to a gel bed and centrifuged 

for 3 minutes at 750g in a microcentrifuge. The eluate containing the purified 

DNA was concentrated in a vacuum centrifuge (DNA Speed Vac Savant). 

The pellets were frozen at -20°C. Samples were then handled by the staff of 

the Equipm ent Park (London Research Institute, Cancer Research UK) who 

separated the DNA products by electrophoresis through a capillary using the 

Applied Biosystem s Prism 3730 system, and collected and analysed the data.

2 .4 .I 1 ELISA based TRAP assay

So-called TR A P assays (Telom ere repeat am plification protocol) were used to 

assess the telom erase activity in fibroblast cell strains immortalised by the 

expression of exogenous hTERT. TRA P assays were performed using the 

TeloTA GGG  Telom erase PCR ELISA plus kit (Roche), according to the 

m anufacturer’s protocol. In the first elongation and amplification step, 

telomerase adds telomeric TTAGGG repeats to the 3 ’-end of a biotin-labelled 

synthetic prim er (P l-TS). The products of the PCR reaction are then 

denatured and hybridised to digoxigenin-labelled detection probes specific for 

the synthesised telomeric repeats. The products are then immobilised via the 

biotin label to a streptavidin-coated plate and visualised using an anti- 

digoxigenin antibody conjugated to HRP and a suitable peroxidase substrate.
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2.5 RNA techniques

2.5.1 Preparation o f  total cellular RNA

Total cellular RNA was prepared using the Qiagen RNeasy kit, according to 

the m anufacturer’s protocol for animal cells. Cell monolayers were rinsed 

twice with PBSA, before the addition of 600pl of lysis buffer containing 2- 

m ercaptoethanol to inactivate RNases. The cells were detached using a cell 

scraper (Corning), and lysate collected in an Eppendorf tube. The lysate was 

then snap frozen on dry ice before storing at -70°C.

To purify RNA, the lysates were thawed in a waterbath at 37°C for 20 

minutes, and homogenised by passing through a QIAshredder spin column 

(Qiagen). Ethanol was added to the sample, and RNA recovered by binding to 

an RNeasy silica-gel membrane. The membrane was then washed to remove 

contam inants, and the RNA eluted in RNase-free water. RNA samples were 

stored at -70°C. A spectrophotom eter was used to measure the absorbance of 

the RNA solution at a w avelength of 260nm, and the RNA concentration was 

calculated based on the inform ation that a measurement of 1.0 is equivalent to 

40pg/m l of RNA. A measurem ent of absorbance at 280nm was also made to 

check the purity of the RNA.

2.5.2 Reverse transcription

RT (Reverse transcription) was performed using the Applied 

Biosystem s/Roche kit according to the m anufacturer’s instructions. Random 

hexamers were used to prime the reaction which contained 2-3pg of total 

RNA template in a volume of 50pl. The reaction mixture was placed in a
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DNA thermal cycler (MJ Research) and incubated at 25°C for 10 minutes 

initially, then at 48°C for 30 minutes for the reverse transcription to occur, and 

finally at 95°C for 5 minutes to inactivate the enzyme. The cDNA products 

were then stored at -20°C.

2.5.3 Q uantitative (Real-time) PCR

RNA was transcribed into cDNA as described above. Quantitative (Q) PCR 

was perform ed using the Applied Biosystems system, in which SYBR green 

fluourophore is incorporated into the DNA products as they are synthesised. 

The progress of the PCR reaction is followed by measuring the fluorescence 

of the incorporated SYBR green. The initial am ount of RNA template present 

can be deduced from  the progress of the PCR reaction.

O ligonucleotide primers were synthesised by the Cancer Research UK 

oligonucleotide synthesis service, and were provided purified and quantified.

Target

gene

Forward primer sequence Reverse primer sequence

p l6 INK4A GAAGGTCCCTCAGACATCCCC CCCTGTAGGACCTTCGGTGAC

A rf CCCTCGTGCTGATGCTACTG ACCTGGTCTTCTAGGAAGCGG

P-Actin TGCAGGTTGGATGGTCAGACAC GCCAAGACCACCAGCACG

Cyclin

D2

GGAACCTGGCAGCTGTCACTC ACATGGCAAACTTAAAGTCGGTG

T ab le  2.3 O ligonucleotides used as Q-PCR primers.

To minimise pipetting errors, mastermixes of the primers for each gene, and

the cDNA samples were set up in triplicate. Aliquots from  these m asterm ixes
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were used to establish 50pl reactions containing lp l cDNA, 1 (lxI primer mix 

(forward and reverse, lOpM), and 15pl SYBR green (Applied Biosystems). 

For each cDNA mastermix, a control reaction was set up containing P-actin 

primers. 23pl duplicates of this mix were dispensed into wells of a 96 well 

ABI PRISM optical reaction plate (Applied Biosystems). The plate was 

sealed with an ABI PRISM Optical Cap (Applied Biosystems), centrifuged to 

remove any bubbles, and then placed in an ABI PRISM 7700 sequence 

detector machine and run on the following programme: 50°C for 2 minutes, 

95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds, and 60°C 

for 1 minute. Data were collected and analysed using the sequence detector 

v l.7 a  software. The data were normalised to the p-actin value for each cDNA 

sample.
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Chapter 3

Regulation of the CDKN2a  locus in response to Myc

p l6 INK4a plays a pivotal and w ell-documented role in the defences of HDFs 

against cellular stresses and oncogenic insults, while the alternative product of 

the CDKN2a  locus, ARF, also plays a potential role in the prevention of 

transform ation in HDFs. This places the CDKN2& locus at the centre of 

cellular defences against oncogenic insults. However, the regulation of the 

CDKN2a  locus is still poorly understood.

A berrant Ras activity promotes signalling via the Ras/Raf/M EK signalling 

pathway and the p38 MAPK pathway, leading to increased transcription of 

p l6 ,NK4a and cell cycle arrest (Serrano et al. 1997; Zhu et al. 1998; Ohtani et al. 

2001; W ang et al. 2002; Drayton et al. 2003; Deng et al. 2004). Previous 

work in this laboratory had shown that expression of exogenous Myc in HDFs 

also causes a cell cycle arrest accom panied by an increase in the protein levels 

of p l6 INK4a and ARF (Drayton et al. 2003). Interestingly, this arrest is not 

observed in the Q34 and Leiden fibroblast strains. These cells are derived 

from  patients with mutations in both copies of the CDKN2a locus, and are 

functionally p l6 INK4a-deficient, whilst retaining functional ARF (Brookes et al. 

2002; Huot et al. 2002). Further experiments utilising a tamoxifen regulated 

M yc-ER fusion protein (Littlewood et al. 1995) showed that a modest increase 

in INK4a  RNA levels could be observed over a timecourse of 24 hours. This 

induction was not blocked by cyclohexim ide suggesting it was a direct effect
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of Myc on the lNK4a  locus (S. Drayton, personal communication). These 

preliminary findings suggested that it would be informative to investigate the 

regulation of the INK4a/ARF  locus by Myc and in particular to consider 

w hether INK4a  and ARF  were responding independently via elements in their 

respective promoters or as part of a co-ordinated response to oncogenic 

challenge.

3.1 The effects of Myc overexpression on p !6 1NK4a and ARF

As a starting point, we wanted to confirm the induction of p l6 ,NK4a and A RF at 

the protein and RNA level in response to retrovirally expressed c-Myc. To 

simplify interpretation of the results by removing any confounding effects of 

senescence or cell cycle arrest, the experim ents were performed in the 

p l6 INK4a-deficient Q34 cell strain that had been transduced with hTERT. For 

com parison, parallel cultures were infected with a retrovirus encoding H-Ras, 

a known activator of p l6 INK4a, or an empty vector control. Pools of infected 

cells were selected in bleomycin for two weeks, and separate lysates were 

prepared for RNA and protein analysis to look at the induction of INK4a  and 

A R F  at the protein and RNA levels. Relative protein levels were determined 

by western blotting, and RNA levels were analysed by quantitative PCR.

In response to Myc overexpression, INK4a  RNA was induced 8-fold, and AR F  

RNA was induced 4-fold (Figure 3.1). For comparison, cyclin D2, a direct 

Myc target (Bouchard et al. 1999), was induced 13-fold at the RNA level 

(Figure 3.1). Interestingly, INK4a  RNA was induced only 3-fold and A R F  

RNA was not induced at all in response to the overexpression of oncogenic 

Ras. The induction of genes at the RNA level was mirrored at the protein
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Figure 3.1 In duction  o f p l 6 ,NK4a a n d  A R F  a t th e  RN A  an d  p ro te in  
level in response to re tro v ira l exp ress io n  o f M yc
Q 3 4  cells  ex p re ss in g  te lo m e ra s e  w e re  in fe c te d  w ith  a re trov irus  
ex p ress in g  M y c ,  R as  o r  an  e m p ty  v e c to r  co n tro l  v iru s  (p B a b e ,niro). 
P o o ls  o f  ce lls  w e re  r e c o v e re d  b y  s e le c t io n  in th e  a p p ro p r ia te  d ru g
(A) S am p les  (1 6 p g )  o f  to ta l p ro te in  w e r e  f r a c t io n a te d  by  S D S -P A G E  
in 12%  and  15%  gels ,  t r a n s fe r re d  to  m e m b r a n e ,  an d  the  im m u n o b lo ts  
w e re  d ev e lo p e d  w i th  a n t ib o d ie s  a g a in s t  th e  in d ic a te d  p ro te in s  fo l lo w ed  
by  E C L .
(B) S am p le s  o f  R N A  (2 p g )  R N A  w e re  r e v e rs e  t ra n s c r ib e d  in to  c D N A  
w h ic h  w a s  th en  u sed  as a  t e m p la te  fo r  Q u a n t i ta t iv e  P C R . T h e  da ta  
w e re  n o rm a l is e d  to  B e ta -A c t in .  C y c l in  D 2  w a s  u sed  as an  e x a m p le  o f  
a  g en e  w h ic h  is d irec t ly  in d u c e d  b y  M y c  a t th e  R N A  level.
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level. A large induction of p l6 INK4a protein was seen in response to the 

overexpression of Myc, and a sm aller induction was seen in response to 

oncogenic Ras (Figure 3.1). A lthough basal levels of A RF are usually below 

the detection limits by western blotting, the overexpression of Myc caused a 

sufficient increase to make A RF detectable (Figure 3.1).

3.2 The role of p !6 1NK4a in the arrest of HDFs in response to overexpressed 

Mvc

The crucial role of p l6 INK4a in im plem enting an arrest in response to Myc was 

confirm ed using wild-type fibroblasts in which p l6 INK4a expression had been 

specifically ablated by RNA interference. A pRetroSuper based plasm id 

containing a validated short hairpin sequence (shRNA) against human INK4a  

was obtained from Reuven Agami (Voorhoeve and Agami 2003) and was used 

to ablate p l6 INK4a expression in Hs68 fibroblasts, a strain of normal fibroblasts 

obtained from  neonatal foreskin.

Expression of exogenous Myc in Hs68 cells was accom panied by an increase 

in p l6 1NK4a levels and the cells underwent a cell cycle arrest, as shown by a 

decrease in BrdU incorporation (Figure 3.2). In contrast, the Hs68 cells 

expressing an shRNA targeting p l6 INK4a showed a reduced induction of 

p j£iNK4a ancj not un(jerg0 a cejj CyCje arrest.

When a similar experiment was performed in the Q 34 strain of p l6 1NK4a- 

deficient fibroblasts the induction of p l6 INK4a in response to Myc was less 

pronounced than in Hs68 cells, and was only slightly reduced by the presence 

of p l6 INK4a shRNA (Figure 3.2). As expected, these cells did not arrest as 

dem onstrated by the sustained BrdU incorporation. A lthough this is in line
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F ig u re  3.5 T he effects o f M yc-E R  in d u c tio n  on IN K 4a  and  A R F  
RNA levels over a 24 h o u r  tim eco u rse
H s68  ce lls  ex p re ss in g  the  M y c - E R  fu s io n  p ro te in  w e re  t rea ted  w ith  4- 
O H  ta m o x ife n  for the  in d ica ted  t im es .  S a m p le s  o f  R N A  (3 jug) w ere  
rev e rse  t ran sc r ib ed  in to  c D N A  w h ic h  w a s  th en  u sed  as a tem p la te  for 
Q u a n ti ta t iv e  P C R . T h e  d a ta  w e re  n o rm a l i s e d  to B e ta -A ctin .  T h e  
Q u a n ti ta t iv e  P C R  w a s  re p e a te d  th re e  t im e s ,  an d  the  av e ra g e  v a lu e  for 
e ach  t im e p o in t  is sh o w n .  T h e  e r ro r  b a r  c o r re s p o n d s  to the  s tandard  
d ev ia t io n  b e tw e e n  th e se  th ree  s e p a ra te  re p ea ts .  C y c l in  D 2 w a s  used  as 
an  e x a m p le  o f  a  g en e  w h ic h  is d i re c t ly  in d u c e d  b y  M y c  at the  R N A  
level.
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with the fact that both p l6 INK4a alleles in the Q34 cells are functionally 

impaired (Huot et al. 2002), the interpretation is com plicated by the modest 

effects on p 161NK4a levels. These results highlight one of the difficulties in 

using retroviral infection of primary cell pools as a standard procedure. 

Levels of expression and the ensuing consequences can be highly variable, 

and the effectiveness of knockdown achieved by shRNA is also variable. 

Nevertheless, the data suggest that the ability of Myc to arrest primary human 

fibroblasts is dependent on functional p l6 INK4a, confirming previous 

observations using the pl6-deficien t Leiden fibroblast strain (Drayton et al.

2003). Intriguingly, the small induction of p l6 1NK4a in response to oncogenic 

stress observed in the Q34 cells, was later observed in the pl6-com prom ised 

Milan fibroblasts (Chapters 4  and 5) suggesting that the p 16-status of the cells 

may affect the ability of oncogenes to induce p l6 INK4a.

3.3 Factors affecting the ability of Mvc to activate p 16INK4a transcription

We wanted to determine whether the ability of Myc to affect p l6 1NK4a levels 

could be attributed to its effects on transcription. It is well docum ented that 

Myc always acts in conjunction with its binding partners Max and Mad 

(Sakamuro and Prendergast 1999). During the transcriptional activation of 

Myc target genes, Myc binds to E box sequences as a heterodimer with Max, 

and the basal levels of Max can therefore have a significant bearing on the 

response. To examine this issue in the context of HDFs, the coding sequence 

for Max was cloned into the pBabe retroviral vector and introduced into Q34 

fibroblasts expressing telomerase and Myc. Levels of p !6 INK4a in the control
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Figure 3.3 The effects of M ax and  a M adM yc fusion p ro tein  on the 
induction of p l6 INK4a by Myc
Q34 cells expressing telomerase and Myc were infected with an empty 
retrovirus control (pBabeb,eo) and retrovirus expressing Max (A) or a 
MadMyc fusion protein (B). Pools of cells were recovered by selection in 
the appropriate drug.
(A) Samples (16pg) o f total protein were fractionated by SDS-PAGE in 
an 15% gel, transferred to membrane and the immunoblot was developed 
with antibodies against the indicated proteins followed by ECL
(B) Samples (30pg) of total protein were fractionated by SDS-PAGE in 
an 15% gel, transferred to membrane and the immunoblot was developed 
with antibodies against the indicated proteins followed by ECL.



and Max expressing cells were identical (Figure 3.3) suggesting that Max is 

not limiting for the induction of p l6 INK4a expression in this system.

The Bernards’ laboratory had previously described a MadMyc fusion protein 

(Berns et al. 1997) in which the amino terminal transactivation domain of Myc 

was replaced by the transcriptionally repressive domain of Mad. As the 

MadMyc fusion protein still contains the dim erisation and DNA binding 

domains of Myc, it exerts a dom inant negative effect by binding to Myc 

binding sites and repressing transcription.

A cDNA encoding the M adM yc fusion protein was cloned into the pBabe 

retroviral vector. Recom binant retrovirus expressing M adM yc and empty 

vector control retrovirus were used to infect Q 34 cells expressing telomerase 

and Myc. There was a significant decrease in the level of p l6 INK4a in the cells 

expressing the M adM yc fusion protein when compared to the control cells 

(Figure 3.3) suggesting that the effect of Myc on p l6 ,NK4a depends on its 

ability to bind DNA and activate transcription. However, this does not 

confirm  that Myc is binding to the INK4a  promoter, as Myc could be acting 

indirectly via another target gene.

3 .4 The contribution of Mvc to the endogenous levels of p !6 1NK4a in fibroblasts

Myc is known to be present, and presumably functional, in exponentially 

growing cell cultures. As Myc activates p l6 INK4a transcription, we thought it 

was interesting to investigate whether Myc was contributing to the basal level 

of p l6 1NK4a protein in human diploid fibroblasts. Cells nearing the end o f their 

replicative lifespan were used for these studies to maximise the endogenous 

levels of p l6 INK4a. Having become aware that the Q 34 fibroblast strain is
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Figure 3.4 The con tribu tion  of Myc to the basal level of p l6 1NK4a in 
Hs68 fibroblasts nearing  the end of th e ir  replicative lifespan
Hs68 cells nearing the end of their replicative lifespan were infected with 
an empty retrovirus control (pBabebleo’ or pRetroSuperpuro) or with 
retrovirus expressing either a MadMyc fusion protein (A) or an shRNA 
targeting Myc (B). Pools o f cells were recovered by selection in the 
appropriate drug.
(A) Samples (16pg) of total protein were fractionated by SDS-PAGE in an 
15% gel, transferred to membrane and the immunoblot was developed with 
antibodies against the indicated proteins followed by ECL
(B) Samples (25pg) of total protein were fractionated by SDS-PAGE in 
10% and 15% gels, transferred to membrane and the immunoblots ware 
developed with antibodies against the indicated proteins followed by ECL.



heterogeneous, with individual cells in the culture undergoing senescence at 

different times (Brookes et al. 2004), we decided to use the Hs68 strain of 

human diploid fibroblasts as em bryonic and neonatal strains appear to be more 

homogeneous and therefore more suited for this type o f analysis.

The MadMyc fusion protein (described previously) or an empty vector control 

were expressed in Hs68 cells at (PD46). Additionally, an siRNA that targets 

human c-M yc was found in the literature (van der W etering et al. 2003), and 

appropriate oligonucleotides were cloned into the pRetroSuper retroviral 

vector for production of shRNA. When this vector was used to infect Hs68 

fibroblasts (PD42), there was a partial but significant reduction in the level of 

Myc (Figure 3.4).

Interestingly, ablation of Myc function with either MadM yc or shRNA caused 

the cells to undergo a dramatic phenotypic change. Compared to control cells, 

fibroblasts lacking functional Myc became distressed in appearance, their 

proliferation rate declined, and the culture failed to expand. However, in both 

circumstances levels of endogenous p l6 INK4a declined following Myc ablation 

(Figure 3.4), although this reduction was only modest in the experim ent using 

shRNA targeting Myc. While these experim ents cannot preclude an indirect 

effect of impaired cell growth on the endogenous levels of p l6 INK4a, these 

experiments strongly suggest that Myc contributes to the basal level of 

p l6 1NK4a in HDFs.

3.5 Is the CDKN2a  locus co-ordinatelv regulated in response to Mvc?

As Myc is known to activate ARF, it was interesting to consider whether Myc 

targets separate elements in the INK4a  and A R F  promoters or has a more
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global effect on expression from  the entire locus. To try to minimise the 

variability inherent in the use o f retroviral expression of Myc, normal Hs68 

fibroblasts were infected with a retrovirus encoding the tam oxifen regulated 

M yc-ER fusion protein. This system had the additional advantage that it could 

potentially be used for experim ents using cyclohexim ide to determ ine if Myc 

was acting directly on the INK4a  and A R F  promoters, or indirectly via an 

intermediate.

RNA and protein samples were prepared at 4  hour intervals, over a period of 

24 hours following the addition of 40H -tam oxifen. As judged by quantitative 

PCR, p l6 INK4a RNA levels increased only 2-fold over this tim ecourse, while a 

maximal 4-fold increase in A R F  RNA levels could be seen by 24 hours 

(Figure 3.5). This induction is modest when com pared to the 14-fold induction 

of cyclin D2 RNA, a direct transcriptional target of Myc (Figure 3.5). 

Curiously, this substantial increase in cyclin D2 RNA was not m irrored by a 

corresponding increase in the protein levels (data not shown). The reasons are 

unclear but may reflect some control o f cyclin D2 at the level of mRNA 

translation.

The relatively weak induction o f INK4a  and A R F  com pared to that of cyclin 

D2, suggested that the CDKN2a  locus may not be behaving conventionally in 

response to Myc. It also contrasted with previous indications that retroviral 

delivery of Myc caused a relatively robust induction of p l6 1NK4a albeit after 

several days of drug selection (Figure 3.1). A possible explanation for these 

differences would be that the effects of Myc on the CDKN2a  locus are indirect 

or require long-term alterations to chrom atin structure. A lternatively, we 

noted that the levels of Myc expressed follow ing retroviral infection continued
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to rise for several days or even weeks after drug selection (data not shown). 

The reasons are presently unclear, but sim ilar effects have been observed with 

Ras. Thus, in theory, the induction o f p l6 INK4a could simply parallel the 

accumulation of Myc.

To distinguish between these two possibilities we decided to conduct a 

longterm timecourse using the M yc-ER tam oxifen regulated system in the 

TIG3 strain of fibroblasts. The TIG3 strain of foetal fibroblasts were 

considered ideal for these experim ents as they have been shown to undergo a 

relatively synchronous and robust induction of p l6 1NK4a at senescence. 

However, upon addition of 4-OH tam oxifen, to activate the M yc-ER construct, 

there was a significant degree of apoptosis that persisted until day 7. By day 

11, the culture had started to expand at an increased rate, suggesting selection 

for cells that had overcome apoptosis or cell cycle arrest in response to Myc. 

Despite these complications, cyclin D2 RNA levels were significantly 

increased by day 2 following addition o f tam oxifen and continued to rise up to 

day 11, where induction was alm ost 20-fold. By com parison, the changes in 

INK4a  and A R F  RNA levels were relatively m odest (2 to 4-fold) and rather 

erratic (Figure 3.6). As there was also some variability in the control cells that 

had not received tamoxifen, it is difficult to interpret these effects in term s of 

timescale of induction.

On the contrary, there was a clear increase in p l6 1NK4a protein levels by day 2 

post-induction reaching a m axim um  after 4  days (Figure 3.6). Cyclin D2 

protein levels also increased in response to the induction of Myc (Figure 

3.5A), but as previously noted (Figure 3.5), the increase in cyclin D2 protein
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F igure  3.6 T he response o f H D Fs to th e  in duc tion  o f M yc-E R  over a 
tim ecourse of 11 days
TIG 3 cells ex p ress in g  M y c - E R  w ere  t re a ted  w ith  4 0 H - ta m o x i f e n  at day  
0, or kept u n trea ted  as con tro l  cells. C u l tu re s  w e re  p assa g ed  if  they 
reached  conf luency .
(A) S am p les  (3 0 p g )  o f  total p ro te in  w e re  f rac t io n a ted  by  S D S -P A G E  in a 
15%  gel, t ransfe rred  to m em b ra n e ,  an d  th e  im m u n o b lo t  w as  deve loped  
w ith  an tibod ies  aga ins t  the  in d ica ted  p ro te in s  fo l lo w ed  by  EC L.
(B) and  (C) S am p les  o f  R N A  (3 p g )  R N A  w e re  rev e rse  t ran sc r ib ed  into 
c D N A  w h ich  w as  th en  u sed  as a  te m p la te  for  Q u a n ti ta t iv e  P C R . The 
d a ta  w e re  n o rm al ised  to B e ta -A ctin .  T h e  Q u a n ti ta t iv e  P C R  w as  repea ted  
th ree  tim es ,  and  the  av e rag e  v a lu e  fo r e a c h  t im e p o in t  is sh o w n .  T he  erro r 
b ar  co r re sp o n d s  to the s tandard  d e v ia t io n  b e tw e e n  th ese  th ree  separate  
repeats .  C y c lin  D 2 w as  u sed  as an  e x a m p le  o f  a  g en e  w h ic h  is d irec tly  
in d u ced  b y  M yc at the  R N A  level.
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was not as large as might have been expected from  the induction at the RNA 

level while A RF protein rem ained below detectable levels.

The large am ounts of cell death observed in these experiments give rise to 

concerns that there may have been a selection for cells expressing high levels 

o f p l6 INK4a during the course o f the experiment, which would have caused an 

increase in the levels of p l6  expression during this timecourse. Concerns have 

also been raised that levels o f the M yc-ER fusion protein could vary during 

the tim ecourse experim ents, as an increase in the levels of other ER-fusion 

proteins has been observed in response to addition of tamoxifen (Vance et al.

2004). However, the effects o f tam oxifen on the level of the M yc-ER protein 

over this tim escale is currently unknown.

3.6 T im ecourse o f p !6 INK4a induction bv Raf-ER

For com parison, and to expose any problem s inherent in the experimental 

design, a parallel experim ent was conducted using TIG3 cells expressing a 

tam oxifen regulated Raf-ER YY protein. Raf acts downstream of Ras and has 

been shown to activate the signalling pathways leading to increased 

transcription o f p l6 1NK4a (Zhu et al. 1998). Following addition of 4 0 H - 

tam oxifen, the TIG3 Raf-ER fibroblasts underwent a cell cycle arrest. INK4a  

RNA levels did not increase significantly until day 4, after which point they 

remained high (Figure 3.7). This was mirrored by an increase in p l6 INK4a 

protein levels by day 4  (Figure 3.7). A previous report also using a tamoxifen- 

regulated Raf-ER YY construct (Zhu et al. 1998) dem onstrated a noticeable 

induction o f p l6 INK4a protein after 16 hours, and a further increase was seen 

after 32-48 hours. However, a marked increase in p l6 INK4a was not observed
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Figure 3.7 T he effects of R af-E R  induction  on INK4a  and  A R F  RNA levels 
over a tim ecourse of 11 days
TIG3 cells expressing Raf-ER YY were treated with 40H-tam oxifen at Day 0, or 
kept untreated as control cells. Cultures were passaged if they reached confluency.
(A) Samples (30pg) o f total protein were fractionated by SDS-PAGE in an 15% 
gel, transferred to membrane and the immunoblot was developed with antibodies 
against the indicated proteins followed by ECL.
(B) and (C) Samples o f RNA (3pg) RNA were reverse transcribed into cDNA 
which was then used as a template for Quantitative PCR. The data were 
normalised to Beta-Actin. The Quantitative PCR was repeated three times, and the 
average value for each timepoint is shown. The error bar corresponds to the 
standard deviation between these three separate repeats.



over this timescale in these experim ents, and the reasons underlying this 

discrepancy remain unclear. The data on A R F  RNA are again difficult to 

interpret because of considerable variability in the Q PCR signal, even in the 

control cells. The general view, however, is that Ras and Raf should not 

activate ARF expression in human cells and this is confirm ed by previous 

results (Figure 3.1).

There are several areas of concern in the interpretation o f these results. In the 

first place the tam oxifen-regulated constructs used in these studies may be 

‘leaky’, which could in part explain why the activation o f INK4a  expression is 

not as robust as that observed in response to retroviral expression o f Myc and 

oncogenic Ras. Secondly, some degree of variability might have been 

introduced by the need to split cell cultures at various stages. Finally, the 

modest changes in lNK4a  and A R F  RNA levels make it more difficult to 

obtain reliable Q-PCR data. It is how ever striking that the effects of Myc and 

Ras on p l6 INK4a expression are m ore readily dem onstrated at the protein rather 

than RNA levels. Taken together, these results suggest that the CDKN2a  

locus may be undergoing co-ordinate regulation in response to Myc, while the 

two genes encoded by this locus undergo differential regulation in response to 

Ras.

3.7 Increase in p !6 1NK4a protein levels in response to Mvc and Raf at an 

individual cell level

Previous experim ents follow ed the average induction of p l6 INK4a and A RF at 

the RNA and protein levels across a pool o f cells. However, within a culture, 

individual cells may respond heterogeneously to the overexpression of Myc,
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Figure 3.8 Induction of p l6 INK4a in response to M yc-ER  a t the individual cell 
level over a tim ecourse of 11 days
TIG3 cells expressing Myc-ER were treated with 40H -tam oxifen at Day 0, and were 
fixed after the indicated number of days. Cells were stained using 
immunofluorescence against p l6 1NK4a and p21CIP1. Cell nuclei were visualised using a 
DAPI stain. Pictures were taken at 40x magnification.



or to induction of the Ras signalling pathway. Cells, particularly those derived 

from  surface exposed sites may have undergone differing levels of stress 

which may affect the basal levels of p l6 1NK4a and A RF and their ability to 

activate transcription of these genes in response to oncogenic insults (Benanti 

and Galloway 2004; Brookes et al. 2004). The possibility should also be 

considered that the induction o f p l6 INK4a may be binary, i.e. either off or on 

within a single cell, and w ould show “digital” rather than “analogue” kinetics. 

To try to address these issues, we elected to use im munohistochemical and 

fluorescent stains to m onitor increased p l6 INK4a expression in individual TIG3 

cells expressing M yc-ER or Raf-ER. TIG 3 fibroblasts were used as they are 

from  a foetal source and should respond hom ogenously to an oncogenic insult. 

Fibroblasts were plated out on glass slides and at 2, 4  and 11 days following 

addition o f 40H -tam oxifen , the cells were fixed and stained for 

im munofluorescence. The R af-ER  protein was found to be fused to GFP, and 

the secondary antibody used to detect p l6 INK4a in these experiments emitted 

light at the same w avelength as GFP, so a parallel set of slides of TIG3 Raf- 

ER cells were used to visualise p l6 INK4a induction by im munohistochemistry.

In response to increased levels o f Myc, cells underwent a morphological 

change becom ing sm aller and m ore transform ed in appearance (Figure 3.8). 

At the beginning of the tim ecourse, some cells had background levels of 

pj^iNMa t^at be visualised by im munofluorescence. This may have been 

a genuine background, or these could be cells in which the M yc-ER construct 

was ‘leaky’, as some background apoptosis was observed in uninduced 

cultures o f TIG 3 M yc-ER. During the tim ecourse, the intensity of p l6 ,NK4a 

staining in individual cells increased, as did the proportion of cells staining
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positive for p l6 INK4a. However, even after 11 days, some cells did not have 

increased levels of p21CIPI or p l6 INK4a, as DAPI stained nuclei could be seen 

which were in cells that were negative for either p21CIP1 or p l6 1NK4a. Some 

cells stained positive for a single CDK inhibitor, and double positive cells 

could also be observed (Figure 3.8).

In response to activation o f the R af pathway, cells underwent a distinct 

morphological change becom ing elongated and m ore “spindly” in appearance 

(Figure 3.9). It was also observed that by day 11, DAPI foci could be 

observed in the nuclei of cells in which Raf-ER had been induced (Figure 3.9), 

although these were not detected in cells expressing M yc-ER. The presence of 

these foci may suggest that the cells had undergone a senescence program m e 

and formed SAHF, as described in other settings (N arita et al. 2003). 

Excepting the presence of DAPI foci, the pattern of p l6 INK4a induction in 

response to Raf-ER, was rem iniscent o f that seen in response to M yc-ER. In 

the control cultures, some cells could be seen with low levels o f p l6 INK4a but 

the number of cells expressing p l6 INK4a and the level o f expression increased 

throughout the timecourse. However, unlike the M yc-ER cells, all the Raf-ER 

cells expressed high levels of p l6 INK4a by day 11.

These observations supported the idea that induction of p l6 INK4a may be 

“binary”, an idea which has been previously proposed (Brookes et al. 2004). 

However, fluorescence detection m ethods may have threshold levels which 

make analogue variations in p l6 INK4a levels appear digital. These results are 

consistent with the idea that the response o f individual cells to overexpressed 

Myc is heterogeneous and some cells do not induce p l6 1NK4a. Perhaps other 

factors can affect the expression o f p l6 INK4a in response to Myc, and some
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Figure 3.9 Induction  of p l6 INK4a a t the  single cell level in response to induction  of 
R af-ER
TIG3 cells expressing Raf-ER YY were treated with 40H -tam oxifen at Day 0. Cells 
were fixed after the indicated number o f days. p l6 INK4a was visualised using 
immunohistochemistry (A), and cell nuclei were visualised using a DAPI stain (B). 
Pictures were taken at 40x magnification using phase contrast, and fluoresence to 
visualise p l6 1NK4a.



cells may be predisposed to activate p l6 INK4a expression. A report in the 

literature suggests that fibroblasts becom e predisposed to undergo a cell cycle 

arrest in response to Ras as a result o f previous cellular stress (Benanti and 

Galloway 2004). This may be analogous to the response of fibroblasts to 

Myc, and cells that have sustained m ore stress may be more likely to activate 

p l6 lNK4a expression. Interestingly, we observed that p l6 1NK4a did not appear to 

be present in the cell nuclei but appeared to be m ainly localised in the 

cyctoplasm of the cells. This is at odds with the involvem ent of p l6 INK4a in the 

cell cycle, but has been previously reported (Nilsson and Landberg 2005).

3.8 Is cell division necessary for the induction o f INK4a  expression in 

response to M vc?

We were interested in finding an explanation for the slow kinetics of p l6 INK4a 

induction, and the reasons that this induction appears to be binary. There is 

considerable evidence in the literature that transcription from  the INK4a  locus 

can be affected by chrom atin rem odelling of the locus. Polycomb group 

proteins are known to repress transcription o f both INK4a  and A R F  (Jacobs et 

al. 1999a; Gil et al. 2004), and the locus is susceptible to CpG methylation. 

This led us to consider the intriguing hypothesis that fibroblasts may need to 

replicate their DNA and undergo cell division to remove chromatin imprints 

before p l6 INK4a expression can occur. A ttem pts to use chemical inhibitors, 

such as aphidicolin, to block cell division proved unsatisfactory because it 

exacerbated the apoptosis observed follow ing induction of the M yc-ER 

construct. Serum  starvation was equally problem atic and as an alternative 

strategy, Hs68 cells expressing the M yc-ER fusion protein were grown to
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Figure 3.10 T he effects o f con tac t inh ib ition  on the induction 
of p l6 INK4a in response to  M yc-E R
Hs68 cells expressing M yc-ER were treated for 5 days with 
4 0 H  tamoxifen or cold ethanol as a control. Samples (25pg) of 
total protein were fractionated by SDS-PAGE in an 15% gel, 
transferred to membrane and the immunoblot was developed 
with antibodies against the indicated proteins followed by ECL.
Cl = contact inhibited T  = 4-OH tamoxifen



confluency, and kept in this state for several w eeks to ensure that all the cells 

were quiescent. Some o f the Hs68s w ere replated at sub-confluent levels and 

re-entered the cell cycle, while other cells were kept contact inhibited. Myc- 

ER was induced by the addition o f 4-O H  tam oxifen, and 5 days post 

induction, lysates were prepared for analysis by western blotting. A large 

increase in p l6 INK4a was observed in the cycling cells in which Myc had been 

induced, but a far sm aller increase was observed follow ing the addition of 4- 

OH tam oxifen to the contact inhibited cells (Figure 3.10). However, the 

interpretation of these results w ere confounded by the observation that there 

was increase in p l6 INK4a levels in response to contact inhibition. This is 

consistent with a recent report in the literature (Ben-Saadon et al. 2004), in 

which the authors reported that p l6 INK4a was degraded in a cell density 

dependent m anner by the ubiquitin system , and that sparse cell cultures 

expressed less p l6 INK4a than dense cell cultures.

From these crude initial experim ents, it is difficult to conclude that cell 

division is indeed required for expression o f p l6 1NK4a in response to M yc, as 

there is likely to be a general decrease in protein synthesis in the density 

arrested cells.

3.9 The effects o f 5-azacvtidine on p !6 1NK4a induction

It is known that p l6 ,NK4a expression increases upon the treatm ent of cells with 

5-azacytidine to rem ove m ethylation im prints, and methylation is a known 

m echanism  by which p l6 INK4a expression is silenced during cancer (Herman et 

al. 1995; M erlo et al. 1995; O tterson et al. 1995; Costello et al. 1996; Lo et al. 

1996). As an alternative approach we considered the possibility that cell
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Figure 3.11 T he effects o f tre a tm e n t w ith 5-azacytidine on the 
induction of p l6 INK4a by M yc-E R
(A) U 20S  cells were treated with 5pM  5-Azacytidine for 48h.
(B) Hs68 M yc-ER cells were treated with 5pM  5-Azacytidine for 64 
hours before being additionally treated with 4 0 H  tamoxifen for a further 
24 hours.
Samples o f RNA (3pg) RNA were reverse transcribed into cDNA which 

was then used as a template for Quantitative PCR. The data were 
normalised to Beta-Actin.



division and replication o f the cellular DNA may be erasing a methylation 

im print, thereby allow ing the subsequent transcription of INK4a  RNA. If this 

was true, then pre-treatm ent o f fibroblasts with 5-azacytidine to remove any 

m ethylation would facilitate the induction o f INK4a  by Myc-ER.

To verify the effectiveness o f the 5-azacytidine concentration used, U 20S  

cells were treated with 5pM  5-azacytidine for 48 hours, and samples were 

taken for RNA analysis by quantitative PCR. The INK4a  locus is methylated 

in this cell line, and using this protocol, p l6 1NK4a expression was reactivated as 

determ ined by quantitative PCR (Figure 3.11).

Hs68 cells expressing the tam oxifen inducible M yc-ER construct were pre­

treated with 5pM  5-azacytidine for 64 hours, before induction with tamoxifen. 

Samples were taken for RNA analysis 24 hours post-induction. In the 

untreated cells induced with 4-O H  tam oxifen, INK4a  RNA levels increased 

2.5-fold over the 24 hours tim ecourse (Figure 3.11). No induction of INK4a  

RNA was seen in the induced cells that had been pre-treated with 5- 

azacytidine. H owever, the pre-treated cells had an increased basal level of 

INK4a  RNA relative to the untreated controls (Figure 3.11) suggesting that 

there may be some m ethylation of this locus in normal human diploid 

fibroblasts.
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3.10 Discussion

O verexpression o f Myc is generally viewed as prom oting growth and 

proliferation, and it does this by altering the level of many cellular proteins. 

Among the reported Myc target genes are proteins such as CDK4, cdc25, 

cyclin D1 and cyclin D2 (G alaktionov et al. 1996; Bouchard et al. 1999; 

Perez-Roger et al. 1999; C oller et al. 2000; H erm eking et al. 2000), and 

increased levels o f these proteins helps to drive the cell cycle. M yc also 

dow n-regulates, or overrides the effects of, a num ber of cell cycle inhibitors 

such as p21CIP1, p27KIP1, and p l5 ,NK4b (Bouchard et al. 1999; Perez-Roger et al. 

1999; Claasen and Hann 2000; C oller et al. 2000; Hermeking et al. 2000; 

O 'Hagan et al. 2000; Staller et al. 2001; Herold et al. 2002; Seoane et al.

2002).

In contrast to its effects on cell division and growth, Myc also engages anti­

proliferative m echanism s such as apoptosis. A lthough it has generally been 

assumed that the activation o f A R F in response to Myc is pro-apoptotic, 

overexpression o f A R F in H D Fs causes a cell-cycle arrest. Myc has also been 

reported to arrest HDFs in a p53-dependent manner via the upregulation of 

p2 i c|pi (p e jsher et al. 2000). This suggests that Myc may cause a cell-cycle 

arrest and in our system , M yc activates p l6 INK4a and A RF (Drayton et al. 

2003)(Figures 3.1 and 3.6), and can arrest HDFs in a p l6 INK4a-dependent 

fashion (Figure 3.2). This resem bles the response of HDFs to overexpression 

of oncogenic Ras, and reinforces the idea that cells may trigger a cell-cycle 

arrest if they sense aberrant oncogenic signalling. However, the ability of 

Myc to arrest cells rem ains controversial, and the outcome of Myc 

overexpression is likely to depend on the balance of pro- and anti-proliferative
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factors induced in an individual cell. The effects of Myc may even be dose- 

dependent, with the level o f M yc expressed by an individual cell determ ining 

its fate.

O verexpression o f Myc has been reported to activate expression of hTERT, by 

inducing transcription o f the gene directly (W ang et al. 1998; G reenberg et al. 

1999; Wu et al. 1999; C erezo et al. 2002; M cM urray and McCance 2003; 

V eldm an et al. 2003). A lthough this would be expected to facilitate 

im m ortality, only one report suggests that expression of Myc alone can 

im m ortalise cells (Gil et al. 2005). Even the ability of M yc to activate hTERT 

remains controversial, and som e reports suggest that activation of hTERT 

expression by Myc may be insufficient to increase telom erase activity (Gewin 

and G alloway 2001; Oh et al. 2001; Cerezo et al. 2002). It has also been 

reported that expression o f exogenous hTERT can activate Myc (W ang et al. 

2000). W ork in this laboratory has shown that expression of Myc does not 

autom atically activate hTERT (S D rayton, unpublished observations), but may 

increase the probability of hTERT activation or increase the levels of hTERT 

in cells in which the gene is already active.

M icroarray and C hIP  analyses suggest that in addition to the target genes 

already discussed, Myc has m ultiple target genes and exerts both positive and 

negative effects on their expression (Coller et al. 2000; Eisenman 2001; 

Fernandez et al. 2003; H aggerty et al. 2003). Indeed, it seems possible that 

Myc is involved in the general facilitation of transcription, as a large num ber 

of Myc target genes are induced only weakly by Myc alone (Fernandez et al.

2003). It is also becom ing apparent that M yc m odulates the expression of 

genes by influencing the chrom atin structure at the locus working in
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com bination with a variety o f co-factors including GCN5, TIP60, TIP58, 

TIP59 (M cM ahon et al. 1998; Cheng et al. 1999b; W ood et al. 2000; Betz et 

al. 2002; Frank et al. 2003; Liu et al. 2003; O ruetxebarria et al. 2004; Vries et 

al. 2005). A nother Myc co-factor is Snf5, which has been shown to reactivate 

pl£iNK4a eXpression Up0n its reintroduction into Snf5-null tum our cells (Cheng 

et al. 1999b; Betz et al. 2002; O ruetxebarria et al. 2004; Vries et al. 2005). 

However, we have been unable to dem onstrate induction of p l6 1NK4a in HDFs 

in which Snf5 expression is intact (R  Jones, unpublished observations), 

reinforcing the point that expression o f a gene depends upon a balance of 

factors, only one o f which may be rate-lim iting within a certain system.

There has been little insight into the nature of M yc binding domains beyond 

the canonical E-box and variations thereof (Blackwell et al. 1993). A scan of 

the IN K 4a/A RF  hum an genom ic locus revealed m ultiple potential binding 

sites, but attem pts to detect M yc at these sites using ChIP (in collaboration 

with Bernard Luscher, A achen, G erm any), proved unrewarding, and it still 

remains unclear w hether p l6 INK4a is a direct transcriptional target of Myc. In 

support o f this hypothesis, it has been dem onstrated that INK4a  RNA levels 

increase in response to overexpressed Myc. Also, the induction of p l6 INK4a in 

response to Myc can be reduced by co-expression o f the M adMyc fusion 

protein, dem onstrating that the m echanism  by which Myc affects p l6 INK4a 

levels involves the DNA binding activities o f Myc. However, the induction of 

INK4a  in response to M yc is very slow when com pared to that of the well- 

docum ented M yc target gene cyclin D2. The effects of Myc on p l6 INK4a 

expression at the RNA level are reproducibly modest, and a greater induction 

of p l6 1NK4a is seen at the protein level suggesting that Myc may affect p l6 INK4a
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levels by m echanism s other than transcription. A ttem pts to address these 

doubts using protein synthesis inhibitors are confounded by the tim escale of 

the response, reporter assays using M yc are notoriously susceptible to the 

balance o f proteins such as M yc and Mad.

In sum m ary, while efforts to uncover the m echanism  by which Myc activates 

p l6 1NK4a were confounded by the heterogeneity of the response of individual 

cells and different fibroblast strains, it rem ains clear that Myc is able to 

activate both p l6 INK4a and A R F reinforcing the role of these proteins as 

im portant tum our suppressors in the response to oncogenic challenges within 

the cell.
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Chapter 4

Characterisation of the Milan fibroblast strain

The R24P variant of p l6 INK4a has been described in multiple m elanoma 

fam ilies (Ruas and Peters 1998; Della Torre et al. 2001). W hile arginine 24 is 

not conserved between the four different m em bers of the human INK4 fam ily 

of CDK inhibitors, it lies on the edge o f a conserved alpha-helix region (Ruas 

and Peters 1998). B inding experim ents using in vitro  translated products have 

suggested that this variant o f p l6 INK4a retains some ability to associate with 

CDK6, but is incapable o f binding to  CD K 4 (H arland et al. 1997) (Figure 4.1). 

This im plies that it should be possible use the R24P variant to distinguish 

between the tw o functions of p l6 INK4a, inhibition of C D K4 and CDK6.

W hile analysing the transm ission o f the R24P mutation in a fam ily showing 

inherited predisposition to m elanom a, our collaborators Gabriella Della Torre 

and D om enico Delia (Instituto N azionale Tum ori, M ilan) identified an 

individual who is hom ozygous for the R24P variant o f p l6 INK4a (Figure 4.2). 

We obtained prim ary skin fibroblasts from  a biopsy conducted on this patient, 

and designated this strain as “ M ilan” . As well as providing information on the 

relative im portance of C D K 4 and CD K 6 in senescence and transform ation, it 

was anticipated that the M ilan cells w ould enable us to consolidate and extend 

our observations with other strains o f p l6 INK4a-deficient fibroblasts.
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Figure 4.1 B inding of the  R 24P  v a ria n t of p l6 INK4a to CDK4 and  
CDK6
CDK4, CDK6, wild-type p l6 INK4a, and the p l6 INK4a variants R24P, 
and M52I (a non-binding mutant), were translated from pBluescript 
and radio-labelled with methionine. The p l6 INK4a variants were then 
incubated with the CDK4 and CDK6 proteins for 30 minutes at 
30°C. The mixture was then incubated with 5pl DPAR12 antibody 
raised against p l6 INK4a, and 25pl protein A beads in high salt buffer 
containing 3% BSA and protease inhibitors. Proteins bound to the 
beads were separated by SDS-PAGE in a 12% gel, and transferred to 
membrane which was then incubated with film.

Figure provided courtesy o f Sharon Brookes



Figure 4.2 Pedigree of the fam ily from  w hich the hom ozygous c a rr ie r  of 
R24P was identified
Allelic status o f INK4a  is indicated in red where known, and the presence of a 
black quarter indicates that the patient has suffered from cancer. MM indicates 
that the patient has suffered from metastatic melanoma, while the number 
indicates the age at which this was discovered. The homozygous patient 
(identified by *) is the patient who presented with metastatic melanoma at the 
age of 45.
(Figure provided by Gabriella della Torre, Instituto Nazionale Tumori, Milan, 
Italy)
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F igure 4.3 A R F function  in M ilan fib rob lasts
Milan cells expressing the E2F-ER fusion protein, or an empty vector 
control (pBabepuro) were treated with 4-OH tamoxifen for 24 hours before 
samples were taken.
(A) Samples (25p,g) o f total protein were fractionated by SDS-PAGE in a 
15% gel, transferred to membrane, and the immunoblot was developed 
with antibodies against the indicated proteins followed by ECL
(B) Samples o f total protein (lm g ) were incubated with 20pl protein A 
beads and 5pl rabbit polyclonal anti-ARF antibody. Proteins bound to the 
beads were separated by SDS-PAGE in a 10% gel, transferred to 
membrane, and the im munoblot was developed with an antibody against 
MDM 2 followed by ECL.



4 .2 Ability of the R24P variant o f p !6 1NK4a to bind to CDK4 and CDK6 

Previous experim ents investigating the CDK binding properties of the R24P 

variant of p l6 INK4a have relied on overexpression of the protein, or in vitro 

translation. The availability o f the M ilan cells m ade it possible to ask w hether 

the endogenous R24P protein also showed a capacity to discriminate between 

CDK4 and CDK6. Lysates from  M ilan cells and normal Hs68 fibroblasts 

were im m unoprecipitated w ith polyclonal antibodies against p l6 1NK4a, CDK4 

or CDK6 and the im m une com plexes were analysed by immunoblotting.

In the control Hs68 fibroblasts, endogenous p l6 INK4a co-precipitated with both 

CDK4 and CD K6 and in the reciprocal im munoprecipitation, CD K4 and 

CDK6 co-precipitated with endogenous p l6 INK4a (Figure 4.4). In contrast in 

Milan cells, the p l6 INK4a im m une com plexes contained CDK6, but not CDK4. 

However, it was not possible to detect im m unoprecipitation of endogenous 

pl£iNK4a jn e jtjjer the C D K 4  or CD K 6 im m unoprecipitates (Figure 4.4). 

Although it was expected that C D K 4 im m unoprecipitates would not contain 

pj^iNK4a some binding o f p l6 ,NK4a to CD K 6 should have been apparent in the 

CDK6 im m unoprecipitate. The likely explanation is technical in that the 

R24P variant is not recognised by the JC8 m onoclonal antibody used routinely 

for im m unoblotting o f p l6 ,NK4a. O ther monoclonal antibodies give much 

weaker signals when used for im m unoblotting and in the panel shown in 

Figure 4.4, the R24P was detected with a rabbit polyclonal antibody. 

However, M ilan fibroblasts also contain relatively low levels of CDK6, 

com pared to Hs68 cells com pounding the difficulty in detecting this binding.
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Figure 4.4 Binding properties of the R24P v arian t of p l6 ,NK4a
Samples of Milan cells (PD23) and wild-type Hs68 cells (PD41) were prepared. 
Samples of total protein (500pg) were incubated with 20pl protein A beads and 
5/d rabbit polyclonal antibodies against the indicated proteins. Proteins bound to 
the beads were separated by SDS-PAGE in a 12% gel, transferred to membrane, 
and the immunoblot was developed with antibodies against the indicated proteins 
followed by ECL. While the wild-type p l6 INK4a expressed in Hs68 cells could be 
detected using the monoclonal antibody JC8, the R24P variant of p l6 INK4a cannot 
be detected by this antibody so it was visualised using the rabbit polyclonal 
antibody SC468. (-ve denotes negative control)



4.3 Com position of p !6 1NK4a and cvclin D1 com plexes in senescent M ilan cells

It is generally assumed that the accum ulation o f p l6 INK4a that occurs in 

senescent cells contributes to the proliferative arrest via inhibition o f CD K 4 

and CDK6. As the R24P variant is presum ably unable to inhibit CDK4, it was 

of interest to consider what happens to the Cyclin D-CDK com plexes when 

Milan cells reach senescence. Lysates prepared from  senescent M ilan (PD48) 

and normal control fibroblasts were im m unoprecipitated with antibodies 

against p l6 INK4a and cyclin D1 and the im m une com plexes analysed by 

western blotting.

In the control fibroblasts, CD K 4 was m ainly present in a com plex with cyclin 

D1 and p21CIP1, while CDK6 was predom inantly bound to p l6 INK4a (Figure 

4.5). In the senescent M ilan fibroblasts, none o f the CD K4 was bound to 

pl^iNiaa^ confirm ing ^ e  results from  previous experim ents, but there was little 

discernible difference in the distribution of CD K 6 between cyclin D1 and 

pl£iNK4a reiatjve t0 the control.

These observations suggest that senescence in both control and M ilan 

fibroblasts is accompanied by a loss of cyclin D 1/CD K6 com plexes, while 

cyclin D1/CDK4 com plexes are still present. W hile these observations are 

consistent with previous data (F Gregory, unpublished observations)(Stein et 

al. 1999), they also raise further questions about the com position of the cyclin 

D1/CDK4 com plexes at senescence and their possible activity. Evidence 

exists that these com plexes are inactive at senescence, and their activity is 

probably inhibited by the presence of high levels o f p21clpl at senescence (F 

Gregory and E Sanij, unpublished observations), although the presence of 

p21CIP1 in these com plexes in M ilan cells is unconfirmed.
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Figure 4.5 Com position of Cyclin D1 and  p l6 INK4a com plexes in senescent 
M ilan and  UZU fibroblasts
Samples of Milan cells (PD48) and control infant skin fibroblasts, UZU cells 
(PD58) were prepared. Samples o f total protein (350pg) were incubated with 
50pl protein A beads and 5pJ rabbit polyclonal antibodies against the indicated 
proteins. Proteins bound to the beads were separated by SDS-PAGE in a 12% 
gel, transferred to membrane and the immunoblot was developed with 
antibodies against the indicated proteins followed by ECL. The R24P variant 
of p l6 ,NK4a was visualised using the SC468 rabbit polyclonal antibody.



4.4 A nalysis of the function o f the R24P variant of p !6 1NK4a

O verexpression of wild-type p l6 INK4a in normal human diploid fibroblasts 

causes a cell cycle arrest. In contrast, overexpression of a non-functional 

p j £ i N K 4 a  v a r j a n t  j s  u n a b i e  to halt the growth of HDFs. Previous work in the 

laboratory had suggested that the R24P variant of p l6 1NK4a was also unable to 

inhibit the proliferation of HDFs (M Ruas, unpublished observations). The 

assumption at the time was that proliferation was being driven by residual 

CDK4 activity which would not be affected by R24P. To confirm  and extend 

these observations, HA-tagged versions o f w ild-type p l6 INK4a, the R24P 

variant, and R87P, a proven non-functional mutant o f p l6 1NK4a (Ranade et al. 

1995; Parry and Peters 1996; Ruas and Peters 1998; W alker et al. 1999; 

Yarborough et al. 1999), were expressed in TIG3 cells by retroviral infection 

along with an empty vector control. In a parallel set of experim ents, the same 

viruses were introduced into TIG3 cells in which CD K 4 expression was 

knocked down with shRNA constructs targeting CDK4. A fter selection, 

lysates were analysed by im m unoblotting to confirm  expression of the 

exogenous proteins, and the proliferation of the different cell types was 

monitored using a proliferation assay based on the crystal violet stain. 

Expression o f the different p l6 1NK4a constructs was confirm ed by 

im munoblotting with an HA antibody (Figure 4.6). As shown in the right 

hand panel, only a partial knockdown o f CD K 4 was achieved in the cells 

expressing shRNA constructs targeting CDK4, possibly because of the use of 

the same drug selectable m arker in all the retroviral vectors used (Figure 4.6). 

It was also observed that during these experim ents, wild-type p l6 INK4a was 

expressed at higher levels that the R24P and R87P variants.
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W ithin the limits o f this experim ent, neither R24P nor R87P was able to block 

the proliferation o f TIG3 cells, irrespective of the levels of CDK4. In contrast, 

wild-type p l6 INK4a caused a profound arrest under both conditions (Figure 4.6). 

This suggests that although the R24P variant retains some binding to CDK6, 

the effects o f this binding are insufficient to inhibit the proliferation of the 

TIG3 cells. E ither the R 24P variant o f p l6 INK4a is unable to bind to and inhibit 

a significant fraction of the CD K 6 present within these cells, or the R24P may 

be unable to inhibit the function of the CDK6 that it is bound to.

4.5 Effects o f pRb and p53 ablation on the lifespan of Milan fibroblasts

Primary human fibroblasts undergo a define num ber of divisions before 

undergoing an irreversible cell cycle arrest known as senescence, or M l. This 

is accom panied by phenotypic changes in the cell, with the cell become larger 

and flatter, and the nucleolus becom ing more prominent. Historical analyses 

of the m echanism s that im plem ent M l have revealed contributions from  both 

pRb and p53. O vercom ing both these pathways allows the fibroblasts to 

continue grow ing until they reach a second stage term ed M2, or crisis. A t this 

stage there is no net increase in the num ber of cells present in the culture. 

Cells attem pt to undergo division but this is unsuccessful and results in cell 

death. D isabling one or other o f these pathways results in a partial bypass of 

M l, with cells arresting at an interm ediate stage between M l or M2 termed 

M Int or M l.5. For exam ple, overcom ing the p53 pathway in wild-type 

fibroblasts using the viral oncoprotein HPV E6 allows the fibroblasts to 

undergo an extended num ber o f population doublings before undergoing an
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Figure 4.7 Im m unob lo t analysis of the expression of exogenous p ro teins 
in M ilan cells
Milan cells were infected with retrovirus encoding CDK6, CDK4, HPV16 
E6, SV40 Large T antigen, Bmi-1 and an empty vector control (pBabepuro). 
Pools o f cells were recovered by selection in the appropriate drug. Samples 
(15pg) o f total protein were fractionated by SDS-PAGE in an 10% and 15% 
gels, transferred to membranes, and the immunoblots were developed with 
antibodies against the indicated proteins followed by ECL.



M l.5 arrest which phenotypically resembles M l (Bond et al. 1999). Based 

on precedents set by other fibroblast strains with compromised p l6 INK4a, Milan 

cells were predicted to have an extended lifespan culminating at M l.5, with a 

phenotype resem bling that seen at senescence.

To assess w hether the senescence of M ilan fibroblasts reflects an M l or M l.5 

stage, recom binant retroviruses were used to introduce HPV E6, which results 

in destruction o f p53, or SV40 T-A g which binds to and functionally 

inactivates p53 and pRb. A fter selection, the proliferation of Milan cells was 

monitored until they stopped dividing and the maximum PDs achieved 

compared with analogous findings with Leiden, Q34 and control cells (data 

kindly provided by J Rowe and S Brookes). Lysates were also prepared for 

protein analysis. A lthough it is technically difficult to confirm the expression 

of HPV E6, a decrease in p53 levels was observed in E6 expressing cells while 

an increase in p53 levels is seen in cells expressing Large T antigen in line 

with expectations (Figure 4.7).

W hereas Leiden and Q 34 cells reached maximum PDs of 60 and 88 

respectively (Brookes et al. 2004), more in line with embryonic rather than 

adult origins, M ilan cells senesced after only 39 PDs (Figure 4.8). This is 

typical o f the normal range for adult fibroblasts, and the rate of proliferation of 

Milan cells resem bles that o f other adult fibroblasts strains. These results 

should be interpreted with the caveat that as with all such measurements, there 

is some uncertainty about the exact number of PDs required to reach 

confluence before the first passage. It is also worth noting that the 

m easurem ent for lifespan in M ilan fibroblasts was made using cells expressing
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Figure 4.8 The effects of the viral oncoproteins E6 and Large T on the 
behaviour of Milan cells at senescence
Fibroblasts were infected w ith retrovirus encoding SV40 Large T antigen, 
HPV 16 E6, or an em pty vector control (pBabepuro). After the recovery o f 
pools o f cells by selection in the appropriate drug, growth o f the culture was 
monitored. Upon reaching confluence, cultures were split 1 to 4, equivalent 
to 2 population doublings.
904, Leiden and Q 34 data is shown courtesy o f Janice Rowe and Sharon 
Brookes.



an em pty antibiotic resistance vector, compared with the values for Leiden and 

Q34 fibroblasts which were achieved with cells which were uninfected.

In normal human diploid fibroblasts, such as the 904 strain of adult skin 

fibroblasts, SV40 T-A g enables the cells to continue growing until they reach 

M2 or crisis. In contrast, HPV 16 E6, which only ablates the p53 pathway 

causes them  to arrest at M l.5 (Figure 4.8). Expression of either Large T 

antigen or E6 in M ilan fibroblasts allowed them to continue growing until they 

reach M 2, and this is the same trend which is observed in Leiden and Q34 

cells (Figure 4.8). This suggests that only the p53 pathway needs to be 

disabled for cells with non-functional p l6 INK4a to reach crisis, and supports the 

hypothesis that p l6 INK4a-com prom ised fibroblasts arrest at an intermediate 

stage between senescence and crisis, presumably because the pRb pathway is 

disabled by the absence o f functional p l6 INK4a. Thus despite the unusual 

properties o f the R24P variant M ilan cells are similar to the Q34 and Leiden 

strains in term s of the im plem entation of senescence.

4.6 The effects o f Bmi-1 on the lifespan of Milan cells

As further confirm ation that they have a partially disabled senescence 

response, M ilan fibroblasts were infected with retrovirus encoding the Bmi-1 

protein or em pty vector control. Bmi-1 is a polycomb group protein which 

represses transcription from  the INK4a/ARF  locus, and extends the lifespan of 

cultures of normal HDFs (Jacobs et al. 1999a; Itahana et al. 2003b). After 

selection in purom ycin, cell proliferation was followed and lysates were 

prepared to determ ine the relative protein concentrations by western blotting. 

The basal level o f p l6 INK4a in the M ilan cells is already low, but this was
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F igure 4.9 T he effects of Bmi-1 on the  lifespan of M ilan fibroblasts
Fibroblasts were infected with retroviruses encoding Bmi-1 and an 
empty vector control (pBabepuro). After the recovery of pools of cells by 
selection in the appropriate drug, growth of the culture was monitored. 
Upon reaching confluence, cultures were split 1 to 4, equivalent to 2 
population doublings.
(904 and Leiden data is shown courtesy of Sharon Brookes)



decreased further upon expression o f Bmi-1 (Figure 4.7), suggesting that Bmi- 

1 had been successfully expressed in these cells. The lifespan of Milan cells 

was not extended upon expression of Bmi-1 (Figure 4.9), and in this respect 

M ilan cells are behaving like fibroblasts which are completely deficient in 

functional p l6 1NK4a(Brookes et al. 2004).

4.7 The effects o f expression o f exogenous CDK4 and CDK6 on the lifespan 

of Milan fibroblasts

It has becom e relatively com m on practice to try to phenocopy p l6 INK4a- 

deficiency by overexpression o f CD K 4 or a mutant version (R24C) that is 

unable to bind to and is therefore insensitive to INK4 proteins (Hahn et al. 

2002; Wei et al. 2003b). Indeed expression of exogenous CDK4 or CDK6 has 

been shown to extend the lifespan of hum an diploid fibroblasts (M orris et al. 

2002)(S Brookes and M Ruas, unpublished observations). However, CDK4 

and CDK6 were also found to extend the lifespan of Q34 and Leiden cells 

which do not have functional p l6 INK4a, and mutants of CDK4 and CDK6 that 

do not bind to p l6 INK4a can also extend the lifespan of HDFs (S Brookes and M 

Ruas, unpublished observations). This suggests a more complex mechanism, 

and that in addition to titrating p l6 INK4a, the excess CDK4 and CDK6 may act 

as a sink for p21CIP1 and p27KIP1 and relieve inhibition of CDK2. In view of the 

unusual properties o f the R24P variant it was interesting to investigate whether 

CD K4 and CD K 6 could extend the lifespan of Milan fibroblasts.

Retroviruses encoding CDK4, CDK6 and an em pty vector control were used 

to infect M ilan cells and, after selection in puromycin, cells were kept in
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Figure 4.10 T he effect o f exogenous C D K 4 and  CDK6 on the lifespan of 
M ilan fib rob lasts
Milan cells were infected with retrovirus encoding CDK4, CDK6, or an 
empty vector control (pBabepuro). A fter recovery of pools of cells by selection 
in the appropriate drug, growth of the culture was monitored. Upon reaching 
confluence, cultures were split 1 to 4, equivalent to 2 population doublings.



continuous culture until they reached senescence. Samples were taken for 

protein analysis and the expression of exogenous CDK4 and CDK6 was 

confirm ed by W estern B lotting (Figure 4.7). Exogenous CDK4 appears to 

have a reduced m obility in SDS-PA G E gels com pared to the endogenous 

protein and this has been observed in other experim ents (S Brookes, M Ruas 

unpublished observations). H owever, the plasm id has been fully sequenced 

and com pared to G enB ank entries, and contains the full-length wild-type 

cDNA (R Jones, data not shown). Expression of exogenous CDK4 and CDK6 

extended the lifespan o f M ilan cells relative to the control cells (Figure 4.10). 

This suggests that the effect cannot be attributed to titration of endogenous 

pj£iNK4a as c d k 4  js unabie to bind to the R24P variant of p l6 INK4a present in 

these cells.

4.8 The ability o f kinase dead CD K 4 and CDK6 to extend the lifespan of 

HDFs

To further investigate the underlying mechanism, we investigated whether the 

kinase activity o f CD K 4 and CD K 6 was necessary for lifespan extension, 

rather than their ability to sequester p21CIP1 and p27KIP1. A kinase dead mutant 

of CD K 4 (CD K 4 KD) in which residue 157 in the A TP-binding site is 

changed from  a Asp to an Asn, and a corresponding A spl63A sn mutant of 

CDK6 (CD K 6 KD) were cloned into the pBabepuro or pBabebleo retroviral 

vectors respectively.

W ild-type TIG 3 fibroblasts were then infected with retroviruses encoding

CDK4, CD K 4 KD, CDK6, CD K6 KD and empty vector controls. CDK4 KD,

CDK6 and CD K6 KD also have a carboxy-terminal HA tag. After selection,
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F igure 4.11 T he affin ity  o f k inase  dead  C D K 4 and  CD K 6 fo r Cyclin D l, 
p21( lpl and  p l6 ,NK4a
TIG S ce lls  w e re  in fec ted  w ith  re tro v iru s  e n c o d in g  C D K 4 .  C D K 4  K D . C D K 6 . 
C D K 6  K D , and  e m p ty  b le o m y c in  an d  p u ro m y c in  vec to rs  (pB abe) .  Pools  o f  
ce lls  w e re  re co v e red  b y  se lec t io n  in th e  ap p ro p r ia te  drug.
(A) S am p les  (2 5 p g )  o f  to tal p ro te in  w e re  frac t io n a ted  by S D S -P A G E  in an 
12% gel. t ran sfe rred  to m e m b ra n e ,  an d  th e  im m u n o b lo t  w as  d ev e lo p e d  w ith  
an t ib o d ies  ag a in s t  the  in d ica ted  p ro te in s  fo l lo w ed  by ECL.
(B) S am p les  o f  to tal p ro te in  (5 0 0 p g )  w e re  in cu b a ted  w ith  2 0 p l  p ro te in  G 
beads  and  2 p l  o f  an t i -H A  m o n o c lo n a l  an t ib o d y .  P ro te ins  bo u n d  to the b ead s  
w e re  sep a ra ted  by  S D S -P A G E  in a 12%  gel. t ransfe rred  to m em b ra n e ,  and  
the im m u n o b lo t  w as  d e v e lo p e d  w ith  an t ib o d ie s  ag a in s t  the ind ica ted  p ro te ins  
fo l lo w ed  by  E C L . (C y c l in  D l  sh o w s  as a b ack g ro u n d  b and  in the C D K 4  
blot, as the m e m b ra n e  h ad  p re v io u s ly  b ee n  p ro b e d  for C yc lin  D l .)
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Figure 4.12 T he ro le o f the  k inase activity of CD K4 and  CD K 6  in lifespan 
extension caused by exogenous expression of the kinases
TIG3 cells were infected with (A) CDK4, CDK4 KD and empty puromycin 
vector (pBabe), or (B) CDK6, CDK6 KD, and empty bleomycin resistance 
vector (pBabe). After recovery o f pools of cells by selection in the appropriate 
drug, growth o f the culture was monitored. Upon reaching confluence, cultures 
were split 1 to 4, equivalent to 2 population doublings.



Chapter 5

Transformation of p l6 ,NK4a-deficient Milan fibroblasts

Despite the unequivocal evidence that p l6 ,NK4a accum ulation contributes to the 

spontaneous senescence o f hum an cells in culture, it is clearly not essential 

and the signals that activate p l6 INK4a expression during growth under standard 

conditions o f tissue culture rem ain uncertain. However, a more cogent case 

can be made for the role o f p l6 INK4a in oncogene-m ediated senescence. As 

shown in C hapter 3, both Ras and M yc induce the expression of p l6 INK4a, 

which may be responsible fo r the subsequent arrest of HDFs. In view of the 

intriguing properties o f the R 24P variant o f p l6 INK4a, it was interesting to 

exam ine the ability of M ilan fibroblasts to arrest in response to oncogenic Ras.

5.1 The effect o f oncogenic Ras on the proliferation of Milan fibroblasts

The V 12 allele o f H-Ras w as introduced into M ilan and Hs68 fibroblasts by 

retroviral infection alongside an em pty vector control. A fter selection, cell 

lysates w ere prepared to confirm  Ras expression by western blotting (Figure 

5.1). As expected, overexpression of Ras resulted in an upregulation of 

pj^iNK4a jn jqs6g cells, although only a negligible induction of p l6 INK4a was 

observed in the M ilan cells. P roliferation was m onitored by growing cells in 

the presence o f BrdU labelling m edium  for 19 hours, followed by fixation and 

staining to determ ine the percentage o f cells that had incorporated BrdU.
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Figure 5.1 T he response o f M ilan fib rob lasts to the overexpression of 
oncogenic R as
Milan fibroblasts and control Hs68 cells were infected with retrovirus 
encoding Ras, or an empty vector control (pBabepuro). Pools of cells were 
recovered by selection in the appropriate drug.
(A) Samples (30pg) o f total protein were fractionated by SDS-PAGE in 10% 
and 15% gels, transferred to membranes, and the immunoblots were 
developed with antibodies against the indicated proteins followed by ECL. 
The p l6  variants were detected using the SC468 rabbit polyclonal antibody.
(B) Cells were cultured in BrdU labelling medium for 19 hours before 
staining for BrdU incorporation. The proportion of stained versus unstained 
cells was determined by counting at least 300 cells of each type. The average 
of these counts is plotted, and the standard deviation between counts is shown 
as the error bar.



Hs68 fibroblasts showed a significant decrease in BrdU labelling in response 

to oncogenic Ras (Figure 5.1), while M ilan cells showed a relatively slight 

decrease in proliferation. Previous w ork in the laboratory has indicated that 

the p l6 INK4a-deficient Leiden and Q 34 fibroblast strains undergo a transient 

period o f slow er grow th in response to Ras overexpression (Brookes et al. 

2002; H uot et al. 2002), and a sim ilar phenom enon is likely to occur in Milan 

cells. This adaptation period is unlikely to reflect the outgrowth of mutant 

clones as it occurs over a fairly short tim escale and the cultures do not show 

visible signs o f colony form ation.

5.2 The transform ation potential o f p l6 1NK4a deficient fibroblasts

Experim ents using Leiden cells im m ortalised with telomerase showed that

upon expression o f exogenous M yc or oncogenic Ras the cells became capable

of form ing small colonies in soft agar (D rayton et al. 2003). Co-expression of

Myc and Ras produced larger colonies, and the cells had now acquired the

ability to form  tum ours w hen injected into nude mice (Drayton et al. 2003).

Interestingly, the tum ours generated using the Leiden cells fell into two

distinct categories. In the first experim ent, tum ours arose at low frequency

(5/16), and after a long latency that indicates probable selection for an

additional event. C ytogenetic analyses suggested that these tum ours

com prised mono- or oligoclonal outgrow ths o f three dominant clones, one of

which had clearly shut dow n expression o f ARF. However, all 5 tum ours had

w ild-type p53 and expressed very high levels o f Ras (Drayton et al. 2003). In

the second experim ent, tum ours arose at 8/8 injection sites and all o f them

were found to have the same biallelic mutations in p53 suggesting a
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m onoclonal origin (S Brookes and H Rodway, unpublished observations). 

Curiously, these tum ours expressed m uch low er levels of oncogenic Ras than 

the first group.

To address doubts that the Leiden cells may be particularly sensitive to 

transform ation, we were keen to validate these observations in a different cell 

background in w hich p l6 INK4a function was com prom ised. Because of 

restrictions on the use o f the Q 34 cells strain in anim al experiments, the Milan 

cells provided an ideal opportunity  to repeat and extend the previous work. In 

particular, we wanted to determ ine w hether the efficiency of tum origenesis 

could be increased by shR N A -m ediated knockdow n of p53 or ARF.

5.3 G eneration o f a panel o f M ilan T ert cells expressing com binations of 

Mvc. Ras and shRNA targeting A R F

Milan cells were im m ortalised by infection with a retrovirus encoding hTERT 

(pBabepuro-Tert) to form  M ilan T ert (M T) cells. A fter selection, the activity of 

telom erase in these cells was confirm ed by T R A P assay (data not shown). 

The cells w ere then subjected to repeated rounds of retroviral infection and 

selection to build up a panel o f MT cells expressing com binations of Myc, Ras 

and A RF shRNA (Figure 5.2). Unfortunately despite repeated attempts, it was 

not possible to recover blasticidin resistant cells using the empty control 

vector (pW ZLblast) used in parallel with the plasm id encoding Myc. In these 

circum stances, uninfected cells served as the control, but in all other instances 

each infection included an em pty vector control.

These rounds o f sequential infection and selection generated a panel o f Milan 

Tert (M T) cells, expressing Ras (M TR cells), M yc (M TM  cells), and a
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Figure 5.2 Generation of a panel of Milan cells expressing telomerase, Myc, 
Ras and shRNA against ARF
Milan cells expressing telom erase (from  the pBabepuro vector) were infected with 
retrovirus encoding an shRN A  targeting ARF, or an empty vector control 
(pRetroSuperhygro). A fter the recovery o f a pool o f cells by selection in 
hygromycin, cells w ere subjected to an additional round o f infection with 
retrovirus encoding H-Ras, or em pty vector control, which was produced using 
the G P+E system. Cells w ere subsequently selected in zeocin, and either infected 
with retrovirus encoding c-M yc (pW Z L blast)> or left uninfected as control cells. 
This generated a panel o f  M ilan tert cells expressing com binations o f A rf shRNA, 
H-Ras and c-M yc.



CDK4

Figure 5.3 Im m unob lo t analysis  o f M ilan  te r t  cells expressing com binations 
of Myc, R as an d  A R F shR N A
Extracts were prepared from the pools o f M ilan tert cells whose generation was 
described in section 5.3. Sam ples (25pg) o f total protein were fractionated by 
SDS-PAGE in an 12% gel, transferred to membrane, and the immunoblot was 
developed with antibodies against the indicated proteins followed by ECL.



com bination of Ras and M yc (M TRM  cells), together with a parallel series 

containing shRNA against A R F  (M Ta, M TaR, M TaM , and M TaRM  cells). 

Cell extracts were analysed to confirm  the expression of Ras and Myc and the 

effects of A RF knockdow n (Figure 5.3). The im m unoblot showed that 

exogenous Ras was being expressed at relatively low levels in the appropriate 

cells, and appeared as a band o f reduced mobility com pared to endogenous 

Ras. A sim ilar effect has previously been observed by others in the 

laboratory, but the m olecular basis is unclear (S Brookes, unpublished data). 

The knockdown o f A R F could not be confirm ed by western blot due to the 

difficulty of visualising A R F with the available antibodies, and there was an 

inconsistent effect on p53 levels.

5.4 Generation of a panel o f M ilan T ert cells expressing com binations of 

Mvc. Ras and shRNA targeting p53

As one of the intentions was to com pare the effects o f A RF knockdow n versus 

p53 knockdown an analogous panel of cells was generated, designated 2M T, 

2M TR, 2M TM , 2M TRM  cells both with and w ithout p53 shRNA. In this 

instance, hTERT was in pB abehygro vector and p53 shRNA in pR etroSuperpur0. 

The expression of the relevant proteins was assessed by im um unoblotting 

(Figure 5.4). Expression o f Ras was observed in the correct cell lines, and the 

presence o f shRNA targeting p53 coincided with ablation of the p53 protein, 

showing that an efficient knockdow n o f p53 had been achieved. M yc was 

expressed in the expected cell lines, but only a low level o f expression was 

observed.
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Figure 5.4 Im m u n o b lo t analysis o f M T cells expressing com binations of 
Myc, R as an d  p53 shR N A
Extracts were prepared from the pools o f Milan tert cells whose generation was 
described in section 5.4. Sam ples (16pg) o f total protein were fractionated by 
SDS-PAGE in 10% and 15% gels, transferred to membranes and the 
immunoblots were developed with antibodies against the indicated proteins 
followed by ECL.
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Figure 5.5 Effects of A R F o r  p53 knockdow n on M ilan cell pro liferation
(A) Milan cells expressing an shRNA targeting ARF, or empty vector control 
(pRetroSuper*1̂ 0), and (B) M ilan cells expressing a pool of 3 shRNAs 
targeting p53, or empty vector control (pRetroSuperPuro) were plated out in 24 
well plates with lxlO 4 cells per well, and triplicate wells of each cell type. 
Proliferation was monitored by following the uptake of crystal violet stain by 
the different cell types. The average value across the triplicates is plotted, and 
the standard deviation between the triplicates is shown as the error bar.



5.5 The effect o f A RF knockdow n on the proliferation of Milan fibroblasts

The M ilan cells expressing A R F shRNA appeared to grow faster than the 

corresponding control cells. To confirm  these observations, cell proliferation 

was follow ed for nine days using a crystal violet proliferation assay (Figure 

5.5). For com parison, proliferation o f M ilan tert cells expressing shRNA 

against p53 was also m onitored in the same way. The A RF and p53 shRNAs 

appeared to have equivalent effects on proliferation, confirm ing published 

observations that p l6 INK4a-deficiency can synergise with a deficiency in the 

p53 pathway leading to an increase in proliferation rate (Voorhoeve and 

Agami 2003). These observations suggest that cells which have silenced both 

products o f the CD KN2a  locus w ould gain a large proliferative advantage over 

their w ild-type neighbours, and this increased proliferation may give rise to 

further cancer prom oting m utations. Interestingly, these results also suggest 

that A RF is functioning in norm al H DFs in tissue culture, which is unexpected 

given that levels o f A R F  expression at the protein and RNA levels are 

virtually undetectable. T his also counters the accepted view that A RF 

responds to aberrant rather than physiological stimuli.

5.6 R equirem ent for anchorage independent growth of Milan fibroblasts

Three weeks after the final infection with retrovirus expressing Myc, the panel 

of MT cells described above w ere plated out in 0.2% soft agar. A fter five 

weeks in soft agar, the percentage o f cells form ing multicellular colonies was 

calculated by m icroscopic visualisation of at least 500 cells. The cell pools 

were also scored for the form ation o f at least one m acroscopically visible 

colony (Table 5.1).
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Cell Type
Experiment 1: 

% colony 
forming cells

Macroscopically
visible?

Experiment 2: 
% colony 

forming cells
Macroscopically

visible?
MT 1 N o 0 No

MT+Ras 2 No 1 No

MT+Myc 1 1 Yes 5 Yes

MT+Ras+Myc 2 No 1 Yes

MT+ARF shRNA 1 7 Yes 1 1 No

MT+ARFshRNA+Ras 36 Yes 31 Yes

MT+ARFshRNA+Myc 1 1 Yes 4 Yes

MT+ARF shRNA+Ras+My c 20 Yes 38 Yes

Table 5.1 Anchorage independent growth of Milan Tert cells expressing 
combinations of ARF shRNA, Myc and Ras
The panel o f M T cells w ere plated out in 0.2%  agarose three weeks after the 
final infection. A fter five w eeks, counts w ere m ade o f the percentage o f cells 
forming colonies (Experim ent 1). The cells had been frozen down, but were 
subsequently recovered (except M Ta and M TR w hich were continuously 
growing in culture), and grow n on for several weeks before replating in 
0.2% agarose (Experim ent 2). 23 days after plating colony formation was 
scored. A t least 500 cells o f each type w ere counted, and the presence o f 
m acroscopic colonies was also noted.



A lthough M TM  cells form ed a significant num ber o f anchorage independent 

colonies, at least some o f w hich were visible m acroscopically, the M TR and 

M TRM  cells had an unexpectedly low frequency o f colony form ation. Based 

on previous observations with Leiden cells, this may be because the cells had 

not had sufficient time to adapt to the increased levels o f M yc and Ras. To 

address this possibility, cells that had been frozen down were recovered and 

grown on for several weeks before replating in soft agar. D espite this 

increased period o f adaptation, few er colonies were form ed in the second 

experim ent (Table 5.1). However, for technical reasons colony form ation was 

scored after a shorter tim e, w hich may have affected the num ber o f colonies 

formed. The frequency with which M TR, M TM  and M TRM  cells form ed 

anchorage independent colonies was still low er than observed during the 

analogous experim ent with Leiden cells (Table 5.1) (D rayton et al. 2003).

5.7 The effects of A RF knockdow n on the anchorage independent growth of 

Milan fibroblasts

In both experim ents, it was obvious that in all the cells pools except the M TM  

cells, the presence of shRNA against A RF allowed M ilan cells to form  

anchorage independent colonies with an increased frequency. Photographs of 

representative colonies from  experim ent 1 were taken using a light m icroscope 

(Figure 5.6). These clearly show that the presence o f A R F shRNA also allow s 

the colonies form ed to reach a larger size, probably due to the proliferative 

advantage conferred on M ilan cells when A R F is ablated using shRNA. 

Surprisingly, MT cells expressing A R F shRNA  alone (M Ta) showed a 

substantial frequency o f colony form ation. This suggested that perhaps the
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Figure 5.6 Effects of ARF knockdown on the size of anchorage independent colonies form ed by M ilan T ert cells
Pictures w ere taken  o f  the co lon ies described  in T ab le  5.1 using phase con trast and a lOx objective
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Figure 5.7 Effects of ARF knockdow n on the anchorage independent grow th of Leiden T ert cells
Leiden cells expressing telomerase were infected with a retrovirus encoding an shRNA targeting ARF, and an empty vector control 
(pRetroSuperhygro). After selection in the appropriate drug, cells were subjected to a second round of retroviral infection with retrovirus 
encoding c-Myc or an empty vector control (pBabepuro). After selection in the appropriate drug, cells were plated out in 0.2% agarose.. 
Twenty days after plating, colonies were stained with Giemsa, and photographed.



M ilan cells were predisposed to form  colonies upon loss o f ARF. To check 

that these effects of A R F shRNA were not an artefact associated with M ilan 

cells, we looked at the effects o f A R F ablation in another p l6 INK4a-deficient 

fibroblast line. Leiden cells expressing telom erase, and either shRNA 

targeting ARF, a control shRNA targeting p l6 INK4a, or em pty vector were 

further infected with retrovirus expressing M yc or an em pty vector control. 

A fter selection, cells were plated out in soft agar. 20 days after plating, 

colonies were stained using G iem sa stain and photographed. From  these 

photographs, it is clear that A R F shRNA also increases the frequency and size 

of colonies form ed by p l6 INK4a-deficient Leiden cells, confirm ing the 

observations in Milan cells.

5.8 Effects of shRNA against p53 on the anchorage independent growth of 

Milan cells

To investigate w hether the effects of A RF knockdow n were com parable to 

those achieved by ablation o f p53 by shRNA, a sim ilar series o f anchorage 

independence assays was perform ed on the 2M T panel. Surprisingly, 2M TM  

cells did not form  a significant num ber of colonies in soft agar (Table 5.2) in 

contrast with the M TM  cells, whereas 10% of 2M TR cells were capable of 

form ing anchorage independent colonies which w ere m acroscopically visible 

upon careful exam ination, again contrasting with the result observed using 

M TR cells. These observations correlated with the expression levels of the 

oncogenes in the different panels of M ilan cells, suggesting that a high level of 

expression of the activating protein needs to be achieved to allow the cells to
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Cell Typ e % colony forming 
c e l ls

Macroscopically
visible?

2MT 0 N o

2MT+Ras 1 0 ?

2MT+My c 0.004 N o

2MT+Ras+My c 1 1 N o

2MT+p53 shRN A 1 N o

2MT+p53 shRNA + R a s 1 7 Y e s

2MT+p53 shRNA+Myc 1 5 Y e s

2MT+p53 shRNA+Ras+M yc 3 0 Y e s

Table 5.2 Anchorage independent growth of Milan Tert cells expressing 
combinations of p53 shRNA, Myc and Ras
Approximately five weeks after the final infection, the panel o f 2M T cells 
were plated out in 0.2%  soft agarose and fed weekly. A fter 26 days, the 
percentage o f cells form ing colonies was determ ined.



becom e capable of anchorage independent growth. This also highlights the 

different levels of expression achieved in different retroviral infections. 

However, reduction of p53 in com bination with over-expression o f Myc 

allowed 15% of the cells to undergo anchorage independent growth, and some 

of the colonies form ed were m acroscopically visible. Upon shRNA m ediated 

knockdown o f p53 in the M TR background, 17% of cells became capable of 

growth in soft agar and these colonies were easily visible by eye. 2M TRM  

cells could form  small colonies, but the presence of p53 shRNA in these cells 

trebled the num ber of cells form ing colonies and increased the size o f the 

colonies which were easily visible by eye. It was noted that a reduction in 

functional p53 usually allow ed a larger proportion o f colony form ation. 

Photographs were taken o f the colonies to illustrate that the presence of 

shRNA against p53 allow ed the colonies to grow to an increased size (Figure 

5.8). W hile the knockdow n o f p53 alone did not allow 2M T cells to form  

anchorage independent colonies, this is inconsistent with observations in 

Leiden cells (E Sanij, unpublished results), and the results using M Ta cells 

where knockdown o f A R F attenuated the p53 pathway.

These results suggest that com prom ised p l6 INK4a function predisposes 

fibroblasts to anchorage independent growth, and the effect can be enhanced 

by the knockdown o f A R F or p53. To follow up on these observation testing 

is being undertaken to determ ine whether the panels o f MT and 2M T cells are 

capable of tum our form ation in nude mice.
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Figure 5.8 Effects of p53 shRNA on the size of anchorage independent colonies form ed by M ilan T ert cells
After 27 days in soft agar, photographs were taken of the colonies described in Table 5.2 using phase contrast and a lOx 
objective.
2MT and 2MTM are shown as single cells because no colonies were formed by these cells.



Chapter 6

Discussion

6.1 The significance of the R24P variant of p !6 1NK4a

The germ line m utation responsible for the R24P variant of p l6 INK4a has been 

described in a num ber o f m elanom a kindreds, and in a melanoma patient with 

no fam ilial history o f the disease (Holland et al. 1995; Harland et al. 1997; 

Della T orre et al. 2001; M onzon et al. 2004). While some reports suggest that 

this variant o f p l6 INK4a is able to bind to CDK4 but is defective in causing a 

cell cycle arrest (B ecker et al. 2001; Monzon et al. 2004), others indicate that 

the R24P variant is unable to bind to CDK4 and inhibit its kinase activity, but 

retains binding to CD K6 (H arland et al. 1997; Nishiwaki et al. 2000). These 

inconsistencies probably reflect technical variations and reliance on over­

expression or in vitro assays. The availability of a strain of fibroblasts that are 

hom ozygous for the R24P m utation has allowed a more definitive assessm ent 

of the properties o f the endogenous protein. Data presented in this thesis show 

unequivocally that in M ilan cells, the R24P variant of p l6 1NK4a is able to bind 

CD K6 but is unable to bind CDK4, and this has been confirmed by others 

using M ilan cells expressing SV40 Large T antigen to enhance p l6 INK4a 

expression (J Rowe, unpublished observations). Interestingly, the R24P 

variant o f p l6 INK4a has also been shown to be deficient in inhibiting CDK7 

kinase activity. A lthough this function of p l6 INK4a could contribute to its
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ability to cause a cell-cycle arrest, its relevance remains uncertain as the 

observation has not been developed in further publications (Nishiwaki et al. 

2000).

The observations from  the M ilan cells are consistent with a more prom inent 

role for CD K 4 than CD K 6 in melanoma, which is also suggested by the 

discovery o f m elanom a fam ilies in which the mutation causes expression of 

the R24C variant o f CD K 4 which is im paired in its binding to p l6 INK4a (W olfel 

et al. 1995; Zuo et al. 1996; Soufir et al. 1998). Residue 24 of p l6 INK4a is in 

the first ankyrin repeat in a region which lies between helix-1 and helix-2. 

The crystal structure o f p l6 INK4a bound to CDK6 (Russo et al. 1998) implies 

that this residue is adjacent to residues involved in the interaction with CDK6, 

but is not itself directly im plicated in the interaction. At this point, it is 

difficult to judge w hether this residue is directly involved in binding to CDK4, 

as no crystal structure o f CD K 4 bound to p l6 INK4a is available. Interestingly, 

the introduction o f the neighbouring R22P mutation in p l6 INK4a abolishes 

binding to both CD K 4 and CD K6 (S Brookes, unpublished data). As a 

num ber o f studies suggest that 1NK4 proteins bind more avidly to CDK6 than 

to CD K 4 (G uan et al. 1994; Hannon and Beach 1994; Quelle et al. 1995a; 

Guan et al. 1996; Palm ero et al. 1997), a possible explanation for the retention 

of CD K 6 binding and loss of CDK4 binding by R24P is that this variant 

simply has reduced CD K  binding, but due to the avidity of binding to CDK6, 

some residual CD K6 binding is still present. However, it seems unlikely as 

fibroblasts express m uch less CD K6 than CDK4, and the binding of R24P to 

CD K6 but not to C D K 4 is very clear cut, and has been reproduced by in vitro 

binding assays.
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This is an im portant issue, as various pieces o f data imply that R24P is as 

functionally im paired as other p l6 1NK4a mutants which cannot bind to either 

CD K 4 or CDK6. For exam ple, the R24P variant of p l6 INK4a is unable to cause 

a cell cycle arrest (Figure 4.6) (Nishiwaki et al. 2000; Becker et al. 2001). 

Also, M ilan cells behave as if they are p l6 INK4a-deficient, both in term s of their 

replicative lifespan, and in their ability to arrest in response to oncogenic Ras 

(Figures 4.8, 4 .9  and 5.1). However, it is still not resolved whether CDK4 and 

CD K6 are functionally redundant.

It is also necessary to consider the function of the R24P variant of p l6 INK4a in 

the context o f the tw o different modes of action of the cyclin D-CDK 

com plexes. The classical mode of action of these complexes is “kinase- 

dependent’ and depends upon the phosphorylation of specific substrates. In 

this m ode o f action, it rem ains plausible that CDK4 and CDK6 are not 

redundant, and indeed the kinases have been shown to phosphorylate different 

sites w ithin pRb (Takaki et al. 2005). The alternative mode of action o f the 

com plexes is “kinase-independent”, and relates to the ability of cyclin D-CDK 

com plexes to act as a buffer for p21cipi and p27KIP1. It remains a m atter of 

debate w hether p21CIP1 and p27KIP1 act as essential assembly factors for cyclin 

D /CDK com plexes (LaB aer et al. 1997; Hengst et al. 1998; Cheng et al. 

1999a; Sherr and Roberts 1999), and whether cyclin D-CDK-CIP com plexes 

are active, although convincing evidence exists that this is unlikely to be true 

(LaBaer et al. 1997; H engst et al. 1998; Cheng et al. 1999a; Sherr and Roberts 

1999; Bagui et al. 2000; Bagui et al. 2003; Olashaw et al. 2004).

However, evidence exists that the cell cycle arrest induced by p l6 INK4a in 

HDFs involves the redistribution of p21CIP1 from  cyclin D /CD K/CIP
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com plexes onto cyclin E/CDK 2 com plexes (M cConnell et al. 1998). This 

m echanism  depends on the total levels of cyclin D-CDK com plexes present in 

the cell, and the effectiveness of p l6 INK4a is dependent on its ability to disrupt 

these cyclin D /CD K /CIP com plexes. In HDFs a greater proportion of the 

p21clP1 present in the cell will be bound to cyclin D/CDK4 than to cyclin 

D /CDK6. Consequently, R24P will only be able to cause the redistribution of 

a m inor fraction o f p21CIP1 onto cyclin E/CDK2 complexes, and this will not 

cause a noticeable inhibition o f CDK2 function. However, under 

circum stances in w hich the proportion of p21CIP1 bound to cyclin D /CDK6 is 

increased, fo r exam ple when CD K6 is overexpressed, an increased proportion 

of p21CIP1 will be redistributed upon overexpression of R24P. Consistent with 

this, it has been observed that expression of the R24P variant of p l6 INK4a in 

HDFs in w hich CD K 6 is overexpressed, and in U 20S  cells which express 

higher levels o f CD K6 than CD K 4 causes an inhibition of cells proliferation 

(M  Ruas and F  G regory, unpublished observations). This mechanism 

provides an explanation o f the apparent paradox of the R24P variant on 

pj£iNK4a reta injng binding to CD K6 whilst appearing to be non-functional in 

many assays.

6.2 The role of CD K 4 and CDK6 inhibition at senescence

The observation that p21CIP1 and p l6 1NK4a levels increase at senescence (Alcorta 

et al. 1996; H ara et al. 1996) has generally been assumed to mean that CD K4 

and CD K 6 kinases are inhibited. Consistent with this view, overexpression of 

CD K 4 and CD K 6 can extend the lifespan o f HDFs causing them to arrest at

M l.5, an interm ediate stage between senescence and crisis (M orris et al.
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2002)(M  Ruas and S Brookes, unpublished observations). The accepted 

interpretation has been that excess CDK4/6 will evade inhibition by p l6 INK4a 

and reduce the availability of p21clP1 by prom oting the form ation o f stable 

cyclin D /CDK com plexes. However, new evidence presented in Chapter 4, in 

com bination with other w ork in our laboratory suggests that the situation is 

more com plicated. Thus, not only do versions of CDK4 and CD K6 that 

cannot bind p l6 INK4a have sim ilar effects on HDFs, but they also extend the 

lifespan o f p l6 INK4a-deficient HDFs such as Q34 and Leiden cells (S Brookes, 

unpublished observations). This observation is not easy to reconcile with the 

sequestration m odel, although there would be effects on the distribution of 

p21CIP1. Im portantly, we find that kinase dead versions of CDK4 and CDK6 

are unable to extend the lifespan o f HDFs (Figure 4.12). Thus, the m echanism  

by which CD K 4 and CD K 6 cause lifespan extension involves phosphorylation 

of a substrate, although it rem ains unclear which substrate of CD K4 and 

CD K6 is responsible fo r the lifespan extension. W hile pRb is the 

acknow ledged substrate o f both CD K 4 and CDK6, other substrates such as 

Smad3 which is known to be phosphorylated by CDK4 (M atsuura et al. 2004), 

could be responsible for the lifespan extension. However, ectopic expression 

of both kinases fails to cause a greater lifespan extension than that of either 

kinase alone.

6.3 The im portance of p l6 1NK4a and A RF in the cellular defences against 

transform ation

The M ilan strain of fibroblasts is an attractive subject for study, as the R24P

mutation carried by these cells does not affect the coding capacity o f the AR F
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gene. This is in contrast to the Leiden cells, which have been used as a model 

o f p l6 INK4a-deficient cells, as Leiden cells express an A R F /p l61NK4a fusion 

protein (Brookes et al. 2002). Initially, it was thought that the fusion protein 

could be functionally im paired, despite performing normally in functional 

assays. H ow ever, it was subsequently proposed that in fact the A R F /p l6 INK4a 

fusion protein could be hyperactive, perhaps because of the enhanced stability 

o f the fusion protein relative to wild-type ARF, which may have resulted in 

attenuation of some aspects of the p53 pathway (Wei et al. 2003b). These 

challenges w ere raised in response to several studies which attempted to 

delineate the m inim um  requirem ents for the transformation of HDFs to allow 

them  to form  tum ours in nude mice. Other groups reported the need to 

incapacitate p53, while results obtained in Leiden cells suggested that it was 

not essential (Hahn et al. 1999; Hahn et al. 2002; Drayton et al. 2003; 

V oorhoeve and A gam i 2003; Wei et al. 2003b).
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pRb

checkpoint

p53

checkpoint

Telomere

checkpoint

Oncogenes Reference

SV40 T-Ag SV40 T-Ag hTERT H-Ras + SV40 Hahn et al., 1999

t-Ag

HPV E7 HPV E6 hTERT H-Ras + SV40 Hahn et al., 2002

t-Ag

Cyclin D1 + DN p53 hTERT H-Ras + SV40 Hahn et al., 2002

K 4 R 2 4 C t-Ag

pRb siRNA p53 siRNA hTERT H-Ras + SV40 Voorhoeve and

t-Ag Agami, 2003

p l6 INK4a p53 siRNA hTERT H-Ras + SV40 Voorhoeve and

siRNA t-Ag Agami, 2003

E1A MDM2 H-Ras Seger, et al., 2002

p l6 ,NK4a- hTERT H-Ras + Myc Drayton et al., 2003

deficiency

Table 6.1 Published protocols for the neoplastic transformation of

primary human fibroblasts

As sum m arised in the table above, most successful transformation protocols 

involve the provision o f telom erase, (although one report suggests that this is 

not essential (Seger et al. 2002)). However, it is becoming obvious that 

overexpression o f TERT may have additional functions beyond the 

m aintenance o f telom ere length. A mouse model in which TERT was 

overexpressed in basal keratinocytes, suggested that this could prom ote 

tum our form ation in cells which already had sufficiently long telom eres 

(G onzalez-Suarez et al. 2001). A LT is an alternative method to maintain
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telom ere length w here telom eres are extended by a m echanism  sim ilar to 

hom ologous recom bination. A mouse model of tum our developm ent 

suggested that A LT could not substitute for TERT, especially during 

metastasis (Chang et al. 2003), while a more direct comparison of A LT and 

telom erase-m ediated telom ere maintenance during tum oriogencity concluded 

that the m echanism s w ere not equivalent (Stewart et al. 2002), and that TERT 

has other tum our-prom oting roles. These experiments were extended, and the 

authors were able to dem onstrate that a variant o f TERT that was unable to 

m ediate telom ere extension, was still capable of promoting tum our formation. 

D ifferent protocols to transform  human fibroblasts employ alternative ways of 

inactivating the pRb and p53 pathways, such as DNA virus proteins (SV40 

Large T A g or adenovirus E l A), or siRNA targeting p53 in com bination with 

siRNA against either pRb or p l6 INK4a. Some studies have also em ployed a 

cyclin D 1-C D K 4 fusion protein which is insensitive to p l6 1NK4a, reasoning that 

the presence of this protein should over-ride the effects of p l6 INK4a. However, 

data presented in this thesis suggests that the situation may be more 

com plicated as expression of exogenous CD K4 causes an increase in the 

levels o f p l6 INK4a expressed by the cell (Figure 4.7), but also the kinase activity 

of CD K 4 is likely to have additional effects within the cell. There are also 

reports in the literature that p l6 INK4a may have other targets than ju st cyclin D- 

CDK com plexes, and can inhibit CDK7 and phosphorylation of c-Jun by 

JNKs (Nishiwaki et al. 2000; Choi et al. 2005). As a result, it seems probable 

that expression o f exogenous CD K4 is not synonymous with p l6 1NK4a- 

deficiency. M ost protocols also provide two co-operating oncogenes, usually 

H -Ras in com bination with SV40 small t antigen. The only docum ented
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function of the small t antigen is to bind to and inactivate some isoform s of 

PP2A, and it has been suggested that this results in the stabilisation o f Myc, 

and that a m utated version of M yc which is more stable is able to substitute for 

small t in transform ation (Chen et al. 2004b; Yeh et al. 2004). The im portance 

o f M yc in transform ation was dem onstrated in a similar experim ent 

investigating the neoplastic transform ation of HMECs, where up-regulation of 

endogenous M yc was observed in the tumours (Elenbaas et al. 2001).

W ork in our laboratory used the p l6 INK4a-deficient Leiden cell system to 

generate tw o distinct sets of tum ours which expressed hTERT, H-Ras and c- 

Myc. The first set o f tum ours were formed from  three different clones which 

were present in the parental cell population which was injected into mice, and 

the tum ours were found to express wild-type p53 (Drayton et al. 2003). One 

of these clones had silenced expression of ARF, and it seems possible that the 

other tum ours has sustained alteration in other components of the p53 

pathway, and attem pts are underway to identify these possible changes using 

gene expression arrays. The second set o f tumours were also form ed from 

Leiden cells expressing hTERT, H-Ras and Myc, but were found to have 

resulted from  the expansion of a single clone which expressed mutant p53. 

Therefore, there is rem arkable consistency that five alterations enable a 

normal human cell to form  a tumour, and there is agreement over the five 

major pathways which need to be altered in these cells; Ras, Myc, p53, pRb 

and hTERT.

The results obtained in M ilan cells support this contention. The im petus for 

studying these cells was to reinforce the results observed using Leiden cells in 

a system  w here A RF is unequivocally w ild-type, and to address the relative
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contributions of INK4a  and A R F  to tum our suppression in human cells. 

Evidence presented within this thesis dem onstrates that the knockdown of 

A RF provides a proliferative advantage and facilitates anchorage 

independence. Thus far, data has only been obtained using the agar colony 

form ation assay, but the tum origenesis experim ents using the panels o f Milan 

cells whose generation was described in the thesis, are ongoing. It will be 

very interesting to discover if loss o f ARF is able to substitute for loss o f p53 

in our model of tum our formation. If this is not the case, then it will be 

interesting to analyse the tum ours form ed to identify mutations may have 

substituted for loss of p53. It would also be interesting to extend this work, 

and to assess w hether the tum ours form ed by Milan and Leiden cells 

dem onstrate changes in sim ilar cellular functions. This may suggest genes 

and pathways whose alteration prom otes the form ation of cancer regardless of 

the underlying genetic background. A nother future direction would be to look 

for other oncogenes that can substitute for M yc and/or Ras in our assay, 

perhaps using a screening approach. This may provide information about the 

critical functions which are being provided by these oncogenes during the 

transform ation of HDFs. This approach could also be extended to screen for 

genes which can be altered and can substitute for loss of p53, to gain insights 

into the p53 pathways w hich are im portant in the tum our suppressive role of 

the protein.

The observed effect of A R F knockdown on cell proliferation is in line with a 

published report which found that A RF knockdown conferred a growth 

advantage on HDFs which was dependent on p53 (Voorhoeve and Agami

2003). However, in contrast to our results from  the anchorage independence
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assay, which suggested that loss of A RF and loss of p53 were equivalent in 

our system, the authors o f this report suggested that loss of A RF could not 

substitute for loss of p53 in their system (V oorhoeve and Agami 2003). 

However, while we found that loss o f p l6 1NK4a enabled Milan fibroblasts to 

bypass an arrest induced by oncogenic Ras (Figure 5.1), the authors o f this 

paper found that in their system loss o f p53 was sufficient to allow bypass of a 

Ras-induced arrest suggesting the existence of differences between the two 

systems used.

It is also necessary to consider the reasons for the inconsistencies between 

different reports. One o f the m ajor reasons underlying these discrepancies is 

likely to be that different fibroblast strains respond differently when 

challenged with oncogenic stress. For example, IM R90 cells are quite hard to 

transform , while in com parison, BJ fibroblasts are relatively easy to transform. 

(Akagi et al. 2003). It has also been shown that the response of HDFs to Ras 

can depend on how long the cells have been in culture and the level of stress 

to which they have been exposed, as freshly explanted fibroblasts were shown 

not to arrest in response to oncogenic Ras (Benanti and Galloway 2004). The 

ability o f cells to resist transform ation seems to correlate with the basal levels 

o f p l6 1NK4a expressed by the different fibroblast strains, and may reflect the 

differing dependence on the p l6 INK4a and p21clpl pathways of different 

fibroblast strains at senescence (Beausejour et al. 2003). An additional factor 

is that fibroblasts derived from  adult skin are heterogenous and individual 

cells within a culture w ould respond differently when challenged with an 

oncogenic stress (Brookes et al. 2004). An extra level o f com plexity is added 

by the use o f a retroviral infection system for the expression o f exogenous
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proteins. D iffering levels o f expression can be obtained depending on the 

integration site o f the retrovirus and the vector used. During these studies, 

striking differences have been observed in the levels of expression and 

phenotypic outcom e in different infections (e.g. between M T and 2M T 

panels), and different efficiencies of infection have been seen simply by 

changing the drug selection marker in the retroviral vector used. Sim ilar 

effects have been observed by others in the laboratory (S Brookes and J 

Rowe), and have also been reported in the literature (Elenbaas et al. 2001). A t 

a practical level, differences in expression levels may explain why some 

reports dem onstrate upregulation of p53 in response to oncogenic Ras 

(Serrano et al. 1997; Lin et al. 1998; Ferbeyre et al. 2000; Ries et al. 2000; 

Wei et al. 2001; Wei et al. 2003b), while the same is not observed in other 

reports (Zhu et al. 1998; Ries et al. 2000; Brookes et al. 2002; Huot et al. 

2002; Lazarov et al. 2002; Drayton et al. 2003; Voorhoeve and Agami 2003; 

Benanti and G alloway 2004; Drayton et al. 2004). These technical 

observations underline the need to be cautious when com paring results 

obtained using different infections, vectors, and fibroblast strains. It is also 

necessary to consider that in our system there has been chronic loss of 

p j £ i N K 4 a  a g  Q u r  c e | j s  c a r r y  germline mutations of the INK4a  gene. This may 

have allow ed some com pensation to occur in these cells, potentially by 

changing the levels of CDK4, CDK6, or other CDK inhibitors present in these 

cells. This may mean that our p l6 INK4a-deficient cell strains behave differently 

from  cells which have undergone acute loss of p l6 INK4a. Indeed differences 

have been reported between chronic and acute loss of pRb in mouse models. 

A cute loss o f pRb allow s senescence to be overcom e (Sage et al. 2003), while
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this does not occur in cells carrying a germline mutation of Rb as a result of 

com pensation. The ability o f p l6 ,NK4a loss to overcome oncogene-induced 

prem ature senescence seem s to be retained regardless of whether p l6 INK4a loss 

was acute or chronic (Figure 3.2). However, it may be inform ative to generate 

tum ours using HDFs expressing shRNA targeting p l6 INK4a. This would 

provide an insight into w hether the Leiden and M ilan cells have overgone 

com pensation which has affected their requirements for transformation.

There are also m ajor differences between mouse and human cells that present 

difficulties when attem pting to reconcile results obtained in the different 

species. M ouse cells can be transform ed solely by the expression of two 

cooperating oncogenes such as M yc and Ras (Hahn and W einberg 2002), and 

the p53/A R F pathway has been shown to be central to determ ining the 

resistance o f these cells to oncogenic challenges (Kamijo et al. 1997). As well 

as the different sensitivity o f mouse and human cells to oxidative stress (Sherr 

and D ePinho 2000), it has been reported that different Ras effector pathways 

are im plicated in the transform ation of mouse and human cells (Akagi and 

H anafusa 2004; Rangarajan et al. 2004).

Tum ours contain widely differing cancer cells that exhibit different 

phenotypes. W hile investigating this heterogeneity, it was dem onstrated that 

only a small m inority of cells in a cancer were able to proliferate extensively. 

This suggested that cancers contain a subset of cells known as cancer stem 

cells, which could divide giving rise to phenotypically diverse progeny cells. 

If this theory was correct then these stem cells would be capable o f self­

renewal, in addition to producing differentiated cancer cells with m ore limited 

proliferative potential. The cancer stem cells could arise either from
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m utations in a stem cell com partm ent allowing the cells to overcom e barriers 

to continued proliferation, or when differentiated cells gained the 

characteristics of stem cells, perhaps by mutations in the pathways involved in 

m aintaining stem cell characteristics. The presence of cancer stem cells was 

originally dem onstrated in AM L, but has recently been dem onstrated in breast 

cancer and glioblastom a (Pardal et al. 2003). This has relevance to 

experim ental approaches attem pting to delineate the minimum requirements 

for tum origenesis, and questions the validity of experiments perform ed in 

more differentiated cell types. It would be interesting to investigate the effects 

of the overexpression o f oncogenes in stem cells, and whether the response of 

these cells is sim ilar to that observed in other cell types. The stem cell nature 

of cancer should be considered when attem pting to model the genesis of 

cancer, but technical difficulties may limit the work that can actually be 

perform ed using cancer stem cells.

6 .4  Senescence as a tum our suppressive mechanism in vivo

The relevance of senescence as a tum our-suppressive mechanism in vivo has

been the subject o f intense debate. It has been argued that senescence in

response to oncogenic stress may be an artefact caused by the expression of

oncogenes in cells already subjected to stress due to their growth in tissue

culture. There has also been intense debate about the validity of experiments

which use the overexpression of oncogenes, such as activated Ras, at very

high levels. Several m ouse models (Guerra et al. 2003; Tuveson et al. 2004)

using the knock-in o f oncogenic K-Ras V12, have suggested that expression

of activated Ras at physiological levels in vivo does not cause senescence. It
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has also been suggested that the progression of tum ours caused by 

overexpression of oncogenic Ras may differ from those caused by the 

activation o f Ras at endogenous levels (M euweissen et al. 2001). However, a 

sim ilar m ouse model expressing oncogenic Ras at endogenous levels has 

recently been used to dem onstrate the presence of senescent cells in pre- 

m alignant lesions (Collado et al. 2005), and the expression of oncogenic B- 

R af at levels sim ilar to endogenous in human cells can cause inhibition of 

proliferation and oncogene-induced senescence (M ichaloglou et al. 2005). 

Recently, it has been ably dem onstrated that senescence is acting as a tum our- 

suppressive m echanism  in a variety of settings in both the mouse and human 

(Braig et al. 2005; Chen et al. 2005; Collado et al. 2005; M ichaloglou et al. 

2005). The presence o f senescent cells in pre-m alignant tum ours was 

dem onstrated in mouse m odels of Ras-induced lung and pancreatic cancer, in 

pre-m alignant prostate tum ours from  humans, and in human benign tumours 

com posed o f m elanocytes (naevi). Interestingly however, senescent cells were 

not present in m elanom as or in malignant tumours form ed in the mouse 

models, suggesting that the senescence was bypassed when the tum ours 

progressed to malignancy. Tw o further mouse models where tum ours were 

induced by loss o f PTEN or the histone methyltransferase Suv39hl 

(im plicated in senescence-associated chrom atin rem odelling) also 

dem onstrated that senescence is not an artefact, but an im portant mechanism 

by which tum our progression can be restrained. Interestingly these 

experim ents also showed that p53 was not only im portant in invoking 

apoptosis as an anti-tum our m echanism  but could also invoke senescence.
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6.5 Concluding remarks

This thesis describes the use of cells from  genetically com prom ised 

individuals to try to discern the relative roles of INK4a  and ARF. The cells 

carrying a m utation responsible for the expression of the R24P variant of 

p l6 INK4a are particularly interesting as the mutation leaves A RF unaffected, 

and disables only one o f the known activities of p l6 INK4a, inhibition of CDK4. 

This CDKN2a  locus provides an intriguing situation where the locus contains 

three genes INK4b, ARF, and INK4a  which have been im plicated in the 

response to oncogenic challenges and tum our suppression. However, most 

mutations in germ line and sporadic tumours affect only INK4a  (Ruas and 

Peters 1998; Sharpless and DePinho 1999). Deletions and methylation of the 

locus often affects all three genes, but cases have been described where 

selective loss o f INK4b  or A R F  is observed. However, until we understand the 

regulation o f the locus we cannot exclude indirect effects on the INK4a  

response to specific signals which could be influenced by deletions which 

appear to affect only ARF. We can also speculate that mutations may exist in 

the regulatory regions o f the locus in families with a history of m elanom a who 

show linkage of the disease-causing mutation to 9p21, but no alterations are 

observed in the coding dom ains of these genes. These mutations may also 

give us insights into the regulation of the locus.

However, the discovery of a cell strain genetically deficient only in INK4a, in 

com bination with the advent of shRNA technology opens up the possibility of 

being able to definitively address some o f these questions.
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