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Abstract

A solution concept maps strategic games into strategy predictions. Nash equilibrium 

is the most widely used solution concept in game theory. Three main explanations have 

been used to argue why players should end up playing Nash equilibrium: 1) introspective 

reasoning, 2) communication 3) learning. Careful study of these has shown that the case 

for the Nash equilibrium is not entirely unambiguous. In this thesis, we conclude with 

new insights into why Nash equilibrium may be too restrictive a prediction in the context 

of pre-play communication and learning.

Experiments suggest that communication increases the contribution to public goods. 

There is also evidence that, when contemplating a lie, people trade off their private 

benefit from the lie with the harm it inflicts on others. In the first chapter, we develop 

a theory of bilateral pre-play negotiation that assumes the latter and implies the for­

mer. We show that a preference for not lying enables non-Nash outcomes. In symmetric 

games, pre-play negotiations crucially depend on whether actions axe strategic comple­

ments or substitutes. With strategic substitutes commitment power tends to decrease 

in efficiency whereas the opposite may be true with strategic complements.

In the second chapter we consider negotiation with an alternating offer protocol. 

As opposed to previous contributions we show that impatience may be beneficial for a 

player.

In the third chapter we illustrate how the complexity of conjectures about oppo­

nents’ strategies in the analogy-based expectation equilibrium (ABEE) corresponds to 

various other equilibrium concepts in the learning literature. We also introduce a payoff- 

confirming refinement of the ABEE where the sample of own payoffs induced by the true 

equilibrium strategies must confirm the conjectures about opponents’ strategies. We 

show that there may be non-Bayesian-Nash payoff-confirming ABEE. We provide a suf­

ficient condition for this and show that the condition is also necessary in an interesting 

class of games.
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Chapter 1

Introduction

A solution concept maps strategic games into strategy and outcome predictions. Nash 

equilibrium is the most widely used solution concept in non-cooperative game theory. 

Three main explanations have been used to argue why players should end up playing a 

Nash equilibrium: 1) introspective reasoning, 2) pre-play communication and 3) learn­

ing. Yet, careful formal studies of these ideas have shown that the case for the Nash 

equilibrium may not be that strong. Firstly, Bernheim (1984) and Pearce (1984) show 

that introspective reasoning (rationalising strategies) leads to a larger set of predictions 

than Nash equilibria. Secondly, Aumann (1974), Farrell (1987) and Aumann and Hart

(2003) point out in pre-play communication frameworks (even if language is common 

knowledge) how players can condition their choices on pre-play messages chosen either 

by players or by exogenous randomisation devices. This results in a larger set of predic­

tions and potentially improved expected payoffs than mere (symmetric) Nash equilibria 

of the underlying game. Thirdly, learning processes where players update their conjec­

tures about others’ behaviour based on their experience, may have various other strategy 

profiles than Nash equilibria as steady states, depending on specific assumptions on the 

process. For instance, expectations about off-equilibrium-path behaviour may be incor­

rect in extensive forms games (Fudenberg and Levine, 1993). Alternatively, players may 

not observe the equilibrium path but rather a less informative signal (Battigalli, 1987; 

Dekel Fudenberg and Levine, 2004). Finally, even if players observe decisions at each 

node along the path, cognitive limitations may necessitate simplifications of opponents’ 

behaviour by bundling several decision nodes of the opponents together and keeping 

track of opponents’ average behaviour in each such class (Jehiel, 2005).

In this thesis one of our main concerns is to study the effects of pre-play commu­

nication (pre-play negotiations in particular) and learning on outcome predictions. We

7



CHAPTER L INTRODUCTION 8

conclude with new insights into why Nash equilibrium may be too restrictive a notion.

The second chapter presents a theory of pre-play agreements, reached by pre-play 

negotiations, conventions or social norms. We assume that people dislike lying about 

their intentions, breaching informal agreements and transgressing social norms. More­

over, we assume that people dislike a transgression of an agreement more if they inflict 

more harm on others by doing so. These assumptions are in line with stylised findings 

of reasearch in social psychology and supported by findings in experimental economics. 

If players dislike breaching promises, pre-play negotiations transform the payoffs of any 

given game prior to which players negotiate: deviations from promises become less prof­

itable. As a consequence, players may be able to commit to strategy profiles in the new 

game that are not Nash equilibria of the original game. In addition, any Nash equilib­

rium of the original game remains a Nash equilibrium of the transformed game where 

players promise to play that Nash equilibrium.

Let us discuss how our contribution relates to previous literature on pre-play com­

munication. Aumann (1974) and Aumann and Hart (2003) illustrate how players can 

use lotteries to correlate their choices and thereby reach better than underlying game 

Nash equilibrium outcomes for both. These contributions assume correct conjectures 

about each others’ strategies and thus equilibrium play. The assumption of equilibrium 

play rules out non-equilibrium behaviour where players rationalise, out of equilibrium, 

that opponent might misunderstand the agreement (miscoordinate on strategies of two 

different equilibria as a special case). Farrel (1987) shows that pre-play communication 

in a common known language can improve symmetric equilibrium expected payoffs and 

Farrell (1988) illustrates how pre-play negotiations can induce Nash equilibrium play 

when players are assumed to rationalise their strategy choices rather than correctly an­

ticipate their opponents’ strategies. Frank (1988) argues that people have a tendency to 

feel bad about breaching agreements. Bad feelings about breaching agreements trans­

form payoffs of the game and non-Nash strategies of the original game may be played. 

Frank illustrates in a stylised model that the tendency to feel bad may survive evolution­

ary pressures. Ellingsen and Johanneson (2004) elaborate this approach and show both 

theoretically and experimentally how dislike to breach agreements induces play which is 

predicted neither by standard cheap talk models nor by cheap talk models where players 

are inequity averse (Fehr and Scmidt, 1999; Bolton and Ockenfels, 2000). In their model 

the emotional cost of breaching the agreement is assumed to be constant. In particular, 

the cost is independent of the harm that breaching inflicts on the opponent. Our con­

tribution in chapter two is to generalise the approach of Ellingsen and Johanneson by
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allowing for, first, any negotiation protocol, second, a large class of underlying games, 

and third, the cost of breaching to increase in the harm inflicted on the other.

Our approach allows us to explain interesting previously unexplained phenomena: 

theoretically, we show that there is a conflict between the efficiency of the agreement 

and the incentives to respect it in symmetric games with strategic substitutes.1 This 

class of games contains boh the public good provision game where the public good is 

produced under decreasing returns to scale and the Cournot duopoly, for instance. On 

the other hand, in an important class of symmetric games where actions are (weak or 

strong) strategic complements, such a conflict is circumvented: a symmetric efficient 

agreement can be made, if any. This class includes the public good provision game with 

constant returns to scale and some other team work and partnership designs as well as 

Bertrand duopolies with imperfect substitutes.

Public good experiments with communication lend strong support for our theoretical 

finding: Isaac and Walker (1988) adopt a constant-returns-to-scale technology and find 

a strong positive effect of communication on efficiency. Average contribution levels are 

practically first-best efficient. Isaac, McCue and Plott (1985) consider decreasing returns 

to scale. Despite the positive effect of communication on efficiency, they find that the 

average contribution levels are well below first-best efficient2. A model where breaching 

cost is independent of the harm inflicted on the other, as in Ellingsen and Johanneson

(2004), cannot explain the difference in the effect of communication between technologies 

of constant and decreasing to scale.

In chapter three we take a more careful look at the effect of the negotiation proto­

col on the outcome prediction. Chapter two provides a set-wise prediction potentially 

including non-Nash equilibria of the original game. In chapter three in order to make a 

more precise prediction, we introduce time preferences and a particular widely studied 

negotiation protocol: alternating offer negotiations which parallel the alternating offer 

bargaining (Stahl, 1972; Rubinstein, 1982). This sharper prediction may also lead to 

non-Nash outcomes of the underlying game.

In the alternating offers bargaining players negotiate about how to divide a surplus. 

One of the players first proposes a division to the other player who then either accepts or 

rejects the offer. If he accepts, then players divide the surplus accordingly. If he rejects,

1(Bulow, Roberts and Klemperer, 1985) introduce the concepts of strategic substitutes and comple­

ments.
2These two studies allow subjects to play repeatedly and learn about the game. Isaac and Walker 

(1988) have one design with constant returns to scale and another with decreasing returns to scale. With 

the former design, the first-best efficiency is reached whereas the latter falls short of the first best.
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then he gets to propose a division to the player who proposed first. Players alternate in 

their offers until they reach an agreement.

Rubinstein (1982) shows that players’ time preferences allow for a unique subgame 

perfect equilibrium (Selten, 1975) prediction on how the surplus will be split. Moreover, 

he shows that a player’s equilibrium share increases in her patience. A more impatient 

player has a stronger cardinal preference for the present to the future. Being more 

impatient is detrimental for a player’s payoff, since the threat of a postponed agreement 

renders a player more willing to accept the current proposal even with worse terms.

Intuition suggests that in real life bargaining, a player’s equilibrium payoff may 

not monotonically increase in her patience. An impatient bargaining party tends to 

get frustrated more easily. This added emotional motivation triggered by a greater 

impatience might provide the impatient player with an advantage: she might be able to 

threaten credibly whereas a more patient and thus a less frustrated player cannot.

Impatience operates together with reciprocity. A player is reciprocally motivated if 

she has an intrinsic incentive to sacrifice her own payoff in favour of the opponent’s payoff 

if the opponent is willing to do so. We show that if players are reciprocally motivated, the 

player may gain from being more impatient in the alternating offer pre-play negotiations: 

a postponed agreement is equivalent to the opponent not behaving reciprocally, since the 

opponent is reducing the player’s payoff by postponing the agreement. The opponent 

behaves even less reciprocally if the player is impatient, since an impatient player suffers 

more than a patient player if the agreement is postponed. Thus, a reciprocally motivated 

impatient player can credibly threaten an opponent who contemplates postponing an 

agreement with actions that are not credible for a patient player.

Chapter four studies the third justification for Nash equilibrium - learning. Nash and 

Bayesian-Nash equilibrium suppose that players have correct conjectures about each 

others’ strategy choices; and if exogenous randomness is involved, they have correct 

probability estimates about it, too. In an equilibrium, given what others do, no player 

has an incentive to deviate. A researcher does not need to worry that conjectures about 

others’ and nature’s choices might be incorrect and yet plausible.

But we lose a lot in terms of realism in assuming correct conjectures. One reason 

why conjectures may end up being correct is learning: if each player plays the game 

repeatedly, she may acquire experience about the uncertainty she faces and about how 

others play. Formal models of learning relax the correct conjecture hypothesis. The 

evolution of conjectures and play becomes a stochastic process. In a steady state of the 

process, best replies to conjectures generate behaviour which does not contradict the
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conjectures. This is the core of the conjectural equilibrium (Battigalli, 1987). It is easy 

to see that Nash equilibria with correct conjectures satisfy this steady state condition. 

The question then is whether there are non-Nash steady states.

Previous contributions have shown that the answer to this question is affirmative, 

in general (Battigalli (1987), Fudenberg and Levine (1993), Dekel et al (2004), Jehiel

(2005)). Yet, exactly which outcomes correspond to a steady state, depends on the 

assumptions about the learning environment: what players know in the beginning of the 

process, what players observe, how many other people are involved in the process, how 

they handle information etc. Depending on specific assumptions on the environment, 

various steady state concepts, i.e. equilibrium predictions, emerge.

In chapter four, we review such equilibrium concepts and some of the literature on 

learning. In section 4.2, we introduce the underlying game, the context of learning. In 

section 4.3, we study learning when the set of players remains fixed over the entire learn­

ing process. We start from two benchmark approaches: the first, complete information 

and correct conjectures; the second, incomplete information and Bayesian learning with 

a common prior. In these approaches strategies constitute a Nash and a Bayesian-Nash 

equilibrium of the game, respectively. Section 4.3.2 relaxes the assumption of mutu­

ally consistent initial conjectures and studies learning with a fixed set of players who 

start with possibly mutually inconsistent initial conjectures about the behaviour of oth­

ers and update their conjectures as game continues (Kalai and Lehrer (1993), Jordan 

(1995), Nahcbar (1997) Foster and Young (2001)).

Section 4.4 is the core of our contribution. It studies learning in large populations 

with random matching of players before each stage game is played - subsection 4.4.1 

focuses on static games of incomplete information and section 4.4.2 on extensive form 

games. We suppose throughout that opponents’ actions are observed and kept track of in 

the learning process. In addition, opponents’ types profiles are also observed but possibly 

not as precisely as the opponents themselves observe these when choosing their strategies. 

Our first contribution is to illustrate how we can reach various equilibrium concepts in 

the anonymous learning literature (Bayesian-Nash equilibrium, Harsanyi (1967-68); self­

confirming equilibrium, Fudenberg and Levine (1993); self-confirming equilibrium, Dekel 

et al (2004); cursed equilibrium, Eyster and Rabin (2005)) by changing the complexity 

of beliefs about the strategies of others in the analogy-based expectation equilibrium. 

This complexity is driven by the precision with which players observe the opponents’ 

type profile after each round of play. (ABEE; Jehiel (2005), Jehiel and Koessler (2006)). 

Thus, the ABEE provides a way to analyse the complexity of various other equilibrium
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concepts.

If we wish to model learning where each player plays repeatedly, it is plausible to 

assume that each player observes and keeps track of her own payoffs. This is because 

the payoff is what players ultimately care for: if they do not, why should they strive 

to best-reply in the first place? Successes and failures, which are measured in payoffs, 

are what players vividly experience and tend to remember. This is what motivates our 

refinement of the ABEE, the payoff-confirming ABEE (PCABEE), where each player 

observes and keeps track of her private payoffs. Player’s own payoffs provide further 

information about opponents’ equilibrium strategies. Yet, incorrect conjectures may 

survive and non-Bayesian-Nash PCABEE may exist. We provide a sufficient condition 

for an ABEE to be PCABEE. This condition is also necessary in an interesting class of 

games.



Chapter 2

A Theory o f Pre-play  

N egotiations

There is no commonly honest man ...who does not inwardly feel the truth of the great stoical maxim, that for one 

man to deprive another unjustly to promote his own advantage by the loss or the disadvantage of the another, 

is more contrary to nature, than death, than poverty, than pain, than all the misfortunes which can affect him, 

either his body, or his external circumstances.

-Adam Smith (The Theory of Moral Sentiments, p. 159, 2002 (1759))

2.1 In troduction

Ray and Cal have a magic pot and ten dollars each. Each dollar put into the pot gives 

|  dollars to both of them. Ray and Cal have to decide how many dollars to put into the 

pot and how many to keep to themselves. Ray figures that, whatever Cal puts into the 

pot, for each dollar he puts into the pot, he gets only |  dollars back and, hence, should 

put nothing into the pot.

Before they decide, they can talk to each other. They may agree on how many dollars 

each of them will put into the pot. The agreement is not binding. Yet, having talked 

to Cal for a while, he seems like a nice guy to Ray. Ray starts to think that he would 

feel bad if he lied about how many dollars he will put into the pot. He also figures that 

Cal may well think similarly about him. Eventually Ray and Cal agree on putting ten 

dollars each into the pot and neither violates the agreement.

Most people would think that the story above is vaguely plausible but doubt that 

such magic pots exist. An economist is certain about the existence of the magic pot, 

but has doubts whether people care about inflicting harm on the other by not doing as

13
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agreed.

Two findings in experimental economics give a reason to believe that the magic pots 

and the dislike to breach oral agreements are worth taking seriously: First, communica­

tion increases contributions in public good games.1 Second, if people he, they tend to 

dislike it; and they seem to dislike it more if they inflict more harm on others by doing 

so. This is shown by Gneezy (2005) and studies in social psychology. In the public good 

games agreeing to contribute more than one actually intends to contribute amounts 

to a he which harms others. Therefore deviating from the promise is less profitable 

and promises contribute may be credible. Thus a theory that assumes the latter find­

ing (dislike breaching if harming others) provides an explanation for the former finding 

(increased contributions in public good games).

This chapter presents a theory of pre-play agreements, by pre-play negotiations, 

conventions or social norms. We assume that people dislike lying about their intentions, 

breaching informal agreements and transgressing social norms. Moreover, we assume 

that people dislike transgression of an agreement more if they inflict more harm on others 

by doing so. We show that given the game prior to which players negotiate (underlying 

game), players may agree on and play non-Nash strategy profiles (even non-correlated 

equilibria). We also show that there is a conflict between the efficiency of the agreement 

and the incentives to respect it in symmetric games with strategic substitutes such as 

the public good production with decreasing returns to scale and the Cournot duopoly. 

On the other hand, in an important class of symmetric games where actions are (weak) 

strategic complements 2 such a conflict is circumvented: a symmetric efficient agreement 

can be made, if any. This class includes the public good production with constant returns 

to scale and other team work and partnership designs as well as Bertrand duopolies with 

imperfect substitutes.

Public good experiments with communication lend strong support for our theoretical 

finding: Isaac and Walker (1988) adopt a constant-returns-to-scale technology and find 

a strong positive effect of communication on efficiency. Average contribution levels are 

practically first-best efficient. Isaac, McCue and Plott (1985) consider decreasing returns 

to scale. Despite the positive effect of communication on efficiency, they find that the

1See Ledyard (1995) for a review of experimental research on public goods. This result holds for the 

public good games without a threshold. The evidence that communication would increase contributions 

in the public good games with thresholds is more mixed - the increase in contributions is not always

significant.
2(Bulow, Roberts and Klemperer, 1985)
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average contribution levels are well below first-best efficient.3

Our theory considers bilateral agreements in a wide array of strategic two-player 

interactions. The underlying game whose strategies are being agreed upon can be any 

normal form game. We assign the guilt cost properties that experimental and narra­

tive research in economics and psychology has discovered. We assume that the general 

principles that govern guilt are the same for all players. Players may differ only in their 

proneness to guilt, i.e. how much weight they put on the guilt cost. We abstract from 

how an agreement is established (in pre-play negotiations, the negotiation protocol) but 

assume that the agreement is either an action profile of the underlying game or disagree­

ment. Having an agreement on an action profile, a player who breaches may feel guilty, 

which lowers her utility.

Given a game and players’ proneness to guilt, each agreement maps the game into 

another game with the same strategy sets but different payoffs. We are interested in 

which action profiles are agreeable, which action profiles can be enforced by guilt. Also, 

we are interested in how agreeability is affected by changes in (1) the underlying game, 

(2) the agreement, and (3) players’ proneness to guilt.

Agreeability is defined in terms of incentive compatibility. An action profile is incen­

tive compatible if neither player prefers breaching. That is, for any unilateral deviation 

from the profile, the guilt cost is larger than or equal to the underlying game benefit for 

the deviator. We call the difference between the underlying game benefit and the guilt 

cost the incentive to breach.

Which agreements axe agreeable will depend crucially on the properties of the guilt 

cost. We adopt the following properties which are based on stylized facts in research in 

social psychology and experimental economics4:

{ A }  Guilt costs are weakly increasing in the harm a player inflicts on his opponent by 

breaching an agreement.

{ B }  If the opponent breaches, then there is no guilt cost.

{C }  Guilt costs are weakly increasing in the player’s agreed payoff.

3These two studies axe the only one’s that allow subjects to play repeatedly and learn about the game. 

Isaac and Walker (1988) have one design with constant returns to scale and another with decreasing 

returns to scale. With the former design first-best efficiency is reached whereas the latter falls short of 

the first best.
4In addition to their intuitive appeal we present experimental evidence and psychological theory that 

supports these assumptions in section 2.2.
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{D }  If no agreement is reached, there is no guilt cost.

Property {A} captures the idea that if my breaching the agreement causes my op­

ponent to lose a toe, I do not suffer more than if my breaching the agreement causes 

my opponent to lose a leg. Gneezy (2005) finds strong support for property {A}: his 

experiments suggest that people trade off the benefits of lying against the harm that ly­

ing inflicts on the opponent. Property {B} is a no-sucker property: I will not feel guilty 

about breaching an agreement if my opponent breaches the agreement, too. According 

to property {C} the agreement’s generosity induces stronger guilt. To understand this 

property, notice that by property {B}, there is guilt only if the opponent does not breach 

the agreement. If the opponent respects and moreover the payoff is high if I respect, 

too, then the opponent is not only kind and but also generous. Property {C} says that 

breaching the agreement and not reciprocating will induce stronger guilt than if the 

agreement had been less generous.5 Properties {B} and {C} render guilt reciprocal. 

Property {D} says that if there is no agreement about how the game should be played 

then there is no guilt.

If the agreement is established by pre-play negotiations, it is natural to think that 

each player can veto any agreement. We say that an action profile is individually ratio­

nal if it ensures that each player gets more than in her least preferred Nash equilibrium 

of the underlying game. In pre-play negotiations, upon deciding whether to signal dis­

agreement, each player acts as if she knew that doing so will imply that her worst Nash 

equilibrium will be played.

Crucial for our finding in games with strategic complements and substitutes and an 

interesting result in its own right is that, in games where actions are ordered and the 

payoff is concave in each of the two actions, checking that a marginal deviation from the 

agreement does not pay off is necessary and sufficient for incentive compatibility.

Further towards our main conclusion we find unambiguous effects on the incentive 

to breach when the terms of the agreement are altered (if the agreement is agreeable in 

the first place): in symmetric games with strategic complements, changing either agreed 

action so as to improve a player’s agreed payoff decreases her marginal incentive to 

breach. These effects are quite natural and intuitive: if the terms of the agreement are 

better for me, I have a lower incentive to breach. Yet, the result does not hold generally.

In symmetric games with strategic substitutes, as far as changes in player’s own agreed 

action are concerned, the player’s payoff and her incentives to respect agreements are

5 In the context of conventions or social norms this effect may be weaker but even there a player may 

be more willing to breach a convention she considers unjustified.
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still naturally aligned. Yet, changing the opponent’s agreed action implies quite the 

opposite effect: the marginal benefit increases and the marginal harm on the opponent 

decreases when the opponent’s action is changed so as to improve player’s payoff. This 

is the source of our result, identifying a conflict between efficiency and incentives in 

symmetric games with strategic substitutes, such as the standard Cournot duopoly or 

public good provision when the public good is produced under decreasing returns to 

scale.

We also describe the agreeable set in a more general class of games and characterize 

the smallest and largest such set: Nash equilibria are always agreeable and nothing but 

Nash equilibria are agreeable for players with no proneness to guilt. Yet, a player who is 

sufficiently prone to guilt can agree on any individually rational profile that she cannot 

alone Pareto-improve and strictly benefit herself.

The chapter is organized as follows. Section 2.2 presents related literature in eco­

nomics and psychology. Section 2.3 presents the model. Section 2.4 studies public good 

games. Section 2.5 presents general results and section 2.6 studies games with ordered 

strategy spaces. Section 2.7 considers a Cournot duopoly example. Section 2.8 concludes 

and discusses some further research problems.

2.2 R elated  literature

Economics. Evidence from experiments in the public good games shows that even with­

out communication subjects contribute positive amounts when purely monetary incen­

tives make zero contribution a strictly dominant strategy. Existing social preference 

models nicely capture this effect (Rabin, 1993; Fehr and Schmidt, 1999; Bolton and 

Ockenfels, 2000). Yet, a largely unexplained finding is that communication raises the 

contributions well above the amounts observed without communication (Ledyard, 1995). 

Earliest experiments show this in prisoner’s dilemma games (Loomis, 1959; Radlow and 

Weidner, 1966). Recent studies for the two-person prisoner’s dilemma case are provided 

by Duffy and Feltowich (2002) and (2005).6

A way forward in explaining the effect of communication would be to combine one of 

the inequity aversion theories (Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000) with 

Farrell’s (1987) idea that agreements will be stuck by if there is no incentive not to do so.

6Extensions to public good provision games have been considered and the robustness of this result is 

verified by various experiments, for instance, Dawes, McTavish, and Shaklee (1977), Isaac, McCue, and 

Plott (1985), and Isaac and Walker (1988).
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Yet, this fusion of theories is not completely convincing. First, it can only account for 

the experimental findings as long as the payoffs are not too asymmetric, since if they are, 

symmetric contribution profiles lead to unequal payoffs and players with payoffs below 

the average cannot commit to these profiles. Second, even in symmetric environments, 

if the more efficient symmetric equilibria exist in the underlying game, the learning 

process never reaches these equilibria in laboratory experiments when communication 

is not present and, yet, these outcomes are reached when communication is allowed for 

(Isaac, McCue and Plott (1985); Isaac and Walker (1988)). Third, Gneezy (2005) and 

Ellingsen and Johanneson (2004), carry out further communication experiments and find 

behavioural patterns that cannot be explained by inequity aversion theories alone but 

which point to a preference for not lying.

The extensive form extension of Rabin’s (1993) theory of reciprocity as introduced by 

Dufwenberg and Kirchsteiger (2004) is another candidate for capturing the phenomenon. 

Nevertheless, Charness and Dufwenberg (2003) show that sequential reciprocity cannot 

fully account for the detected behavioural patterns related to communication. They 

conclude that there must be a separate preference related to lying and introduce, in­

dependently of the contribution in this chapter, the guilt-aversion equilibrium, where 

a player suffers a cost when she acts counter to the opponent’s expectation about her 

behaviour. Thus, like the theories of reciprocity, the theory falls into the category of psy­

chological game theory (Geanokoplos, Pierce, and Stachetti 1989) where players’ payoffs 

depend on beliefs explicitly (see also Dufwenberg (2002)).

The guilt-aversion or let-down aversion theory (Charness and Dufwenberg, 2003) is 

closely related to our approach. In their model, promising to carry out an action is 

assumed to strengthen the belief that the opponent expects corresponding behaviour. 

Thereby the promise creates further incentives to behave accordingly. Nevertheless, the 

role of communication is only implicit in their model. Furthermore, however unjustified 

the opponent’s expectation is, guilt is constant whenever the harm on the opponent is 

the same.

Our model can be considered as a tractable model of let-down aversion where a 

player may be averse to let down a justified expectation but less averse to let down an 

unjustified expectation. To see this, notice first that in a guilt-aversion equilibrium, first 

and second order expectations coincide with the actual actions. Equilibrium expectations 

in the let-down aversion model are equivalent to the agreement in our model. We argue 

that the expectations must satisfy three criteria for let-down aversion equilibrium to 

emerge: they must be 1) justified 2) mutually consistent and 3) commonly known.
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First, if a player thinks that the opponent’s expectation is not fully justified, the 

player might have less of an intrinsic motivation to act according to the expectation. 

Important applications of this feature axe captured by properties {B} and {C} of our 

model. If a player expects the opponent to breach the agreement but she expects the 

opponent to expect that she respects the agreement, she is likely to feel that the op­

ponent’s expectation is unjustified and she does not have an aversion to let-down the 

opponent. This idea is captured by property {B}. So as to property {C}, even if the 

opponent intends to respect the agreement and the player expects the opponent to do 

so, she may feel that what the opponent expects her to do gives such a low payoff that 

the opponent’s expectation is not justified. Therefore she may be less averse to let down 

the opponent.

Second, guilt-aversion equilibrium only considers cases where equilibrium expecta­

tions coincide with equilibrium actions. Thus guilt-aversion equilibria correspond to all 

agreements that neither player prefers to breach in our model. Notice moreover that 

guilt-aversion is an equilibrium theory and, yet due to added incentives to comply with 

opponents’ expectations, it is very likely that there axe multiple equilibria. The set of 

rationalizable action profiles might be even larger. If players lack a coordination device, 

then it may be difficult for the players to coordinate 011 a focal equilibrium. Pre-play 

agreements and conventions circumvent the selection problem by pointing out to a focal 

equilibrium. A pre-play agreement generates commonly known focal expectations, which 

will be correct if there are sufficient incentives to comply with them. In conclusion, guilt- 

aversion equilibrium may be a more accurate prediction when pre-play agreements are 

present. Moreover, agreements by pre-play negotiations are natural devices to generate 

justified expectations: expectations derive their justification from not being vetoed by 

either party.

In addition, our approach is explicit about the effect of communication and the 

agreement. This view is supported by experimental evidence: Lev-on (2005) reviews 

communication experiments in public good games and concludes that mere identification 

or discussion which lacks explicit promising loses some of its effectiveness in supporting 

cooperation.7 The model is general. It captures many features of reciprocity, yet avoiding 

problems of tractability in models where payoffs depend on beliefs explicitly.8 The guilt

rFurthermore, mere face-to-face identification increases cooperation especially in simple prisoner’s 

dilemma games where coordination on group optimum is easy (Bohnet and Frey (1998)). Yet, cooperation

rates are significantly weaker than when interactive communication is allowed for.
8 Some feasible guilt cost functions imply that the preferences in the cases where an agreement is in

place are tractable social preferences of Cox and Friedman (2002).
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in our model bases its properties on research in social psychology and allows for most of 

the features relevant to pre-play negotiations and conventions.

Guilt has been discussed in several papers since Frank (1988) who argues that it may 

well be materially profitable for an agent to have a conscience - a dislike for disobeying 

social norms. A recent model on emotional cost of breaching social norms is provided by 

Huck, Kiibler, and Weibull (2003). These models involve no communication. Ellingsen 

and Johanneson (2004) do allow for communication and study the interplay of inequity 

aversion and guilt in a specific hold-up problem between a seller and a buyer. Their 

model is similar to ours in that guilt does not depend on the beliefs explicitly. In their 

model also, guilt is suffered if one breaches a promise. However, their model of guilt 

is simpler, since it does not take into account the reciprocal elements of opponent’s 

behaviour and it assumes that breaching a promise inflicts a constant guilt cost.

Psychology. In addition to their intuitive appeal, properties {A} to {D} are supported 

by experimental evidence and by psychological theory. As to property {A}, Hoffman 

(1982) suggests that guilt has its roots in a distress response to the suffering of others. 

The main empirical finding of Gneezy (2005) is that 1) lying is directly costly and 2) 

people do not care only about their own gain from lying: they are also sensitive to the 

harm that lying may inflict on others.

As fax as property {B} is concerned, Baumeister, Stillwell, and Heatherton (1995) 

find that people feel more guilty about transgressions involving an ’’esteemed” person 

than about transgressions involving someone they hold in low regard. It is rather ap­

pealing to suppose that, if the opponent breaches the agreement, the esteem of a player 

towards the opponent is smaller than if the opponent respects. We go to an extreme and 

assume that the player does not suffer from guilt if the opponent breaches the agreement.

Property {C} operates together with property {B}: agreements that are respected 

and give a high payoff to a player, signal opponent’s concern for player’s welfare and 

such opponents axe likely to be esteemed. According to Clark and Mills (1984) and 

Claxk (1979), concern for the other’s welfaxe is the defining feature of communal rela­

tionships as opposed to exchange relationships. According to Baumeister, Stillwell, and 

Heatherton (1995), guilt is more likely to arise in the former type than in the latter type 

of relationships.

So as to property {D}, an agreement or an action-norm explicitly states an expec­

tation and a standard of behaviour for the play phase. Not reaching an agreement 

indicates players’ inability to establish such a standaxd and a shared expectation. Millar 

and Tesser (1988) note that guilt depends on a concurrence of one’s own expectations of
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behaviour and those of the other person. Guilt appears mainly when there is a match 

in expectations of behaviour. Such a match of expectations is established either by an 

exogenous action-norm or a pre-play agreement to an action profile. On the other hand, 

some experimental studies of the public good game show that a single message for not 

contributing is sufficient to make an agreement invalid.9 This body of research suggests 

each player should have an ability to veto an agreement and that if there is no agreement 

in place, guilt should be lower. We take this to an extreme and assume that there is 

guilt only if there is an agreement or a commonly known action-norm.

More generally, research in psychology identifies three types of emotional distress 

associated with lying: guilt, shame and fear of punishment. From a game theoretical 

perspective, the latter two have a reputation and repetition flavour respectively whereas 

guilt may be suffered even if the act of lying is unobservable and unverifiable to others, 

or the victim or a third party is in no position to retaliate.

According to Baumeister, Stillwell, and Heatherton (1994), ” guilt can be distin­

guished from fear of punishment on the basis that the distress pertains to the action 

itself rather than to the expectation of hedonically aversive consequences of the action. 

...One can clearly feel guilt..., even if the victim is in no position to retaliate.”

Baumeister, Stillwell, and Heatherton (1994) axe concerned with what makes people 

feel guilt and what that feeling, or the motivation to avoid that feeling, causes them to 

do (p.245). They argue that:

- From an interpersonal perspective, the prototypical cause of guilt would be the infliction of harm, loss, or 

distress on a relationship partner. Although guilt may begin with close relationships, it is not confined to them; 

guilt proneness may become generalized to other relationships. ... In particular, a well-socialized individual would 

presumably have learned to feel guilty over inflicting harm to even a stranger.

Based on this view, we elaborate on the idea of guilt as an internalized punishment 

payoff in a repeated game prior to which players agree on a stationary pattern of play 

in the appendix.

In the present model, as in theories of fairness, players internalize the opponent’s 

payoff but only conditional on reaching an agreement, conditional on the opponent re­

specting the agreement and conditional on the opponent suffering from breaching. Thus, 

the model shares some of the features of the models of fairness but differs from those in 

important dimensions.

9See Ledyard (1995) and Pavitt and Shankar (2002).
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2.3 T he m odel

Let r  be a two-player simultaneous move normal form game, below referred to as the 

underlying game.10 Before the game is played, an agreement - a mutual expectation 

- is established either by pre-play negotiations or by convention. Generally, the pre­

play negotiations may have an arbitrary strategic structure or the agreement may be 

exogenous - the only requirement is that there is an agreement or disagreement on how 

to play. 11

We rule out the use of mixed strategies in the underlying game. If we allowed for 

mixed strategies, we should determine whether guilt is a function of consequences only 

or whether guilt is felt even if a mixed strategy different from the agreed one is chosen 

but the random draw picks up a pure strategy that is in the support of the agreed mixed 

strategy.12

2.3.1 T h e  u n derly in g  gam e

The two-player underlying game is given by T = {5j, Ui(s) : S  —+ R}. The action set of 

player i is Si. A combination of actions is an action profile s =  (si,Sj) G S  =  Si x Sj. The 

underlying game payoff of player i is Ui(s).  Notice that this payoff may well include social 

preference terms.

The lowest Nash payoff of player i is defined by u* =  minsGjvjE(r) ui(s) where 

NE(T)  is the set of pure Nash equilibria in the underlying game. The vector of such 

payoffs is u* — (u*,Uj) .  If rational players play without pre-play negotiations and they 

have correct expectations about the behaviour of the other, then a Nash equilibrium 

should result. Thus, the lowest Nash payoff is the worst case scenario if negotiations fail 

(and players believe in equilibrium play).

The negotiations or the convention establishes an agreement, m, on how to play, or 

disagreement. Thus, we restrict m € S  U {d} where d denotes disagreement. If m G S  is 

the agreement, then mi and m2 axe the agreed actions of players one and two respectively. 

The agreed payoff13 indicates how much more than u* the player gets if both respect

10 The theory allows for a straightforward extension to sequential two stage games.
11 Preplay negotiation is a finite extensive form game tree. The terminal histories are associated with

an oral (non-binding) agreement, or with disagreement.
12On the other hand, we could easily allow for correlated strategies where players agree on a given

random draw on how to play: guilt would be a function of the expected agreed payoff.
13Most of our results would be unaltered if we alternatively suppose that the reference point in the

agreed payoff is the player’s worst Pareto-efficient Nash payoff which is the lower bound for a long

pre-play negotiation payoff derived in Rabin (1994).
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the agreement, Vi(m) =  Ui(m) — u*. If player i deviates from the agreement, we get the 

harm  on j  by subtracting j ’s payoff at the deviation profile from the payoff at the agreed 

action profile, hj(m ,S i ) =  Uj(m) — Uj(rrij,Si). Similarly, z’s benefit from breaching is 

bi(m, Si) =  Ui(mj , s )̂ -  Ui(m).

In this chapter, we restrict focus to simultaneous move games. Notice, that we 

could easily extend our theory to corresponding Stackelberg games, say, with player one 

the leader and player two the follower. That player one moves first gives her perfect 

commitment power. If the leader breaches, the follower does not suffer from guilt and 

her payoff coincides with the UG payoff. Thus, the follower will choose an UG best reply 

to the leader’s action. In the Stackelberg version of the theory, we should replace the 

worst Nash payoff with the worst Stackelberg payoff.

2.3 .2  T h e  en tire gam e

Players axe prone to guilt. If there is an agreement in place, they feel bad about not doing 

their part of the deal. Player Vs guilt cost, gi(vi(m), hj(m,  s^)), depends on the inflicted 

harm and on the agreed payoff. The utility function in the entire game is assumed to be 

additively separable in guilt and the underlying game payoff.

Ui{m,s)  =  Ui(s) -  9ig(vi(m),hj(m,Si))  if s* ^  mi  , Sj =  mj  (BD)

Ui(s) otherwise

The entire game payoff now depends on m  and, due to guilt, talk is not cheap. The guilt 

cost is represented by Oig(vi(m),hj(m,Si))  which is assumed to be non-negative. This 

rules out revengeful feelings or spite, on the one hand, and positive emotions related to 

respecting agreements, on the other hand. This is somewhat restrictive, but here we 

want to focus on guilt.

The parameters 6 =  (0\, #2) capture players’ proneness to gu ilt For a given deviation, 

a player with a higher proneness to guilt suffers more. We only allow for non-negative 

proneness to guilt, $i € [0,00). If it is common knowledge that the proneness to guilt 

of both players equals zero, the model coupled with a communication protocol is one of 

cheap talk.14

Notice first, that the guilt cost depends on the agreement and on the deviation only 

indirectly through the agreed payoff and the harm. Second, choosing the agreed action 

mi  minimizes the guilt cost at the second stage. Furthermore, (BD) implies that if

14 As in Farrell (1987) but with any finite extensive form communication protocol ending up in an 

agreement - an action profile of the game.
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disagreement is reached, then there is no guilt cost. We assume that each player can 

unilaterally enforce disagreement, d. Also, there are no bad feelings about own cheating 

if the opponent cheats too. Thus (BD) introduces properties {B} and {D} into the guilt 

cost.

Moreover, we assume, that the guilt cost g(vi ,hj ) is weakly increasing in the agreed 

payoff and in the harm. This introduces properties {A} and {C} into the guilt cost.

g(v i ,h j ) is weakly increasing in V{ and in hj (AC)

Obviously, if the guilt function is differentiable then these monotonicity properties simply 

amount to positive derivatives, >  0 and >  0.

Also, we assume that if the player inflicts no harm on the opponent15 or if the agreed 

payoff equals the worst Nash payoff, then there is no guilt cost. Yet, we assume that if 

strictly positive harm is inflicted and the agreed payoff is strictly positive, then the guilt 

cost is strictly positive:

g(vi , hj) > 0  if hj > 0, v{ >  0
(FT )

g(vi , hj) =  0 if hj =  0 or Vi =  0

Notice that these assumptions allow for a number of possible cost functions. For 

instance, a fixed guilt cost

. , . I 7 if hj >  0, Vi >  0
g(vi ,hj)  =  < , (2 .1)

I 0 otherwise

or a guilt cost that only depends on one of the arguments is allowed for. Another example 

of a guilt cost function with all the properties assumed in this section is 16

g(ui(m) ,hj (m,Si) )  =  max{t>i(ra), 0}7 max{hj(ra, s^O }^ (2.2)

This function is zero if the harm is non-positive or if the agreed payoff is below 0. Otherwise, 

it is strictly positive. It is increasing in the harm and in the agreed payoff.

15Andreoni (2005) provides some indirect evidence for this. In his extension of the buyer-seller trust

game where sellers can make non-binding promises of refunds, the sellers who promise a refund, increase

the return rates (quality) above no-buy utility so that no harm is inflicted, if a promised refund request

is rejected. Thus, for any realised rejection of refund, guilt is avoided, and the present theory (or its

straightforward extension to sequential two-stage games) predicts rejection conditional on refund request

and return rate above one which the data in Andreoni seems to confirm.
16The entire game preferences of this form with 7 =  <̂ =  1 belong to the class of Cox-Friedman (2002)

preferences with a  =  1 with the emotional state depending on the agreed payoff Vi(m).
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We suppose that the proneness to guilt types and the language are common knowl­

edge. Thus, players have correct point predictions about their opponent’s proneness to 

guilt and beliefs of all degrees coincide. Also, players do not have to worry that the 

opponent might interpret an agreement to ‘meet at noon’ as an agreement to ‘meet 

at quarter past noon.’ Both these considerations are relevant but at this first step we 

abstract from this.17

Let us now introduce some further notation. Denote by BRi(sj)  the underlying game 

best reply correspondence of player i. Denote by r(m; 9) a subgame where m  is agreed 

and players’ proneness to guilt is given by 9. Denote by s*(m; 6) =  (s*(m; 9), sj(m; 9)) the 

equilibrium correspondence in that subgame.

Let us write the payoffs of player i and player j  respectively when player i deviates 

to Si and player j  respects the agreement, Sj =  mj, as

Ui ( mi , mj , S i , r r i j ) =  Ui(m) +  bi (m, Si ) -  9i g ( u i ( m) , h j ( m, S i ) )  (2.3)

and

Uj(nnj ,mi ,  rrij,Si) =  Uj ( m ) — h j ( m , Si). (2.4)

where the first two entries of U{( .,.,.,.)  are the agreed actions and the last two entries 

are the played actions of i and j  respectively. These expressions give players’ entire game 

payoffs in terms of the agreed payoff, the benefit from breaching, and the harm inflicted 

on the other when i breaches but not j .  Player’s incentive to breach an agreement m  is 

the difference between the benefit from breaching and the guilt cost, Bi{m,Si\9i) =  

b i ( m , S i )  -  9 i g ( u i ( m ) , h j ( m , S i ) ) .

An agreement m  is called incentive compatible if neither benefits from a unilateral 

deviation from the agreement,

for all Si e  Si B i(m , s*; 9i) <  0 (IQ )

When this incentive compatibility condition holds for both players, the agreement m  is a 

Nash equilibrium of the subgame where m is agreed upon, T(m; 9). On the other hand, 

an agreement m is called individually rational if no player prefers enforcing disagreement 

(pre-play negotiations) over playing m, i.e. if for i =  1,2

m (m ) > uJ. (IHi)

Here, the threat for the player who enforces d is the lowest payoff Nash equilibrium, u*.

17 Notice also that since guilt depends on the ageement only indirectly, any permutation of the meanings 

of the agreements leaves the guilt unaltered.
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We now define player i ’s potential to agree as Ai(r,0j) =  {m\ m  satisfies (IC{) and 

(IR i )}  and the agreeable set is defined as the intersection of the two potentials to agree, 

A (I\ 9) =  Oi). We call an action profile in i's potential to agree agreeable for

i and we call an action profile in the agreeable set simply agreeable.

2.4 A  public good  gam e

The prisoner’s dilemma is a stylized version of a public good game. In the prisoner’s 

dilemma there are two players who decide whether to contribute to the production of 

the public good or not. It is efficient that both contribute but it is a strictly dominant 

strategy not to contribute. We consider a prisoner’s dilemma with the following payoffs:

C N

c u i ,u 2 ui — h\, u2 +  b2
N Ui +  61, u2 -  h2 0,0

(Prisoner’s dilemma)

where hi >  Ui >  0 and 6* >  0 for i =  1, 2. Supposing that the guilt cost takes the simple 

form of the example given in (2.2) with 7 =  (p =  1, player i respects an agreement to 

contribute, m  =  (C, C ) , (given that the opponent does) if and only if

An agreement on cooperation satisfying (2.5) is incentive compatible. Moreover, both 

contributing is individually rational by the structure of the prisoner’s dilemma. So, an 

agreement on (C, C) should be particularly easy to reach if b{ is small and hj is large - 

just as Gneezy (2005) suggests. Also, a large Uj facilitates cooperative agreements. This 

gives us comparative statics results that are testable.

In the prisoner’s dilemma, the payoff of one of the player’s is below the zero payoff 

in equilibrium at outcomes (C ,N ) and (N ,C ). Thus, these agreements are not individ­

ually rational. Both not contributing, (N , N)  , is incentive compatible and individually 

rational for all types since it is the unique Nash equilibrium. Hence, (N, N)  is always 

agreeable and (C , C) is agreeable if (2.5) holds for both players.

Moreover, notice that the individual rationality condition is actually redundant, it 

is implied by incentive compatibility: if individual rationality is violated, the agreed 

payoff falls below zero and guilt is zero thus any deviation which is beneficial in terms 

of underlying game payoff will be made. This property is more general as we shall see 

in section 2.5.
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In our model, proneness to guilt may transform a prisoner’s dilemma into a coor­

dination game. This is a familiar property of fairness models (Rabin, 1993; Fehr and 

Schmidt, 1999; Bolton and Ockenfels, 2000). Yet here, first, the transformation is ex­

plicit; and second, the ability to commit to contribute does not depend on how much 

more or less the opponent gets when players cooperate, Ui — Uj. It depends on how 

much more the player gets when players contribute than when they do not, Ui — 0. On 

the other hand, player’s payoffs are other regarding only to the of how much a player’s 

defection affects the opponent’s payoff.

Guilt is an emotional cost of defection. In the prisoner’s dilemma, it is trivial that 

if this cost is sufficiently large to balance off the benefit from breaching, the player can 

credibly commit not to defect. The prisoner’s dilemma is a rather degenerate game for 

our interests: there is only one action profile that Pareto dominates the underlying game 

Nash equilibrium. Thus, the set of agreements under negotiation is very limited. Our 

pre-play negotiations model may have bite in any game with an inefficient equilibrium. 

In more general games the model has richer implications as we shall see next.

We can easily generalize the prisoner’s dilemma type of argumentation to public good 

games. Each player has an endowment of ten dollars. Each player decides how many 

dollars to contribute, Si 6 {0,..., 10}. The payoff of player i reads

Ui(s) = G { ^ 2  sk) + 10 - Si 
k—1,2

where the production technology G(.) maps the sum of contributions into the amount 

of public good produced. We suppose that for all (si,S2), G'(^2 s) < 1 where G' is the 

marginal per capita return (MPCR). Hence, it is a strictly dominant strategy, and thus 

a Nash equilibrium strategy, to contribute nothing. Whenever marginal group return 

equals 2G’ >  1, it is socially optimal to increase one’s contribution.

Let us suppose for the time being that the guilt cost is given by (2.2) with 7 =  ip =  

1 and let the production technology have constant or decreasing returns to scale, G" <  0. 

By our definition of agreeability, players can agree to any agreement where both get a 

positive payoff (indivudual rationality) and the there is sufficient guilt (incentive com­

patibility) to prevent breaching. As in the prisoner’s dilemma, the individual rationality 

condition

Ui(m) =  G( m*) +  10 -  mi >  0. (2.6)
fc=l,2

is implied by the incentive compatibility condition.

Notice in addition, that due to the concavity of payoff in each action, the agreement
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is incentive compatible if a one-dollar underprovision does not pay off: the benefit from 

breaching is concave and the harm on the other is convex as a rescaled negative of oppo­

nent’s payoff. Thus, we only need to verify that the public good will not be marginally 

underprovided, and we need not to worry about other deviations.

Let us call the differential between the marginal benefit from breaching and the 

marginal guilt cost player Vs marginal incentive to breach,

1 -  G (^ 2  mi) -1- G {^2  m i ~  1) (2.7)

—0i[G(^2m i)  - G ( ^ m i  - 1)]^max{ui(ra),0}7.

Supposing that an indifferent player respects the agreement, a player will breach if 

and only if (2.7) is positive. These marginal incentive compatibility conditions imply 

the incentive compatibility conditions which in turn imply the individual rationality 

conditions. Thus, the marginal incentive compatibility conditions are necessary and 

sufficient for agreeability (2.7).

A property explicit in (2.7) is worth emphasizing: there is a conflict between the effi­

ciency of the agreement and the incentives to respect. To see this, notice that the harm 

on j  due to a unit underprovision by i reads hj(m,mi — 1) =  G(X̂mi) — G(^2ra* — 1) 

which is decreasing in the sum of contributions and thus in efficiency when too little is 

contributed. The marginal benefit for i from her unit underprovision vis-a-vis the agree­

ment is 1 — hj(m, mi — 1). This is increasing in the sum of contributions. Since efficiency 

increases in the sum of contributions but the marginal harm on others decreases and 

the marginal benefit from breaching increases in the sum of contributions, the conflict 

is evident.

More importantly, the conflict is strict if G" < 0. Only in this case the fact that 

a player trades off the marginal harm with the marginal benefit strictly increases the 

marginal incentive to breach when the sum of contributions is increased.

To better understand how increasing the sum of contributions affects the marginal 

incentive to breach, let us now isolate the effect of each agreed action. Let us first consider 

the effect of the own agreed action, ra*, on the incentive to breach. If we increase m*, the 

benefit from breaching increases and the harm on the other decreases. The increasing 

effect of mi on the marginal incentive to breach is amplified by the negative effect of ra* 

on i’s agreed payoff, which dampens guilt. Yet, considering now the effect of increasing 

the opponent’s agreed action, mj  , it is clear that this has a positive effect on i’s agreed 

payoff and, since by assumption efficiency is increased, the overall agreed payoff effect 

on guilt is positive. This tends to decrease i’s incentive to breach.
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Thus, whether or not incentive to breach increases in the sum of contributions de­

pends on G", on the one hand (effect on marginal benefit and harm), and on G' and

on the other hand (effect on agreed payoff). If G" is close to zero the trading off 

of marginal benefit and harm is unaffected but the agreed payoff effect decreases incen­

tives to breach. Yet if G" is substantially below zero and the agreed payoff does not 

much affect guilt, the effect of trading off benefit and harm increases the incentives to 

breach. Furthermore, if G" is negative the agreed payoff effect tends to fade away with 

efficiency. Eventually, if we have an interior group optimum, there will be a conflict 

between efficiency and incentives as we are sufficiently close to the group optimum.

Yet, as a special case, if there axe constant returns to scale, G' =  a, the marginal 

payoffs are constant and the changes in breaching incentives are driven only by the 

agreed payoff effects: incentives to breach decrease in efficiency. With constant returns 

to scale incentives and efficiency are aligned: if some disequilibrium strategy profile is 

agreeable, than an efficient profile is.

Some other remarks can be made on (2.7). First, a player with a higher proneness to 

guilt can agree on a larger set of agreements. Second, the relative contributions matter 

(but not the relative payoffs). Moreover, if there are constant returns to scale, G' — a, 

the marginal benefit from breaching decreases in a  and the marginal harm increases in 

a  and the agreed payoff of any agreeable action profile increases in a. Thus, it is easier 

for the players to agree when the marginal per capita return is higher.

Let us collect the findings of this section in a proposition.

Proposition 1. Let g satisfy (2.2) with <p > 1. In the public good game,

•  an agreement is agreeable iff the marginal incentive to breach is non-positive for 

i =  1, 2.

•  player i ’s marginal incentive to breach is increasing in ra*.

• ifG' =  a, player i ’s marginal incentive to breach is decreasing in a  and in mj and 

in £fc=i,2mfc-

• ifG" <  0 and 7 =  0, player i's marginal incentive to breach is increasing in mj and

in Efc=i,2mfc-

Proof. To prove the first claim, it is straightforward that

m satisfies ICi for i =  1,2 4=> m  is agreeable,
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since ICi implies IRi. It is easy to see that an upward deviation never pays off. Thus, 

it suffices to show that a non-positive marginal incentive to breach is equivalent to a 

non-positive incentive for deviating to any Si E Si. We have for all Si <  rrii

m k) ~ si + G(rrij + ra* - s*) - 9ig(vi(m), [G( ^  m k) -  G{rrij + rrii - s*)])
k—1,2 k=1,2

< [1 -  G( ^ 2  m k) +  G(rrij +  rrii -  l)][mj -  Si] (2.8)
k=1,2

-9ig(vi(m), [G( ^  m k) -  G{mj +  ra* -  l*)](mi -  s*)) (2.9)
k—1,2

<  [1 -  G( ^ 2  m k) +  G{rrij +  rr i i -  1)] (2.10)
k—1,2

-9ig(vi(m), [G( ^  m k) ~ G(rrij +  rrii ~  1*)]) (2.11)
k=l,2

<  0 (2 .12)

where the first inequality follows from the fact that the opponent’s payoff is increasing 

in S{ and that g is convex in hj, and the second inequality follows from the fact that 

[rrii ~ St] >  1-

To prove the second claim, notice that increasing rrii will, (1) decrease Ui(m) and 

thus Vi(m), (2) increase bi(m,rrii — 1) =  1 — G(^2k^12m k) +  G(rrij +  rrii — 1) and (3) 

decrease hj(m,rrii — 1) =  G(Y^k=1,2 m k) — G(rrij +  mi — 1).

To prove the third claim, notice that increasing a  will (1) increase Ui(m) and thus 

Vi(m), (2) decrease bi(m,rrii — 1) and (3) increase hj(m,rrii — 1). Increasing rrij or 

Y^k=i2 m k will (1) increase Ui(m) and thus Vi(m) and leave (2) bi(m,rrii — 1) and (3) 

hj(m,rrii — 1) unaffected.

To prove the fourth claim, notice that increasing rrij or X)/:= i12 m k will increase Ui(m) 

and thus Vi(m) but since 7 =  0 this will not affect g. Increasing rrij or )Cfc=i,2 m k will 

increase bi(m,rrii — 1) and decrease hj{m,mi — 1). □

Proposition 1 establishes that instead of checking for all possible deviations it is 

necessary and sufficient simply to check for a local deviation. Moreover, if G' — a, the 

marginal incentive to breach is monotone in each of the two agreed actions. Thus, to 

determine a player’s potential to agree, we can look for agreements where the player is 

indifferent between respecting and deviating marginally. Any agreement where a player’s 

action is smaller or an opponent’s action is larger than at the boundary is agreeable for 

that player. Figure 2.1 shows the agreeable set for G' =  a  =  | ,  9i =  4 and g(vt , hj) as 

in (2.2) with 7 =  ip =  1.
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x Agreeable for player 2 + Agreeable for player 1

Figure 2.1: The agreeable set

The action profiles that belong to player one’s potential to agree axe marked with 

plus signs and the action profiles that belong to player two’s potential to agree are 

marked with crosses. Thus the action profiles marked with asterisks axe agreeable action 

profiles, A (T p g (|)> (4,4)). Notice, that the best reply curves lie on the axes and that each 

player’s best reply curve is agreeable for each player. Thus, the Nash equilibrium, (0,0), 

is agreeable. Notice also that some efficient action profiles are agreeable, for instance, 

the symmetric efficient action profile where both give a full contribution, m =  (10, 10).

Figure 2.2 illustrates how easy it is to agree on this symmetric efficient action profile, 

m =  (10,10). Specifically, it plots the critical 9 that makes a player indifferent between 

breaching and respecting as a function of a. As stated above, increasing a  makes the 

incentive compatibility constraint less stringent and, thus, the function is decreasing.

Indeed, we have shown in this section that when communication is allowed for in 

public good games and players axe prone to guilt, players may agree to contribute positive 

amounts and guilt may provide the necessary incentives to commit to the agreement. 

Further in regaxds to the experiments by Isaac, Mccue and Plott (1985) and Isaac and 

Walker (1988), we have suggested that a likely explanation for the differences in their 

results may not be that it is more difficult for the players to identify an interior group 

optimum than a boundary one, as has been suggested. Rather that incentives to respect 

more efficient agreements, especially those close to the group optimum, may be smaller. 

This conflict is typically absent when it is optimal to contribute everything to the public 

good as in Isaac and Walker (1988).
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Figure 2.2: Indifferent player at symmetric efficient profile

Notice that it is crucial here that guilt cost is convex in the harm on the other. For 

instance fixed guilt cost due to a deviation, (2.1), cannot account for the difference since 

with that specification guilt is concave in the haxm on other overall.18

Other social preference models (Rabin, 1993; Fehr and Schmidt, 1999; Bolton and 

Ockenfels, 2000) can explain positive contributions to public goods but none have ex­

plained why communication further increases contributions. In this section we have 

illustrated how communication may increase contributions of players who without com­

munication have a strictly dominant strategy to contribute nothing. This does not 

seem to comply with the empirical finding that even without communication positive 

amounts are contributed. Yet, the next section develops the theory in the more general 

case where the underlying game preferences may take an arbitrary form (and may thus 

involve social preferences) and equilibria of the game are inefficient. The section shows in 

particular how the present theory can account for the fact that communication increases 

contributions from the levels that prevail without communication.

Moreover, section 2.6 generalizes the sharp contrast in feasibility of first-best ef­

ficiency between constant returns to scale technology and decreasing returns to scale 

technology in public good production: we shall show that there is a conflict between 

incentives and efficiency in symmetric games with strategic subsitutes where payoff is 

monotone in opponent’s action. Such a conflict tends to be absent in symmetric games 

with strategic complements where payoff is monotone in opponent’s action.

18This will imply, the model of Ellingsen and Johanneson (2004) cannot account for the differences in 

efficiciency results of Isaac, McCue and Plott (1985) and Isaac and Walker (1988).
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2.5 P roperties o f the agreeable set

This section derives some simple properties that apply to any normal form underlying 

game. First, any UG Nash equilibrium is agreeable. Thus, the agreeable set is never 

smaller than the set of Nash equilibria of the UG. Second, a Nash equilibrium remains 

a Nash equilibrium of most subgames that follow an agreement. Yet, if an agreement 

is such that a player can unilaterally deviate to an UG Nash equilibrium, then this UG 

Nash equilibrium may no longer be a Nash equilibrium when the agreement is made. 

Third, if a player can deviate from an agreement and thereby benefit both players, 

the action profile is not agreeable. Yet, any individually rational profile that does not 

satisfy this property can be agreed upon if proneness to guilt is sufficiently high. This 

characterizes the largest possible agreeable set as opposed to the smallest such set - the 

set of UG Nash equilibria.

In the prisoner’s dilemma, both (D, C) and (D, D) are agreeable for the row player. 

Both profiles are individually rational for the row player and the row player’s agreed 

action is an UG best reply to the agreed action of the column player. Underlying game 

preferences drive the player to choose the best reply. If a player’s agreed action is a best 

reply to the agreed action of the other player, the guilt cost of deviating would only add 

to the forgone UG payoff . The first part of the following lemma establishes this general 

finding.

On the other hand, if a player’s agreed action is not a best reply to the opponent’s 

agreed action, then the agreement belongs to the player’s potential to agree if and only 

if it is incentive compatible. The UG benefit from breaching is positive at least for the 

deviation to the best reply; if individual rationality is violated, the guilt cost is zero and 

the agreement is not incentive compatible.

L em m a 1. Let rrii £ BRi(rrij). Then m  G Ai(T,di) iff (IRi) holds.

Let mi £ BRi(mj). Then m G Ai(T, Oi) iff (ICi) holds.

Proof. See appendix. □

This lemma is useful for characterizing each player’s potential to agree: on the best 

reply curve, all individually rational agreements are agreeable. Off the best reply curve, 

all incentive compatible agreements are agreeable and no other agreement is. Thus, 

for non-equilibrium conventions only incentive compatibility matters. On the other 

hand, lemma 1 enables us to generalize the finding that, in the prisoner’s dilemma, the 

defection equilibrium is agreeable for any proneness to guilt types. By definition, any
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Nash equilibrium payoff is individually rational. Thus by the first part of lemma 1, any 

Nash equilibrium belongs to each player’s potential to agree. Thus, a Nash equilibrium 

is agreeable.

P roposition  2. I f m e  NE(T), then m  G A(T,0).

Proof. See appendix. □

First, for zero proneness to guilt types, Nash equilibria are the only agreeable action 

profiles.19 Second, guilt never reduces the menu of agreements available to the players. 

To the contrary, the public good example shows that positive proneness to guilt can 

dramatically increase the set of profiles that are agreeable.

Recall that we ruled out mixed strategies and thus an agreeable profile may not exist. 

Notice, that allowing for mixed strategies would ensure that an agreeable profile always 

exists (whichever way we think about guilt): an underlying game Nash equilibrium is 

always agreeable and with mixed strategies a Nash equilibrium always exists in finite 

games.

Yet, pre-play negotiations may create an equilibrium selection problem when there 

is an agreement in place and players axe prone to guilt. For instance, when players 

agree on cooperation in the prisoner’s dilemma, defection remains an equilibrium of the 

transformed game. If both players defect, neither feels guilt and payoffs involve only 

underlying game payoffs. This insight is easily generalized: it is straightforward that an 

underlying game equilibrium where neither respects the agreement, m, is an equilibrium 

of the subgame T(m;6). This shows that even if m  is a Nash equilibrium of Y(m\6), 

there may be other equilibria as well.

Lem m a 2. If fo r i  =  1,2, m* ^  s* and s* G NE(T) then s* G NE(T(m;0))

Proof See appendix. □

The equilibrium selection problem apparent in lemma (2) is avoided however if we

suppose that players will conform to the agreement, if there is no incentive not to do so,

as assumed in Farrell (1987).20 Lemma (2) shows that an UG Nash equilibrium may be

19Aumann (1990) argues that cheap talk is credible only for a subset of Nash equilibria.
20Applying Farrell (1987), we may refine the Nash equilibrium concept in the subgame r(m;0) by

assuming that if m  is a Nash equilibrium of T(m; 9), then m will be played, s*(m; 6) =  m.

Farrell and Rabin (1996) discuss messages that are self-enforcing. There are three reasons to be

suspicious about a message (or an agreement). First, players may have different understanding what

the message means. Second, even if messages are understood correctly, players may have incentives to
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a Nash equilibrium of a subgame where players do not agree on that Nash equilibrium. 

Notice yet, that this is not true for any agreement. Nash equilibria may be removed 

from the game.

Consider the following game of chicken:

L R

T 0,0 3,1

B 1,3 2,2

(2.13)

The Nash equilibria of this game are (B , L) and (T, R). Let us suppose that player one’s 

proneness to guilt is two, 9\ =  2 and the guilt cost function is as in (2.1) with 7 =  1. 

Let us suppose that players agree on playing (J3, R) which gives an agreed payoff of 2 for 

player one. Now, if player one breaches the agreement and chooses T instead, she gets 

3 — 2 =  1 which is smaller than 2 and, thus, (T, R) is not an equilibrium when players 

have agreed on (B , R) even if it is a Nash equilibrium of the underlying game.

Next, we show that an agreement where one of the players can make both players 

better off by deviating unilaterally from the agreement (even if the opponent respects 

the agreement) does not belong to the agreeable set.

Lem m a 3. For any m, if there is a player i such that there exists Si such that Ui(s{, mj) > 

Ui(m) and Uj(s{, m j) > Uj(m) then m £ A(r, 9) for any 6.

Proof. See appendix. □

Lemma 3 follows immediately from the monotonicity (AC) and the strict cost (EF) 

conditions: when the harm inflicted on the other is non-positive, there is no guilt cost. 

Since a player can make herself better off, she will do so and the agreement is not 

incentive compatible.

Thus, for instance pattern (B , L) is never agreeable in the following game:

L R

T 2,2 0,100

B 1,1 1,1

(2.14)

since if player one breaches and chooses T, both players are better off. One could argue 

that player one does not breach (B , L) because she understands that then player two has 

an incentive to choose R  which would make her worse off than in (B ,L ). But of course,

mislead their opponents. Self-signalling messages are sent, if and only if they are true. Self-commiting 

messages axe such that if believed, the sender will have an incentive to do accordingly.
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player one would then be inclined to choose B. Agreeing on (B ,L)  would thus leave a 

lot of room for rationalizing various kinds of play and truth is no more focal in the sense 

of Farrell (1987). Indeed, this type of plurality may question whether (B , L) is agreeable 

in the first place. But for our analysis, it is sufficient to notice that since player 1 can 

make both better off, the agreement is not incentive compatible.

In (2.14), players cannot agree on (T ,R ) either, since player 1 gets a smaller payoff 

than in the underlying game equilibrium, (B ,R ). On the other hand, if player 2’s 

proneness to guilt is small, players cannot agree on (T, L) either due to player two’s 

high gain from choosing R  instead. But if we let player two’s proneness to guilt become 

sufficiently high, (X, L) becomes agreeable. As the proneness to guilt becomes infinite, 

the guilt cost becomes infinite for deviations that cause a positive harm. Hence, whenever 

deviation causes harm, it will not be made. In general, if UG payoffs are finite, with 

sufficiently high proneness to guilt all individually rational profiles are agreeable for 

which a Pareto-improving deviation does not exist (the deviator must strictly benefit), 

and no other profile is.

P roposition  3. Let the underlying game payoffs be finite. Let Vi(m) >  0 for i =  1,2. 

Then m  G limo1̂ OOi02-+ooA (r ,9 )  iff for i =  1,2 and for all Si, Ui(m) > Ui(si,mj) or

Uj(mj,Si) < Ui{m)

Proof. See appendix. □

If the set of Nash equilibria is the smallest set that is agreeable (cheap-talk), propo­

sition 3 describes the largest possible agreeable set, the agreeable set for types that are 

infinitely prone to guilt.

Lemma 3 has another implication, which is mentioned here without a proof. Namely, 

within the agreeable set, the interests of the players are opposed for any change in one 

of the agreed actions.

C orollary 1. Let (m ^ m j ), G A(T,9) then

Ui(mi,mj) > Uiim'i,mj) =4> u ^ m ',rrij) > Uj(mi, mj)

2.6 F in ite gam es w ith  ordered strategy spaces

Let us now focus on finite games with ordered strategy spaces, Si =  { s i , ..., s™}. Inspired 

by the results in the public good game where actions are ordered in terms of contributed 

amounts, we seek to generalize two results gained there: First, that the non-positive
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marginal incentives to breach are necessary and sufficient for a strategy profile to be 

agreeable. Second, trading off the marginal harm of a deviation with its marginal benefit 

implies a conflict between efficiency and incentives to respect when there are decreasing 

returns to scale in the public good production whereas such a conflict is absent with 

constant returns to scale. We show that, when the guilt cost is convex in the harm, the 

first result generalizes to underlying games with concave payoff functions in each action. 

We generalise the second result as follows, there is a conflict between incentives and 

efficiency in symmetric games with strategic substitutes where payoffs are monotone in 

opponent’s action. Such a conflict tends to be absent in symmetric games with strategic 

complements and monotone payoffs in opponent’s action.

We now adopt some new concepts and notational simplifications. We denote the 

action sj1 by its order label n so that for k 6 Z, s f  +  k =  s”+fe. Also for s G S  we 

let s +  k =  (si +  k, Sj +  k). We let the marginal benefit from breaching be defined as 

) )  =  bi(rrii,mj,mi—1), and the marginal harm as 77(771*, rrij) =  /i*(77i*,raj,m*—1). 

Thus (3i(m +  k) =  Pi{rrii +  k , rrij -Ik), rji(m-\-k) =  +  k, rrij +  k), and u*(ra +  k) =

Ui(rrii -f k, rrij +  k) for k E Z.

We first set the scene by making further assumptions on the underlying game. In 

addition to supposing that the game is finite, we suppose that

{1 }  The payoff of player i  is increasing in the action of player j

{2 }  The player’s payoff is concave in her own action and in that of the opponent. That 

is, for all s

5i (s)  =  Ui(si  +  1, Sj)  -  Ui(si ,  Sj)  -  [uj(si, Sj)  -  Ui(si  -  1, Sj)] <  0 

and for all s

(J j ( s )  =  Uj(Sj  +  l , S j )  -  Uj( Sj , Si )  -  [ U j ( S j , S i )  -  Uj(Sj  -  1 ,  S i ) ]  <  0

{3 }  The payoff functions are supermodular (so that actions are strategic complements). 

That is for all s

0i(^) =  -̂) 'U’ji.&j 1> 1)] — 0*

These properties are satisfied in the public good game, but in a degenerate manner: 

for all s, <$i(s) =  <Ti(s) =  4>i(s) =  0. The first assumption is without loss of generality. 

Indeed, if we reverse the ordering of strategies of both players, the payoff will be de­

creasing in opponent’s action and, yet, concavity and supermodularity of the payoffs are
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unaltered. Thus, symmetric games with decreasing payoffs in opponent’s action can be 

analyzed using the same artillery.

Also, we make further assumptions on the guilt cost We assume that it is convex 

in the harm, hj, and in the agreed payoff, V{, and that it is supermodular in its two 

arguments

{4} g is convex in hj

{5} g is convex in Vi and supermodular in its arguments.

Notice that the fact that the payoff is concave in the opponent’s action implies that 

the harm hj is a convex function of s*, since the harm is just a rescaled negative of the 

underlying game payoff, hj(m,Si) =  Uj(m) — Uj(mj,Si). Thus, by assumption {4}, the 

guilt cost is convex in s* as a composite of two convex functions. Notice that assumption 

{4} rules out constant guilt cost, (2.1), for instance, since with that specification guilt is 

concave in harm.21 On the other hand, the underlying game payoff Ui is concave in S{.

Consequently, the problem of choosing the optimal deviation given that the opponent

respects is a simple convex optimisation problem. Hence, checking that neither prefers 

to breach the agreement marginally is necessary and sufficient for an agreement to be 

incentive compatible.

To simply formulate such a condition, we extend the concept of the marginal incentive 

to breach from the public good game example.

D efin ition  1. (Marginal incentive to breach)

If Ui(m{ — 1 ,m j )  — Ui(m) > 0 

Bi(m,0i) = Pi{m) -  Oig(vi(m),rij{m))

Ifui(mi — 1 ,m j)  — Ui(m) <  0

= Pi(m)

When Ui{rrii — 1, m j)—Ui(m) < 0, there is certainly no incentive to deviate downwards 

but there may be an incentive to deviate upwards. The fact that B d o e s  not 

involve any guilt cost when Ui{nrii — 1 ,m j)  — Ui(m) < 0 is due to the fact that, by 

assumption {1}, an upward deviation does not make the opponent worse off and thus 

the player does not suffer from guilt. Consequently, assumption {1} on the underlying

21 This will imply that the model of Ellingsen and Johanneson (2004) cannot account for the differences 

in efficiciency results of Isaac, McCue and Plott (1985) and Isaac and Walker (1988).



CHAPTER 2. PRE-PLAY NEGOTIATIONS 39

game payoffs together with lemma 3 gives us a necessary condition for an action profile 

to be agreeable. The agreement must belong to the following set22

M p =  {m\iLi(rrii,rrij) is non-increasing in m* for i =  1,2} (2-16)

If it does not, then the player can gain in UG payoff by breaching and, by doing so, she 

does not harm the opponent.

Next, we establish a necessary and a sufficient condition for agreeability that gener­

alises our finding in the public good game. Above we made the remark that, due to the 

convexity of the problem, there is no incentive to breach the agreement at the margin if 

and only if there is no incentive to breach at all. Second, incentive compatibility implies 

individual rationality when off the underlying game best reply curves by lemma 1. Thus, 

we have the following.

P roposition  4. Let rrii 7̂  BRi(nrij) and m,i £ Let { f} , {2} and {4} hold.

Then an action profile is agreeable for i if and only if the marginal incentive to breach

is non-positive.

Proof. See appendix. □

As the terms of the agreement are altered, the marginal incentive to breach is affected 

through three channels: i) the direct effect through the marginal benefit from breaching; 

ii) an indirect effect through the marginal harm on the opponent; iii) an indirect effect 

through the agreed payoff. The latter two are indirect in that they affect the marginal

incentive to breach through the marginal guilt cost.

In the public good game, we found that the marginal incentive to breach is monotone 

in each agreed action. We can generalize this property. Let us first consider how a change 

in one agreed action affects the trading off of benefit and harm from breaching.

Let us start with the effect of the agreed action of player i, mi. It is necessary that an 

agreeable action profile lies in Mp- But within Mf , the player’s payoff must be decreasing 

in her action. Thus, the effect of a player’s agreed action on her marginal benefit from 

breaching is nothing but the negative of the second derivative, —6. Thereby, increasing 

a player’s agreed action increases her marginal benefit from breaching. Similarly, the 

effect of mi on rjj is simply the second derivative, <7, since the harm is itself a rescaled 

negative of Uj and breaching takes place downwards. Thus increasing mj increases Pi and 

decreases rjj and both these effects have a positive impact on the marginal incentive to 

breach.
22Except for rm =  s" of course.
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The effect of rrij on Pi and rjj rests on the strategic complementarity23 of actions. 

Due to strategic complementarity, if the opponent increases her action, then the player 

has a stronger incentive to increase her own action. Since breaching takes place down­

wards, increasing the opponent’s agreed action dampens the underlying game benefit 

from breaching. On the other hand, the higher the opponent’s action, the more harm is 

inflicted on her by marginally decreasing the own action. Strictly supermodular games, 

where <t> >  0, constitute a set of games where such complementarities are present. The 

following lemma summarizes the effects of changing the terms of the agreement on the 

trade-off between the benefit and the harm of breaching.

Lem m a 4. Pi(rrii -f I,rrij) — Pi(mi,rrij) =  —<5»(s) 

r)j(rrii +  1 ,rrij) -  r)j(rrii, rrij) =  &j(s)

Pi(rrii,mj +  1) -  Pi(mi,rrij) =  ~d>i(si,Sj +  1) 

r)j(mi,rrij +  1) -  r)j(rrii, rrij) =  <t>j(sj +  1, «*)

Proof. See appendix. □

Now consider the third effect - the agreed payoff effect - of rrii and rrij on the marginal 

incentive to breach. This effect goes through the agreed payoff. Corollary 1 together with 

{1} imply that the agreed payoffs change monotonically in the agreeable set: increasing 

own agreed action decreases the agreed payoff and increasing the opponent’s action 

increases payoff. Thus, when rrii is increased, also the agreed payoff effect has a positive 

impact on the marginal incentive to breach. On the other hand, there is a negative 

impact when rrij is increased. Thus the agreed payoff effects are aligned with the marginal 

harm and benefit effects. Thus, in supermodular games, increasing an opponent’s action 

decreases the marginal incentive to breach.24 Similarly, increasing the own agreed action 

increases the marginal incentive to breach.

P roposition  5. Let { 1}, {2}, {5} ,{4} and {5} hold. Then i's marginal incentive to 

breach is increasing in mi and decreasing in mj in the agreeable set.

Proof. See appendix □

Notice that the agreed payoff reflects a player’s preference ordering of agreements 

conditional on both respecting. Thus, keeping one of the actions fixed and changing the

23 See Bulow et al. (1985).
24Also, supermodularity of g is needed so that the interplay between the agreed payoff and the harm 

effect in the guilt cost does not contradict other effects.
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other in symmetric games with strategic complements, the preference over agreements 

and the incentive to respect them are aligned in the agreeable set. Yet, in symmetric 

games with strategic substitutes where <f> < 0, there is some conflict in the preference 

over agreements and the incentive to respect them.

Furthermore, this implies that, apart from the agreed payoff effect, in symmetric 

submodular games where {2} holds, efficiency and incentives to respect are in conflict. To 

see this, notice that no agreement where a player is required to choose an action smaller 

than her underlying game best reply is efficient. Symmetric profiles that Pareto-dominate 

the equilibrium are such that both agreed actions are higher than in equilibrium. But, 

increasing both actions by one step, increases the marginal benefit from breaching and 

decreases the marginal harm on the opponent. Thus, abstracting from the agreed payoff 

effect and only focusing on the trading-off of harm and benefit, the incentive to breach 

is increased.

Theorem  1. L e tT satisfy {1}, {2} and<j> <  0. Lets* be its unique symmetric equilibrium 

with Pi(s^,Sj) =  0. If Ui(s* +  k) — u(s*) >  0 for k G Z then (3i(s* +  k) >  0 and 

T}i(s* + k )  <  r]i(s*).

Proof. See appendix. □

While theorem 1 establishes a conflict between efficiency and incentives to respect, 

we know on the other hand that in the public good game efficiency and the incentives 

to breach may well be aligned: with constant returns to scale, an efficient action profile 

can be agreed upon if and only if an interior non-equilibrium action profile can be 

agreed upon. In theorem 2, we establish that this holds more generally in symmetric 

supermodular games.

The result is not as robust as the conflict result, however. We need some further, 

not very restrictive assumptions which are satisfied in many examples. Either we need 

to suppose that guilt is unaffected by the agreed payoff (7 =  0 in the public good 

example above) or we suppose that the UG payoff is convex in identical changes of 

both actions. For the latter case, when the UG payoff is convex in this way and the 

payoff is increasing in such changes, it is increasing in symmetric changes from the 

symmetric interior equilibrium up to the symmetric efficient profile where actions cannot 

be increased any further. Thus, a symmetric non-equilibrium action profile is agreeable 

if and only if an efficient action profile is.

This argument suffices for the case that best reply curves are not particularly steep. 

When they are steep, there may be multiple equilibria and we can use Milgrom and
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Roberts (1990) result that in supermodular games when payoffs are increasing in op­

ponent’s action, the equilibria are ordered in terms of efficiency. Thus, the profile of 

maximal contributions is efficient and also agreeable as an underlying game equilibrium.

T heorem  2. Let {1},{2} and {5} hold. Let 5i(s),cri(s) and (f>i(s) be constant fo r i  =  1,2. 

Let r  be symmetric and let s* be its inefficient Nash equilibrium such that Pi(s*) =  0 for 

i =  1,2. Let g satisfy {4}. Suppose either (a) that </> +  a >  0 and g(v',ri) =  g(v,rj) for 

all tj and v ',v  >  0 or (b) that 2(j> +  5 +  a  > 0 and g satisfies {5}.

Then, a symmetric efficient s is agreeable iff a symmetric s ^  s* is agreeable

Proof. See appendix. □

Proposition 5 shows that in games with strategic complements the marginal incen­

tive to breach has intuitive monotonicity properties: as the action of the opponent is 

increased, a player’s incentive to breach decreases whereas the opposite is true when the 

player’s own action is increased. On the other hand, theorem 2 shows that in supermod­

ular games, players are able to reach symmetric efficient agreements if anything else can 

be agreed upon that is symmetric and that is not an interior UG equilibrium.

Notice again, that assumption {1} was made without loss of generality. All we need is 

symmetry. If the payoff is decreasing in the opponent’s action, we can restore assumption 

{1} by reversing the ordering of each strategy set. This will affect neither the concavity 

of the UG payoff in each action nor the super- or submodularity of the underlying game 

payoff.

In addition to the linear public good game studied above, examples of symmetric 

supermodular games include, for instance, team work designs and partnerships, or the 

Bertrand duopoly with imperfect substitutes. Yet, as we have seen the monotonicity 

properties and efficiency results do not generally hold in symmetric submodular games 

where the payoff is increasing in opponent’s action.

Examples of symmetric games with strategic substitutes are the game of chicken (see 

section 2.5) and public good provision with a concave production technology. The chicken 

is a stylized version of a public good game with a provision threshold. Experimental 

evidence on the effect of communication in the public good games with a threshold 

is mixed (Ledyard, 1995). On the other hand, Isaac, McCue and Plott (1985) find 

rather weak effects of communication on efficiency in a public good game with decreasing 

returns technology whereas Isaac and Walker (1988) find a very strong positive effect 

of communication on efficiency with a constant returns to scale technology. Thus, our
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theory organizes rather well the differences in the effects of communication in public 

good games.

The next section studies a Cournot duopoly as an example of a symmetric game with 

strategic substitutes. Thus, the incentives to respect more collusive agreements tend to 

be weaker.

2.7 Cournot duopoly

Let us now study an example to see what happens when supermodularity of the underly­

ing game is violated. We transform a linear Cournot duopoly with imperfect substitutes 

where profits read as ni(q) = ^  — qj)qi and the strategy set is qi E {0,..., 10} into

an equivalent game25 where the strategy sets are S{ E { —10, ...,0} and the underlying 

game payoff of player i reads

19 1
Ui(si, Sj) =  m a x { - ( y  +  -s* +  Sj)si, 0} (2.17)

This transformation makes i ’s payoff increasing in opponent’s action but preserves 

symmetry, concavity of payoffs {2}, and submodularity {3}. First, increasing player 

i's action by one unit from S{ increases the payoff of the opponent:

Ui(Si)Sj -j- l)  Ui^Si, Sj) — Si 0 (2.18)

Second, 5 =  —1, (7 =  0. And third, 4> =  — 1. Thus, all other assumptions hold but is {3} 

violated.

Condition (2.16) requires that i's marginal payoff, —10 — Sj -  Sj, is non-positive if 

s is agreeable for i. Thus, an agreeable action profile satisfies m  E {s|10 +  sj +  S{ >  

0, i =  1,2}. Notice, that player i ’s underlying game best reply to Sj is

BRi{Sj) =  -1 0  -  sj (2.19)

25Notice that despite the negative strategies, this is indeed a game equivalent to a Cournot duopoly 

with imperfect substitutes. In an equivalent game, Si  6 [0,10] and u l ( s i , ' s J ) =  max{(-y — |s i  — 

Sj)si,0} where =  —Si. The transformation is done in order to satisfy assumption {1}. Both the 

transformation and the orginal game are submodular. The payoffs are chosen to make the best reply 

mapping simple. Vives (1989) shows that it can be transformed into an equivalent game which is 

supermodular by setting ? 2  =  -S 2 - Such a transformation would yield <f> =  1 >  0 and S  +  2<f> +  a =  1. 

However, then both payoffs are not increasing in the action of the opponent and we would lose the 

symmetry of the game.
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Thus the unique underlying game equilibrium is s\ =  —5 =  S2 which gives payoff 

u* — Ui{5,5) =  10 to both players. At this equilibrium, the benefit from breaching 

is exactly zero, /3(5,5) =  0 as required in theorem 2.

Let’s suppose that the guilt cost is as in (2.2). This guilt cost is supermodular in 

its arguments and convex in Ui as required in proposition 5. The proof of proposition 

4 states that, off the best reply correspondences, a non-positive marginal incentive to 

breach is necessary and sufficient for incentive compatibility. Each player wants to 

deviate downwards. The marginal incentive to breach writes

10 +  Sj +  Si +  0i[ui(s) -  10]sj (2.20)

This is increasing in a player’s own action but the effect of the opponent’s action is 

ambiguous (as opposed to proposition 5 which assumes that the game is supermodular).

So as to the effect of the own action, since <5 =  — 1, a =  0 increasing a player’s agreed 

action increases the player’s marginal benefit from breaching and leaves the marginal 

harm unaffected. Within the agreeable set, the agreed payoff effects are as before: thus, 

the agreed payoff decreases in the player’s own action. To summarize, the marginal 

incentive to breach is indeed increasing in a player’s own action.

Yet, if we consider the effect of the opponent’s action, now since the game is submod- 

ular, (j) — ~1, rather than supermodular, increasing the opponent’s action decreases the 

marginal harm on the opponent and decreases a player’s marginal benefit from breach­

ing. Agreed payoff increases in a player’s own action, as before. The agreed payoff 

effect and the other two effects now run counter to each other. Thus, the effect on the 

opponent’s incentive to breach is ambiguous: the monotonicity of the marginal incentive 

to breach in agreed actions (proposition 5) is lost.

Now, let us move on and consider theorem 2 which studies whether efficient agree­

ments can be made, if any. Figure 2.3 studies the positive quantity equivalent of the 

game.26 There, we suppose that the proneness to guilt is $i =  \  for both players. The 

action profiles marked with a plus sign are agreeable for player 1 and the action profiles 

marked with a cross are agreeable for player 2. Thus, the action profiles marked with an 

asterisk belong to the agreeable set. There are two symmetric action profiles in this set: 

the equilibrium (5,5) and (4,4). Yet, the efficient symmetric action profile (3,3) (marked

26The relevant figure for the negative quantity game studied analytically is the projection of figure 2.3 

through the orgin to the negative quadrant.
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Figure 2.3: The agreeable set in the Cournot duopoly

with a circle) does not belong to the agreeable set.27

The underlying game equilibrium (—5, —5) is agreeable by proposition 2. To see that 

(—4, —4) is agreeable, we check that the marginal incentive to breach is negative, 10 — 

4 — 4 — |  [14 — 10] < 0 .  For s =  (—3 — 3), the marginal incentive to breach reads 

10 — 3 — 3 — |  [15 — 10] =  y  > 0  and thus, for 6i =   ̂ i =  1,2, players can agree on 

s =  (—4, —4) but not on s — (—3, —3).

This is because marginal symmetric changes of both actions (i) increase the marginal 

benefit by — 6 — (f> =  2 where both terms axe strictly positive, (iib) decrease the marginal 

harm by a +  4> =  — 1, and (iia) change the marginal effect of an increasing agreed payoff 

by S +  20 +  5 =  —4 < 0. The negative marginal effect on the marginal incentive to 

breach (iia) is vanishing but the positive marginal effects are constant and thus getting 

relatively stronger as the agreed payoff is increased by symmetric changes of both actions. 

Thus, even if there is a non-equilibrium action where guilt offsets the underlying game 

incentive to breach, the incentives to respect a more efficient action profile are smaller. 

Consequently, we also lose any efficiency property akin to that in theorem 2.

27To see that (3,3) is efficient, maximize

(2-21)

This is indeed concave in a. Looking at first order effects, a unit increase in both actions increases the 

expression in the brackets if and only if a  < - ¥ •  The agreed payoffs for the symmetric action profiles 

corresponding to the nearest two integers of a  =  — -yare u(—3, —3) =  15 and u(—4, —4) =  14. Thus 

s =  (—3, -3 )  is efficient.
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2.8 D iscussion

The main contribution of this chapter is to provide a game theoretic approach to pre-play 

agreements by negotiations, conventions or social norms when people may feel guilty 

about breaching an agreement. The model incorporates the most important stylized 

facts that research in social psychology and experimental economics has established 

about guilt.

We show that guilt, conventions and pre-play negotiation may have dramatic effects 

on strategic interaction. Trivially the set of agreeable outcomes may be larger than the 

set of underlying game Nash equilibria, since the guilt cost provides an extra incentive to 

comply to an agreed action profile. Agreements that are not equilibria in the underlying 

game are credible and respected in the enlarged game.

Moreover, the dramatic effects may prevail even if monetary stakes are high: in the 

prisoner’s dilemma, increasing the benefit of defection sufficiently while keeping the harm 

on the opponent constant will restore the cheap talk prediction that an agreement on 

cooperation will be breached; yet, no matter how large the benefit of lying, an agreement 

on cooperation will be credible when the harm that the defection inflicts on the opponent 

is sufficiently high. Notice also that a player does not become more reluctant to agree on 

cooperation when she suffers more from defection. Quite the opposite: greater potential 

harm on herself increases the opponent’s relative preference for cooperation since the 

opponent’s promise to cooperate may become more credible.

The theory presented is in line with results from public good experiments without 

contribution thresholds where communication significantly increases contribution levels 

(Ledyard, 1995). Our theory tells us that for sufficiently high marginal per capita return, 

the benefit of breaching a cooperative agreement is offset by the harm on opponents. 

Thus, cooperative agreements become credible.28

This result extends to a large class of games with a public good structure: teams 

production, collusion in Bertrand and Cournot duopolies etc. Yet, there is an important

28Game theory generally abstracts from where utilities come from. That all agents contribute nothing 

to the public good implicitly assumes that players Eire money maximizers. Empirical evidence shows that 

people contribute positive amounts even when the game is played without communication. Distribu­

tional preference models map monetary payoff profiles to individual utilities. Thus, the underlying game 

(in utils payoffs) may differ from a public good game and it may have equilibria where positive amounts 

are contributed. Even if distributional preferences may be present in the game that is played without 

communication, guilt combined with pre-play negotiation complements distributional preference moti­

vations in providing the extra incentive to contribute that is in line with what public good experiments 

have found.
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distinction as to whether the theory predicts an efficient or an inefficient agreement: in 

symmetric games with strategic complements, a symmetric non-underlying game equi­

librium is agreeable if and only if a symmetric efficient action profile is agreeable. On 

the other hand, in symmetric games with strategic substitutes, there tends to be a con­

flict between the incentives to respect an agreement and the efficiency of the agreement: 

trading off private marginal benefit and the marginal harm on the other makes it harder 

to agree on more efficient actions.

Experiments provide a strong support for this finding. Isaac, McCue and Plott (1985) 

adopt a decreasing-returns-to-scale production technology for the public good. This im­

plies that actions are strategic substitutes. Despite the positive effect of communication 

on efficiency, they find that the average contribution levels fall far below the first-best 

(15% efficient). Isaac and Walker (1988) adopt a constant-returns-to-scale technology 

implying that actions are weak strategic complements. They find a strong positive effect 

of communication on efficiency. Average contribution levels are up to 99% efficient.

Furthermore, notice that some public good games with a contribution threshold have 

subsets of the strategy space where actions are strategic substitutes rather than strategic 

complements. For instance, the stylized version of a public good game with a threshold, 

the chicken game, has strategic substitutes. In the threshold public good experiments 

the effect of communication on contributions has not always turned out to be significant. 

Thus even experiments in threshold environments seem to lend support for our theory.

Second, as indicated above, our results can be extended to analyze the enforcement 

power of commonly known conventions and social norms.29 This is because we abstract 

from the negotiation protocol and only analyze the interaction when an agreement is in 

place. Norms here require choosing a particular action in a given situation.30 In this 

case, of course, no lies are told per se. Yet, research in social psychology suggests that 

guilt about transgressing such exogenous norms is stronger if more harm is inflicted on 

others31 and, thus, property {A} among others remains valid. Thus the theory can be 

interpreted as a tractable model of let-down aversion (Charness and Dufwenberg, 2003) 

where pre-play negotiation or conventions establish commonly known, coinciding and

29I thank Joel Sobel for poiting this out.
30Social norms can be considered to be established by a community’s moral discourse - - grand scale 

pre-play negotiations: When John Doe violates a social norm, the violation launches a vivid discourse 

by others in the community. This discussion may involve arguments for and against John Doe’s action. 

If the social norm is well established arguments are mostly against and parties quickly converge into an

agreement on how John should have behaved.
31For evidence see related literature in psychology in section 2.2.
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justified mutual expectations about behaviour.

The theory presented in this chapter has a further interpretation in addition to 

face-to-face communication and conventions in one-shot games. Analogous results to 

those presented in this chapter would be obtained if we suppose that players have zero 

proneness to guilt and they informally agree on a stationary outcome in an infinitely 

(and infinitely often) repeated analog of the underlying game. The punishment paths are 

not negotiated, however, but they are exogenously determined (in a commonly known 

social contract, for instance). If the agreement is breached, it takes some time to detect 

breaching, and, when detected, players revert to mutual minmax strategies for a length of 

time that depends on the deviator’s agreed payoff and the harm she inflicts on the other. 

As stated in the introduction, the origin of guilt, according to psychologists, resides in 

such close communal relationships (repeated games) where the prevailing social contract 

gets internalized.32

This chapter has not analyzed the effect of the negotiation protocol on the agreement. 

A cooperative solution concept or a bargaining protocol can be applied in predicting 

which agreement will be chosen from the set of agreeable profiles. When proneness to 

guilt is zero, the smallest agreeable set is the set of (non-cooperative) Nash equilibria 

of the UG. When the proneness to guilt is infinite any agreement that no player can 

unilaterally Pareto-improve upon is agreeable. Thus as we increase the players’ proneness 

to guilt from zero to infinite, we move from an entirely non-cooperative prediction to 

a largely cooperative one. We study the effect of the negotiation protocol in the next 

chapter.

Another dimension for future research is the relaxation of the assumption of complete 

information of proneness to guilt types. The choice of an optimal agreement when 

information is private requires trading off the own agreed payoff with the probability 

that the opponent breaches the agreement.33 On the other hand, a dynamic setup of 

incomplete information on proneness to guilt would allow for the players to build up 

reputations. First, it may be optimal for types with high proneness to guilt to build up 

a reputation for a lower proneness to guilt so that they axe proposed higher shares of 

the surplus in the future. Second, types with a low proneness to guilt may be willing 

to build up a reputation for a higher proneness to guilt in order to be able to reach

32 See appendix A for further details.
33Notice, yet, that if the information on proneness to guilt is private, signalling is not an issue: the 

maximisation problem conditional on respecting is the same independently of the type, and thus all 

types that intend to respect behave identically. Any type who intends to breach is thus detected. Thus 

her opponent knows that she will not suffer guilt.
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agreements with a larger fraction of types. From a similar perspective one can study the 

evolution of proneness to guilt for a given stochastic process of games and matches.



Chapter 3

Beneficial Im patience

3.1 Introduction

Time is money. Other things equal people prefer getting what they want sooner than 

later. Also pre-play negotiations are generally a dynamic process where people prefer 

an early agreement to a late one.

In alternating offers bargaining (Stahl, 1972; Rubinstein, 1982) players negotiate 

about how to divide a surplus. One of the players first proposes a division to the other 

player who then either accepts or rejects the offer. If he accepts then players divide the 

surplus accordingly. If he rejects then he gets to propose a division to the player who 

proposed first. Players alternate in their offers until they reach an agreement.

Rubinstein (1982) shows that players’ time preferences allow for a unique subgame 

perfect equilibrium (Selten, 1975) prediction on how the surplus will be split in this game. 

Time preference is defined as patience: an impatient player has a stronger preference for 

current to future than a patient player. Rubinstein shows that a player’s equilibrium 

share increases in her patience. This is because the threat of a postponed agreement 

renders an impatient player more willing to accept the current proposal even with worse 

terms.

Yet, intuition suggests that in a more plausible model of negotiation a player’s equi­

librium payoff might not monotonically increase in her patience. An impatient negotiator 

tends to get frustrated more easily. This added emotional motivation triggered by greater 

impatience might provide the impatient player with an advantage: she might be able to 

threaten credibly when a more patient and thus a less frustrated player cannot.

More specifically impatience may operate together with reciprocity. A player is 

reciprocally motivated if she has an intrinsic incentive to sacrifice her own payoff in

50
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favour of the opponent’s payoff, if the opponent is willing to do so. We show that if 

players are reciprocally motivated, the player may gain from being more impatient in 

the alternating offer pre-play negotiations: A postponed agreement is equivalent to the 

opponent not behaving reciprocally since the opponent is reducing the player’s payoff 

by postponing the agreement. The opponent behaves even less reciprocally if the player 

is more impatient since an impatient player suffers more than a patient player if the 

agreement is postponed. Thus a reciprocally motivated impatient player can credibly 

threaten an opponent who contemplates postponing an agreement with actions that are 

not credible for a patient player.

This chapter elaborates this idea in the two-player pre-play negotiation framework 

put forward in chapter 1. Before an underlying game is played, players negotiate how 

to play the game. If an agreement on how to play the game is reached, players may 

feel guilty about breaching the agreement. Player’s guilt has two reciprocal components: 

The first, guilt is increasing in the player’s payoff conditional that both respect the 

agreement: ’’the nicer you are towards me the more guilty I feel about breaching the 

agreement”. The second, guilt is increasing in the harm that the player inflicts on the 

other by breaching.

In this chapter we introduce time preferences and the specific dynamic pre-play 

negotiation protocol described above to the framework of chapter 1. We ask whether a 

player benefits from being more impatient in such pre-play negotiations. We show that, 

indeed, impatience may be beneficial.

Yet, we also show that a player may gain from being more patient. Moreover, she 

may gain even more than suggested by Rubinstein (1982). To see this, notice that a 

guilt-prone opponent suffers from guilt more if she harms the player more by breaching. 

But a given deviation by the opponent from a future agreement reduces more a patient 

player’s payoff than an impatient player’s payoff. Thus, since the opponent suffers more 

if she harms the player more, a guilt-prone opponent is less willing to betray a patient 

player if the agreement is postponed.

This chapter is organized as follows. Section 3.2 presents the model. Section 3.2.1 in­

troduces the underlying game. Section 3.2.2 introduces the negotiation protocol. Section 

3.2.3 introduces the entire game and the preferences therein. Section 3.2.4 parametrises 

time preferences in terms of discount factors. Section 3.3 provides an example showing 

that impatience may benefit a player. Section 3.4 has the general results. Section 3.5 

discusses.
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3.2 M odel

3.2.1 T he underly ing gam e

In chapter 1 we allow for any normal form underlying game. Here we choose to consider

a very specific underlying game in order to build a close parallel to the bargaining

problem of dividing a pie of size one (Rubinstein, 1982). The two-player game is given 

by T == {Si, Ui(s) : S —> R} where each player’s action set is [0,1]. A combination of 

actions is an outcome s = (S j , S j ) E S  = Si x Sj. The underlying game payoff of player 

i is Ui(s)

1 -  si if s i  =  s 2 £  (0,1)

1 — si — 77 if si > S2 or S2 =  1 and si > 0

1 -  S2  +  K if Si < S2 <  1
Ui(s) =

and that of player 2 is

0 if si =  0 and s2 =  1

S2 if Si =  S2

s2 -  r/ if si <  s2 <  1
w2(s) =

si +  k if si > s2 or s2 =  1 and si > 0 

0 if si =  0 and s2 =  1

where k >  0 and 77 > 1.

There is a unique equilibrium, (0,1), where players’ payoffs are zero. This is an 

equilibrium in weakly dominant strategies. Payoffs are strictly positive for both if and 

only if actions are identical. If actions are not identical, a negative payoff results for one 

of the players.

To fix ideas, suppose that players have full commitment power and they can nego­

tiate how to play. Suppose further that without an agreement, players play the unique 

equilibrium in strictly dominant strategies. One of the players would thus always veto 

an agreement where actions are not identical since one of the players gets a negative 

payoff if she commits to such an agreement and this player can guarantee zero payoff by 

vetoing.

The set of strictly positive payoffs is the two dimensional unit simplex in figure 4. 

Thus the pre-play negotiation problem is analogous to the problem of sharing a pie of 

size one.

The underlying game does not provide incentives to stick to an agreement on identical 

actions, however. An agreement where each player gets a positive payoff can be breached 

by choosing a different action than the opponent. If the actions chosen are not identical
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U2

▲
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U i

Figure 3.1: Negotiable payoffs and breaching by player one

(not on the diagonal of the strategy space), one of the player gains k and the other loses 

77 > 1.

Yet, here players may be able to commit to the agreement. The commitment power 

depends on the emotional bonds provided by guilt feelings about breaching the agree­

ment. We will return to this issue in section 3.2.3.

In figure 2.1 k — |  and 77 =  | .  We consider an action profile ( | ,  | )  which gives payoffs 

(g, | )  if respected by both. This is the origin of the vector from the top right hand 

quadrant to the bottom right hand quadrant. The vector points to payoffs ( |  +  «, |  — 

77) that result if player 1 chooses her weakly dominant equilibrium strategy si =  0 and 

player 2 sticks to playing | .

3.2.2 T h e N eg o tia tio n  P ro toco l

The players can negotiate before playing the underlying game. The negotiation protocol 

that players use parallels the bargaining protocol of Rubinstein (1982). In particular, 

the protocol is an infinite horizon extensive form game where:

• Each player decides first whether to unilaterally enforce disagreement d
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At period t  =  0:

1. Player 2 proposes an agreement m e M  =  S  U {d}  (M  is the set of agreements, 

see chapter 1).

2. Player 1 accepts or rejects.

3. If the proposal is accepted, then m  is the agreement.

4. If the agreement is rejected, then the roles axe reversed, and the game continues 

from (1.) with period t +  1

•  If no agreement is ever accepted, then the payoff for each player is 0.

Players talk about how to play the game: the terminal nodes of negotiation axe 

associated with agreements m  G 5u {d } which axe either action profiles of the underlying 

game or disagreement, d. Yet, since the negotiation is dynamic, the agreement is also 

characterized by the timing of the agreement. Thus the terminal nodes axe mapped into 

M  x {0 ,1 ,...}. If m  G 5, then mi and m2 axe the agreed actions of playexs one and two 

respectively.

The agreed payoff of an agreement reached at time t is the payoff that the player 

gets if both respect the agreement, i4(m) where m 6 S. If player i deviates from 

the agreement, we get the harm on j  by subtracting j's  payoff at the deviation profile 

from the payoff at the agreed action profile, fi* (m, Si) =  u*(m) — u*(mj, s*). Similarly, z’s 

benefit from breaching is 6*(m, Si) = u\(si,mj) — u\(m). Notice that, since the underlying 

game payoff depends on the timing of the agreement, so do these two expressions. Also 

notice that each player can guarantee zero payoff either by enforcing disagreement or by 

always proposing the equilibrium in UG and rejecting any offer.

3.2 .3  T h e  entire gam e

As in chapter 1 players axe prone to guilt. If there is an agreement in place, they feel bad 

about not doing their part of the deal. Chapter 1 considers general static negotiation 

protocols with patient players: the underlying game payoff is unaffected by the timing 

of the agreement and a player’s guilt, gi(ui(m ), hj(m, S { ) ) ,  depends on the harm and the 

agreed payoff.

Yet, if the negotiations axe truly dynamic, it is plausible to suppose that the parties 

prefer an early agreement to a late agreement. As in Rubinstein’s alternating offer 

bargaining players have time preferences. Thus the agreed payoff of a given agreement,
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the harm and the benefit decreases over time. Indirectly, guilt is a function of time,

The entire game payoff is additively separable in guilt and the underlying game payoff 

and takes the simple form

Ui(rrii,mj,Si,Sj-,t) =  u\(s) if Sj =  rrij

—0 i(max{u*(ra), O})̂
x (max{/i*.(ra, s*), 0})7 

u\(s) otherwise

where j,(p  > 0  and where the first two entries of U i .) are the agreed actions and 

the last two entries are the played actions of i and j  respectively.

Let us write the payoffs of player i and player j  respectively when player i deviates 

to S{ and player j  respects the agreement, Sj =  m j, as

U i{m i,m j,S i,m y,t) =  u\(m) +  b\{m, Si) (3.1)

—0i(max{u*(m), 0})¥>(max{hj(m, s*), 0})7 (3.2)

and

Uj(rrij, rrii, rrij, t) =  u*- (m) — hj (m, Sj). (3.3)

These expressions give players’ entire game payoffs in terms of the agreed payoff, the ben­

efit from breaching and harm inflicted on the other when i breaches but not j .  The incen­

tive to breach an agreement m  to S{ is the difference between the benefit from breaching 

and the guilt cost, B j(m ,S i;t,6 i) =  b^m^Si) -  0j(max{u*(ra),O})^(max{/^(ra,Si),0})7.
An agreement m is called incentive compatible if neither benefits from a unilateral 

deviation from the agreement

for all si e  Si Bi(m, Si\6 i) < 0  (ICi)

When this incentive compatibility condition holds for both players, the agreement m is a 

Nash equilibrium of the subgame where m is agreed upon, T(m; 6 ). On the other hand, 

an agreement m is called individually rational if neither prefers enforcing disagreement 

to agreeing on m  when both respect the agreement

u\(m) >  0 (HU)

Here it is assumed that if negotiation ends up with disagreement, players will play the 

Nash equilibrium of the underlying game and payoff 0 results. Notice that only profiles
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on the diagonal, si =  S2 , are agreeable since, at any other profile, the payoff of one of 

the players is negative - lower than in the equilibrium.

Lem m a 5. An agreement that differs from UG equilibrium is individually rational for 

both iff m i =  m 2 .

Since only individually rational agreements are ever agreed upon, without loss of 

generality, we can characterize the proposals and the agreement in terms of m2.

In figure 2.1 k =  |  and rj =  | .  At period zero players have agreed upon playing 

( | ,  | )  which gives payoffs ( | ,  | )  if respected by both. If player 1 deviates to s i =  0, the 

underlying game payoffs are (| + «, | -  rj). Yet, if player 1 is prone to guilt, the her 

payoff equals |  -f k  — ^lCl^Cf)7 and thus ( | ,  | )  is incentive compatible for player 1 if 

and only if k < ^ (g ^ C f)7.

Constant benefit and harm allow us to abstract from the consideration of an optimal 

breaching strategy: if breach of agreement takes place, the player will deviate to her 

weakly dominant strategy, s\ =  0 and S2 =  1 for players 1 and 2 respectively. Moreover, 

constant benefit and harm allow us to derive simple comparative statics.

3.2 .4  D iscou n tin g

Let us call 0 < Si < 1  the discount factor of player i. This parameter has two in­

terpretations in the literature: either the time preference of player i; or, if Si =  S-i, 

the probability that the negotiation continues at the following period. We focus on 

the former interpretation: if the outcome of the underlying game is s after t  rounds of 

negotiation, player i ’s payoff is S*Ui(s).

If players discount the future, the agreed payoff is directly affected by the timing 

of the agreement. Suppose that the discount factor of player i is Si and the guilt cost 

takes the form of (BD). The agreed payoff of player i for an agreement m  reached at 

time t  is u\{m\S) =  Stu^m). Thus the longer it takes to reach an agreement m G S  

the lower the agreed payoff of each player. Prom here on we suppose that players 

discount the future using discount factors Si, i =  1,2 and we suppress the notation 

u\{m) =  u\{m\ S) =  S\ui{m). Thus the player’s guilt cost for an agreement m  reached at 

t and for a deviation Si equals 0j(max{<^Ui(m),O})^(max{<^/i_j(m, Sj),0})7 and for an 

individually rational agreement mi =  m2, player 2’s incentive to breach to S2 =  1 reads

-Bjfm, I; 8 2 ) =  8 2 {i\,rri2Y { f y Y (3.4)
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3.3 The m ain result

Let us now show that a player may benefit from being marginally more impatient. 

Suppose that y  =  (p =  2  and 77 =  y/E, k =  1 =  0*, for i =  1,2 and suppose further

period two. Hence, since the players are identical and the game is practically symmetric, 

at period two, the agreeable set is nothing but the UG equilibrium {(0,1)}. Yet, there 

are many other agreements in the agreeable set in period one.

In period one, player 1 proposes

to make player 2 indifferent between breaching and respecting. Since (1) players are 

identical, (2) incentive to breach is decreasing in the agreed payoff and (3) the situation 

is symmetric around 5 , this is incentive compatible for player 1.

A standard subgame perfection argument suggests that player 2’s equilibrium pro-

Now notice that player 2’s equilibrium payoff, (3.6), is decreasing in her patience. 

Indeed, in this example player 2’s equilibrium payoff is not affected by the standard 

discounting effect since the negotiations end at period one. Impatience improves player 

2’s equilibrium payoff and the actions are adjusted in her favour unlike in standard 

bargaining (Rubinstein, 1982) where patience benefits a player.1

Yet, it is easy to see that guilt and patience may also jointly have a positive effect 

on a player’s equilibrium payoff. Looking at player l ’s proposal in period one, player 

l ’s share of the period one surplus is increasing in her patience 5i. This is not because 

of the standard direct effect of patience which is present in bargaining but because the 

harm that player 2 inflicts on player 1 by breaching in period one increases in <5i.

To sum up, there are three effects of patience on player l ’s equilibrium payoff: i) 

the standard direct effect identified in Rubinstein (1982), iia) the advantageous guilt 

effect through harm, iib) the disadvantageous guilt effect through agreed payoff. Effect 

(iib) was identified above. Effect (i) appears in the multiplier on the left in player l ’s

1 Bargaining is trivial since only the underlying game Nash equilibrium is argeeable.

that y i  < Si =  5-i < y  | . It is easy to check that the symmetric efficient agreement 

7712 =  \  is incentive compatible ((3.4) is non-positive for player 2) in period one but not in

(3.5)

posal at period zero is 7/1(771) =  < (̂1 — y g ^ ? )  and her equilibrium payoff is

(3.6)
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equilibrium payoff, £ i ( l  t 1 ), and effect (iia) appears in the denominator on the
y552

right.

3.4 G eneral case

Let us now relax the specific assumptions on the parameters of the model. Let us first 

consider player 2’s incentive to breach, (3.4). Notice that if for player 2, (IC{) holds as 

an equality, the expression is increasing in t if and only if >  Sj.

Thus if there is player i for whom

>  S ] ,  (3.7)

holds, eventually that player will not be able to commit to any other agreement but the 

equilibrium of the underlying game. We say that there is scope for negotiations if the 

set of agreeable profiles is a non-singleton set and it includes some UG non-equilibrium 

profiles. If (3.7) holds for at least one of the players, there is scope for negotiation for a 

finite length of time only.

Any agreeable action profile which is not an UG-equilibrium satisfies mi =  m2 by 

lemma 5. Thus the agreed action of player 2, m2, fully characterizes an agreement. From 

here on a proposal or an agreement m2 means an agreement (m i,m2) where mi =  m2.

The least upper bound for there being scope for negotiation is given by the largest 

t  such that there exists an m2 such that both incentive compatibility conditions are 

satisfied

%K -  e2(st2mi y { s ‘1riy < o
S \ K - 6 l ( S \ ( l - m 2 ) Y ( S t2 r , r <  < Q

or

The first condition in (3.8) requires that the incentive compatibility conditions are not 

mutually exclusive and the two latter conditions require that underlying game payoffs 

are feasible and individually rational. We call time T(6,5) the end of the scope of 

negotiation. Any agreement on a non-equilibrium profile made at time later than T{6 , 8 ) 

is not agreeable.

Lem m a 6 . If there is i such that > 8J, there is a finite scope for negotiation, 

T(Q, 5) < 00.
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Proof. At the boundary of the agreeable set 3.4 equals zero. When time increases by 

one, the positive term is multiplied by 8{ whereas the negative term is multiplied by

8f  5J. Thus the incentive to breach is increasing iff >  s j. □
Let m (9 ,5, t) be the equilibrium proposal of actions m \ =  m2 =  m (9 ,8 , t) made if the 

negotiation reaches t. Thus m {9,8 , T (9 ,8 )) is the proposal made at the end of the scope 

of the negotiation. If it is player l ’s turn to propose when the negotiation reaches the

end of its scope, it is clear that player 1 proposes the efficient agreement which player 2
f i l - V  T (0 ,S )  1_

is indifferent between breaching and respecting, ni2 (0 , 8 ,T (9 , 8 )) =  v (gAyfy.

The backward induction logic that we are familiar with from Rubinstein (1982) and Stahl 

(1972) suggests that, in the preceding round T (0 ,8 ) — 1, player 2 proposes the agreement 

which player 1 is indifferent between accepting and rejecting. Formally, player 2 would 

propose the agreement 1 — <5i(l — 7712(0, 8, T(0, <5))). Yet, for this to hold, we must ensure 

that this agreement is incentive compatible. We simplify here and derive a condition to 

guarantee that this is the case. Specifically, we impose a sufficient condition for 8 m  to 

be incentive compatible for both at t  — 1 if m  is incentive compatible at t.

Lem m a 7. If > and m is agreeable at t, then 8m is agreeable a t t  — 1 .

Proof. In the appendix. □

Suppose now that for both players, > 8J. By lemma 6, this implies that there 

is a finite scope for negotiations. But, by lemma 7, this also implies that the backward 

induction logic initiated from the proposal at the end of the scope of the negotiations 

delivers the first round proposal and we need not to worry about the incentive compat­

ibility of other agreements on the equilibrium path than the agreement proposed at the 

end of the scope of the negotiations.

Suppose further that it is player 2 who receives the proposal at the end of the scope of 

negotiations, T (0 ,8 ). She is proposed the efficient agreement at which she is indifferent
i - i

s v  * —between breaching and respecting, m 2 =  ( s~ ) (w!b r )v - If 9? > 1, this expression is
6*

decreasing in 8 2 . Thus there is a beneficial effect of impatience for player 2 on the last 

round proposal.

Yet, this is not sufficient to show that impatience is good overall for two reasons: 

firstly, more impatient players discount future payoffs more heavily and the standard 

effect of patience may dominate; secondly, decreasing 82 may alter the end of the scope 

of negotiation to T(9,8) — 1 (see equation 3.8). The latter happens if and only if

(3.9)



CHAPTER 3. BENEFICIAL IMPATIENCE 60

We will rule out the latter by assuming that (3.8) but not (3.9) holds. Moreover, we 

formally disentangle the standard effect of paticence (former) from the effect of patience 

on the extent of guilt. In order to do so let us write down the equilibrium payoffs of the 

two players. We assume now again that p  and 7 can be arbitrary as long as condition 

3.7 is satisfied and thus the equilibrium agreement is derived from m (9 ,5, T (9 ,6 )) using 

the backward induction principle that keeps the receiver at t indifferent between the 

proposal at t  and the equilibrium path proposal at t  +  1.

P roposition  6. Let S\ =  62 , 7 > 1 and n e  M.

• If T (9 ,5) e  2n

U l(m X & ) =  +  (51h j r{-e'S)ftm {e j ,T {e ,6 ) )  (3.10)

.  IJT($,6)  e  2 n

8 , T (9 ,6))

(3.11)

.  ui = i - u ;

Proof. In the appendix. (Special case of Binmore (1987, p.93)) □

We define the guilt effect of patience as dr̂ j~±D. and the direct effect of

patience as dUi • As identified by Rubinstein (1982), the direct effect of player’s 

patience on her equilibrium payoff is positive. The effect on the opponent’s equilibrium 

payoff is negative.

Lem m a 8. dlJl ^ 6\ > 0, d̂ ^ t,S) <  0

Proof In the appendix. □

Being more patient benefits the player, since a patient player suffers less from post­

poning the negotiation than an impatient player and thus a threat of postponing the 

agreement is more credible.

Yet, in section 3.3, we show that guilt may have the opposite effect on player l ’s 

payoff. The following proposition identifies when in general this opposite effect is present.

Proposition  7. Let condition 3.7 hold. Let (3.8) but not (3.9) hold for i =  1,2.

Let i make a proposal to j  at T (9 , 6 )
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• i's equilibrium payoff increases in Si

• j 's  equilibrium payoff decreases in Si

•  i's guilt effect is positive on i and negative on j .

F o r m a l l y , > 0, < 0

• j 's  guilt effect is negative on j  and positive on i iff tp >  1 

Formally, <  0 and > 0 iff V > 1

Proof. WLOG, let T (6 ,S) € 2n — 1, where n 6 M  so that player 1 is the proposer.
j l - v >  T(0,6 )  1

Thus, m(0, S, T (6 , 6 )) =  (~^?~) v v • This expression is decreasing in <5i and from
QU*

proposition 6 the effect is negative. Thus, the third and the fourth claim.

By lemma 8, the direct effect of player l ’s patience is positive. Thus both the guilt 

and the direct effects are positive. The first and the second claim follow.

On the other hand, if ip >  1, then m (d,5,T(0,S)) decreases in 6 2 . Thus the guilt

effect of player 2’s patience on player 2’s equilibrium payoff is negative and on player l ’s

equilibrium payoff it is positive. □

The third and the fourth result show that the beneficial effect of impatience is present 

if and only if guilt is convex in the agreed payoff and the player receives a proposal at 

the end of the scope of negotiations. Yet, three remarks should be made. The first, the 

standard effect of patience may dominate. The second, the proposer at T { 6 , <5) always 

benefits from being more patient. Finally, if guilt is concave in the agreed payoff, also 

the player who receives the proposal at T (0 ,5) benefits from being more patient.

Why does convexity, on the one hand, and the position of being the receiver of the 

proposal, on the other hand, play such an important role? A receiver is in a weak 

bargaining position at the end of the scope of the negotiations. He cannot affect the 

agreement directly but only threaten the proposer by implicit claims of rejecting an offer 

or breaching an agreement when the underlying game will be played. Such threats are 

credible only if there is sufficient motivation to carry them out. An impatient player 

has suffered more by the fact that negotiations have been postponed to their ultimate 

relevant endpoint. Thus an impatient player with Sj considers the opponent’s strategy 

leading to a given agreement m  G S  and a payoff 5 j^ ’̂ Uj(m) not as nice as a more 

patient player S'- > Sj. Thus, being motivated by reciprocity, an impatient player’s 

threat of breaching the agreement is more credible.



CHAPTER 3. BENEFICIAL IMPATIENCE 62

As fax as the relevance of convexity of guilt in the agreed payoff is concerned, notice 

that player’s patience does not only affect player’s agreed payoff but also her benefit
rpiQ r\

from breaching 8i k. Due to discomiting, the benefit from breaching is smaller if the 

agreement is postponed. Moreover, the rate of decay of the breaching benefit crucially 

depends on player’s patience. Whether the negative effect of a lower breaching benefit 

on the incentive to breach dominates the positive effect of a lower agreed payoff depends 

on whether guilt is convex in the agreed payoff. When convexity holds, the agreed payoff 

effect dominates and the incentive to breach an agreement increases as the timing of the 

agreement is postponed.

The intuition why the proposer at the end of the scope of the negotiation always 

benefits from patience is the follwing. In addition to the direct effect of patience, there 

is an indirect guilt effect: the receiver of the proposal at T (6 , 5) will inflict more harm on 

a patient proposer at T(0, S) than on an impatient proposer. Thus the receiver feels more 

guilty about breaching a more patient proposer at T (6 , 5) and her threath of breaching 

is less credible. Thereby, there is an added positive effect of patience on the proposer’s 

equilibrium payoff when players pre-play negotiate rather than merely bargain on how 

to share a pie.

3.5 D iscussion

We have shown that impatience may be beneficial in alternating offer pre-play nego­

tiations when players are prone to guilt. This should be contrasted with bargaining 

where being more patient always benefits the player (Rubinstein, 1982). That impa­

tience may improve player’s equilibrium payoff is due the reciprocity of guilt: there is 

less guilt about breaching a worse agreement. An impatient player suffers more if the 

negotiation is prolonged. Thereby, an impatient player feels less guilty about breaching 

a postponed agreement than a patient player. Thus an impatient player’s threat about 

breaching a late agreement is more credible than that of a patient player. Such a threat 

forces an impatient player’s opponent to agree on worse terms of an agreement and thus 

impatience benefits the player. This effect may dominate the standard effect of patience 

identified by Rubinstein (1982) in bargaining with full commitment.

Yet, we also identify emotional triggers that may strengthen the prediction that being 

more patient increases a player’s equilibrium payoff. A patient player is harmed more 

than an impatient player if her opponent breaches a late agreement. Since the opponent 

feels more guilty about breaching if she inflicts more harm on the player, the threat of
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an opponent of a patient player is less credible than that of an opponent of an impatient 

player.

Notice that some of the emotional drivers identified here are also present in recipro­

cally motivated alternating offer bargaining. Also there a more impatient player suffers 

more if negotiations are prolonged. Thus being motivated by reciprocity, a more im­

patient player can make credible threats in follow-up subgames which are not credible 

for more patient players. Thereby, impatience may be beneficial for a player even in 

bargaining if bargainers are reciprocally motivated.

Furthermore, an agreement cannot be breached in bargaining. Thereby, whereas in 

the present framework the benefit and the harm of breaching a late agreement increase 

in patience thereby improving a patient players position, a patient bargainer does retain 

these advantages of being more patient in bargaining with full commitment power. Thus 

the effect beneficial impatience may be even more pronounced in reciprocally motivated 

bargaining than in pre-play negotiations.



Chapter 4

Analogy-Based Expectations 

Equilibrium and Steady States of 

Learning

4.1 Introduction

In this chapter we consider learning as a justification of the Nash equilibrium. We review 

existing insights and conclude with new ones into why the Nash equilibrium may be too 

restrictive a prediction.

The Nash and the Bayesian-Nash equilibrium suppose that players have correct con­

jectures about each others’ strategy choices; and if exogenous randomness is involved, 

they have correct probability estimates about it, too. In an equilibrium, given what 

others do, no player has an incentive to deviate. A researcher does not need to worry 

that conjectures about others’ and nature’s choices might be incorrect and yet plausi­

ble. Technically speaking, the Nash equilibrium derives its strength from being the fixed 

point of the best reply correspondence.

But we lose a lot in terms of realism in assuming correct conjectures. One reason 

why conjectures may end up being correct is learning: if each player plays the game 

repeatedly, she may acquire experience about the uncertainty she faces and about how 

others play. Formal models of learning allow for this and relax the correct conjecture 

hypothesis and suppose that players update their conjectures about others over time. 

The evolution of conjectures and play becomes a stochastic process. In a steady state of 

the process best replies to conjectures generate behaviour which does not contradict the 

conjectures. This is the core of the conjectural equilibrium (Battigalli 1987). It is easy

64
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to see that Nash equilibria with correct conjectures satisfy this steady state condition. 

The question then is whether there are non-Nash steady states.

The answer to this question is affirmative: Depending on specific assumptions on 

the learning process various other strategy profiles than Nash equilibria may be steady 

states of such processes. Firstly, expectations about off-equilibrium-path behaviour may 

be incorrect (Fudenberg and Levine, 1993). Secondly, players may not observe the 

equilibrium path but rather a less informative signal (Battigalli, 1987; Dekel Fudenberg 

and Levine, 2004). Thirdly, even if players observe decisions at each node along the path, 

cognitive limitations may necessitate simplifications of opponents’ behaviour by bundling 

several decision nodes of the opponents together and keeping track of opponents’ average 

behaviour in each such class (Jehiel, 2005). Thus depending on the assumptions on the 

learning environment - what players know in the beginning of the process, what players 

observe, how many other people are involved in the process, how they handle information, 

etc. - various equilibrium concepts emerge.

In this chapter we review such equilibrium concepts and some of the literature on 

learning. In section 4.2, we introduce the underlying game, the context of learning. In 

section 4.3, we study learning when the set of players remains fixed over the entire learn­

ing process. We start from two benchmark approaches: the first, complete information 

and correct conjectures; the second, incomplete information and Bayesian learning with 

a common prior. In these approaches strategies constitute a Nash and a Bayesian-Nash 

equilibrium of the game, respectively. Section 4.3.2 relaxes the assumption of mutually 

consistent initial conjectures and studies learning with a fixed set of players who start 

with possibly mutually inconsistent initial conjectures about the behaviour of others and 

update their conjectures as the game continues (Kalai and Lehrer (1993), Jordan (1995), 

Nahcbar (1997) Foster and Young (2001)).

Section 4.4 is the core of our contribution. It studies learning in large populations 

with random matching of players before each stage game is played - subsection 4.4.1 

focuses on static games of incomplete information and section 4.4.2 on extensive form 

games. We suppose throughout that opponents’ actions are observed and kept track of in 

the learning process. In addition, opponents’ types profiles are also observed but possibly 

not as precisely as opponents’ themselves observe these when choosing their strategies. 

Our first contribution is to illustrate how we can reach various equilibrium concepts in 

the anonymous learning literature (Bayesian-Nash equilibrium, Harsanyi (1967-68); self­

confirming equilibrium, Fudenberg and Levine (1993); self-confirming equilibrium, Dekel 

et al (2004); cursed equilibrium, Eyster and Rabin (2005)) by changing the complexity
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of beliefs about the strategies of others in the analogy-based expectation equilibrium. 

This complexity is driven by the precision with which players observe the opponents’ 

type profile after each round of play. (ABEE; Jehiel (2005), Jehiel and Koessler (2006)). 

Thus the ABEE provides a way to analyse the complexity of various other equilibrium 

concepts.

Our second contribution is to propose a refinement of the payoff-confirming ABEE 

(PCABEE), where each player observes and keeps track of her private payoffs. If we wish 

to model learning where each player plays repeatedly, it is plausible to assume that each 

player observes and keeps track of her own payoffs. This is because the payoff is what 

players ultimately care for: if they do not, why should they strive to best-reply in the first 

place? Successes and failures, which are measured in payoffs, are what players vividly 

experience and tend to remember. This provides further information about opponents’ 

equilibrium strategies. This is what motivates our refinement of the ABEE.

We show that incorrect conjectures may survive and non-Bayesian-Nash PCABEE 

may exist. We provide a sufficient condition for an ABEE to be PCABEE. This condition 

is also necessary in an interesting class of games.

In section 4.4.3 we briefly discuss experimentation, learning about responses of others 

to changes of one’s own behaviour. Section 4.5 discusses.

4.2 T he Game

There are N  players i =  1,..., N. The outcomes of the game are its terminal histories z  G 

Z. Players’ preferences over terminal nodes are captured by von Neumann-Morgernstern 

payoff functions, Ui(z) : Z —*■ R , i =  1,..., N.

The set of nodes or histories is denoted by H. The histories are sequences which 

satisfy the following properties:

•  0  G H

•  If (ak)^L1 G H  (where K  may be infinite) then (ak )%=1  G H  for all L < K

• If an infinite sequence (afc)^_1 satisfies (ak ) ^ _ 1 G H  for every L > 0, then (ak)^L1 G 

H

Let h be a history of length k. Then we denote (h, a) a history of length k+ 1  consisting 

of h followed by a. We call such a history an immediate successor of h. On the other hand, 

h is an immediate precedessor of (h,a). Any history for which a sequence of immediate
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successors from h to that history exists is a successor of h. And h is a precedessor of 

such a history.

If (h ,ak)j£=1  is the set of immediate successors of h, we call A(h) =  {ai, . . . , o k }  the 

action set at h. Here K  may be infinite. If the set of histories is finite then the game is 

finite otherwise the game is infinite. Even an infinite game may have a finite horizon, 

namely the maximum length of any sequence is finite.

The player function maps nonterminal histories H \Z  into the set of players, cp(h) : 

H \Z  —► {0,1 ,..., N }, where player 0 is the nature describing random events independent 

of players choices. The set of histories where player i moves is denoted Hi and the edges 

with root hi £ Hi are the actions of player i at hi. Thus the set of histories H  is 

partitioned into sets Hq,...,H n ,Z .

Furthermore, the set of histories of each player i is partitioned into information sets 

Ii where ti(hi) is the information set where history hi belongs to. The set i{hi) describes 

what i knows when hi is reached. Alternatively the set describes what she does not know: 

she does not know which of the histories in t{hi) is reached.

A pure strategy of player i maps the set of histories of player i into actions at those his­

tories, s(.) : Hi —► A(hi)hieHi• Denote by E; the set of such strategies. A mixed strategy 

ni .H i  —» A(E i) is a probability distribution on the set of pure strategies. We suppose 

that the game has perfect recall and thus by Kuhn’s theorem (Kuhn, 1953) the mixed 

strategies are equivalent to behavior strategies, mappings from histories of i to probabil­

ity distributions over the action sets at those histories, oi(.) =  Hi x hi€Hi&(Ai(hi)). 

Strategy of player i is a /j-measurable function.

The probability of terminal history z  given strategy profile a is denoted by P a(z) where 

for z =  a1, ..., aK , we have P c {z) =  (a*-*-1 la1,..., ak). In a similar vein we

define P Si,<T- i (z). From the probability theory perspective, the set of elementary states 

is the set of terminal histories, Z, and each history h is an event containing all terminal 

histories which have h as a precedessor. Each strategy profile o induces a probability 

measure on the set of terminal histories.

Savage (1954) shows that a rational decision maker’s decisions under uncertainty 

allow for an expected utility representation, f  u(z)dP(z) where P (z)  captures player’s 

subjective probability distribution over terminal nodes and u{z) is a von Neumann- 

Morgernstern payoff function. When a rational decision maker makes decisions in an 

environment involving uncertainty, she puts positive probability only on actions that 

maximize her expected payoffs given expectations. In an environment of strategic inter­

action, the uncertainty is about natures move and opponents’ strategies. Let us denote
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by a - i  =  (Sq, aj+1, d̂N) the conjecture of player i about this uncertainty.

Sometimes it is relevant to think of a conjecture as a probability distribution over op­

ponents’ behaviour strategies. We denote this f t .  If f t  is generate, the choice of player 

i is characterized by a* Gsupp[<7j(/ii)=supp[<7i(t(/ii))] iff

dj G argm axy^ ^  P (Ti'<T~i ( h i ) P cr( z \ h i , a i ) u i ( z ) 
z  h i e i ( h i )

Alternatively if f t  is generate, we can think of the conjecture as a probability distribution 

over opponents’ behaviour strategies, and thus a* Esupp[<7j(/ij)=supp[cri(t(/ii))] iff

a-i G argmax /  ^  P (7i'<T- i (hi ) P <J(z\hi ,  a , i )ui ( z) f t ( cr - i )dcr - i .
J  z  h i € i ( h i )

If the game is one of perfect information, then the information sets are singletons 

and in the expressions above is degenerate. In this case, all probability mass

is on one history. If there are information sets which are not singletons, then the player 

only knows Li{h) when she moves at h and she has a subjective probability distribution 

over the histories h! in ti{h), each h! has probability P ai,(J- i {h!).

4.2 .1  S ta tic  gam es o f incom plete inform ation

A static game of incomplete information with N  players is a special case of an extensive 

form game described above. Exogenous uncertainty is modelled by letting nature draw 

randomly a payoff type profile, a type for each of the players. In terms of the extensive 

form game, the empty history is followed by a type profile. Player’s information sets 

then determine how much each player knows about the realization. Then players choose 

their actions. An action of player i is a* G A{ and the action sets coincide in all states. 

The actions of players other than i are denoted by a - i  G X j ^ A j .  An action profile is 

a e  A  =  x f L xAi .  The terminal histories are type-action profile combinations, (a, 0).

The type vector is denoted by 0 G 0  =  xfL0&i where 0* G 0j is the type of player

i. The vector of types of players other than i is 0-i G 0_j =  X j^ O j. Thus, if nature 

draws 0', player i knows 0 G =  {0|0j =  0'} when she chooses her action. The payoff 

depends on the actions and the type profile: 0) : A x © —► R  for i =  1,..., N.

A strategy of player i is a function of her type, <7 i{0 i) : 0* —> A(A{) and the prob­

ability that i chooses action a*, G A{ is denoted by crj(afc|0i). The strategies of play­

ers other than i are denoted by cr-i(0-i) : 0_j —► A (A -i)  and a strategy profile is 

cr(0) : 0  —> A (A). The degenerate conjecture of i about the strategy of the opponents 

is denoted by a_i(0_j) : 0 _ i —> A(A_i) and i ’s generate conjecture, f t ,  is a probability 

distribution over the (mixed) strategies of players other than i.
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Notice that the way a static game of incomplete information is put forward above is 

not exactly a special case of the extensive form game above: in a static game all players 

move simultaneously when the type profile is drawn whereas in an extensive form game 

model only one player moves at each history. Yet, we could easily modify the static game 

model by letting players move sequentially once the type profile is drawn but keeping 

the action choice private information to the player.

4.3 N on-anonym ous learning

In this section we consider non-anonymous learning: the set of players is fixed over 

the entire learning process and it coincides with the actual set of players {1 , ...,iV}. 

We start by introducing the Nash equilibrium and the Bayesian-Nash equilibrium in 

games of complete information and incomplete information respectively in section 4.3.1. 

These approaches are characterized by strong consistency requirements: players have 

correct and common conjectures about how others and nature choose. Section 4.3.2 

considers Bayesian learning without a common prior distribution. Players probability 

estimates about others’ behaviour may originally differ and be inconsistent. Players 

update their estimates as the game evolves. Even if the common prior assumption is 

dropped, these players are still rather sophisticated in that they use Bayes’s rule to 

update their estimates and they are forward looking in that they maximize a discounted 

sum of payoffs.

4 .3 .1  C o n s is te n t  c o n jec tu res  and  N a sh  eq u ilib r iu m

Let us begin with the standard complete and incomplete information approaches. Games 

of complete information make an assumption that not only all payoffs but also the 

structure of the game is common knowledge: the way each individual perceives the 

interaction that players are facing is identical for every player; furthermore, every player 

knows that the way how the interaction is perceived is identical, every player knows that 

every player knows and so and so forth.

Games of incomplete information allow for asymmetries in these perceptions and in 

the relevant information. If there is private information or various perceptions to the 

game, players other than the privately informed must perceive the private information 

uncertain. Referring to Savage (1954), this can be modelled as a player assigning a 

probability distribution over all privately known events that the player perceives possible.

Notice that Savage’s approach does not imply that two players should have identical



CHAPTER 4. ANALOGY-BASED EXPECTATIONS EQUILIBRIUM 70

and correct perceptions about the likelihood of various events that axe private informa­

tion to a third. Yet, in most of the games of incomplete information, this is assumed. 

This consistency requirement implies that the game can be modelled as if nature first 

draws players’ private information from a prior distribution which is common knowledge.

Moreover in a Bayesian-Nash equilibrium, the conjectures about opponents’ strate­

gies must be correct and thus a -i =  a -i. Since in games of perfect recall mixed strategies 

are equivalent to behaviour strategies (Kuhn, 1953), we can define the Nash equilibrium 

as follows:

D efin ition 2 . a is a Bayesian-Nash equilibrium if for every i and for every a\

P'^-'Wuiz) > P ^ -^ zM z)

where for z  =  a1, ..., aK , we have P a{z) =  n^_0<jy,(oi j...)0/f)(afc+1 |a1, ..., ak).

As already stated above, there are two consistency ideas implicit in the Nash equi­

librium.

1. Bayesian updating along the equilibrium path

2. Common and correct prior beliefs about nature’s move and common and correct 

conjectures about opponents’ strategies.

Three questions emerge: 1) Why should players have correct conjectures about the 

move of the nature? 2) Why should players have correct conjectures about each other’s 

strategies? 3) Is Bayesian updating a plausible model of learning? The literature on 

learning in games provides an avenue which allows us to relax one or several of these 

assumptions and nevertheless reach plausible and meaningful predictions on outcomes 

as steady states of these learning processes. The learning literature is interested in 

several questions: Will learning will eventually lead to the play of a Nash equilibrium? 

If so, under which circumstances? May a learning process lead to non-Nash equilibrium 

strategies and conjectures or even to a non-Nash equilibrium outcomes? Which of the 

Nash equilibria will learning lead to if any? As we will see, often non-Nash steady states 

may exist: a price for higher plausibility is lower precision.

4.3.2 In con sisten t prior beliefs

The assumptions about players’ rationality and knowledge in the standard model are 

heavy, even unrealistic. As a first step in throwing away the heavy artillery we consider
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a model where the assumption that players have correct conjectures about each other 

(and nature) is relaxed. Players start with a prior conjecture about the behaviour of 

others and learn within the game.

Perfect monitoring, (Kalai-Lehrer, 1993)

Kalai and Lehrer (1993) study an infinitely repeated game of complete information with 

N  players. They suppose that players perfectly observe each others’ choices. Thus the 

model is one of perfect monitoring and observed deviators - the preceding history is 

perfectly observed and deviations by two different players cannot lead to the same in­

formation set.

Each player starts with a prior conjecture about other players’ strategies. Yet unlike 

above, players’ prior conjectures do not necessarily satisfy the consistency requirement 

- there is no common prior distribution. Yet, each distribution must contain a grain 

of truth: there must be a strategy profile of other players which together with player’s 

own strategy generates the same path of play as the true strategies. More technically 

conjectures must be absolutely continuous with respect to the true outcome path: if the 

conjectures put a zero probability weight on a path of play, then that play path must 

have a zero probability according to the true strategies.

D efinition 3. Absolute continuity. If P a is the true probability distribution of the play 

paths, then for each player i and each z the conjecture about the play path, P at, must 

satisfy, P a'(z) =  0 =>■ P <J(z) =  0.

A further restriction on the beliefs is that the conjectures about opponents’ strate­

gies must be a product measure: no player can have a mistaken belief that opponents’ 

behaviour strategies are correlated (they are assumed to be chosen independently).

At each stage of the game players observe their opponents’ actions and update their 

strategies using the Bayes’s rule. Kalai and Lehrer (1993) show that, eventually players 

conjectures about future play will be e—close to correct. The conjectures may remain 

incorrect off the path. The concept of being e-close to correct is defined as follows:

D efin ition 4. Let e > 0 and let p and p be two probability measures defined on the same 

probability space. We say that p is e-close to p  if there is a measurable set Q satisfying

• p{Q) and p(Q) are greater than 1 — e and

• for every measurable set A C Q

(1 -  e)p(A) < p(A) < (1 +  e)p(A)
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This definition of closeness is strong in the sense that it requires the two measures 

to be relatively close even for events of small probability.

Definition 5. Let e >  0. We say that a' plays e-like a" if P a> is e-close to P a"

Formally, the main results of Kalai-Lehrer (1993a) are the following.

Theorem 3. (Theorem 1, Kalai-Lehrer (1993a)) Let a and cr* be two N —vectors of 

strategies, representing the ones actually chosen and the beliefs of player i respectively. 

Assume that a is absolutely continuous w.r.t. a*. Then for every e >  0 and for almost 

every every path z, there is a time T(e, z) such that that for all t  > T ,  erz(*) plays e-like 

a'z{t) where <Jz(t) ^  the truncation of a at z(t).

Theorem 3 above does not tell us anything how the strategies are chosen. Thus it 

does not use the optimizing and equilibrium tools which characterize game theoretic 

argumentation. Kalai and Lehrer take a step closer to game theory by defining the 

concept of subjective equilibrium where players maximize a discounted sum of stage 

game payoffs.

Definition 6. An N-vector of strategies, a, is a subjective equilibrium if there is a 

matrix of strategies {&i)i<i,j<n with d\ =  ai such that

• (Ti is a best response to d 1̂ ,  2 =  1, ...,n

• a plays e-like a1, 2 =  1,..., n.

As a corollary to theorem 3, Kalai and Lehrer reach the conclusion that for every 

e there is a time T when the play will have converged into an ^-subjective equilibrium.

Corollary 2. (Corollary 1, Kalai-Lehrer (1993a)) Let for i =  1, ...,N , a and d l be two 

N —vectors of strategies, representing the ones actually chosen and the beliefs of player 

i respectively. Assume that a is a best reply and absolutely continuous w.r.t. o l . Then 

for every e > 0 and for almost every every path z, there is a time T (e , z) such that that 

for all t > T ,  &z(t) is a subjective e-equilibrium.

Eventually Kalai and Lehrer show that there is an outcome-equivalent Nash-equilibrium.

Proposition 8. (Corollary 1, Kalai-Lehrer (1993a)) For every £ >  0, there is rj >  0 such 

that if a  is a subjective equilibrium then there exists a such that

Theorem 4. •  a plays e-like a and

• a is an e—Nash equilibrium
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Im perfect m onitoring (K alai, Lehrer, G EB 1995)

Kalai and Lehrer (1995) extend their (1993) approach to the case of imperfect monitoring 

in repeated games. Now the history of past play - the actions of the opponents - is not 

perfectly observed. Rather players only observe an informative signal about past play, 

behaviour strategies are now functions of private signal history rather than past play. 

The past signal history can be used as a correlation device since private signals axe 

correlated in general.

Kalai and Lehrer (1995) find closely related results to those in the (1993a) paper but 

now the set of predictions coincides with the set of correlated equilibria rather than Nash 

equilibria. In a correlated equilibrium nature sends stochastic and correlated messages 

m i , . . . , t o  each player prior to the play of the game. In a subjective correlated 

equilibrium, players have subjective conjectures about how an outcome in the game, 

c, depends on her private message and her action, ei(c\mi,ai), or given a message m,, 

how the outcome depends on player’s own action aj, em. (c|a;). The true mapping is 

given by emi(c|a*). These obviously depend on opponents’ and nature’s choices and thus 

e* implicitly embodies conjectures about opponents’ strategies and nature’s moves.

D efin ition 7. A subjective correlated e-equilibrium in a repeated game G°° consists of 

a correlation device (M ,p), a vector of correlated strategies <r, a vector of correlated 

subjective environment functions e* such that for each e >  0

• (Subjective optimization) for every player i and signal mi, Oi{ai\mi) is optimal 

with respect to e .

•  (Correlated uncontmdicted beliefs)  with probability greater than 1 — e, a message 

vector m  will be chosen with P ai'ei{z) being e-close to P ai’ei(z) where P ai,ei(z) is 

the probability of terminal history z  given strategy ai and mapping from player’s 

own actions and private messages to outcomes.

In a repeated game with private monitoring the message of player i is her private 

history of play which we also call here mi for simplicity. Each player has a subjec­

tive conjecture how the unobserved outcome is determined in a stage game (implicitly 

depending on nature’s and opponents’ moves) given the private history and a private 

action e*(c|rai,aj). The true outcome rule is denoted by e*. Each player chooses an op­

timal action given these conjectures. In a subjective correlated equilibrium, each player 

maximizes given their (correlated) beliefs and the beliefs are compatible with observa-
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tions. Since signals are correlated, the steady state of the learning process ends up being 

e-close to a subjective correlated equilibrium.

Theorem  5. (Kalai, Lehrer, 1995, theorem 4-4-1-) Let a be a vector of strategies and 

e be a vector of subjective environment response functions. Suppose a and ei satisfy the 

following two conditions for every player i :

•  (Subjective optimization) <T{, is optimal relative to e*

• (Beliefs are compatible with the truth) (cr^ei ) is compatible with (cnei)

Then for every e > 0 there is a time T  such that for all times t, with t > T , from 

time t on, the players play a subjective correlated e- equilibrium.

Unlike in the case of perfect monitoring the play no longer ends up e-close to a 

prediction that one would obtain were the prior distributions correct (here the objective 

equilibrium is not a Nash equilibrium but a correlated equilibrium since private histories 

can be used as a correlation device). Yet, Kalai and Lehrer (1995) show that if initial 

expectations are sufficiently optimistic, then the play will eventually converge to an 

outcome which is e-close to an (objective) correlated equilibrium.

Proposition  9. (Proposition 5.1. Kalai-Lehrer, 1995) Let (cr, e*) be a subjective cor­

related equilibrium with each e* holding optimistic conjectures relative to cr, that is for 

every <Ji, Ui(a{,ei) < Ui(cri,ei). Then a is a correlated equilibrium.

K alai-Lehrer’s critiques

Kalai and Lehrer work can be interpreted as identifying conditions where eventual pre­

dictions of play coincide with Nash predictions. Fudenberg and Levine (1993 a,b) show 

that the Nash-equivalence is due to the assumption that players have unitary and in­

dependent conjectures and the game satisfies the condition of observed deviators (see 

section 4.4.2). Yet, in some circumstances these assumptions in addition to Bayesian 

updating and maximizing of an infinite sequence of payoffs with time consistent prefer­

ences, are rather restrictive. Also it may take quite a long time before the play is e-close 

to Nash. How long it takes to get there is a question which is not addressed.

Moreover, Jordan (1995), Nachbar (1997) and Foster and Young (2001) show that 

the absolute continuity assumption is by no means innocuous. Jordan (1995) shows that 

even if players’ expectations may converge to a mixed strategy profile, the actual strategy 

choices will not. Nachbar (1997) shows that a very natural restriction on players’ initial
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beliefs about opponents’ strategies implies a violation of absolute continuity: each player 

will choose a strategy that his opponent is certain that it will not be played. Jordan’s 

and Nachbar’s results assume that players are at least to some extent myopic. Foster 

and Young (2001) allow for players to be even completely patient. They consider games 

where the payoffs are incomplete information, players have a prior distribution about this 

payoff uncertainty and they learn about this distribution as the play continues. They 

show that some of the players never learn to predict the strategies of others and that the 

realized play fails to come close to a Nash equilibrium outcome path. Notice that this 

result is stronger than Jordan’s result also in the sense that neither expectations nor 

strategies constitute a Nash equilibrium whereas Jordan only shows that the strategies 

may not constitute a Nash equilibrium.

4.4 A nonym ous M yopic Learning

In this section we study learning processes where players are repeatedly drawn from large 

populations to play a game. Prior to play and prior to the draw of types even, they 

observe signals about outcomes of previous rounds of play and form conjectures about 

average play in other player populations which are consistent with these observations. 

We call such a learning process anonymous. More precisely in an anonymous learning 

process, every time the game is played, N  players are drawn from N  large populations 

and each player maximizes her myopic stage game payoff given her conjectures about 

others. Notice that the same player may play repeatedly against varying opponents or 

there may be a sequence of player populations where information about previous play is 

transmitted across generations.

The drawing from large populations dampens incentives for punishing, rewarding 

and building up a reputation (Kreps et al, 1982) since the probability of facing the same 

opponent again is vanishingly small. The assumption of myopia in payoff maximization 

implies that no experimentation is carried out to learn more about the behaviour of 

others. In static games myopia is a natural assumption since all (the only one) decision 

nodes are reached with a positive probability in every round and nothing is left to learn 

about off-path behaviour. In section 4.4.1 we consider static games only. In section 4.4.2 

we extend the analysis to extensive form games where experimentation potentially plays 

a role.

In the following sections, but for section 4.4.3, the learning process is only implicit in 

the model and characterized by means of the equilibrium concept. The information about
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opponents’ behaviour is assumed to have been transmitted to each player from infinitely 

many previous rounds. Consequently the player learns about the average behaviour of 

other populations. An equilibrium is interpreted as a steady state of a learning process.1 

Best replies to the conjectures about opponents’ play must generate samples of induced 

signals which confirm the initial conjectures about opponents’ play.

The analogy-based expectation equilibrium (ABEE) is a specific example. In the 

analogy-based expectation equilibrium players bundle decision nodes into analogy classes 

(set of classes is called the analogy partition) and they only try to learn the average 

behaviour in every class. Every type of a player chooses a best reply to these analogy 

expectations, and expectations correctly represent the average behaviour in every class.

By conjecturing that opponents play average strategies in each analogy class, a player 

behaves as if she observed (ex-post) previous type profile realizations with a precision 

given by the player’s analogy partition. Alternatively a player behaves as if she believed 

that opponents condition their action choices on the analogy classes rather than on the 

information sets. Since she believes that opponents play the same strategy in all nodes 

of an analogy class, a player believes that opponents use a simpler strategies when her 

analogy partition is coarser. The analogy grouping allows us to think about complexity 

of the beliefs about others’ strategies. In what follows we will illustrate, by means of 

the ABEE, how much complexity various other equilibrium concepts require. In other 

words we ask with which analogy partitions, and with which cardinality of the analogy 

partitions, an ABEE coincides with a given equilibrium concept.

4.4.1 S ta tic  gam es (SC E , CE, A B E E )

Before moving to extensive form games in section 4.4.2, we start here by considering 

static incomplete information games. Above we only considered static games of com­

plete information where players kept track of opponents’ action choices. In static games 

of incomplete information nature first draws players’ payoff types and players then si­

multaneously choose actions conditional on their types. An outcome is a vector profile 

of types and actions, one action and one type for each player.

In incomplete information games what a player has learned depends on what has 

been observed in the past after each round of play and how these observations are 

organized. By choice or by physical and environmental constraints each player may not 

keep track of every detail of the outcome: player’s own type, action, payoff, opponents’ 

types, opponents’ actions. This is true even if the same player plays the game repeatedly

1Whether learning process is fictitious play or Bayesian updating does not really play a role here
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against varying opponents.

Rather each player may observe and keep track of only some subset of such scalar 

signals. Or, she may observe and keep track of each scalar more coarsely bundling 

several scalar realizations into the same set of the scalar’s possible values. Moreover, a 

player may organize the signals into several vector signals and keep track of the marginal 

sample distribution of each vector rather than the joint distribution of all signals. Each 

such vector is called a perception. Overall we call the signals and the perceptions the 

observation structure.

We introduce the conjectural equilibrium (CEMP)2 as an organizing concept - each 

of our equilibrium concepts is a special case of this concept with a specific observation 

structure. Given an observation structure, any CEMP has two main building blocks: 

The first, each player forms subjective conjectures about her opponents’ strategies that 

are consistent with the objective (sample) marginal distributions of each of the percep­

tions generated by the equilibrium behaviour. The second, each player’s strategy choice 

is a best reply to these conjectures. Obviously the stringency of the consistency require­

ment depends on the observation structure, on the one hand, and on how the conjectures 

are formed based on the observation structure, on the other hand. If players observe 

the entire outcome, then players get to observe directly the opponents’ behaviour at 

every positive probability history of the game. Thereby conjectures about opponents’ 

behaviour will be correct and every steady state coincides with a Baysian-Nash equilib­

rium.

When outcomes are not fully observed, alternative equilibrium concepts arise, how­

ever. The self-confirming equilibrium (Dekel, Fudenberg and Levine (DFL), 2004), the 

analogy-based expectation equilibrium (Jehiel, 2005; Jehiel and Koessler (JK), 2006) and 

the cursed equilibrium (Eyster and Rabin, 2005) each corresponds to an observation 

structure. As a matter of fact, one of our contributions is to provide a learning steady 

state interpretation and a corresponding observation structure for the cursed equilib­

rium.

In the self-confirming equilibrium (SCE) each player keeps track of the joint distri­

bution of all the signals that she observes. Moreover, each player observes at least her 

own action and her own type. We define the action-confirming equilibrium (ACE) as 

a special case: player observes her action, her type and opponents’ actions and nothing 

else.

In the analogy-based expectation equilibrium (ABEE) players bundle type profiles

2MP for multiple perceptions.
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into analogy classes and they only try to learn the average behaviour in every class. Every 

type of a player chooses a best reply to these analogy expectations and expectations 

correctly represent the average behaviour in every class.

Each analogy-based expectation equilibrium where the analogy partition is finer than 

the private information partition the ex-post observation of the type profile is at least as 

precise as the interim observation of types. We call such an ABEE an analogy-based ex­

pectation equilibrium with finer than private information analogy partition (ABEEAn<i)- 

Each ABEEAn<i corresponds to an ACE and thus to a SCE.3

We also define a refinement of the analogy-based expectation equilibrium where the 

payoff distribution induced by analogy expectations must coincide with the true payoff 

distribution induced by actual equilibrium strategies. This is a natural assumption in 

a learning model where each player plays repeatedly, since maximizing payoffs (to the 

least improving them) is what players strive for and it is likely that successes and failures 

will be remembered. To save in usage of memory, the payoff is kept track separately 

of the other signals in a second perception. Therefore correlation between player’s own 

payoffs and other signals will not be paid attention to. This sample of payoffs provides 

a way to sharpen the inference about the outcome using the fact that payoffs can be 

mapped inversely to outcomes. We say that an analogy-based expectation equilibrium 

is payoff-confirming (PCABEE) if the distribution of payoffs confirms one’s conjectures 

about opponents’ behaviour.

In the cursed equilibrium each player fails to correctly conjecture the extent of corre­

lation between opponents’ private information and their strategies. Rather each player 

type expects opponents’ to play a pooling strategy at least to some extent.

Our analysis organizes the predictions as indicated in figure 4.1. Moreover, we provide 

a sufficient condition for an ABEE to be payoff-confirming. This is also a necessary 

condition in two-player two-action games with binary uncertainty. Along the lines of 

ER and JK respectively, we illustrate in a bilateral trading game with common value 

component how the fully cursed equilibrium and the corresponding ABEE alleviate the 

adverse selection which results in a Bayesian-Nash equilibrium of that game (Akerlof, 

1970). Yet, we also illustrate that this ABEE is not payoff-confirming.

Section 4.4.1 reviews the equilibrium concepts and studies the relationships between 

these concepts. Section 4.4.1 introduces the payoff-confirming ABEE and studies when a 

PCABEE is non-Bayesian-Nash and when an ABEE is payoff-confirming. Section 4.4.1

3Whereas in the ACE the conjectures are arbitrary in an ABEE the opponents are conjectured to 

choose an action according to its frequency in the corresponding analogy class.
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CEMP

ABEE PCABEE

SCE ACE

ABEEp PCABEEp

CE BNE

CEMP - conjectural equilibrium with multiple perceptions,
ABEE - analogy-based expectation equilibrium,

PCABEE - payoff-confirming ABEE,
SCE - self-confirming equilibrium,

ACE -  action-confirming equilibrium,
ABEEP -  ABEE with finer than private information analogy-partition,

PCABEEP -  payoff-confirming ABEEP,
CE - cursed equilibrium,

BNE -  Bayesian-Nash equilibrium.

Figure 4.1: Equilibrium predictions in static games 

considers adverse selection in bilateral trading.

ABEE, Complexity, and Relations to Other Equilibrium Concepts

Complex strategies may require more cognitive effort than simple strategies. Thus a 

player may prefer a simple strategy to a complex one. Therefore it may more plausbile 

to conjecture that the opponent prescribes to a simple strategy rather than to a more 

complex one. Moreover, when choosing a best reply, maintaining beliefs that opponents’ 

are prescribing to complex strategies may require more cognitive effort than best replying 

to simple beliefs. In all, aversion for complexity sounds plausible. Yet, there is no shared 

view among game theorists how to model complexity precisely.

One avenue for thinking about complexity is the analogy-based expectation equilib­

rium. In the ABEE the complexity of beliefs is captured by the cardinality of the analogy 

partition. In an ABEE each player believes that opponents play pooling strategies at 

all states of an analogy class, i.e. believes that opponents’ condition on analogy classes 

rather than on their information sets. The ABEE requires that the belief is robust to 

learning in that the pooling strategy must coincide with the average strategy of the class.

In what follows we will illustrate how much complexity various equilibrium concepts 

require. In other words we ask with which analogy partition, and with which cardinality,
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an ABEE coincides with a given equilibrium concept.

We begin with defining the conjectural equilibrium as an organizing concept. The 

self-confirming equilibrium, the action-confirming equilibrium, the analogy-based ex­

pectation equilibrium, the payoff-confirming analogy-based expectation equilibrium and 

even the cursed equilibrium turn out to be special cases of this concept.

Each player plays a static game of incomplete information against N  -  1 opponents 

drawn randomly from N  — 1 large populations. Before the opponents are drawn each 

player receives signals about how the play has proceeded in infinitely many preceeding 

rounds. Opponents are then drawn and private information is revealed to the players. 

We suppose that the distribution from which nature draws types is known to all4 and 

the probability that 0 is drawn is denoted &q(9) =  p(9). Each previous outcome of 

play (a,&) induces scalar signals yk{a-,Q) ' A x O —► Yk , k =  1, ...,AT; for instance 

player’s payoff u*(a, 0), type 0i or action a* may be a signal. A perception of player 

i consists of some (not necessarily ail) of such signals. The perceptions of player i 

are 7\{a ,6 ), I =  1 ,...,L , so that each perception 7\{a,0) : i  x 0  -> T| C x ^ y * .  

consists of signals, 7J(a,0) =  (y[(a,0), ...,y lM[(a,0)), M/ < K  and ylk G {2/1, 2//<r} and 

each mapping 7j (a,0),  I =  1, Li  is known to player i. The observation structure is 

l i  =
A conjectural equilibrium (CEMP) is one where, firstly, each player’s conjectures 

about opponents’ behaviour are consistent with the marginal distributions generated by 

the equilibrium behaviour, one for each perception, and secondly, each player chooses a 

myopic best reply to her conjectures.

Definition 8. (CEMP)

(<Ji, a CEMP if for all 0 6 0 ,  for all i and a\ £supp[<Ti(9i)\

a* G arg max ^ 2  P(0-i\0i) ^ 2  £ -* (0 -iK (a;0 ) (4-1)
6 - i € G - i  a - i € A - i

and for all I =  1,..., Li and for all ^ g T -

y Z  p{0)(Ti(ai\0i)d-i(a-i\0-i) (4.2)
{ a€ A ,0€0 |7 l(a t,a -iA ,0 -i)= 7 i}

=  ^ 2  P(0)Oi(Oi\0i)(J-i{a-i\O-i)
{a€i4_i,0G 0|7i(at,a-*,0i,0-i)=7'}

Apart from its common prior assumption, this definition is more general than the 

definition of conjectural equilibrium in Battigalli (1987) or Battigalli and Guaitoli (1997)

4 But not necessarily common knowledge.
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in that it allows for multiple perceptions for each player and a consistency condition, 

(4.2), for each of these perceptions separately. In Battigalli’s and Battigalli and Guaitoli’s 

conjectural equilibrium each player has a unique perception, Li =  1 for i =  1, ...,1V.

We allow for this more general concept since it better accommodates some charac­

teristics of human learning and decision making where limited cognitive resources have 

to be allocated to perceiving and handling information. In particular due to memory 

restrictions, an agent may fail to account for correlation between signals. She may be 

unable to keep track of samples of multiple signals jointly but rather only keep track of 

the marginal sample distributions of various perceptions. For instance, if a player keeps 

track of the joint distribution of types, actions and payoffs each of which allows for say 

5 different values, the player has 53 =  125 entries to trace whereas keeping track of the 

marginals only necessitates 15 entries. Thus multiple perceptions may be a good way to 

economize in the usage of memory but it may imply a failure to account for correlation 

between the signals in two different perceptions.

Notice that the observation structure, 7j, is part of the conjectural equilibrium, 

description rather than exogenous. This reflects the fact that a player 

whose conjecture about opponents’ behaviour is not confirmed by her observations may 

seek new information in order to update her conjectures. New information may emerge 

from choosing to observe new signals or reorganizing one’s signals into a new observation 

structure. It is likely that what can be observed is determined partly by environmental 

constraints and thus the player may not be able to observe any signal she wishes to.

The self-confirming equilibrium is a special case of the conjectural equilibrium5: 

Firstly, there is a unique perception, Li =  1, and thus a joint sample distribution of 

the signals in the perception. Secondly, the SCE assumes that the perception contains 

at least player’s own type-action vector and thus, 7, : A x © —> A x 0* Yk and 

7i ( a ,0) =  (ai ,di ,y3 (a,d),  ...,2/m(o>0))- Action confirming equilibrium is a special case 

with 7i(a,9) =  (a i ,a - i , 0 i ).

Definition 9. (ACE) Action-confirming equilibrium is CEMP such that for each i, 

L i  — 1 and for all i, 7*: A  x 0  —> A x 0 * and 7*(a, 0) =  (a*, a_i, 0*).

We refine the action-confirming equilibrium by allowing the players to observe their 

own payoffs in addition to the opponents’ actions, 7l(a ,0 )  =  (a*, a_;, 0;, U { ( a ,  0)). We 

call this equilibrium the payoff-action-confirming equilibrium (PACE).

5Unlike in DFL (2004), we suppose here that the distributions from which nature draws realizations 

of exogenous randomness is known to all.
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In an action-confirming equilibrium each player has a sample of opponents’ actions 

for each of her own action-type pairs. This latter feature has an appeal if one wishes to 

model a learning process where each player plays repeatedly: the type and the strategy 

is known and observed at the interim stage when the strategy decision is made; why 

should the player have forgotten this information ex-post when the player forms her 

conjectures based on available observations.

One could argue, firstly, that observations must be recalled over time and jointly 

with other signals when conjectures are formed. The players’ cognitive limitations may 

make this requirement too demanding. Secondly, the underlying learning model may 

concern cases where the same player does not play repeatedly, but rather N  populations 

of players appear in generations and information is transmitted from previous to future 

generations.6 In this case, not all information available may be transmitted.

In the analogy-based expectation equilibrium each player partitions the support of 

type profiles into analogy classes. An analogy system characterizes these analogy parti­

tions.

D efin ition 10. Analogy System (A ni, ..., An^) where Ani is the analogy partition of 

0  for player i. An element of Ani is denoted by &i, the element of Ani containing 6  is 

oti{6).

Player’s analogy partition describes how precisely the player observes and records the 

type profile realizations. For instance, if type profile 9 is drawn, player i observes oti(9). 

The coarseness of the analogy partition may be determined partly by the environment 

and partly by the player’s cognitive skills, attentiveness and beliefs about complexity of 

others’ strategies. The analogy partition might be coarser or finer than player’s private 

information partition.7 In the ABEE there is a unique perception which consists of the 

opponents’ actions and the analogy class where the type profile belongs to 7i(a,9)  =  

(a_j,oti(0)). Thus there is a sample distribution of opponents’ actions for each of the 

analogy classes.8

6 Jackson (1997), for instance, studies this kind of learning model.
7Notice that finer then private information analogy partition is possible since a player’s signal about 

type may be more accurate when the game is played than when she is about to choose her action during 

the game. The analogy partition may be coarser than the information partition since the player may not 

remember her type when the game has reached its outcome or keep track of it over the entire learning 

process.
8If the lack of observing one’s own action and one’s own type sounds implausible, one can allow for 

the observation of these without affecting predictions if these appear in a separate perception, 7? (a, 6) =  

CC Li,0 i) .
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The analogy-based expectation equilibrium is specific about how the conjectures are 

formed. Each player conjectures that, at a given type profile, the opponents play their 

average strategy of the analogy class where that type profile belongs to. This is the 

simplest theory consistent with the signal. Moreover, this is the only consistent theory 

where all opponents play a pooling strategy in the states of the class. Thus requiring 

a pooling strategy in each analogy class allows us to think about how complex each 

player believes that the opponents’ strategies are. To formalize this idea, we define the 

opponents’ average strategy in a set of type profiles B  C 0  as follows:

(4.3)

Definition 11. The opponents’ average strategy in B  C ©.

° - i{B) =  E  eesP(<»

The ABEE can now be defined as a special case of CEMP.

Definition 12. (ABEE) An ABEE is a CEMP where for each i, Li =  1 and

1 . 7i : A x  © —> A -i  x Ani and 7i(a,9) =  (a-i,oti(0))

2. d- i {a - i \ d)  =  a-i{oti(0))

As in JK each player conjectures that each opponent uses the same mixed strategy 

in all states of an analogy class. In particular, at each type profile of an analogy class, 

each player expects that opponents play their average strategy of the class - a weighted 

sum of the mixed strategies used in the class, each weight coinciding with the conditional 

probability of each state, (4.3).

The cardinality of each Ani characterizes, firstly, the precision of opponents’ type 

profile observation, and secondly, the complexity of player’s conjecture about others’ 

behaviour. Notice that for each analogy system An =  (Ani, Ann ), we have a different 

ABEE. The coarseness of the image of 7* is part of the equilibrium description. This is 

where our concept differs from the definition in JK (2006, p. 5).9 On the one hand, we 

believe that contradicting observations may induce efforts to track the types and the 

opponents’ behaviour more carefully. On the other hand, complexity of strategies tends 

to require more congnitive effort (Abreu and Rubinstein, 1988); thus, conjectures with 

less complexity may be more plausible. If simpler conjectures (more coarse precision)

9Indeed Jehiel (2005) acknoledges the need of endogenizing the analogy partitions; the payoff- 

confirming ABEE defined below can be considered as an approach to such endogenization: players 

use the payoff signals to rule out implausible analogy partitions. To guarantee existence, the partition 

is made part of the solution concept.
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can explain observations, the player may be prone to resort to such conjectures.10 Thus 

the analogy partition is not necessarily determined exogenously but rather endogenously 

within the learning process.

There are two differences between an ACE and an ABEE: the first, in the ACE 

players observe their own types and thus an ABEE with coarser than private information 

analogy partition is generally not an ACE; the second, conjectures are not restricted to 

the average strategy in the ACE and thus there are generally ACE that differ from 

ABEE. We will illustrate the former difference in proposition 11. Let us now focus on 

the latter difference.

In an ABEE the conjecture coincides with the average strategy of the analogy class. 

This implies that the notion of consistency in an ABEE is much stronger that in an ACE 

or in a CEMP: the condition in the definition of CEMP, (4.2) now with 7* =  (a_;, Oi(0)) 

is implied by the average strategy condition (4.3):

Y2 p{0)a-i(a-i\e)
0€oti

=  (4.4)
eeca Le'eai P\F)

-  ^ 2 p ( e)a - i{a- i\e-i)' (4-5)
Oecxi

To illustrate the stronger consistency requirement in the ABEE consider the follwing 

game.

E xam ple 1. There are two players: row player, R, and column player, C. Each player 

has two actions (—1) and (+1). There are two states (—1) and (+1) where each state 

has probability The payoff of C  is the product of the state and her action. The payoff 

of R is the product of the state and the actions of R and C.

(-1) (-1) (+ 1)

(-1) - 1,1 1 , - 1

( + 1) 1,1 - 1 , - 1

( + 1) (-1) ( + 1)

(-1) 1 , - 1 - 1,1

( + 1) - 1 , - 1 1,1

Suppose that the state is private information to C. If C knows the state, then she 

has a dominant strategy: play (-1) in state (-1) and (+ 1) in state (+1). Given this

10Notice that coarseness of the analogy partitions might be used as a selection criterion among equi­

libria. Somewhat similar idea is found in Abreu and Rubinstein (1988) where the simplicity of the 

automaton plays a role.
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equilibrium strategy, P's conjecture that two plays -1 in state -1 with probability \  and 

+1 in state +1 with probability \  is consistent in an ACE. However, player one must 

expect that two plays -1 and +1 with equal probabilities in an ABEE where player one 

bundles states into the same analogy class, Ani =  { {—1, -1-1}}. Thus, there are ACE 

that are not ABEE.

P roposition  10. There can be ACE which are not ABEE.

We lose in generality by demanding players to conjecture a simple pooling strategy 

in each analogy class. But we also gain: the ABEE allows us to discuss the complexity of 

the conjectures about opponents’ strategies which is not possible with arbitrary conjec­

tures. We can ask: how much complexity, at least, do we need in an action-confirming 

equilibrium or in a Bayesian-Nash equilibrium?

Before answering those questions, let us consider the second difference between the 

ABEE and the ACE: Let us show that there axe ABEE where conjectures are too simple 

for an ACE or a BNE. If player z’s analogy partition is coarser than her private infor­

mation partition, /*, then the average strategy in the class does not necessarily coincide 

with the average strategies in each of the player’s information sets (we will see that this 

would suffice for ACE), let alone with the true strategies (as in BNE).

To illustrate this, consider the game in example 1 above but suppose now that the 

state is complete information. As before, the column player has a dominant strategy to 

play -1 at state -1 and +1 at state +1. Suppose that the row player conjectures that the 

column player’s strategy is the simplest possible - she uses the same strategy in both 

states. In other words, the row player’s analogy partition has a unique set containing 

both states, { —1, +1}. ABEE requires that the row player expects the column player to 

choose each action with probability this is the average strategy in the analogy class. 

Prom the row player’s perspective, each of the two games is a matching of pennies game. 

Thus, any strategy is a best reply to the conjecture that the opponent mixes with equal 

probabilities.

It is easy to see that in the unique ACE (which coincides with the unique Bayesian- 

Nash equilibrium of the complete information game) the row player plays +1 with prob­

ability one: in the ACE, the row player observes the joint empirical distribution of the 

column player’s actions and the states. Thus, she must conjecture that the column 

player plays +1 at +1 and -1 at -1. We see that the conjectures in the simplest ABEE 

are too simple to be an action-confirming equilibrium or a (Bayesian-)Nash equilibrium.

P roposition  11. There are ABEE that are
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• non-BNE (Jehiel, 2005)

•  non-ACE

Let us next address the question of minimum complexity of beliefs, i.e. the minimum 

cardinality of the analogy partition required for an ACE. Notice that if in an ABEE 

the analogy partition was finer than the private information partition, then 0^(0') c  

0\ and learning own action-type signals (as in the ACE) would not add to the player’s 

understanding of opponents’ strategies: (a i,0 i,a-i,cti(0 )) gives the same information 

about opponents’ strategies as (a_i,c*j(0)).

D efin ition 13. ( A B E E ati< i)  If an ABEE 0 \ ^  0 " ==> O' £ Oii{6 ") then it is an 

ABEE with finer than private information analogy partition.

This constitutes the minimum complexity requirement for the ACE: the analogy 

partitions must be finer than the private information partitions. The corresponding 

minimum cardinality of the analogy partition of each player is #/*. Adding players’ 

own type-action signals to an ABEE with analogy partitions coarser than private in­

formation partition would actually repartition the analogy classes: keeping track of 

(ai,0 i,a -i,a i(O )) rather than (a_j,c*i(0)) is as if the analogy partition would correspond 

to Ij f) Ani and thus it would be finer than the private information partition Thus, 

if each player observes her own type, the ABEE becomes a special case of the action- 

confirming equilibrium, the average strategy in each class constitutes a specific consistent 

conjecture.

Proposition  12. ABEEau<i 25 an ACE.

However, the Bayesian-Nash equilibrium requires even more complexity. There are 

ABEEAn<i that are not Bayesian-Nash equilibria: for instance in example 1, if state is 

private information to the column player and the row player bundles both states into 

a single analogy class, the row player expects mixing with equal probabilities by the 

column player and R  may best-reply by mixing with equal probabilities. Clearly, this is 

not a Bayesian-Nash equilibrium, since in the unique BNE, the row player best-replies 

to the column player’s dominant strategy by choosing +1.

P roposition  13. There can be ABEEau<i that are not Bayesian-Nash

Corollary 3. There can be ACE that are not Bayesian-Nash. (DFL, 2004, proposition
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The corollary is clearly implied by proposition 12. By allowing for restrictions in 

beliefs (in a separate perception), this former statement strengthens proposition 4 (i) in 

DFL which states that there may be ACE that are not Bayesian-Nash.

The immediate question is to study exactly how much complexity the BNE requires. 

Consider still the incomplete information scenario, but suppose now that the row player 

believes that the column player’s strategy is more complex: the analogy partition consists 

of two singleton sets, { {—1}, {+1}}- This implies that the average strategy in each class 

coincides with the strategy of the column player’s unique type in the class: the row player 

has a correct conjecture about the column player’s strategy. More generally, the ABEE 

is a BNE if the analogy partition coincides with the opponent’s information partition. 

Not surprisingly, when the beliefs about opponents’ strategies are exactly as complex as 

the true strategies, the ABEE coincides with the BNE.

Proposition  14. (JK, proposition 2) If each player’s analogy partition is finer than 

every opponent’s information partition, then the ABEE is Bayesian-Nash equilibrium. 

Formally, let (a, a, An) be an ABEE such that for all i, 9-i  ^  9 = >  ai(9) ^  oti{9), then 

a is an B N E .

Proof. The second claim follows from noticing that is (cr, a, An) be an A B E E  and for 

all i, 6-i 7  ̂ =>• oii{6) ^  oti{9) then

CT- i(ai|0) =  — Y + M J - i )  =

□

Whenever analogy-expectations are correct, we have a BNE. This may hold even 

if a player’s analogy partition is coarser than some opponent’s information partition. 

Namely, it holds if the opponent types in the analogy class really play a pooling strategy 

as expected by the analogy expectations. This property characterizes the Bayesian-Nash 

ABEE.

Proposition  15. (JK, proposition 3) BNE is ABEE iff for each player, her opponents’ 

types play a pooling strategy in each of the player’s analogy classes.

Formally, BNE is ABEE iff 9' € on{9) implies that cr_j(0) =  cr-i(9').

Let us next define the x ~ cursed equilibrium introduced in ER (2005) and study its 

relationship to the ABEE.
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Definition 14. (The x~cursed equilibrium) A strategy profile a is a x —cursed equilib­

rium if for each i, Oi € 9*, and if a* Esupp[ai($i)]

a*k €  argmax ^  PkiP-i\0i) ^ 2  +  ( 1 (4.6)
6- ie e -i a-ieA-i

In particular, if x —  then the equilibrium is fully cursed.

The cursed equilibrium cannot be defined as a CEMP but it is similar to the ABEEah<i 

in that each player puts a positive weight on an average strategy in her conjectures - 

here averaging over types in the player’s information set. Intuitively, players may fail 

to take fully into account how other players actions depend on their private information 

and this failure may alter behaviour vis-a-vis a Bayesian-Nash equilibrium.

It is straightforward to see that a Bayesian-Nash equilibrium is a cursed equilibrium 

with x  = 0, by definition. Thus, CE generalizes BNE. Moreover, as acknowledged by 

JK and ER, the fully cursed equilibrium ( x  — 1) can be understood from the learning 

perspective: when the analogy partitions coincide with the private information partitions 

the fully cursed equilibrium and the ABEE coincide.

Proposition 16. (JK, proposition 4) The fully cursed equilibrium, x  =  1, coincides 

with the ABEEAn=h i.e. ABEE where for all i and all 6 , t*(0) =  ai{0).

Proposition 16, reveals that the fully cursed equilibrium requires as much complexity 

from the beliefs as the least complex ACE. Thus, like the simplest ACE, the fully cursed 

equilibrium is simpler than the Bayesian-Nash equilibrium.

What about the partially cursed equilibrium? It is natural to think that the partially 

cursed equilibrium would be more complex than the fully cursed one but less complex 

than the BNE. ER doubt that there is any learning foundation for cursed equilibrium 

(ER, p. 1633) whenever the equilibrium is not fully cursed (x  <  1). If this was true, 

it would be impossible to to discuss the question of complexity of a partially cursed 

equilibrium in terms of the ABEE concept. However, here we show that even the non- 

fully cursed equilibrium has a learning foundation in the ABEEAn<i: there exists a 

natural extension of the state space where an equivalent ABEE exists. It turns out that 

the partially cursed equilibrium is not only more complex than the fully cursed one, but 

in addition, it is more complex than the BNE.

Proposition 17. Let (f2, B, q) be a probability space where D =  [0,1] C 1Z, B is the 

set of Borel sets on [0,1] and q is the Lebesque measure. Let 6  : —> © so that

p(6 ) =  q(0~1(6)). Then for each x~cursed equilibrium there exists an ABEE such that 

the equilibrium strategies coincide for the x ~ cursed equilibrium and the ABEE.
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Figure 4.2: Cursed equilibrium as an Analogy-based expectation equilibrium

Proof. In the appendix. □

The idea of the proof is simple. To illustrate (see figure 2), suppose that there are two 

possible type profiles, the row player has only one type and the column player has two 

types, each equally likely, as in our example above. Suppose that the underlying elemen­

tary states are the real numbers on a unit interval and real numbers in [0, | )  are mapped 

into type one whereas numbers in [5 ,1] are mapped into type two. For each x ~ cursed 

equilibrium, consider the analogy partition {[0, ^5*), [^5̂ , (^5*, 1]}- This analogy-

based expectation equilibrium corresponds to the x ~cursed equilibrium.

This kind of extension of the state space is rather natural since any model of a 

real environment could allow the state to capture however large a number (possibly 

infinite) of characteristics of the actual environment. The payoffs will not depend on 

the additional characteristics. Moreover, players may not condition thier strategies on 

these fine characteristics either11. Yet, players may well conjecture that opponents are 

conditioning their strategies on these characteristics. Or, the player’s awareness and 

cognitive skills might differ across players and states (weather conditions, the state of 

mind, concentration, etc.): two elementary states that are mapped into a given type 

profile may be bundled into different analogy classes or two states that are mapped 

into different type profiles may be bundled into the same analogy class. This is closely 

related to the idea that several belief types may exist for a given payoff type (Mertens 

and Zamir, 1985). Here belief types emerge in a steady state of a learning process.

Remember that the number of analogy classes reflects a player’s belief about the 

complexity of other players’ strategies. This interpretation reveals that the analogy 

foundation for the fully cursed equilibrium is considerably less complex than that of

“ Sometimes it is argued that such randomization devices may be used when playing mixed or corre­

lated strategies.
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a partially cursed equilibrium. Actually, the analogy foundation for a partially cursed 

equilibrium is even more complex than that of a Bayesian-Nash equilibrium. The number 

of each player’s analogy classes in a fully cursed equilibrium equals the number of player’s 

information sets, #/*, so that the opponents’ average behaviour can be tracked for 

each of the player’s own types. A Bayesian-Nash equilibrium requires generally at least 

# J _ i  analogy classes of player i so that the choice of each of the opponents’ types can be 

tracked. In a partially cursed equilibrium, there must be at least # /*  x (#/_* +1) analogy 

classes: for each type of player i there must be # /-*  +  1 analogy classes - one for each 

of the opponents’ types to track the behaviour of that type profile and one class which 

only tracks opponents’ type profiles on average conditional on player’s own type. Thus, 

if we believe that players tend to stick to simpler theories rather than to more complex 

ones, the partially cursed equilibrium may seem less appealing.

Above we saw that there are non-cursed ABEE. As a final remark on the relationship 

between the ABEE and the CE, we show that there axe even non-cursed ABEEaii<i- 

That is, even the set of ABEE An <i is a strict superset of the set of CE when we extend 

the state space to the unit interval of real numbers - even if x  is allowed to take any 

value [0,1].

Proposition 18. Let (ft, B, q) be a probability space where ft =  [0,1] C 7Z, B is the set of 

Borel sets on [0,1] and q the Lebesque measure. Let 0 : ft —> Q so thatp(0{) =  q(0~1(0i)). 

Then, there may exist ABEEati<i that have no cursed equilibrium equivalent for any 

X 6 [0,1].

Proof. Consider the following example. The type is still private infomation to C. There 

axe two players R  (row) and C  (column). Player C  has two types, (+1) and (—1) and 

the type is private information. The type of C  is a random variable on [0,1] with the 

uniform distribution. [0, | )  is mapped into (—1) and [ |, 1] is mapped into (+1).

C  gets — 1 if she mismatches her action with her type and 1 if she matches her action 

with her type.

The payoff matrixes of R in states (—1) and (+1) respectively axe

-1 -1 +  1

-1 1+5,1 ^ - l  2’ 1

+ 1 1, 1 1,-1

+ 1 -1 +1

-1 0,-1 1+5, 1

+1 1,-1 1,1

where e <

An ABEEAn<i is as follows:
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The analogy partition of R  is {[0, §), [§, | ) ,  [ |,  1]}.

C plays (—1) at (—1) and (+1) at (+1).

R conjectures that C plays (—1) at a; € [0, | )  and (+1) at u  G [ |,  1] and mixes with 

M  =  a?!(a;) =  5 at € [ |,  J).

R plays +1.

Notice that R gets 1 by playing (+1). Thus, (+1) is a best reply to the conjecture if 

and only if

1 > (1 + E)[l -  \) +  ^ ( 1  + £) + ~ ]  + ^ ( 1  + £)] 

or equivalently e <

Yet, R  cannot play (+1) in any cursed equilibrium. The expected virtual game payoff 

of R  for playing —1 in any x ~ cursed equilibrium equals (1 — x )(l  +  e) +  x (§ §) which is 

strictly greater than 1, the payoff for playing (+ 1).

Since, in any x-cursed equilibrium, the average strategy must weight C ’s strategies 

using the probabilities of C’s types, the implicit expectations of any x-cursed equilib­

rium of the original state space cannot correspond to the conjectures generated by the 

ABEE An <i in this example. □

Payoff-confirm ing A B EE

Consider again example 1 and suppose that state is private information to the column 

player. Notice that there may be a substantial curse in an ACE. C  plays her dominant 

strategy (—1) at (—1) and (+ 1) at (+1). Now, in an ACE, a conjecture that C  plays 

(+ 1) at (—1) and (—1) at (+1) is consistent. The best reply of playing (—1) with 

probability one leads to a difference of —2 in perceived and actual expected payoffs.

Even in an ABEEaii<i, there may be curse, even if less so that in the ACE above: 

Suppose still that the state is private information to the column player and the row 

player bundles both states into a single analogy class. R  expects mixing with equal 

probabilities by the column player. Thus, any action is a best reply to her conjectures, 

including the strategy (—1) at (+1) and (—1) at (—1). This equilibrium leads to a curse 

- a difference of — 1 in perceived and actual expected payoffs.

Consider the same analogy expectations as above. However, suppose now that the 

row player best-replies by mixing with equal probabilities. In this equilibrium, despite 

the incorrect conjectures, there is no curse in the sense that the subjective expected 

payoff is equal to the objective expected payoff.

If we model a learning process where the same player plays repeatedly against varying
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opponents, arguably, each player should observe and remember at least her own payoffs. 

This is because the successes and the failures are what players care for and what they 

remember: if they do not, why should they best reply in the first place. If there is 

equilibrium curse, the player should eventually realize this and abandon her incorrect 

conjectures and the overly simplistic view about opponent’s behaviour.

This is what motivates a refinement of the ABEE, the payoff-confirming ABEE 

(PCABEE). In this section we formally define the concept. We show that there can 

be PCABEEaii<i that are not Bayesian-Nash. We characterize the payoff-confirming 

ABEE in a class of games and present a sufficient conditions for an ABEE to be a 

PCABEE in static incomplete information games. Finally in the next subsection, we 

consider a modification of Akerlof’s (1970) lemons trading game and we show that, even 

if in the ABEE that corresponds to the fully cursed equilibrium of the game the selection 

problem may be alleviated, this equilibrium is not payoff-confirming.

The PCABEE studies a mild robustness check of the ABEE, where each player keeps 

track of her own payoffs but fails detect how her payoffs are correlated with other signals 

that she learns from each previous round of play: we suppose that payoffs are perceived 

in a separate perception.

D efinition 15. (PCABEE) Pay off-Confirming ABEE is CEMP where for each i, Li =  

2 and

1. t • : A x 0  -> A -i  x Ani, j}{a ,0 )  =  (a -i}oii(Q))

2. d - i ( a - i \ 9 )  =  a-i(aci(6))

3. nfi : A x 0  —► R, 7?(a,0) =  («i(a,0))

We also define the PCABEE with finer than private information analogy partition12.

D efinition 16. (PCABEEati<i) If in an PCABEE 0[ ±  6 " ==> O' oci{0 ") then it is 

an PCABEE with finer than private information analogy partition.

In a PCABEE, the marginal sample distribution must coincide with the conjectured 

payoff distribution. In the introductory example of this subsection, the row player will 

not realize that her conjecture about the other is incorrect even if she observes her

12Notice that conceptually the PCABEEAn<i is not an ACE even if an ABEEai,<i is. The 

PCABEEAn<i allows for players to observe their own payoffs in a separate perception whereas multiple 

perceptions are not allowed for in the ACE. However, any PCABEEAn<i prediction is also predicted by 

some ACE since any ABEEAn<iis an ACE.
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payoffs. According to her conjectures, the row player expects payoffs -1 and +1 with 

equal probabilities which are in fact the probabilities of these payoffs in equilibrium. 

Thus, we see that there are PCABEEaii<i which differ from Bayesian Nash equilibrium.

Proposition 19. There can be Payoff-Confirming ABEEau<i that are not Bayesian- 

Nash.

If payoffs are generic, there is a one to one mapping from payoffs to outcomes. Thus, 

the payoff realizations reveal the opponents’ strategies perfectly and conjectures about 

opponents’ strategies must be correct. Hence, if payoffs are generic and observed, the 

set of conjectural equilibria collapses to the set of Bayesian-Nash equilibria.

Proposition 20. If payoffs are generic and observed, then CEMP coincides with the 

Bayesian-Nash equilibria.

Proof. Obvious. □

If a payoff-confirming equilibrium differs from a Bayesian-Nash equilibrium, some 

degenerate payoffs are needed. Notice that if payoffs are generic conditional on player’s 

own type but not unconditionally, then the set of PACE collapses to the set of Bayesian- 

Nash equilibria but the set of PCABEE does not. This is shown in the following example.

Example 2. Two players meet to share a snack. Player one decides what the two players 

will eat: either hot-dogs H  or a burger B. Player two decides what they will drink: either 

pepsi P  or coke C. The preferences depend on the state and are are given in the matrixes 

below. The state is complete information and drawn randomly. The probability of state 

one is q < The decisions are made simultaneously and non-cooperatively.

The stage game in state 1 is

01 P C

H 4,3 2 , 2

B 1 ,1 3,4

(4.7)

and in state 2  it is
01 P C

H 1 , 2 3,3

B 4,4 2 ,1

(4.8)

In the (Bayesian) Nash equilibria of the game, players choose either hotdogs and pepsi 

or burgers and coke in state one and they choose either burgers and pepsi or hotdogs and 

coke in state two.
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The following is a pay off-confirming analogy-based expectation equilibrium: players 

have coarse analogy partitions; hotdogs and coke are chosen in state one - burgers and 

pepsi are chosen in state two; player one expects pepsi to be chosen with probability 

1 — q in both states - player two expects hotdogs to be chosen with probability q in both 

states. Since hotdogs and coke are chosen in state one, there cannot exist an equivalent 

Bayesian-Nash equilibrium.

To see that this is indeed an equilibrium, each player plays a separation pure strategy 

and thus the consistency of beliefs requires that the action chosen in each state is expected 

to be chosen with the probability of that state. Each player’s strategy is a best response 

to these expectations if and only q < | .

To see that the ABEE is payoff confirming, the probability of payoff 2 is q and the 

probability of payoff 4 is 1 — q. Each player expects payoff 2 to result with probability 

qq +  (I — q)q =  q and payoff 4 to result with probability q( 1 -  q) +  (1 — q)(l — q) =  (1 — q).

So, each of the two players believes that the opponent is choosing the snack randomly 

not taking into account the state. Yet, each player takes the state into account. Player 

one observes player two choosing coke in fraction q of rounds and pepsi in fraction 

1 — q of rounds. She never gets pepsi with a burger but she does not notice that, since 

she only recalls whether she was happy about the meal or not. On the other hand she 

expects to be happy about the meal fraction 1 — q of times which indeed she is. The payoff 

sequence drawn from the true distribution supports the false beliefs that the opponent is 

randomizing.

Proposition 21. If payoffs are generic conditional on private information, then

•  the set of PA CE coincides with the set of Bayesian-Nash equilibria.

•  there can be PCABEE that are not Bayesian-Nash equilibria.

As a corollary to the proposition above, we learn that, even if every ABEEp is an 

ACE, every PCABEE is not.13

Corollary 4. There may exist PCABEE that are not ACE.

When is an ABEE a PCABEE also? When an ABEE is a Bayesian Nash equi­

librium, then conjectures about others must be correct by the definition of the Nash 

equilibrium. Then surely if conjectures are correct, payoff information cannot reveal

13In fact there may exist PCABEE that do not correspond to any self-confirming equilibria as defined 

in DFL (2004).
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anything that was not known already. Thus, an ABEE which is Bayesian-Nash must 

be payoff-confirming also. Propositions 14 and 15 identify two such cases: the first, the 

ex-post observation of types more precise than the interim information when strategy is 

chosen; the second, pooling strategies. Thus only if the analogy partition is coarser than 

some opponents’ information partition and the opponent plays a separation strategy, 

an ABEE might differ from a Bayesian-Nash equilibrium. In this case, according to 

proposition 20, some payoff genericity is needed in order for a PCABEE to differ from 

a Bayesian-Nash equilibrium. Otherwise, the payoff information would reveal any mis­

taken conjectures. In two-player two-action two-state games of incomplete information, 

we can give a characterization of the set of pure strategy ABEE that are PCABEE.

Proposition  22. Let N  =  2, 0  =  {01,#2} and Ai =  {a*, a2}. Suppose that s is a pure 

strategy profile of an ABEE.

The ABEE is payoff-confirming if and only if

• s is a Bayesian-Nash equilibrium

or

• for each i such that Si(dm) ^  Si(6 n) and Anj =  {{9x, 0 2}}

for all m, uj (sJ(0Tn),r i (6>m);0m) =  uj (sj (em) ,s i {em);eTn) (4.9)

or

for all m, ^ (s^ ™ ),^ ™ );# ™ ) =  uj (8j (0n)i 8i (0n)]0n)) (4.10)

where ri(dm) is the action not chosen by i at 6 rn.

Proof. In the appendix. □

Each player is trying to detect a correlation between opponents’ actions and the 

opponents’ type profile using payoff realizations as evidence. If there is correlation, then 

clearly, the presumption that the opponents’ play the average strategy in each state of 

the analogy class must be incorrect. The fact that either condition (4.9) or condition 

(4.10) holds prevents inferring anything about the joint distribution: If condition (4.9) 

holds and a player’s payoff is the same in a given node whatever the opponent chooses, 

there is no strategic uncertainty about one’s own payoffs in each state. Alternatively, 

if (4.10) holds and the payoff is the same whatever the state, given each action of the 

opponent, there is no exogenous uncertainty about one’s own payoffs given each action of



CHAPTER 4. ANALOGY-BASED EXPECTATIONS EQUILIBRIUM 96

the opponent. In either case, payoffs do not provide any additional information about the 

joint distribution of actions and types of others and only marginal sample distributions 

of types profiles and actions profiles of others are known in each analogy class.

In games with more states, more players and more actions, conditions parallel to 

(4.9) or (4.10) are sufficient but not necessary for an ABEE to be PCABEE.

Proposition 23. Let in an ABEE a differ from a Bayesian-Nash equilibrium. If for 

each j  and a j such that there are 9m,9n G otj with cr_j(0m) cr~j(9n),

• either for all 9 G otj and for all action profiles of players other than j ,  a*_j =  

(ai,...,aj_-paj+1,...,â ) such that for each i ^  j  there is 9' G otj such that 

a* £suppcri(9'), we have for all aj £ supper j (9)

Uj (aj, a_j; 0) = u $  (4.11)

• or for all action profiles of players other than j ,  such 

that for each i ^  j  there is 9' G aj such that a* esupperi(9'), we have for all 

9 G aj and aj G supper j (9)

U j{a j,a-j\9 ) =  ua_j, (4.12)

then the ABEE is payoff-confirming.

Proof In the appendix. □

Now suppose that, for any separating strategy and a coarse analogy partition of the 

opponent such that an opponent plays different strategies in two nodes of an analogy 

class, either (4.11) or (4.12) holds. Again, the former condition aggregates over strategic 

uncertainty and the latter condition aggregates over exogenous uncertainty. Thus, player 

cannot infer anything about the joint distribution of type profiles and action profiles of 

other players in each analogy class.

Nevertheless the expected and the sample marginal payoff distributions may coincide 

even if an ABEE is not a Bayesian-Nash equilibrium and neither (4.11) nor (4.12) holds. 

This is illustrated in the following example.

Example 3. There are two players and three states of nature, {0i, 02, #3} each drawn

with probability 3 . This prior is known to both players and the realization of the state

is revealed to both. Each state of nature is associated with a simultaneous move two- 

player game . In each of the games, each player has three actions from which to choose,
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Ai =  {01,(22, 03}. Player two gets payoff +1 if he matches the state and — 1 if he does 

not. Payoffs of player one are indicated in matrixes below.

01 01 02 03

ai 1 0 -1

02 2 -2 -2

03 2 -2 -2

02 01 02 03

01 -1 0 -1

02 0 -1 1

03 -1 0 -1

03 01 02 03

Ol -1 -1 1

02 -1 -1 1

03 -1 1 0

Consider the following equilibrium: player one has the coarsest analogy partition and 

player two has the finest. Each player plays a pure separation strategy, each player’s 

choice at state 6j is aj. The conjecture of player one is G2 {O‘j\0k) — 5 for all j ,k  = 
1,2,3. Player two matches her action with the state and thus he is best replying. Also, 

player one is best replying since in state 6 k choosing ak gives expected payoff zero whereas 

other actions give negative expected payoffs given that player one expects two to choose 

each action with probability | .  Thus, this is an A BEE.

Furthermore, only outcomes (ak,ak,0k), k =  1,2,3 have a positive probability and 

each results with probability 5 . Thus, the sample distribution of player one’s payoff as­

signs probability 5 to payoffs —1, 0 and 1 respectively. Since this is player one’s expecta­

tion of payoffs given his equilibrium strategy, we have a PCABEE. Yet, neither is there 

Uk such that for all I, for all k, u i(a i,ak ,0 i) =  Uk, nor is there Uk such that for all I, 

for all k, u i(a i,a i,6k) =  Uk- Thus, we have a PCABEE even if neither condition (4 -H) 

nor condition (4-12) in proposition (23) are satisfied.

A dverse Selection

Consider the following trading game with one-sided asymmetric information. This is a 

modification of Akerlof’s (1970) trading game. The seller values the object at s while the 

buyer’s valuation is v =  s +  x where s is the realization of a random variable s uniformly 

distributed on [0,1] and x is a constant, 0 <  x <  Seller’s value s is private information 

to her. The buyer knows neither s nor v. The buyer and the seller simultaneously make 

offers to buy at price p  and to sell at price ps, respectively. If ps > P the seller keeps the 

object, and the buyer obtains her reservation utility of zero. If ps  < p, the buyer gets 

the object and her payoff is u(p, v ) =  v — p. Throughout this section we suppose that 

the seller plays her weakly dominant strategy and chooses price equal to her valuation 

of the object ps — s.

A sophisticated buyer realizes that there is a selection effect. Her expected payoff
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equals

uNE(p, as) =  Pr(s < p)[E(u|s < p) -  p)

In a Bayesian-Nash equilibrium of this game, the buyer offers price pBNE =  x and 

her expected equilibrium payoff is u(x,v) =  \ x 2 . In an ABEEAnB=iB where analogy 

partition of the buyer coincides with her private information partition (equivalently a 

cursed equilibrium), the buyer does not realize that the offer she chooses selects the 

average quality of the object. She rather believes that the expected value is given by 

the unconditional expectation E(u). The perceived expected payoff is then

uCE(p, as ) =  Pr(s < p)[E(v) -  p]

The buyer’s optimal offer is \x  +  \  which is higher than the Bayesian-Nash equilibrium 

offer since x <  \- The fact that there may be more trade in an analogy-based expecta­

tion equilibrium or in a cursed equilibrium than in a Bayesian-Nash equilibrium in this 

context is reported both by JK and by ER.

The payoff-confirming ABEEi4na- / B requires that the expected payoff is correct. It 

is easy to verify that in the ABEE^na=/B the perceived expected payoff is higher than 

the actual expected equilibrium payoff. The buyer suffers from curse due to the fact 

that she fails to take into account the selection effect. An implication of the equilibrium 

curse is that this theory about seller behaviour is too simplistic to be sustained when 

payoffs are observed in the learning process. That is, there is no a payoff-confirming 

analogy-based expectation equilibrium such that Aub =  Ib -

4.4.2 E xten sive  form  gam es (SCE, A B E E )

In static games, if outcomes (terminal histories) are perceived, then CEMP collapses to 

(Bayesian) Nash equilibria. In extensive form games, observing terminal histories is not 

sufficient for the steady states to collapse into the set of Nash equilibria. It is natural 

that if players can track only paths of play and thus have no data about opponents’ 

actions or strategies at histories off the equilibrium path, the conjectures about off-path 

behaviour may be incorrect. Self-confirming equilibrium (Fudenberg, Levine, 1993) is the 

solution concept where players observe the full terminal history after each round of play. 

The full history determines the players’ choices at each history along the equilibrium 

path. Yet, off-path behaviour is not observed. Players are myopic or at least not fully 

patient so that they do not have sufficient incentives to experiment in order to learn 

about opponents’ off-path strategies. More patience would provide more incentives to 

experiment in order to learn about opponents’ actual strategies off the equilibrium path.
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Farsightedness and experimentation are discussed in section 4.4.3. In this section we 

focus on myopic players.

Notice that the Nash equilibrium is not very demanding about off-path behaviour 

either, unlike the subgame-perfect equilibrium (Selten, 1975) or the sequential equilib­

rium (Kreps and Wilson, 1982). The former requires off-path conjectures and strategies 

to be credible in that the strategies must form a Nash equilibrium in every subgame. 

The latter requires in addition that beliefs must be updated using Bayes’s rule when 

players tremble in their strategy choices. The Nash equilibrium only requires that play­

ers have correct conjectures: that strategies are chosen independently (strategy profile 

is a product measure), that two players have the same conjectures about the play of a 

third (consistency) and that behaviour at each history is supported by the same beliefs 

(unitary beliefs). Indeed, Fudenberg and Levine (1993a) show that these axe the only 

sources how a self-confirming equilibrium may fail to be a Nash equilibrium.

Jehiel (2005) argues that even finite extensive form games can be very complex 

(eg. chess). Thus player’s cognitive limitations may necessitate simplifications of the 

game. In particular, as in static games of incomplete information, Jehiel (2005) assumes 

that players bundle opponents’ decision nodes into analogy classes. Whereas in static 

incomplete information games the decision nodes axe type pxofiles, in extensive form 

games decision nodes axe histories. Thus, the probability of reaching an analogy class is 

endogenous and determined by players strategies.

Keeping track of opponents’ behaviour in classes of histories only rather than at each 

history separately leads to additional sources how an equilibrium may fail to be a Nash 

equilibrium. Thus, there axe ABEE which axe not SCE.

We also consider the payoff-confirming ABEE, the refinement of ABEE, in extensive 

form games. Each player observing her own payoff takes the ABEE a step closer to the 

SCE since this observation provides indirect information about the terminal node as an 

inverse image of the payoff. Yet still, there axe PCABEE that are not SCE. (See figure 

4.3).

Self-confirm ing equilibrium

In this section we define and briefly study the self-confirming equilibrium (Fudenberg 

and Levine, 1993a,b).

D efinition 17. (a, <r) is a self-confirming equilibrium if and only if (cr, a) for each i

Oi is a best response to Oi
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NE
SCE’93

_____________________________________ PCABEE

________________________________________________________ ABEE

ABEE - Analogy-based expectation equilibrium 
PCABEE - Payoff-confirming ABEE
SCE*93 - Self-Confirming equilbrium (Fudenberg and Levine, 1993)
NE - Nash equilibrium

Figure 4.3: Equilibrium predictions in extensive form games

aii(h )  =  a .i(h ) i f P a{h )>  0

In a self-confirming equilibrium, the beliefs about each opponent’s behavioural strat­

egy must be correct in nodes along the equilibrium path. Yet, off the equilibrium path, 

the beliefs may be arbitrary. Each player’s strategy must be a best response to such 

beliefs.

The self-confirming equilibrium is a straightforward generalization of the Nash equi­

librium. The Nash equilibrium requires that beliefs about the opponents’ behavioural 

strategies are correct even off the path, for all h G H \H l , d-i(h) =  a{h).

Fudenberg and Levine point out that there are three ways how a self-confirming equi­

librium may fail to be a Nash equilibrium: (i) two players have inconsistent conjectures 

about the play of a third, (ii) two strategies that are played with a positive probability 

are best-replies to two different conjectures about the opponents’ play, (iii) a player’s 

conjectures about the play of her opponents’ may be correlated.

In a consistent self-confirming equilibrium no two players can disagree about the 

strategy of a third (and furthermore conjectures must be correct at any history that can 

be reached given that a player plays his strategy).

D efinition 18. A self-confirming equilibrium a is consistent if for all players i and each 

Si €supp((Ji) there are beliefs a i such that

•  Si is a best response to to d* and

Vj(hj) =
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for all j  ^  i and hj such that there is G-i such that P Si,tr- <(hj) >  0.

In general the belief is a probability distribution, fii , over other players’ (mixed 

or behavioural) strategies. In principle it might be the case that two actions that a 

player plays with a positive probability might be supported by two different conjectured 

strategies which are drawn according to Jli. If no player’s two equilibrium actions are 

supported by different conjectures, the beliefs axe unitary.

D efinition 19. A self-confirming equilibrium a has unitary beliefs if for all players i the 

same conjecture a% can be used to rationalize every s* £ cr*.

Finally, if conjectures are independent, then correlation is ruled out.

D efinition 20. A self-confirming equilibrium a has independent beliefs if for all players 

i and all Si Esupp(oi), the associated conjectures satisfy

Xhj €Hj A(Aj(hj))) =  X j ^ i C T j ( x A ( A j ( h j ) ) )

By using simple examples, Fudenberg and Levine show the sufficiency of each of

(i)-(iii) to reach non-Nash self-confirming equilibria. On the other hand, they show the 

necessity of (i)-(iii) in escaping Nash equilibria as follows

Theorem  6. (Fudenberg, Levine, 1993a, Theorem 4) Every consistent self-confirming 

equilibrium with independent, unitary beliefs is equivalent to a Nash equilibrium.

A nalogy-based expectation  equilibrium

In the analogy-based expectation equilibrium, each decision node where an opponent 

moves belongs to one and only one analogy class, and thus, a player’s analogy classes 

are described by her analogy partition Ani. What is specific about extensive form games 

is that which decision nodes are reached and how often now depends endogenously on 

players’ strategies not just on exogenous uncertainty.

As before in section 4.4.1, an analogy class of player i is denoted a* and the analogy 

class where decision node h belongs to is denoted by cti(h). The action sets at two decision 

nodes that belong to the same analogy class are assumed to coincide A(h) =  A(h') if 

h! € ct{(h). The analogy expectation of player i in each analogy class a* is a probability 

measure over the action space of that class, a l (a.i) where the probability that action 

ai € A(ai) is chosen is denoted ^{a^oci). This probability distribution captures the 

average behaviour in the analogy class.
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D efinition 21. Player i's analogy-based expectation a1 is consistent with the strategy 

profile a if and only if for all ai G Ani

whenever P a {h) >  0 for some h G a i .

Thus, we require the analogy expectations to coincide with the average behaviour in 

the class for each class which is reached with a positive probability. We do not put any 

requirements on the analogy expectations in the analogy classes that are reached with 

a zero probability. By construction, if h' G ai(h) then (^(h1) =  (^(a^h)).

Jehiel (2005) provides two alternative consistency requirements for extensive form 

games. In the strong one players play with trembling hands so that each behavioural 

strategy must be completely mixed. However, in this chapter, we consider the weaker 

one where all actions axe not necessarily in the support of the behavioural strategy 

and consistency is required only at analogy classes that are reached with a positive 

probability.14

Any triplet of strategies, beliefs and analogy partitions, (<r, a, An), such that, firstly, 

each player’s beliefs about the average behaviour in each analogy class are consistent, 

secondly, the beliefs of the opponent’s behaviour in any node of an analogy class equals 

the average behaviour in the class, and thirdly, each player is best responding to the 

beliefs induced by her analogy expectations, is an analogy-based expectation equilibrium.

D efinition 22. (a , a, An) is an analogy-based expectation equilibrium if and only if for 

each i

Oi is a best response to oi

for each h G H \IP , ^ (h )  =  a^a^h))

a 1 is consistent with a

In section 4.4.1 we pointed out that ABEE is a generalization of the Bayesian-Nash 

equilibrium. In extensive form games, the ABEE is a generalization of the self-confirming 

equilibrium (FL, 1993) which in turn generalizes BNE. Similar logic holds here between 

ABEE and SCE as between ABEE and BNE in static games. We can identify two cases

14In addition to ruling out trembling hands, the concept differs from Jehiel (2005) in that in the 

present model the analogy partition is part of the solution concept, not exogenous. Indeed, Jehiel (2005) 

considers the ABEE concept incomplete to the extent that it does not explain why and which analogy 

partitions players end up having. Section 6 of Jehiel (2005) presents some avenues for endogenizing the 

analogy partition.
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where a SCE is an ABEE: the first, if players analogy classes are singletons; the second, 

if opponents play the same strategy (pooling) at every positive probability history of the 

analogy class. These results are reported in propositions 24 and 25, respectively.

Proposition 24. Every SCE is ABEE.

Formally, let (cr, a) be a self-confirming equilibrium. If for all i and h G H \H %, 

oti(h) =  {/i}, then (a, a, An) is an ABEE.

Proof. Let (a, a, An) be an A B E E  and for each i and h G H \H l, ai(h) =  {h}. If 

P (T(fi) > 0 then
_ a'j(!\h)Pa{h) _  /7IM 
— p<r(fij) ~  ^  ' '

Thus if P ^ /i) >  0, <7*(ai|{/i}) =  crj(ai,h). □

Let (a , a, An) be an ABEE such that in every analogy class, if there are two nodes 

in the class that are reached with a positive probability, then the behavioural strategy 

is the same in the two nodes. In this case, (cr, a) is a SCE.

a,  , 'Eh'€ai(h)P ° (> 'X < ‘ !.ft0 ,0(ai \a i (h) )  = --------= ---------------- — — t ---------- =  <r-t (ai ,h)
2^h'eai(h)^ I" ;

Here, the expectations along the equilibrium path will be correct since for each node 

along the path, the equilibrium behavioural strategy is chosen in every positive proba­

bility node of the analogy class.

Proposition 25. If the opponents’ behaviour strategies coincide at all probability histo­

ries of an analogy class, then the ABEE is SCE.

Formally, let P a{h') >  0. If h' G on(h) implies that either aj(h) =  crk{h') or P{h) =  

0, then A B E E  is SC E.

Along the lines of definition 15 in section 4.4.1, we define a payoff confirming analogy- 

based expectation equilibrium in extensive form games as an ABEE where the subjective 

and the objective payoff distributions coincide.

Definition 23. An analogy-based expectation equilibrium is payoff confirming if and 

only if for all Ui and for i =  1,2, we have

P*(z) =  £
{z\ui(z)=u} {z\ui(z)=u}

In section 4.4.1, proposition 23 establishes two alternative sufficient conditions for 

an ABEE to be PCABEE in static games of incomplete information when the analogy
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Figure 4.4: Example 1, condition (4.14) is satisfied

partition is coarse and the opponent plays a separation strategy. In proposition 26, we 

generalize these conditions to extensive form games. We illustrate these by means of 

examples and we also show that these conditions are not necessary: there are other ways 

how an ABEE can be a PCABEE.

Proposition 26. Let (cr, <r, An) be an ABEE. If for every i and for every a  and for every 

h! G ah such that P ai,^(h) >  0 and such that cr(h) ^  (P(h) we have that P ai'<T% (h\a) — 

P a(h\a) and

(1) either for every u for every a, a' G A(a)

£  P"‘'S‘(z |h ',o )=  £  P ^ z l A V )  (4.13)
{z \u i(z)=u} {z\ui(z)=u}

(2) or for every u

P ’ , 's‘ (z\h ',a )=  (4.14)
{z|u»(2)=u} {z\ui{z)=u}

then (a, d, An) is PCABEE.

Again, the player tries to use payoff realizations to infer whether there is correlation 

between action and type profiles of other players in each analogy class. Conditions (4.13) 

and (4.14) make such inferences impossible.

We will now approach the issue by means of three examples. In the first of our exam­

ples, depicted in figure 4.4, condition (4.14) is satisfied. Player one chooses at hi, h±,h$. 

Player two chooses at /12, /13 and at he to hg. We suppose that the equilibrium strate­

gies at /14 and h e  are equal, a ( h 4 ) =  c r (h s ) .  Also, we suppose that c r (h 6 ) =  a  ( h e )  and

a(h-r) =  a(hg). The analogy partition of player one is {{/12, h3},{/i6i h7 },{hs, hg}} and
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Figure 4.5: Example 2, condition (4.14) is satisfied

player two has the finest analogy partition. Here the analogy classes are dispersed in 

distinct subgames of the game tree. Thus, when exiting each analogy class from each of 

its histories, we can truncate away the subtree and associate each action at each history 

of the class a conjectured payoff probability distribution. Now if, in each analogy class, 

these distributions are the same for each history and for a given action, then condition 

(4.14) obviously holds and ABEE is PCABEE.

To see that being able to truncate other analogy classes away is not necessary for an 

analogy based expectation equilibrium to satisfy (4.14), consider the example in figure 

4.5. There are three players in this game. Player one chooses at node ho. Player two 

chooses at node hi and h± and player three chooses at nodes /12 and /13. The analogy 

partition of player one is {{h i, /14}, {h2 ,ho}}. To fix ideas, let us suppose that the analogy 

partitions of players two and three are the finest. Suppose that in an analogy expectation 

equilibrium player two chooses L at hi and R  at h±. Player three chooses L at h  ̂ and 

R  at /13. Player one chooses L with probability p. This ABEE is a PCABEE since the 

condition of the proposition is satisfied at both analogy classes. For instance, at each 

history of the analogy class {hi,h^}, conditional on each of the two actions, the payoff 

distributions are degenerate and they coincide. For instance for action R, the perceived 

payoff at both histories hi and h4 is u2 since at the only positive probability history of 

the analogy class {/12, h$}, L is chosen with probability one.

On the other hand, by means of the example in figure 4.6, we can show that the 

condition in proposition 26 is by no means necessary and for different reasons than in
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Figure 4.6: PCABEE and the horse

example 3 in section 4.4.1. Consider the following game which is adapted (the labeling 

of actions is altered, the information partition of player 3 is the finest, and payoffs are 

slightly modified) from example 2 in Fudenberg and Levine (1993a). In the original game 

put forward by Fudenberg and Levine (1993a), player three’s information set consists 

of histories hz and /14. With such an information partition, one playing R  and player 

two playing L is a self-confirming equilibrium if player one believes that three chooses 

R  and two believes that three pays L with probability greater than | . This violates the 

consistency requirement and points out one source how a SCE may fail to be a Nash 

equilibrium. This SCE is also an ABEE.

By supposing singleton information sets of player 3 (as in figure 4.6) and assuming 

suitably chosen analogy partitions we can show that there are ABEE and even PCABEE 

that are not SCE. Furthermore we will see that, when a PCABEE is not SCE, neither 

(4.13) nor (4.14) holds. Suppose now that player one has a coarse analogy partition, 

{{/12, ^3> 4̂}}- On the other hand, player two and player three have fine partitions - 

in particular h± is in a singleton analogy class and thus player two’s beliefs are correct 

at that node. The reader can verify that a\{L\hi) =  cr\{R\h2 ) =  1, <7i(,L\hz) =  

1, ai(R\h<i) =  1 is an analogy based expectation equilibrium. However this equilibrium is 

not payoff-confirming since player one expects payoff 1 to result with positive probability. 

Yet, if player one’s analogy partition is modified to {{^2}? {^3^ 4}} the same strategies 

constitute a payoff-confirming analogy-based expectation equilibrium. Yet, this is not a 

self-confirming equilibrium since player one’s beliefs about the behaviour at nodes hz and
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/14 along the equilibrium path axe incorrect.

In this example, neither of the conditions in proposition 26 holds: for action L of 

player three, payoff for player one is 3 in decision node /13 and 0 in decision node /14. 

On the other hand, at node /13, for instance, payoff for one after L and R  differ. Despite 

failing these conditions, we have a PCABEE. Thus, providing necessary and sufficient 

conditions for an ABEE to be PCABEE is a more difficult task in extensive form games.

4.4.3 A nonym ous Learning w ith  E xperim entation

When players preferences are myopic and they only maximize the current payoff, there 

axe no incentives to invest in experimentation to gain information about off path be­

haviour. But if players maximize a (discounted) sum of payoffs, then experimentation 

is an issue. Fudenberg and Levine (1993b) study an explicit overlapping generations 

learning model. There is a large (infinite) population of players for each player role of 

the finite extensive form game. Each player in each population is randomly matched 

with other players - one from each other population. Each player lives T periods and 

for each generation there axe ^ of players in each population. Player i maximizes a 

normalized discounted sum of payoffs Y2t=i bt~lu\{z ) where u\{z) is the stage game 

payoff in period t.

Each player staxts with a conjecture about opponents’ strategies. This is a probability 

distribution over opponents’ behaviour strategies. Every player in a given population has 

the same prior distribution. Players update their priors using Bayes’s rule. This model 

generates a stochastic learning process. We axe interested in the steady states of this 

process.

Fudenberg and Levine show that if the length of life tends to infinity and players 

become infinitely patient (patiently stable state), then every accumulation point of a 

sequence of steady states of the system is a Nash equilibrium.

Theorem  7. (Fudenberg and Levine 1993b, theorem 5.1) For any fixed nondoctrinaire 

priors a  there is a function T(5) such that if 5m —► 1 and Tm > T{5m), every sequence 

of steady states has an accumulation point, and every accumulation point is a Nash 

equilibrium.

If patience, <5, is bounded away from 1, then every steady state of the process is a 

self-confirming equilibrium.

Theorem  8 . (Fudenberg and Levine 1993b, theorem 6.1) For fixed nondoctrinaire priors 

a and 5 < 1 as Tm —* 00 every sequence of steady states has an accumulation point and
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every accumulation point is a Self-confirming equilibrium.

Fudenberg and Levine (2005) study further the patiently stable states. They show 

that in simple games where each player only moves once and where strategies are nearly 

pure, only nature randomizes, a patiently stable state is a subgame-confirmed equilibrium 

- a Nash equilibrium where in each subgame that lies one deviation off the path the 

strategies constitute a Self-confirming equilibrium.

Theorem  9. (Fudenberg and Levine 2005, theorem 6.1) In simple games with no own 

ties, a subgame-confirmed equilibrium that is nearly pure is path equivalent to a patiently 

stable state.

It is easy to see that a subgame-confirmed equilibrium is a refinement of the Nash 

equilibrium whereas a subgame perfect equilibrium is a refinement of the subgame- 

confirmed equilibrium.

4.5 D iscussion

In this chapter, we have reviewed the literature on equilibrium concepts which have an 

interpretation as a steady state of a learning process. We have studied how the set equi­

libria depends on how much consistency is required from players’ conjectures and beliefs, 

what players observe and remember during the learning process, how players organize 

their observations, and what the underlying game is like: more consistent conjectures, 

more signals observed and finer organization of signals imply a smaller set of steady 

states. We have shown that there generally exist steady states that do not correspond 

to a Nash equilibrium of the game but that any Nash equilibrium is a steady state of 

the process. Moreover, if players are patient, they may experiment and the set of steady 

states may be a subset of Nash equilibria.

Our main focus was on anonymous learning. We illustrated how we can reach various 

equilibrium concepts by changing the precision at which players observe the type profile 

after each round of play in the analogy-based expectation equilibrium (ABEE). We 

also proposed a refinement, the payoff-confirming ABEE (PCABEE), where each player 

observes and keeps track of her private payoffs also. This provides further information 

about opponents’ equilibrium strategies. Yet, incorrect conjectures may survive and 

non-Bayesian-Nash PCABEE may exist. We provided sufficient conditions for an ABEE 

to be PCABEE both in static games of incomplete information and in extensive form 

games. We showed that the sufficient condition is also necessary in two-action two-player
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games with binary uncertainty. Using examples we showed that generally necessity does 

not hold, however.



Chapter 5

Appendix A

5.1 A ) R epeated  gam es

Results analogous to those in chapter 1 would be obtained, if we suppose that players 

have zero proneness to guilt and they informally agree on a stationary action profile 

in an infinitely repeated game with continuous time. The punishment paths are not 

negotiated, however, but they axe exogenously determined (in a commonly known social 

contract, for instance). If the agreement is breached players revert to mutual minmax 

strategies and the punishment phase lasts for time interval k(.) and the length of the 

punishment depends on the agreed payoff and the harm.

If such punishment paths indeed reflect a common sense of justice prevailing in 

society, then, in one-shot games, the guilt cost might serve as an internalized punishment 

that reflects society’s sense of justice. Psychologists such as Clark and Mills (1979) argue 

for such origins of guilt.

It is easily verified that to make the incentives to breach identical to that in the 

single shot model, we must make the following assumptions

• discount rates are equal pi =  1 for i =  1,2

• It takes time w =  — ln (|)  to observe that opponent is breaching.

• the punishment function k { h j ( r n , a i ) , V i ( r n ) , u f ) takes the following form

k{hj(m,ai) ,Vi{m),uf)  =  lim — ln(max{£, 1 _  Q9{vr{m )-ihj{m^Si)) ^

(with u f  the mutual minmax payoff for player i). Yet, this formulation, implies that 

an infinitely long punishment follows a breaching where (Ui(m)—u [ ) < 9g(vi(m), hj (m, s j )

110
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5.2 B ) Exogenous act ion-norm s and moral discourse

Haxsanyi (1977) and Binmore (1998) present models where a social contract is agreed 

upon in a moral discourse which is considered to take place prior to the play of the 

grand game of life1. The social contract can be interpreted as a collection of action- 

norms that apply in various circumstances in the grand game of life. As indicated by 

psychological research, violating such norms causes distress, such as guilt, shame and 

fear of punishment. Another stylized fact of the research in psychology is that guilt (or 

distress) is proportional to the harm that violation causes on others. Thus, the approach 

developed here can be applied to general action-norms as outcomes of moral discourse - 

pre-play negotiations of the grand game of life.

In the game theoretic models of Haxsanyi (1977) and Binmore (1998), players have 

empathetic preferences which are weighted sums of individual preferences and used in 

moral discourse to derive a shared perception of a fair social contract. The fairness 

preferences are derived from weighting of the individual preferences in an impartial 

original position where the player thinks it is equally likely that one ends up playing 

one’s own role or that of the opponent. Empathetic preferences are defined over the set 

S x {1,2} where S is the set of action profiles of play and {1,2} is the set of possible 

roles. A player has an ordering over the outcomes of the game faced either as oneself or 

as the opponent. Full empathy says that the ordering of S  coincides with that of u*(s) 

for each i. This leads to a utility function which is a weighted sum of the preferences of 

the two players.

If the player uses his fairness preferences when playing the game after communication 

and considering a deviation that decreases the opponent’s payoff, the guilt cost takes the 

form of example 2.2. The formulation C/j(m, s) =  U i ( s )  4- 6 i V i ( m ) h j ( m ,  s )  is reached by 

letting the weight depend on the agreed payoff V i ( m ) .  The implication is thus a truncated 

additive social welfare function where the concern for the opponent depends on how 

nicely one is treated in the pre-play negotiations and how prone to guilt (empathetic) 

one is.
1 Similar philosophical non-game theoretic approaches axe provided by Habermas (1990) and Hoppe 

(1993), for instance.
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5.3 C) Proofs

Proof of lemma 1

rrii E BRi(rrij) for all s*, Ui{rrii, rrij) > Ui(si, nrij) => for all s*, Ui(rrii, rrij) > Ui(si, rrij)- 

g(vi(m), hj(m, Sj)) for all Sj, £i(m , sf,9i) < 0. Thus, m E Aj(r, 9i) iff (IRi).

For the second claim, rrii  ̂ BRi(rrij) =>■ there is s' such that Ui(s[, rrij) > Ui(mi,rrij). 

Suppose now that (ICi) holds. But, for all s*, Bi(m,Si\9i) < 0 => Bi(m, sj; 9{) < 0 =>• 
g(vi(m), hj(m,Sj)) > Ui(si,rrij) - Ui(rrii,mj) => g(vi(m),hj(m, Sj)) > 0 => Vi(m) > 0. 

Thus (IRi) holds and m  E Ai(T,9i).

Suppose now that m  is agreeable. But, then by definition (ICi) holds.■

Proof of proposition 2

Since m  is an equilibrium in(m) > 0 for i =  1,2. Since m  is an equilibrium in T,

, rrii E BRi(rrij) for i =  1,2. Then, by lemma (1), m  E Aj(r, 0i) for i =  1,2 and, by 

definition, m  E A (r,0).B

Proof of lemma 2

Since both deviate from the agreement the guilt cost is zero for both. Then for all 

Si, Ui(m,s*) =  Ui(s*) > U{(si,Sj) > Ui(m,Si,Sj) where the inequality follows from the 

fact that s* is a Nash equilibrium of I \B

Proof of lemma 3

Conditions (AC) and (EF) imply that gi(vi(m),hj(m,Si)) =  0 if hj(m,Si) < 0. But 

indeed, hj(m, Si) =  Uj(m) -Uj(rrij, S{) <  0. Thus (ICi) is violated and m £ Aj(r, 0i) and 

thus m ^ A(T, 0)M

Proof of proposition 3

By assumption, Vi(m) >  0 for i =  1,2. Take player i and an arbitrary s*. First, if 

Ui(rrii,mj) > Ui(si, rrij) then Ui(rrii, rrij) > Ui(si,rrij)-g(vi(m),hj(m, Sj)) and Bi(m,Si;6i) 

0. Second, if Uj(rrij,Si) < Uj(rrij,mi) then hj(m,Si) >  0. By, (EF) g(vi(m),hj(m,Si)) >

0. Thus, since payoffs in T are finite, lim ^ oo 6 i g ( v i ( m ), hj(m, S i ) )  > U i ( s i , m j ) - U i ( r r i i , r r i j )  

Hence, l i m ^ o o  B(m, s f ,  6 i )  <  0. Since either U i ( m i , r r i j )  >  U i ( s i , r r i j )  or U j ( r r i j , S i )  <  

Uj(mj,rrii) holds for every s*, (ICi) holds. Thus m  E Ai(T, 6i). This is true for both 

players. Thus, m  E A (I\ 9).
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Let now m € A(T, 0). Suppose to the contrary that there is i and s» such that neither 

Ui(mi,rrij) >  Ui(si,mj)  nor Si) <  Uj(rrij,mi) holds. Then, both are true. But

then, by lemma 3, m £ A(T, 0). This is a contradict ion. ■

P r o o f  o f  p ro p o s it io n  4

L em m a 9. Let T be finite. Let mi  ^  Let {1} , {2} and {4} hold. Then (ICi)

holds if and only ifMi(m,0i) < 0 .

Proof. We will show that (ICi) does not hold iff B;(m, 0{) >  0.

Let Bi(m, 0i) >  0. If Ui(mi — 1, mfi) — Ui(mi, mfi) >  0, B(m, mi — 1; 0f) > 0 and (ICi) 

is violated. If Uj(mj +  l ,^ - )  — Ui(mi,mj) > 0, then B(m,mi +  1;0») > 0 and (ICi) is 

violated.

Let (ICi) be violated. Thus, there is sj such that Bi(m,s'i,0i) >  0. Suppose to 

the contrary that Bi(m, 0i) < 0. We only need to consider the case Ui(mi — 1, m j) — 

Ui(mi,mf) > 0  since if Ui(mi + 1 , mj)  —1̂ (77̂ , mj) >  0, then B^(m, 0i) >  0 by definition. 

Let thus Ui(mi — 1 ,mj)  — Ui(m^mj)  > 0. By assumption B* < 0 and thus

Ui(mi — 1 ,mj) -  Ui(mi,mj) < g(vi(m),hj(m,mi -  1))

By assumption {1}, the harm increases in deviations further downwards. Also by as­

sumption {4} guilt cost is convex in hj and by assumption {2} Uj is concave in S{. Thus 

the harm is convex in Si and the guilt cost is also convex in S{ as a composite of two 

convex functions. Thus the cost is convex in Si. On the other hand, by assumption 

{2} the payoff U{ is concave in S{, the benefit from breaching Ui(si,mj) — Ui(mi,mj)  is 

concave in s*. Thus if Bi(m,0i) <  0 then B(m,s;0i) < 0 for all Sj < mi. We have a 

contradiction. □

P r o o f o f  th e  p ro p o sitio n  The result follows directly from lemma 1, lemma 9 and 

the fact that A(T, 0) =

P r o o f o f  lem m a  4

/3(mi +  l,m j) =  Ui(mi,mj) — Ui(mi +  l,m j) -  [ui(mi — l ,mj )  — Ui(mi,mj)] =  -8i(m)

fi(mi, mj  +  1) =  Ui(mi -  1, mj  +  1) -  Ui(mi, mj  +  1) -  [ui(mi -  1, mj) -  Ui(mi, mj)) 

=  -(pi(mi,mj  +  1)

rjj(mj,mi  + 1 )  =  Uj(mj,mi  + 1 ) — Uj(mj,mi) — [Uj(mj , mf) — Uj(mj,mi  — 1)] =  dj(m)
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Proof. r] j (mj+l,mi)  — Uj(rrij+l,rrii)—Uj(rrij+ 1 ,mi — l) — [uj(mj,mi)—Uj(rrij,mi — l)\ =  

<f>j(rrij +  l,m i)B  □

Proof o f proposition 5

Since U{ is increasing in sj, by lemma 3, we need ui to be decreasing in S( for (s^ Sj) to 

be agreeable. Then, the marginal incentive to breach writes

1  i(rrii, mj)  =  Pi(mi, rrij) -  9ig(ui(rrii, rrij), rjj(mi, rrij))

But Pi(m) is increasing in rrii and rjj(m) is decreasing in rrii by lemma 4. Also, Ui(mi, rrij)— 

Ui(rrii — I,rrij) <  0 implies that Ui(m) decreases in rrii. But g is increasing in both argu­

ments. Thus, Bi(rrii,mj) is indeed increasing in rrii.

On the other hand, rrij) is decreasing in rrij and r]j(rrii, rrij) is increasing in

rrij by lemma 4. Also, Ui is increasing in rrij by assumption. But g is increasing in both 

arguments. Thus, Bi(rrii,mj) is indeed decreasing in m j .l

Proof of theorem  1

Since cf>i(s) <  0 for all s, the best reply curves are downward sloping. Since payoff 

functions are concave, for s* < BRi(sj),  Ui(si + 1 , S j )  — Ui(si, S j )  >  0. For any symmetric 

action profile such that Si < s£, Sj <  BRi(sj). Thus increasing the action of i improves 

the payoff of both. Thus symmetric profiles such that s* < s* are not efficient. Thus, 

If Ui(s* +  k, Sj +  k) >  0 for some k G Z then k >  0. But, since <fii(s) <  0, by lemma 4, 

Pi(s* + k) > Pi(s*) and r)(s* +  k) < rj(s*) for i =  1 ,2 .1

Proof of theorem  2 

Lemmas 10 to 15

Lemma 10. If S ^  4> then there is at most one equilibrium s* where Pi(s*) =  0 for 

i =  1,2

If —5 > 4> then (Si, Sj ) G Mp implies Si > s* for i = 1,2

If —5 < 4> then (Si, Sj ) e  Mp implies Si < s* for i =  1,2

Proof. As a mapping from S2 to S\ the best reply curve of player one, BR^l (mi), has 

slope — |  and that of player two, B R 2 (m\),  has slope — |  which are positive constants. 

The crossing point of the BR curves is a unique (symmetric) equilibrium, s* =  (s*, s^)- 

s e  Mp  implies that < 0 for i =  1,2. For player two this is true for m 2 >

B R 2(m\)  and for player one this is true for m2 > B R f l (m\). Thus the claim. □
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Lemma 11. Let the game be symmetric. If s c maximizes maxk£zu(s +  k) where Si =

Sj (along the diagonal) then there is no s ' such that Ui(s') >  Ui(sc) for i =  1,2.

Such sc exists.

Proof. Let WLOG s’j  < sj and — s* =  k. Then Ui(sc) > Ui(sc +  k) =  u^s'^s'j) >  

) since the payoff is increasing in the action of the opponent. Thus sc is efficient. 

Since S  is finite and u(s +  k) is defined for all k 6 Z, there must be k that maximizes

u(s +  k) with Si =  Sj and s € S. □

Lemma 12. s £ M f  =+ there is i such that Ui(s +  1) > Ui(s)

Proof, s £  Mp  =+ there is i such that Ui(s +  1) — Ui(s) =  [ui(s -1- 1, s +  1) — Ui(s, s +  1)] 

+  [Ui(s, s +  1) -  Ui(s, s)] > 0 . □

Lemma 13. Let y be convex and supermodular. Then y(x +  2,2 +  2) — 2y(x  +  1 , 2 +  

l) +  y(x,z)  >  0

Proof. Let y  be convex and supermodular. Then

y(x  +  2, z  +  2) -  y{x +  1,2 +  1) -  [y{x +  1,2 +  1 ) -  y(x, z )]

=  y(x, z) -  y(x +  1 ,2) -  y(x +  1 ,2) +  y(x  +  2 ,2)

+y(x  +  2 ,2 +  2) -  y(x +  2 ,2 +  1) -  y(x +  2 ,2 +  1) +  y(x +  2 ,2)

+y{x  +  2,2 +  1) -  y(x +  2 ,2) -  ?/(a; +  1,2 +  1 )+  +  1 ,2)

+ 2/(x +  2,2 +  1) -  y(x +  2 ,2) -  2/(x +  1,2 +  1) +  y(a: +  1 ,2)

> 0

The first effect on the RHS is the second order effect of the first variable, the second row 

is the second order effect of the second variable and the remaining two rows are identical 

and equal to the supermodularity effect. □

Lem ma 14. Let a  +  5 < 0, 20 +  5 +  c r > O  and (j> >  0,5 < 0, a <  0. Let Ui(s) — 

Ui(s — 1) >  0 and (3i(s — 1) > 0. Let g satisfy {4} and {5}. Suppose that fii(s — 1) > 

g ( u i { s - l ) , r j j ( s - l ) ) .  IfPi{s) < g(ui(s),rjj(s)) then pi(s +  k) < g(ui(s +  k),r)j(s +  k)) for 

all k >  0.

Proof. S +  2(f) +  a  > 0 and 4> + 5 <  0 implies that <j) +  0  >  0. Then, by lemma 4, /5(s +  k) 

is increasing and concave in k and rj(s +  k) is increasing and convex in k.

Since 5 +  2(f> +  a > 0 and Ui(s) — Ui(s — 1) > 0, u(s +  k) is convex and increasing in 

k for k >  0. Thus, g(u(s +  k),r}(s)) is convex and increasing in k since g is convex and
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increasing in u by {5}. Similarly, g(u(s), rj(s +  k)) is convex and increasing in k since g is 

convex in 77 for 77 > 0 by {4}.

Also since /3*(s — 1) > g(ui(s — l),r)j(s — 1)) and Pi(s — 1) > 0 but Pi(s) <

g(ui(s),r]j(s)), we have

P(s) -  p(s -  1)

< g{u(s), 77(s)) -  g(u(s -  1), rj(s -  1))

Thus, by lemma 13 and since g is supermodular in its arguments

0 < 0(s +  1) -  P(s)

=  —5 — (f>

=  P { s )  ~  P ( s  -  1)

< 9 (u(s),r}(s)) - g ( u ( s  -  l),rj(s -  1))

< g(u(s +  l),T}(s +  l ) ) -g (u(s ) , i ] ( s ))

We can proceed by induction to show that for every s +  k with k >  0, we have

P(s +  k) — g(u(s +  k),rj(s +  k)) < P(s) — g(u(s),r)(s)) < 0. Above, we showed that

Ui(s +  k) >  u(s) for k >  0. Thus every s +  k with k >  0 is agreeable. □

Lemma 15. Let cr +  6 < 0, 0  + c r > O and $ > 0 ,5 < 0,cr < 0. Let Pi(s — 1) > 0.

Let g satisfy {4}  and let g(u', 77) =  g{u,rj) for all u',u,ri. Suppose that Pi(s — 1) > 

g ( u i ( s - l ) , r j j ( s - l ) ) .  IfPi{s) < g(ui(s),r]j(s)) then pi{s +  k) < g(ui(s +  k), rjj(s +  k)) for 

all k >  0.

Proof. By lemma 4, P(s +  k) is increasing and concave in k and rj(s +  k) is increasing 

and convex in k.

Also g(u(s), 77(s +  k)) is convex and increasing in k since g is convex in 77 for 77 > 0 by 

{4} and for all u, g(u, rj(s +  k)) =  g(u(s +  k), r)(s +  k)) by assumption.

Also since Pi(s — 1) > g(ui(s — l),r]j{s — 1)) and Pi(s — 1) > 0 but Pi(s) <

g(ui(s),r}j(s)), we have

P(s) -  P(s - 1)
<  g ( u ( s ) ,  T) ( s ) )  ~  g ( u ( s  ~  1 ) ,  t / ( s  — 1 ) )
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Thus, since g(u(s), r)(s +  k ) ) is convex and increasing in k

0 < p(s  +  1) -  0{s)

=  - 8 - 4 )

=  p(s) -  p(s -  1)

< g(u(s), 7?(s)) -  g(u(s -  1), T)(s -  1))

=  g{u(s +  1), rj(s)) — g(u(s), rj(s — 1))

< g{u(s +  1), r?(s +  1)) -  g(u{s), rj{s))

We can proceed by induction to show that for every s +  k with k  >  0, we have 

P(s +  k )  -  g(u(s +  k ) ,  t](s +  k )) < /3(s) -  g(u(s), t j ( s ) )  < 0. Thus every s +  k with k  >  0 is 

agreeable. □

Proposition  27. Let 8 +  2(f> +  a >  0. Let s' — 1 E Mp and s' — 1  ̂ A (r,0). Let 

u(s') — u(s' — 1) > 0. Le ts* be the unique equilibrium of the game and A(s*) =  0. Suppose 

that { 1}, {2}, and {5} hold. Furthermore, let g satisfy {4}, and {5}. If s' such that 

s' > s* is agreeable then any s' +  k such that k >  0 is agreeable.

Proof. 8 +  2$ +  a >  0 implies that <fi +  8 > 0  or cr +  <f)>4)- Suppose first that 5 +  0 > 0. 

By lemma 10 sj — 1 <  s* for i =  1,2. Thus < <  s* and the claim holds trivially.

Let now, <£ +  <5 =  0. Then fi(s +  1) — /5(s) =  0 and either there are multiple equi­

libria or in the unique equilibrium there is i such that A(s*) ^  0 both contrary to our

assumptions.

Let now, 4> +  8 <  0. Then a  -I- 4> >  0. The fact that s' — 1 G Mp  implies that 

P(s' — 1) >  0. By lemma 4, P(s +  1) — /3(s) =  — 8 — <f >  0. Also, since </> > —cr, by lemma 

4 r)(s +  1) — rj(s) =  cr +  4> > 0 and thus r](s +  k) is weakly increasing in k.

On the one hand, u(s' +  1) — u(s') > u(s') — u(s' — 1) > 0 since a +  2</> +  8 > 0. On 

the other hand, u(s') > u* since s' is agreeable.

Since u(s +  k ) is convex in k , then g(u(s +  k ) ,  rj(s)) is convex in k since g is convex 

in u. Similarly, g(u(s), r)(s +  k ) ) is convex and increasing in k for k  >  0 since g is convex 

and increasing in ry for g > 0 and rj(s +  k ) is convex and increasing in k for k  >  0.

Also s' — 1 G Mp  and since s' — 1 ^ A(r, 9) we have /%(s' — 1) >  0 and fii(s' — 1) — 

g(ui(s' -  1 ),r)j(s' -  1)) > 0. But s' G A(r,0), and A(s') > Pi(s' -  1) > 0. Thus, by 

lemma 14 every, s' -{-k with k >  0 is agreeable. □

P roof o f th e  theorem  By proposition 2, s* is agreeable as a Nash equilibrium of the 

underlying game. Thus ’= ^ ’ is trivial.
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Let us now show that if a symmetric s ±  s* is agreeable,then an efficient symmetric 

s is agreeable.

If (f) +  8 >  0 then since the game is symmetric and there is an inefficient equilibrium 

such that Pi(s*) =  0, (s™, s£) is an equilibrium. To see this consider two subcases, 1) 

<t> +  8 >  0 and 2) <f> +  8 =  0. If (f> +  8 > 0, since (j> >  0, the best reply correspondences 

are upward sloping and steeper than one and they cross at s*. By symmetry (s”, s?,) is 

an equilibrium, since —/3i(sn) >  0 for i =  1,2. If 4> +  8 =  0 and there is s* such that 

Pi(s*) =  0 for i =  1,2, then both best reply functions have a slope equal to one and 

they overlap in the entire strategy space. All symmetric profiles are equilibria and thus 

(s i , s?) *s an equilibrium. In both cases, since U{ is increasing in Sj, by theorem 7 in 

Milgrom, Roberts (1990), (s™, S2) Is efficient and by proposition 2, (s”,^ )  is agreeable.

Suppose now that (f> + 8 <  0. Then if 0  +  8 +  20 > 0, we must have 0  +  0 > 0. Since 

a +  8 +  2$ > 0  and A(s*) =  0 for i =  1,2, (s™, s%) is efficient. To see this, first consider 

profiles s* — k for k >  0. By lemma 10, s* — k £ Mp- By lemma 12, there is i such 

that Ui(s* — k +  1) — Ui(s* — k) >  0. Since the game is symmetric, this holds for both 

players. But since a +  8 +  2<j> >  0, Ui(s +  k) is convex in k. Thus, U{(s +  k) > Ui(s) for 

i — 1,2 for all symmetric s and for all k >  0. Thus, (s^s^) maximizes the payoff along 

the diagonal. Thus, by lemma 11, (s^s^) is efficient.

Let (f)+8 < 0 still hold and suppose alternatively that cr+8+2(f) <  0. Then U i ( s + k ) is 

strictly concave in k. By lemma 12 and by symmetry, Ui(s*)  > Ui(s* — 1) for i — 1, 2. 

Since the strategy set is bounded a maximizer s* +  k along the diagonal exists and it 

satisfies k  >  0.

Since asymmetric s ^  s* is agreeable, by lemma 10, s =  s*+k for some k >  0. For each 

player, consider two subcases, 1) there is 1 < k' < k such that s* +  k* — 1 ^ Aj(T, #*) but 

s* +  k' £ A(T, 9) and 2) s* +  k' where k' =  1 is agreeable. It is easy to see that one 

of the two must hold for each player. In either case the agreeability of s* +  k' implies 

that Pi(s* +  k') <  gi(u(s* +  fc'), r]j(s* +  k')) and in each subcase A (s* +  k' -  1) > 0 and 

fii(s* +  k' — 1) >  gi(u(s* +  k' — 1), r)j{s* +  k’ — 1)). Thus, if a  +  <5 +  2(f) >  0 and g satisfies 

{5} we can apply lemma 14. On the other hand, if </>+<r > 0 and g ( u r j ) =  g(u, 77) for all 

u', u, 77, we can apply lemma 15. In either case any s* +  k with k > k' is agreeable. Thus 

an efficient symmetric profile is agreeable.■



Chapter 6

A ppendix B

6.1 P roof of lem m a 7

Proof. Suppose that >  SJ. Surely if player i respects an agreement on a profile 

with payoff 1 — m at t  then she can accept 1 — 5m at t — 1. This holds since 1 — 5m >
r l - i p  t  1 Xl ~ V  t —1 1

Thus, the relevant condition is that if i respects an agreement on a profile with payoff 

m at t then she respects an agreement on a profile with payoff 5m at t — 1. WLOG check 

for player two that

This is equivalent to

L . i
But m(5,0, t ) =  (-^p-)^ v • Thus the inequality above holds iff

1 SJ ’ 92V'1 SI > W '

or iff

52 > S l

which is implied by > SJ since ip>  0. □

6.2 P roof o f lem m a 8

Proof. From proposition 6, if m  is agreed upon in period £, player 2’s equilibrium payoff,
t _ i t

U2{m,t,5),  can be written either as (1—5i) 22£=0 (5i52)k+(5i52)^m (if t G 2 n, n G N and 

t > 0) or as ( l - 5 i )  5Dfc=o(<̂î 2)fc+<5i(5i^2)t2i m (if t G 2n +  l, n G N). In either case, it is

119
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easy to see that it is increasing in 8 2 . By proposition 6, U{{m, t, 5) =  1 — U^m, t, S) and 

thus UI is decreasing in 82.
To see the effect of <5i, suppose first that t  E 2n. Then we can write [/£ (m, £, 5) as

i —1 t
(1 “  1̂) X!fc=o (^1 2̂)  ̂+  (<5i£2) 2 m. Differentiating with respect to 81 gives 

§ -1  | - i

-  +  (1 -  E  k^ k +
i s  151 iK  151 2

Rearranging this gives

f “2
-(1  -  62) E C 1 + * ) (W *  -  (1 -  < 0

k—0
t - i  t _ x

If t E 2n — 1, then then we can write U^im, t, 5) as (1 — <5i) m -

Differentiating with respect to <E gives

t - i  t - i

-  A ) k +  (1 -  T , k^ k +
k=0 1 fc=1 1

We can rearrange and get

t — 3

- ( 1  -  82) + k)(8i82)k -  (1 -  82171)^— ^ ( 8x82) ^ m <  0
k=0

□

6.3 P roof of proposition 6

Proof. Since 8{ =  Sj and 7 > 1, condition (3.7) holds. Thus, by lemma 6, there is finite 

scope for negotiations and by lemma 7, if m  is agreeable at t then 8m  is agreeable at 

t -  1.

Let T(0,8 ) E 2n where n >  0 and n E M.  If play reaches T(9,8), then player 2
r_i

proposes agreement m(0,8,T((6,8)))  =  1 — By lemma 7, if play
5 v 2

reaches T(0 , 8 ) — 1, then player 1 proposes agreement m 2 =  82(1  — m(6 , 8 , T((6 , £)))). By 

lemma 7, and by backward induction, player 2 proposes agreement

T(6,5)/2 - 1

(1 — ^l) ^  (<M2)fc +  (<5l̂ 2)T^’Ĵ 277l2
k=0

at period zero.
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Let T(9, <5) E 2n—1. If play reaches T(9 ,5), then player 1 proposes m{9 , 5, T((9 , £))) =

( -2.̂ _) r ( M ) ( B y  lemma 7 and backward induction, player 2 proposes

(T-1)/2

( i - « i )  X !  (M 2)fc +  ii(W 2 )(T“1>/2m (M ,T ((M )))
fe=0

at period zero.

By the backward induction argument, player 1 accepts player 2’s proposal at period 

zero. Thus, (3.10) and (3.11) directly give player 2’s equilibrium payoffs and player l ’s 

equilibrium payoff equals 1 — U .̂ □
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Appendix C

7.1 P roof o f proposition 17

Proof. Consider the following analogy partition. For each 0* and each 0_j, there is an 

analogy class af  C 0_1(0) and =  1 — X- On the other hand, given 0*, for every 

0_i, the states 0-1 (0)\af belong to 0 ^(0;) so that Q- 6  ̂ =  x • Notice that this

analogy partition is finer than the private information partition of i.

JK (2005, proposition 4) show that when the analogy partition is finer than the 

private information partition, the analogy based expectation equilibria are equivalent to 

the Bayesian-Nash equilibria of a virtual game where the payoff of player i when the state 

is u  and the action profile is a is Ui(a; uj) =  u ')' *n fraction 1 —

X  of the states that are mapped into 0, there are only states that are mapped to the same 

type vector, and thus U i { a \ u j )  =  U i { a \ 0 )  for these states. On the other hand, in fraction 

X  of the states that are associated with a given type 0, there are fractions p ( d ,_ i \ 0 i )  of 

states associated with types (0i,0!_j) for each 0/_i G © _j .  Thus, the virtual payoff for 

these states reads Uj(a;u>) =  Yle' ee_ i p{6'-.i\8i) Ui{a\ (0j, 0/_i)). Thus overall, conditional 

on type 0 the virtual payoff for action profile a can be written as (1 — x )ui(a ', 0) +  

X Ylo' €©-»P(0-i\0i) ui(a 'i (̂ *> 0/_j))- But this is exactly the cursed equilibrium virtual 
game payoff of type 0 (Eyster and Rabin, 2005, p. 1631). The Bayesian- Nash equilibria 

of this game are the x ~ cursed equilibria of the original game. □

7.2 P roof of proposition 22

Proposition  28. Let N  =  2, 0  =  {01,02} and =  [a], a?}. Suppose that s is a pure 

strategy profile of an ABEE.

122
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The A BEE is pay off-confirming if and only if

•  s is a Bayesian-Nash equilibrium 

or

• for each i such that Si(9m) ±  Si($n) and Anj =  {{01,#2}}

for all m, Uj(s j (em) M G m) ^ m) =  Uj(sj (0m) , s i (9m)-0m) O7-1)

or

for all m, U j ( s j { 0 m ) , ^(0™);6 m ) =  U j ( s j ( 0 n ) ,  *(0");O )

where ri(0m) is the action not chosen by i at dm.

Proof. If ABEE is BNE, then by lemma 17 the ABEE is PCABEE.

On the other hand, if (7.1) holds for each i such that Si(0m) ^  Si(0n) and Anj =  

{{01,# 2}}, then the ABEE is a PCABEE by lemma 18 below.

Consider now an ABEE which is a PCABEE and suppose to the contrary that the 

ABEE is not a BNE and there is i such that Si(0m) ^  Si(0n) and Anj  =  { { 0 \  02}}  and 

(7.1) does not hold. Thus, by lemma 19, ABEE is not a PCABEE - a contradiction. □

Lem m a 16. ABEE is BNE iff for each player

• the analogy partition is finer than the opponent’s information partition

• if Anj  =  {{01,02}}, then i plays a pooling strategy.

Proof. If the analogy is finer than the opponent’s information partition, then conjectures 

about the opponent’s behavior at each state are correct. Thus, ABEE is BNE.

If Anj  =  {{01,02}} and i plays a pooling strategy, then the opponent plays the same 

action in each state. The average strategy coincides with the pooling strategy. Thus, the 

conjectures about opponent’s behavior at each state are correct. Thus, ABEE is BNE.

Suppose now to the contrary that there is a player with a coarse analogy partition 

and the opponent plays a separation strategy. Then the average strategy differs from the 

strategy in each state. The conjectures about opponent’s behavior are incorrect. Thus, 

the ABEE is not a BNE. □

Lem m a 17. BNE is a PCABEE
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Proof. Given a BNE consider an ABEE where each player’s analogy partition coincides 

with opponent’s information partition. Then conjectures about opponent’s behavior are 

correct. Hence, expectations about own payoffs must be correct also. □

Lem m a 18. Let N  =  2, 0  =  {01,#2} and A{ =  {a*, a2}. Suppose that s is a pure strat­

egy profile of an ABEE. Let for each i such that Si(9m) /  Si(On) and Anj  =  {{01,02}}

for all m, Uj{Sj{9m),ri(9m);9m) =  uj (sj (9m), Si{9m)-6m) (7.2)

or

for all m, Uj(sj(0m),ri(Orn)\9m) =  Uj(sj(9n), Si(0n); 9n)) (7.3)

where ri(9m) is the action not chosen by i at 0m.

Then the ABEE is PCABEE.

Proof. Define the probability of j  getting payoff u given strategy profile a as f l {u)  =

Let there be i such that Si(9m) ^  Si(9n) and Anj =  {{^1,^2} }• There are three 

subcases to consider: first

uj (sj (9m),r i (9m)]9m) =  uj (sj (9ml s i(9m);9m)

=  uj (sj (9n) M 0 n)\0n)

=

in which case both conditions hold. In this first subcase trivially f ^  pj^(uj(sj(9m), Si(9m); 9m)) =  

1 =  f i (Uj{sj{9m), Si(9m); 9m)). Thus, s is a payoff confirming analogy-based expectation 

equilibrium.

In the second case only (7.3) holds but not (7.2). For each 9m, the perceived proba­

bility that Uj(sj(9m),Si(9m);9m) results is

<H ) =  +  [1 -

=  t/(9m)]2 +  [1 -  / (« m)]/(9m)

=  f(6m)

=  *(»"*);»"*))•

Thus, s is a payoff confirming analogy-based expectation equilibrium.

Third, if only (7.2) holds and not (7.3), we have that

/<' )̂(%'(»#n).s#n);0n)) = U(<>nW ( s i ( n )
= t/(m
=  / i ( u i ( * ; ( n .* ( 9 n);0n))-
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Thus, s is a payoff confirming analogy-based expectation equilibrium. □

Lem m a 19. Let N  =  2, 0  =  {0*,02} and Ai =  {a*, a2}. Suppose that s is a pure 

strategy profile of an ABEE.

If there is i such that Si(9m) ^  Si(0n) and Anj  =  { { 0 \ 0 2}}  and neither

for all m, Uj(sj (6m), r*(0m); 6m) =  Uj(s j(0m), s*(0m); 6m)

nor

for all m, Uj{sj{9m) , r i {9m)\9Tn) =  Uj(sj(9n),Si(0n);9n))

where ri(Om) is the action not chosen by i at 9m, 

then the ABEE is not a PCABEE.

Proof. By lemma 16, since Si(0m) ^  Si(6n) and Anj  =  {{01,02}} the ABEE is not BNE.

Furthermore there is m  such that neither (7.2) nor (7.3) holds. We use proof by 

contradiction. There are two subcases to consider. Suppose first, that there is m  such 

that

• ( < r v <(<r);e” ) i  {uj(*i(9m).*i(«m);9ro), « ,-(* # " ) .* (« ”);fln))}- (7.4)

Define the probability of j  getting payoff u given strategy profile a  as

f t ( u) =  X I p(9 )a i (ai \0)crj (aj \9). (7.5)
{a,0 |u= uj(a ,0)}

Since Sj(0m) 7̂  Si(9n), j  expects Uj(sj(9m),ri (9m)-,9m) to result with a positive proba­

bility,

f  3j(uj (sj (0m) M O my,0m) ) >  0 (7.6)

But since (7.4) holds, faj ,ai {uj (s j(9m),r i(0m)',9m)) =  0 which contradicts the consis­

tency condition of PCABEE and thus the ABEE is not PCABEE.

In the second subcase, suppose in addition to Si(0m) ^  Si(9n) that there is m  and 

i such that

M s # m) ,n (0m);0m) =  t t i(« i(n ,® i(0 ; 0

=  ^ ( 0 , ^ ( 0 " ) ;  n )  (7.7)

#  ^ ( Sj(0"),Si(0n);0n)) (7.8)

Then

4 iW (uJ(Sj-(0m) . * ( n ; 9 m)) =  /(9 m) +  / ( n / 3 J'(n(«n)) (7.9)

*  f (»m) (7.10)

=  (7-11)
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and thus ABEE is not PCABEE. □

Proposition  29. Let in an ABEE a differ from a Bayesian-Nash equilibrium. If for 

each j  and aj  such that there are 9m,9n E aj  with a - j (9rn) ^  a- j(9n),

• either for all 9 E aj  and for all action profiles of players other than j ,  a*_j =

such that for each i ^  j  there is 9' E aj such that 

a* Esuppci(9'), we have for all aj £suppcj{9)

Uj {flj, o_j 5 0) — uq

• or for all action profiles of players other than j ,  a*_j =  (al, . . . ,aj_1,aj+1,...,a*N) such

that for each i ^  j  there is 9' E aj  such that a* £suppcri{9'), we have for all

9 € aj  and aj £ supper j (9)

Uj {aj , o>—j ; 0) =  ua_., 

then the ABEE is payoff-confirming.

Proof of proposition 23. Let for each j  and aj  such that a- j(9m) /  er~j{9n) and 9m,9n E 

aj ,  for all 9 E aj,  for all action profiles of players other than j, a*_j =  ( a | , a*-_Y,a*+ l , a 

that for each i ^  j  there is 9' E aj  such that a* Esuppcr^#') for all aj Esuppcrj(9),

Uj(aj, a—j,  $) — uq.

Apply condition (7.1) in definition 8 with 7j  =  (a_j, aj{9)),

E 1 I  ej)
{a,0\itj=Uj(a,0)}

= y i p(0)ar- j ( a- j \ 0 - j )a'j{aj\Qj)
atj£Arij {(a.j ,6)\uj=uj(a,6), 0€cxi}

= E E pW ' sM*?) E Z-M-jT-i)
a j  €An,j 6n £ a j  a*_j

= E E p(on)°i(aj i»")
a j  (zArij 6n £ a j

= E E
a jEA rij  8n £ a j  a—j

=  E E PiO W -jia - i f t - jW jM O j)
a j € A n j  {a,0 |u i=U i(a,0),06aj } 

{a,6\ui=Ui(a,6)}

where the second equality follows from the fact that, in an analogy class, for a state in 

the class and for an action that is chosen with a positive probability by j  in that state
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the payoff is the same for any action profile of players other than j  to which d - j  assigns 

a positive probability. The third and the fourth equality follow because a conjecture and 

a strategy is a probability distribution and thus sums up to one. (X)a* &-j(a- j \ 9- j )  =~~3
1 =  Yla-j a - j ( a- j \ 9j))  only actions which are assigned a positive probability in the 

average strategy of the analogy class can be assigned a positive probability in the actual 

strategy.

Let for each j  and c t j  such that (J-j{9m) ^  &-j(9n) and 9m,9n £ aj ,  for all action 

profiles of players other than j ,  a*_j =  ( a j , a j _ l5aj+1, ...,a*N) such that for each i ^  

j  there is 9' £ aj  such that a* £suppcri(0/), for all 9 e  aj  and aj £suppcrj(0)

Uj {dj, d—j 9) =  Ua_j .

Apply condition 7.1 in definition 8 with 7» =  (a_j, ai(0)),

Y  p(6)d - j  (a-j\0j)<Tj (a3 \ej)
{ a,8 \uj=Uj (a ,8) }

=  Y  Y  p(e)*j(aj \0j ) ° - j ( a- j \ 0)
a£Arij  {(a ,8)\u j=U j(a ,8) ,  06a}

=  Y  Y d - ^ a- j \a ) Y p(<e^ a^ d^
a ^A r i j  a* . 0 6 aJ —J

=  Y  Y p^ a^ a^
aSArij  0 6 a

=  Y  Y  P(e)<rj(aj \ej ) Y c7- i ( a- j \ e- ^
a€Arij  {(a,j,6)\uj=Uj(a,8), 06a}  a - j

=  Y  Y  P{e) ^ j M ej ) ff- j ( a- j \ e- j )
aeA r ij  {(a,8)\uj=Uj(a,8), 06a}

Y  P(9)<7- j ( a- i \e- j ) CT3(a3\ej)
{a,8\ui=Ui(a,8)}

where the second equality follows from the fact that for a given action profile a*_j in 

supp(7_j(a:) the payoff Uj{dj,d*_j,9) is the same for each 9 in aj  and (dj ,0 ) such that 

dj Gsupp<Tj(0). The third and the fourth equality follow because a strategy and a conjec­

ture are probability distributions and only actions which are assigned a positive proba­

bility in the average strategy of the analogy class can be assigned a positive probability 

in the actual strategy. □

7.3 P roof o f proposition 26

Proposition  30. If for every i and for every a  and for every h' £ ah such that 

P ai,at{h) >  0 and such that a(h) ^  <fl(h) we have that P ai'a% (h\a) =  P a(h\a) and
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(1) either for every u for every a, a' € A(a)

Y  P eTi'3\ z \ t i , a ) =  P ^ i z l h ^ a ' )
{z \u i(z)=u} {z\u i(z)=u}

(2) or for every u

Y  P ’ <'S ‘ ( z \ h ' , a ) =  y
{z |u i(z)=u} {z |u i(z)=u}

then for all u and for all i

Y  p ° ( z ) =  y
{z |u i(z)=u} {z\u i(z)=u}

Proof. If condition 4.13 holds for a, then, then for every u

Y
{z|u (z)= u , h € a }

^  P ai-?i(h |o)ai (a|h)Pa- 5i(z|h,a)
{z |u(z)= u, /i€a}

=  £<?<(«!/.) Y
/iGa a  {z |u(z)=u}

But for each u , X 3{z|u(z)=u} P*7̂ ( Z\K a) is either zero or one and it equals 1 3 { z |u (z)= u }  P a(z\h, a). 

In the former case obviously,

Y r ’^ i h M Y ^ V  E
/i€ a  o {z |u(z)=u}

=  0 =  £ P * ( % ) 5 > ( a | / i )  Y  P a(z\h,a).
h £ a  a {z |tt(z)=u}

In the latter case,

Y  P°«*(z\h,a)
h € a  a  {z |u(z)=u}

/i€c* o

=  Y ^ w ^ Y ^ m
h £ a  a

=  ^ P <T( / i |a )^ a (a |/ i )
h e a  a

=  ] r p " ( % ) 2 > ( a | / i )  E  P°(z\h,a).
h £ a  °  {z |u(z)=u}

Thereby,

Y ^ ‘(z |a) = y
{z|u(z)=u} {z |u(z)=u}
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Consider now the case that every h G a  such that P ai'a (h) >  0 satisfies (4.14). 

Then, for every u, we can write

{z|Ui(z)=u}

£  p*J>‘(h\ah)p«*,(z\h)
(z|ui(z)=u, h€a}

=

ftGa {z|u»(z)=u}

=  ^ P " ’s i(h|ak) ^  $ 3  5 . i (a|a )P ’ ‘-s i(Z|A,a)
h€a {z|iti(z)=u} o6A(a)

= E P °<'*, (h\ah)P°‘-!>,(z\h,a)
a€A(a) {z|u(z)=u, hGa}

But now keeping a fixed and varying h, u is the same for each positive probability 

terminal history z. Thus 5Z{z|u(z)=u, h£a} P**'*' (z\h, a) is either zero or one.

In either case

£  5*(o|a) J 2  P °‘'9‘(h\ah) F ’^ ( z \ h , a )
o€A(a) {z|u(z)=u, h€a}

=  S  a -3^a\a ) X )  P a(h\oth)Pa(z\h,a)
a£A(a) {z|u(z)=u, /i€a}

Thereby,

52 = E
{z|u(z)=u} {z|u(z)=u}

□
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