
FAMILIAL PARKINSONISM 

[PARKINSON’S DISEASE AND 

EARLY ONSET PARKINSONISM]

A genetic, clinical study and lsF-dopa PET study

A Thesis for the degree of Doctor of Philosophy 

In the Faculty of Medicine 

University of London

Submitted by Naheed L Khan MA MB BChir MRCP

Department of Molecular Neuroscience 

Institute of Neurology 

Queen Square 

London WC1N 3BG

July 2006



UMI Number: U592126

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U592126
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



ABSTRACT

This thesis reports a study of familial parkinsonism using diverse scientific tools of 

both molecular genetics and positron emission tomography functional imaging. 

Population-based allelic association studies are also described.

Molecular and clinical characterisation of the largest British kindred with autosomal 

Parkinson’s disease (PDT

Genome wide linkage analysis was used to map the sub-chromosomal location of the 

disorder as the first step for disease-gene identification. The disease mapped to a 

50cM region on the short arm of chromosome 12 overlapping a locus, PARK8 that 

had just been reported in a Japanese kindred, with an identical phenotype. A detailed 

clinical study of the British kindred identified unilateral onset of tremor in the leg, 

prominent foot dystonia and behavioural disorder. Intact cognition and sustained 

levodopa response, was observed despite lengthy disease duration.

Phenotypic study of PARK2 / parkin disease

This case series reports a detailed clinical assessment of twenty four cases of early

onset parkinsonism with mutations in PARK2, emphasising the clinical features,

atypical phenotypes including cervical dystonia, autonomic dysfunction, peripheral

neuropathy, pure exercise-induced dystonia and behavioural disorder prior to the

onset of parkinsonism. Olfaction was normal compared to a group of parkin negative

patients and idiopathic PD cohorts. A number of unaffected relatives who were parkin

heterozygotes had psychiatric symptoms and some had extrapyramidal signs that did

not fulfil Queen Square Brain Bank criteria.

18F-dopa Positron Emission Tomography in Familial Parkinsonism.

Functional imaging in cohorts of patients with parkin (PARK2) and PINK1 (PARK6) 

mutations identified patterns of nigrostriatal dysfunction that was bilateral and
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uniform unlike that seen in idiopathic PD. Serial 18F-dopa PET used to assess disease 

progression in parkin disease over a ten year period, showed that the rate of loss of 

dopaminergic function was slower compared to idiopathic PD. Asymptomatic parkin 

and PINK1 heterozygotes also had nigrostriatal dysfunction implying that the gene 

products exhibited ‘haploinsufficiency’.

Population based Allelic Association studies.

A large study using pathologically proven PD cases and controls failed to replicate a 

report of positive association between an alpha synuclein polymorphism and PD. In a 

separate study the angiotensin converting enzyme gene was used as a candidate 

disease gene.

Familial parkinsonism encompasses a heterogeneous group of diseases. Familial 

‘parkinsonism’ was observed in early onset, recessive disease with atypical 

phenotypes, normal smell and patterns of nigrostriatal dysfunction and rate of 

progression of functional imaging unlike that seen in idiopathic PD. Functional 

imaging in asymptomatic heterozygotes suggested that parkin and PINK1 proteins 

exhibited the phenomenon of haploinsufficiency.

Familial Parkinson’s disease, however, with a typical phenotype and pattern of 18F- 

dopa uptake similar to PD was observed in an autosomal dominant British kindred. 

This thesis also confirmed locus heterogeneity in autosomal dominant Parkinson’s 

disease and studied a putative susceptibility allele, ACE, in a population-based study.
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1. INTRODUCTION

Over the last decade the identification of disease-causing genes in familial 

parkinsonism (autosomal recessive early-onset parkinsonism and autosomal dominant 

Parkinson’s disease) represents an astounding achievement by the scientific 

community. Until the latter part of the twentieth century, Parkinson’s disease was 

thought not to have a genetic aetiology and was attributed to acquired factors such 

rural living, pesticide consumption and the drinking of well water (Hubble et al., 

1993). To date over ten loci and seven genes have been identified in familial 

parkinsonism. As a result, functional studies of the aberrant protein encoded has for 

the first time, contributed to a significant understanding of the molecular mechanism 

underlying neurodegeneration in Parkinson’s disease.

Idiopathic PD is one of the most common neurodegenerative disorders, with a 

prevalence of 1 to 2 percent after the age of 65 years (De Rijk et al, 1997). The 

phenotype is characterised by resting tremor, rigidity, bradykinesia with olfactory 

dysfunction being as common as the pill-rolling tremor (Katzenschlager et al., 2004). 

Levodopa responsiveness is characteristic. A concrete diagnosis is posthumous; the 

pathognomonic feature being eosinophilic cytoplasmic inclusions Lewy bodies, which 

distinguishes Parkinson’s disease from other forms of parkinsonism. Whilst a 

definitive diagnosis is posthumous, the use of functional imaging using PET tracer 

18F-dopa has been instrumental in establishing the diagnosis in patients by identifying 

characteristic patterns of disruption of presynaptic dopaminergic function. In 

Parkinson’s disease there is relative sparing of the function of the head of caudate and 

anterior putamen compared to severe involvement of the posterior putamen (Brooks et 

al., 1990). Idiopathic, ‘later onset’ PD represents a ‘complex trait’ that is mostly non-
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Mendelian and multi-factorial in aetiology with the interaction of one or more 

susceptibility genes together with ‘environmental’ influences.

Politician turned physician, James Parkinson, was the first to publish a clinical 

description of Parkinson’s disease in ‘An Essay on the Shaking Palsy’ in 1817:

‘tremulous motion with lessened voluntary muscular power in parts, not in action ’

‘a propensity to bend the trunk forwards and to pass from walking to a running pace ’ 

Forty years later, Jean Martin Charcot added rigidity to the clinical description and 

called it ‘Parkinson’s disease’.

1.1 Mendelian Parkinson’s disease and parkinsonism.

Evidence of a hereditary contribution to the disease dates as far back as 1880, when 

Gowers (Figure 1.1a and b) observed that patients with Parkinson’s disease often had 

an affected relative (up to 15% of his patients) and based on this he concluded that the 

disease was attributable to ‘hereditary factors’ (Gowers et al., 1886). A century later, 

different scientific tools (epidiemiological studies, twin studies, functional imaging) 

have continued to propogate this theory; recent community-based case-control studies 

estimate the frequency of Parkinson’s disease among relatives of cases to be between 

6 and 33% (Lazzarini et al, 1994; Payami et al, 1994; De Michele et al, 1996; Marder 

et al, 1996; Payami et al, 2002). Whilst the most recent twin study found similar, 

overall concordance rates for PD in a total of 19,842 white male twins, a subset 

analysis of twin pairs (monozygotic versus dizygotic) with diagnosis at or before the 

age of 50 years showed a relative risk of 6 (95% confidence interval 1.69-21.26) 

(Tanner et al, 1999). 18F-dopa PET has been used in monozygotic and dizygotic twin 

pairs who were, at baseline, clinically discordant for PD.
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Figure 1.1a Sir Richard William Gowers (1845-1915) both Artist and Physician at University College, 
London and the National Hospital for Neurology
(Courtesy of audio-visual department, National Hospital for Neurology and Neurosurgery, London)
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Figure 1.1b
An illustration drawn by Gowers in 1886 as part o f his documentation of Parkinson’s disease. The 
image is taken from his book A Manuel o f  Diseases o f  the Nervous System (London, J & A Churchill 
1886-1888).
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Subclinical dopaminergic dysfunction was found to be significantly higher in MZ 

twins compared to DZ twins, moreover the MZ twin was more likely to develop PD, 

suggesting a substantial role for inheritance in ‘idiopathic’ PD (Piccini et al, 1999). 

The year 1996, represents a landmark year in which the first locus was identified in 

familial PD to the present day, there has been an explosion in the number of disease- 

genes or linked loci implicated in recessive forms of parkinsonism (PARK2/parkin, 

DJ1, PINK1) and dominant forms of Parkinson’s disease (SNCA, UCHL1, LRRK2 and 

the chromosme 2p haplotype) (Table 1). This section outlines loci identified to date 

dividing them into autosomal dominant forms of Parkinson’s disease and autosomal 

recessive forms of early-onset parkinsonism.

1.1.1 Autosomal Dominant Parkinson’s Disease 

PARK1; point mutations and multiplications in SNCA

The first susceptibility locus for autosomal dominant Parkinson's disease was linked 

to chromosome 4q21-q22 in 1997, in an Italian-American kindred originating from 

Contursi, near Salerno in Southern Italy. This is the largest PD kindred characterised 

to date, with at least sixty affected members in four generations. Linkage of the 

disease to chromosome 4q21-q23 in this family (Polymeropoulos et al, 1996) was 

followed by identification of a G>A transition at position 209 in exon 4 of the SNCA 

gene, causing an alanine to threonine substitution (Ala53Thr) in the a-synuclein 

protein (Polymeropoulos et al, 1997).

Designated “Parkinson’s disease type 1” (PARK1), the phenotype is similar to PD 

with Lewy bodies at post-mortem and a typical pattern of nigrostriatal dysfunction 

using18F-dopa PET (Samii et al, 1999). Atypical features however included a
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Table 1. The Mendelian forms of Parkinson’s disease and parkinsonism

Locus Location Gene Inheritance Details

PARK1 4q21 a-synuclein AD i) point mutations: Italian-Greek A53T / German A30P / Spanish E46K
ii) multiplications: 4 copies early-onset, PD and Dementia with Lewy bodies, 
variable pathology: PD with LBs; DLBD; glial a-syn inclusions

PARK2 6q25-27 parkin AR early-onset, slowly progressive, L-dopa sensitive, hyperreflexia, dystonia, 
early and late onset parkinsonism, manifesting heterozygotes, worldwide

PARK3 2pl3 X AD German family only typical idiopathic PD with pathology with LBs

PARK4 4q21 a-synuclein AD incorrectly linked; found to be an a-synuclein triplication now PARK1

PARK5 4pl4 UCH-L1 AD German I93M single family only

PARK6 lp35-36 PINK1 AR early onset and onset typical of idiopathic PD, no pathology, rare

PARK7 lp36 DJ-1 AR early onset, slow progression, dystonia, similar to parkin, rare

PARK8 12pl 1 LRRK2 AD phenotype identical to idiopathic PD, remarkable variation in pathology

PARK9 withdrawn / not just parkinsonism ‘Kufor-Rakeb syndrome’ one consanguineous Jordanian family with AR 
parkinsonism, spasticity, dementia & supranuclear palsy

PARK10 lp32 X susceptibility locus identified by genome wide linkage study of 51 
Icelandic families with 1 or more family members idiopathic PD

PARK11 2q X susceptibility locus identified by genome linkage in multiplex US families

X = gene unknown AD = autosomal dominant, AR = autosomal recessive



relatively early age of onset of illness, at a mean of 46 years (±13.0), a relatively rapid 

progression of clinical disease, myoclonus, dementia and hypoventilation (Golbe et 

al., 1990)

Other familial and isolated cases of PD with an identical base pair substitution in 

SNCA have been identified. Almost all have ancestry that can been traced back to 

Salerno, Italy or to the Peloponnese region in Greece (two areas in the Mediterranean 

geographically linked by a historical trade route) suggesting that this mutation arose 

from a single founder and is therefore a rare cause of familial Parkinson’s disease. 

(Polymeropoulos et al., 1997; Athanassiadou et al., 1999; Papadimitriou et al., 1999). 

Two additional novel point mutations have been discovered in unrelated German and 

Spanish families (Kruger et al., 1998, Zarranz et al., 2004). The phenotype in the 

Spanish family had striking clinical features consistent with diffuse Lewy body 

disease (visual hallucinations, dementia) with a large number of cortical and sub- 

cortical Lewy bodies (Zarranz et al., 2004).

The PARK1 locus was examined by a number of different groups: no mutations were 

identified in a large number of sibling pairs and autosomal dominant families with PD 

(Bennett et al., 1998; Farrer et al, 1998; Vaughan et al, 1998a and b) confirming that 

point mutations in SNCA are a rare cause of PD.

Mutant a-synuclein transcript exhibits ‘toxic gain of function’; an abnormal 

intracellular accumulation of aberrant protein that inhibits proteosomal function 

resulting in Lewy body formation and a selective vulnerability of nigral dopaminergic 

neurones (Erikson et al., 2003).

Multiplications of SNCA, overproducing wild type protein rather than a mutant 

product have also been shown to cause familial PD. Triplications of SNCA (resulting 

in four normal copies of the gene rather than two) also causes autosomal dominant

26



Parkinson’s disease (Singleton et al., 2003) and was first reported in the North 

American ‘Iowan kindred’ (previously designated as PARK4) whose phenotype was 

characteristic of dementia with Lewy bodies than rather than Parkinson’s disease with 

a mean age of onset of 33 years and several atypical features such as early weight 

loss, dysautonomia and dementia (Muenter et al., 1998). Cardiac denervation has also 

been reported in this kindred (Singleton et al., 2004). Neuropathological changes 

included nigral degeneration and Lewy-body formation, but additional conspicuous 

vacuoles in the hippocampus.

Duplications have also been detected in other unrelated PD kindreds (Ibanez et al., 

2004, Chartier-Harlin et al., 2004)) however multiplications are rare causes of PD 

(Johnson et al., 2004). Pathogenicity has been confirmed in animal models that have 

shown over-expression of wild-type alpha synuclein is directly toxic to dopaminergic 

neurones (Masliah et al., 2000, Feany et al., 2000).

Despite the rarity of SNCA mutations in familial PD, the protein alphasynuclein, has 

become the centrepiece of the understanding of the Lewy body related diseases; 

alpha-synuclein protein is a major fibrillar component of Lewy bodies and Lewy 

neurites found in PD, Lewy Body Dementia and some cases of Alzheimer’s disease 

(Spillantini et al, 1997) and the glial cell inclusion bodies of Multiple System Atrophy 

(Tu et al, 1998). These disorders have therefore been called “synucleinopathies” 

(Duda et al, 2000).

Lewy bodies are spherical structures with radially arrayed intraneuronal aggregations 

of antigenic components, including various proteins, fatty acids, sphingomyelin and 

polysaccharides. Alpha-synuclein and ubiquitin appear to be the major constituents of 

Lewy bodies, although the latter is not always present (Spillantini et al, 1997).
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Immunostaining for alphasynuclein has now become the most sensitive means of 

demonstrating Lewy bodies.

These rare families with mutations in SNCA, prove that both abnormal alpha­

synuclein and the overproduction of normal protein can directly cause Parkinson’s 

disease. It is still unclear however if alpha-synuclein has a direct causative role in the 

more common forms of Parkinson’s disease, or whether it simply represents an end 

stage marker of the underlying pathogenic process.

PARK3 linkage to chromosome 2pl3

Six families of European origin with autosomal dominant PD have been linked to 

chromosome 2pl3. The phenotype is not dissimilar to idiopathic PD, with age of 

onset ranging from 37 to 89 years however dementia occurred in two of the kindreds 

(Gasser et al, 1998). Postmortem analysis from three of the families showed 

degeneration of dopaminergic neurones in the substantia nigra with Lewy bodies but 

there was also Alzheimer-like pathology. The disease gene at this locus has yet to be 

identified.

PARK5 mutations in UCH-L1

There are several reasons why genes encoding ubiquitin would be strong candidate 

genes in Parkinson’s disease. Lewy bodies contain many multi-ubiquitinated chains 

arising from incomplete degradation of proteins in the proteasomal pathway. 

Ubiquitin C-terminal hydrolase LI (UCH-L1) is a member of a gene family whose 

products hydrolyse small C-terminal of ubiquitin to generate the ubiquitin monomer. 

Expression of UCH-L1 (which represents 1 to 2% of total soluble brain protein) is 

highly specific to all neurons and to cells of the diffuse neuroendocrine system and 

their tumours (Solano et al, 2000), and is selectively present in ubiquitinated inclusion 

bodies characteristic of human neurodegenerative disease (Lowe et al, 1990). An
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Ile93Met missense mutation in the UCH-L1 gene was identified in a German family 

with familial PD; two German brothers with L-dopa responsive Parkinson’s disease 

and family history compatible with autosomal dominant but incompletely penetrant 

Parkinson’s disease (Leroy et al., 1998).

Functional studies of Ile93Met UCH-L1 and wild-type enzymes showed that the 

mutant had nearly a 50% reduction in activity (Leroy et al, 1998). However, a 

mutation screen of a large cohort of PD families failed to identify any mutations 

within the UCH-L1 gene (Harhangi et al, 1999; Lincoln et al, 1999b; Wintermeyer et 

al, 2000). The role of this gene in the pathogenesis of autosomal dominant PD 

remains undefined.

PARK8 mutations in LRRK2

A third locus for an autosomal dominantly inherited phenotype resembling late-onset 

Parkinson’s disease was first mapped to chromosome 12 (PARK8) in a large Japanese 

family; nigral degeneration without Lewy bodies was reported in this family 

(Funayama et al., 2002) Subsequently, further evidence for independent mutations at 

this locus provided by the report of a linkage study in, Family D from North America, 

(Zimprich et al., 2004). PARK8 is the subject of chapters 2 and 3 where it will be 

discussed in greater detail.

1.1.2 Other loci in Familial Parkinson’s disease: NURR1 and Synphilin-1 

NR4A2 (NURR1) mutations have been identified in ten patients with late-onset 

autosomal dominant Parkinson’s disease (Le et al., 2003). However, NR4A2 

knockout mice do not develop nigral dopamine neurones but heterozygous knockouts 

appear to have an increased sensitivity to MPTP neurotoxicity (Zetterstrom et al., 

1997). Follow-up reports have failed to find additional pathogenic NR4A2 mutations
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(Hering et al., 2004, Nichols et al., 2004) questioning the significance of non-coding 

variants identified in the NR4A2 gene.

Synphilin-1

Synphilin-1 is a component of the Lewy body, which interacts with both a -  synuclein 

and parkin, and may have a functional role in the ubiquitin mediated degradation 

pathway (Engelender et al., 1999). A missense mutation of the gene has been 

reported in two German patients with sporadic Parkinson’s disease that share the same 

rare haplotype, indicating common ancestry however significance of this finding is 

also unclear (Marx et al., 2003).

1.1.3 Autosomal Recessive Parkinsonism 

Mutations in PARK2 /  Parkin

Parkin is the product of a gene, PARK2, which spans more than 500 kb with 12 

coding exons and an open reading frame of 1,395-bp. The protein has 465 amino 

acids with moderate homology to ubiquitin at the amino terminus and two RING- 

finger motifs at the carboxy-terminus (Kitada et al, 1998) and flanking an IBR (In 

Between Ring) region. These domains are typical of proteins which act as ubiquitin- 

ligase. Functional in vitro studies have demonstrated that parkin acts as an ubiquitin- 

ligase (E3), and is requisite in the ubiquitin-proteasome degradation pathway 

(Shimura et al, 2000). This pathway contributes to cell survival by degrading 

abnormal misfolded proteins that would otherwise precipitate within the endoplasmic 

reticulum and lead to cell toxicity and cell death. In order to be degraded by the 

proteasome, abnormal proteins are tagged with a polyubiquitin chain and incorporated 

within the 26S proteasome and degraded. Free polyubiquitin chains are then degraded 

by ubiquitin-hydrolase enzymes (such as UCH-L1) and ubiquitin molecules can be 

recycled.
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In brains of control individuals, the parkin protein is widely expressed, mainly in the 

pigmented neurons of the substantia nigra and locus coeruleus. Histopathology of 

patients with idiopathic, ‘late onset’ PD has demonstrated that parkin is a major 

component of the Lewy bodies in addition to apha-synuclein, ubiquitin and other 

proteins.

Autosomal recessive early onset parkinsonism (EOPD), first described in 1973 in 

Japan, where it is also called autosomal recessive juvenile parkinsonism (ARJP), is 

often characterised by dystonia at onset, hyperreflexia, early complications from L- 

Dopa treatment (in contrast to dopa responsive dystonia-DRD) and slow progression 

(Yamamura et al., 1973). PARK2 was the first recessive parkinsonism locus to be 

mapped and cloned (Kitada et al., 1998). Deletions, multiplications, or point 

mutations in the coding regions have been identified not only in kindreds of different 

ethnic origins, but also in isolated cases of young onset parkinsonism and familial 

cases with an age of onset as late as 64 years (Abbas et al., 1999, Lucking et al., 

2000, Klein et al., 2000).

Neuropathological examination has been reported (Mori et al., 1998, Hayashi et al., 

2000, van de Warrenburg et al., 2001, Farrer et al., 2001). Neuropathology usually 

does not have Lewy bodies although two reports describe Lewy body inclusions 

(Chen et al, 2000; Farrer et al, 2001).

In remaining cases there was an absence of Lewy bodies and a severe and generalised 

loss of dopaminergic neurons from the substantia nigra pars compacta and locus 

coeruleus. One of these showed additional neurofibrillary tangles and argyrophilic 

astrocytes in cerebral cortex and brainstem nuclei (Mori et al, 1998), the second 

showed additional involvement of the substantia nigra pars reticulata (Hayashi et al, 

2000), and the third showed neuronal loss in parts of the spinocerebellar system (van
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de Warrenburg et al, 2001). Thus, ‘parkin disease’ is a distinct genetic entity whose 

clinical and pathological features show varying degrees of overlap with those of 

idiopathic Parkinson’s disease (IPD).

“Parkin disease” may be a separate pathological entity with clinical features that 

overlap with Parkinson’s disease. It is presumed that PARK2 mutations are ioss-of- 

function’; unlike controls cases, the protein is absent in brains of patients with parkin 

disease (Hayashi et al, 2000) suggesting that there is a breakdown in the ubiquitin- 

proteasome machinery; the consequent accumulation of proteins that cannot be 

ubiquitinated and degraded leads to a cascade of endoplasmic reticulum stress and 

selective neuronal degeneration. This may well explain the absence of Lewy bodies, 

which are mainly composed of ubiquitinated aggregates (Nussbaum, 1998; Giasson 

and Lee, 2001).

PARK2 is by far numerically the most important of the recessive loci contributing to 

early onset parkinsonism; parkin mutations account for 45% of autosomal recessive 

parkinsonism with an age of onset <45 years and 77% of isolated cases of 

parkinsonism with an age of onset <20 years (Lucking et al., 2000) but remains a rare 

cause of parkinsonism in patients with onset over 40years of age (Oliveira et al.,

2003).

Mutations in PINK1 (PARK6)

Mutations in the PTEN (phosphatase and tensin homolog deleted on chromosome ten) 

induced kinase-1 gene (PINK1) also causes early onset parkinsonism (Valente et al.,

2004). The PINK1 gene encodes a putative protein-kinase. These enzymes 

phosphorylate target proteins, which then perform important cellular roles such as 

signal transduction.
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Wild type and mutant PINK1 protein primarily locates to the mitochondrion (Valente 

et al., 2004) and protects cells from stress-induced mitochondrial dysfunction and 

apoptosis.

The phenotype of PINK1 associated parkinsonism has greater overlap with the clinical 

features of idiopathic Parkinson’s disease compared to parkin or DJ-1 associated 

disease (Valente et al., 2004, Valente et al., 2005)

Mutations in DJ-1 (PARK7)

This locus was first linked to parkinsonism on the short arm of chromosome 1 (25 cM 

telomeric to PARK6) in a large consanguineous family, originating from an isolated 

community living in the Netherlands (van Duijn et al, 2001). A homozygous deletion 

in gene, DJ-1, was subsequently identified in this Dutch kindred and a homozygous 

missense mutation resulting in the substitution of a highly conserved leucine at 

position 166 by a proline, in affected subjects in a consanguineous Italian family 

(Bonifati et al, 2003).

DJ-1 contains 8 exons, of which the first two are non-coding and alternatively spliced 

in mRNA. One major transcript encodes a protein that is ubiquitously expressed in 

body tissues and brain. Wild-type DJ-1, under oxidative stress locates to the outer 

mitochondrial membrane maintaining neuronal integrity and survival (Canet-Ariles et 

al., 2004). The DJ-1 phenotype includes an early age of onset with individuals from 

the original Dutch kindred reporting an age of onset from 27 to 40 years. Disease 

progression was slow with some patients refusing treatment, owing to mild disease. 

Those in whom treatment was instigated with levodopa or dopamine agonists, showed 

a good response in addition to off-dystonia, levodopa-induced dyskinesias and 

fluctuations. Behavioural disorder (psychosis and neurosis) was also noted as was 

short stature and brachydactyly (Dekker et al., 2004). Functional imaging has shown a
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pattern of nigrostriatal dysfunction that is unlike idiopathic PD (Dekker et al., 2004a). 

Pathology in this locus has yet to be reported. Mutations in DJ-1, causing early-onset 

disease, have a prevalence of approximately one percent (Abou-Sleiman et al., 2003).

1.2 Scientific tools used in this thesis.

This section outlines in detail two very different scientific tools used in this thesis;

1 Qmolecular genetics and functional imaging using F-dopa positron emission 

tomography. At the start of this thesis, this somewhat unusual combination was 

initially used as a novel method to increase the power of linkage analysis by detecting 

preclinical disease in asymptomatic relatives in a British kindred with autosomal 

dominant Parkinson’s disease. This would extend the phenotype and increase the 

number of ‘affected subjects’ in a genome-wide search and in linkage analysis. At the 

beginning of my thesis, in 1998 the use of functional imaging to study both disease 

and presymptomatic subjects in mendelian parkinsonism was novel and was therefore 

employed in other projects.

1.2.1 Identifying disease-genes

There is no standard procedure for gene identification but whichever route is adopted 

the key step is to arrive at a plausible 'candidate gene' which can then be tested for 

mutations in diseased individuals (Strachan 2000). In principle methods be divided 

into position independent strategies that do not require chromosomal location or 

positional cloning methods that rely on information of the chromosomal location. 

Position-independent approaches include methods starting with the protein product 

(using amino acid sequences used to generate specific oligonucleotide probes), 

functional cloning (expressing random fragments of DNA and isolating fragments that 

cause a desired change) or selecting a candidate gene based on its potential 

contribution to the pathophysiology of the disease and screening either populations
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(unrelated patients, sibling pairs, twins) using allelic association studies or individual 

patients using sequencing methods.

Position-dependent approaches refer to ‘positional cloning’ in which the initial step in 

identifying the disease-causing gene, is to map its chromosomal location first (using 

genome-wide studies in either populations, sibling pairs or dominant or recessive 

kindreds). This enables the refined subchromosomal location to be screened for 

candidate genes in which a disease-causing mutation is identified in affected subjects. 

In reality parallel approaches are used and both converge on mutation testing in a 

candidate gene.

The two methods used in this thesis were linkage analysis in a dominant kindred with 

PD and population based association studies.

At a fundamental level genetic association and linkage analysis rely on similar 

principles; both rely on the co-inheritance of adjacent DNA variants. Linkage relies 

on identifying haplotypes inherited over several generations in families of more 

recently observed ancestry where fewer recombinations have occurred such that 

disease gene regions are large encompassing many megabases. Association relies on 

the retention of adjacent DNA variants over many generations from historic 

recombinations such that disease-gene regions are theoretically small (Lon et al., 

2000). In a sense, association studies can be regarded as very large linkage studies.

1.2.1.1 Population based allelic association studies.

Association studies test whether a genetic marker (polymorphism or allele) occurs 

more frequently in unrelated, diseased cases than in age and sex matched controls. If a 

truly significant association emerges (disproportional over-representation amongst 

diseased cases) the polymorphism itself is the susceptibility locus, or in linkage
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disequilibrium with the susceptibility locus. In either case it should enable disease 

mapping and the identification of people at risk of developing disease.

Linkage disequilibrium (also known as gametic phase disequilibrium or allelic 

association), refers to the non-random association of alleles such that particular DNA 

variants (including a disease mutation) remain together on ancestral haplotypes for 

many generations. The power (the probability of correctly detecting a genuine 

association) of population-based studies can be much greater than linkage.

If a positive association emerges it requires confirmation in an independent cohort, 

preferably with larger study numbers with stringent standardisation of controls 

samples (Bird et al., 2001). Failure of replication does not necessarily render the 

original result false; there are several possible explanations for the discrepancy 

between two comparable groups including population stratification (populations 

containing several genetically distinct subsets), statistical artefact including subgroup 

analysis and multiple testing, small sample sizes that exacerbate locus heterogeneity 

and are prone to random error, incorrect phenotypes, poorly matched controls (using 

retrospective cohorts prone to selection bias rather then prospective cohorts) and the 

biological credibility of the gene-allele-phenomenon-disease association (Strachan 

and Read., 1999, Gambaro et al., 2000).

Association studies in PD to date have broadly focussed on two types of candidate 

genes. Firstly those primarily involved in oxidative stress, xenobiotic toxicity, altered 

dopamine metabolism or impaired proteasomal degradation in PD. Secondly 

functional polymorphisms selected from known mendelian genes identified in rare 

families with autosomal recessive or dominant kindreds. Linkage disequilibrium in 

populations of ‘sporadic’ PD or affected sibling pairs has identified several allelic
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associations although these have not always been replicated in independent cohorts 

(Tan et al., 2000).

1.2.1.2 Linkage analysis

Linkage analysis makes use of the exception to Mendel’s Law of Independent 

Assortment which states that alleles at different genetic loci assort at random during 

meiosis; homologous chromosomes cross over and exchange genetic material during 

recombination such that that 50% of chromosomes will be recombinant, and 50% 

non-recombinant for these loci. Loci in close physical proximity on the same 

chromosome, however, tend to be inherited together and are said to be linked and 

alleles on the same small chromosomal segment that tend to be transmitted as a block 

thorough a pedigree is known as a haplotype. Haplotypes mark chromosomal 

segments which can be tracked through pedigrees and through populations. Hence 

during a genome wide search, when DNA markers (with a known location) on the 

human genetic map, co-segregates with the disease (only affected subjects in a 

pedigree), linkage exists, and the DNA marker lies in close proximity to the disease 

gene.

Genetic mapping using linkage analysis has essential requirements including 

monogenic mode of inheritance that can be established by segregation analysis, 

correct phenotypic designation of affected and unaffected status.

The LOD score method (Morton, 1955), a maximum likelihood analysis, calculates 

the probability that two loci are linked, expressed as a LOD score which is a logio of 

the odds ratio favouring linkage. Convention dictates that a LOD score > 3, which 

indicates a probability in favour of linkage of 1000 to 1, is enough to establish 

linkage, and conversely a LOD score of -2 indicating a probability against linkage of

37



100 to 1 excludes linkage between the two loci being tested. Standard LOD score 

(parametric) analysis requires a precise genetic model, detailing the mode of 

inheritance, gene frequencies and penetrance of each genotype. The LOD score is 

calculated for various values of 0 using computer programs such as MLINK (Lathrop 

et al., 1984 and 1988) to obtain the value of 0 associated with the highest LOD score. 

This provides an estimate of the genetic distance between the two loci studied.

Genetic studies of ‘complex traits’ such as PD face difficulties arising from 

uncertainties in diagnosis, disease definition and lack of understanding of genetic 

transmission. In addition in Mendelian disease, especially with autosomal dominant 

inheritance, linkage analysis can be impaired by incomplete penetrance, variable 

phenotypic expression, genetic heterogeneity, and phenocopies.

In PD, positional cloning methods using linkage analysis in Mendelian kindreds have 

been the most successful tool in disease mapping of genes identified to date (Table 1).

1.2.2 Functional Imaging and the use of 18Fluoro-dopa Positron Emission 

Tomography

The cell bodies of dopaminergic neurons in the human mesencephalon are located in 

the 'nigral complex'; axons from these cell groups, in particular the substantia nigra 

and ventral tegmental area project to the striatum (caudate and putamen), pallidum as 

well as the frontal, cingulate and olfactory cortices (Agid et al., 1991). These neurons 

synthesize dopamine in situ from tyrosine which is hydroxylated by tyrosine 

hydroxylase to 3,4,-dihydroxy-L-phenylalanine (L-dopa). This enzyme is the rate- 

limiting step in the synthesis of dopamine; L-dopa is then decarboxylated by aromatic 

L-amino acid decarboxylase to form dopamine and concentrated within neuronal 

vesicles by an ATP dependent process. Thereafter, enzymes catechol-O-methyl
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transferase (COMT) and monoamine oxidase (MAO) covert dopamine to 

homovanillic acid and other metabolites.

In 1983, Garnett and co-workers first reported the use of radiotracer 6-[18F] fluoro-L- 

3-4-dihydroxyphenyalanine (18F-dopa) in Positron Emission Tomography (PET) to 

visualise the nigrostriatal dopaminergic system in v/vo.18F-dopa PET provides a 

measure of the structural and biochemical integrity of the presynaptic nigrostriatal 

projection; uptake rate constant is determined by the transfer of dopa across the blood 

brain barrier, its decarboxylation to fluorodopamine by 1-aromatic acid decarboxylase 

and its retention in nerve terminals (Booij et al., 1999). Although it is not a direct 

measure of endogenous dopamine synthesis it correlates highly with dopamine levels 

in the parkinsonian striatum of humans (Pate et al., 1993). However 18F-dopa cannot 

be used to provide an index of striatal dopamine levels; there is no evidence that 18F- 

dopa uptake and dopamine levels correlate directly.

1 RAfter intravenous injection, F-dopa tracer in transported across the blood brain

18 18 
barrier and converted to F-dopamine by amino acid decarboxylase; F-dopamine

accumulates in the nigrostriatal projections and is metabolised by monoamine oxidase

18
B and catechol-O-methyltransferase (Piccini et al., 1995). Striatal F-dopa uptake is 

measured as an influx constant, Kj, which reflects the capacity of caudate and

18
putamen to metabolize exogenous F-dopa into dopamine thus giving measure of 

dopamine terminal function (Fimau et al., 1987).

The pattern of 18F-dopa uptake in Parkinson’s disease is characterised by a more 

pronounced reduction of striatal uptake in the putamen than in the caudate nucleus 

(Leenders et al., 1986, Leenders et al., 1990) which has been confirmed in post­

mortem studies (Kish et al., 1988). In addition uptake of radiotracer is asymmetrical 

and correlates with disease severity in patients with PD; levels of striatal and nigral
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F-dopa uptake at different stages of PD all correlate with clinical disease severity as

18
measured by the unified PD rating scale (UPDRS). F-dopa PET has been used as an 

objective in vivo measure of disease progression; Morrish and co-workers found that 

putamen Kj was the most sensitive measure of disease progression; a mean putamen

18
F-dopa uptake 75% of normal was associated with symptom onset with a mean

18
preclinical period up to a decade (Morrish et al., 1998). F-dopa PET has also been 

used in the detection of preclinical disease in PD.

In 1991 Langston and colleagues suggested that Parkinson’s disease existed in three 

different phases. The first was a ‘disease free’ state in which genetic and 

environmental risk factors were present. The second was a ‘pre-symptomatic phase’ 

in which the disease process had commenced but without clinical manifestation and 

the third stage was the ‘symptomatic phase’ (Koller et al., 1991, Langston et al., 

1991). It was hypothesized that differences in gene penetrance and expressivity as 

well as exposure to undefined environmental factors accounted for whether or not 

progression to a symptomatic, clinical state would occur.

Evidence for a presymptomatic phase has come from both postmortem examination 

and 18F-dopa PET studies. Histopathology of subjects, who did not have Parkinson’s 

disease, has shown significant neuronal loss and Lewy bodies that are typical of PD 

(Gibb et al., 1988). In addition, the age-specific prevalence of Lewy bodies increased 

from 3.8% to 12.8% between the sixth and ninth decade (Gibb et al., 1988); the 

prevalence of clinical disease is up to 2% in this age group.

18F-dopa PET studies in cynomolgus monkeys injected with MPTP showed 

significantly reduced 18Fdopa uptake compared to control values (Guttman et al., 

1988). These animals subsequently became parkinsonian after repeated injections 

with MPTP. PET studies in asymptomatic patients exposed to MPTP (Caine et al.,
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1985) and those at risk of developing parkinsonism-dementia complex on Guam 

(Snow et al., 1990) have also shown subclinical nigrostriatal dysfunction. In 1997, 

Piccini and co-workers published a study that detected significant nigrostriatal 

dysfuncton, using 18F-dopa PET, in up to 25% of unaffected members from kindreds 

with familial Parkinsonism and PD; 40% went onto develop frank disease within two 

years of the initial PET scan (Piccini et al., 1997). Furthermore, a longitudinal 18F- 

dopa PET study in eighteen MZ and sixteen DZ twins who were clinically discordant 

for PD showed that subclinical nigrostriatal dysfunction was higher in the MZ twins 

compared to DZ twins and that all, asymptomatic MZ co-twins showed a loss of 

dopaminergic dysfunction; 25% developed PD whilst none of the DZ twin pairs 

became clinically concordant.
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THE AIM OF THIS THESIS

This thesis was undertaken during an exciting time in inherited movement disorders 

when disease-genes were being identified not only familial parkinsonism, but also in 

dystonia, ataxia and chorea amongst others.

At the start of my research in September 1998, two disease genes had been identified 

in PD (alpha synuclein and PARK2 ‘parkin’) and by the end, in January 2002 there 

were ten designated ‘PARK’ loci. Over this period of time there was an enormous 

production of molecular genetic data in Mendelian parkinsonism however phenotypes 

of each locus were less defined, pathology was limited and functional imaging in 

patients with familial parkinsonism and asymptomatic heterozygotes, was novel.

The aim of this thesis was:

i) to map a novel locus in the largest British kindred with autosomal 

dominant Parkinson’s disease

ii) to assess in detail the phenotype of the British kindred with autosomal 

dominant PD and compare to other dominant kindreds

iii) to perform a detailed clinical study of ‘parkin’ patients and asymptomatic 

parkin heterozygotes

iv) to use 18F-dopa PET to characterise the pattern of nigrostriatal dysfunction 

in patients and asymptomatic heterozygotes with ‘parkin’ (PARK2) and 

PINK1 (PARK6) mutations

v) to identify a susceptibility allele in population-based, allelic association 

studies
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2. CLINICAL FEATURES OF THE LARGEST BRITISH KINDRED WITH 

AUTOSOMAL DOMINANT PARKINSON’S DISEASE.

2.1 Introduction

The largest British kindred with autosomal dominant Parkinson’s disease was 

identified by Dr Graham Lennox, Consultant Neurologist, Queens Medical Centre, 

Nottingham who referred this kindred to Professor Nicholas Wood, Institute of 

Neurology, in 1995. Initial investigations of this kindred traced the ancestry back to 

the county of Lincolnshire, England; fifteen affected members (six living and nine 

deceased) were identified (Nichol et al., 2002). A preliminary clinical description of 

the phenotype was not dissimilar to idiopathic Parkinson’s disease with asymmetrical 

rest tremor and L-dopa responsiveness; pathology was not available at that time 

(Nichol et al., 2002).

The next chapter describes the molecular characterisation of this kindred, linking the 

disease to the PARK8 locus on chromosome 12. Subsequent work by my colleagues 

was successful in cloning the gene at the PARK8 locus and identifying a disease- 

causing mutation in a novel sequence encoding leucine-rich repeat kinase2, LRRK2 

(Paissan-Ruiz et al., 2004).

The aim of this study were i) to extend the pedigree to identify new affected subjects 

that would contribute to linkage analysis ii) report follow-up data including a more 

detailed account of the phenotype and progression of disease.

2.2 Methods

2.2.1 Genealogy and Independent Advertising.

Genealogical data was collected through civil and church records of birth, marriages 

and deaths, medical records and accounts from family members. This was performed 

in collaboration with Juliet Gayton, Genealogist, Exeter University, UK.
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In addition a variety of methods (coverage by regional news on national television, 

articles in national newspapers, interviews on regional and national radio and articles 

in the PDS newsletter) were used to assemble a cohort of familial cases of PD 

whereby patients or relatives of patients with a family history of PD would volunteer 

information about their family history (examples shown in Appendix section 8.2). 

2.2.2 Patients

All subjects gave informed consent and the study was approved by the Joint Research 

and Ethics Committees of the National Hospital for Neurology and Neurosurgery 

and Institute of Neurology, Queen Square, London. A detailed clinical study of these 

subjects was performed incorporating a standardised clinical proforma. Cognitive 

assessment incorporated the use of the Folstein Mini-Mental State Examination 

(Folstein et al., 1975). The University of Pennsylvania Smell Identification Test 

(UPSIT) was used to test olfaction (Doty et al., 1984). Scores range from 0-40; higher 

scores denote better olfaction.

2.3 Results

2.3.1 Genealogical data and other families

An extensive genealogical search was performed to identify further affected members 

in the Lincolnshire kindred. This was successful in identifying another branch in 

which four members were affected: all were deceased. This did however provide 

further evidence that the pattern of inheritance was autosomal dominant rather than 

the chance co-occurrence of PD cases in these families.

800 families with familial Parkinson's disease (two or more first or second degree 

relatives) were ascertained following advertising methods. To date, none of these 

families have been genealogically linked to the Lincolnshire kindred by Juliet Gayton 

Genealogist, Exeter University, UK
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2.3.2 Clinical data

Ancestors of 1.1 (Figure 2.3.2) can be traced back to a family of farmers living in rural

thLincolnshire in the 16 century. Historical account from living and deceased family 

members and death certificates identify affected members with PD, back to the early 

1800s.

Twenty-five affected members have been identified over four generations; only part 

of the pedigree is shown in Figure 2.3.2. At the time of the previous description of this 

kindred (Nicholl et al., 2002), there were five living subjects with PD (III.5, III.9,

III. 10, III. 13, III. 15) and sixth (IV.4) had just developed PD. At follow-up subject

IV.4 had extrapyramidal signs and patients III.9 and III. 13 had died; post-mortem 

examination was available on brain and olfactory bulb on patient III. 13 (Khan et al.,

2005). All clinical details are summarised in Table 2.3.2.

Patient I.1

This subject, bom in the late 1800s, is reported to have developed tremor in his 

sixties. Several grandchildren have commented that this was relatively mild compared 

to subsequent generations. He died aged 67 years.

Patient II. 1 and offspring III. 2

II. 1 is reported by family members to have had mild signs of parkinsonism in her 

early seventies and died in 1976, aged 85 years. One of her children, III.2 developed 

parkinsonism at the age of 48 years but died aged 57 from bronchopneumonia. A 

post-mortem was not performed on the brain.

Patient II. 4 and offspring III. 5

II.4 developed parkinsonism at 61 years. Other family members report the subsequent 

development of a shuffling gait, falls and severe parkinsonism within 5 years. He died 

aged 66 years from bronchopneumonia in 1969 and did not have a post mortem
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Figure 2.3.2 Family tree of British kindred with Autosomal Dominant PD
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Table 2.3.2 Clinical characteristics of affected subjects in the British kindred.
Subject Sex/Age Age at Onset Symptoms at onset DD
1.1 M/67 65 tremor 5

II. 1 M/66 61 unknown 5

II. 5 M/70 50 unknown 20

II.9 F/85 75 unknown 15

III.l M/70 56 rest tremor big toe 14

III.5 M/54 50 unknown 5

III.9 F/77 57 unknown 20

III. 10 M/70 45 unilateral leg tremor 25

111.13 F/70 50 unilateral leg stiffness 
& tremor

20

III. 15 F/68 44 unilateral leg tremor 
& stiffness

26

III. 17 F/57 45 unilateral leg tremor 
& stiffness

12

111.20 F/57 48 unknown 11

IV.4 M/44 47 unilateral leg tremor 4
IV. 5 M/49 40 unilateral leg tremor 9

Response to L-dopa Other features
not taken b. late 1800’s, ‘mild’ disease, died aged 67

not taken b. 1890’s, shuffling gait, severe parkinsonism, died aged 66

not taken b. 1890’s late disease: severe parkinsonism; died aged 70

unknown b.l890’s ; ‘mild’ disease, died aged 85

excellent anxiety at onset, foot dystonia & dyskinesia after 4yrs
treatment, MMSE 30 at aged 70

good 10 years of anxiety and neurosis prior to the onset
parkinsonism died aged 70 

significant after 10 yrs: severe offs, bulbar symptoms, akinetic & mute,
died 77

significant suicide attempt at 66, depression for ten years, continued
response to L-dopa, no dyskinesias. MMSE 30

moderate after 10 years: depression, foot dystonia (rest / exercised
induced), peak-dose dyskinesias; died aged 70 (stroke) PM +

significant claustrophobia, anxiety & depression after 14 yrs, MMSE 28
at 68 dyskinesias after 8 yrs

significant paranoia, anxiety & depression after 10 yrs, foot dystonia,
little dyskinesias on treatment, died aged 57.

unknown hemi-parkinsonism, died from bronchopneumonia. No PM

unmedicated most recent subject who has developed disease
significant anxiety two years prior to disease onset, foot dystonia before

L-dopa MMSE 30



examination.

His only child, subject III.5, aged 70years, first reported symptoms at the age of 56 

years. He described anxiety, rest tremor of the big toe on the right foot which 

progressed to rest tremor of both legs. One year after the onset of symptoms he was 

noted to have a paucity of facial expression and poor arm swing and commenced L- 

dopa reporting a 90% improvement. Four years after treatment, he developed peak 

dose dyskinesias and right-sided foot dystonia both at rest and with exercise. He 

reported one fall per month for the past six years and freezing episodes for the past 

four years. He did not report any symptoms of autonomic dysfunction. There is no 

history of sleep benefit, motor fluctuations prior to starting treatment or any form of 

behavioural disorder prior to the onset of, or with disease. MMSE score was 30 aged 

70 years. This patient has previously had an 18F-dopa PET scan (Nichol et al., 2003). 

Patient II.5 and affected offspring (1115, III.9, III.10,111.13,111.15, III 17)

11.5 developed parkinsonism aged 50. Family members report that late disease 

associated with severe disability, marked facial hypomimia, severe rest tremor, 

akinesia and rigidity. He died, aged 70 years in 1966.

Patient III 5

This patient had a longstanding history of anxiety and neurosis before the onset L- 

dopa responsive parkinsonism aged 50 years. He died aged 54 years old.

Patient III.9 developed hemi-parkinsonism at the age of 57; there was a definitive 

response to L-dopa but this was complicated by end of dose akinesia. After ten years 

disease duration, aged 67, there was severe on-off phenomena and difficulty with 

speech and swallowing when off. At that time, when ‘off, she was mute, with left 

sided hemi-parkinsonism and some restriction of upgaze only. The disease became 

marked disabling requiring care in a nursing home for nine years until the patient died 

aged 77. A post-mortem examination was not possible.
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Patient III. 10 This 70year old man noticed tremor in the left leg, especially prominent 

when seated aged 45 years. At age of 50 years he developed stiffness of the left arm 

and leg, foot dystonia and poor swing on the left. Two years later he commenced L- 

dopa and reported a significant improvement. After 35 years of disease he continues 

to report improvement with L-dopa, has no dyskinesias, reports falls over the past 18 

months and freezing over the past 12 months. He attempted suicide attempt aged 66 

years and has been treated for depression since.

Patient 111.13 developed parkinsonism aged 50 years, with dragging of the left leg and 

subsequent tremor of the left arm and leg. L-dopa commenced two years after 

symptom onset with some improvement of symptoms. Peak dose dyskinesias, foot 

dystonia (rest and exercise-induced) and depression occurred ten years later. Freezing, 

falls and postural-related symptoms occurred in the last five years of disease. The 

patient died, aged 70 years, in 2000 after a stroke. A post-mortem examination was 

performed and brain histopathology was studied by Dr Janice Holton, Consultant 

Pathologist, Institute of Neurology, Queen Square London. The report is discussed in 

the conclusion of this chapter.

Patient III. 15 This 68 year old, reported both rest tremor and dragging of the left leg 

and foot at the age of 44 years. At that time, she commenced benzhexol and reported a 

significant improvement of symptoms. Within two years she developed a prominent 

tremor of the left hand, flexed posturing, poor arm swing and dystonia of the left foot 

at rest and with exercise. L-dopa was started 10 years after disease onset, on which 

she reported 80 % improvement of symptoms. Dyskinesias started after eight years of 

L-dopa therapy. Falls and freezing have complicated disease in the past year. There 

are no urinary or postural-related symptoms. She developed severe claustrophobia, 

panic attacks and depression fourteen years after disease onset. MMSE was 28 aged 

68 years.
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III. 17 developed parkinsonism aged 45 years. At disease onset she would often trip 

over and began to drag the left foot and leg. She subsequently developed rest tremor 

in the left arm and significant left-sided foot dystonia. L-dopa therapy started one year 

after disease onset with significant improvement. Significant depression, paranoia and 

panic attacks occurred ten years after disease- onset. At age 53, a hemi-colectomy was 

performed after developing complications of chronic constipation. This subject had 

little dyskinesia and was predominantly akinetic and died after disease duration of 12 

years.

Patient IV 4

This 47 year old (offspring of III. 10), first noticed intermittent tremor and dragging of 

the left leg aged 44 years. Aged 45 years he has poor arm swing on left and stiffness 

of left arm and leg. He was reviewed by a local Neurologist in 2004 who confirmed 

the diagnosis of PD. This patient is unmedicated.

Patient IV. 5

This 49year old patient (offspring of patient III. 13) first noticed tremulousness of the 

right leg whilst driving aged 40 years. There was also heaviness of the right leg and 

intermittent slurring of speech. Three years later, following a fall, he developed 

intermittent, right-sided foot dystonia at rest. Initial treatment commenced aged 44 

years wit ropinirole and then pramipexole on which he reported 75% improvement of 

symptoms. Three years after treatment he commenced L-dopa and described a 

significant improvement of symptoms. He reported no dyskinesias, falls or freezing 

episodes. He developed prominent panic attacks two years prior to the onset of 

disease.

Age o f Onset

Mean age of onset of living subjects remained at 57 years as previously reported 

(Nicholl et al., 2002) however in this study the mean age of onset of disease,
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decreased in successive generations; generation II, 62.0 years, generation III, 50.1 

years and generation IV, 40 years.

Tremor

All subjects that were examined reported initial unilateral leg symptoms at onset. 

Subject III.5 aged 50, reported rest tremor of the big toe of the right foot that 

progressed to both feet and thereafter both legs. Subject III. 10 reported an initial 

symptom of unilateral tremor in one leg that was prominent only when seated. IV.5 

first noticed tremor and heaviness in the right leg that initially only occurred whilst 

driving. Subject III. 17 first noticed tripping over her left foot aged 45 years. In 

addition she would also intermittently drag her left foot and leg; she subsequently 

developed rest tremor in left arm and left sided foot dystonia 

Dystonia

Foot dystonia (rest and exercised-induced) was reported prior to and during L-dopa 

treatment; the latter developed early or later on in disease.

Other motor features

All subjects interviewed reported hemi-parkinsonian symptoms at onset with an 

overall picture of slowly progressive parkinsonism. Freezing episodes and falls 

occurred late in disease. Only one subject (III.9) reported significant bulbar symptoms 

late in disease.

Autonomic symptoms

Only one subject (III. 13) reported symptoms of orthostatic hypotension after 15 years 

of disease.

Cognitive function

Cognition in subjects examined in detail (III. 1, III. 10, III. 15, IV.5) was normal 

(MMSE >28). In particular subject III. 15 was normal despite disease duration of up to 

26 years.
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Response to treatment

Disease in this kindred was characterised by significant response to L-dopa; subject

III. 10 reported sustained improvement even after twenty-five years of disease. In 

addition this subject did not report dyskinesias despite 18 years of L-dopa treatment. 

Other subjects reported little or no dyskinesia and mild foot dystonia that was more 

prominent at peak dose of L-dopa medication. Subject IV.5 reported significant 

benefit from ropinirole and pramipexole as first line treatment that was started 4 years 

after disease onset. He required L-Dopa three years later. Subject III. 15 reported 

significant improvement on benzhexol for ten years and continued to report sustained 

improvement after substitution with L-dopa treatment.

Behavioural disorder

Seven subjects reported behavioural disorder (anxiety attacks, depression, paranoia 

and suicide): six reported symptoms after the onset of parkinsonism and subject IV.5 

described symptoms two years prior to disease onset.

Olfaction testing

Patients III. 1, III. 10, III. 15, and IV.5 had scores of 34, 24, 25 and 36 out of 40 

respectively on UPSIT testing.

Unaffected subjects.

Subjects IV.3 (aged 42 years) and IV.6 (aged 48 years) declined a neurological 

examination or a PET scan. They were asymptomatic and are reported not to have 

signs of parkinsonism. Subjects III.3 (aged 77), III.4 (aged 83), III.7 (aged 78), 111.21 

(aged 82), IV.7 (aged 42) had normal examinations, Subject II.7 was aged 103 years 

is not reported to have developed parkinsonism.
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2.4 Conclusion

This is the first detailed clinical report of the British kindred with ADPD; disease 

progression and duration was similar to Parkinson’s disease. This is also the first 

detailed report of a kindred with a LRRK2 mutation.

The phenotype of the British kindred from Lincolnshire however is similar to the 

Sagamihara kindred that was the first to be linked to PARK8 (Funayama et al., 2002) 

the North American kindred (family D, Zimprich et al., 2004) and is not dissimilar to 

idiopathic Parkinson’s disease. The mean age of onset in the Japanese, North 

American and British kindreds was 51, 65, and 57years respectively. In addition the 

age of onset of disease in the British kindred appeared to decrease by a decade in 

successive generations however this may reflect ascertainment bias.

Clinical features common to all three PARK8 kindreds included unilateral signs at 

onset and L-dopa responsiveness. In addition a more detailed study of the British 

kindred noted a sustained response to L-dopa despite years of disease and treatment; 

subject III. 10 after twenty-five years of disease and eighteen years of L-dopa, 

continued to benefit without dyskinesias. Subject III. 15 reported a significant 

improvement on benzhexol started at disease onset and continued response thereafter 

for ten years. Subject IV.5, with age of onset aged 40 years described significant 

symptom benefit from dopamine agonists for at least two years and thereafter a 

sustained response to L-dopa. Overall, patients did not report troublesome 

dyskinesias complicating treatment. Prominent foot dystonia (at rest and exercise 

induced) prior to and during drug treatment analogous to that reported in parkin 

disease was also noted (Khan et al., 2003).

Unilateral symptom onset of tremor in the foot or leg was reported by most subjects in 

this kindred. Prominent symptoms of tremor has also been observed in the Basque 

kindreds in which the PARK8 gene was originally cloned and it is for this reason that
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the protein has been named ‘dardara’ derived from the Basque word ‘dardara’ 

meaning ‘tremor’ (Paisan-Ruiz et al., 2004).

Cognition in this kindred was not significantly abnormal despite a lengthy disease 

duration (up to twenty six years) in some subjects (Table 2.3.2); this may suggest that 

the neurodegenerative pathway involving aberrant LRRK2 product may spare 

structures critical to cognitive function. Functional abnormalities in the caudate 

nucleus have been postulated to play a role in frontal and subcortical dementia in 

patients with basal ganglia pathology.

Behavioural disorder was noted in a number of affected subjects. Psychiatric 

complications including depression, anxiety and psychosis have been reported in IPD 

with rates for depression ranging from 20-50% (Oertel et al., 2001), anxiety disorders 

from 20-40% and psychosis from 15-20% (Aarsland et al., 1999). In this kindred it 

was observed in patients with a younger age of onset (mostly <50 years) analagous to 

findings of behavioural disorder in parkin disease (Khan et al., 2003).

The phenotype of the other autosomal dominant loci differs somewhat from idiopathic 

Parkinson’s disease and PARK8; the clinical characteristics of patients with the A53T 

mutation in the a-synuclein gene have a lower age of onset (45 years), a much lower 

prevalence of tremor, more rapid clinical deterioration as well as dementia and 

hypoventilation (Polymeropolus et al., 1997, Papapetropoulos et al., 2001). PARK3 

families have an age of onset that can be as low as 37 years with a phenotype that 

encompasses significant cognitive impairment.

Olfactory dysfunction is found in 70-100% of PD patients rendering it as common a 

clinical sign as pill rolling tremor (Doty et al., 1988, Katzenschlager et al., 2004). The 

exact pathogenesis of olfactory dysfunction is unclear however the detection of 

neuronal loss with Lewy body deposition in the olfactory pathway in PD (Daniel et 

al., 1992) suggests that, at least in this disease, the mechanism is central and
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neurodegenerative. More recently dopamine levels have been reported to be increased 

in the olfactory bulb in PD (Huisman at al., 2004) and animal data suggests that 

dopamine has an inhibitory effect on transmission in the olfactory pathway 

(Katzenschlager et al., 2004). Lewy bodies have been identified in the olfactory bulb 

in patient III. 13 (Figure 2.4a) (Khan et al., 2005) implying that altered kinase 

activation by mutant LRRK2 protein extends to the olfactory neural networks. 

Olfaction in four of the affected subjects however did not uniformly detect anosmia, 

despite lengthy disease duration in these subjects. Although the number of patients in 

whom olfaction could be tested was too small for meaningful statistical analysis, their 

mean score was 29.7 which was similar to normal, age-matched British controls with 

a mean of 27.6 (Katzenschlager et al., 2004). This is in contrast to the cohort of 

unrelated British IPD patients with a mean UPSIT score of 17.1 (Katzenschlager et 

al., 2004). Discordance between histopathological findings of Lewy bodies in the 

olfactory bulb of subject III. 13 (Khan et al., 2005) and a normal mean UPSIT score in 

other affecteds may be explained by the fact that up to 30 % of PD patients have 

normal smell despite Lewy body disease (Katzenschlager et al., 2004) or, that the 

Lewy body load in the olfactory pathway is not as deleterious in LRRK2-associated 

PD. In addition we were unable to perform a direct correlation of pathology with 

UPSIT score; the latter was not available on subject 111.13. Higher UPSIT scores have 

been documented in tremor-dominant PD patients with a family history of tremor 

(Ondo et al., 2003). Further studies of a much larger, unrelated cohort will be 

necessary to assess olfaction in PARK2 / LRRK2 patients.

Pathology in this British kindred is associated with typical Lewy bodies with marked 

loss of pigmented neurons and gliosis of the substantia nigra with small numbers of 

cortical and brainstem Lewy bodies (Figure 2.4a) (Khan et al., 2005). Moreover this 

complements
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in vivo functional imaging performed on another affected subject, patient III.l in 

whom 18F-dopa PET findings showed pattern of nigrostriatal dysfunction typically 

seen in PD (Nicholl et al., 2002) (Figure 2.4b); an anteroposterior gradient of putamen 

tracer distribution reflecting the preferential degeneration of the ventrolateral tier of 

the substantia nigra pars compacta which projects to the posterior dorsal putamen with 

relative sparing of the dorsomedial nigral cells which project to the anterior dorsal 

putamen and head of the caudate (Bemheimer et al., 1973). More recent 18Fdopa PET 

studies in patients with LRRK2 mutations have confirmed this (Adams et al., 2005, 

Hernandez et al., 2005). A similar pattern of nigrostriatal dysfunction has also been 

observed in four PD patients from the Greek-American kindred with dominant disease 

with a G209A mutation in alpha synuclein (Samii et al., 1999) and contrasts other 

forms of familial parkinsonism including some patients with parkin disease (PARK2) 

and early onset parkinsonism associated with mutations in PINK1 (PARK6) where 

there is more uniform loss of striatal dopamine terminal function with greater 

involvement of head of caudate and anterior putamen compared to PD (Khan et al., 

2002).

Pathology that is typical of PD has also been reported in other PARK8 -linked 

kindreds (Zimprich et al., 2004b, Wszolek et al., 2004) however in the original 

description of the Japanese kindred, the first to be linked to PARK8, the pathological 

examination was remarkable for showing nigral degeneration without Lewy bodies 

(Funayama et al., 2002). Two other North American kindreds with LRRK2 mutations 

2004b) has additional clinical and pathological features consistent with anterior horn 

cell degeneration. It is interesting that this family shares the same LRRK2 mutation 

with the British kindred (personal communication T Gasser) in whom the phenotype,
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Figure 2.4a. Histopathology o f patient III. 13 (Figure 2.3.2). In the substantia nigra 
there was very severe loss o f pigmented neurons with small numbers o f Lewy bodies 
(arrow and insert A). Lewy bodies (B) and Lewy neurites (C) were identified in the 
substantia nigra using alpha-synuclein immunohistochemistry. Similarly there were 
small numbers o f Lewy neurites (D) and occasional Lewy bodies (inset in D) in the 
olfactory bulb. Lewy bodies were scanty in the neocortex (E). Bar represents 28pm in 
A-E and 18pm in the insert in A. A: haematoxylin and eosin; B-E: alpha-synuclein 
immunohistochemistry. With kind permission from Dr Janice Holton, Institute o f 
Neurology, Queen Square, London (Khan et al, 2005).
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• 18Figure 2.4b. F-dopa PET scans showing nigrostriatal dysfunction in patient III. 1 
(Figure 2.3.2) and a healthy control. With kind permission from Dr Paola Piccini, 
Clinical Sciences Centre, MRC Cyclotron unit, Hammersmith Hospital, London

Control subject Patient III. 1 (Figure 2.3.2)
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pathology and functional imaging that is strikingly similar to IPD. One explanation 

for discordance between genotype and phenotype in the British kindred and North 

American Family A may be that two separate diseases and therefore two distinct types 

of pathology exist in the latter. A study, of both phenotype and pathology in a larger 

number of patients sharing the same LRRK2 mutation will be necessary to confirm 

this.

In conclusion, the phenotype of the largest British kindred with autosomal dominant 

PD is similar to idiopathic, late-onset Parkinson’s disease.
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3. THE GENETIC CHARACTERISATION OF THE LARGEST BRITISH 

KINDRED WITH AUTOSOMAL DOMINANT PARKINSON’S DISEASE.

3.1 Introduction

Autosomal dominant Parkinson’s disease is genetically heterogeneous. Prior to this 

study mutations in the coding regions of SNCA and UCHL1 as well as linkage of the 

disease to a haplotype on chromosome 2pl3 and chromosome 4p (previously 

designated PARK4) had been excluded in this kindred (screened by Dr Jenny 

Vaughan, Department of Molecular Neurosciences, Institute of Neurology, Queen 

Square, London; Nichol et al., 2002) thus providing further evidence for locus 

heterogeneity in ADPD. In addition one affected (patient III. 1, Figure 2.3.2) did not 

have a mutation in HD, DRPLA and SCA3 (screened by Victoria Stinton and Tunde 

Akimbode of the Diagnostic Laboratory, Department of Molecular Neurosciences, 

Institute of Neurology, Queen Square, London).

The aim of this study was to map a novel locus using a genome-wide search in the 

British Kindred with ADPD whose phenotype is reported in the chapter two.

3.2 Methods

3.2.1 General Methods

3.2.1.1 Patients

All subjects gave informed consent and the study was approved by the Ethics 

Committees of the National Hospital for Neurology and Neurosurgery.

3.2.1.2 Blood Collection

Peripheral blood was re-collected from six affected subjects with L-dopa responsive 

parkinsonism and nineteen unaffected, at risk members and two spouses. Blood was 

sampled from the antecubital vein in vacutainers containing tripotassium EDTA. 

Samples were frozen and stored for future genomic DNA extraction.
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3.2.1.3 Genomic DNA extraction

Genomic DNA was extracted from peripheral blood leucocytes using a semi­

automated phenol-chloroform method. Genomic DNA was extracted from 10ml 

venous blood collected in EDTA blood tubes. The sample was split into 2x 50ml 

falcon tubes, and 40ml Reagent A was added to lyse the red blood cells. The samples 

were spun in a Beckman centrifuge (model CS-6R) at 2600rpm for 20 minutes. The 

supernatant was discarded and the pellet washed with 5ml PBS. After vortexing to 

resuspend the pelleted cells, the sample was centrifuged again at 2600 rpm for 8 

minutes. The supernatant was discarded and the pellet washed again with 5 ml PBS. 

After vortexing again, the sample was spun again at 2600 rpm for 8 minutes. The 

supernatant was discarded, and 500 pL of a solution containing 25pl 10% SDS, 500pl 

CVS buffer and lOOpl proteinase K solution was added to the pelleted cells and the 

sample was placed in an incubator at 55C for overnight digestion. Each sample was 

phenol-chloroform extracted to remove proteins. 5ml phenol was added to each pellet 

(lOmM Tris, pH 8, ImM EDTA, inverted to mix sample and centrifuged at 2600 rpm 

for 15 minutes. The top aqueous layer was removed and placed in a clean tube, and a 

chloroform extraction step was performed twice, by adding 5 ml chloroform / isoamyl 

alcohol (24:1) shaking well to mix, and spinning at 2600 rpm for 15 minutes to 

remove the phenol. DNA was precipitated by adding 15ml 100% ethanol (see section 

3.2.12) and hooking the DNA threads out with a pipette tip. The DNA was re­

suspended in 300 pi lx TE and left to dissolve at room temperature overnight.

3.2.1.4 Quantification of DNA

The concentration of DNA in aqueous solutions was determined by measuring the 

optical density (OD) of the sample at wavelengths 260 nm and 280 nm in the UV 

spectrum using a spectrophotometer (RNA/DNA Calculator Genequant, Pharmacia
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Biotech). 5pl DNA was diluted in 995jnl distilled water and placed in a quartz cuvette. 

The OD was measured against a ’'blank” sample (lOOOpl distilled water) and the 

concentration determined. An OD of 1.0 at 260 nm corresponds to 50 mg/ml double 

stranded DNA or 20 mg/ml oligonucleotide. Therefore the concentration of a DNA

sample (in mg/ml) is calculated by: OD^^O nm x conversion factor (50) x dilution 

factor (200)

The ratio of the OD readings at 260 nm/280 nm provides an assessment of the purity 

of the DNA sample with pure samples having a ratio of greater than 1.8. A ratio of 

less than 1.5 indicates that the sample was contaminated with proteins and needed an 

extra extraction with phenol chloroform.

3.2.1.5 Amplification of DNA fragments by polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) allows the amplification of specific DNA regions 

that lie between two regions of known sequence. The reaction is initiated using 

oligonucleotide primers which are short (18-20bp) single stranded DNA molecules 

complimentary to the ends of the defined sequences of DNA template. The double 

stranded template is separated into single strands by thermal denaturation, then cooled 

to allow sequence specific annealing of primers. Annealing of primers is favoured 

rather than reannealing of template strand is favoured by the high concentration of the 

primers relative to the template. The primers were extended on a single stranded 

template by a thermostable DNA polymerase in the presence of deoxynucleoside 

triphosphates (dNTPs), under suitable reaction conditions. This results in the synthesis 

of new DNA strands complementary to both strands of the template. The process is 

repeated, and each newly synthesized strand becomes a template, the process leading 

to an exponential amplification of the target sequence.
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PCR reactions using fluorescently labelled primers were usually carried out in final 

reaction volumes of 7.5 pi in 96-well microtitre plates (Micro Test III, Falcon). The 

reaction mixture consisted of: 0.2 mM each of dATP, dCTP, dGTP and dTTP (0.94 pi 

of 10 x dNTP solution, Promega); 0.75 pi of GeneAmp 10 x magnesium-free PCR 

Buffer II (Perkin Elmer); 1.5 mM MgCh (0.75 pi of 25 mM MgCb solution, Perkin- 

Elmer); 0.5 pi of each primer; autoclaved and filtered distilled water to make up 

reaction mixture volume to 7.5 pi; 0.3 units of DNA polymerase added last 

(AmpliTaq Gold™ 5units/pl, Perkin-Elmer). The reaction mixture was prepared at 

room temperature and aliquoted into microtitre plate wells using an eight channel 

pipette (Scotlab). 25 ng (2.5 pi) of template DNA was then added to each well. 

Microtitre plates were then centrifuged at 1000 rpm for 30 seconds (Beckman GS-6R 

centrifuge).

The microsatellite markers from the Linkage Mapping Set ABI PRISM LD-10 were 

used for genome-wide searches two primers from the same panel were multiplexed 

together in the same PCR reaction, to save time and consumables. PCR conditions for 

these markers have been optimised by the manufacturers, and all markers in the set 

can be PCR-amplified under the same conditions. PCR reactions were performed 

using a Perkin Elmer 9700 thermal cycler. Reaction mixes were first heated to 95°C 

for 11 minutes to activate the AmpliTaq Gold™; subsequent cycling conditions were 

94°C (denaturation) 30 seconds, 60°C (annealing) 15 seconds, 72°C (extension) 15 

seconds; repeated for 20 cycles, then: 94°C (denaturation) 30 seconds, 55°C 

(annealing) 15 seconds, 72°C (extension) 15 seconds; repeated for 15 cycles.

All reagents and materials used were sterile and a negative control (omitting template 

DNA) was always included in experiments.
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3.2.1.6 Oligonucleotide primers for microsatellite markers.

For the genome-wide search a set of fluorescently labelled primers were used. 

Genotyping was performed using 382 microsatellite markers (fluorescent, highly 

informative (CA)„ repeat microsatellite markers located at average intervals of lOcM) 

from the ABI PRISM Linkage Mapping Set (LMS) Version 2 (Foster Kennedy, CA, 

USA).

The markers are arranged into 28 panels containing 10 to 20 fluorescent dye-labelled 

primer pairs (6-FAM, NED or HEX) that generate PCR products that can be 

combined and detected in a single gel lane. Forward and reverse primers are 

combined and supplied in a tube at lOpM concentration (5 pM of each primer) in 

lOmM Tris-HCl, 1 mM EDTA, pH 8.0.

Additional microsatellite markers were used to narrow the region identified were 

analysed using custom-made fluorescently labelled primers. Primers were 

manufactured by Perkin-Elmer with a 5’ 6-F AM, HEX or TET (or NED) dye on one 

of each primer pair. Markers used were oligonucleotides from the Marshfield Centre 

for Medical Genetics Human Genetic Map (Sheffield et al, 1995; 

http://www.marshfieldclinic.org). In all cases, markers with the highest 

heterozygosity were selected for use in order to maximise informativeness.

3.2.1.7 Agarose Gel Electrophoresis.

To check for the presence of a PCR product of the desired size and quantity, 2 pi 

aliquots of reaction mix from four randomly selected wells (as well as the negative 

control) were visualised by electrophoresis on ethidium bromide stained agarose gels. 

5 pi of reaction mix was added to 2 pi of agarose gel loading buffer (6x buffer 

consists of 40% w/v sucrose, 0.25% bromophenol blue) and electrophoresed at 50 V 

through a 3.2% agarose minigel (Flowgen Instruments Ltd) for 30 - 60 minutes. A
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100-bp size standard (Gibco) (1 pi) was run alongside the PCR products to enable 

estimation of their size. Ethidium bromide staining of the agarose gel (1 mg / ml, 

Sigma) permitted direct visualisation of DNA products using transillumination with 

ultraviolet light.

3.2.1.8 Polyacrylamide gel electrophoresis

Electrophoresis through a polyacrylamide gel is a means of separating small DNA 

fragments with high resolution, allowing fragments differing in size of 1-bp to be 

separated. Denaturing polyacrylamide gels are polymerised in the presence of an 

agent such as urea which suppresses base pairing in nucleic acids. Denatured (single 

stranded) DNA migrates through these gels at a rate that is determined by fragment 

size and almost completely independent of base sequence and composition, permitting 

sizing of fragments according to distance travelled through the gel (smaller fragments 

migrate further than larger ones).

PCR products produced using fluorescently tagged primers were sized by 

electrophoresis through a denaturing 4 % polyacrylamide gel in an automated DNA 

sequencer (Applied Biosystems, model 377). During electrophoresis, a section of the 

gel furthest from the loading comb was scanned by a laser causing each dye moiety 

(attached to one oligonucleotide primer incorporated into PCR fragments) to emit 

light of a known wavelength as it migrates past the laser. A size standard consisting of 

DNA fragments of known size, labelled with the fluorescent dye TAMRA or ROX, is 

run in each lane to allow accurate sizing of PCR fragments. This method of DNA 

sizing has the great advantage over radioactive methods that markers of non­

overlapping size and dye composition may be multiplexed in each lane so maximising 

efficiency and increasing sample throughput. As many as 24 microsatellites may be
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nm in each lane although in practice a maximum of 20 markers were run 

simultaneously during this study.

3.2.1.9 Polyacrylamide gel preparation.

Thirty-six cm well-to-read glass plates were used with a 377 sequencer. Plates were 

cleaned with detergent and rinsed with distilled water. The dry plates were assembled 

in the 377 cassette prior to pouring the gel. The catalysts TEMED (Sigma) (35 pi) and 

freshly prepared 10% ammonium persulphate solution (APS) (Sigma) (250 pi) were 

added to 50 ml of 4% acrylamide gel mix to start polymerisation. The mix was then 

taken up into a 50 ml syringe and carefully introduced into the notch between the 

front and back plates, spreading evenly between the glass plates. A spacer was 

inserted into the upper notch between the plates and the gel left for two hours to 

polymerise. After polymerisation, the upper spacer was removed and a 48 or 64 well 

shark’s tooth comb was carefully inserted in its place. The cassette and plates were 

then placed in the 377 sequencer and the plates checked for background fluorescence 

using Genescan software (Applied Biosystems). Heating plate and buffer chambers 

were assembled and 1.3 L of 1 x TBE buffer added before pre-running the sequencer 

until the gel temperature reached 50°C. Samples were then loaded. For preparation of 

acrylamide gel mix and of TBE buffer, see paragraph “Buffers and solutions” at the 

end of this chapter.

3.2.1.10 Pooling of PCR products for loading.

Up to 20 non-overlapping microsatellite markers, amplified from a single DNA 

sample, were run simultaneously in each lane (multiplexed). PCR products from each 

DNA sample were first pooled according to the dye they contained as follows: FAM -

2.5 pi; TET - 5 pi (or NED - 5 p); HEX - 5 pi. These volumes were adjusted 

according to the yield of the PCR as determined on agarose gel electrophoresis.
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Pooling was performed in microtitre plates using an eight-channel pipette. 2.5 pi of 

pooled product from each well was then aliquoted into a fresh microtitre plate and an 

equal volume of loading mix added. The loading mix consisted of 100 pi of deionised 

formamide, 20 pi of loading buffer (blue dextran, 50mg/ml, EDTA 25 mM, Perkin 

Elmer) and 24 pi of Genescan 350-TAMRA or Genescan 400-HD ROX size standard 

(Applied Biosystems). The final mix of pooled product and loading mix was 

denatured at 95°C for 2 minutes in a Hybaid thermal cycler and then placed 

immediately onto ice before loading.

3.2.1.11 Gel loading and electrophoresis conditions

Wells were carefully flushed with 1 x TBE buffer immediately prior to loading. 

Alternate (odd-numbered) wells were loaded with 1.0 pi of final mix using a P2 

pipette (Gilson) and Sorenson MiniFlex 0.2 mm flat tips (Anachem). Great care was 

taken to avoid spillover into adjacent wells. Electrophoresis at 3,000 V for two 

minutes ensured that samples were run into the gel before even-numbered lanes were 

loaded. Loading of alternate lanes made it possible to distinguish adjacent lanes in the 

final gel image and improved the ability of the software to track lanes correctly. Total 

run time was two hours. A maximum of 48 or 64 samples could be run in adjacent 

lanes.

Amplified products were separated by electrophoresis using a denaturing 

polyacrylamide gel on an ABI PRISM 377 DNA sequencer (PE Applied Biosystems).

3.2.1.12 Data analysis for fluorescently labelled PCR products

Data collected during the electrophoresis run were analysed automatically using the 

Genescan software; DNA fragment size and analysis was performed using 

GENESCAN v3.1.2. Automatic lane tracking was checked using the gel image, and 

adjusted lane by lane where necessary. To ensure accurate sizing, the automatic
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designation of peak sizes for internal lane size standards was manually checked in 

each lane. Markers were only sized if there were two size standard bands of greater 

size, and two of smaller size, present in the lane.

3.2.2 Genotyping

Fragment size data collected using the Genescan software were then analysed using 

the Genotyper software; GENOTYPER v2.5.1 software (PE Applied Biosystems). 

The Genotyper software labels fluorescent peaks with fragment size (to 0.01 of a 

base) and filters out background peaks. Manual adjustments are required by scrolling 

through all electropherograms to ensure that alleles are correctly labelled. Although 

time-consuming, this step is extremely important as labelling of incorrect (non-allele) 

peaks is a major source of genotyping error if not manually checked. Peaks in each 

marker range are grouped into discrete alleles and sequentially numbered from 

smallest to largest. Genotypes were scored blind without reference to the family 

pedigree to minimise bias.

3.2.3 Linkage analysis

Initial two-point parametric linkage analysis was performed using MLINK 

programme of the FASTLINK package (Lathop et al., 1984, Lathop et al., 1985). The 

disease was assumed to be autosomal dominant with a gene frequency of 0.0001 with 

equal marker allele frequencies. There were three liability classes: I (affected), II 

(unaffected at 50% risk) and III (no risk of disease).

All linkage programs were remotely accessed through the Human Genome Mapping 

Project web site (http://www.hgmp.mrc.ac.uk). An affecteds-only methodology was 

used for the first screening during the genome-wide search, in order to avoid biases 

resulting from inclusion of possibly affected individuals or incorrect estimation of 

penetrance or age of onset. In a powerful enough family, linkage analysis with
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affected individuals only allows the exclusion of a large part of the genome (70-80%). 

The regions surrounding markers showing possible linkage with the disease (pairwise 

LOD score > 1 ) and all regions surrounding non-informative markers were always 

saturated with more markers and all available family members were genotyped in 

order to allow haplotype construction.

3.2.15 Haplotype Analysis 

Haplotypes were manually constructed.

3.3 Results

3.3.1 Haplotype and Linkage analysis

From the genome screen a haplotype segregated in all clinically affected subjects 

between ABI LMS markers D12S99 to D12S83; D12S364 gave the highest LOD 

score of 3.55 (0=0.00) (Table 3.3.1). D12S364 lies approximately 23-25cM telomeric 

of the PARK8 locus (PARK8 locus highlighted in bold in Table 3.3.1). Additional 

markers were genotyped to determine if this locus was independent of the PARK8 

locus: D12S77, D12S62, D12S1631, D12S1653, D12S339 (Table 3.3.1 & Figure 

3.3.1); this did not refine the region further (Figure 3.3.1). The only recombinants 

observed were in two unaffected subjects IV.3 aged 42 years and IV.7 aged 48 years 

(Figure 3.3.1 and Table 3.3.1). Elsewhere positive LOD scores (maximum LOD score 

>1 at 0=0.00) were generated on chromosome 3 and 21 however haplotype analysis 

formally excluded these as candidate regions.

3.4 Conclusion

This study identified a 50 cM disease-causing locus on the short arm of chromosome 

12 in the British kindred with ADPD. During the laboratory work, Japanese 

colleagues established linkage to a 12cM region (encompassed within the region
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Table 3.3.1

Two-Point Linkage LOD scores between autosomal dominant PD and microsatellites from the genome screen on chromosome 12 and those in 
the original PARK8 region (highlighted in bold). The position of markers on chromosome 12 and genetic distances between markers were 
obtained from the deCODE linkage map.

LOD Scores at recombination fraction 0

Markers Chromosomal 
position (cM)

0.00 0.01 0.05 0.1 0.2 0.3 0.4

D12S99 15.20 -infinity -0.91 -0.19 0.07 0.19 0.11 0.01
D12S336 24.04 2.20 2.16 1.99 1.76 1.29 0.78 0.28
D12S77 24.85 2.93 2.88 2.65 2.36 1.74 1.08 0.4
D12S364 31.16 3.55 3.48 3.22 2.88 2.15 1.36 0.56
D12S62 32.48 1.48 1.44 1.29 1.10 0.72 0.39 0.14
D12S1617 45.91 2.45 2.40 2.21 1.97 1.44 0.88 0.31
D12S1631 50.90 1.92 1.87 1.64 1.34 0.77 0.30 0.04
D12S345 55.25 2.69 2.64 2.44 2.17 1.59 0.99 0.39
D12S339 65.8 3.42 3.36 3.08 2.73 1.97 1.16 0.35
D12S368 66.55 2.53 2.48 2.29 2.03 1.48 0.89 0.32
D12S83 74.03 0.23 0.22 0.19 0.16 0.09 0.04 0.01
D12S326 91.20 -2.62 -0.83 -0.26 -0.06 0.05 0.05 0.02
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Figure 1
Haplotype Analysis of British kindred with mutations in LRRK2.
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linked to ADPD in the British kindred) and designated the locus PARK8 (Funayama 

et al., 2002). Thereafter a North American kindred was also linked to the same locus 

(Family D, Zimprich et al., 2004). This confirmed not only genetic heterogeneity 

within ADPD but also suggested that mutations in PARK8 were unlikely to be a 

founder effect but were to represent a more common cause of familial, late onset PD; 

the British kindred originates from Lincolnshire, England and is unlikely to be related 

to the family originally described in Japan (Funayama et al., 2002) or to that in North 

America (Family D, Zimprich et al., 2004).

Subsequent work by colleague Shushant Jain, Institute of Neurology and collaborators 

in National Institute of Aging, National Institute of Health, USA (C Paisan-Ruiz and 

Dr Andrew Singleton) refined the disease interval further following the identification 

of a common haplotype in four Basque families (Paisan-Ruiz et al., 2004). This 

enabled a candidate gene sequencing strategy to be undertaken. Subsequently, 

disease-causing mutations were identified in a novel gene, LRRK2 (leucine-rich 

repeat kinase 2) (MIM 607060) in this British kindred and the Basque kindreds 

(Paisan-Ruiz et al., 2004).

The LRRK2 gene has 51 exons, encoding a product with 2000 amino acids 

constituting a large, multifunctional protein belonging to the ROCO protein family.

A Y1699C in exon 35, in LRRK2 has been identified only in clinically affected 

members in the British kindred (Paisan Ruiz et al., 2004). The disease in this kindred 

appears fully penetrant implying that other susceptibility loci and/or undefined 

environmental factors are not necessary for disease expression. Incomplete penetrance 

however has been reported in the original PARK8 kindred (Funayama et al., 2002) 

and confirmed in other European kindreds with LRRK2 mutations; this appears to be 

age dependent being 17% at 50years and 85% at 70years (Kachergus et al., 2005).
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Moreover a recent case has been described of an octogenerian with a G2019S 

mutation who has an entirely normal examination (Kay et al., 2005).

Separate founder effects have been reported. The first a region of Northern Spain that 

geographically lies adjacent to the Basque region. Here 2.7% of a cohort of 225 PD 

patients had a R1441G mutation and all shared a common haplotype (Mata et al., 

2005). In a second cohort of 248 patients, 2.8% carried a G2019S mutation in exon 

41; all shared a common European ancestral haplotype in patients from the USA, 

Ireland and Poland amongst others (Kachergus et al., 2005).

Mutations in the gene encoding the LRRK2 protein will prove to have a numerically 

greater contribution to the aetiology of late-onset, familial Parkinson’s disease, than 

other dominant loci identified to date.

73



4. CLINICAL CHARACTERISIATION OF EARLY ONSET PARKINSONISM 

DUE TO MUTATIONS IN PARK2 (PARKIN DISEASE).

4.1 Introduction

At the time of this study there was a wealth of molecular genetic data with little detail of 

the clinical phenotype of EOPD with mutations in PARK2. This chapter reports the clinical 

characterisation of parkin disease and is divided into two parts:

i) A phenotypic study of a large case series with parkin disease.

ii) Olfactory function in parkin disease compared to early-onset parkinsonism 

without parkin mutations and to idiopathic Parkinson’s disease.

4.2 Parkin disease: a phenotypic study of a large case series.

4.2.1 Introduction

This report provides a detailed clinical evaluation of twenty-four patients with parkin 

disease identified by the Department of Molecular Neurosciences, Institute of 

Neurology, Queen Square, London.

4.2.2 Methods

4.2.2.1 Blood Collection and Genomic DNA extraction was performed as previously 

described.

4.2.2.2 Molecular Analysis

PARK2 PCR amplification, semiquantitaive PCR and sequence analysis was 

performed by Elizabeth Graham, Laboratory Technician, Department of Molecular 

Neurosciences, Institute of Neurology, Queen Square, London; 2 coding exons of the 

parkin gene were amplified from genomic DNA by the polymerase chain reaction 

(PCR) using primers previously described (Kitada et al.l 998 ) except for the primer 

for exon 3, for which exonic primers Ex3iFor and Ex3iRev were used (Abbas et al.,

74



1999). The same primers were used for the sequencing of the PCR products of the 12 

exons on both strands using Big Dye Terminator Cycle Sequencing Ready Reaction 

DNA Sequencing kit (Applied Biosystems, Foster City, CA), on an ABI 373 

automated sequencer with the Sequence Analysis v.3.4.1 (Applied Biosytems) 

software. The methodology did not screen for rearrangements such as duplications 

and triplications.

4.2.2.3 Patients

115 DNA samples from patients with an age of onset of parkinsonism <50 years or 

unusual features were selected from the Research Laboratory, Department of 

Molecular Neurosciences, Institute of Neurology, Queen Square, London. Patients 

had been referred directly from the National Hospital for Neurology, Queen Square, 

London (Professors AJ Lees, N Quinn and K Bhatia). Twenty-four were patients with 

parkin mutations (23 of whom had disease onset at or below age 35 years) studied 

using a retrospective review of medical records incorporating a standardised clinical 

proforma including a review of prior drug exposure, family and clinical history and 

examination. Cognitive assessment was performed using the Folstein Mini-Mental 

State Examination (Folstein et al., 1975) at varying intervals after disease onset. All 

subjects gave informed consent and the project was approved by the Joint Research 

Ethics Committee of the National Hospital for Neurology and Neurosurgery and 

Institute of Neurology, London, UK.

A total of five first and second degree relatives without parkinsonism of five unrelated 

parkin patients were also examined and screened for parkin mutations.
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4.2.3 Results

4.2.3.1 Molecular Analysis

The mutations in four isolated cases and five sibling sets have previously been 

reported (Lucking et al., 2000); these cases were re-screened by Elizabeth Graham 

(Khan et al., 2003) to ensure mutations found were correct. In addition eight new 

cases (seven isolated cases, one of whom was the product of a consanguineous 

marriage, and one additional member of one of the affected sibships) were identified 

by Elizabeth Graham (Table 4.2.3.1) (Khan et al., 2003). Mutations on both alleles 

were identified in fourteen cases, of which only one was a homozygote (patient 20), 

the remaining thirteen cases being compound heterozygotes carrying a different 

parkin mutation on each allele (three isolated, ten familial cases). In the remaining ten 

parkin cases (seven isolated, three familial cases) a single mutant allele was identified. 

As a group, mutations occurred most frequently in Exon7. Patients 10 and 21 and 

siblings 15 and 16, shared point mutation Ex7 924C—>T (Arg275Trp). Patients 10 

and 17, and siblings 15 and 16 shared point mutation Exl2 1390G-»A (Gly430 Asp). 

Patient 6 and his sister, patient 7 shared point mutation Ex9 1101C->T (Arg334Cys) 

with patient 14. Patients 11 and 20 shared exon 2 202-203 AG deletion. Patients 8 

and 19 both had a deletion in exon 5. Patients 11 and 21-24 shared Ex9 1101C—»T 

(Arg334Cys).

4.2.3.2 Patients

In all cases, the pattern of inheritance was compatible with autosomal recessive 

disease (clinically unaffected parents). Eleven patients were isolated cases; ten of 

them have young onset parkinsonism, but in the eleventh, the only one in the entire 

series from consanguineous parents, age at onset was 54 years. The remaining thirteen 

patients were from five unrelated families (Table 4.2.3.1). In one of these
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Table 4.2.3.1. Parkin mutations identified in twenty four cases with parkinsonism

Patient Isolated / Familial case Parkin mutation Parkin mutation
Allele 1 Allele 2

1 isolated exon 6/7 deletion uncharacterised
2 familial ] exon 8 deletion intron 5 (+2 T>A)
3 familial ] sibs exon 8 deletion intron 5 (+2 T>A)
4 familial ] exon 8 deletion intron 5 (+2 T>A)
5 familial ] exon 8 deletion intron 5 (+2 T>A)
6 familial} sibs exon 9 1101C-*T (Arg334Cys) exon 7 939G ->A
7 familial} exon 9 1101C—»T (Arg334Cys) exon 7 939G —>A
8 isolated exon 5 deletion uncharacterised
9 isolated exon 12 1390G ->A (Gly430 Asp) uncharacterised
10 isolated exon 7 924C ->T (Arg275Trp) uncharacterised
11 isolated exon 7 905T ->A (Cys268 stop) exon 2 202-203 AG deletion
12 familial} sibs exon 3 deletion exon 4 deletion
13 familial} exon 3 deletion exon 4 deletion
14 isolated ^consanguineous) exon 9 1101C -»T (Arg334Cys) uncharacterised
15 familial} sibs exon 7 924C ->T (Arg275Trp) exonl2 1390G —>A
16 familial} exon 7 924C ->T (Arg275Trp) exon12 1390G ->A

isolated exon12 1390G —>A (Gly430As) exon 3 deletion
18 isolated exon 7 867C -»T (Arg256Cys) uncharacterised
19 isolated exon 5 deletion uncharacterised
20 isolated exon 2 202-203 AG deletion exon 2 202-203 AG deletion
21 isolated exon 7 924C ->T (Arg275Trp) exon 5/6 deletion
22 familial} sibs } exon 7 905T ->A (Cys268Stop) uncharacterised
23 familial} } exon 7 905T -»A (Cys268Stop) uncharacterised
24 familial uncle } exon 7 905T —»A (Cys268Stop) Uncharacterised

} = familial
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Table 4.2.3.2.a Clinical characteristics of individual parkin cases: AO = age of onset parkinsonism DD = disease duration

Patient

Sex/Age

Ethnicity
Family History

AO DD

on

H&Y

off

Additional Features

1 F/ 34 Japanese 23 11 _ _ dramatic response to benzhexol, L-Dopa sensitivity ++
2 F/54 Irish} 31 23 3 4 abduction-adduction oscillatory tremor of lower limbs) FH suicide,
3 M/60 Irish} 28 32 2.5 4 abduction-adduction oscillatory tremor of lower limbs) psychosis,
4 M/55 Irish} 26 29 3 4 abduction-adduction oscillatory tremor of lower limbs) depression,
5 M/51 Irish} 32 19 3 4 abduction-adduction oscillatory tremor of lower limbs) tremor
6 M/55 Indian} 28 27 2.5 3 misdiagnosed as DRD at onset
7 F/46 Indian} 30 16 - - R sided hemi-parkinsonism at onset, bilateral STN DBS
8 M/40 English 29 11 1 2 R leg tremor at onset, still L-Dopa naive FH tremor
9 M/32 English 7 25 3 4 cervical dystonia at onset, misdiagnosed as DRD,

sensitivity L-Dopa ++ atremulous, panic attacks & self mutilation
10 M/30 Scottish 18 12 0 2.5 paranoia & panic attacks prior to parkinsonism, FH anorexia nervosa 

exercise-induced dystonia at onset + depression
11 F/ 33 English 19 14 1.5 2.5 bilateral akinetic rigid, dramatic response benzhexol, FH depression 

still L-Dopa naive
12 M/77 Dutch } 30 47 2 3 early falls, atremulous, diagnosed and treated after 20 years, 

dramatic response to L-Dopa within 2 hours FH suicide
13 M/74 D utch} 20's >45 3 4 tremor at onset, dramatic response to L-Dopa
14 M/58 Bangladeshi 54 4 1 2 consanguineous parents, prominent orofacial dyskinesias 

3 days after starting L-Dopa.
15 M/51 Irish } 13 38 3 4 DRD considered at onset, psychosis, L-Dopa sensitivity ++
16 F/56 Irish } 34 22 2 2.5 postnatal depression prior to onset, L-Dopa sensitivity ++
17 M/29 Irish 13 16 2.5 4 dramatic response to benzhexol, autonomic & axonal FH depression 

peripheral neuropathy, still L-Dopa naive, attempted suicide
18 F/21 English 13 8 - - coincidental cerebral palsy
19 M/31 English 10-15 16-21 1 2 coincidental familial motor tics, neck tremor at 12-15, FH tremor
20 M/57 English 29 28 1 3 drug-induced psychosis, unilateral thalamotomy FH depression
21 M/52 English 22 30 1 4 writer's cramp at onset, L-Dopa sensitivity ++, FH depression
22 F/36 English} Bumley 15 21 “ “ anorexia nervosa, suicide attempts, depression prior to onset, bilateral 

thalamotomy
23 F/46 English} 15 31 3 4 good response to benzhexol, still L-Dopa naive FH tremor
24

} =

M/80

familial

English} kindred 24 56 

- = unavailable motor scores

dramatic response to L-Dopa, +depression
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families, the Burnley kindred (patients 22-24), young onset parkinsonism was 

observed in two generations (Figure 4.2.3.2). All cases, except patients 17 and 18, 

fulfilled the UK Queen Square Brain Bank diagnostic criteria for idiopathic 

Parkinson’s disease except for the presence of a family history (Gibb et al., 1988). 

Sixteen cases were male and eight female (Table 4.2.3.2.a). All cases were resident in 

the UK but were of differing ethnic origins: Irish (isolated case n=l, families n=2), 

English (isolated cases n=7, family n=l), Scottish (isolated case n=l), Japanese 

(isolated case n=l), Indian (family n=l), Bangladeshi (isolated case n=l), Dutch 

(family n=l). The age at onset of symptoms in all twenty four cases ranged from 7 to 

54 (mean 24.0 +/- 9.9SD) years. Disease duration ranged from 4 to 56 (mean 24.2 +/- 

13.0 SD) years (Table 4.2.3.2.b).

4.2.3.2.1 Motor features

At disease onset, bilateral symptoms were reported in 26%, limb tremor in 70%, 

bradykinesia in 44% and micrographia in 13%. The overall picture was that of slowly 

progressive parkinsonism thus despite frequently long disease duration, none of the 

patients was greater than Hoehn & Yahr stage 3 in 'on' or stage 4 in 'off at the last 

evaluation, and patient 12, despite disease duration of 47 years, was still stage 2 in 'on' 

and stage 3 in 'off (Table 4.2.3.2a). 23% of cases reported “poor balance” as an initial 

symptom. 63% of cases reported freezing, which developed in 8% of them within 5 

years, and in 33% within 10 years of disease onset. 50% of cases reported 1-6 falls 

per month, 30% of them within 5 years and 50% within 10 years of disease onset. 

63% reported sleep benefit.
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Table 4.2.3.2b Group clinical characteristics of patients with parkin disease.

age of onset
<20
21-30
31-40
41-50
51-60

number of cases
9
11
3
0
1

Mean age of onset all cases in yrs (SD, range) 24.0 (+/- 9.9, 7-54)
Mean disease duration in yrs (SD, range) 24.5 (+7-13.1,4-56)

Symptoms and signs

at onset tremor 70%
bradykinesia 44%
rigidity 13%
dystonia 41%
symmetry 26%
micrographia 13%
poor balance 23%

at examination
bradykinesia 100%
rigidity 100%
rest or postural tremor 92%
brisk reflexes 30%
Mini Mental Test Score 28 (range 25-30)

Autonomic symptoms 60%
urgency 45%
impotence 28% of males
hypotension 13%

Freezing episodes 63% (8% within first 5 yrs)
Falls 50% (30% within first 5 yrs)

Response to L-dopa / anticholinergics

excellent 75%
psychiatric 56%
duration of L-dopa treatment (n= 16/24 patients) 15.9 ( 9.0SD) 
dyskinesias in L-dopa treated patients 100%
fluctuations in L-dopa treated patients 50%
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Examples:

Patient 1. This Japanese woman developed a limp of her right leg at age 23. A year 

later her right ankle would invert at rest on the bed, but not on walking, and at age 26 

she complained of tremor, balance difficulty and retropulsion and was diagnosed with 

Parkinson’s disease. She was treated with benzhexol lmg three times a day and was 

subjectively 100% better. At age 28 because of nausea on benzhexol she was changed 

to taking Madopar (L-Dopa plus benserazide), and at age 34 she was taking 1 tablet of 

Madopar dispersible 62.5 (12.5/50) in the morning followed by half a tablet (L-Dopa 

content 25mgs) every hour or so thereafter. Higher individual doses caused 

unacceptable dyskinesias. At age 29 she was treated for symptoms of depression.

4.2.3.2.2 Tremor

With the exception of patients 10 and 12, who still remained atremulous after disease 

durations of 25 and 47 years respectively, the remaining 22 (92%) developed a tremor 

(at rest or postural) at some stage of disease. Examples:

Patients 2-5. These four siblings, from an Irish kindred, shared in common a marked 

resting leg tremor with abduction-adduction oscillations (Khan et al., 2002).

Patient 6. This 55 year old man developed a tremor of the right big toe at age 28 years 

which subsequently involved both legs, more on the right, and was present at rest, 

supine and standing. He reported no diurnal fluctuations. Following a marked 

response to L-dopa he was misdiagnosed as tremor-dominant DRD. Six years after 

starting L-Dopa therapy he developed dose-dependent peak dose dyskinesias and 

wearing off and his diagnosis was revised.

Patient 7. This 46 year old sibling of patient 6, developed at age 30 years right-sided 

hemi parkinsonism with dystonia of the right arm and foot, without diurnal 

fluctuation, which progressed to a bilateral akinetic-rigid picture with a coarse rest
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tremor confined to the legs. At age 35 years she had subthalamic deep brain 

stimulators implanted bilaterally with good effect.

Patient 8. This man developed tremor of the left leg at age 29 years, which 

subsequently involved the right leg and right hand, and was diagnosed to have 

essential tremor. At age 34 years he noticed slowness of movement, having to check 

his balance, and diminution of arm swing on the right. His left toes would claw when 

sitting or driving. He also reported panic attacks. At age 40 years he commenced 

orphenadrine with resolution of all symptoms except tremor: he remains L-dopa 

naive. Both his father and his 42 year old sibling, (genotype uncharacterised) report 

an isolated tremor of the arms

4.2.3.2.3 Dystonia

Dystonia was reported in 41 % of cases as a presenting symptom, involving feet in 

seven, hands in two, and neck and trunk in one each. 78% had developed dystonia at 

some point prior to treatment, involving hands in three, feet in 18, neck in five, and 

trunk and gait in one each. Some had involvement of more than one of the above 

sites. Examples:

Patient 9. This patient developed stiffness of his trunk and legs, turning and stiffness 

of his neck, poor balance and an inability to stand upright without toppling backwards 

at age 7 years. He progressed to an atremulous akinetic rigid syndrome with cervical 

dystonia and dystonia of both feet. He showed a dramatic response to L-Dopa and was 

initially suspected to have DRD. However, he developed wearing off and had 

markedly diminished striatal 18F-dopa uptake on PET scan (Sawle, et al, 1991, case 

7), confirming juvenile parkinsonism. At age 29 he developed laryngeal adductor 

dystonia requiring botulinum toxin injections. Otherwise when 'on* he was physically 

almost normal. He could not tolerate more than 50 mgs of L-Dopa with a peripheral
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dopa decarboxylase inhibitor (PDI) at each of his eighteen daily doses because this 

worsened his laryngeal dystonia. At age 31 he was complaining that during off 

periods he had “no sense of balance” and had some freezing, festination and 

retropulsion, leading to falls. At age 22 he developed panic attacks and at age 32 had 

attempted self mutilation in the form of forearm and wrist slashing. He has recently 

been started, aged 32, on an apomorphine pump.

Patient 10. This 30 year old man developed intuming of the right foot at age 18 years 

whilst playing football. At that time he also reported occasional paranoia and panic 

attacks. At age 21 years, he developed a tremor of the right thumb, and by age 26 years 

had developed rigidity and bradykinesia that improved subjectively by 50% on 

amantadine. He was treated for depression at the age of 29 years. One of his parents, 

who carries a mutant parkin allele, had been treated for depression for over 20 years. 

His 27 year old sister, (genotype uncharacterised) who does not have parkinsonism, 

has a five year history of anorexia nervosa.

4.2.3.2.4 Response to treatment.

An excellent and sustained response to drug therapy was reported by 75% of treated 

patients.

Dramatic response to anticholinergics:- Patient 11 This patient reported poor balance, 

clumsiness, and difficulty rising from a seated position beginning at age 19 years. By 

age 25 she had developed a shuffling, small-stepped gait, especially in confined 

spaces. Examination revealed a bilateral akinetic rigid syndrome with a very fine 

postural tremor in all four limbs and brisk reflexes. She also reported severe mood 

swings and exacerbation of her motor disability by alcohol. Treatment was started 

with benzhexol and after two days she said she was “100% better”. She reported 

marked pre-menstrual worsening of motor disability. She is still, aged 33, well
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controlled on benzhexol 2mgs three times a day, and has not required dopaminergic 

therapy. She reports severe mood swings during her teenage years and also a 

maternal aunt (genotype uncharacterised) with depression.

Dramatic response to levodopa:- Patient 12. This 77year old man is one of ten siblings 

of whom another brother, patient 13, and a sister (who is not reported in this series) 

have parkin disease. He noted slowness of day to day tasks and frequent falls from 30 

years of age. At age 50 he developed dystonia of both feet and micrographia and was 

diagnosed with parkinsonism, 20 years after his first symptoms. He reported a 

dramatic response within two hours of taking his first dose of 150 mg of L-Dopa (plus 

PDI). He remains free of tremor after 47 years of disease, and is currently taking 

Sinemet (L-Dopa plus carbidopa) 25/100 four times a day.

Patient 13. This 74year old brother of patient 12, reported dragging his left foot, a lazy 

left arm, and tremor of all four limbs in his late twenties. He also reported a dramatic 

improvement of symptoms when he started L-Dopa treatment at age 68 years. His 

cognitive function remains normal after more than 45 years of disease. He reports a 

brother (genotype uncharacterised), who did not have parkinsonism who committed 

suicide at age 43.

4.2.3.2.5 Treatment related complications

Sixteen patients had started L-Dopa therapy, with a mean treatment duration of 15.9 

+/- 9.0SD years. 50% of them reported dose-related fluctuations, and all reported peak 

dose dyskinesias, except one patient who reported diphasic dyskinesias. Dyskinesias 

had developed after a mean interval of 6.7 years (+/- 7.6SD) (range from 3 days to 21 

years) after commencing L-Dopa treatment. Some patients developed atypical or 

unusual levodopa-induced dyskinesias, or excessive sensitivity to very low doses of 

L-Dopa.
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Patient 14. This 58year old man, whose parents were first cousins, developed 

asymmetrical parkinsonism with dystonic posturing of the trunk at age 54 years. 

Within 3 days of commencing L-Dopa therapy he developed prominent orofacial 

dyskinesias and mild dyskinesias of the lower limbs.

Patient 15. This 51 year old man developed a fine tremor of his right limbs aged 13 

and at age 22 dystonia of his right foot, which dragged after prolonged walking. At 

age 26 he started Sinemet for his dystonia-parkinsonism with considerable benefit, but 

with wearing Off from the very beginning of treatment. Although there was no diurnal 

variation prior to treatment he was initially considered to have DRD. On L-Dopa, he 

developed a very bizarre scissoring dystonic gait. When overdosed this gait was even 

worse, and was accompanied by neck bobbing, generalised choreiform and myoclonic 

movements, and repetitive tongue protrusion. His dosage threshold for developing 

this gait has become extremely low. At age 47 he found that after one tablet of half 

Sinemet CR 25/100 (containing 70 mgs biovailable L-Dopa) he was overdosed, but 

after a half tablet he was good initially but then overdosed after an hour, and he settled 

on taking a quarter to a third of a Sinemet CR 50/200 three to five times a day. In 

addition to the sensitivity to dyskinesias, he has twice developed hypomania. On the 

first occasion aged 36 years he was taking Sinemet 10/100 six times day and no other 

medication, and on the second occasion aged 46 he was on Sinemet 25/100 six tablets 

a day together with Madopar dispersible 25/100 six tablets a day. Patient 16. his 

56year old sister, developed parkinsonism at age 22 years after being treated for 

postnatal depression with chlorpromazine. She reports that she develops marked 

depressive symptoms if she takes more than 50mg of L-Dopa at any time.
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4.2.3.2.6 Autonomic dysfunction.

Autonomic symptoms were present in 60% of patients, with 45% reporting urinary 

urgency, 28% of male patients reporting impotence, and 13% reporting orthostatic 

symptoms. Example:

Patient 17. This 29year old man developed parkinsonism at the age of 13 years. At 

age 16 he reported dizzy spells without loss of consciousness, related to orthostatism 

and exercise. At age 20 it was noted that he did not perspire and he reported loose 

stools and intermittent difficulty with erections and ejaculation. At age 24 he 

developed urgency of micturition. Autonomic function tests confirmed both 

sympathetic and parasympathetic cardiovascular autonomic impairment. Reflexes 

were brisk and sensation was normal but nerve conduction studies and nerve biopsy 

revealed an axonal peripheral neuropathy. After an initial dramatic response to low 

doses of benzhexol, he continues to show a moderate motor response after seven years 

taking benzhexol alone and seventeen years of disease. At age 18 he attempted suicide 

by taking an overdose of painkillers and age 21 was treated for depression. His 

unaffected sibling, who carries a single mutant parkin allele, has been treated for 

depression.

4.2.3.2.7 Other clinical findings

Cognition was normal in all cases, with a mean mini mental test score of 28, except 

for patient 18 (see appendix), who had presumed cerebral palsy. Hyperreflexia was 

present in 30% of cases. Eye movements, sensory testing and co-ordination were 

normal in all subjects except for patient 18. Patient 18 with presumed cerebral palsy, 

and patient 19 with a past and family history of tics, had other neurological 

abnormalities that we believe are probably, but not necessarily, coincidental.

86



Patient 18. This 21 year old woman, with presumed cerebral palsy secondary after 

peri-partum anoxia, developed a spastic diplegia at age 12, and one year later 

developed left sided parkinsonism presenting with a rest tremor of the left foot and 

dystonic posturing of both feet. There was some improvement with a trial of L-Dopa. 

At age 19 years she developed off periods and a year later started to have grand mal 

seizures. She also had head banging, biting and scratching and severe cognitive, 

visual and hearing impairment.

Patient 19. This 32year old man had developed an intermittent neck-shuddering tic 

and a no-no head tremor between the ages of 10 and 15 years, and nose wrinkling and 

jaw deviation tics at age 29 years. There were no vocalisations, obsessions or other 

features of Tourette syndrome. A maternal uncle was reported to have a facial twitch. 

At the age of 30 years he developed right-sided parkinsonism, without diurnal 

variation, at which time his tics were noted to have worsened. His mother, who 

carries a mutant parkin allele, and his sister (genotype uncharacterised), have been 

treated for depression. A 24 year old maternal first cousin (genotype 

uncharacterised), had been diagnosed with essential tremor at the age of 14 years.

4.2.3.2.8 Behavioural Disorder

56% of cases reported psychiatric/behavioural symptoms (Table 4.2.3.2.8). In 25% 

these symptoms started prior to, and in 31% after, the onset of parkinsonism.

Patient 20. This 57year old man reported tremor of the left foot and stiffness and 

aching of the left leg from age 29 years which progressed to left hemi-parkinsonism. 

He was treated with Sinemet with a very good result, but developed motor 

fluctuations and dyskinesias. At age 37 years he underwent right-sided thalamotomy 

with complete resolution of his left-sided tremor for 5 years. At age 46 years, taking 

L-Dopa, he developed some features of hypomania, particularly when in on periods.
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At age 47 years an apomorphine pump was added with benefit. The following year, 

the day after adding selegiline to his regime, he became psychotic, with paranoid 

delusions and third person auditory hallucinations, which lasted three months until 

apomorphine was stopped. Later apomorphine was restarted. At age 49 he was 

admitted because of painful off periods and on period hypomanic symptoms, and 

again became psychotic. This resolved after again stopping apomorphine and he was 

abulic and possibly depressed for the next 5 years, but then spontaneously emerged 

from this state. When he was reviewed at age 58 he had no further psychiatric 

problems other than feeling a bit high in his on periods, despite being on a cocktail of 

Sinemet (1130 mgs L-Dopa, plus PDI, per day), amantadine, pramipexole, and low 

doses of pergolide, ropinirole and entacapone. He was on, with mild to moderate 

dyskinesias but no functional impairment, for almost all of the time, but when off was 

unable to walk. His father (genotype uncharacterised) had a history of mood swings, 

depression and personality change from age 58 years and died at age 79.

Patient 21. This 52year old man reported difficulty with writing at age 22 years and 

two years later was diagnosed with writer's cramp. At age 26 years he reported 

occasional curling of the toes of the left foot solely with exercise, and was treated 

with orphenadrine with considerable benefit. Over succeeding years he developed 

increasing difficulty walking with start hesitation, a tendency to freezing, “tottering” 

and occasional shuffling, but no falls. On examination he was noted to have 

asymmetric parkinsonism with a right “striatal toe”. At age 42 he was started on an 

L-Dopa preparation with striking benefit, with the addition of lisuride shortly 

thereafter and then selegiline. Within 18 months he had developed some motor 

fluctuation and his main problem was start hesitation in the evenings. He had also



Table 4.2.3.2.8. Parkin cases with behavioural disorder and a family history of 

behavioural disorder.

Prior to onset of motor symptoms

Depression 2
Paranoia 1
Psychosis 0
Panic attacks 1
Anorexia nervosa 1
Suicide attempts 0
Self harm 1

After the onset of motor symptoms

Depression 5 (patients 1,10, 15, 17, 20)
Paranoia 0
Psychosis 3 (patients 15,20,21)
Panic attacks 5 (patients 2,4, 9,10, 21)
Anorexia nervosa 0
Suicide attempts 2 (patients 17,21)
Self harm 2 (patients 8,9)

Behavioural disorder in first and second degree relatives of parkin patients

Depression 8 (patients 2-5, 10, 11, 17, 19-24)
Paranoia 0
Psychosis 2 (patients 2-5, 21)
Panic attacks 0
Anorexia nervosa 1 (patient 10)
Suicide attempts 2 (patients 2-5, 12-13)
Self harm 0

(patients 11,16) 
(patient 10)

(patient 10) 
(patient 22)

(patient 18)
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developed some features of hypomania. Increasingly he developed on period freezing 

that was absent in the morning before his first dose, and worse the higher the dose of 

L-Dopa he took, so his optimal regime was just over half a tablet of Sinemet 12.5/50 

(containing 25mgs L-Dopa) at each intake. His greatest concern was a combination 

of start hesitation, freezing and retropulsion. At age 49 he developed delusional 

morbid jealousy and his lisuride was stopped. Subsequently he stopped Sinemet and 

was treated with agonists alone with good motor control but again developed morbid 

jealousy on cabergoline and later on ropinirole. He attempted suicide on one occasion 

and also developed panic attacks. He reports a 64year old maternal first cousin 

(genotype uncharacterised) who has a paranoid psychotic illness.

4.2.3.2.9 Family History 

Motor features

Five relatives of index cases (patients 2, 8, 19, 22) were reported to have isolated 

tremor, essential tremor or postural tremor. Subtle extrapyramidal signs have been 

reported in three asymptomatic parkin carriers of the Irish kindred (patients 2-5) 

(section 5.2.3.1).

Behavioural features

The sixteen unrelated parkin patients reported a total of twelve of 71 (17%) first or 

second degree relatives without symptoms of parkinsonism, but with a history of 

psychiatric illness (Tables 4.2.3.2.a and 4.2.3.2.8). Five of these relatives were 

screened for parkin mutations: all five were carriers of a single mutation and all had a 

normal neurological examination except for a sibling of patient 2, who had subtle 

extrapyramidal signs that did not fulfil diagnostic criteria for IPD. However, this 

relative had a history of depression and schizophrenia, and had been treated with 

neuroleptics (Khan et al 2002).
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The Burnley kindred (see Figure 4.2.3.2).

This kindred originated from Burnley, a small town in Lancashire, England. 

Grandparents 1.1, 1.2 and parents II. 1, II.2 were from the same town, but were 

reported not to be related and did not have parkinsonism. Patients 22 (III.2), 23 (III.4) 

and 24 (II.7) were members of this family. This family is unusual in that 

parkinsonism occurred in two generations, with all affected individuals sharing the 

same parkin mutation on one chromosome, with the other allele being undetermined. 

Patient 22 (III.2, Figure 4.2.3.2), a non-identical twin, was diagnosed with anorexia 

nervosa at age 14 years. At that time she weighed three and a half stone, became 

socially reclusive, attempted suicide on several occasions and was treated with 

chlorpromazine and orphenadrine. From age 15 she developed parkinsonism, 

presenting with an asymmetrical (L>R) tremor of all four limbs that occurred both at 

rest and with movement. At age 27 years she had a right-sided thalamotomy without 

benefit, and at age 28 years underwent left-sided thalamotomy with clinical 

improvement. At 37, following a suicide attempt, she died of bronchopneumonia. The 

coroner’s autopsy did not provide useful information about the brain.

Patient 23 (III.4, Figure 4.2.3.2), a 46 year old housewife, developed a tremor of the 

right hand at the age of 15. At age 17 years she noted intuming of both feet on 

walking and progressed to right sided hemi-parkinsonism.

Patient 24 (II.7, Figure 4.2.3.2) developed parkinsonism from age 25 years and died 

aged 80 years. This individual had four children, one of whom, III. 10 (genotype 

uncharacterised) has a postural tremor at age 32 years.
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Individual II.6 (genotype unknown, Figure 4.2.3.2) was reported by relatives to have 

developed a unilateral coarse rest tremor at the age of 65 years. This progressed to 

Levodopa-responsive parkinsonism and the patient died aged 77 years. II.6 had four 

children (genotype uncharacterised), two of whom have been treated for depression.

II.3 and II.4 (genotype uncharacterised, Figure 1) were examined aged 70 and 82 

years respectively: a postural tremor was noted with no signs of parkinsonism.

4.2.4 Conclusion

Parkinsonism due to mutations in PARK2 also referred to as parkin disease, is a 

distinct genetic entity with a phenotype that is typically characterised by young onset 

(<40 years) parkinsonism, predominant lower limb dystonia, dramatic response to L- 

Dopa and a benign and slowly evolving course (Khan et al., 2002). Whilst young age 

of onset is undoubtedly the best clinical indicator of parkin disease, the condition is 

not confined to young or juvenile cases: one familial case had an age of onset of 54 

years. In the Burnley kindred, II.6 (genotype unknown) Figure 4.2.3.3, who is 

deceased, developed parkinsonism aged 65 years. This individual may also have had 

parkin disease although IPD could not be excluded. These cases extend previous 

reports of some familial cases having an age of disease onset closer to the average for 

IPD (Lucking et al., 2000, Klein et al., 2000). The phenotype can also include a 

bilateral atremulous, akinetic-rigid syndrome, and unusual tremor such as an 

abduction-adduction tremor confined to the legs in patients 2-5 or the tremor- 

dominant parkinsonism reported in an Italian kindred (Hilker et al., 2001). The 

clinical presentation of most cases was broadly comparable to that reported in ARJP 

and YOPD in addition to the IPD (Klein et al., 2000) and DRD phenotypes (Tassin et 

al., 2000) that have previously been reported. (Table4.2.4). Due to the difficulty in 

differentiating between DRD and a DRD-like presentation of parkin disease and other
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cases of juvenile parkinsonism, exclusion of parkin mutations or the use of DaT 

SPECT or 18F-Dopa PET scans may be indicated in DYT-1 negative patients with 

young-onset dystonia-parkinsonism, in order to delay the complications of L-Dopa 

therapy in young onset parkinsonism.

Brisk reflexes may be present in parkin disease and two previous reports have 

confirmed cerebellar and pyramidal tract dysfunction in parkin subjects (Kuroda et al., 

2001, van de Warrenburg et al., 2001); however in this series, cerebellar and 

pyramidal signs were absent, apart from brisk reflexes in case 11. Additionally two 

cases were accompanied by presumed coincidental cerebral palsy in one and a 

familial tic disorder in another.

Three new presentations of the disease are noted. Patient 17 developed early 

autonomic dysfunction combined with an axonal peripheral neuropathy. The presence 

of axonal peripheral neuropathy alone has previously been reported in a single parkin 

case (Tassin et al., 1998). Autonomic symptoms alone are common (Yamamura et 

al., 2000), and were present in 60% of our patients. Patient 10 presented with cervical, 

and later developed laryngeal, dystonia. Patient 9 developed pure dystonia of the foot 

on exercise.

There was also a patient with writer's cramp at onset, a phenotype which has 

previously been reported (Farrer et al., 2001).

Cognitive function remains normal in the majority of patients (Lucking et al., 2000). 

In this series all subjects, except patient 18, with presumed cerebral palsy, had normal 

cognition, or at least normal scores on the MMSE. Indeed normal cognition was 

recorded in patient 13 after over 45 years of parkin disease, implying that the 

neurodegeneration probably spares structures critical to cognitive function. Several of 

the patients studied developed repeated psychosis, one of whom was taking L-Dopa
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Table 4.2.4. Key features of parkin disease (including our cases)

• age of onset usually <40 years

• typical presenting phenotype YOPD/ ARJP

• normal cognition

• frequent foot dystonia

• early instability, freezing, festination or retropulsion in some cases

• excellent response to anticholinergics in some cases

• excellent response to L-Dopa, but frequent development of exquisite sensitivity to 
low doses.

• atypical levodopa-induced dyskinesias in some cases

• behavioural disorder preceding onset parkinsonism and complicating treatment in 
some cases

• autonomic symptoms in many cases

• usually benign and slow clinical course

• atypical presenting phenotypes include:

later onset, mimicking IPD 
exercise-induced dystonia, DRD-like 
leg tremor
atremulous bilateral akinetic rigid syndrome 
focal dystonia (writer's cramp, cervical) 
autonomic or peripheral neuropathy 
cerebellar and pyramidal tract dysfunction

• coincidental neurological disease does not exclude the diagnosis

• family history of individuals with tremor, subtle extrapyramidal signs and 
behavioural disorder needs further investigation
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preparations alone. In the four parkin cases from elsewhere whose autopsy results 

have been published the pathology, as in IPD, has involved the substantia nigra and 

locus coeruleus, but other brain structures that are involved in IPD are usually spared. 

Although it is conceivable that the greater degree of nigrostriatal denervation in 

caudate nucleus in parkin disease might play a role in the behavioural disturbances 

observed in a number of our patients, it is possible that they may have other 

pathological or neurochemical abnormalities that remain to be identified. Behavioural 

disorders in parkin disease have previously been reported (Tassin et al, 1998, 

Yamamura et al, 2000), but not in detail. Moreover, psychiatric symptoms antedating 

the onset of parkinsonism have not hitherto been described or emphasised. This may 

represent another new presentation of parkin disease. However, this would require 

confirmation by studying a larger series of cases and controls. Psychiatric 

complications, including depression, anxiety and psychosis have been reported in 

idiopathic PD, with rates for depression ranging from 20-50% (Oertel et al, 2001, 

Schrag et al, 2001), anxiety disorders from 20-40% (Aarsland et al, 1999) and 

psychosis from 15-20% (Aarsland et al, 1999). However, behavioural disturbances 

including anorexia nervosa, self-harm and suicide attempts are rare in PD but affected 

24% of patients in this series.

A dramatic response to treatment with L-Dopa preparations is characteristic of both 

YOPD and parkin disease. It is intriguing that there is also a dramatic response to 

treatment with anticholinergics alone in both early and advanced stages of disease; 

this has been previously reported in a single parkin case (Munoz et al., 2000). 

Although anticholinergics may have a modest effect on tremor in IPD, they do not 

usually improve rigidity or akinesia. In contrast, patients 1, 11 and 17, who reported 

initial virtually complete resolution of symptoms on low doses of benzhexol, had no
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or minimal tremor. A dramatic benefit from anticholinergics is also recognised in 

patients with DRD (Jarman et al, 1997), in which there is also an impairment of 

central endogenous dopamine production in young subjects.

The dramatic response to L-Dopa usually seen in parkin patients indicates that, 

despite a generally more severe striatal dopaminergic deficit in uptake and storage of 

L-Dopa and its metabolites as revealed by 18F-Dopa PET, administration of even low 

dosages of L-Dopa is nonetheless able to restore many subjects motorically almost to 

normal. The exquisite sensitivity of parkin patients to low doses of L-Dopa may 

partly reflect post-synaptic striatal dopamine receptor supersensitivity secondary to 

their severe presynaptic lesion.

L-Dopa induced dyskinesias are common in parkin cases. In our patients, the average 

interval from initiating L-Dopa to developing dyskinesias was 6.7 years, which is 

longer than the average in our two reported series of patients with YOPD (Quinn et al, 

1987, Schrag et al, 1998). L-Dopa-induced dyskinesias in some of the patients were 

unusual, or extremely dose-sensitive. For example, patient 14 developed prominent 

orofacial and mild limb dyskinesias only two days after commencing L-Dopa, and 

patient 15 developed a peak-dose dystonic scissoring gait after only very small 

amounts of L-Dopa. Interestingly, only one of our cohort of 16 L-Dopa treated parkin 

patients reported diphasic dyskinesias compared to 15 of 45 cases of YOPD treated 

with L-Dopa for 2 years or more (Quinn et al., 1987).

Freezing, festination, retropulsion, instability and falls are usually considered late 

features in patients with IPD, and are often assumed to be extra-nigral or non- 

dopaminergic in origin. However, these can be early or presenting features in some 

parkin patients. This might be due to a more severe nigral lesion affecting the caudate 

more than in IPD, or alternatively to additional, as yet unrecognised, pathology.
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Parkin disease is typically autosomal recessive and seen in one generation, among 

male and female siblings who are equally affected. However, it can also appear in 

isolated cases. In addition it has been reported in multiple generations of families with 

consanguineous marriages (Maruyama et al., 2000) or in isolated populations (Klein 

et al., 2000, Lucking et al., 2001). The latter, and the finding of parkin disease in two 

generations in the Burnley kindred, suggests that different parkin mutations are 

frequent enough in some populations to lead to allelic heterogeneity. However, the 

frequency of parkin carriers and the frequency of the disease (both typical and 

atypical phenotypes) in the population at large remains to be accurately determined. 

The majority of parkin mutations have arisen from independent mutational events, 

emphasising their importance in the aetiology of young onset parkinsonism (Abbas et 

al., 1999, Lucking et al. 2000). However, recurrence of the same mutation in different 

patients may reflect a founder effect (i.e. these individuals have a common ancestor 

and are therefore related), which is particularly the case with respect to point 

mutations (Periquet et al., 2001). Different patients from apparently different families 

shared the same mutations: three patients from two families originating from the 

Indian subcontinent shared exon 9 1101C-»T (Arg334Cys) three patients from two 

families of Irish descent and one Scottish isolated case shared exon 12 1390G—>A 

(Gly430 Asp) and two isolated English cases shared an exon 2 202-203 AG deletion. 

One isolated English case and all siblings from the Burnley kindred shared Ex9 

1101C—»T (Arg334Cys). Four cases (two Irish from one family and two isolated 

English cases) shared exon 7 924 C —>T (Arg275Trp), which has been reported to be 

due to very ancient founder effects (Periquet et al., 2001). The majority of mutations 

in our patients were due to different point mutations, in contrast to the deletions first 

reported in the Japanese parkin patients (Kitada et al., 1998). A second parkin
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mutation was not identified in ten of the parkin patients. Possible explanations for this 

could include: an incomplete mutation screen (incomplete analysis of the parkin 

promotor and intronic regions); the presence of an unknown coexisting susceptibility 

allele; or that a single mutant allele is sufficient to cause disease.

With recent genetic advances, we now realise that the clinical heterogeneity of 

“Parkinson’s disease” is, at least in part, due to the fact that it encompasses a number 

of different disease entities. Autosomal recessive conditions such as parkin disease 

can be due to different “loss of function” mutations, but in such cases the clinical 

phenotype is usually similar (Strachan, 2000). Although common and overlapping 

clinical themes have been reported in this series of parkin patients, they are 

nonetheless also clinically heterogeneous. Since a number of different mutations in 

the parkin gene are responsible, this may be mutation dependent. Although both this 

and previous studies are too small to confidently identify mutation-specific 

phenotypes, it is of interest that in the large Irish kindred all four siblings, patients 2- 

5, sharing the same mutations, presented between the ages of 26 and 32 years, and 

that all four of them had in common an abduction-adduction oscillatory tremor of the 

legs. By contrast however, in another sibling set, patient 13 is atremulous after 47 

years of disease and his sibling, patient 12, had tremor at the onset of disease.

The significance of a 17% rate of psychiatric disturbance reported in relatives by 

sixteen unrelated patients with parkin disease is uncertain because we do not have a 

control cohort. The general population incidence of psychiatric disturbance of 19 % 

(Singleton et al; 2000) was ascertained from a household survey and therefore may 

not be directly comparable. Nigrostriatal dysfunction detected using 18F-dopa PET 

and the manifestation of subtle extrapyramidal signs that do not fulfil clinical 

diagnostic criteria for IPD, have been reported in carriers of a single parkin mutation
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(Klein et al., 2001, section 5.3), so-called “manifesting heterozygotes”. One could 

hypothesize that parkin carriers who do not have parkinsonism but carry a single 

parkin mutation might also have susceptibility to psychiatric illness. In this context, it 

is of interest that a locus for schizophrenia has recently been mapped to chromosome 

6q25 adjacent to PARK2 (Lindholm et al, 2001). The manifestation of behavioural 

disorder in non-parkinsonian carriers of a single mutant allele may support the 

hypothesis that by either haploinsufficiency (Strachan 2000) or a dominant negative 

effect (Strachan 2000), having gene products up to 50% of the normal level is not 

sufficient for normal function. However, the progression to develop parkinsonism in 

such cases is unclear. The significance of the reported behavioural disorders in 

otherwise unaffected relatives either with only one demonstrated mutation, or whose 

genotype is uncharacterised remains to be determined.

4.3 Olfaction in parkin disease compared to early-onset parkinsonism without parkin 

mutations and idiopathic Parkinson's disease.

4.3.1 Introduction

Loss of olfaction occurs in different forms of parkinsonism: severe loss is seen in 

idiopathic Parkinson's disease (PD) (Hawkes et al., 2003), diffuse Lewy body disease 

(DLBD) (Liberini et al., 1999) and parkinsonism-dementia complex of Guam (Doty et 

al., 1991), intermediate loss has been documented in multiple system atrophy (MSA) 

(Wenning et al., 1993), while olfaction has been found to be normal in corticobasal 

degeneration (Wenning et al., 1995), progressive supranuclear palsy (Wenning et al., 

1995) and parkinsonism caused by l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine 

(MPTP) (Doty et al., 1992). The exact cellular and molecular mechanisms underlying 

olfactory dysfunction in these disorders are unclear. However the detection of
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neuronal loss with Lewy bodies in the olfactory pathway in PD (Daniels et al., 1992) 

suggests that, at least in this disease the mechanism is central and neurodegenerative 

rather than a local nasal mucosal or sinus problem.

At the time of this study there were no reports on olfactory function in parkin disease. The 

aims of this study were to assess olfactory function in a group of patients EOPD with 

parkin mutations and to compare olfaction to a group of EOPD patients in whom mutations 

in PARK2 had been excluded and to a group of patients with PD. This study was 

performed in collaboration with Dr Regina Katzenschlager, Institute of Neurology, Queen 

Square who provided idiopathic PD cases and controls and Hilary Watt, London School of 

Hygiene and Tropical Medicine, Department of Statistics, University College London who 

advised about methodology of statistical analysis.

4.3.2 Methods

4.3.2.1 Subjects

17 patients with EOPD (defined as disease onset <50 years of age) with mutations in 

PARK2 (parkin positive) who had been previously been identified (Lucking et al 

2000, Khan et al,. 2002) served as the primary study group. PARK2 mutations on 

both alleles were identified in 12 parkin positive patients of which only one was a 

homozygote the remaining 11 patients being compound heterozygotes carrying a 

different parkin mutation on each allele (Lucking et al 2000, Khan et al,. 2002). In the 

remaining 5 parkin positive patients, a single mutant parkin allele was identified the 

second mutation remains undefined (Lucking et al 2000, Khan et al,.2002). 11 

patients with EOPD who did not have mutations in the coding region of PARK2 

(parkin negative) (Lucking et al 2000), 18 patients with PD and 28 normal subjects 

served as comparison groups. The groups of parkin positive and parkin negative 

patients were closely matched for age, sex and smoking status with one normal
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control. Both groups were also closely matched for sex and smoking status with a 

group of PD patients; precise age-matching was not possible for EOPD patients 

because any patients who had early onset parkinsonism and would therefore be 

suitable for precise matching had been tested for parkin mutations and therefore, by 

definition, fell into either the parkin positive or parkin negative groups.

Selection criteria for the PD cohort included age of onset >50 years, fulfilment of the 

Queen Square Brain Bank criteria (Gibb et al., 1988), no family history of 

parkinsonism and no parental consanguinity. This cohort was not screened for 

PARK2, parkin mutations. All subjects gave informed consent and the project was 

approved by the Joint Medical Ethics Committee of the National Hospital for 

Neurology and Neurosurgery (NHNN) and Institute of Neurology, London, UK.

4.3.2.2 Olfactory tests.

The University of Pennsylvania Smell Identification Test (UPSIT) was used to test 

olfaction. The UPSIT has been validated as a reliable standardised test of odour 

identification sensitive to a wide range of olfactory deficits (Doty et al., 1984). The 

standardised test consists of forty microencapsulated odorants embedded in urea- 

formaldehyde polymer spheres fixed in a proprietary binder and positioned in strips, 

one on each page of the test booklets. Subjects choose one out of four possible 

odorant options (forced choice). The UPSIT scores range from 0 to 40 and higher 

UPSIT scores denotes better olfactory function. All subjects were tested either during 

a routine clinic visit or specifically attended for the purpose of this study.

4.3.2.3 Statistical analysis.

UPSIT scores between the three study groups were compared using non-parametric 

analysis (Mann Whitney U test). Linear regression was performed to adjust for the 

age difference between the PD group and all other groups. This was performed by
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Hilary Watt, London School of Hygiene and Tropical Medicine, Department of 

Statistics, University College London.

4.3.3 Results

All EOPD patients fulfilled the Queen Square Brain Bank criteria for PD (Gibb et al., 

1988). Table 4.3.3 shows demographic and clinical details of the four study groups. 

UPSIT test scores are shown in Table 4.3.3 and Figure 4.3.3. There were no 

significant differences in the UPSIT scores of the parkin positive group of EOPD 

patients compared to healthy controls (p=0.20). The mean UPSIT score in the parkin 

positive group was 27.3 (95% confidence interval Cl 24.4, 30.2). This did not differ 

significantly from the normal control group mean of 29.4 (95% Cl 28.0, 30.7; 

p=0.20). In the parkin positive group individual UPSIT scores were above 23 or more 

except for two cases (UPSIT scores of 16 and 17) and in the control group individual 

UPSIT scores were all 23 or more. In the PD group, the group mean UPSIT score was

14.3 (95% Cl 12.2, 16.3) and all subjects had individual UPSIT scores below 19 

except one whose score was 24. In EOPD without parkin mutations the mean was

17.1 (95% Cl 14.8, 19.4) and all subjects had individual UPSIT scores below 21 

except one whose UPSIT score was 23. There was a significant difference in UPSIT 

scores between the healthy controls and the group of EOPD patients without PARK2 

mutations (pO.OOOl) and the group of PD patients (p=<0.0001). There were no 

significant differences between EOPD without PARK2 mutations and PD (p=0.80).

4.3.4 Conclusion

This study describes the first assessment of olfaction in parkin disease; olfactory 

function appears to be normal and therefore differs significantly from patients with 

EOPD who do not have PARK2 mutations and from PD where Lewy bodies have
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been reported in the olfactory bulb and tract with significant neuronal loss in the 

anterior olfactory nucleus (Daniel et al., 1992, Pierce et al., 1995).

Parkin is a protein that co-localises within actin filaments and is expressed in neuronal 

processes and cytoplasm of select neurones (Huynh et al., 2000). Expression of parkin 

mRNA in humans has been reported to be restricted to a number of regions in the 

normal brain (Solano et al., 2000). Our findings suggest that the ubiquitin-mediated 

proteolytic pathway involving the mutant parkin protein spares the olfactory neural 

networks.

Neuropathological findings have been reported parkin; in two cases Lewy bodies 

were present in substantia nigra and locus coeruleus (Farrer et al., 2000, Chen et al., 

2004). In remaining cases there was an absence of Lewy bodies and a severe and 

generalised loss of dopaminergic neurons from the substantia nigra pars compacta and 

locus coeruleus (Mori et al., 1998, Van de Warrenburg et al., 2001, Hayashi et al., 

2000, Farrer et al., 2000). One brains showed a few neurofibrillary tangles and 

argyrophilic astrocytes in cerebral cortex and brainstem nuclei (Mori et al., 1998), 

another showed additional involvement of the substantia nigra pars reticulata (Van de 

Warrenburg et al., 2001), and the third showed neuronal loss in parts of the 

spinocerebellar system (Hayashi et al., 2000). Despite these rather incongruous 

findings the pathological lesions in parkin disease appears to be more restricted than 

in PD. The olfactory pathway has not been formally studied in parkin disease and our 

results underline the need for such neuropathological studies.

The methodology did not include screening the PD cohort (age of onset >50 years) for 

parkin mutations however parkin mutations in isolated cases of parkinsonism is rare. 

Moreover severe olfactory dysfunction is reported in PD (Doty et al., 1988); this was
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Table 4.3.3 Clinical characteristics of the groups of subjects.

Parkin Parkin
Control positive negative IPD
subjects subjects subjects subjects

(n=28) (n= 17) (n=ll)(n=18)

Mean age
Onset - 23.4+/-8.0 33.4+/-12.9 58.1+/-5.4
(yrs)(SD)

Range o f
Age o f Onset - 7-35 19-49 51-67
(yrs)

Mean age 50.5 +/- 13.0 47.4 +/- 13.0 55.1+/-11.7 68.0+/-6.1
(yrs) )(SD)

Disease
Duration - 24.0+/-9.7 21.1+/-5.4 9.8+/-5.2
(yrs)(SD)

M/F 23/5 13/4 10/1 11/7

Smokers

History o f
Head injury 0
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Figure 4.3.3
Scatter plot showing the University of Pennsylvania Smell Identification Test (UPSIT) scores in all groups.
Abbreviations: parkin neg = parkin negative group; parkin pos = parkin positive group; PD = Parkinson’s disease group.
The larger values on the UPSIT score denote a greater degree of olfactory function. The bar refers to the median UPSIT 
value;
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not only confirmed in the cohort of PD patients in this study but this group also 

showed a significant difference in UPSIT scores from the parkin positive group.

Parkin disease has clinical and pathological features which may show varying degrees 

of overlap with PD. This is the first study of olfaction in parkin disease and the 

overall finding of normal olfaction supports existing neuropathological, genetic and 

functional imaging data suggesting that EOPD due to PARK2 mutations is a separate 

disease entity from Lewy body PD. Quantitative measures of olfaction may assist in 

distinguishing parkin disease from other forms of young onset levo-dopa responsive 

parkinsonism and PD.

106



5. “f l u o r o -d o p a  p o s it r o n  e m is s io n  t o m o g r a p h y  in  f a m il ia l

FORMS OF PARKINSON’S DISEASE AND PARKINSONISM.

5.1 Introduction

At the time of this study, functional imaging using 18F-dopa PET was a novel tool 

used to study the patterns of nigrostriatal dysfunction in Mendelian PD. This chapter 

describes work using ,8F-dopa PET to study patterns of nigrostriatal dysfunction in 

familial forms of parkinsonism and PD. All scans and analysis of data was performed 

at the MRC Cyclotron Unit, Clinical Sciences Centre, Imperial Colleague,

Hammersmith Hospital, London and was supervised by Dr Paola Piccini.

The aims of the study were fourfold:

i) To assess progression of nigrostriatal dysfunction in an Irish kindred with

parkin disease.

ii) To use 18F-dopa PET to study unrelated, asymptomatic carriers of a single

parkin mutation.

• • • 18iii) To use F-dopa PET to study patients and asymptomatic heterozygotes

with autosomal recessive PARK6-linked, (PINK1) parkinsonism.

iv) To use 18F-dopa PET in the British kindred with ADPD to identify

presymptomatic nigrostriatal dysfunction for use in linkage analysis.
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5.2 Progression of nigrostriatal dysfunction in an Irish kindred with Parkin Disease.

5.2.1 Introduction

In 1991 an Irish kindred with early onset levodopa-responsive parkinsonism (EOPD) 

was studied with 18F-dopa PET (Sawle et al., 1992). At that time the four clinically 

affected siblings showed severely reduced 18F-dopa influx in striatum. Moreover, 

putamen 18F-dopa uptake was also mildly reduced in two asymptomatic members but 

normal in another asymptomatic sibling. Following the identification of mutations in 

PARK2, parkin, causing early onset parkinsonism in 1998 (Kitada et al., 1998), an 

affected individual from this kindred was shown to be a compound heterozygote, 

having a deletion in exon 8 (personal communication C Lucking) and a splice site

1 ftpoint mutation in intron 5 (personal communication M Farrer). In this study F-dopa 

PET was repeated 10 years later in all four siblings with EOPD. In addition, four 

asymptomatic relatives with a single mutant parkin allele and one with a normal 

genotype were also scanned. Two of the parkin carriers and the relative with a normal 

genotype had serial 18F-dopa PET seven years apart.

The aims were to study the rate of disease progression in parkin disease in this 

kindred and to assess the presence and possible changes with time of subclinical 

nigrostriatal dysfunction in carriers of a single parkin mutation.

5.2.2 Methods

5.2.2.1 Patients

Ten members of this family underwent a standardised neurological examination. A 

retrospective review of medical records and video material taken at the time of the 

first scan was used to estimate the Unified Parkinson’s Disease Rating scale (UPDRS) 

(Fahn et al., 1987) and the Hoehn and Yahr (H&Y) (Hoehn et al., 1967) score at the 

time of the first scan. Scores on the H&Y scale and the UPDRS scale in a practically
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defined 'off state (12 hours after withdrawal of medication) were used to rate the 

degree of parkinsonian disability at the time of the second scan. All subjects gave 

informed consent on both occasions and the project was approved by the Joint 

Research and Ethics Committee of the National Hospital for Neurology and 

Neurosurgery and Institute of Neurology, Queen Square, London UK.

5.2.2.2 PARK2 molecular analysis

5.2.2.2.1 Haplotype studies

Parkin haplotypes were assigned using chromosome 6q25-q27 DNA markers 

D6S1550, D6S305, D6S411, D6S253 (GDB accession ID: 641523, 63059, 237957, 

62264 consecutively) using methods previously described in chapter 3.2. Haplotypes 

were manually constructed under the assumption of the minimum number of 

recombinations

5.2.2.2.2 Mutational analysis of PARK2, parkin

All living family members were screened for the exon 8 deletion and the exon 5 splice 

site point mutation by Mary Sweeney, Department of Molecular Neuroscience, 

Institute of Neurology, Queen Square, London. The exon 8 deletion was detected 

using a semi-quantitative PCR method as previously described (Lucking, 2000). The 

PCR products were analysed on an ABI 377 automated sequencer and Genescan v 

3.1.2. Genotyper v.2.5.1 software (Applied Biosytems) to determine the ratio of the 

peak heights of PCR products within the parkin gene used to detect the presence of 

the deletion. Exon 5 was amplified from genomic DNA by the PCR as previously 

described (Kitada et al., 1998). Both strands were sequenced using a Big Dye 

Terminator Cycle Sequencing Ready Reaction DNA Sequencing kit (Applied 

Biosystems, Foster City, CA), on an ABI 373 automated sequencer with the Sequence 

Analysis v.3.4.1 (Applied Biosytems) software.
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5.2.2.3 PET scans

5.2.2.3.1 Scanning protocol

1 RAt the time of the first scan seven family members underwent F-dopa PET on a CTI 

931 scanner (CTI/Siemens, Knoxville, TN) with a reconstructed resolution of 1.5 cm 

as previously described (Sawle et al., 1992).

The second scan was performed on an EC AT 966 scanner (CTI/Siemens, Knoxville, 

TN) with a reconstructed resolution of 6mm. Following a transmission scan obtained 

with an external 68Ge source, a mean dose of 129.5 MBq 18F-dopa was injected as a 

bolus over 30 seconds and scanning was started at the onset of tracer infusion. 

Scanning began at the start of tracer infusion with 25 time frames over 95 min. Prior 

to emission data acquisition a transmission scan was performed with an external 

rotating positron source of 137Cs to allow a measured attenuation correction to be 

performed.

All subjects gave prior written informed consent and were asked to stop their 

medication for 12 hours before the PET scan. Permission to perform these studies was 

obtained from the Ethics Committee of the Hammersmith Hospitals Trust, London, 

UK and from the Administration of Radioactive Substances Advisory Committee 

(ARSAC), UK.

5.2.2.3.2 Region of Interest Analysis

Image analysis of all scans for each subject was performed using Analyze software 

(version 7.5, BRU, Mayo Foundation, Rochester, Min., USA) on SUN Sparc Ultra 

computer workstations. 18F-dopa uptake was expressed as an influx rate constant (Ki) 

and was calculated from caudate and putamen counts 25 to 95 minutes post injection 

using multiple time graphical analysis (MTGA) with occipital tissue counts as a 

reference tissue input function (Brooks et al., 1990). A standard ROI template was
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applied to parametric Ki images generated by in-house Kronos software (D Bailey) 

written in IDL image analysis software (Research Systems, Inc., Boulder, Co, USA): 

each putamen was sampled with an elliptical region 10x24 mm aligned along its axis 

and each head of caudate with a circular region diameter 10mm. All ROI’s were 

placed by inspection with reference to the stereotactic atlas of Talairach and Toumoux

1 ft(Talaraich, 1988). For each patient caudate and putamen F-dopa influx rate 

constants (Ki) were measured.

1 ftBecause two different scanners were used over the lOyear period, F-dopa uptake 

was expressed as a percentage of the normal mean in healthy controls scanned with 

the respective scanners.

On the first occasion 16 unrelated age matched controls (mean = 58.5±14.3 years, 

range = 28-75 years) scanned on the CTI 931 scanner were used as controls. For the 

second scan, 14 unrelated, age matched controls (mean = 54.6±13.9, range = 30-71 

years) scanned on the ECAT 966 scanner with identical methods used for the parkin 

patients were used as controls. The controls reported no family history of 

parkinsonism and all had a normal neurological examination.

Seven patients with IPD, originally scanned on the 931 PET camera, with disease 

severity (evaluated on both clinical and 18F-dopa striatum uptake ground) similar to 

the parkin group at the time of their first scan, were re-scanned on the 966 PET 

scanner after an interval of 5.04 (±1.73) years between scans.

• 18For those subjects who had repeat scans the percentage annual rate of decline of F- 

dopa Ki (r) was calculated using the formula: r = [(mean Ki for the group of healthy 

controls -subject Ki) / mean Ki of the group of healthy controls ] / number of years 

between consecutive scans) x 100.

5.2.2.3.3 Statistical analysis
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The non-parametric Wilcoxon test was used for all comparisons between different 

groups of patients and controls.

5.2.3 Results

5.2.3.1 Clinical findings

This parkin kindred originated from a small village in Southern Ireland (Figure 5.2.3). 

There was no known parental consanguinity and the parents did not have 

parkinsonism. The affected cases fulfilled the clinical diagnostic criteria of the Queen 

Square Brain Bank for PD except for the presence of a family history (Gibb et al., 

1988). Four (one woman and three men) out of ten siblings were affected at the time 

of the study in 1990 and no further members of this kindred have subsequently 

developed the disease. The mode of transmission was consistent with autosomal 

recessive inheritance.

Mean age of onset of symptoms was 29 years (range 28-32 years). All affected 

siblings had a striking response to L-dopa therapy with levodopa-related dyskinesias 

after a mean interval of 2.4 years. Estimated mean clinical disease duration was 26 

years (range 19-32 years) at the time of the second scan. The clinical presentation of 

the patients was comparable to that of juvenile-onset PD cases, however, currently 

their phenotype was indistinguishable from IPD with a common feature of severe 

resting leg tremor (abduction-adduction oscillations). Clinical features are 

summarized in Table 5.2.3.1. The following account provides more detail of each 

subject studied in this kindred (Figure 5.2.3)

Patient III.l

This 60 year old man reported initial symptoms of fatigue, lower limb pain and 

slowness from the age of 28 years with subsequent in turning of both feet. At the time 

of the first scan he was H&Y stage II with a UPDRS ‘off score of 39. Following a
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lOyear interval, at the time of the second scan, disease duration was 32 years and he 

had now reached H&Y stage III and an UPDRS off score of 59. In the ‘off state he 

had a predominant abducting-adducting oscillatory tremor of both lower limbs at rest 

with asymmetrical bradykinesia and rigidity (left more than right). His posture was 

upright and he was unsteady on his feet. He had been receiving L-dopa for 14 years 

and continued to report a significant improvement taking lOOOmg a day albeit with 

moderate inter dose dyskinesia and severe motor fluctuations. He was able to walk up 

to 3 miles at a time and maintain a job as a local handyman.
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Figure 5.2.3.1
Pedigree of the family with parkin disease with genotypes of DNA markers D6S305-0.04cM-D6S1550-1.35cM-D6S41 l-3.66cM-D6S253 (marker 
distances according to Genethon genetic maps). Haplotypes that segregate with parkin mutations are indicated in black such that the paternally 
inherited disease chromosome is indicated by 4-3-x-1 and the maternally inherited disease chromosome is indicated by 1-3-2-1. The position of the 
deletion on the paternal disease chromosome is indicated by an ‘x’. Markers in parentheses were inferred on the basis of offspring data. Markers 
surrounded by question marks could not be phased with certainty.
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Patient III.4

This 55year old man reported initial symptoms of slowness, right leg tremor and 

involuntary inversion of both feet from the age of 27 years. At the time of the first 

scan he was H&Y stage II with a UPDRS ‘o ff’ score of 57. Following an 11 year 

interval, at the time of the second scan, disease duration was 29 years and he had 

progressed to H&Y stage IV and a UPDRS ‘off score of 108. In the ‘off state he had 

a severe abducting-adducting oscillatory tremor of both lower limbs at rest with 

symmetrical bradykinesia and rigidity, postural instability and poor arm swing. At the 

time of the second scan he had been on L-dopa therapy for 23 years and continued to 

report significant improvement and dyskinesias with L-dopa, taking 1200mg a day. 

He was, however, no longer able to continue with employment as a landscape 

gardener; his disability had been exacerbated by lumbar canal stenosis such that he 

required walking sticks and at times, a wheelchair.

Patient III.5

This 54year old housewife reported symptoms of slowness, leg pain and leg tremor 

aged 31. At the time of the first scan she was H&Y stage II and UPDRS ‘off score 

was 42. After 11 years, at the time of the second scan, disease duration was 19 years 

and she had progressed to H&Y stage IV and UPDRS ‘off score of 74. She had 

motor fluctuations with her ‘off periods’ with marked generalised stiffness, pain, 

bilateral resting leg tremor, shuffling gait and poor balance such that she was barely 

able to mobilise independently and perform activities of daily living. She had been on 

L-dopa for 11 years and continued to report a significant improvement from L-dopa 

taking 500mg a day but had developed motor fluctuations and dyskinesias.
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Table 5.2.3.1 Clinical characteristics for each of the clinically affected subjects with parkin mutations 

and for a group of seven patients with idiopathic Parkinson's disease (IPD).

III.l III.4 III. 5 III. 8
mean ±SD

IPD (n=7)
mean ±SD

age of onset 28 27 31 32 29.0 ±5.0 58.5 ± 4.81

age at 1st scan 50 45 43 40 44.5 ± 4.2 64.7 ± 5.02

disease duration at
1st scan (years) 22 18 12 8 15.0 ±6.2 6.20 ± 2.43

interval between
scans (years) 10 11 11 11 10.7 ±0.5 5.04 ± 1.7

H&Y
First scan 2 2 2 2 2 2.79 ± 0.64

H&Y
Second scan 3 4 4 4 3.75 ±0.5 4.07 ± 0.65

Wilcoxon test (parkin group vs IPD group) 1 p=0.0061, 
2p=0.0061,3 p=0.0100, 4 p=0.1090,5 p=0.412
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Patient III. 8

This 51 year old former builder reported initial symptoms of bilateral leg tremor and 

involuntary inversion of the right foot from the age of 32. At the time of the first scan 

he was H&Y stage II with an UPDRS ‘off score of 59. He developed inter-dose 

painful dystonic cramps of the feet and severe chorea of the head, trunk and legs. 

Following an 11 year interval, disease duration was 19 years at the time of the second 

scan and he had progressed to H&Y stage IV and a UPDRS ‘off score of 90. ‘O ff’ 

periods were associated with fatigue and distressing rest tremor of the legs and to a 

lesser degree the arms. Rigidity and bradykinesia were worse in the legs. At the time 

of the second scan he had been receiving L-dopa therapy for 18 years and continued 

to report a significant improvement, taking 1200mg a day.

None of the carriers of a single parkin mutation reported any symptoms. Individual 

IV. 1 was first examined at the age of 19 years and then had 18F-dopa PET when she 

was 24 and again when she was 30. At 19 years of age, individual IV. 1 had a postural 

tremor of the right arm. At follow up, eleven years later, there was a postural tremor 

of both hands (right more than left), rest tremor of both legs and reduced arm swing 

on the right. Tone was normal with no evidence of bradykinesia, hypomimia or 

micrographia. Despite these extrapyramidal signs the UK Brain Bank diagnostic 

criteria for PD (Gibb et al., 1988) were not fulfilled.

Individual III.2, a housewife, had a normal examination in 1990 but at the time of the 

second scan had facial masking and reduced left arm swing.

Individual III.3, a housewife, had a history of diabetes, depression and schizophrenia 

that had been previously treated with chlorpromazine. Present treatment for 

depression included olanzapine, procyclidine and sertraline. Clinical examination at 

the time of the first scan was normal but at follow up there was a positive glabellar tap
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with normal tone, poor arm swing and mild paucity of facial expression with a bucco- 

lingual masticatory syndrome and stereotypies of the lower limbs.

The neurological examination of III. 11 was normal.

Of those siblings with a normal genotype, III.7 had a normal neurological 

examination. Individual II.3, a 75year old paternal uncle, was not examined on the 

second occasion nor scanned on either occasion.

5.2.3.2 Molecular data

Haplotype analysis in the region of parkin confirmed linkage (Figure 5.2.3.1).

A deletion in exon 8 was identified in a paternal uncle II.3 and siblings III. 1-5 and 

III.8. These cases were hemizygous for alleles at marker D6S411 confirming the 

presence of a deletion in exon 8 and segregating with the paternal haplotype 4-3-x-1. 

The second mutation, an intron 5 +2 T->A splice mutation, was detected in the 

mother, II.5, siblings III.l, III.4, III.5, III.8, III. 10, III. 11 and offspring IV. 1 and 

segregated with the maternal haplotype 1-3-2-1. The clinically affected individuals 

were compound heterozygotes having an exon 8 deletion and an intron 5 +2 T->A 

splice mutation and shared heterozygous haplotypes 4-3-x-1 and 1-3-2-1.

Of the asymptomatic cases, three carried a paternally inherited parkin-associated 

haplotype (II.3, III.2 and III.3) and a detectable exon 8 mutation and one sibling 

(III. 10), one half-sibling (III.l 1) and offspring (IV. 1) inherited the maternal parkin- 

associated haplotype and a detectable intron 5 +2 T->A splice mutation. Siblings III.7 

and III.9 did not inherit either of the parkin-associated haplotypes and did not have an 

exon 8 deletion nor an intron 5+2 T->A splice site mutation.

5.2.3.3 PET data

5.2.3.3.1 Patients

Mean values for 18F-dopa caudate and putamen uptake, expressed as percentage
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reduction relative to the normal mean, at the first and second scan for the parkin and 

the IPD groups are shown in Table 5.2.3.3.I.

At the time of the first scan, percentage reductions below the normal mean in caudate 

18F-dopa uptake in the parkin and in the IPD groups were not significantly different 

(55±12 vs 43±5, p=0.109), similarly putamen percentage reductions below the normal 

mean were not significantly different in the two groups (64±4 in the parkin vs 58±8 in 

the PD patients, p=0.315) (Table 5.2.3.3.1).

1 ftFigure 5.2.3.3.1a shows the individual rates of decline in putamen F-dopa uptake 

relative to the normal mean for the four parkin patients and the seven IPD patients.

The mean percentage rate of decline of putamen 18F-dopa uptake relative to the 

normal mean was 1.47 (±05) per annum for the parkin group and 5.71 (±1.63) per 

annum for the IPD group. The rates of progression between these two groups were 

significantly different (p=0.0008) (Figure 5.2.3.3.1b).

The mean percentage rate of decline of caudate 18F-dopa uptake relative to the normal 

mean was 1.72 (±1.7) per annum in the parkin group and 3.51 (±1.04) per annum in 

the IPD group. This difference was not statistically significant (p=0.885).

Within the parkin group the mean percentage rate of decline in caudate was not 

significantly different from that of putamen (1.72±1.7 and 1.47 ±05 respectively, 

p=0.16), while within the IPD group the mean percentage rate of decline was 

significantly slower in the caudate than in the putamen (3.51±1.04 and 5.71±1.63 

respectively, p=0.006).

5.2.3.3.2 Asymptomatic subjects

Sibling III.7, who had a normal genotype, had normal caudate and putamen 18F-dopa 

uptake (Table 5.2.3.3.2), which remained normal after 6 years.

Individually, two parkin carriers showed low normal levels of caudate Ki (>1.5 SD

119



below the normal mean) and three carriers had a low normal putamen Ki (>1.5 SD 

below the normal mean) (Table 5.2.3.3.2).

As a group the four carriers had significantly reduced mean caudate and putamen 

[18F]-dopa uptake (0.0119±0.00047 and 0.0117 ± 0.00054 respectively) compared to 

mean caudate and putamen [18F]-dopa uptake of the healthy controls 

(0.0153±0.0026 and 0.0168±0.0031 respectively) (p=0.0126 and 0.009 respectively) 

(Figure 5.2.3.3.2).

Two of the carriers (111.3 and IV. 1) were scanned on two occasions (after 9 and 6 

years respectively). The rate of changes in caudate and putamen [18F]-dopa uptake 

per annum was 0.14% and 0.09%, respectively, in carrier III.3 and 0.73% and 0.74%, 

respectively, in carrier IV. 1.

120



-20 -

reduction 
in 18F-dopa 
uptake -40 -

-60 -

-80 -

-100
2 4 6 8 12baseline

-20 -

-40 “

-60

-80 -

-100

B

bascl me

vears

Figure 5.2.3.3.1a Individual rate of decline over time in 18F-dopa putamen uptake in the four parkin patients (A) and in seven patients with 
idiopathic Parkinson’s disease (B) matched for clinical disease severity at the time of first scan. Values are expressed as percentage 
reduction of the mean of normal controls.
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1 ftFigure 5.2.3.3.1b Mean percentage reductions per annum in F-dopa caudate and 
putamen uptake in the group of parkin and in the IPD group. Patients were matched 
for disease severity at the time of first scan. Values are expressed as percentage 
reduction of the mean of normal controls. * Between groups Wilcoxon test.

%
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uptake 
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caudate putamen

p=0.885*

p=0.0008*

Parkin patients (n=4)
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Table 5.2.3.3.1 Mean percentage reductions relative to the normal means in caudate 
and putamen 18F-dopa Ki values in the four parkin patients and in the group of seven 
patients with idiopathic Parkinson's disease (IPD), at the time of the first (1) and the 
second scan (2) with the interval in years between scans.

Caudate 1 Caudate 2 Putamen 1 Putamen 2 Interval

III.l -40 -73 -59 -71 10

III.4 -50 -56 -67 -75 11

III.5 -68 -82 -69 -77 11

III. 8 -62 -71 -62 -82 11

mean ±SD 
Parkin cases 

(n=4)

-55 ±12 -69 ±13 -64 ±4 -76 ±4 10.7 ±0.5

mean ±SD 

IPD cases 
(n=7)

-43 ±5 -51 ±5 -58 ±8 -79 ±5 5.0 ± 1.7
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Table 5.2.3.3.2 Clinical, Genetic and 18F-dopa PET characteristics of the 

asymptomatic members of the family at the time of the second scan.

Controls (n=14) 
mean ±SD

III.2 III.3 III. 11 IV. 1 III.7

Age 50 59 58 69 30 52

Parkin carrier - yes yes yes yes no

Haplotype - paternal paternal maternal maternal neither

Exon 8 
Deletion

“

yes yes no no no

Right caudate 0.0152 ±0.0028 0.0131 0.0127 0.0109§ 0.0119 0.0127

Left caudate 0.0154 ±0.0025 0.0112§ 0.0117 0.0115 0.0123 0.0155

Right putamen 0.0168 ±0.0032 0.0123 0.0114§ 0.0113§ 0.0102§ 0.0154

Left putamen 0.0169 ±0.0032 0.0125 0.0123 0.0115§ 0.0121 0.0164

Caudate and putamen 18F-dopa values are expressed as Ki min'1 
§ denotes Ki influx constants at least 1.5 standard deviations below normal mean.
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Figure 5.2.3.3.2
Mean caudate and putamen 18F-dopa uptake in four parkin heterozygous carriers and 
in 14 age-matched, normal controls. Values are expressed as Ki min'1. *Between 
groups Wilcoxon test.
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5.2.4 Conclusion

Serial 18F-dopa PET was used to measure over a ten-year period the rate of loss of 

dopaminergic function in clinically affected members of a kindred with parkin 

disease. The mean annual loss of putamen 18F-dopa Ki relative to the normal mean 

was 1.48 % in parkin disease compared to 5.71 % in the group with IPD suggesting 

that disease progression in established parkin disease is slower. Findings for IPD 

patients are in agreement with previous studies which have reported a mean annual 

6% loss of putamen 18F-dopa storage relative to the normal mean or 12% relative to 

patient baseline (Morrish et al., 1996). Although the IPD group were not age matched 

with the parkin patients, their duration of clinical symptoms at the time of the baseline 

scan was not significantly different and they had a similar severity of disease to the 

parkin group, suggested by similar reductions of putamen 18F-dopa uptake and motor 

scores. Similar severity and duration of disease at baseline rather then age are the 

critical factors when assessing rate of progression of Parkinson's disease in two 

groups of patients because 18F-dopa striatal uptake per se is not influenced by age 

(Sawle et al., 1990; Eidelberg et al., 1993).

The rate of decline of putamen uptake amongst the symptomatic parkin patients was 

similar whilst there was some variability in the rate of decline of caudate uptake. 

However, mean caudate Ki deteriorated at approximately the same rate as mean 

putamen Ki in the parkin group whereas in the IPD group caudate dopamine function 

was relatively spared at baseline and deteriorated at a slower rate than putamen. The 

finding that nigrostriatal dysfunction in parkin disease progresses more slowly than 

IPD is in keeping with the clinical observation that cases of young onset parkinsonism 

can have a normal lifespan and suggests that neurodegeneration in parkin disease is an 

indolent process.
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Intra-sibling variability of both Ki values and degree of parkinsonian disability 

amongst clinically affected cases may be due to the influence of other unlinked genes 

(modifier genes) and undefined environmental influences. Generally however, the 

pattern and course of the affected cases was remarkably similar.

Because of the lapse of time, more then 10 years, data from two different PET 

cameras were used. This methodology is not entirely rigorous this was compensated 

for by normalising patient data to control groups scanned with the respective scanners 

and by matching a group of IPD patients with similar disease severity and duration of 

clinical symptoms to that of the parkin group at the time of the first baseline scan. The 

sample size was small and confined to a single family such that the rate and pattern of 

nigral cell loss that was found may be specific to this family.

Dopaminergic dysfunction was also detected in the group of asymptomatic parkin 

carriers. In two carriers of a single parkin mutation, who were scanned 9 and 6 years 

apart respectively, there were no significant changes in 18F-dopa uptake with time, 

similar to their sibling with normal genotype (III.7) and to that seen in normal 

volunteers (Morrish et al., 1996). This implies that either the two carriers have a fixed 

deficit that does not progress with time or that the rate of nigral cell death was too 

slow to be detected with PET over the time period. Alternatively, there may also be 

additional pathophysiological processes at the postsynaptic receptor not detectable by 

18F-dopa PET. The clinical development of mild signs of basal ganglia dysfunction 

between the two examinations is, however, intriguing and suggests incipient nigral 

cell dysfunction. Repeated observation with clinical examination and repeat scanning 

over time in a much larger cohort will be necessary to confirm these findings.
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5.3 An 18F-dopa PET study in unrelated, asymptomatic carriers of a single parkin 

mutation.

5.3.1 Introduction

Mutations in parkin, PARK2 cause early onset parkinsonism and whilst the pattern of 

inheritance is presumed to be autosomal recessive; there was increasing interest in the risk 

of subjects with a single PARK2 mutation developing parkinsonism.

At the time of this study, functional imaging had been performed in asymptomatic parkin 

heterozygotes from just two families with parkin disease (Hilker et al., 2001, Irish kindred 

section 5.2 (Khan et al., 2002)). Subtle extrapyramidal signs had also been noted in parkin 

heterozygotes from both kindreds (Hilker et al, 2001, section 5.2) moreover there was a 

suggestion that carriers of a single mutation also had a susceptibility to psychiatric illness 

(section 4.2.3.2.9).

1 ftThe aim of this study was to use F-dopa PET to study 13 asymptomatic first-degree 

relatives with a single parkin mutation from eight unrelated patients with familial and 

isolated parkin disease in order to study subclinical dopaminergic dysfunction in a large 

cohort of unrelated parkin heterozygotes. This study included asymptomatic parkin 

heterozygotes from the Irish kindred reported in section 5.2.

5.3.2 Methods

5.3.2.1 Subjects

All subjects underwent a full and detailed neurological examination paying particular 

attention to the possible presence of mild extrapyramidal signs. All gave informed 

consent and the Joint Research and Ethics Committees of the National Hospital for 

Neurology and Neurosurgery, and the Hammersmith Hospitals Trust, London, UK 

approved the project. Permission to administer radiation was licensed by the 

Administration of Radioactive Substances Advisory Committee (ARSAC) UK.
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5.3.2.2 Molecular Analysis

PARK2 PCR amplification, semiquantitaive PCR and sequence analysis was 

performed by Elizabeth Graham, Laboratory Technician, Department of Molecular 

Neurosciences, Institute of Neurology, Queen Square, London as previously 

described.

5.3.2.S PET Scans

5.3.2.3.1 Scanning protocol

All subjects were scanned on an ECAT HR++ 966 scanner (CTI/Siemens, Knoxville,

TN) with a reconstructed resolution of 4mm and an axial field of view of 24 cm using 

a protocol that is outlined in 5.2.2.3.I.

5.3.2.3.2 Region of Interest Analysis

Two regions of interest (ROIs) were defined using a protocol that is outlined in 5.2.2.3.2. 

The caudate to putamen ratio (C/P ratio) of each subject was calculated using the formula r 

= mean caudate Ki / mean putamen Ki. The ROI analysis was performed blinded to the 

status of both the group of parkin heterozygotes and the group of control subjects.

5.3.2.3.3 Statistical parametric mapping

Statistical parametric mapping (SPM99) was investigated by Dr Christof Scherfler, MRC 

Cyclotron Unit, Clinical Sciences Centre, Hammersmith Hospital, London. SPM99 was 

used to localize significant differences in dopaminergic function between the parkin carrier 

and healthy control group. SPM was performed using SPM99 software (Wellcome Dept of 

Cognitive Neuroscience, Institute of Neurology, Queen Square, London, UK) implemented 

in Matlab 5.3 (Mathworks Inc., Sherbom, Mass., USA). The obtained datasets allowed 

categorical comparisons of mean voxel [18F] dopa Ki° values between groups of parkin 

carriers and control subjects.
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Fourteen unrelated, age and sex-matched controls (mean age 54.6 +/- 13.9, range 30-71 

years) were scanned with a similar protocol to the parkin heterozygotes. All normal 

controls reported no family history of parkinsonism and had a normal neurological 

examination.

5.3.2.3.4 Statistical analysis

The non-parametric Wilcoxon test was used for all comparisons between groups of patients 

and controls.

5.3.3 Results

5.3.3.1 Clinical findings

A total of 13 parkin heterozygotes (subjects 1-13, Table 5.3.3.1) from eight unrelated 

parkin kindreds (Families 1-8, Table 5.3.3.1) were studied. Eight subjects were men 

and the remaining five were women. Seven were first-degree relatives of isolated 

cases and six were first-degree relatives of familial cases (two or more clinically 

affected) of an index patient with parkin disease. The mean age of the group was 52.0 

± 13.0 years and the age range was 30-69 years. None reported symptoms of 

parkinsonism.

Four heterozygote parkin gene carriers had subtle extrapyramidal signs (tremor, 

reduced arm swing - Table 5.3.3.1), which did not fulfil the UK PDS brain bank 

criteria for IPD (Gibb, 1988). The remainder had a normal examination (Table 

5.3.3.1). The clinical characteristics of all subjects are summarised in Table 5.3.3.1.

5.3.3.2 PET findings

Individual mean (left -right averaged) 18F-dopa influx constant, Ki, values obtained 

with ROI analysis for the thirteen parkin heterozygotes and the mean of the control 

group and
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Table 5.3.3.1 Parkin mutations and clinical characteristics of the asymptomatic parkin heterozygotes.

isolated or familial 
index patient

Relation Parkin
mutation

Subject Age 
at scan

Sex Examination
findings

1 / isolated father exon 7 867c>t 1 48 male normal

2 / isolated sister Exonl2 1390g>a 2 34 female normal

2 / isolated father Exon 3 del 3 54 male normal

2 / isolated mother Exonl2 1390g>a 4 51 female normal

3 / isolated sister Exon 2 del 5 64 female normal

4 / familial daughter Exon 3 del 6 46 female normal

5 / isolated father Exon 5 del 7 60 male normal

6 / isolated father Exon 5 del 8 68 male poor arm swing

7 / familial son Exon 7or 12 9 30 male normal

8 / familial sister In5T>A 10 69 female normal

8 / familial sister Exon 8 del 11 60 female poor arm swing/facial masking

8 / familial sister Exon 8 del 12 58 female poor arm swing/ facial masking
8 / familial daughter In5T>A 13 30 female postural tremor hands, 

rest tremor both legs, poor arm swing
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Table 5.3.3.2a Individual 18F-dopa striatal Ki (left-right averaged) values of the 
parkin heterozygotes and in the group of 16 normal volunteers.

F-Dopa Ki (min1)

Subject caudate putamen

PARK2 heterozygotes
1 0.0116 § 0.0115 §
2 0.0101 * 0.0096 +
3 0.0108 * 0.0126 §
4 0.0094 * 0.0133
5 0.0154 0.0179
6 0.0137 0.0143
7 0.0122 0.0121 §
8 0.0146 0.0136
9 0.0121 0.0113 §
10 0.0111 § 0.0111 §
11 0.0111 § 0.0114 §
12 0.0125 0.0134
13 0.0122 0.0124 §
Mean 0.0120a 0.0126b

(±SD) (0.0021) (0.0029)
Controls (n = 14)

Mean 0.0153 0.0169
(±SD) (0.0026) (0.0031)

Wilcoxon test (PARK2 heterozygotes group vs controls)
ap=  0.008 
bp=  0.002

SD = standard deviation 
§ = 1.5 SD below normals
* = 2.0 SD below normals 
+ = 2.5 SD below normals
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Table 5.3.3.2b Between-group SPM findings showing the locations of significant 
decreases of I8F]-dopa Ki in heterozygous parkin carriers compared to control 
subjects.

18F-dopa Kjmin'1

Area Talairach co-ordinates Z score P values Height

(corr.) threshold

x y z

Decreases in heterozygous parkin carriers compared with control subjects

Left putamen -24 0 0 4.87 0.0001 0.001

Right putamen 22 13 3 4.23 0.0001

Dorsal midbrain 2 -22 -9 4.37 0.0500

Right caudate 22 15 3 4.23 0.0001 0.01

Left caudate -15 14 7 3.43 0.0001

Ventral midbrain 2 -12 -8 3.14 0.0001
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Figure 5.3.3.2 SPM{Z} transverse and sagittal maximum intensity projection maps rendered on to a stereotactically normalised MRI scan, 
showing areas of significant decreases in caudate and putamen (A) and midbrain (B, axial slice; C, sagittal slice) of [18F]-dopa Ki°, uptake in 
patients heterozygous for parkin mutations compared with healthy control subjects. Numbers in A and B correspond to the Z co-ordinate, 
number in C corresponds to the X co-ordinate in Talairach space. With kind permission from Dr Christoph Scherfler, Clinical Sciences 
Centre, MRC Cyclotron unit, Hammersmith Hospital, London

caudate

putamen midbrain
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are shown in Table 5.3.3.2a. As a group, mean parkin heterozygote caudate Ki values 

(0.0120±0.002) and mean putamen Ki values (0.0126±0.003) were significantly 

reduced by 23% and 27% below the group means of control caudate Ki values 

(0.0153±0.003, p=0.0008) and putamen Ki values (0.0169±0.003, p=0.0022) (Table 

5.3.3.2a).

This was confirmed by SPM analysis (Figure 5.3.3.2). When compared to a group of

healthy controls, asymptomatic parkin carriers showed significant bilateral decreases

18in F-dopa uptake in the caudate and putamen (p<0.001, corrected; Fig 5.3.3.2) and 

caudate (p<0.01, corrected; Fig 5.3.3.2). Significant decreases in 18F-dopa Ki were 

also observed in the dorsal and ventral midbrain regions in heterozygote carriers 

compared to controls (z score4.4; p<0.01;x=2mm; y=-24mm; z=-9mm,Tailarach 

space) (Figure 5.3.3.2; Table 5.3.3.2b).

Individually, eight parkin heterozygotes had a low normal putamen Ki greater than 1.5 SD 

below the normal mean and six had a caudate Ki greater than 1.5 SD below the normal 

mean); three subjects (2, 3 and 4) had caudate Ki values 2SD below normal mean; subject 

2, though without abnormal neurological findings, had a mean putamen Ki value 2.5 SD 

below the control mean (Table 5.3.3.2a).

5.3.4 Conclusion

This is the first in vivo study of dopamine terminal function in a large number of 

unrelated asymptomatic parkin heterozygotes; there was a significant reduction in 

mean caudate, putamen and midbrain 18F-dopa uptake in these subjects with a similar 

uniform pattern to that reported in patients with clinical parkin disease (Section 5.2 

(Khan et al., 2002), Scherfler et al., 2004). As 18F-dopa is also taken up by 

serotonergic and noradrenergic as well as dopaminergic neurons in midbrain areas our 

results would suggest that aberrant, ubiquitin ligase-mediated cell function in parkin
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heterozygotes is, as in clinically affected parkin patients, not just restricted to 

dopaminergic neurones though the reduction is less severe than that seen in patients 

with parkinsonism due to parkin mutations (Hilker et al., 2001, section 5.2 (Khan et 

al., 2002), Scherfler et al., 2004). Individual findings in the parkin heterozygotes are 

of interest. Subject 13, though asymptomatic, was found to have a postural tremor of 

both upper limbs at the age of 19 (Sawle et al., 1991). After 11 years of follow up, 

when the patient was 30 years old and still asymptomatic, 18F-dopa PET showed 

severe nigrostriatal dopaminergic dysfunction and clinical signs had progressed with 

the development of mild resting tremor in the legs and reduced arm swing. Three 

subjects (subjects 2, 3 and 4) individually showed significant reductions in caudate 

dopamine storage compared to controls but had an entirely normal neurological 

examination. The disparity between the absence of clinical findings and significant 

nigrostriatal dopaminergic dysfunction compliments findings reported for patients 

with early onset parkinsonism associated with mutations in parkin (section 5.2) where 

severe reductions in striatal 18F-dopa are found. It suggests that even if significant 

loss of dopamine cell function occurs early it may then progress slowly enough to 

allow compensatory mechanisms to develop. It is known that in idiopathic PD there is 

increased dopamine turnover in surviving striatal terminals (Bezard et al., 1998). 

Additionally, recent reports have shown increased pallidal dopamine storage in early 

PD cases (Whone et al., 2001). These mechanisms, in addition to altered production 

of non-dopaminergic neurotransmitters, may all operate to maintain motor status. 

Interestingly, there was no correlation between age of the heterozygote and the degree 

of dopamine terminal dysfunction. Subjects 2 and 4 with the lowest caudate influx 

constants, shared a point mutation in exon 12, causing Gly430Asp amino acid 

substitution in the RING-finger motif at the carboxy terminus of the protein, which
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may play an important role in cell growth and differentiation. Single base pair 

substitutions may have an overall greater loss of function compared to deletions (and 

absent protein) because the intact but inactive protein may compete for substrate and 

deleteriously affect parkin-mediated cellular pathways.

These findings suggest that haploinsufficiency where a single mutant allele reduces 

normal protein function by up to 50% (Strachan, 2000) results in a reduction of 

ubiquitin ligase activity, which may not be sufficient for normal nigrostriatal activity. 

This would imply that parkin’s ligase activity is dosage sensitive and that sufficient 

relative levels of enzyme are required for interaction with other gene products of the 

ubiquitin-conjugating pathway. The effects of modifying genes particularly influence 

those cases in which the phenotype is dependent on haploinsufficiency and 

environmental factors (Strachan, 2000). An alternative explanation is a dominant 

negative effect (Strachan, 2000), the non-functional mutant parkin polypeptide 

physically interferes with the function of the normal polypeptide suggesting that 

dimerization or oligomerization of the protein is requisite for normal function. 

Moderate reduction in protein function caused by either haploinsufficiency or a 

dominant negative effect may produce nigrostriatal damage in heterozygous carriers. 

This would suggest that having a single mutant parkin allele could prove to be a risk 

factor for the development of subclinical disease. Moreover four of our subjects were 

‘manifesting heterozygotes’ implying that perhaps different parkin mutations impart 

different degrees of susceptibility to developing clinical signs. Repeated observation 

over time will be necessary to confirm whether these cases go on to develop full­

blown parkin disease.

An alternative explanation is that the ,8F-dopa PET changes observed are of no 

clinical significance, however, the manifestation of subtle extrapyramidal signs in
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three parkin carriers (one of whom, however, had a history of neuroleptic exposure) 

suggests that these individuals may well be ‘manifesting heterozygotes’ and raises the 

possibility that they may be at risk of developing parkin disease. Severe reduction 

however in ubiquitin ligase activity in homozygotes may produce the recessive 

condition, which results in marked nigrostriatal dysfunction and the clinical disease. 

One other explanation of these findings is that they reflect differences in the 

development of the dopaminergic system in parkin heterozygotes rather than 

subclinical decline: a study of post-synaptic D2-receptor binding and the functional 

status of dopaminergic transmission would seek to clarify this. However, there are 

now described cases of late onset parkin disease with only a single mutant allele 

(West et al., 2002) and a recent genome screen on idiopathic PD patients (Oliveira et 

al., 2003) has identified 17 PD patients with mean age of onset of 49.2 years who 

were heterozygote for parkin mutations (12 of them carrying mutations in exon 7), 

suggesting that heterozygous mutations especially those lying in exon 7 may act as 

susceptibility alleles for late-onset form of PD.
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5.4 An 18F-dopa PET study of autosomal recessive PARK6-linked parkinsonism.

5.4.1 Introduction

A locus for autosomal recessive parkinsonism was linked to chromosome Ip35-p36, 

PARK6, in a family from Sicily, the Marsala kindred by colleague Dr Enza Maria Valente 

(Valente et al., 2001). Since the completion of this study the gene has been cloned and 

mutations have been identified in PINK1 (Valente et al., 2004). There is considerable 

overlap of the clinical phenotype with that of idiopathic PD: asymmetrical presentation 

with unilateral tremor and akinesia in an upper limb and age of onset up to 68 years. Signs 

such as dystonia and sleep benefit, often reported in autosomal recessive juvenile 

parkinsonism (ARJP) are absent in PARK6 (Valente et al., 2002).

At the time of this study neither post-mortem data nor in vivo studies on the function of the 

nigrostriatal dopaminergic system were available for PARK6-linked parkinsonism or 

asymptomatic heterozygotes.

18F-dopa PET was used to study two families: the Marsala kindred (family 1) and an 

unrelated Italian family, the Abruzzo kindred (family 2), in whom disease was linked to 

PARK6 (Valente, 2002). The aims were to study the pattern of nigrostriatal dysfunction in 

PARK6-linked parkinsonism and to assess whether subclinical nigrostriatal dysfunction is 

present in PARK6 heterozygotes.

5.4.2 Methods

5.4.2.1 Clinically affected patients with PARK6-linked parkinsonism 

Two of the patients with PARK6-linked parkinsonism (one man and one woman) 

were from the Marsala kindred, family 1, which contained four affected individuals 

out of ascertained 122 members (Valente et al., 2001). The other two patients (one 

man and one woman) were from the Abruzzo kindred, family 2, which included 43 

family members (Bentivoglio et al., 2001).

139



5.4.2.2 Asymptomatic PARK6 heterozygotes

Three subjects were carriers of a single mutant PARK6 haplotype: two were from 

family 1 (VI.24, VII.8, (Figure 1, Valente et al., 2001) and one subject was from 

family 2 (III.6, Figure 2, (Bentivoglio et al., 2001). None of the carriers reported any 

symptoms or showed any signs of PD.

All subjects underwent a standardised neurological examination. Scores in a practically 

defined 'off state on the Unified Parkinson’s Disease Rating scale (UPDRS) and the Hoehn 

and Yahr (H&Y) were used to rate the degree of parkinsonian disability. All subjects gave 

informed consent on both occasions and the project was approved by the Joint Research 

and Ethics Committees of the National Hospital for Neurology and Neurosurgery, and the 

Hammersmith Hospitals Trust, London, UK. Permission to administer radiation was 

licensed by the Administration of Radioactive Substances Advisory Committee (ARSAC) 

UK.

5.4.2.3 Scanning protocol

All subjects were scanned using a protocol previously described in section 5.3.2.3.I.

5.4.2.3.1 Region of Interest Analysis.

Four regions of interest (ROIs) were defined: the head of caudate nucleus with a circular 

region diameter 10mm, the anterior part of the dorsal putamen with an elliptical region 

10x12mm the posterior part of the dorsal putamen with an elliptical region 10x12mm and 

the entire dorsal putamen with an elliptical region 10x24 mm aligned along its axis. All 

ROI’s were placed by inspection with reference to the stereotactic atlas of Talairach and 

Toumoux (Talairach et al., 1988) on five contiguous transaxial slices. For each patient 

head of caudate, anterior, posterior and entire putamen 18F-dopa influx rate constants (Ki) 

was computed using linear graphical Patlak analysis with an occipital reference tissue input 

function (Brooks, 1990). The caudate to putamen ratio (C/P ratio) of each subject was
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calculated using the formula r = mean caudate Ki / mean putamen Ki. The ROI analysis 

was performed blinded to the genetic status of both the symptomatic subjects (PARK6- 

linked parkinsonism and PD) and the asymptomatic subjects (PARK6 heterozygotes and 

control subjects) but not to the clinical status of these two groups.

Eight patients with idiopathic PD matched for disease severity as assessed by UPDRS 

motor score when withdrawn from medication for 12 hours and Hoehn and Yahr staging, 

and fourteen unrelated, age and sex matched controls (mean age 54.6 +/-13.9, range 30-71 

years) were scanned with a similar protocol to the PARK6 subjects. All normal controls 

reported no family history of parkinsonism and had a normal neurological examination.

5.4.2.3.2 Statistical analysis

The non-parametric Wilcoxon test was used for all comparisons between different groups 

of patients and controls.

5.4.3 Results

5.4.3.1 PARK6-linked parkinsonism: clinical findings.

These cases all fulfilled the clinical diagnostic criteria of the Queen Square Brain 

Bank for probable PD except for the presence of a family history (Gibb et al., 1988). 

H&Y and UPDRS motor scores for each subject at the time of the scan are 

summarised in Table 5.4.3.1. Mean age of onset and age at scan in the PARK6 group 

were significantly younger than the PD group (p <0.001, p=0.04 respectively), 

however, there were no significant differences between the two groups with regard to 

disease duration and disease severity as rated with the H&Y scale and UPDRS motor 

scores. Clinical characteristics are summarised in Table 5.4.3.1.
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Table 5.4.3.1. Clinical characteristics and 18F-dopa striatal Ki values in the four PARK6 patients and in the group of eight patients with
Parkinson’s disease.

Clinical characteristics l8F-dopa Ki (min'1)

age of
onset
(yrs)

age at 
scan

DD
(yrs)

H&Y UPDRS
motor
score

caudate putamen anterior
putamen

posterior
putamen

C/P
index

VI.7* 45 76 31 3.5 73 0.0051 0.0025 0.0026 0.0025 2.3

VI.23* 38 47 9 2 22 0.0059 0.0022 0.0025 0.0014 1.5

PARK6 IV.8§ 38 41 3 1 5 0.0041 0.0031 0.0029 0.0029 1.2
patients

rv.7§ 32 43 11 2 32 0.0043 0.0029 0.0033 0.0028 1.5

mean 38.2 51.7 13.5 2.1 33.0 0.0047 3 0.0027 0.0028 4 0.0024 1.8 s
(±SD) (5.3) (16.3) (12.1) (1.0) (28.9) (0.0008) (0.0004) (0.0005) (0.0007) (0.4)

PD mean 53.0 1 67.3 2 11.0 3.3 38.4 0.0102 0.0042 0.0060 0.0026 2.8
patients (±SD) (4.5) (5.5) (5.1) (0.7) (15.0) (0.0016) (0.0019) (0.0015) (0.0014) (0.6)

* Family 1 (Figure l ,1) § Family 2 (Family 2, Figure 2,3)
DD = disease duration. H & Y = Hoehn and Yahr staging5, UPDRS = Unified Parkinson’s disease rating scale5 
C/P index = caudate/putamen index.
Wilcoxon test (PARK6 patient group vs PD group)1 pO.OOl, 2 p=0.04,3 p=0.01, 4 p=0.03,5 p=0.03.
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Figure 5.4.3.2 Mean caudate, anterior and posterior putamen l8F-dopa uptake in the group of patients with PARK6-linked parkinsonism and 
in the group of PD patients matched for disease severity. Values are expressed as Ki min'1. * p=0.01, §p=0.03
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Table 5.4.3.3 18F-dopa striatal Ki values in the three PARK6 carriers and in the group of 14 normal volunteers.

18F-dopa Ki (min *)

Caudate Putamen C/P index

age Putamen Anterior
putamen

Posterior
putamen

VII. 8 41 0.0099 0.0111 0.0115 0.0102 0.90
VI.24 49 0.0126 0.0113 0.0131 0.0101 1.10

PARK6 III. 6 60 0.0131 0.0107 0.0123 0.0105 1.20
carriers mean 50 0.0119 1 0.0110 2 0.0123 3 0.0102 4 1.06

(±SD) (9.5) (0.0017) (0.0003) (0.0008) (0.0003) (0.15)

controls
(n=14)

mean

(±SD)

54.6

(13.9)

0.0153

(0.0026)

0.0168

(0.0031)

0.0171

(0.0029)

0.0163

(0.0039)

0.90

(0.06)

* Family 1 (Figure l ,1) ,§Family 2 (Family 2, Figure 2,3)
C/P index = caudate/putamen index.
Wilcoxon test (PARK6 carrier groups vs controls) ^=0.03, 2p=0.01,30=0.01, 4p=0.05



5.4.3.2 PARK6-linked parkinsonism: PET findings.

Regional mean 18F-dopa Ki values obtained for the four clinically affected PARK6 patients 

and the PD group are shown in Table 5.4.3.1 The reductions in posterior putamen 18F-dopa 

uptake were similarly severe (15% of normal) in the PARK6 patients and the group of PD

1 ftpatients, however, anterior putamen and caudate F-dopa uptake was twice in the PD 

cohort compared with the PARK6 group (p=0.03 and p=0.01 respectively) (Table 5.4.3.1). 

Additionally, the mean caudate/putamen ratio in PARK6 patients was significantly lower 

compared to the PD group (p = 0.02) (Figure 5.4.3.2)

5.4.3.3 Asymptomatic PARK6 heterozygotes: PET findings.

Individually, all three PARK6 carriers had low normal putamen Ki (>1.5 SD below the 

normal mean) and one of them (VII.8, figure 1, (Valente et al., 2001)) also had a low 

normal caudate Ki >1.5 SD below the normal mean. As a group the three carriers had mean 

caudate and putamen 18F-dopa uptake significantly reduced in comparison to the normal 

group mean (p=0.03, p=0.01, for caudate and putamen respectively) (Table 5.4.3.3).

5.4.4 Conclusion

This is the first in vivo study of dopamine terminal function in PARK6-linked 

parkinsonism and asymptomatic carriers of a single PARK6-linked haplotype. Although 

the group of PARK6 and idiopathic PD patients were matched for disease duration and 

clinical disease severity they showed a different pattern of nigrostriatal dopaminergic 

dysfunction. PARK6 patients had a similar severe reduction in posterior dorsal putamen

1 ftF-dopa Ki to the PD cases but showed twice the involvement of head of caudate and 

anterior dorsal putamen, which were relatively spared in PD. This resulted in an absence of 

an anteroposterior gradient of putamen tracer distribution in PARK6. Such a gradient is 

typical of idiopathic PD and is due to the preferential degeneration of the ventrolateral tier 

of the substantia nigra pars compacta, which projects to the posterior dorsal putamen, and 

relatively sparing of the dorsomedial nigral cells, which project to anterior dorsal putamen
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and head of caudate (Bemheimer et al., 1973). This data suggests that the 

neurodegenerative process in PARK6-linked parkinsonism involves the nigra more 

uniformly and may well have different neuropathological features from PD.

Individual PET findings of the PARK6 patients are of interest. First, patient IV.8, with 

only three years of clinical disease, had putamen 18F-dopa values similar to that of his 

relative IV.7 with 11 years symptom duration and to the idiopathic PD group whose mean 

disease duration was also 11 years. Second, there was a disparity between the mild degree 

of locomotor impairment in patients VI:23, IV.7, IV.8 and their severe reduction of striatal 

18F-dopa uptake. The disparity between moderate clinical impairment and severe 

nigrostriatal dopaminergic dysfunction parallels findings reported for parkin (PARK2) 

patients (Hilker et al., 2001, section 5.2 (Khan et al., 2002)), another recessive form of 

early-onset parkinsonism, and suggests that significant dopamine cell loss occurs early in 

life in patients with recessive parkinsonism. Disease may then progress slowly enough to 

allow currently uncertain compensatory mechanisms to develop. It is known that in 

idiopathic PD there is increased dopamine turnover in surviving striatal terminals (Bezard 

et al., 1998) Additionally, a recent report showed increased pallidal dopamine storage in 

early PD cases (Whone et al., 2001) .These mechanisms plus altered production of non- 

dopaminergic neurotransmitters may all operate to maintain motor status. The PARK6 

sample size was small, however, and we cannot exclude the fact that that the pattern of 

nigrostriatal dopamine dysfunction we found in these carriers may be specific to the two 

families.

Nigrostriatal dysfunction was also found in three members who carried a single 

mutant PARK6 allele and as a group had significant reduction in mean putamen 18F- 

dopa uptake. Preclinical nigrostriatal dysfunction has previously been reported in 

asymptomatic co-twins of PD patients (Piccini et al., 1999) and at-risk adult members 

of unrelated kindreds with familial parkinsonism (Piccini et al., 1997) one third of
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who subsequently developed clinical disease. These results indicate that reduced 

presynaptic dopamine terminal function is present in asymptomatic adult PARK6 

heterozygotes. Similar observations of reduced striatal 18F-dopa uptake have been 

reported in heterozygotes carrying a single mutant allele of the parkin gene (Hilker et 

al., 2001, section 5.3 (Khan et al., 2002).

A possible molecular explanation for the findings of abnormal nigrostriatal 

dysfunction in heterozygous PARK2 and PARK6 carriers could be either 

haploinsufficiency (Strachan, 2000) such that a single mutant allele results in a 

reduction of up to 50% of enzymatic activity, which may not be sufficient for normal 

nigrostriatal activity or a dominant negative effect (Strachan, 2000) where the non­

functional mutant polypeptide physically interferes with the function of the normal 

polypeptide suggesting that dimerization or oligomerization of the gene product is 

requisite for normal function.

Whether or not these PARK6 heterozygotes with sub-clinical dysfunction will 

develop clinical parkinsonism over time is unknown. Repeated observation with 

clinical examination and repeat scanning over time in a much larger cohort will be 

necessary to confirm these findings.
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5.5 An 18F-dopa PET study of asymptomatic members of the Lincolnshire kindred.

5.5.1 Introduction

The work described reported here was performed on unaffected members of the 

Lincolnshire kindred. This took place prior to a genome-wide screen and hence carrier 

status of a disease-causing locus in each unaffected family member that was scanned 

was unknown.

Whilst this kindred had over twenty members reported to have PD, DNA was only 

available from six affected subjects thus limiting the power of a genome wide study in 

an autosomal dominant kindred.

The purpose of this study was to use 18F-dopa PET to identify nigrostriatal 

dysfunction as a surrogate marker of ‘presymptomatic disease’ in clinically unaffected 

subjects in the Lincolnshire kindred. This would assist in extending the phenotype to 

include subclinical disease thus increasing the numbers of the ‘affected’ and the 

power in linkage analysis.

5.5.2 Methods

1 ftF-dopa PET scans were performed and analysed by myself using methods 

previously reported (section 5.2.2.3). Ethics Committees of the National Hospital for 

Neurology and Neurosurgery, and the Hammersmith Hospitals Trust, London, UK 

approved the project. Permission to administer radiation was licensed by the 

Administration of Radioactive Substances Advisory Committee (ARSAC) UK.

5.5.3 Results

Five subjects in whom the clinical examination was normal were scanned. III.3 (aged 

77), III.4 (aged 73), III.7 (aged 71), 111.21 (aged 77), IV.7 (aged 42) (Figure 2.3.2); 

none of these subjects had reduction of 18F-dopa uptake values of 2 standard 

deviations or more compared to a group of 14 controls (Table 5.5.3).
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Table 5.5.3 Individual 18F-dopa striatal Ki (left-right averaged) values of 
asymptomatic members of the British kindred with autosomal dominant PD (Figure 
2.3.2) and in a group of 14 normal volunteers.

18F-Dopa Ki (min'1)

Subject caudate putamen

III.3 0.0122 0.0118
III.4 0.0126 0.0119
III.7 0.0130 0.0163
111.21 0.0129 0.0134
IV.7 0.0137 0.0134

Mean 0.0129 0.0134
(±SD) (0.0005) (0.0018)

Controls (n = 14)
Mean 0.0153 0.0169

(±SD) (0.0026) (0.0031)
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The controls reported no family history of parkinsonism and all had a normal 

neurological examination.

5.5.4 Conclusion

Prior to commencing the molecular characterisation of the Lincolnshire kindred, five 

family members without clinical manifestation of the disease underwent 18F-dopa 

PET scans to detect preclinical nigrostriatal dysfunction. Imaging was normal. These 

findings were substantiated by subsequent haplotype analysis (Figure 3.31) and 

mutation analysis (Paisan-Ruiz et al., 2004) that confirmed that these subjects did not 

possess a mutant allele.

This novel approach combining two diverse scientific tools of functional imaging and 

molecular genetics failed to identify pre-symptomatic disease in this kindred however 

it has been successful elsewhere. This methodology was applied to a large Spanish 

family with typical, autosomal dominant PSP where disease status was defined 

according to the clinical and positron emission tomography data in unaffected 

subjects; PSP was successfully linked to a 3.4 cM region on chromosome 1 q31.1 (Ros 

et al., 2005).
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6. POPULATION BASED ASSOCIATION STUDIES

The use of linkage analysis in large nuclear families has identified some of the genetic 

components of PD. However despite the wealth of data generated by the scientific 

community a definite and replicable susceptibility locus has not been identified in the 

idiopathic PD population. There are a number of reasons for this discussed in section 

1.2.1.1. Population based approaches in PD have included linkage analysis, affected- 

sibling pair analysis and association studies; each has had a variable degree of success 

(Tan et al., 2000).

Work described in this section describes two association studies. The first was an 

attempt to replicate a positive association with disease and the second study employed 

a candidate gene approach to identify if an association existed in PD populations. 

Alpha synuclein / Apolipoprotein E

6.1.1 Introduction

Kruger and colleagues investigated polymorphisms in two plausible candidate genes 

that contribute to neurodegeneration: the a-Synuclein gene, a-SYN on chromosome 4 

and Apolipoprotein E (Kruger et al., 1999). Immunohistochemistry has demonstrated 

that a  -synuclein is a component of the LB (Spillantini et al., 1997), synucleins have 

apolipoprotein-like secondary structure (Clayton et al., 1999) and the overlap in 

clinicopathology of PD and AD may imply an overlap of susceptibility to age- 

modulated disease by the Apos 4 allele. Kruger and colleagues identified a significant 

association of alleles in the promotor polymorphism of a-synuclein (NACP) as well 

as closely linked DNA markers D4S1647 and D4S1628 and the Apos 4 allele with PD 

in a German population (Kruger et al., 1999). A combination of Apos 4 / NACP 

genotype was found to increase susceptibility to PD 12 fold (Kruger et al., 1999).

In an attempt to replicate these results same NACP polymorphism, Chromosome 4p 

markers and Apolipoprotein E was genotyped in a much larger PD population (305
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cases) in which the majority of PD cases were histopathologically proven and a larger 

number of closely matched control samples (335). PD samples used also included a 

cohort of familial cases as well as a larger number of young onset cases. A novel 

polymorphism of the intron 4 region of a-S YN (IN4) was also studied.

6.1.2 Methods

6.1.2.1 Patients

The study population consisted clinical and pathological PD cases. Clinical cases 

evaluated by a neurologist, diagnosed PD based on the presence of two or more of the 

cardinal features (tremor, rigidity and bradykinesia) and an absence of other signs 

unrelated to PD. All subjects gave informed consent and the study was approved by 

the Joint Research and Ethics Committees of the National Hospital for Neurology and 

Neurosurgery and Institute of Neurology, Queen Square, London. Brain tissue from 

PD cases was obtained from the Queen Square Brain Bank at the Institute of 

Psychiatry, London, UK. DNA extracted from control brains was obtained from the 

MRC Neurochemical Pathology Unit, Newcastle General Hospital Newcastle, UK. 

DNA from all clinical samples was obtained from the diagnostic service laboratory, 

Neurogenetics Section, Institute of Neurology, Queen Square London. DNA was 

extracted from brain tissue and blood leucocytes with use of conventional methods 

previously described.

Control cases were selected to closely match age and sex of the PD population and 

were samples of brain tissue with no abnormal histopathology or clinical cases from 

the National Hospital for Neurology and the Institute of Neurology, Queen Square, 

London. Control clinical cases used did not have parkinsonism.

6.1.2.2 a-synuclein promotor polymorphism (NACP)

The allele status of the dinucleotide marker in the promotor region a-SYN, was 

determined by PCR with the flanking primers:
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Repl (51 GCAATGGAGTAGACAAAAGGATGG 3’) and

Rep2 (5' CTACATGACTGGCCCAAGATTAA 3'). Reactions were performed in a 

volume of 20 pi containing 10 ng of genomic DNA, 0.2mM each dNTP,10% PCR 

buffer II, 2.5mM MgC12, lOpmol each primer, 0.5 U Amplitaq Gold. GeneAmp 9700 

thermal cyclers were used: samples were subjected to a denaturation step of 95 

degrees C for 3 minutes followed by 35 cycles 95 for 15 seconds, 55 for 20 seconds 

and 70 for 50 seconds. A final extension of 10 minutes at 70 was specified, was 

Samples were run on 4% polyacrylamide gels with an ABI 377 automated sequencer 

equipped with GENESCAN (v3.1). Alleles were sized and alleles assigned with 

GENOTYPER (v2.5). Three different alleles were identified 257 bp, 259 bp and 261 

bp. Positive control samples were obtained from Kruger and colleagues allele 1, 2 

and 3 corresponded to our alleles 261,259 and 257 respectively.

6.1.2.3 Markers D4S2460, D4S423, D4S1578, D4S1628, 4S1647 in coding region of 

the a-synuclein gene.

Tetranucleotide (D4S1628, D4S1647) and dinucleotide (D4S1578, D4S423, 

D4S2460) repeat markers were amplified by using primer sequences and PCR 

conditions described by the genome database (accession ID: D4S2460, GDB:424508 ; 

D4S423, GDB:62948; D4S1578 (substituted D4S2422 from the original paper), 

GDB.*245064, D4S1628, GDB:686793, D4S1647, GDB:691159). Samples were run 

and alleles were sized and assigned as described for NACP. Marker D4S2460 showed 

8 different alleles sized as 175, 177,179,181,183,185,187,189 bp. Marker D4S423 

showed 12 different alleles, D4S 1578 showed 10 different alleles, D4S1628 showed 

4 different alleles sized as 146,150,154,158 bp (directly corresponding to positive 

controls from Kruger and colleagues 149, 153,157 and 161bp) and D4S1647 showed 

6 different alleles 132, 136, 140,144,148,152 with identical size/mobility to those 

alleles typed in the original study.
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6.1.2.4 a-synuclein Intron 4 Polymorphism (IN4)

Allele status for this TC rich polymorphism identified approximately 0.9kb 

downstream of the exon 4/intron 4 boundary, was determined by PCR using the 

flanking primers IN4F: 5'AUCUCTCACCTCTGGTATTC3’ and IN4R: 5’ 

TTAAAGGTGAATAACACTTGGC 3’. Reactions were performed in a volume of 20 

pi containing 10 ng of genomic DNA, 0.2mM each dNTP, 10% PCR buffer II, 

2.5mM MgC12, lOpmol each primer, 0.5 U Amplitaq Gold and 5% DMSO. The 

remainder of the PCR conditions, sizing and assignation of alleles was as described 

for NACP. Four alleles were identified and sized as 256bp, 266bp, 288bp and 366bp.

6.1.2.5 Apolipoprotein E Genotyping

Apoliprotein E genotyping was performed using methods described (Wenhamet al., 

1991) by Dr Rohan De Silva, Reta Lila Weston Institute of Neurological Studies, 

Royal Free and University College Medical School London.

6.1.2.6 Statistical Analysis

Statistical analysis was performed by Dr Adrian Mander and Dr David Clayton, 

MRC-Biostatistics Unit, Institute of Public Health, Forvie Site Cambridge UK. Allele 

frequencies rather than genotype frequencies were used to improve power however 

this method assumed Hardy Weinberg Equilibrium (HWE) which was tested and was 

found to be present. The HWE assumption was used for each marker using a kappa 

based test. The allelic association test is a chi-squared test on the m by 2 table where 

m is the number of alleles. When m is large for highly polymorphic markers the table 

may be sparse this may invalidate the asymptotic sampling distribution of the Pearson 

chi squared statistic. The table was therefore analysed using Monte Carlo methods as 

described (Sham et al., 1995). Linkage Disequilibrium was tested between pairs of 

markers using an EM algorithm to resolve phase (Chiano et al., 1998, Gambaro et al., 

2000).
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6.1.3 Results

The study population consisted of 305 unrelated PD cases (see 6.1.3a for details). Of 

this, 170 samples were brain tissue with pathologically proven PD: samples showed 

depletion of pigmented neurons in the substantia nigra and locus coeruleus and the 

presence of Lewy bodies. There were no glial cytoplasmic inclusions or additional 

pathology to account for parkinsonism. The remaining 135 PD samples were clinical 

cases of which 66 were familial cases having a sibling and/or an affected parent with 

PD. The 305 samples were also subdivided in to young onset PD (YOPD; mean age 

onset 44 years -+6 SD) of which there were 89 cases and late onset PD (LOPD; mean 

age onset 63 years) of which there were 206 cases.

330 control samples of which 175 were brain tissue with no abnormal histopathology 

were used. The remaining 155 cases were clinical cases: 52 cases of hereditary 

sensory motor neuropathy and 103 cases of spinocerebellar ataxia. Control clinical 

cases used did not have parkinsonism.

In this population X2 analysis showed that there is no significant association between 

any allele of any of the markers typed and PD (Table 6.1.3b). In particular the 

independent association of disease with alleles of NACP (261 bp), D4S1628 (158bp) 

or D4S1647 (140bp) observed by Kruger and his colleagues, was not replicated, 

despite the allelic distribution in the control sample being comparable to those found 

by Kruger and his colleagues. Allele frequencies of the complete sample are shown in 

Table 6.1.3c. Linkage disequilibrium was not detected between pairs of Chromosome 

4 markers, NACP or IN4.

By analysing a total of 305 PD samples and 330 age and sex matched controls no 

difference in the allele distribution of ApoE was identified (X2= 1.09, p-value= 0.05) 

and the Apos 4 allele did not have a significant distribution in the YOPD group (X2= 

4.21, p- value= 0.14) or the FPD group (X2= 0.357, p-value= 0.77). Of particular
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significance was that the finding of a 12 fold increased risk of PD with a combined 

apoe 4 / NACP allele sized 261 genotype was not replicated (p-value=0.96).

6.1.4 Conclusion

In this sample of 335 controls and 305 PD cases a susceptibility to disease with 

NACP allele, D4S1628, D4S1647 and Apos 4 nor the combined NACP 261 bp/Apos 4 

genotype was not observed in contrast to Kruger and colleagues (Kruger et al., 1999). 

The a-synuclein gene is a plausible candidate gene for PD risk due to its pre-synaptic 

localisation, deposition of the NAC protein in the Lewy body (Spillantini et al., 1997) 

and the segregation of missense mutations in the a-synuclein gene in two autosomal 

dominant PD kindreds (Polymeropoulos et al., 1997, Kruger et al., 1998). Synuclein 

proteins have an apolipoprotein-like structure: sharing amphipathic class A2 helices. 

The class A2 helix mediates apolipoprotein-like exchange and may interact with 

lipids and account for the early identification of synucleins as synaptic vesicle- 

associated proteins (Clayton et al., 1999). It is for these reasons that that this study 

attempted to replicate the findings of Kruger and colleagues.

Searching for population association can be a powerful method of identifying disease 

susceptibility loci (Strachan T, Read A, 1999). However this requires associations to 

be confirmed by larger study numbers with stringent standardisation of controls 

samples. Failure of replication does not necessarily render the original result false but 

there are several possible explanations for the discrepancy between two comparable 

groups including population stratification, statistical artefact, small sample sizes, 

different phenotypes, poorly matched controls and the biological credibility of the 

gene-allele- phenomenon-disease association (Strachan T, Read A, 1999, Gambaro 

2000).

In this study the majority of PD cases are pathologically proven: the relevance being
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Table 6.1.3a Characteristics of PD cases and Controls 

Characteristics___________ PD cases__________ Controls

Number 305 330
Age (mean years +/- SD) 61 6SD 63 7SD
Male (%) 55 53
F amilial/nonfamilial 66/239 NA
YOPD/LOPD 89/206 NA
Histopathological cases 170 175
Clinical cases 135 155

Table 6.1.3b Chi squared analysis of all markers used on Controls and PD cases

Marker X2 D-value

D4S2460 3.72 0.89
D4S423 13.3 0.365
D4S1578 15.55 0.09
D4S1628 3.47 0.39
D4S1647 3.97 0.615
NACP 5.10 0.26
IN4 1.00 0.8
ApoE 1.10 0.505

Table 6.1.3c Distribution of alleles of NACP, D4S1628 and D4S1647 in Control and 
PD cases

Allele Frequency

NACP 251 259 261

PD cases 0.261 0.655 0.084
Controls 0.251 0.694 0.055

D4S1628 146 150 154 158

PD cases 0.059 0.328 0.510 0.102
Controls 0.046 0.286 0.547 0.123

D4S1647 132 136 140 144 148 152

PD Cases 0.164 0.028 0.180 0.312 0.231 0.085
Controls 0.194 0.028 0.181 0.332 0.185 0.080

265 266 288 366
PD Cases 0.490 0.198 0.069 0.242
Controls 0.474 0.187 0.077 0.262



that up to 25% of clinical cases of PD have an absence of typical histopathology 

(Hughes et a., 1992). There may be differences in linkage disequilibrium patterns 

between populations from the United Kingdom and Germany however recent work 

has shown that this may not be so significant (Eaves et al., 2000, Taillon-Miller et al., 

2000). This study used a much larger sample size and stringent statistical analysis. 

Additionally the power of both this study and that of Kruger and his colleagues will 

be lower due to the low frequency of the NACP susceptibility allele and apos 4 in the 

population. A definitive answer to the role of these candidate genes in susceptibility to 

PD will require significantly larger sizes of the order of 1000 cases with at least as 

many controls (Gambaro et al„ 2000) and a dense linkage disequilibrium map of 

single-nucleotide polymorphisms (SNP's) courtesy of the Human Genome Mapping 

Project (Collins, 1998).
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6.2 Association between Angiotensin Converting Enzyme gene, ACE and Parkinson’s 

disease.

6.2.1 Introduction

The angiotensin converting enzyme (ACE), encoded by gene dipeptidyl carboxypeptidase 

1 [DCP1] also known as ACE gene, catalyses the cleavage of two amino acids from 

angiotensin I, converting it into the physiologically active peptide angiotensin II, which 

controls fluid and electrolyte balance and systemic blood pressure. The activity of the 

enzyme has been reported to be altered in regions of the brain in patients with 

Huntington’s disease, Schizophrenia and AD moreover it has been identified as a normal 

constituent of cerebrospinal fluid (Zubenko et al., 1985). There are several reasons why 

ACE may be considered a candidate gene in the pathogenesis of PD. Firstly, Kehoe and co­

workers (Kehoe et al., 1999) reported an association between AD and the insertion allele (I 

allele) of an insertion/deletion (I/D) polymorphism in intron 16 of the DCP1/ACE gene: 

the overlaps in clinicopathology of PD and AD may imply overlap in susceptibility to 

disease. Subsequent work by the same group, genotyping several single nucleotide 

polymorphisms in ACE in five independent populations revealed strong association with 

Alzheimer’s disease with a haplotype containing the Alu insertion allele (Kehoe et al., 

2003). Secondly, the regional distribution and activity of the ACE enzyme has been 

studied in normal human brain. The highest activity was found in hypothalamus, then (in 

order) caudate nucleus, substantia nigra, medulla oblongata and cerebral cortex (Tani et al.,

1991); remarkably these represent the areas of the brain in which typical histopathological 

findings are identified in PD. Moreover, work has indicated that ACE contributes to the 

metabolism of amyloid p peptide in AD by inhibiting cytotoxity by preventing 

aggregation, deposition and fibril formation of amyloid p peptide and thus reducing 

susceptibility to AD (Hu et al., 2001). It could be hypothesized that ACE has a similar role 

in preventing protein aggregation in normal brain and that aberrant ACE activity allows
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insoluble fibrils (such as alpha synuclein, ubiquitin, parkin, DJ-1, PINK1) to aggregate and 

contribute to pathology and hence disease in PD.

Thirdly, there are high concentrations of the enzyme in the nigrostriatal pathway and basal 

ganglia (Zubenko et al., 1986) and in PD, levels of nigrostriatal angiotensin II receptors are 

markedly decreased (Allen et al., 1992). Fourthly, in vivo and in vitro experiments on rat 

striatum have shown that angiotensin II stimulates the release of dopamine (Simonnet et 

al., 1979, Dwoskin et al., 1992). Lastly, an example of a practical application of identifying 

a disease-causing allele; PD patients treated with perindopril, (an ACE enzyme inhibitor) 

reported faster onset and prolonged ‘on’ periods and a reduction in peak dose dyskinesias 

(Reardon et al., 2000).

This study used the intron 16 I/D polymorphism of the DCP1/ACE gene (Kehoe et al., 

1999) which arises due to an insertion of a 287-base pair Alu repeat sequence, resulting in 

three genotypes (DD/II homozygotes and ID heterozygote (Rigat et al., 1992) to study the 

relationship between the DCPI/ACE gene and susceptibility to PD.

6.2.2 Subjects and Methods

6.2.2.1 Subjects

The first cohort (cohort A) studied consisted of 275 unrelated PD cases. Pathological 

confirmation was obtained for 147 samples (mean age of onset 61.7 years ± 7 SD) 

from the UK Queen Square Brain Bank for Neurological Diseases and the MRC Brain 

Bank, Institute of Psychiatry, London, UK. All showed severe depletion of pigmented 

neurones in the substantia nigra and locus coeruleus and the presence of Lewy bodies. 

There were no glial cytoplasmic inclusions or additional pathology to account for 

parkinsonism. The remaining 128 diseased clinical samples fulfilled the PDS brain 

bank criteria for the diagnosis of PD (Hughes et al., 1992). Of the diseased clinical 

subjects, 56 were familial (having a sibling and/or an affected parent with PD and 72 

cases were EOPD samples (early onset parkinsonism age of onset <50 years, mean
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age of onset 42.7 years ± 7 SD). A second cohort (cohort B) of 186 PD cases were 

ascertained from the Cambridge Brain Repair Centre. All samples were clinical cases 

(mean age of onset 60.9 years ±11.1 SD) that fulfilled the Queen Square brain bank 

criteria for the diagnosis of PD except for the presence of family history in 13 cases 

(Hughes et al., 1992). 29 were cases with early onset parkinsonism (mean age of 

onset 43 years ±5.1 SD). A third and independent cohort of PD samples (cohort C) 

consisted of 264 unrelated PD cases. Pathological confirmation was obtained for 95 

samples from the Queen Square Brain Bank. The remaining 170 diseased clinical 

samples fulfilled criteria for the diagnosis of PD (Hughes et al., 1992).

Controls samples were selected to closely match age and sex of the PD population. A 

total of 487 controls were used, of which 127 were from the brain tissue with no 

abnormal histopathology, from the MRC Neurochemical Pathology Unit, Newcastle, 

UK. 207 were healthy clinical cases from the Institute of Psychiatry, Denmark Hill, 

London. These subjects were UK residents, aged over 75 years and were recruited for 

the MRC Trial of Assessment and Management of Elderly People in the Community 

(Liolitsa et al., 2002). The remaining 153 were diseased controls used in section

6.2.1.2 of another association study.

All subjects gave informed consent. The project was approved by the Joint Ethics 

committee of the National Hospital for Neurology and Neurosurgery (NHNN).

6.2.2.2 Molecular Analysis

DCPI/ACE genotypes were constructed using established methods (Rigat et al.,

1992). Each sample was genotyped three times to reduce genotyping error and scoring 

was blinded to the previous result. Genotyping of the ACE Insertion (I)/ Deletion (D) 

was performed as originally described (Rigat et al., 1992). The allele status was 

determined by PCR with the flanking primers: 5’-CTG GAG ACC ACT CCC ATC
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CTT TCT-3’ and 5’-GAT GTG GCC ATC ACA TTC GTC AGA T-3. The annealing 

temperature was 56°C and product sizes were 190bp and 478bp.

To ensure no mistyping of ACE I/D genotypes occurred an extra insertion-specific 

PCR step (Kehoe et al., 1999) was performed with flanking primers: 5’-TGG GAC 

CAC AGC GCC CGC CAC TAC-3’ and 5’-TCG GCA GCC CTC CCA TGC CCA 

TAA-3’. The annealing temperature was 56°C and product size was 335bp.

In addition we did not identify genotyping errors using identical methods to study 33 

trios of parents and one offspring (data not shown).

All samples were electrophoresed in 1.6% agarose gels and were visualised under a 

UV transilluminator.

6.2.2.3 Statistical analysis

Statistical analysis was performed by Dr Danae Liolitsa, Department Molecular 

Neuroscience, Institute of Neurology, Queen Square, London using the SPSS software for 

Windows, release 10.0. Genotype or allele frequencies and percentage estimates for the 

control and PD groups were calculated using the SPSS database analysis programme. Chi- 

square analysis was carried out using the software Epilnfo (version 6) to examine the two 

groups for compliance with the Hardy-Weinberg equilibrium. Phenotypes and genotypes 

were recoded as appropriate and this resulted in many dummy variables that were entered 

into a logistic regression test. Binary logistic regression analysis was used to calculate odds 

ratios (OR) and the associated confidence intervals (Cl) for the relationship of ACE 

genotypes with PD.

6.2.3 Results

In all control groups (Table 6.2.3a & 6.2.3b), there was no significant deviation from 

Hardy-Weinberg equilibrium. ACE genotype and allele frequencies of our control 

population (29.9, 49.7 and 20.4 percent respectively for the DD, ID and II genotypes)
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was similar to controls in previous reports (Kehoe et al., 1999, Lindpaintner et al., 

1995) including one using 2340 controls subjects (Lindpaintner et al., 1995).

In the first PD population used, the heterozygous ID genotype was more common in 

the PD cohort than the homozygous DD and II genotypes of the DCPI /ACE gene, 

compared to controls and this difference was significant by logistic regression 

analysis (OR = 1.39, 95% confidence interval, 1.00 to 1.91; p = 0.033) (Table 6.2.3b). 

Separate subgroup analysis of the ID genotype compared to DD and II genotypes in 

which the case patient was defined with pathology only resulted in a significant 

difference compared to controls (OR = 1.55, 95% confidence interval, 1.03 to 2.30; p 

= 0.029) (Table 6.2.3b).

The association was replicated in an independent cohort of 264 PD cases (third cohort 

of both pathological and clinical cases) (p = 0.014) but not in another group of 186 

clinical cases (OR = 1.03, Cl = 0.72-1.48, p = 0.34).

A separate analysis using the dominant or recessive model for the DD or II genotypes 

did not show a significant effect (data not shown). Similarly, no significant 

relationships were found for the allele-specific effects on the phenotypes.
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Table 6.2.3a Genotype and allele frequencies and percentage estimates for the I/D ACE polymorphism in PD cases and controls

PD group Control group

1st cohort 2nd cohort 3rd cohort Total 1st control 2nd control 3rd control Total

N = 275 N = 186 N = 264 N = 725 N = 207 N = 127 N = 153 N = 487

ACE genotypes n (%) n (%) n (%) n(%) n (%) n (%) n (%) n (%)

DD 68 (24.7) 52 (28.0) 63 (23.8) 183 (25.2) 64 (30.9) 36 (28.3) 44 (28.8) 144 (29.6)

ID 159 (57.8) 94 (50.5) 156 (59.0) 409 (56.4) 101 (48.8) 65 (51.2) 68 (44.4) 234 (48.0)

II 48(17.5) 40(21.5) 45 (17.0) 133(18.3) 42 (20.3) 26 (20.5) 41 (26.8) 109 (22.4)

ACE alleles n (%) n (%) n (%) n (%) n (%) n(%) n (%) n (%)

D 295 (53.6) 198 (53.8) 282 (53.4) 775 (53.4) 229 (55.3) 137 (53.9) 156 (50.9) 522 (53.6)

I 255 (46.4) 174(46.2) 246 (46.6) 675 (46.6) 185(44.7) 117(46.1) 150(49.1) 452 (46.4)
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Table 6.2.3b Genotype and allele frequencies and percentage estimates for the I/D ACE polymorphism in PD cases and controls and main 
effects from logistic regression analysis (OR, odds ratio; Cl, confidence interval). All comparisons were made with total controls as seen in 
table 6.2.3a.

1st cohort 2nd cohort 3rd cohort Total
Total Pathological Total Total Pathological

N = 275 N = 147 N = 186 N = 264 N = 95 N = 725

ACE  genotypes n (%) n (%) n (%) n (%) n (%) n (%)
DD 68 (24.7) 33 (22.4) 52 (28.0) 63 (23.8) 27 (28.4) 183 (25.2)

ID 159 (57.8) 89 (60.5) 94 (50.5) 156 (59.0) 54 (56.8) 409 (56.4)

II 48 (17.5) 25 (17.0) 40(21.5) 45 (17.0) 14(14.8) 133(18.3)

2 degrees of freedom X2=6.8 X -  7.05 X2=  0.84 X2= 8.42 X2=3.48 X2 = 8.24

P = 0.033* P = 0.029* P = 0.34 P = 0.014* P = 0.17 P = 0.016*
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6.2.4 Conclusion

This study has identified a genetic variation at the DCP1/ACE locus that 

predisposes to PD. Moreover it is most significant in the histopathologically proven cohort 

suggesting that the ACE locus predisposes to parkinsonism associated with Lewy body 

pathology. Patients that are heterozygous for the insertion/deletion polymorphism of the 

DCP 1/ACE gene have an increased risk of developing PD. This association is independent 

of the DD genotype which has been significantly associated with cardiovascular and 

cerebrovascular disease (Cambien et al., 1992); diseases which are 2.5 times higher in PD 

(Ben-Sholomo et al., 1995).

This study identified a heterozygous rather than either of the homozygous states as a 

susceptibility allele; why this is the case is unclear. It could be hypothesized that in the 

heterozygous state, an abnormal interaction between dissimilar protein domains or dimers 

exerts a detrimental effect on microfibrillar assembly or protein function that is not present 

with identical protein domains in the homozygous state. An example of a deleterious, 

intronic heterozygous mutation has been reported in Ullrich congenital muscular 

dystrophy. Here an intronic, heterozygous deletion of the COL6A1 gene results in a 33 

amino acid deletion close to the triple helical domain important for dimer formation 

resulting in the secretion of abnormal tetramers exerting a strong dominant negative effect 

(Pan et al., 2003).

The DCP1/ACE insertion/deletion polymorphism has a highly reproducible effect on 

variation of plasma ACE protein levels (Keaveny et al., 1998) supporting a role for a gene 

in which phenotypes may be influenced by ACE activity. This association is well 

established in different populations (Tiret et al., 1993, McKenzie et al., 1995, McKenzie et 

al., 2001) and follows an additive pattern with the DD and II genotypes being associated 

with high and low ACE levels, respectively while the ID genotype is associated with
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intermediate levels (Rigat et al., 1990). The molecular mechanism by which the intronic 

ACE I/D polymorphism exerts its effects on plasma ACE levels is not yet known 

(McKenzie et al., 2001).

An alternative explanation is that the Alu element in DCP1/ACE is in absolute linkage 

disequilibrium with another sequence either within A CE itself, such as the coding region or 

the promotor, or in another gene closeby. A study showed that the Alu element in ACE is 

in absolute linkage disequilibrium with seventeen varying sites in the gene only two of 

which were coding (Rieder et al., 1999).

This study employed identical methods to that used to find a significant association of the 

insertion allele of ACE with Alzheimer’s disease (Kehoe et al., 1999); results that were 

replicated using up to date methodology; Kehoe and co-workers confirmed that haplotypes 

using SNPs extending across DCP1/ACE are associated with the disease (Kehoe et al., 

2003).

Population based genetic association studies can be a powerful method of identifying 

disease susceptibility loci (Strachan and Reid 2000). However an association requires 

confirmation in large study numbers in an independent cohort (Bird et al., 2001). This 

study confirmed an association in an independent cohort of PD samples but this did not 

extend to a third population of cases, all of which were clinical cases. The discrepancy 

may be due to a number of factors; up to 25% of clinical subjects with PD do not have 

characteristic histopathology at autopsy (Hughes et al., 1992). Isolated and familial cases 

of L-dopa responsive parkinsonism that fulfil the PDS brain bank criteria may in fact not 

have PD but have mutations in PARK2, 6 and 7 with in vivo 18F-dopa PET findings and 

pathology unlike that found in Lewy body PD (Pramstaller et al., 2001; Khan et al, 2002). 

In addition, if the Alu element in DCP1/ACE is not the true variant but is in absolute 

linkage disequilibrium with another sequence either within ACE itself or in another gene
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close by this will in itself lead to discrepancies between different cohorts studied (Kehoe et 

al., 2003).

The DCP1/ACE insertion/deletion polymorphism has been studied in two other PD 

populations. Mellick and co-workers studied the ACE gene in an Australian PD population 

and found no association (Mellick et al., 1999). In a recent report in a Taiwanese 

population (Lin et al„ 2002) the frequency of the DD genotype was increased in the PD 

population (p=0.04) although the authors hypothesise that there may be an overlap of 

susceptibility alleles: the DD genotype is associated with both cardiovascular and cerebral 

vascular disease (Cambien et al., 1992; Markus et al„ 1995) and PD patients are 2.5 times 

more likely to develop vascular disease (Markus et al., 1995). However, the frequencies of 

DD, DI and II genotypes in Taiwanese controls (12, 45, 43% respectively) was markedly 

different from both ours (30.3, 49.7 and 20.0 percent respectively) and other reports 

(Linpaintner et al., 1995). This also highlights the variation in allele frequencies amongst 

different racial groups.

Alternatively population stratification, statistical artefact, small sample sizes and poorly 

matched controls may be contributing to a false positive association in our data. However 

the control groups (unlike the two diseased cohorts) were in Hardy Weinberg equilibrium 

with allele frequencies identical to a control population published with 2340 controls 

(Lindpaintner et al., 1995). Replication of the association in two PD cohorts showed a 

strongest association with pathologically proven cases. Moreover the gene product-disease 

phenomenon is a feasible one.

Even larger controlled studies with of the order of 1,000 cases (preferably 

histopathologically proven) with as many controls using a dense linkage disequilibrium 

map of single nucleotide polymorphisms will be necessary to confirm these findings.
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Presently there are no studies of the presence or activity of ACE protein in PD brains; this 

will be crucial in definitively resolving its contribution to the pathogenesis of PD.
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7. SUMMARY OF THIS THESIS

This thesis was undertaken during an exciting time in the history of inherited Parkinson’s 

disease and parkinsonism; a time when the was an explosion in the identification of 

disease-causing loci.

Familial parkinsonism encompasses a heterogeneous group of diseases. Familial 

‘parkinsonism’ was observed in early onset, recessive disease with atypical phenotypes, 

normal sense of smell and patterns of nigrostriatal dysfunction and rate of progression of 

functional imaging unlike that seen in idiopathic PD. These features will assist in 

distinguishing the commomest form of early onset parkinsonism, ‘parkin disease’ from 

idiopathic PD.

Functional imaging in asymptomatic heterozygotes implied that parkin and PINK1 

proteins exhibited the phenomenon of haploinsufficiency. Currently the exact implication 

of carrying one mutant parkin allele in asymptomatic subjects is undefined however 

prospective studies of clinical features and serial functional imaging of larger cohorts are 

required; parkin heterozygosity could be used as a biomarker of presymptomatic disease. 

Familial Parkinson’s disease with a typical phenotype, pathology and pattern of 18F-dopa 

uptake similar to PD was observed in an autosomal dominant British kindred. Linkage 

analysis was used to map the disease to a 50cM region on the short arm of chromosome 

12. This confirmed locus heterogeneity in autosomal dominant Parkinson’s disease by 

overlapping a locus, PARK8, that had just been reported in a Japanese kindred, with an 

identical phenotype. Subsequent work by colleagues identified mutations in LRRK2 which 

has since been shown to be the commonest cause of ADPD world-wide.
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9.2 Articles in the Media

THE TIM ES WEDNESDAY SEPTEMBER 9 1998

Shepherds clue to Parkinson’s
B y I a n  M u r r a y , m e d i c a l c o r r e s p o n d e n t

RESEARCHERS are trying to 
trace descendants of a 17th- 
century' family of shepherds 
who may have inherited a 
gene that makes them prone to 
develop Parkinson’s disease.

Over the past two years a 
team at the Institute of Neurol­
ogy in London, including four 
neurogeneticists and two 
genealogists has tracked down 
three generations who are 
suffering from the disease. 
Although the earliest records

of the family have been found 
in Lincolnshire, the team  has 
traced other m em bers in 
Leicestershire, Essex and  
Stoke-on-Trent, a num ber of 
whom  suffer from the neuro­
logical disorder.

"It is rare  for two or m ore 
m em bers of the sam e fam ily to 
have the d isease so it is very 
helpful to find several w ho 
come from the sam e one,” said 
N aheed Khan, one of the 
research team. She has placed

an  advertisem ent in a  Lincoln­
shire  new spaper asking  for 
anyone w ith a family history 
of the disease to get in touch 
with the institute.

“T he family we have identi­
fied is not responsible for 
P ark inson’s disease, but by 
identifying descendants we 
will be able to get a better 
unders tand ing  of it,” she said.

The P ark inson’s D isease So­
ciety is sponsoring  the re­
search w ith a £200,000 grant.

Boston Standard, September 10th 1998
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9.2 Articles in the Media (continued)
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9.3 Poster and platform presentations of work presented in this thesis 

Poster presentations
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Platform Presentations
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NL Khan, EA Graham, K Bhatia et al. The genetic and phenotypic variability 
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NL Khan, N Pavese, DJ Brooks et al. Progression of Nigrostriatal dysfunction 
in a parkin kindred: an 18F-dopa PET and clinical study. Association of British 
Neurologists. Durham,UK. September 2001.

NL Khan, EA Graham, P Dixon et al. Parkinson's disease is not associated 
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9.4 Publications that arose from work in this thesis

Two large British Kindreds with familial Parkinson’s disease: a clinicopathological 
and genetic study.
Nicholls D, Vaughn J, Khan NL. Ho SL, Aldous DE, Lincoln S, Farrer M, Gayton JD, 
Davis MB, Piccini P, Daniel SE, Lennox GG, Brooks DJ, Williams AC, Wood NW. 
Brain 2002 January; 125: 1-14.

Mutations in the gene (LRRK2) encoding dardarin (PARK8) causing familial 
Parkinson’s disease in a British kindred; clinical, pathological, olfactory and 
functional imaging data.
Khan NL. Jain S, J Holton, N Pavese, L Eunson, M G Sweeney, M Ganguly, W Gilks, 
J Vaughan, R Katzenschlager, J Gayton, G Lennox, T Revesz, A Singleton, D 
Nicholl, D Brook, A J Lees, P Piccini, M Davis, N W Wood.
Brain 2005 Dec; 128:2786-96.

Parkin disease a phenotypic study of a large case series.
Khan NL. Graham E, Critchley P Schrag AE, Wood N, Lees AJ, Bhatia KP, Quinn N. 
Brain. 2003 June; 126: 1279-92.

Olfactory testing differentiates parkin disease from early onset parkinsonism and 
Parkinson’s disease.
Khan NL. Katzenschlager R, Watt Bhatia KP, Wood NW, Quinn N, Lees AJ. 
Neurology 2004 Apr 13; 62(7): 1224-6.

Dopaminergic dysfunction in unrelated, asymptomatic carriers of a single parkin 
mutation.
Khan NL. Scherfler C, Graham E, Bhatia KP, Quinn N, Lees A J, Brooks D J, Wood 
N W, Piccini P.
Neurology 2005 11; 65(l):134-6

Clinical and Subclinical Dopaminergic dysfunction in autosomal recessive PARK6- 
linked parkinsonism: an 18F-dopa PET study.
Khan NL. Valente EM, Bentivoglio A, Wood NW, Albanese A, Brooks D, Piccini P. 
Annals of Neurology 2002 52; (6): 849-53.

1 XProgression of Nigrostriatal dysfunction in a parkin kindred: an F-dopa PET and 
clinical study.
Khan NL. Brooks DJ, Pavese N, Sweeney MG, Wood NW, Lees AJ, Piccini P.
Brain 2002; 125: 2248-2256.

Parkinson’s disease is not associated with the combined alpha- 
synuclein/apolipoprotein E susceptibility genotype.
Khan N. Graham E, Dixon P, Morris C et al.
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