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A b s t r a c t

Changing market conditions, volatile customer demand, intense competition and 

tightness of capital are some of the primary characteristics of the global economy 

that affect process industries nowadays. The main objective of the thesis is to 

facilitate business decision-making in today’s increasingly complex and highly 

uncertain market environment by applying mathematical programming techniques 

for multi-site capacity planning and business optimisation in process industries.

In the first part of the thesis, the problem of multi-site capacity planning under 

uncertainty in the pharmaceutical industry is addressed. A comprehensive two-stage, 

multi-scenario mixed-integer linear programming (MILP) model is proposed able to 

determine an optimal product portfolio and multi-site investment plan in the face of 

clinical trials uncertainty. A hierarchical algorithm is also developed in order to 

reduce the computational effort needed for the solution of the resulting large-scale 

MILP model. The applicability of the proposed solution methodology is 

demonstrated by a number of illustrative examples.

The second part addresses the problem of business optimisation for customer 

demand management in process industries. A customer demand forecasting 

approach is developed based on support vector regression analysis. The proposed 

three-step algorithm is able to extract the underlying customer demand patterns from 

historical sales data and derive an accurate forecast as demonstrated through a 

number of illustrative examples. An active demand management approach for close 

substitute products is also developed based on price optimisation. The proposed 

methodology is able to determine optimal pricing policies as well as output levels, 

while taking into consideration manufacturing costs, resource availability, customer 

demand elasticity, outsourcing and market competition. An iterative algorithm is 

developed able to determine Nash equilibrium in prices for competing companies as 

demonstrated by the illustrative examples.
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Chapter 1

Introduction

1.1 Process industries in the 21s* century

Process industries cover all industries involving a chemical or physical change in the 

manufacturing process such as chemicals, pharmaceuticals, food, steel and mineral 

processing. They are recognised as being the most successful manufacturing 

industries in the UK where total sales in 1997 were £33 billion, with profits £4.8 

billion and they are fast becoming the largest single export group (Munir et al., 1999).

Volatile customer demand, intense competition, tightness of capital and global 

operations are the primary characteristics of the 21st century economy that affect 

every stage of business decision-making in process industries. In particular, process 

industries nowadays operate in a market environment that is highly uncertain and 

increasingly complex. Modem economy favours the production of high-value added 

and low-volume products. The pressure of global competition is frequently cited as a 

primary driver for greater customer demands and improved quality products. 

Furthermore, globalisation of business operations introduces the need for 

manufacturing a wide variety of products, sold in multiple geographically distributed 

locations around the world.

10



Chapter 1: Introduction 11

Given the competitive business landscape both at local and global level and the ever- 

changing market conditions across different time and space scales, process industries 

are faced with the question of how to ensure high profitability as well as guarantee 

business sustainability. Overall, the main concern for process industries is how to 

make the most out of their resources so as to lead a sustainable business life in the 21st 

century. The decisions involved have to be considered simultaneously and they are 

usually taken in the face of significant uncertainty and risk that further magnify the 

importance of optimal business design and operation.

During the last decades, the industrial sector has experienced a major shift from 

product-oriented companies to customer-centric supply chains and from mass 

production modes to tailor-made products where product specifications are literally 

dictated by each individual customer. The Internet explosion and the subsequent rise 

of e-commerce enabled process industries to adopt a more responsive way of 

manufacturing and delivering products to end-customers. Towards the same direction, 

information technology provided process industries with novel applications such as 

vendor-managed inventories, radio frequency identification (RFID) product tags and 

electronic shelf labels resulting in real-time responsiveness, exceptional visibility 

across the entire supply chain and increased customer satisfaction.

However, it is still very often the case where process engineers find themselves data 

rich but information poor. Despite recent technological advances, the abundance of 

data in process industries is not always translated into extra money or time. As it is 

typical with any emerging technology, although new applications provide a wide 

range of solutions, they also create a new array of technology-specific problems that 

necessitate the full attention of process industries wishing to stay ahead of market 

competition and outrun their slower competitors.

As firms increase their participation in global economy, developing a deep 

understanding of business optimisation issues and realising the potential benefits and 

opportunities becomes an increasingly important matter for process industries. There 

exists a clearly identified need for advanced decision-making tools able to facilitate 

business management and potentially lead to significant economic benefits for 

process industries.
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1.2 Mathematical programming for process industries

It has long been recognised that mathematical programming techniques provide such 

a fertile environment that can sustain a wide range of business applications in process 

industries. More than 40 years ago, Forrester (1958) identified a major management 

breakthrough in understanding how industrial company success depends on the 

interaction between the flows of information, materials, money, manpower and 

capital equipment. Discussing the shape of the future, he proposed that “there will 

come general recognition of the advantage enjoyed by the pioneering managements 

who have been the first to improve their understanding of the interrelationships 

between separate business functions and the company and its markets, its industry and 

its national economy”.

Since then, numerous practitioners in the academia and industry have made vital 

contributions in the emerging area of process systems engineering with the most 

celebrated one being the pioneering work of Prof. Roger WH Sargent (Sargent, 1977). 

However, prohibitively expensive and unavailable computational resources hindered 

the wide acceptance of mathematical programming techniques in process industries. It 

was only until recently when computer power became fairly cheap and widely 

available that process industries began to realise the true potential of mathematical 

programming by harnessing the number-crunching capabilities of super-computers 

coupled with major advances in the field of process systems engineering.

Recently, Kallrath and Wilson (1997) summarised a number of interesting business 

optimisation problems and proposed mathematical programming techniques for their 

solution. The most important among those problems include transportation and 

assignment problems, production planning and scheduling, distribution planning, 

yield management, project planning and facility location problems. An indicative 

example of the scope of mathematical programming in assisting process industries is 

described by Amtzen et al. (1995) who reported an optimisation model used by 

Digital Equipment Corporation that achieved savings in the order of $100 million US 

dollars.

According to Williams (1999), apart from the apparent economic benefits, the 

motivation for model building in mathematical programming is three-fold:



Chapter 1: Introduction 13

• To gain insight into the problem. The actual exercise of building a 

mathematical model often reveals relationships that were not apparent 

previously. As a result greater understanding of the problem is achieved.

• To identify non-obvious solutions to the problem. Having built a model it is 

then possible to analyse it mathematically and help suggest course of actions 

that might not otherwise be obvious.

• To investigate extreme aspects of the problem. Computational experiments 

can be conducted when it is not possible or desirable to conduct an experiment 

in real-life (e.g. accident simulation models) and provide us with useful 

information concerning the problem under investigation.

1.3 Aims and objectives

Motivated by the promise of better understanding and enhanced problem-solving 

capabilities offered by mathematical programming, the aim of our work is to facilitate 

business decision-making by applying mathematical programming techniques for  

multi-site capacity planning and business optimisation in process industries. More 

specifically our goal is to develop a number of mathematical modelling frameworks 

able to accommodate different business functions and serve as an advanced toolbox 

for strategic business decision-making that complement human expertise in process 

industries.

In order to achieve our goal, the following areas will be addressed:

• Multi-site capacity planning', this area is concerned with determining a multi­

site investment strategy in the pharmaceutical industry as a key representative 

of the R&D-intensive, risk-prone and highly-regulated process industries 

including among others the agrochemical, biotechnology, food and drinks 

industries.

• Efficient solution methodologies: this area is focused on the development of 

alternative solution approaches able to accommodate the combinatorial nature 

of the proposed multi-site capacity planning model and derive near-optimal
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solutions within reasonable computational time without compromising the 

quality of the obtained solution.

• Customer demand forecasting: this area deals with a systematic approach for 

customer demand forecasting via the employment of support vector regression 

analysis.

• Active demand management: this area is concerned with a novel, 

non-conventional approach for customer demand management in competitive 

marketplaces through price optimisation.

1.4 Thesis outline

The rest of the thesis is structured in two parts as follows. Part I addresses the 

problem of multi-site capacity planning under uncertainty in the pharmaceutical 

industry and consists of Chapters 2 and 3. Part II tackles the problem of business 

optimisation for customer demand management in process industries and consists of 

Chapters 4 and 5.

Chapter 2 presents a simultaneous approach for multi-site capacity planning under 

uncertainty. The overall problem is formulated as a two-stage, multi-scenario mixed- 

integer linear programming (MILP) mathematical model incorporating issues related 

to product management, clinical trials uncertainty, capacity management and trading 

structure of the company. The applicability of the proposed mathematical model is 

illustrated by a number of illustrative examples.

A hierarchical approach for multi-site capacity planning under uncertainty is proposed 

in Chapter 3. Based on an aggregate formulation of the original MILP model, a 

hierarchical solution methodology is developed able to accommodate the inherent 

complexity of the multi-site capacity problem by decoupling the strategic and 

operational decision-making levels. The illustrative examples are revisited so as to 

perform a valid comparison between the hierarchical and the simultaneous approach.

Chapter 4 presents a customer demand forecasting approach via support vector 

regression analysis. Based on the recently developed statistical learning theory, a 

three-step algorithm is proposed comprising both nonlinear (NLP) and linear (LP)
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mathematical model formulations to determine the regression function while the final 

step employs a recursive methodology to perform customer demand forecasting. 

Based on historical sales data, the proposed algorithm identifies underlying customer 

demand patterns and captures customer behaviour before deriving an accurate 

forecast as demonstrated by three illustrative examples.

An active demand management approach for close substitute products through price 

optimisation is presented in Chapter 5. The proposed methodology identifies price as 

the ultimate driver behind customer purchasing decisions and maximises company 

profits while taking into consideration manufacturing costs, resource availability, 

customer demand elasticity, outsourcing and market competition. An iterative 

algorithm is proposed able to simulate the decision-making process by solving a 

series of non-linear programming (NLP) mathematical models before determining 

Nash equilibrium in prices for competing multi-product companies. The applicability 

of the proposed methodology is demonstrated by a number of illustrative examples.

Finally, Chapter 6 summarises the main contributions of the thesis and also provides 

recommendations for further research work.



P a r t  I

M u l t i - S i t e  C a p a c i t y  P l a n n i n g  

U n d e r  U n c e r t a i n t y
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Chapter 2

A simultaneous approach for multi-site 
capacity planning

2.1 Introduction and literature survey

Every year the pharmaceutical industry spends a large amount of research funds 

developing new chemical entities (NCEs). This process involves producing and 

screening vast libraries of chemical compounds before a limited number of promising 

NCEs enters the clinical trials phase. Despite the costly research and development 

(R&D) effort, only a few of the initial chemical compounds actually become 

marketed drugs, depending on the clinical trials outcomes and the estimate is that a 

successful drug might take ten years from the laboratory to the pharmacy shelf 

(EFPIA, 2003).

Pharmaceutical companies are constantly faced with the question of best use of 

limited resources available to obtain the highest possible profit and the decisions 

involved are usually taken in the presence of significant uncertainty. It would be fatal 

for a pharmaceutical company to wait for well-informed investment decisions in the 

end of the clinical trials phase. Late investment decisions could lead to a prohibitively

17



Chapter 2: A simultaneous approach for multi-site capacity planning 18

long time before the new product reaches the market and therefore would jeopardise 

both the profitability and the sustainability of the entire company.

In order for a pharmaceutical company to stay competitive and lead a sustainable 

business life, it is absolutely vital to recoup its investment in developing new products 

as soon as possible. Since the effective patent life is diminishing and generic drugs 

will inevitably enter the marketplace, posing a valid threat to the profitability of the 

new products, it is of crucial importance that the company decides early enough on its 

capacity investment plan so as to guarantee the availability of the necessary 

manufacturing capacity resources to produce the new products as soon as the 

marketing authorisation is granted. This enables the company to take a proactive 

course of action in the face of uncertain clinical trials outcomes and market launch its 

new products on time, making the most out of the patent lifetime and outrun its 

slower competitors while ensuring a high product profitability and a steady financial 

flow back to the R&D product pipeline.

Schmidt and Grossmann (1996) were the first to address the problem of task 

scheduling for new product development. Later on, Jain and Grossmann (1999) 

proposed two MILP models to account for the resource-constraint scheduling of 

testing tasks. Rotstein et a l (1999) presented a stochastic capacity planning model 

incorporating clinical trials uncertainty, using a scenario-based approach. Although 

they managed to integrate the problem of capacity planning and new product 

development under uncertainty in the pharmaceutical industry, their proposed model 

was limited to the case of single-site capacity planning. Samuelsson (1999) developed 

both a deterministic and a stochastic single-site capacity planning model while he 

proposed various heuristic solution approaches. Blau et al (2000) considered the 

decision-making process involved in the development of the product portfolio under 

uncertainty of a pharmaceutical company while they also calculated the ratio of 

reward to risk. In order to address the combinatorial nature of the R&D product 

pipeline problem, Subramanian et al (2000) developed a computing architecture 

based on mathematical programming and discrete-event system simulation so as to 

facilitate decision-making for new product development. Gatica et a l (2001) 

described a stochastic single-site capacity planning model considering multiple 

clinical trials outcomes per candidate product. Maravelias and Grossmann (2001)
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proposed a multi-period model able to accommodate simultaneously new product 

development and capacity planning of manufacturing facilities. Papageorgiou et al 

(2001) developed a multi-site, multi-period capacity planning model incorporating the 

internal trading structure of the company. However, their model assumes a 

deterministic demand profile for the potential products with no consideration of the 

uncertainty of clinical trials outcomes. Rogers et al. (2002) proposed a novel 

approach for optimal pharmaceutical R&D portfolios based on real-options analysis. 

They developed a stochastic mathematical model using a real-option decision tree for 

making optimal project selection decisions in the face of market uncertainty. More 

recently, Subramanian et al. (2003) extended their previous work for the stochastic 

optimisation of the R&D pipeline by employing a three-step heuristic procedure. 

Finally, Cheng et al. (2003) formulated the problem of design and planning under 

uncertainty as a multi-objective Markov decision process while they recognised the 

intense computational requirements arising from the “curse of dimensionality” when 

dealing with multiple scenario realisations.

Different solution approaches have been proposed in the literature in order to tackle 

efficiently large-scale mathematical models involving uncertainty. Pistikopoulos

(1995) introduced a theoretically unified way for characterization and quantification 

of uncertainty in process design and operations. Mulvey et al. (1995) developed a 

scenario decomposition method for large-scale stochastic optimisation problems. 

Subrahmanyam et al (1996) developed decomposition approaches for batch plant 

design and planning. Recent approaches include two-stage stochastic mathematical 

models accompanied by their respective solution strategy: Ierapetritou and 

Pistikopoulos (1994) (decomposition-based solution approach), Liu and Sahinidis

(1996) (decomposition algorithm) and Gupta and Maranas (2000) (two-step 

algorithm). Gupta and Maranas (1999) also developed a hierarchical lagrangean 

relaxation for solving mid-term planning problems. Rotstein et al (1999) used a 

hierarchical solution methodology based on a reduced scenario space of the original 

problem. In their work on capacity planning, Maravelias and Grossmann (2001) 

proposed a heuristic algorithm based on lagrangean decomposition that exploits the 

special structure of the problem and is able to yield near-optimal solutions within 

reasonable computational time. Finally, a scenario aggregation-disaggregation 

solution approach was introduced by Gatica et al (2003). Wolsey (1998) discusses
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several heuristic algorithms for the solution of integer programming problems (dive- 

and-fix, relax-and-fix, cut-and-fix), while Reeves (1995) presents a number of 

modem heuristic techniques for large-scale combinatorial problems (simulated 

annealing, tabu search, genetic algorithms, lagrangean relaxation and decomposition).

Clearly, the problem of product portfolio and capacity planning has previously been 

addressed in the process systems engineering literature. However, the existing 

approaches mainly focus their attention on individual aspects of the general problem 

assuming for example the specific case of single-site capacity planning under 

uncertainty (Gatica et al., 2001) or dealing with multi-site capacity planning that 

postulates a deterministic customer demand profile without considering the issue of 

uncertainty explicitly (Papageorgiou et al., 2001). Another common drawback of 

nearly all the existing approaches is that they ignore the issue of the internal trading 

structure of the company thus failing to address the financial flows that take place 

among the different business centres of the company. However, the trading structure 

plays a dominant role in the after-tax profitability of the company. Especially in the 

pharmaceutical industry, it is very often the case when multi-national companies 

operate in many geographically distributed manufacturing facilities while dealing 

with an international clientele located in different customer zones. Therefore, the 

issues related to the trading structure of the company have to be taken into account 

when deciding on the optimal multi-site investment strategy of the company.

Furthermore, the inherent complexity of the problem of product portfolio and 

capacity planning under uncertainty usually gives rise to large-scale mathematical 

models that are computationally expensive to solve via direct application of 

commercially available solvers. The resulting mathematical models cannot be solved 

efficiently and in many cases are intractable through the employment of traditional 

branch-and-bound methods. The solution of such large-scale instances of the problem 

necessitates the implementation of alternative solution approaches.

In this chapter, we present a systematic simultaneous approach multi-site capacity 

planning in the face of clinical trials uncertainty while considering the trading 

structure of the company. The rest of the chapter is structured as follows. In the next 

section, the main characteristics of the problem are discussed, while a formal problem 

statement is given as well. The proposed mathematical model along with the key
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assumptions are described in section 2.3, while its applicability is demonstrated by 

five illustrative examples in section 2.4. Finally, some concluding remarks are drawn 

in section 2.5.

2.2 Problem description

The problem of multi-site capacity planning in the pharmaceutical industry is very 

challenging since it aims to integrate traditionally isolated areas such as product 

development, manufacturing, accounting and marketing. The complexity of the 

problem is mainly attributed to the great variety of parameters and decision-making 

levels involved. A strategic investment plan should simultaneously address and 

evaluate in a proper manner the following four main issues: product management, 

clinical trials uncertainty, capacity management and trading structure. The different 

main areas will be further analysed in full detail in the following sections.

2.2.1 Product management

Pharmaceutical products are typically manufactured in two main stages, namely the 

primary and secondary manufacturing stage. The primary stage is responsible for the 

production of the active ingredient (Al) of the drug. The second stage is responsible 

for converting the Al to a final product for direct use (e.g. vials, tablets, etc). The 

primary manufacturing step is the highest value-added step of the overall process and 

is considered to be the most critical one for product portfolio planning. Therefore, this 

is the main stage that will be further analysed in this chapter.

Product management is concerned with the main features of each product considered 

as a suitable candidate for manufacturing and commercialisation. Such features 

include R&D costs associated with the development of each new product and 

commercial characteristics of each product such as manufacturing costs, selling price 

and marketing expenses (Papageorgiou et al., 2001).

Overall, product management addresses the problem of selecting the optimal product 

portfolio based on the individual characteristics of each candidate product. It is very 

important to understand that the decisions involved in product management cannot be 

viewed in isolation from the overall problem of multi-site capacity planning, since 

they are strongly dependant on the uncertain clinical trials outcomes, while they are
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also directly linked to both the capacity investment decisions and the trading structure 

of the company.

2.2.2 Clinical trials uncertainty

No pharmaceutical product can be placed in the market without receiving prior 

authorisation from the regulatory authorities, upon successful completion of a lengthy 

procedure for evaluating the quality, safety and efficacy of the product. New products 

in the process of development are legally required to undergo strict, extensive and 

stringent tests before they are approved and allowed in the market.

Once a new compound has been identified in the laboratory, medicines are developed 

as follows. During rigorous pre-clinical testing, pharmaceutical companies conduct 

laboratory and animal studies to assess the chemical, biological and toxicological 

properties of the compound against the targeted disease.

It is only when these tests show favourable results that a company can proceed with 

clinical trials, which are experiments conducted within very strict ethical and 

technical rules on human beings. The clinical trials testing comprises three distinct 

phases:

• In phase I, the medicine is tested on a few (about 20 to 100) healthy volunteers 

under strict hospital control.

• In phase II, controlled trials are carried out on volunteer patients 

(approximately 100 to 500) to gather information on the compound’s efficacy 

(relation between dose and effect) and safety (identification of possible 

adverse side effects).

• In phase III, more comprehensive studies are carried out (usually involving 

1000 to 5000 voluntary patients in clinics and hospitals), especially on any 

long-term effects. The proposed new treatment is also compared with other 

treatments already in use.

Upon successful completion of the clinical trials phases, a marketing authorisation 

application is submitted to the regulatory authorities for approval. Once marketing 

authorisation has been granted, the use of a medicine is still carefully monitored in
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accordance with approved current medical practices (EFPIA, 2003). In our 

mathematical model, we focus on the late stages of the clinical trials testing procedure 

(Phase III).

In order for a pharmaceutical company to make up for the patent time spent on the 

lengthy clinical trials phases and market launch its new products as soon as possible, 

it should decide early enough on its capacity investment plan. The decisions involved 

are taken in the face of uncertain clinical trials outcomes, usually relying on the pre- 

clinical results of each candidate product. They are considered as valid indicators that 

can produce rough estimates of the probability of success in the clinical trials 

procedure for each candidate product.

2.2.3 Capacity management

The manufacturing of the selected products can take place either in one production 

site or in many different geographically distributed production sites. Different 

production sites usually offer different tax rates, capital and operating costs that have 

to be taken into account by the optimisation algorithm. Additional data such as scale- 

up and qualification runs costs, production rates per product is also required for an 

accurate analysis of the capacity needs at each candidate production site.

The manufacturing equipment at each site is organised into blocks and each block 

involves a number of manufacturing suites. A single manufacturing suite comprises a 

production line coupled with a purification line. These suites are assumed to be 

available in identical capacities and known fixed cost. Each suite makes use of 

services such as resource utilities, administration and analytical/laboratory facilities. 

A maximum number of suites can share one service centre, creating a manufacturing 

block as illustrated in Figure 2.1.
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O

PRODUCTION 
LINE 1
PURIFICATION 
LINE 2

SERVICE
CENTRE

Figure 2.1: Manufacturing block with one service centre andfour suites

The first suite to be attached to the block is denoted as the header suite, while the rest 

of the suites that complete the block are referred to as the non-header suites. Each 

block does not need to have all of its suites constructed at the same time, while the 

investment strategy must take into account the construction lead-time before an 

invested suite becomes available for production. Usually, the construction time and 

cost for the header suite of each block is relatively larger than that of the rest of suites 

belonging to the same block, reflecting the additional cost and time needed for the 

construction of the service centre.

Initially, there might be a number of existing blocks. Capacity management faces the 

problem of allocating the existing manufacturing resources to the selected product 

portfolio and also considers the option of investing into additional manufacturing 

capacity in order to satisfy the anticipating customer demand.

The first time a product is manufactured in a new production site, it must undergo a 

scale-up activity before actual production starts. This reflects the time period needed 

in order to leam how to manufacture the product in a satisfactorily repeatable fashion. 

Upon completion of the scale-up process, the first few batches of the product ever 

produced at a site (qualification amount), must be sent to the relevant regulatory 

authorities for approval.



Chapter 2: A simultaneous approach for multi-site capacity planning 25

Before a campaign for a particular product is started, the suite must be cleaned 

thoroughly and that takes a long time (e.g. one month). Additionally, the product-to- 

suite allocation should consider the case of manufacturing many different products in 

the same facility by taking into account the associated changeover time. During the 

campaign products are produced at a nominal production rate. However, spoiled 

batches may occur during production and therefore production loss factors need to be 

included to account for the actual production levels that tend to be lower than the 

nominal ones (Papageorgiou et al., 2001).

2.2.4 Trading structure

Pharmaceutical companies nowadays are multi-product, multi-purpose and multi-site 

facilities operating in different countries and dealing with a global-wide international 

clientele. In such enterprise networks, the internal trading structure of the company 

plays a key role in business performance and necessitates the appropriate attention.

The internal trading structure of the company is mainly concerned with the financial 

flows between the various manufacturing and commercialisation business centres of 

the company. The supply chain network of a pharmaceutical company usually 

involves the following types of business centres:

• Production sites: these locations are responsible for product manufacturing.

• Intellectual property owner (IP-Centre): this location is responsible for the 

funding and development of new products.

• Sales regions: these locations are responsible for product marketing and sales.

Each one of the aforementioned business centres that is present in the trading 

structure of the company, can operate either as a cost or a profit centre. The different 

operating modes are explained below:

• Cost Centre: this centre usually covers only its own costs plus a small profit, 

while products are sold according to a “cost-plus” formula (cost plus a 

predetermined percentage).
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• Profit Centre: significant profits are realised in this centre where products are 

sold according to a “resale-minus” formula (sales revenue minus a 

predetermined percentage).

The adopted trading structure often has a significant impact on the after-tax 

profitability of the company by affecting the profits made at each business centre and 

consequently the taxes paid at every corresponding location. Furthermore, it may also 

affect decisions concerning the location of a new manufacturing plant, when 

candidate locations with different tax regimes are considered.

A typical trading structure for a pharmaceutical company is shown in Figure 2.2. In 

this case, all production sites operate as cost centres, while the IP-Centre and the sales 

regions operate as profit centres retaining most of the overall profits (Papageorgiou et 

ai, 2001).

Production Sites Sales Regions

'ost + 20% Resale

Cpst + 20 Resale - 2 5 %

Resale - 2 5 %

Resale
Cost + 20%

SITE 2

SITE 3

SITE 1

SALES 2

SUPPLY

SALES I

CENTRE
MARKET

Figure 2.2: Typical internal trading structure 

2.2.5 Problem statement

A holistic approach is needed in order to consider simultaneously product 

management, clinical trials uncertainty, capacity management and trading structure 

and resolve the dominant trade-offs in an optimal manner, so as to facilitate business 

decision-making in the pharmaceutical industry. Overall, the problem of multi-site 

capacity planning under uncertainty can be formally stated as follows:
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Given:

• A set of potential products.

• Probability of success in clinical trials for each product.

• Production rates, expected production losses and shelf-life for each product.

• Manufacturing costs for each product.

• Commercialisation costs for each product.

• Forecasted nominal demand and selling price for each product.

• A set of potential production sites and products involved.

• Fixed and variable operating costs for every production site.

• Construction lead-times and capital investment costs for each production site.

• Depreciation rates for capital investment at each production site.

• Taxation, interest and inflation rate for each location.

• Trading structure of the company.

Determine:

• The product portfolio (which products from the candidate portfolio to 

manufacture).

• The manufacturing network (where to manufacture the selected products).

• The multi-site investment strategy (what capacity and when to invest at each

production site).

• Detailed production plans (how much product to manufacture in each suite at 

each production site per year).

• Sales and inventory planning profiles (how much product to sell and how 

much inventory to maintain).

So as to maximise the expected nett present value (eNPV) of the company.
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2.3 Detailed mathematical formulation

In formulating the detailed mathematical model, we follow the notation of 

Papageorgiou et al. (2001) while adding a stochastic dimension to the problem in 

order to account for the uncertain clinical trials outcomes and the associated customer 

demand. We employ a discrete time formulation, where the time horizon is discretised 

into time intervals of equal duration, one year each.

The following assumptions are made:

• Start-up and shutdown periods are considered to be negligible compared to 

the duration of each time interval.

• Two different clinical trials outcomes are considered for each candidate 

product {Success, Failure). The product probability of success is assumed to 

be given from the pre-clinical tests.

• In case a product fails in the clinical trials, the customer demand is 

consequently zero over all remaining time periods. Otherwise, the customer 

demand equals a forecasted nominal baseline demand.

• Once a product has been selected for manufacturing, it undergoes the tasks of 

scale-up and qualification runs before actual production starts.

The decision variables involved in our problem can be partitioned into two different 

sets, namely the strategic and the operational decisions. The strategic decisions reflect 

the decisions that must be made immediately (here-and-now) in the face of 

uncertainty and they include:

• Product selection (binary variables).

• Allocation of products to production sites (binary variables).

• Capacity investment decisions for the selected production sites (binary 

variables).

Generating all possible scenarios for p  potential products, each one with two 

outcomes, results in 2P scenarios. Each individual scenario is a fairly small
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deterministic problem. The demand and its associated probability for the different 

outcomes of each product are assumed to be known. The probability of occurrence for 

scenario k {nk ) is a function of the individual probabilities of success ( probp) and

failure ( 1 -  probp) of each product p  and is given by the following formula:

** = Ylprohp U O  -probp)  (2 . 1)
peA k p<tAk

where Ak is the set of products that are successful in scenario k.

The multi-site investment strategy is common to all possible scenarios present in the 

second stage. However, due to the different product demand patterns, every scenario 

has its own characteristic production, inventory and sales profile. The operational 

decisions reflect the scenario-dependant decisions made upon completion of the 

clinical trials and resolution of the uncertainty (wait-and-see) and they include:

• Timings of scale-up and qualifications runs (binary variables).

• Allocation of products to manufacturing suites (binary variables).

• Detailed production plans at each production site (continuous variables).

• Inventory profiles (continuous variables).

• Sales profiles at each sales region (continuous variables).

Based on the given probabilities of success for each potential product, the problem is 

then to find the optimal product portfolio and investment decisions together with 

detailed production and sales plans so as to maximise the expected nett present value 

(eNPV). The eNPV is simply the summation of all scenario NPVs, weighted by their 

associated probabilities of occurrence.

Overall, the problem of multi-site capacity planning under uncertainty is formulated 

as a two-stage, multi-scenario mixed integer linear programming (MILP) 

mathematical model. The proposed model constitutes an extension of the 

mathematical model presented by Papageorgiou et al., (2001). The following 

nomenclature is used in our mathematical model formulation:
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Indices

i, j  manufacturing suites

k scenarios

/ production sites

p  products

s sales regions

t, 6 time periods

Sets

r 1 set of products that can be manufactured at production site /

Zf set of products that can be sold at sales region s

Ak set of products that are successful in scenario k

TIlk set of products that can be manufactured at production site / and are

successful in scenario k (77 lk = I 4 n  Ak)

Ask set of products that can be sold at sales region s and are successful in scenario 

k (A sk = 2? nAk)

Wpk set of production sites that can manufacture product p  in scenario k 

0 pk set of sales regions that can sell product p  in scenario k

I 1 set of manufacturing suites at production site /

F l set of header suites at production site /

N\ set of non-header suites that belong to the same block as header suite i at

production site /

T set of time periods

Parameters

Dsptk forecasted demand of product p  at sales region s at time t in scenario k 

f  inflation rate
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g interest rate

Ht available suite production time at time period t

Lp production loss factor of product p

M  maximum number of suites in each block

rp production rate of product p  in suite i at production site /

ap qualification amount of product p

p lpt scale up cost for productp  at time t at production site /

y l qualification runs cost for product p  at time t at production site /

$. construction lead time for suite i

et discount factor

Cp shelf-life of product p

rjj fixed operating cost of suite / at production site /

kp royalties costs for product p

jup marketing costs for product p

vp forecasted sales price of product p

%lp variable operating cost of product p  at production site /

7tk probability of occurrence for scenario k

pl tariff price for production site /

ps tariff price for sales region s

Opt research and development cost of product p  at time t

i p scaleup time of product p

f  product changeover time

(pl tax life period for production site /
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y/\ tax rate for production site / at time t

y/st tax rate for sales region s at time t

y/jp tax rate for the intellectual property centre IP at time t

col capital investment cost of suite i at production site /

Next, the following key variables are introduced:

Binary Variables

Alit 1 if suite i is available for production at time t at production site /, 0

otherwise

Elit 1 if investment decision is taken for suite i at time t at production site /, 0

otherwise

u p 1 if product p  is selected for development and manufacturing, 0 otherwise

Vp 1 if product p  is selected at production site /, 0 otherwise

X lptk 1 if qualification runs of product p  take place at time t in scenario k at

production site /, 0 otherwise

Yliptk 1 if product p is manufactured in suite i at time t in scenario k at production

site /, 0 otherwise

Zliptk 1 if scaleup of product p  takes place in suite i at time t in scenario k at

production site /, 0 otherwise

I
Zptk 1 if scaleup of product p takes place at time t in scenario k at production site

/, 0 otherwise 

Continuous Variables

Clitk number of changeovers in suite i at time t in scenario k at production site /

Cl lt cost of capital investment at time t at production site /
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CSQR‘k scale-up and qualification runs cost at time t at production site / in scenario k

DC1 depreciation at time t at production site /

Iptk inventory of product p  held at the end of time t in scenario k

Mc;k marketing costs at time t at sales region s in scenario k

oc!k operating cost at time t at production site / in scenario k

R D C f R&D costs at time t for the IP-Centre

RClk royalty costs at time t for the IP-Centre in scenario k

S splk amount of product p  sold at time t in scenario k at sales region s

SRtk revenues of sales at time t in scenario k at sales region s

Tl* iptk production time of product p  in suite i at time t in scenario k at production

site /

Tax?, taxes paid at the IP-Centre location at time period t at scenario k

f p taxes paid at the IP-Centre location

jS taxes paid at all sales regions

jL taxes paid at all production sites

wptk wasted amount of product p  at time t in scenario k

expected nett present value after taxes

p 8 expected nett present value before taxes

The derivation of the detailed mathematical model formulation is described next.

2.3.1 Detailed constraints 

Product Existence Constraints

If a product is not selected for development and manufacturing (i.e. Up=0), then this 

product is not allowed for manufacturing in any candidate production site.
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Vp <up V l,p  e T1 (2.2)

Suite Availability and Investment Constraints

At every production site /, manufacturing suite i is available at time period t, only if it 

is available at the previous time period (/-/), or an investment decision is taken for 

that suite <5, periods before, reflecting the construction time required.

A j , = 4  _I+ E ‘u_Sl \ / I , i e l ' , t  (2.3)

Constraints that relate the construction times of the header suite with the subsequent 

non-header suites belonging to the same block are necessary, in order to ensure that a 

non-header suite j  can be invested at time t only if the header suite i has already been 

invested in at least Si-Sj time periods before period t or it is initially available (i.e.

4o=iy-

t - ( 5 t - 6 j )

£  E'ie + 40 > E', V l . i e F ' j e N ' . t  (2.4)
0=1

In order to suppress possible solution degeneracy and tighten the problem, a

constraint is necessary that allows suite i to be invested at time t only if suite i-1 has

been invested at a time period up to a time period t inclusive or it is initially available

(i.e. Ali0 =7). In order to take into account that different suites may have different

construction lead times, the constraints take the following form:

X  E ‘g + 4 0 > E l u  V /,» = / . ....I ' - l . t  (2.5)
0=1

Scale-up Constraints

If a product is selected for manufacturing at production site /, then the scale-up 

process will occur only once.

V l , k p e n ' k
t

(2.6)
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If scale-up occurs (i.e. Z = 1 ), then a single suite should be allocated:

S ZU = i U  VU* ; / » e / 7 '  (2.7)
i e l 1

A suite / at production site / can be used for scale-up only if it is available:

£ | ^ |  • 4  V /, / s  / ' ,  /. * (2.8a)-

Alternatively, constraints (2.8a) can be disaggregated to result in a tighter form at the 

expense of a larger problem size:

4ptk -  4  V U e l ' . t . k . p e l T ' t  (2.8b)

Finally, a product is allowed to be produced during a certain period t, only if scale-up 

has taken place up to that period. Mathematically, we have:

£ z '  > Y<p,k V l , ie  I ' . U p e  n [  (2.9)
0=1

Qualifications Constraints

After the scale-up is completed, qualification runs should be performed to ensure that 

the plant is capable of producing that product in full compliance with the regulatory 

authorities. The first batches produced are called qualification batches and they

should coincide with the first time that production of that product occurs at the

specific production site. The qualification constraints take the following form:

V A / e / U p e / l ' , ,  (2.10)
J e l ' 0 = l

In order to ensure that every product is qualified only once, the following constraints 

should be included:

' Z X ‘+ * K  V M p e n i  (2.11)

* Symbol |JT| represents the cardinality o f set X
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Production Constraints

36

Each product p  can be produced at production site I only if it is selected for 

manufacturing in that specific site:

(2.12a)
i e l  t

Constraints (2.12a) can be disaggregated to provide a tighter alternative in the 

following form:

< / '  -v'p v  i ,k,P e n lk,t (2.12b)
i e f

Constraints (2.12b) can further be disaggregated to result in an even tighter model 

formulation:

Y ^ < V ‘p V l . t e l ' . k . p e n l . t (2.12c)

Furthermore, each product p  can be produced in a specific suite i at production site / 

only if that suite is available:

p e I 7 ‘k

77 (2.13a)

Constraints (2.13a) can be disaggregated to result in a tighter form at the expense of a 

larger problem size:

Yip,k^Ai, v  h i d 1 , t , k , p e .n [ (2.13b)

When a product is qualified ( X ltk =1),  a minimum required amount must be 

produced:

Z v C  - a P ' x ‘p* v i ,k,p&n'k,t (2.14)
i e l 1



Chapter 2: A simultaneous approach for multi-site capacity planning 37

If product p  is manufactured in suite i at production site / under scenario k ( Ylptk = 1),

then the production time is bounded by an upper bound of available production time. 

Otherwise, the production time variable is forced to zero:

When multiple products are produced in the same suite, a minimum number of 

changeovers between the different product campaigns should taken into account:

The total suite production time for all manufactured products should not exceed the 

total available production time compensated for the time required for any necessary 

changeover and/or scale-up processes:

Inventory Constraints

For every scenario k, the amount of product p  stored globally at the end of period t 

will be equal to the amount produced at the previous period t-1 plus the nett amount 

produced in all suites at all production sites during period t (considering production 

losses), minus the amount sold to the sales regions minus the amount wasted due to 

the limited product lifetime.

Lifetime Constraints

The amount of product p  stored in each period t cannot be sold after the next CP 

periods. The product lifetime constraints take the following form:

(2.15)

V /, i e /  ,t,k (2.16)
p e l 7'

(2.17)

l ^ p k  i e l 1 s e 0 pk

p
(2.19)

s e 0 pk 0 = t+ l
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Sales Constraints

The amount of product p  sold at each time period should be less or equal to the 

forecasted customer demand of that product:

Furthermore, different sales strategies could be adopted to reflect alternative 

marketing policies of the company (see for example, Papageorgiou et al., 2001).

2.3.2 Detailed objective function

The objective function employed in our model is the expected nett present value 

(eNPV) after taxes (d^), which constitutes an appropriate performance criterion of the 

company. First, we present the formulation of the objective function before taxes
D

(0  ), that includes revenues from sales, marketing costs, royalties costs, R&D costs, 

costs of scale-up and qualification runs, operating costs, and capital investment costs 

similarly to Papageorgiou et al. (2001). Next, we consider these terms in sequence.

Sales revenue at sales regions

For every scenario k, revenue due to product sales at sales region s over time period /, 

can be calculated as follows:

Marketing costs at sales regions

In order to capture the marketing costs incurred at sales region s, the following cost 

term should be included in the objective function. The marketing costs are assumed to 

be proportional to the product amounts sold at sales region s over time period t in 

every scenario k.

(2 .20)

(2 .21)
p e  4

M c stk = X / v A (2.22)
p e  4
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Royalty costs at the IP-Centre

The royalty costs for the IP-Centre are also assumed to be proportional to the product 

amounts sold at all potential sales regions over time period t in every scenario k.

RC'I =  I  (2-23)
s e ® pk P ^ k

R&D costs at the IP-Centre

The cost spent at the IP-Centre associated with the R&D over time period t is 

calculated using the following constraint:

RDC'tp = a pl -Up V / (2.24)
P

Scale-up and qualification costs at production sites

The scale-up and qualification runs costs at production site / over time period t in 

scenario k are calculated as follows:

csQR'lk = ’Z ( K 'Z p 'k +y‘P' K k)  v  ^  <2-25)
p e I J lk

Operating costs at production sites

The operating cost at production site I over time period t in scenario A: is a function of

two terms. The first one is associated with the fixed operating cost incurred if suite i

is available for production (i.e. Alit = 1 ). The second term represents the variable

operating costs depending on the amount of product produced in suite i at production 

site / during time period t at scenario k. The total operating cost is given by the 

following equation:

o c \k = + x  XC -rP -TU  v '.*/ (2-26>
i e l 1 i e l 1 p e l l  [
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Capital investment costs at production sites

The capital investment cost depends on the cost of each suite i invested at production 

site / in time period t.

C7,'= £ > ? £ '  V ( /  (2.27)
i e l 1

For the eNPV calculation, we must introduce a discount factor, et, associated with the 

inflation rate,/, and the interest rate, g, according to the following formula:

s, = ' I * / ' "
1 + S.

\ f t  (2.28)

Overall, the objective function before taxes, 0 s, includes sales revenues minus 

marketing costs, capital investment costs, operating costs, scale-up and qualification 

costs, royalties and R&D costs. The aforementioned terms are discounted in a 

summation over all time periods and over all possible scenarios multiplied by the 

associated scenario probability of occurrence:

0 3  = I  ■**Z ■*> I (S** -  MC* ) - ' Z ( c l '.+ o c * + CSQR* ) - Rc ‘I -  ROC;
\  

IP

\  S

(2.29)

In order to calculate the taxes paid from the company, we adopt the trading structure 

along with the internal transfer pricing policies as presented in Figure 2.2. The 

production sites are classified as cost centres operating with a cost-plus pricing 

formula. Each production site incurs the operating costs, cost of scale-up and 

qualification runs and capital investment costs. The profit made at each production 

site equals (l+pl)Cost-Cost. Overall, the taxes paid by all production sites are given 

by the following equation, where the corresponding profit plCost is multiplied by the 

associated tax rate of each production site in a summation over all time periods and 

possible scenarios:

TL = I X X £. X ^ y  (DC't + OCjk + CSQR’tk )
k t I

(2.30)
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Notice that in order to calculate the taxes in constraint (2.30), we employ a linear 

depreciation term that is defined as follows:

The sales regions are classified as profit centres operating with a resale-minus pricing 

formula. Each sales region has associated sales revenues and marketing costs. 

Overall, the taxes paid by all sales regions are given by the following equation:

The intellectual property owner (IP-Centre) operates as a profit centre as well. The 

product selling from the production sites to the IP-Centre and from the IP-Centre to 

the different sales regions generates the profit retained in the IP-Centre. However, in 

calculating the taxes paid by the IP-Centre, the associated royalties and R&D costs 

should also be included. Overall, the corresponding tax paid by the IP-Centre is given 

by the following equation:

In order to ensure that the taxes paid by the IP-Centre at every time period t and 

scenario k have a positive sign, the following inequalities are necessary:

j ' e /  0 = t-S j  -<j>Cl

(2.31)

(2.32)
k s

t 'p = Y .n k Y .e- Tax'k (2.33)
k t

Tax* £ V *  X (1 ~ P s )SR;k - ^ ( l  + p ' ) ( DCj + OC',k + CSQR‘,t ) -  RC£  -  RDC*  V t,k
V S I

(2.34)

Tax',I >0 Vt,k (2.35)

2.3.3 Summary of detailed model

In conclusion, the detailed mathematical model can be summarised as follows:
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[Problem D]

max 0 A = 0 B - t l - T s - T IP 

Subject to:

Constraints (2.2)-(2.7), (2.8a), (2.9)-(2.11), (2.12a), (2.13a), (2.14)-(2.27), (2.29)- 

(2.35).

The resulting optimisation problem (Problem D) corresponds to a mixed-integer 

linear programming (MILP) mathematical model. The applicability of the proposed 

mathematical model is demonstrated by the illustrative examples presented in the next 

section.

2.4 Illustrative examples

Five instances of a stochastic, multi-site, multi-period capacity planning problem are 

solved in order to validate the applicability of the proposed mathematical model. 

Consider four alternative locations (A-D), where A and B are the sales regions, A is 

the intellectual property owner (.IP-Centre), while B , C and D are the candidate 

production sites. Five examples, namely 3PROD, 4PROD, 5PROD, 6PROD and 

7PROD consider the manufacturing of three, four, five, six and seven potential 

products (P1-P7), respectively.

The entire time horizon of interest is thirteen years. In the first three years, no 

production takes place and the outcomes of the clinical trials are not yet known. 

Initially, there are two suites already in place at production site B. Further decisions 

for investing in new manufacturing suites are to be determined by the optimisation 

algorithm. We assume that the trading superstructure is given together with the 

internal pricing policies as shown in Figure 2.3.

The tax rate profiles for each location are shown in Table 2.1 All product-related data 

is presented in Table 2.2 while the forecasted customer demand is given in Table 2.3. 

All additional parameters are shown in Table 2.4. It should be added that the 

associated costs for production sites other than B can be found by multiplying the 

relevant costs of B with the relative capital and operating costs given in Table 2.1.
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Production Sites Sales Regions
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Cost +  20‘. 'o

CENTRE

Figure 2.3: Trading superstructure o f the company

Table 2.1: Tax regions

Location Tax Rate Profile Relative Operating Cost Relative Capital Cost
A 0.28 - -

B 0.25 1 1

C 0 (for tl-t6) 
0.20 (for t7-tl3) 1.1 1.1

D 0.30 0.27 1.3

Table 2.2: Product data

Product
Success
Probab.
probp

R&D
Cost
Gpl

Scaleup
Cost

f a

Qual.
Cost

y l?t

Qual.
Amount

ap

Prod.
Rate

rP

Var. Oper. 
Cost in B

ZB*p

Royalty
Cost

Xp

Selling
Price

P l 0.36 40 10 15 6.10 2.2 0.15 0.10 5
P2 0.33 45 20 20 2.55 0.9 0.20 0.10 4
P3 0.61 25 15 25 2.55 1.9 0.30 0.20 6
P4 0.32 50 10 20 5.20 0.9 0.15 0.15 7
P5 0.30 30 20 30 4.30 1.2 0.20 0.25 3
P6 0.31 60 10 15 7.10 1.4 0.25 0.15 3
P7 0.38 35 15 10 5.60 1.6 0.20 0.20 5

Table 2.3: Customer demand in case o f successful clinical trials outcomes

ProductXYear t4 t5 t6 t7 t8 t9 tlO t i l t l2 tl3
P l 14.7 31.5 78.4 75.6 77.7 77.7 77.7 77.7 77.7 77.7
P2 0.0 3.5 15.4 30.1 31.5 38.5 38.5 42.0 42.5 49.0
P3 7.7 22.4 36.4 47.6 56.0 56.7 56.7 57.4 57.4 57.4
P4 51.1 52.5 58.8 65.1 72.8 73.5 73.5 73.5 73.5 73.5
P5 0.0 26.6 50.4 64.4 74.2 79.8 79.8 79.8 79.8 79.8
P6 0.0 0.0 38.5 49.0 65.8 72.8 71.4 71.4 75.6 74.2
P7 4.2 6.3 8.4 23.8 30.8 39.2 64.4 65.8 65.8 65.8
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Table 2.4: Additional parameters

Definition and Symbol o f  Parameter Value o f Parameter
Inflation rate (/)
Interest rate (g)
Cost-plus percentage (pl)
Resale-minus percentage (ps)
Available production time (HJ 
Scale-up time ( f  )
Changeover time ( r )
Shelf lifetime (Cp)
Tax life period (<pl)
Production losses (Lp)
Maximum number o f  suites per site (Mtot)
Maximum o f suites per block (M)

Construction lead time (<5,)

Capital investment cost for suite in location B ( c o f )

D
Fixed operating costs for suite in location B (rjj )

3%
15%
2 0 %
25%
11 months/year
2 months
1 month
4 years
5 years 
1 0 %
4
4
3 years for header suite
2 years for non-header suite 
100 rmu for header suite 
50 rmu for non-header suite 
10 rmu for header suite
5 rmu for non header suite

All five example problems were implemented in GAMS (Brooke et al., 1998) using 

the XPRESS-MP (Dash Associates, 1999) MILP solver with a 5% margin of 

optimality. All runs were performed on an IBM RS/6000 workstation with a 

maximum computational time limit of 3 hours (10800 seconds).

Concerning the product portfolio, the obtained results for the 3PROD and 4PROD 

examples are summarised in the following table.

Table 2.5: Product portfolio results

Problem Selected Products No of Selected Products / 
Total Candidate Products

3PROD Pl, P3 2/3
4PROD Pl, P3, P4 3 /4

The enterprise-wide pharmaceutical supply chain determined by the optimisation 

algorithm is common to both problem instances and results in the business network 

illustrated in Figure 2.4.

Despite the attractive zero tax rate profile for the first six years offered by location C, 

the solution determined by the optimisation algorithm suggests that it is more

* rmu = relative monetary units
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profitable to invest at production sites B and D that provide lower operating costs, 

while no suite investment decisions are taken at production site C.

Production Sites Sales Regions

Cost + 20% Resale

Resale -  25%
MARKET

Resale -25%

Resale
Cost + 20%

SITED
P I.P 3

SITE B 
P1.P4

SUPPLY

SALESB  
P3

SALES A 
P1.P4

CENTRE

Figure 2.4: Optimal business network
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4PROD PROBLEM

|  | |
tO t1 t2 t3 t4 t5

Tim e (years)

Figure 2.5: Investment decision calendar (Site B: black, Site D: grey)

Investment decision calendars for problems 3PROD and 4PROD are illustrated in 

Figure 2.5. Note in both examples the investment decisions for the very first 

additional manufacturing suites are taken in the early time periods while the clinical 

trials are still on going. The proposed investment plans take into account the 

construction lead-time (2 and 3 years for non-header and header suites respectively) 

and safeguard the availability of the newly invested equipment right after the end of 

the clinical trials phase. Such an investment strategy favours production in the second 

stage, making the most out of the products’ patent life. Note also that the number of 

invested suites increases with the number of final products included in the portfolio, 

in order to satisfy the additional customer demand (three versus four invested suites 

for the 3PROD and 4PROD examples respectively).
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Figure 2.6: Characteristic profiles for product P l
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Figure 2.7: Characteristic profiles for product P3

According to the simultaneous approach, operational decision variables such as 

detailed production plans, inventory and sales profiles are also determined by the 

solution of the MILP model. Such characteristic profiles for the successful products 

Pl and P3 in scenario 3 of problem 4PROD are shown in Figures 2.5 and 2.7. Note 

that the black bars (showing the produced amounts at each year) are the total 

produced amounts, while the nett produced amounts are 10% lower than the total 

ones, due to production losses considered by the loss factor Lp in our model. It can be 

seen that customer demand is fully satisfied in nearly all time periods for both 

products P l and P3. Furthermore, the proposed production policy implies a similar 

inventory profile pattern for both products. In both cases we notice an inventory 

build-up in the beginning of the planning horizon while inventory levels gradually
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decline as we move further down the time scale. For both products inventories are 

kept at a minimum towards the end of the planning horizon.

The scale-up and qualification timings are given in Table 2.6. Notice that product PI 

is manufactured at production sites B and D. Therefore, the scale-up and qualification 

runs have to take place at both production sites, before actual production starts at each 

site. The sudden decrease in the production amounts of P3 during time periods tlO 

and t i l  (see Figure 2.7) is mainly attributed to the scale-up and qualification runs of 

PI taking place at site D during those periods and also explains the sudden increase in 

the overall production amounts of PI at time period t i l  (see Figure 2.6).

Table 2.6: Scale-up and qualification timings

Product ......... ^ Site D
t4 t5 tlO t i l

PI X+ 
P3

X +
x+

X: Scale-up, +: Qualification runs

The model statistics for the illustrative examples are given in Table 2.7. According to 

the results, the simultaneous approach is able to accommodate the case of small and 

modest size examples 3PROD and 4PROD involving three and four candidate 

products respectively. However, when it comes to large-scale problems 5PROD and 

6PROD the curse of dimensionality does not allow Problem D to converge within the 

5% margin of optimality with reasonable computational effort. Moreover, in the case 

of the 7PROD example, Problem D fails to return an integer solution after 3 hours of 

computational time.

Table 2.7: Model statistics for the illustrative examples

Example 3PROD 4PROD 5PROD 6PROD 7PROD
Constraints 8524 18033 38434 86580 183829

Continuous Var. 3189 6933 14981 33477 71429
Discrete Var. 2320 5122 11524 29127 64329

Obj. Fun. (rmu) 223 276 281*
 ̂^ _ ** 
129 No Int. Sol/

CPU (sec) 308 4526 10800 10800 10800
* Integer solution found within 12% margin o f  optimality. 
** Integer solution found within 71% margin o f optimality.
* LP relaxation not finished.
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2.5 Concluding remarks

48

Chapter 2 presented a simultaneous solution approach for the problem of multi-site 

capacity planning under uncertainty in the pharmaceutical industry. The overall 

problem was formulated as a two-stage, multi-scenario mixed-integer mathematical 

programming MILP model incorporating issues related to product management, 

clinical trials uncertainty, capacity management and trading structure of the company. 

Five illustrative examples were then solved in order to validate the applicability of the 

simultaneous approach. According to the results, small and modest size example 

problems were solved successfully by employing the proposed methodology.

However, the solution of large-scale instances of the problem proved to be a very 

demanding task in terms of computational effort needed due to the combinatorial 

nature of the problem. The resulting large-scale MILP model could not be solved 

efficiently and in many cases was intractable through the employment of traditional 

branch-and-bound methods via the commercially available XPRESS-MP MILP 

solver.

Multi-site capacity problems involving an increased number of candidate products are 

inevitably accompanied by an increased number of possible scenarios that further 

magnify the inherent complexity of the problem. The solution of the resulting large- 

scale MILP models necessitates the implementation of an alternative solution 

approach that can alleviate the computational burden and yield near-optimal solutions 

within reasonable computational time. Such an efficient solution approach is 

presented in the next chapter.



Chapter 3

A hierarchical approach for multi-site 
capacity planning

3.1 Introduction

In this chapter, we propose a hierarchical solution approach able to accommodate the 

combinatorial nature of the multi-site capacity planning problem and reduce the 

computational effort needed for its solution. The proposed methodology is based on 

the decoupling of the strategic and operational decision-making levels identified in 

our problem. In particular, the hierarchical solution approach employs a suite- 

aggregate mathematical formulation to determine the strategic decision variables 

which are then fed into the original detailed model in order to derive the operational 

decision variables.

The suite-aggregate mathematical model formulation is an approximation of the 

detailed model formulation (Problem D) presented in Chapter 2. The basic idea 

behind its formulation is to exploit the fact that the manufacturing suites to be 

invested are identical pieces of equipment. Therefore, in case we are interested in 

determining only a capacity investment plan without considering product-to-suites

49
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allocation variables, there is no particular need to discriminate between the 

manufacturing suites and consider each suite individually since there exists both 

equipment and task equivalence between them. Alternatively, the manufacturing 

capacity to be invested in every production site can be modelled as an overall 

aggregate capacity resource, representing the summation of all individual 

manufacturing suites.

The main advantage of the aggregate model formulation is that it does not 

compromise neither on the scenario or the time dimension while it leads to a much 

smaller problem size, both in terms of constraints and variables. On the other hand, 

the reduced problem size of the resulting model comes at the expense of less detailed 

production plans. However, for the purposes of determining the strategic here-and- 

now decisions, aggregate production plans can still capture the various trade-offs 

among the candidate products and production sites. The suite-aggregate model is a 

coarse model, yet an accurate one that sufficiently approximates the detailed model 

by focusing on the strategic decisions, while it adopts a myopic behaviour towards the 

second stage operational decision variables, thus providing a valid upper bound by 

overestimating the objective function of the original problem. Next, the aggregate 

model formulation is presented.

3.2 Aggregate mathematical formulation

First, some new notation related to the aggregate model formulation is given in 

addition to the nomenclature presented in Chapter 2.

Parameters

Sh construction lead time for header suite

S  construction lead time for non-header suiten

rjlh fixed operating cost of header suite at production site /

ijln fixed operating cost of non-header suite at production site /

M ltot maximum total number of allowed suites at production site /
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colh capital investment cost of header suite at production site /

coln capital investment cost of non-header suite at production site /

Integer Variables

hAj number of header suites available for production at time t at production site /

nAlt number of non-header suites available for production at time t at production

site /

hElt number of header suites invested at time t at production site I

nElt number of non-header suites invested at time t at production site /

3.2.1 Aggregate constraints

Some of the constraints included in the aggregate model formulation are exactly the 

same as the ones used in the detailed model formulation. These include: product 

existence constraints (2.2), product lifetime constraints (2.19), sales constraints 

(2.20), sales revenue constraints (2.21), marketing costs constraints (2.22), royalty 

costs constraints (2.23), R&D costs constraints (2.24), sales regions taxes constraints 

(2.32) and IP-Centre taxes constraints (2.33), (2.35). Next, we describe the aggregate 

model constraints that take a different form from the corresponding constraints in the 

detailed model.

Suite Availability and Investment Constraints

The suite availability and investment constraints derive from the detailed model by 

simply dropping the manufacturing suite index. Consequently, the capacity 

investment decisions are now treated as integer variables instead of binary ones. 

During each time period, the optimisation algorithm has to determine an integer 

number of manufacturing suites to be invested at each candidate production site. In 

order though to capture the difference in capital and operating costs between header 

and non-header suites, it is necessary to introduce two distinct types of integer 

variables to account for the two different types of suites.
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hi', = hA l,+ hE lSh V l,t (3.1)

nAj = nAlt_! + nE\_s V 1,1 (3.2)

For the same reason, the suite investment upper bound constraints have to be 

considered separately for each type of suite. The parameter M ltot equals the 

cardinality of the manufacturing suite set /  as described in the detailed model while 

hAl0 and nAl0 are the initially available header and non-header suites.

y>£/ ^M

t M
tot - h A l0 V / (3.3)

M
M

101 -rd'o V I (3.4)

The solution degeneracy constraints take the following form in the aggregate model, 

allowing for minimum and maximum number of non-header suites to be invested at 

production site / according to the number of header suites already invested in previous 

time periods.

^  t (  H S h - S n)
nA‘ + Y ,nE ‘e < ( M - l )  hA'0 + £  hEg

6=1 \  6=1
V l,t (3.5)

r,A‘ + ^ nE ‘g > ( M - I )
0=1

^  t - ( s h~s n )
h 4 +  £  hE‘e - l

0= 1

V l,t (3.6)

For example, if one header suite is initially available (hAl0 = 1) at production site /

and no additional investment decisions are taken, then according to constraints (3.5), 

the maximum number of non-header suites equals the maximum number of suites per 

block (M) minus one, to account for the already existing header suite. Furthermore, 

constraints (3.6) safeguard that additional investment decisions for non-header suites 

in a new manufacturing block are taken only if all the previously invested 

manufacturing blocks are fully completed with one header suite and M-l non-header 

suites for each one.
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Production Constraints

53

The suite-aggregate model does not account for the scale-up and qualification runs 

and therefore no variables or constraints related to scale-up and qualification are 

considered. Every product included in the selected product portfolio goes on for 

manufacturing according to the following production constraints. In case a product is 

not selected for manufacturing at site /, its corresponding production time is forced to 

zero. The total time for manufacturing the selected product portfolio is less than or 

equal to the suite production time multiplied by the number of available header and 

non-header suites at site / in time period t. Note that the aggregate model does not 

consider product-to-suite allocation binary variables and therefore no changeover 

production constraints are included in the aggregate formulation.

VI, k, p  e n !k (3.7)
t

^ T ‘lk < H ,-(hA j+ nA !) V l.kJ  (3.8)
P

Inventory Constraints

The inventory constraints resemble the ones in the detailed model with the only 

difference being the second term on the right hand side of the equation. In the 

aggregate model, the overall amount of every product manufactured at each 

production site is calculated without considering every suite individually.

Y . s U ~ Wp* V k ,P GAk,t (3.9)
l^Fpk se& pk

3.2.2 Aggregate objective function

The derivation of the objective function is the same as in the detailed mathematical 

model formulation with the main difference being that now the operational cost term, 

capital cost term and the depreciation term are mathematically expressed using 

integer suite availability and investment variables instead of binary ones. 

Furthermore, no scale-up and qualifications runs cost terms are included in the 

aggregate objective function. Finally, the tax constraints are reformulated 

accordingly.
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The operating costs calculation is now based on the integer number of manufacturing 

suites and the time available for production:

OC\k = - H ' +«'„ ■nAl + Y i 'p  ■rP ' Tpik V t,k,l (3.10)
pen‘k

The depreciation term is now a function of the integer number of invested suites:

{~̂ h f.J   l~̂ n sjJ
DC'=  Z  Z  - f ' nEe V t /  (3.11)

e= t-5 h-<l>1+1 r  d= t-5n-<!>1 +1 r

The capital investment cost is also a function of the integer number of invested suites:

Clj = (o‘h ■ hEj + (o'„ ■ nE1, V t,l (3.12)

The objective function before taxes does not include the scale-up and qualifications 

runs cost terms:

= Z * * Z * «  Z «  + OC‘lk)-R C % -R D C l
k t V s  I

\  
IP (3.13)

Furthermore, the taxes paid by the production sites and the IP-Centre do not include 

the scale-up and qualifications runs cost terms:

tL  = Z ^ Z ^ Z v ' V W '  + OC‘k ) (3.14)
k t I

T ax* > y ,* Y o - p s ) S K - Y ( ' +p ‘ ) ( DC> + OC* ) ~ RC'k ~**>c}
IP

\  S

V t,k 

(3.15)

3.2.3 Summary of aggregate model

In conclusion, the entire aggregate model formulation described in this section can be 

summarised as follows.

[Problem A]

max <t>A =<PB - T l - T s - T IP 

Subject to:



Chapter 3: A hierarchical approach for multi-site capacity planning 55

Product Existence Constraints

V‘ < U p V/, p e r 1 

Suite Availability and Investment Constraints

hAj = hAl,_, + hS'.ih V l,t

nA[ = nAj.j + nE!u6 V /, /

Z 4 '  ^
M
M

tot - h A l0 V /

M^  nEj < Mjol -  nAp V /
i M

t (  H8h-8n) _ A
+ 2 ]nEg < (M - 1 )  hAg + £  hE'e

8=1 V 9=1 V

,  f  t - ( 8 h- 8 n )

nA'0+ j j nE,e > ( M - l )  h A '+ £  / * £ '- /
8=1 V

V l,t

V l,t

Production Constraints

Y JT'plk<\T\-M,lorH r V,p V l . k . p e n l
t

J^T‘lk<H,-(hA; +nAl) \fl,k,l
P

Inventory Constraints

I  =  I  p.t-i,k + f / - V Z v 7M- X S U  -  Wp*  V k , p * A k , t
ls*F,

Product Lifetime Constraints

pk se& pk

seOpfr 8 = t+ l

Sales Constraints

SSplk^ Dptk v  k, p, s e 0 pk, 1
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Sales Revenue

Marketing Costs

Royalty Costs

R&D Costs

= H vpS U
pe4

Mc;k = Y . ^ pvps U  y t ’k-s
p e  4

R C ‘* = Z Z V A  Vt -k
s e ®pk p ^ k

R D C ?  p , - U  p V/

Operating Costs

OC',k = rjlh ■ hA[ + ql„ -n il + ■ v 1*  V l,k,I
Penk

Depreciation

DC1, = £  ^ - h E ‘ + X  ^T-nE'e V
e=t-8h-<f>1+1 Y  0= t - 8n -<fil + l  $

Capital Investment Costs

CIlt = colh ■ hElt + coln • nElt V t, I 

Objective function before taxes

0 8 = Z Z  ■e< f Z -  MCtk) -  Z ( C1‘ + o c * > - RC* -  RDCip
k t V  s  I

Production sites taxes

TL = 'L * * 'L e: 'Z v ',:P ‘(DC'l +OC!lk)
k t I

Sales regions taxes

t S  = Z ■** Z ■e‘ Z r :  ( P SSR* -  )
k t s
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IP-Centre taxes

T ,P = ' Z ^ ’L erTaxl[

Tax* > V * Y ^ ( l - P s )SR* - /  + p ' )(DC[ + OC‘k) - RC* -RDC;
V S I

\  
IP \ /t ,k

Tax\l >0 V t,k

3.3 Hierarchical solution algorithms

3.3.1 Algorithm HI

The proposed hierarchical algorithm HI comprises the following steps:

[Algorithm HI]

S t e p  1 .  S o l v e  a g g r e g a t e  M I L P  m o d e l  ( P r o b l e m  A )  a n d  f i x

s t r a t e g i c  d e c i s i o n  v a r i a b l e s .

S t e p  2 .  S o l v e  o r i g i n a l  d e t a i l e d  M I L P  m o d e l  ( P r o b l e m  D )  i n

t h e  r e d u c e d  v a r i a b l e  s p a c e  t o  d e t e r m i n e  o p e r a t i o n a l  

d e c i s i o n  v a r i a b l e s .

In the first step, the aforementioned suite-aggregate model (Problem A) is solved in 

order to determine the strategic here-and-now decisions: Up , Vlp , hE\ , nE}, hA\ ,

nAlt . The derived strategic decision variables are then fixed. The levels of the binary

variables Up and Vp are fixed to their current values as determined from the

aggregate model. On the other hand, the levels of the integer variables hElt , nElt ,

hAlt , nAlt can not be fixed in a straightforward way, since the suite investment and

availability decision variables in the detailed model are modelled as binary variables

(E lit and Alit) representing each suite individually. Therefore, the integer variables

should first undergo an intermediate translation-fixing step* before their original 

values are fed into the detailed model.

* See Appendix A
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In the second step of Algorithm HI, the original detailed model is solved in the 

reduced variable space in order to determine the optimal levels for the operational 

wait-and-see decisions variables. Furthermore, there is no need to consider any 

constraints related to product existence, suite availability and investment decisions 

since the levels of the variables Up , V lp , E lit, Alit involved in constraints (2.2)-(2.5)

are now treated as given parameters. Therefore, the goal for the reduced detailed 

MILP model is to maximise the eNPV subject to constraints (2.6), (2.7), (2.8a), (2.9)- 

(2.11), (2.12a), (2.13a), (2.14)-(2.27), (2.29)-(2.35). Additionally, the sets involving

products and manufacturing suites (Ak , 17[, Ask, 7/pk, @pk, I 1) are now updated 

based on the aggregate solution information.

Summarising all the previously described manipulations, the detailed model is now 

reduced down to a model involving only a portion of the variables defined in the 

original problem. The discrete variables domain is limited to the scale-up,

qualification and product-to-suite allocation binary variables ( Z lptk, Z liptk, X lptk, 

Yiptk) while the rest of the variables lie in the continuous space (production time,

Tiptk, inventory levels, Iptk, wasted amounts, Wptk, and sales levels, S sptk). Overall, due

to its reduced size, the detailed mathematical model is now much easier to tackle 

computationally than the original one.

3.3.2 Algorithm H2

Instead of solving the reduced model as a single MILP, the final step of the proposed 

Algorithm HI can further be decoupled by solving a series of single-scenario MILPs. 

Each scenario present in the reduced model is a fairly small deterministic problem 

with its own characteristic customer demand pattern. In the face of this unique 

customer demand, every scenario can be solved as a separate MILP model with the 

objective function being the maximisation of the scenario NPV subject to constraints 

(2.6), (2.7), (2.8a), (2.9)-(2.11), (2.12a), (2.13a), (2.14)-(2.27), (2.29)-(2.35). Recall 

that the product portfolio and multi-site investment strategy are both scenario- 

independent decision variables already determined and fixed from the previous step 

of the algorithm. The revised hierarchical algorithm comprises the following steps:
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[Algorithm H2]

S t e p  1 .  S o l v e  a g g r e g a t e  M I L P  m o d e l  ( P r o b l e m  A )  a n d  f i x

s t r a t e g i c  d e c i s i o n  v a r i a b l e s .

S t e p  2 .  F o r  e v e r y  s c e n a r i o  k :

i. U p d a t e  d y n a m i c  s e t s  ( Ak , TIk , Ask , pk ,

ii. S o l v e  o r i g i n a l  d e t a i l e d  M I L P  m o d e l  ( P r o b l e m

D )  i n  t h e  r e d u c e d  v a r i a b l e  s p a c e  o f  

s c e n a r i o  k .

It is worth mentioning that the scenario-decoupling structure of the proposed 

hierarchical Algorithm H2 can further be exploited by employing a parallel

computing solution strategy leading to a potentially unmatched computational

efficiency.

3.3.3 Algorithm C

Rotstein et al. (1999) presented the cut-off hierarchical algorithm (Algorithm C). 

Their proposed algorithm was originally developed to address the problem of single­

site capacity planning under uncertainty formulated as a two-stage, multi-scenario 

MILP model. For the sake of completeness, Algorithm C is briefly described below 

so as to facilitate its comparison with Algorithms HI and H2.

Algorithm C comprises the following steps:

[Algorithm C]

S t e p  1 .  S o l v e  d e t a i l e d  M I L P  m o d e l  ( P r o b l e m  D )  i n  t h e

r e d u c e d  s c e n a r i o  s p a c e  a n d  f i x  s t r a t e g i c  d e c i s i o n  

v a r i a b l e s .

S t e p  2 .  F o r  e v e r y  s c e n a r i o  k :

i. U p d a t e  d y n a m i c  s e t s  ( Ak , H lk , Ask , Wpk ,

ii. S o l v e  o r i g i n a l  d e t a i l e d  M I L P  m o d e l  ( P r o b l e m  

D )  i n  t h e  r e d u c e d  v a r i a b l e  s p a c e  o f  

s c e n a r i o  k .
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According to Algorithm C, the scenarios are first prioritised based on their probability 

of occurrence (the scenario with highest probability comes first). Then, starting from 

the top-probability scenario, scenarios are included until their cumulative probability 

exceeds a predetermined value (cut-off probability). In the first step (Step 1), the 

algorithm solves the detailed mathematical model in the reduced scenario space of the 

included scenarios, to determine the strategic decisions. Then in the second step (Step 

2), each original scenario is solved separately with the strategic decision variables 

fixed from the previous step, similarly to Algorithm H2.

The philosophy of Algorithm C is based on the assumption that since the scenarios 

with higher probabilities have a greater contribution in the objective function, we can 

therefore solely rely on them when trying to determine the strategic decision 

variables. The more scenarios included in the first step (higher cut-off probability), 

the more accurate the final solution will be. However, the problem size increases with 

the number of scenarios and that in turn results in an increased computational effort to 

solve the problem. Rotstein et al. (1999), proposed an iterative version of Algorithm 

C by employing a slightly higher cut-off probability in every iteration. The algorithm 

then terminates when a convergence criterion is satisfied. According to the authors’ 

experience (Rotstein et al., 1999), a value of 0.5 for the cut-off probability gives 

satisfactory results.

Overall, the proposed hierarchical algorithms presented in this section are simple yet 

powerful solution approaches, able to accommodate the combinatorial nature of the 

multi-site capacity planning problem, alleviate the associated computational burden 

and yield near-optimal solutions within reasonable computational time, as it is 

demonstrated by the illustrative examples revisited in the following section.

3.4 Illustrative examples revisited

The five illustrative examples presented in Chapter 2 are now revisited and solved 

using the proposed hierarchical algorithm H2. All five example problems were 

implemented in GAMS (Brooke et al., 1998) using the XPRESS-MP (Dash 

Associates, 1999) MILP solver with a 5% margin of optimality while all runs were 

performed on an IBM RS/6000 workstation.
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Concerning the product portfolio, the obtained results are summarised in Table 3.1. 

The enterprise-wide pharmaceutical supply chain determined by the optimisation 

algorithm is common to all five problem instances and results in the business network 

illustrated in Figure 3.1, same as the one obtained using the simultaneous approach.

Table 3.1: Product portfolio results

Problem Selected Products
N o o f  Selected Products / 
Total Candidate Products

3PROD P I, P3 2 / 3
4PRO D P 1 , P 3 , P 4 3 / 4
5PROD P I, P3, P4, P5 4 / 5
6PROD P 1 , P 3 , P 4 ,  P5 4 / 6
7PROD P 1 , P 3 , P 4 ,  P5, P7 5 / 7

The investment decision calendars for all five examples are illustrated in Figure 3.2. 

Similar to the simultaneous approach, investment decisions for additional 

manufacturing suites are taken in the early time periods while the clinical trials are 

still on going. Again the number of invested suites increases with the number of final 

products included in the portfolio, in order to satisfy the additional customer demand, 

resulting in a total of five invested suites for the 7PROD example as opposed to only 

three invested suites for the 3PROD example (see Figure 3.2).

Production Sites Sales Regions

ResaleCost + 20%

R esa le - 25%

Resa\e -  25%

Resale
Cost + 20%

SITEB  
PI. P4. 
P5.P 7

SITED
P1.P3

SALES B 
P3.P5

SUPPLY

SALES A 

PI. P4. 
P7

MARKET
CENTRE

IP

Figure 3.1: Optimal business network
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Figure 3.2: Investment decisions calendars (Site B: black, Site D: grey)

The aforementioned strategic decisions concerning product portfolio and multi-site 

investment plans are determined and fixed from Step 1 of hierarchical Algorithms H2 

while Step 2 determines all the operational variables (detailed production plans, 

inventory and sales profiles). Such characteristic profiles for the successful products 

PI, P3 and P7 in scenario 11 of problem 7PROD are shown in Figures 3.3-3.5. It can 

be seen that for products PI and P3, customer demand is fully satisfied in nearly all 

time periods, while for product P7, the amounts produced can not meet the customer 

demand in the late four periods. It is very interesting to notice how the manufacturing 

capacity resources are shared between products PI and P7 at site B. During time 

periods t4 and t5, large amounts of product PI are being produced so as to satisfy the 

anticipating customer demand in later periods. However, in time period t6 no 

production is taking place for product PI, while all the existing and invested 

manufacturing suites are used entirely for the production of P7 that is going to be sold 

in the subsequent time periods.

The scale-up and qualification timings are given in Table 3.2. Notice that product PI 

is manufactured at production sites B and D. Therefore, the scale-up and qualification
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runs have to take place at both production sites, before actual production starts. 

Similar to the simultaneous approach results, the sudden decrease in the production 

amounts of P3 during time periods t8 and tlO (see Figure 3.4) is mainly attributed to 

the scale-up and qualification runs of PI taking place at site D during those periods.

P ro d u c t io n  C T J S a le s  - * - D e m a n d  - a - I n v entory!

Figure 3.3: Characteristic profiles for product PI

Product P3
I P r o d u c t io n  ^ H S a l e s  - ^ - D e m a n d  - e - l n v e n t o r y |

/

H2 113

Figure 3.4: Characteristic profiles for product P3

T
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Figure 3.5: Characteristic profiles for product P7

Table 3.2: Scale-up and qualification timings

Product Site B Site D
t4 t5 t4 t8 tlO

PI X+
P3
P7 X+

X +
X+

X: Scale-up, +: Qualification runs

3.4.1 Comparison of solution approaches

The aforementioned illustrative examples were employed as a test bed in order to 

assess the relative computational performance of algorithms HI, H2 and C tested 

against each other and against the simultaneous approach. In order to perform a valid 

comparison, all hierarchical algorithms were implemented in the same modelling 

platform (GAMS), while all optimisation problems were solved using the same MILP 

solver (XPRESS-MP) on the exact same workstation (IBM RS/6000) as the one used 

for the implementation of the simultaneous approach.

First, the proposed algorithms HI and H2 were tested against the simultaneous 

approach, where Problem D is solved in the full variable space as a single-level MILP 

problem. The model statistics for the five problems can be found in Tables 3.3-3.7.

As expected, the obtained objective function value for Problem A is always higher 

than the one obtained from Problem D, since it serves as an upper bound to the 

optimal solution. It is worth mentioning the difference in both the number of variables
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and constraints between the Problem D and the reduced detailed MILP model 

(Algorithm HI-Step 2). It can be seen that both Algorithms HI and H2 provide a 

significant improvement in computational time when compared with the simultaneous 

approach (Problem D) without compromising the solution quality. Algorithm H2 

seems to perform particularly efficiently for larger problem instances (see examples 

5PROD, 6PROD and 7PROD) by taking advantage of the smaller MILPs solved in 

Step 2. In that case of course, the scenarios are solved as a series of independent 

MILPs and therefore the CPU time is proportional to the total number of scenarios 

present in each problem (23=8 scenarios for the 3PROD, 24=16 scenarios for the 

4PROD, 25=32 scenarios for the 5PROD, 26=64 scenarios for the 6PROD, 27=128 

scenarios for the 7PROD). The CPU time in parentheses denotes the time spent for 

solving the most computationally demanding scenario in Step 2 of Algorithm H2.

Table 3.3: Model statistics for the 3PROD example

Problem D Problem A4 Algorithm HI 
(Step 2)

Algorithm H2 
(Step 2)

Constraints 8524 890 3585 -

Continuous Var. 3189 760 1285 -

Discrete Var. 2320 73 880 -

Obj. Fun. (rmu) 223 250 221 221
CPU (sec) 308 4 1 2 (0.5)

Table 3.4: Model statistics for the 4PROD example

Problem D Problem A Algorithm HI 
(Step 2)

Algorithm H2 
(Step 2)

Constraints 18033 1863 9349 -

Continuous Var. 6933 1744 3655 -

Discrete Var. 5122 75 2560 -

Obj. Fun. (rmu) 276 305 268 269
CPU (sec) 4526 9 11 12(2)

Table 3.5: Model statistics for the 5PROD example

Problem D Problem A Algorithm HI 
(Step 2)

Algorithm H2 
(Step 2)

Constraints 38434 4056 24021 -

Continuous Var. 14981 4032 9569 -

Discrete Var. 11524 77 7360 -

Obj. Fun. (rmu) 281* 326 281 282
CPU (sec) 10800 10 82 47(4)

*Integer solution found within 12% margin o f optimality.

* Step 1 o f both Algorithms HI and H2.
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Table 3.6: Model statistics for the 6PROD example

Problem D Problem A Algorithm HI 
(Step 2)

Algorithm H2 
(Step 2)

Constraints 86580 8970 48037 -

Continuous Var. 33477 9568 19263 -
Discrete Var. 29127 80 14720 -

Obj. Fun. (rmu) 129* 324 283 284
CPU (sec) 10800 67 281 94 (4)

♦Integer solution found within 71% margin o f  optimality.

Table 3.7: Model statistics for the 7PROD example

Problem D Problem A Algorithm HI Algorithm H2
(Step 2) (Step 2)

Constraints 183829 19755 107141 -

Continuous Var. 71429 21600 43135 -

Discrete Var. 64329 82 35840 -

Obj. Fun. (rmu) No Int. Sol.* 369 309 317
CPU (sec) 10800 619 6645 291(10)

*LP relaxation not finished.
** Integer solution found within 6% margin o f  optimality.

The proposed algorithm H2 was also tested against the cut-off hierarchical algorithm 

(Algorithm C). In order to perform a valid comparison between them, the five 

problem instances previously described were solved using two different values for the 

cut-off probability, 0.5 and 0.7 (Algorithms C 0 .5  and C 0.7) respectively. The 

comparative results between Algorithm H2, Algorithms C_0.5 and C 0 .7  and 

Problem D are shown in Tables 3.8 and 3.9.

Table 3.8: Objective function values (in rmu)

Problem
Solution Approach

Algorithm H2 Algorithm C 0.5 Algorithm C O.7 Problem D

3PROD 221 222 221 223
4PROD 269 272 273 276
5PROD 282 222 277 281*
6PROD 284 219 278 129
7PROD 317 313* 316** No Int. Sol.

* Integer solution found within 12% margin o f optimality.
** Integer solution found within 71% margin o f optimality.
* Integer solution in Step 1 found within 13% margin o f optimality. 
** Integer solution in Step 1 found within 32% margin o f optimality.
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Note that the reported CPU time for Algorithm H2 corresponds to the combined CPU 

time of the aggregate MILP model plus the summation of the CPU time over all 

scenario MILPs, while the CPU time for both Algorithms C_0.5 and C_0.7 

corresponds to the combined CPU time for Step 1 and 2. A computational limit of 3 

hours (10800 seconds) was used for all runs.

Table 3.9: CPU times (in seconds)

Problem
Solution Approach

Algorithm H2 Algorithm C 0.5 Algorithm C 0.7 Problem D

3PROD 4 + 2 (0.5) 29 + 2(1) 49 + 2 (0.5) 308
4PROD 9+ 12  (2) 91 + 10(2) 110 + 9(2) 4526
5PROD 10 + 47 (4) 99 + 7 (0.5) 1740+ 18(2) 10800
6PROD 67 + 94 (4) 358 + 13 (0.5) 8462 + 37 (2) 10800
7PROD 619 + 291 (10) 10800+ 129 (3) 10800 + 226 (6) 10800

According to the results, the performance of Algorithm C is dramatically influenced 

by the value of the employed cut-off probability. In case where the problems are 

solved in half of the original scenario space (Algorithm C O.5), the overall CPU time 

needed is reduced when compared with the CPU time needed for solving Problem D. 

However, the reduced CPU time comes at the expense of a relatively poor solution 

quality. By employing an increased value for the cut-off probability (Algorithm 

C 0.7), we manage to obtain an improved solution quality. However, in this case the 

computational effort is dramatically increased as it is clearly shown by the CPU time 

for all problems.

For example in the 6PROD problem, using Algorithm C_0.5 results in a reduced 

MILP problem in Step 1 involving only 13 out of the 64 original scenarios, which 

explains the 8-fold decrease in terms of number of discrete variables when compared 

with the original Problem D (3427 vs. 29127). However, in this case the derived 

values for the strategic decision variables result in a poor solution quality for the 

overall problem when compared with the one obtained using the Algorithm H2 (219 

rmu vs. 284 rmu). On the other hand, when the cut-off probability is increased to the 

value of 0.7, more scenarios are included in Step 1 of the Algorithm C O.7 (24 out of 

64) and therefore we end up with an improved, near-optimal solution (278 rmu).
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Nevertheless, the increased number of scenarios is inevitably accompanied by an 

increased number of discrete variables (8327) that further magnifies the combinatorial 

nature of the problem resulting in a prohibitively long CPU time for Step 1 of the 

Algorithm C O.7 (8462 seconds).

3.5 Concluding remarks

In this chapter, a hierarchical solution approach for multi-site capacity planning under 

uncertainty was presented. Two hierarchical algorithms (Algorithm HI and H2) were 

proposed for the solution of the resulting large-scale MILP problem based on the 

decoupling of the decision-making levels (strategic and operational) identified in our 

problem. Without compromising the solution quality, significant savings in 

computational effort were achieved by employing the proposed algorithms in five 

illustrative examples.

In terms of CPU time, the hierarchical approach outperformed the simultaneous 

approach by approximately two orders of magnitude. Furthermore, Algorithm H2 

performed significantly better than the previously developed cut-off algorithm C 

(Rotstein et a l , 1999). Finally, we should emphasize that the proposed hierarchical 

methodology features a highly parallel solution structure that can be further exploited 

for increased computational efficiency.
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Chapter 4

Customer demand forecasting via support 
vector regression analysis

4.1 Introduction and literature survey

Recent studies have clearly identified customer demand as the ultimate driver of 

business management in process industries ranging from the traditional oil and gas 

industry (Lasschuit and Thijssen, 2004) and the paper-converting industry (Roslof et 

al., 2002) to the high-risk agrochemical and pharmaceutical industries (Maravelias 

and Grossmann, 2001), (Papageorgiou et al., 2001). Given the importance of 

customer demand, one can easily realise the potential benefits of an accurate customer 

demand forecasting tool in process industries.

Forecasting has gained widespread acceptance as an integral part of business planning 

and decision-making in areas such as sales planning, marketing research, pricing, 

production planning and scheduling (Makridakis and Wheelwright, 1978). From a 

historical perspective, exponential smoothing methods and decomposition methods 

were the first forecasting approaches developed back in the mid-1950s. During 1960s, 

as computer power became more available and cheaper, more sophisticated

70
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forecasting methods appeared. Box-Jenckins (Box and Jenckins, 1969) methodology 

gave rise to the autoregressive integrated moving average (ARIMA) models. Later on 

during 1970s and 1980s, ever more sophisticated forecasting approaches were 

developed including econometric methods and Bayesian methods (Makridakis and 

Wheelwright, 1982). The consolidation and improvement of the aforementioned 

approaches provided forecasting tools of ever increasing complexity, before artificial 

neural networks (ANN) emerged as a novel and promising forecasting approach in the 

1990s taking full advantage of the number-crunching capabilities of super-computers 

(Foster et a l, 1992).

However, it is very interesting to notice that the increasing complexity of forecasting 

approaches is not always accompanied by the desired increased predictive accuracy as 

pointed out by Makridakis and Hibon (Makridakis and Hibon, 1979). Their remark is 

consistent with recent criticism towards the excessive use of parameters in 

unnecessarily complex artificial neural networks applications in chemical engineering 

problems (Bhat and McAvoy, 1992). There exists a clearly identified need for a new 

generation of forecasting tools that share all the benefits of artificial neural networks 

while at the same time maintain an underlying formulation as simple as possible.

Support vector machines (SVM) constitute such a novel learning paradigm that 

provides an inherently simple formulation and yet offers the promise of increased 

flexibility. The growing popularity of the SVM is mainly attributed to the solid 

theoretical foundations and the practical applications in a broad range of the scientific 

spectrum. Based on the statistical learning theory recently developed by Vapnik 

(Vapnik, 1998), support vector machines applications have been proposed for a 

number of classification and regression problems ranging from discrete 

manufacturing (Prakasvudhisam et a l, 2003) to bioinformatics (Myasnikova et al, 

2002). Agrawal et al (2003) portrays support vector machines as a useful tool for 

process engineering applications while Kulkami et al (2004) and Chiang et al (2004) 

provide support vector classification applications in process engineering problems.

However, in order to present a balanced perspective, we must also mention that so far 

the applicability of support vector regression (SVR) is hindered by the notorious 

problem of parameter selection. Although, the number of parameters to be tuned is 

not prohibitively large, parameter values affect significantly the predictive
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capabilities. Exhaustive grid-search (Chang and Lin, 2001) and heuristic-based rules 

for parameter selection (Cherkassky and Ma, 2004) are currently used for SVR while 

further research in this area is in progress. As a typical case of any emerging 

forecasting research field, those heuristic rules can be regarded an initial step towards 

the identification of a more formal way for parameter selection in the near future.

Despite the parameter selection problem, SVR still enjoys numerous advantages when

compared with other forecasting methodologies. Similar to ANN, SVR employs an

adaptive basis regression function without postulating any pre-determined family of

basis functions (e.g. high-order polynomial parametric regression). Support vectors

provide a completely new way of parameterisation of the regression function

(Cherkassky and Mulier, 1998) leading to increased flexibility while avoiding the trap

of overcomplexity. Unlike ANN, SVR employs only a handful of parameters thus
£

justifying “Occam’s razor” principle in the most illustrative way. Furthermore, its 

unique mathematical formulation guarantees a computationally tractable global 

optimal solution. This is a very attractive feature for applications in the process 

industries where repeatability and consistency are of paramount importance. 

Moreover, SVR requires no a priori fundamental understanding of the process being 

studied since it is a training data-driven methodology and therefore is very well-suited 

for process industries forecasting applications where historical data is abundant.

Overall, support vector regression is identified as a novel emerging forecasting 

technique and the aim of this chapter is to validate the applicability of SVR analysis 

for forecasting customer demand in process industries. The rest of the chapter is 

organised as follows. In the next section, the main characteristics of the customer 

demand forecasting problem are described. Section 4.3 provides a detailed 

mathematical description of support vector regression. A three-step algorithm is then 

proposed in section 4.4 and is validated through a number of illustrative examples 

presented in section 4.5. Finally, some conclusions are drawn in section 4.6.

“One should not increase, beyond what is necessary, the number o f entities required to explain 
anything”, Occam’s razor principle (also known as principle o f parsimony) attributed to mediaeval 
English philosopher William o f  Occam (c. 1280-1349) who stressed the Aristotelian principle that 
entities must not be multiplied beyond what is necessary.
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4.2 Problem description

73

We assume that customer demand at time period t (y,) depends on a number of Z 

independent variables (xn, X2u •••., *zt) that are called attributes and form the

input vector x t which in turns contains the multiple independent variables as shown in 

the following equations.

The problem of customer demand forecasting via support vector regression analysis 

can be formally stated as follows. Given a set of training data (time series) in the

form of N  training points (xi, yi), (X2, y i ) ,  ,(xn, yv) where x t is the input vector

and yt is the associated customer demand for every x h as well as a forecasting horizon 

of size M, we would like to determine the output values y N+1,y N+2>-••- ^ n+m • The

mean absolute percent error (MAPE) is a commonly used forecasting error metric for 

quantifying and assessing the accuracy of the predicted output values. 

Mathematically, it is given by the following formula (Makridakis and Wheelwright,

associated input vector x*. Therefore, the dependant variable y t is a function of the

(4.1)

\ X zt J

y, = F ( x t ) (4.2)

1978):

t= N + l y t

N + M yt -yt
MAPE = 100'

M
(4.3)

* Symbols in bold fonts represent vectors



Chapter 4: Customer demand forecasting via support vector regression analysis 74

Where y t is the actual customer demand and j>, is the predicted demand at time

period t. Clearly, accurate predictions would result in low MAPE values, which 

implies small absolute deviations between the actual and predicted output values.

Based on the available training points (xt,yt), the ultimate goal of support vector 

regression analysis is to extract as much information as possible from the historical 

data so as comprehend the complicating relationships between customer demand and 

all the different attributes before identifying an appropriate regression function F  able 

to accurately predict future unknown output values from a given input vector of 

attributes.

In our time series forecasting problem, customer demand attributes can be classified 

into a number of different main categories such as:

• Past Demand Attributes: those attributes represent customer demand for a 

predetermined number of previous time periods. Employing past demand 

attributes can be extremely helpful to relate present customer demand with 

historical customer demand values. According to our experience, past demand 

attributes prove to be very efficient when dealing with periodical customer 

demand patterns.

• Calendar attributes: those attributes illustrate a specific characteristic of the 

time period under investigation and are usually treated as binary parameters 

representing true or false statements with one and zero values respectively. 

For example, calendar attributes could be employed to represent the day of the 

week, the month or week of the year etc. Moreover, calendar attributes could 

also be used to identify customer demand patterns on national holidays or 

weekends. Therefore, calendar attributes prove to be a very critical source of 

information when trying to predict time-sensitive output values such as 

electricity load demand or seasonality-dominated customer demand patterns 

such as swimware sales.

Although there may exist more categories of attributes other than the two mentioned 

above, we restrict ourselves to only those two main categories since any other 

attribute is viewed as problem specific. For example, in an ice-cream demand 

forecasting case, it would be very beneficial to incorporate a temperature attribute or
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any other weather attribute that can reflect the dependancy between ice-cream 

consumption and environmental conditions.

Based on our ability to know their future values or not, attributes can further be 

classified into deterministic and stochastic attributes. Deterministic attributes are 

those whose future values are known (or can be predicted with very high-accuracy). 

Calendar attributes fall under the deterministic category since anyone can accurately 

predict the date of next weekend or next Monday. However, there exist a number of 

attributes that affect output values considerably, whose values unfortunately can not 

be predicted or accurately estimated. Such attributes are called stochastic and include 

for example future temperature profiles, oil prices and dollar-to-pound exchange 

rates.

In our proposed methodology, customer demand forecasting is based entirely on past 

demand attributes. Past demand attributes belong to a very special case of attributes 

that can be regarded as semi-deterministic attributes explained in detail in section 4.4. 

According to equations (4.1) and (4.2), knowing the attributes of the input vectors is 

only the first step towards a valid prediction. What is foremost needed is to establish a 

solid relationship between the input vector attributes and the target value. In our case, 

customer demand and past demand attributes are related through a support vector 

regression function F. Such a regression function is needed in order to translate past 

demand attributes into accucate demand forecasts. In the next section, the derivation 

of the support vector regression function F  is explained in full detail.

4.3 Support vector regression

In this section, we describe support vector regression (SVR) based on the statistical 

learning theory developed by Vapnik (Vapnik, 1998). Given training data

{ ( x , , y , ) . ( x2, y2), ( x N, yN)}<zRz x R  (4.4)

where x t is the input vector at time period t and yt is the associated customer demand 

for every xh the goal is to find regression function function F(xJ:

F ( x t )  = wT x t + p  w,xt e R z , j 3eR (4.5)
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The main insight of the statistical learning theory is that in order to obtain a 

regression function with high generalisation behaviour, one needs to control both 

model complexity and training error tolerance (Chalimourda et al., 2004). Model 

complexity is illustrated by the flatness of the function F  which in turns means small 

w values. One way to ensure this is to minimise the Euclidean norm ||h>|| . On the other

hand, the regression function should not be too flat but rather complicated enough so 

as to fit closely with the demand training points. In order to control training error 

tolerance, the e-insentitive loss-functional £ is employed:

14  = max(0, \F(x , ) -  y, \ -  e )  (4.6)

The e-insensitive loss function ensures that errors less than e are not taken into 

consideration. However, we penalise any deviations larger than e, meaning all training 

points that lie outside the 8-insensitive tube as shown graphically in the following 

figure.
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Figure 4.1: Graphical representation o f support vector regression 

(* depicts training points)

Overall, support vector regression analysis takes the form of the following 

constrained optimisation problem (Vapnik, 1998):
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[Problem 8-SVR]

"I™,. 2 t=1 

Subject to: 

y t - ( w Tx t + f i )< £ + <!;, V t = l....N

( w Tx t + f i ) - y t <£ + %* V/ = i...JV

£  >0 V / = 7...W

£ > 0  V / = 7... W

The first term in the objective function represents model complexity (flatness) while 

the second term represents model accuracy (error tolerance). The parameter C is a 

positive scalar determining the trade-off between flatness and error tolerance

(regularisation parameter), while and represent the absolute deviations above

and below the e-insensitive tube.

From a mathematical point of view, the aforementioned nonlinear optimisation 

problem features a number of very interesting properties. Problem e-SVR constitutes 

a convex NLP optimisation problem since it involves the minimisation of a quadratic 

function subject to a linear set of constraints, meaning that every local solution to the 

problem is also a global solution (Bertsekas, 1995), (Floudas, 1995). Furthermore, e- 

SVR is a convex primal problem satisfying strong duality conditions. Therefore, 

instead of solving primal problem e-SVR, we can obtain the exact same global 

minimum solution by solving its dual counterpart. Thanks to its reduced size both in 

terms of constraints and variables, the dual model formulation requires significantly 

less computational effort to solve. Without compromising the quality of the obtained 

solution, the dual problem formulation can also easily be extended to accommodate 

the general case of nonlinear regression through appropriately defined kernel 

functions as it is demonstrated later on in this section.

We can easily construct the Lagrangean function of the primal problem by bringing 

all constraints into the objective function with the use of appropriately defined
$ 4*

Lagrange multipliers Xt ,Xt ,jut , jut as follows:
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L = M \ w f + C - f i( l + ^ ) - f i Ar {e + 4l - y l + ( w Tx l +f i ) )

N  >=‘  N  N  ( 4 ' 7 )

•(s + ft* +? i -ft -Z ^<* -ft”

At the optimal point Karush-Kuhn-Tucker (KTT) conditions impose that the partial

derivatives of L with respect to the primal variables ( h>,/?,£,,£*) equal zero:

c)1 N
—  = o = > w - ' £ ( x l - x , ) x l =o (4.8)
^  13

r)T N
-  = 0 ^ Y J( X , - X t )  = 0 (4.9)

f)T
= 0 = > C - A , - n ,  =0 V/ = 1....N (4.10)

3ft

—  = 0 = > C - X ’ - j u '  =0 Vf = 1....N (4.11)
3ft’

By substituting equations of (4.8)-(4.11) into (4.7), we obtain the dual optimisation 

problem:

[Problem D]

maf  ~ K ' ) ' ( Xt - A * ) ' x I'Xt - ^ ( A t +^! )  + ̂ y t ' (^t ~ K )
K K  *  t ’= j  t= i  t= i  t=i

Subject to:

N

' £ ( a , - a; ) = o
t= l

0 < At <C  V / = 1....N

0 < A* <C  V / = 1....N

The dual problem optimisation problem maximises a quadratic objective function

with respect to Lagrange multipliers At and A* which now play the role of dual

variables. The solution of the dual problem derives the optimal vector w as well as the 

regression function F(xt) as follows:
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w = f t( A , - r , ) - x l (4.12)
t= l

F ( x , )  = wTx, + P  (4.13)

Or by using equation (4.9), we obtain the following expression for the regression 

function:

F ( x t ) = Y J(^t' - £ f ) ' X ? x t +P  (4.14)
t’=i

Parameter p  can be calculated from the KKT complementarity conditions which state 

that the product between dual variables and constraints has to vanish as follows:

7t, • {s + %t - y t + (w Tx t +P))= 0 V/ = 1.....N  (4.15)

A*r (s + £  + y t - ( w Tx t +/3))=0 V7 = 1..N  (4.16)

( C - A t )-£t =0 V7 = /  N  (4.17)

( C - A * ) - ^ * = 0  \/t = 1 N  (4.18)

According to the aforementioned KKT complementarity conditions, training points 

lying outside the E-insensitive tube have At -  C (or At = C ) and £t * 0 (or * 0 ). 

Those points are called support vectors. Furthermore, there exists no set of dual 

vaiariables At and A* which are both nonzero simultaneously as this would require 

nonzero slack variables in both directions. Finally, training points within the e- 

insensitive tube have At g (0,C)  (or £t e (0, C) ) and also = 0 (or = 0 ) (Smola 

and Scholkopf, 1998).

Alternatively, a practical way of calculating p  and slack variables a n d i s  by 

solving a slightly differentiated version of the primal problem:
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[Problem P]

min. ' £ ( & + £ )
A f..f.

Subject to:

y t -x t - P ^ £ +Zt v t  = i....N
t'=i

N

£ ( A t> -  A*>) • x]. • x t + P -  y t < s  + V / = 1....N
t’=i

£t > 0  V / = 

g  > 0 \ / t  = 1....N

The solution of Problem P derives simultaneously the values for both and variables
$ ♦

and %t . It is worth mentioning that Xt and Xt are now treated as parameters

whose values are given from the solution of the dual problem solved earlier on. 

Notice also that problem P is a simple linear programming (LP) model and therefore 

it can be solved with great computational efficiency even for large number of training 

points.

As shown in equation (4.14), function F  is used to perform a linear regression in input 

space R2 based on input vectors x t> and x t . For nonlinear regression however, we

need to exploit the way training data appears in our problem. More specifically, 

according to equation (4.14) regression function F  depends only on the inner product

of input vectors (x].xt) and therefore we can employ the following kernel trick

(Aizerman et al., 1964) as described by Burges (Burges, 1998). We first map input 

vectors into a high-dimensional feature space via mapping function 0  as follows:

0 : R z - > R z' (4.19)

Regression function F  then takes the following form:
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N
I
t '= J
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(4.20)F ( x , )  = j r (X,. - X t ) . 0 ( x j ,  ) - 0 ( x , )  + P

The difference between equations (4.14) and (4.20) is that function F  is used to 

perform a linear regression in different spaces, the input space Rz and the feature 

space R z , respectively.

However, there is no particular need to define mapping function & explicitly, since 

the inner product of vectors in the feature space can be represented with a kernel 

function K  as follows:

K(  x t. , x t ) = 0(x$)  ‘<P(xt )

Table 4.1: Different types o f kernel functions

(4.21)

No. Name of Kernel Expression

Polynomial

Gaussian Radial Basis 
Function

Exponential Radial Basis 
Function

Multi-layer Perception

Fourier Series

Tensor Product Splines

K ( x i, x J) = ( (x i ’x j ) +1 ) p p  = 1,2,.

K(  x i, x j ) = exp

f 2 >
X i - X j

- 2 p 2
JV

K(  x i, x j ) = exp
X t - X j

- 2 p ‘\ /

K ( x itX j )  = tanh(b(xt - X j ) - c )

sin\N + 1 /  Jfx: -  x  j ) 
K ( x i, x J)= \  f '  f  

sin[y2 ( x i - x j ) )

n
K(x^,Xj)  = Y \ K m(  x lm, x jm )

m = l

It is worth mentioning that kernel function K  is defined as a function of vectors in the 

original input space Rz. In that sense, the expression of regression function F  can now 

easily be extended to accommodate the case of nonlinear regression in input space R
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by performing a linear regression in feature space R z via the kernel function

transformation as follows:

F ( x , ) = £  (X,. -X' , )-  K ( x ,  , x , )  + p  (4.22)
t ’= l

Any function satisfying Mercer’s theorem (Mercer, 1909) may be employed as a 

kernel function. The types of functions most commonly used in support vector 

machine literature as kernel functions are summarised in Table 4.1 (see for example, 

Kulkami et al., 2004).

Finally, it is very interesting to notice that the introduction of kernel functions in the 

expression of the regression function as shown in equation (4.19) does not affect any 

of the previous analysis on linear support vector regression. All previous 

considerations hold intact with the only difference being that linear regression in now
7rperformed in a high-dimensional feature space R in order to create a nonlinear 

regression function in the original input space Rz (Gunn, 1998). Based on the equation 

(4.19), dual and primal model formulations can now easily be extended for nonlinear 

support vector regression as follows:

[Problem Dl]

max
*

i  N  N  N  N
•* X - '  V " 1 ✓ n * *  \ /  <1 a *  \ TS- s  \ 'S T ~ ' X n  . / i *  \  . X - '

2 t = i  t ’- i  t = i  t = i

Subject to:

N

J j (X, -X' , )  = 0
t= l

and
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[Problem PI]

y t

m in. x y &+ )Wi.fr 7^

Subject to:

\

< £  + %t V t  = l....N£ ( A t' -X*t. ) ' K ( x f , x t )  + p
\t'=i J

r  N  \

Y . tA ? -%)■*■: ( x , , x , )  + P - y , < £  + &  Vt  =
\?=1 J

%t >0 V / = 1....N

>0 V t = 1....N

The aforementioned mathematical models are used as part of our proposed 

forecasting algorithm presented in the next section.

4.4 Proposed forecasting algorithm

Based on the support vector regression analysis presented in the previous section, we 

propose the following three-step algorithm.

[Algorithm Al]

S t e p  1 :  S o l v e  P r o b l e m  D l  t o  d e t e r m i n e  v a r i a b l e s  At a n d

K -

S t e p  2 :  F i x  v a r i a b l e s  At , A* a n d  s o l v e  P r o b l e m  PI  t o  

d e t e r m i n e  /3.

S t e p  3 :  F o r  t : = N + l  t o  N+M, d o :

i .  C a l c u l a t e  c u s t o m e r  d e m a n d  p r e d i c t i o n

y> = Z ~ )' K ( x t  • + P
t'=l

i i .  U p d a t e  i n p u t  v e c t o r s  xt .
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The first two steps of algorithm A1 are used for determining regression function F 

from the available N  training points. In particular, the first step determines optimal

values for the Xt and A* from the solution of the dual NLP problem (Problem Dl).

In Step 2, Xt and X*t are fixed to their optimal levels while we determine parameter

f$ by solving a linear programming (LP) model (Problem PI). The final step of the 

algorithm constitutes a post-processing recursive forecasting methodology. Having 

identified regression function F  from the training data points in steps 1 and 2, a 

customer demand prediction can be made for the next M  time periods based on the 

semi-deterministic past demand attributes.

Given a time series in the form of N  training points (xj, y i ) ,  (x2, yi), ..... ,(x n, yv)

predicting value y^+i is done by considering the last A elements of the time series as 

deterministic attributes of input vector xn+j. The very next prediction for demand yN+2 

would normally require the actual past demand attribute of point N+l. Although such 

a deterministic past demand attribute is not available to us, it can be substituted with 

the predicted demand value we estimated previously. In other words, the newly 

predicted demand value is used as a stochastic attribute (since it is not an actual 

demand value but merely a prediction) in the input vector xn+2 for predicting value 

y^+2- In that fashion, by sequentially adding newly obtained data as attributes in the 

input vector (and removing the earliest elements), we construct a recursive forecasting 

algorithm based on semi-deterministic past demand data. More specifically, we 

employ an iterative moving forecasting horizon approach where in each iteration we 

calculate customer demand for only the following one time period. The customer 

demand prediction is then used in a recursive fashion to update the input vector 

information before calculating customer demand for the very next time period. The 

algorithm terminates when the entire forecasting horizon Mis scanned.

Needless of course to mention that the predictive capabilities of the proposed 

algorithm are restricted by the inevitable error propagation and accuracy deterioration 

due to inaccurate forecasted data enterting as attributes in our calculations. However, 

for the purposes of short to medium-term forecast (forecasting/training points ratio 

between 5%-15%) the proposed algorithm performs with great accuracy, as it is 

demonstrated by the illustrative examples presented in section 4.5.
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4.4.1 Parameter tuning

Before algorithm A1 is implemented, a number of parameters should be determined a 

priori. Parameter selection is a notorious problem that usually hinders the wide 

acceptance of forecasting techniques. However, support vector regression only relies 

on a handful of parameters as listed below:

• regularisation parameter C

• width of e-insensitive tube

• kernel function K

• number of attributes A included in the input vector

As mentioned earlier, parameter C controls the trade-off between model complexity 

and model accuracy. Underfitting occurs when C is too small since the model does 

not have enough detail to describe the training data. On the other hand, overfitting 

occurs when C is too high (Chiang et a l , 2004). The optimal value of parameter C is 

usually determined by employing a grid-search in either a «-fold cross validation or 

leave-one-out error estimate approach (Kulkami et al., 2004). However, an exhaustive 

grid search is a time-consuming and computationally expensive way for parameter 

selection. Alternative ways for determining SVR parameters is an ongoing research 

area. In our methodology, we determine parameter C based on a heuristic rule 

recently proposed by Cherkassky and Ma (2004) as follows:

C = max(yt + 3 • a yt ,y t -  3 • <jyt)  (4.23)

Where y t is the mean average and <jy is the standard deviation of the customer

demand training points. The proposed formula for determining C has been validated 

for a number of different cases (Cherkassky and Ma, 2004).

The size of e influences the number of support vectors (training points lying outside 

the e-insensitive tube) and therefore allows direct control over the complexity of the 

model. Therefore in practice, parameter e is chosen so as to reflect our relative view 

towards error and noise through the implementation of different e-insensitive loss 

functions. In our experience, values of e equal to approximately one order of
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magnitude less than the mean average of the training points target values provide 

good performance for various data sets. Mathematically, we have:

e = y t (4.24)

where & is a constant scalar taking values in the range [10,30].

The gaussian radial basis function (RBF) is chosen as the kernel function in our 

proposed algorithm since it is the most commonly used kernel for support vector 

machines. Mathematically, it is given by the following form:

(
K ( x itXj ) -  exp x j

2\

-2p*
= exp \ -y X i - X j (4.25)

Cherkassky and Ma (2004) proposed an empirical rule for determining RBF kernel 

width parameter p. According to their formula for z-dimensional problems, where all 

z input attributes are scaled to [0,1], p  is determined approximately by the following 

formula:

p z *(0.2 -0.5) (4.26)

In our methodology, input vector attributes {A) are scaled between zero and one and 

therefore we calculate parameter p  by employing the mean value of the proposed 

formula, resulting in the following mathematical expression:

i/ 1 ~2/p  = 0.35/z  => y = — -0.35 / z  
y  2

(4.27)

The number of attributes included in the input vector should reflect the seasonality 

pattern underlying customer demand training points. A heuristic rule for accurate 

predictions is to employ a number of past attributes equal to an integer multiple of the 

period points. Say for example one wishes to predict a daily customer demand pattern 

that repeats itself more or less every week, then it would be advisable to use 7 or 14 

past demand attributes.
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4.4.2 Forecasting assessment

87

The assessment of the proposed forecasting algorithm is performed though the 

employment of the following accuracy criteria:

• Prediction Accuracy (P.A.): derives from the MAPE criterion and is used to 

compare actual demand and predicted demand values over the forecasting 

horizon time periods. It is defined as follows:

P.A. = 100-  MAPE = 100 -100

N + M

I
t=N + l

y t - y t
y t

M
(4.28)

Fitting Accuracy (F.A.): it is used to compare actual demand and predicted 

demand values over all training points time periods. It is defined as follows:

F.A. = 100-100

N

I
t= l

y t - y t
y t

N
(4.29)

Overall Accuracy (O.A.): it is used to compare actual demand and predicted 

demand values over all time periods (both training and forecasting). It is 

defined as follows:

N + M

O.A= 100-100- t=i
y t - y t

y t
N  + M

(4.30)

The applicability of the proposed forecasting algorithm along with the heuristic- 

based rules for parameter estimation and assessment criteria is demonstrated by a 

number of illustrative examples presented in the next section.

4.5 Illustrative examples

This section presents customer demand forecasting results for three illustrative 

examples. All runs were implemented in GAMS (General Algebraic Modelling 

System) (Brooke et al,  1998) and solved with commercially available solvers 

CONOPT (Drud, 1985) for the nonlinear models and CPLEX (ILOG, 1999) for the 

linear models using an IBM RS/6000 workstation.
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4.5.1 Example 1

Illustrative example 1 is concerned with an electrical appliances distribution 

company. The company has collected customer sales daily data from all points-of-sale 

for the last 15 weeks as shown in Table 4.2. Based on this historical data only, the 

company wishes to make an accurate customer demand forecast for the following two 

weeks. The additional 2 weeks data (week 16 and week 17) shown in italics in Table 

4.2 are not used as training points but they are employed only for validating the 

accuracy of the proposed methodology.

Table 4.2: Electrical appliances daily sales (in hundreds o f pieces)

Week Mon Tue Wed Thu Fri Sat Sun
1 7.80 7.70 6.00 6.80 9.20 12.00 3.20
2 5.30 6.30 5.80 5.80 6.00 10.00 5.00
3 5.50 6.40 5.80 5.90 6.10 10.20 5.00
4 6.20 7.80 6.40 6.40 7.20 12.00 6.00
5 7.00 9.00 7.80 7.90 8.30 14.00 7.00
6 9.00 11.00 9.80 9.90 10.40 17.80 9.00
7 8.58 8.47 6.60 7.48 10.12 13.20 3.52
8 5.83 6.93 6.38 6.38 6.60 11.00 5.50
9 6.05 7.04 6.38 6.49 6.71 11.22 5.50
10 6.82 8.58 7.04 7.04 7.92 13.20 6.60
11 7.70 9.90 8.58 8.69 9.13 15.40 7.70
12 9.90 12.10 10.78 10.89 11.44 19.58 9.90
13 10.14 10.01 7.80 8.84 11.96 15.60 4.16
14 6.89 8.19 7.54 7.54 7.80 13.00 6.50
15 7.15 8.32 7.54 7.67 7.93 13.26 6.50
16 8.06 10.14 8.32 8.32 9.36 15.60 7.80
17 9.10 11.70 10.14 10.27 10.79 18.20 9.10

The SVR parameter values used for example 1 can be found in Table 4.3. The values 

for SVR parameters C, e and y derive from the mean average and standard deviation 

of customer demand training points by employing the heuristic rules presented in 

section 4.4. Notice that the number of past demand attributes (d) equals 14 days, 

meaning that for each prediction point we base our calculations on the previous 2 

weeks data. This is done so as to reflect the periodic behaviour of customer demand.
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Table 4.3: SVR parameter values for example 1

Parameter Symbol Parameter Value
y t 8.39

a y, 2.825
k 20
A 14
C 16.864
e 0.419
y 0.581

Customer demand forecasting results are shown graphically in Figures 4.2 and 4.3. 

According to the results, the proposed regression function is able to capture the basic 

customer demand pattern and derive accurate forecast for the 2 weeks forecasting 

horizon. It is very interesting to notice that the regression function can easily follow 

the actual customer demand even in extreme time periods where demand fluctuates 

much above average. For instance, increased customer demand during Saturdays is 

captured efficiently for both weeks in the forecasting horizon (see Figure 4.3, time 

periods 111 and 118).

Moreover, based on the training points, SVR can also capture the positive trend 

underlying customer demand and produce increased customer sales expectations for 

the forecasting horizon under investigation. Overall, the quality of the proposed 

forecast is determined based on the previously defined assessment criteria as shown in 

Table 4.4.

Table 4.4: Forecasting assessment criteria for example 1

Criterion Symbol Criterion Value
P. A. 95.22 %
F.A. 92.48 %
O.A. 92.80 %
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4.5.2 Example 2

Example 2 presents a customer demand forecasting example for a chemical process 

industry. Monthly sales data is provided for the last 9 years (see Table 4.5) and the 

question is to accurately forecast customer demand for the next 12 months. Sales data 

points for the last year, shown in italics in Table 4.5, are not used as training points 

but merely employed for assessing the predictive capabilities of the SVR.

Table 4.5: Monthly chemical sales (in tonnes)

fear Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 5055 5904 6180 7073 7545 8037 6650 6947 7222 6132 6073 3724
2 3994 4326 5176 5900 7485 8034 6431 7215 7744 8017 7685 4950
3 5971 6816 7179 8338 8549 8773 7727 8295 8679 7275 5434 4270
4 5649 7188 7837 8631 9805 9760 7921 9094 9413 8755 8069 5174
5 6066 7084 7416 8487 9054 9644 7980 8336 8666 7358 7287 4468
6 4792 5191 6211 7080 8982 9640 7717 8658 9292 9620 9222 5940
7 7165 8179 8614 10005 10258 10527 9272 9954 10414 8730 6520 5124
8 6778 8625 9404 10357 11766 11712 9505 10912 11295 10506 9682 6208
9 7077 8265 8652 9902 10563 11251 9310 9725 10110 8584 8502 5213
10 5591 6056 7246 8260 10479 11247 9003 10101 10841 11223 10759 6930

The parameter values used for this example are given in Table 4.6 while customer 

demand forecasting results are depicted in Figures 4.4 and 4.5. Again, just as in 

example 1, SVR manages to capture successfully both the positive trend and the 

periodic pattern of demand.

Table 4.6: SVR parameter values for example 2

Parameter Symbol Parameter Value
y t 7879.241

CTv, 1831.659
k 20
A 24
C 13374.218
£ 393.962
y 0.546

Moreover in this example, every year contains an internal pattern resulting in spiky 

M-shaped time periods. By employing an increased number of attributes (A=24 

months), SVR manages to overcome this difficulty in demand pattern recognition and 

provides accurate forecasts that follow closely the actual customer demand for both
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high and low demand time periods (see Figure 4.4). Furthermore, the proposed 

methodology is able to capture the effect of decreased customer demand occurring 

every July and derives a precise forecast for the seventh month of the forecasting 

horizon (see Figure 4.5, time period 115). According to the forecasting assessment 

criteria for example 2, SVR scores well above 95% in all accuracy measures as shown 

in Table 4.7

Table 4.7: Forecasting assessment criteria for example 2

Criterion Symbol Criterion Value
P.A. 95.24 %
FA. 95.38 %
O.A. 95.36 %
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4.5.3 Example 3

Example 3 is a customer demand forecasting example in the food and drinks process 

industry. The monthly champagne sales data for the period between January 1964 and 

September 1972 has been collected from the Association of French Champagne Firms 

and published by Makridakis and Wheelwright (Makridakis and Wheelwright, 1978) 

as shown in Table 4.8. Based on the monthly champagne sales data only for the 

period between January 1964 and September 1971 (training points), we would like to 

forecast champagne sales for the following 12 months.

Table 4.8: Monthly champagne sales -  France (millions o f bottles)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1964 2.815 2.672 2.755 2.721 2.946 3.036 2.282 2.212 2.922 4.301 5.494 7.312
1965 2.541 2.475 3.031 3.266 3.776 3.230 3.028 1.759 3.595 4.474 6.838 8.357
1966 3.113 3.006 4.047 3.523 3.937 3.986 3.260 1.573 3.528 5.211 7.614 9.254
1967 5.375 3.088 3.718 4.514 4.520 4.539 3.663 1.643 4.739 5.428 8.314 10.651
1968 3.633 4.292 4.154 4.121 4.647 4.753 3.965 1.723 5.048 6.922 9.858 11.331
1969 4.016 3.957 4.510 4.276 4.968 4.677 3.523 1.821 5.222 6.872 10.803 13.916
1970 2.639 2.899 3.370 3.740 2.927 3.986 4.217 1.738 5.221 6.424 9.842 13.076
1971 3.934 3.162 4.286 4.676 5.010 4.874 4.633 1.659 5.951 6.981 9.851 12.670
1972 4.348 3.564 4.577 4.788 4.618 5.321 4.298 1.431 5.877 - - -

From a preliminary study of the given historical sales data, we can clearly identify a 

customer demand pattern that consistently repeats itself each year. Customer demand 

for champagne is relatively low during summer months (low-peaks every August) 

while it steadily builds up during autumn before reaching its high-peak every 

December mainly due to holidays celebrations. Based on this observation, we choose 

to employ 12 past demand attributes in the SVR regression input vectors. All SVR 

parameters used for example 3 are given in Table 4.9.

Table 4.9: SVR parameter values for example 3

Parameter Symbol Parameter Value
y t 4.638

a y, 2.472
k 30
A 12
C 12.054
£ 0.155
y 0.596



Chapter 4: Customer demand forecasting via support vector regression analysis 97

Forecasting results for example 3 are clearly illustrated in Figures 4.6 and 4.7. 

According to the results, the proposed methodology derives a very precise prediction 

for the entire forecasting horizon including the December high-peak and the August 

low-peak (see Figure 4.7, time periods 96 and 104 respectively).

It is also very interesting to notice that the regression function keeps very good track 

of the irregular customer demand and successfully reproduces the rising trend of 

December demands (see Figure 4.6). However, SVR does not naively mimic the 

training points but rather leams from them. The proposed forecasting algorithm 

manages to distinguish noisy data points from structural data points (see Figure 4.6, 

time period 72) and therefore derives a regression function that not only avoids 

overfitting but also interprets correctly the underlying customer demand pattern into a 

forecast of over 93% accuracy as shown in Table 4.10.

Table 4.10: Forecasting assessment criteria for example 3

Criterion Symbol Criterion Value
P.A. 93.29 %
F.A. 91.92%
O.A. 92.08 %
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4.6 Concluding remarks

In this chapter, a systematic optimisation-based approach for customer demand 

forecasting was presented based on support vector regression (SVR) analysis. 

Historical customer demand patterns were used as training points attributes for the 

SVR. The proposed approach employed a three-step algorithm able to extract 

information from the training points in order to identify an adaptive basis regression 

function and perform a recursive methodology for customer demand forecasting.

The applicability of the proposed forecasting approach was validated through a 

number of illustrative customer demand forecasting examples. In all three examples, 

the proposed methodology handled successfully complex nonlinear customer demand 

patterns and derived forecasts with prediction accuracy of more than 93% in all cases. 

Although, future work should consider a more formal way of determining SVR 

parameters, support vector regression can still be regarded as a parsimonious 

alternative to complex artificial neural networks forecasting.



Chapter 5

Active demand management through price 

optimisation

5.1 Introduction and literature survey

In today's global marketplace, process industries no longer compete as independent 

entities but rather as integral part of supply chain links. The ultimate success of a firm 

depends on its managerial ability to integrate and co-ordinate the complex network of 

business relationships among supply chain members (Min and Zhou, 2002). The 

recent wave of mergers and acquisitions (M&S) has led a number of smaller 

companies to consolidate into a few giant supply chain firms (e.g. Unilever, Procter & 

Gamble) that provide close substitute products (e.g. fast moving consumer goods 

FMCG) to a wide range of customers. The intense competition among different 

companies is evident and occurs in almost every market sector nowadays.

In this competitive environment, customer demand is usually satisfied by a small 

number of companies, each one manufacturing and selling its individual subset of 

products. The goal of every company is to obtain the highest possible profit by 

determining optimal price levels for its portfolio products. In that case, an

101
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oligopolistic price competitive market environment is established that needs to 

account for both competitors’ activities and customers’ willingness to buy.

Duopolistic market competition is the natural starting point for investigating the 

behaviour of oligopolies. Consider two companies, Company A and Company B, 

each one manufacturing its own subset of substitute products. By substitute products 

we mean slightly differentiated product brands that belong to the same product-class 

(e.g. lubricants, detergents, cosmetics, carbonated soft drinks etc). In that case, 

increased sales of one product result in reduced sales of another, thus forming a 

market environment where products brands compete with each other over a common 

customer base.

The manufacturing of products usually takes place in production sites owned by the 

company (in-house manufacturing). Every site has a limited amount of available 

resources used for production. Alternatively, each company may have the option to 

allocate manufacturing of a certain amount of products to a third-party company 

(outsourcing). As shown in Figure 5.1, final products from each company (in-house 

manufactured and outsourced) are then transported to the marketplace in order to 

satisfy the anticipating customer demand at given product prices.

OUTSOURCE OUTSOURCE

SITE 1 SITE 3MARKET

SITE 2 SITE 4

COMPANY A COMPANY B

Figure 5.1: Duopolistic market environment

A crucial precondition of effective price competition is that customers are inclined to 

search for lower-priced substitute products. Low prices however can kill profit 

margins and jeopardise the overall company profitability. On the other hand, high 

prices will drive away potential customers and inevitably put company’s market share
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at risk. Pricing decisions are of crucial importance and unless taken seriously, they 

can pose a major threat to the sustainability of the company.

Traditional approaches for customer demand management assume fixed product 

prices and usually rely on forecasting tools, trying to predict customer demand based 

on historical sales patterns (Markidakis and Wheelwright, 1982). Passive demand 

management (PDM) approaches ignore the importance of flexible product pricing and 

usually lead to poor customer demand satisfaction.

A new trend towards active demand management (ADM) has recently emerged 

focusing on how to actually drive customer demand away from traditional baseline 

forecasts so as to maximise both overall business performance and customer 

satisfaction. Many companies ranging from the automotive industry (Ford Motor Co.) 

to the Internet dotcoms (Amazon.com) have recently realised the potential benefits of 

adopting such a marketing-based concept of smart pricing (Coy, 2000). Some firms 

(e.g. those operating petrol forecourts) do not hesitate to go even a step further ahead 

and employ such clever “dynamic pricing” strategies almost on a daily basis. 

According to Manugistics (Manugistics, 2003), a leading company in pricing and 

revenue optimisation, pricing is the next battleground for competitiveness.

However, product pricing is not a trivial task. Successful pricing strategies should 

consider simultaneously rapidly changing customer expectations, fast-reacting 

competitors, complex product interactions and fluctuating manufacturing capacity 

constraints. Accelerating product lifecycles and increasing product mix diversity 

further magnify the complexity of capturing an accurate understating of the pricing 

environment and managing a comprehensive strategy around it (Rapt, 2003). Lanning 

et al. (2000) allow demand to be determined by prices via a constant-elasticity 

demand function. Prices are then optimised jointly with capacity investment 

decisions. Optimal capacity levels and prices for substitute products are considered by 

Birge et al. (1998) in a single-period model while joint co-ordination of production 

and marketing decisions are investigated by Eliashberg et al (1987).

Although the problem of product pricing is not new in applied economics and 

operational research literature, previous studies adopt a somehow simplistic approach 

to the problem. They focus their attention on single-product firms and therefore
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cannot accommodate the nature of multi-product firms which are predominant 

nowadays. Another common drawback is that many studies consider product pricing 

in isolation of the market competition, thus ignoring the reaction effect of rival 

companies offering substitute products in the marketplace. Even in the case where 

competition between single-product firms is addressed, the number of firms is 

restricted to two (duopolistic competition) while joint production and pricing 

decision-making is based on unrealistic assumptions such as unlimited manufacturing 

resources that render the proposed solution of impractical value and inapplicable to 

real-life business problems.

There exists a clearly identified need to address product pricing issues in a more 

realistic context that is able not only to consider simultaneously multi-product firms 

competing in an oligopolistic market environment but also propose alternative pricing 

policies and production modes such as outsourcing options. Our proposed 

methodology of active demand management through price optimisation is able to 

capture the dominant trade-off between product price and product market share so as 

to deliver value to the customer while ensuring high profitability for the company.

The rest of the chapter is structured as follows. In the next section, the problem of 

active demand management is briefly described, while the main characteristics of an 

efficient pricing strategy are also discussed. Section 5.3 presents the case of single­

product price competition between two firms. Analytical formulae are derived for 

determining Nash equilibrium in prices while we propose an iterative algorithm 

validated by a motivating example. In section 5.4 we extend the proposed algorithm 

in order to accommodate the case of multi-product firms operating in an oligopolistic 

market environment and address customer demand forecasts while also considering 

outsourcing options. Four cases of a comprehensive illustrative example are solved in 

section 5.5 while some concluding remarks are drawn in section 5.6.

5.2 Problem description

The marketing mix is defined as the set of controllable tactical marketing tools that 

the firm blends to produce the response it wants in the market place. The marketing 

mix consists of everything a firm can do to influence the demand for its product. The
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many possibilities gather into four groups of variables known as the “four P’s”: 

product, price, place and promotion (Kotler et al., 1996).

In the narrowest sense, price is the amount of money charged for a product or service. 

More broadly, price is the sum of all the values that consumers exchange for the 

benefits of having or using a specific product or service. Price is the only element in 

the marketing mix that produces revenue, while all other elements represent costs 

(Kotler et al., 1996). Product, promotion and place are value-creating activities while 

pricing can be viewed as the firm’s attempt to capture some of the created value in the 

profits earned (Nagle and Holden, 1995). Therefore, pricing is identified as the most 

flexible element of the marketing mix, since it is the fastest and most cost-effective 

way to enhance company profits.

Every company nowadays is operating with a different set of business objectives. 

Many companies for example set profit maximisation as their ultimate goal. Other 

companies however, seek to increase their market share or even try to augment their 

customer satisfaction levels. Different business objectives can be achieved through 

the employment of alternative pricing strategies such as skim pricing, penetration 

pricing, neutral pricing etc.

Irrespective of the business objectives, an effective pricing strategy should consider 

simultaneously the following three main aspects: costs, customers and competition. 

Integrating cost management, customer behaviour and market competition into a 

unified framework is the key in developing a successful pricing strategy for active 

demand management.

5.2.1 Cost management

Costs play a significant role in formulating an efficient pricing strategy. There can be 

variable and/or fixed costs. Manufacturing costs are usually variable costs depending 

on the sales volume. Traditional pricing strategies are based on a cost-driven 

approach as shown in Figure 5.2. According to the cost-based pricing strategy, every 

product is priced so as to cover its own costs plus make a fair marginal profit. 

Although such a strategy seems as a simple guide to profitability, in practice it does 

not deliver the desired results. The fundamental problem with cost-driven pricing is 

that unit costs cannot be calculated before determining the product price. The reason
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for that is that pricing affects sales volumes and sales volumes in turn affect unit costs 

(Nagle and Holden, 1995).

5.2.2 Customer behaviour

In order to capture the trade-off between price and sales volume, a value-based 

pricing strategy can be employed as shown in Figure 5.2.

Product Price ValueCost Customer

Cost-based Pricing

Customer CostPriceValue Product

Value-based Pricing

Figure 5.2: Cost-based versus value-based pricing strategies

The main difference in this case is the inverse order of decision-making allowing for a 

value-based pricing strategy that is more customer-oriented. Unlike, cost-based 

pricing, customer’s perceived value is now the driving force for product pricing. 

Conjoint-analysis is a market research tool concerned with understanding how 

customers perceive product value and how they make choices between products based 

on their individual attributes. BPTO (brand-price trade-off) is a variation of the 

conjoint analysis used for testing price sensitivity in the context of brands available 

on the market so as to assess brand preference at any given price scenario.

Price sensitivity can be measured by using the concepts of demand elasticity and 

cross-elasticity. Price elasticity measures the percentage change in the quantity 

demanded relative to the percentage change in price (Pashigian, 1998). When there 

exists a certain degree of substitution between differentiated products, cross-elasticity 

can be used to measure the percentage change in the quantity demanded relative to the 

percentage change in price of another product, so as to quantify the competition effect
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between close substitutes brands (Pindyck and Rubinfield, 1992). Estimating 

elasticity and cross-elasticity parameters is an active research area while many market 

research companies are developing their own methodologies. A paper by Stavins 

(1997) adopted from the differentiated-product literature is an illustrative example of 

demand elasticity estimation in the personal computer (PC) market while Acutt and 

Dodgson (1996) present a method for calculating cross-elasticities between different 

public transport modes. Shankar et al (1996) relate price sensitivity and price policy 

from a retailer point of view. Alves et al (2003) estimate the cross-elasticity between 

gasoline and alcohol while Tellis (1988) confirms the negative sign of elasticity 

parameters.

5.2.3 Competition

Oligopolistic competition has received a great deal of attention in the research 

literature (Varian, 1992). However, the “oligopoly problem” has proved to be one of 

the most resilient problems in the history of economic thought (Vives, 1999). Very 

early models of oligopolistic competition include the models of Cournot (1838) and 

Bertrand (1883). According to those models competitng firms only act once and also 

act simultaneously to determine the outcome of competition among them. The 

Cournot model treats output (quantity) as the strategic decision variable of each firm 

while the Bertrand model focuses on price as the strategic decision variable to be 

determined by each firm.

Apart from the aforementioned Cournot and Bertrand models, oligopolist competition 

formulations include the repeated and the sequential games. The repeated games can 

be viewed as a series of Cournot-type or Bertrand-type models not related to each 

other and solved independently. The sequential games on the other hand, involve a 

sequence of decision-making between the firms where the outcome of competition 

derives from the interaction of logic-based firm policies. The Stackelberg model 

(Stackelberg, 1934), aslo known as the leader-follower model, constitutes an 

extension of the Cournot model that can be classified as a sequential game of 

oligopolistic competition. Output decisions are taken in turns with the leader-firm 

making the first move and the follower-firm acting upon observation of the previous 

move, resulting in a two-stage game.
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A well-respected solution concept for non-cooperative games in oligopolistic 

competition is the Nash equilibrium point (Nash, 1951) which is defined as the point 

where all players in the game do their best given the choice of all other players. 

Sherali et al (1983) study the supply side of an oligopolistic market supplying an 

homogeneous product noncooperatively. They characterise the nature of Stackelberg- 

Nash-Coumot equilibria and they prescribe methods for their computation. Sherali 

and Leleno (1988) present a mathematical programming approach for Nash-Coumot 

equilibrium analysis of oligopolies and derive equilibrium solutions in various market 

structures. Our proposed methodology can be classified as a sequential Bertrand-type 

price optimisation approach that aims to determine optimal price levels and 

production plans as described in the next section.

5.3 Single-product price optimisation

In this section, we focus our attention in the specific case of single-product firms 

operating in a duopolistic marketplace. Analyical formulae are derived for that special 

oligopolistic case, while we propose an iterative algorithm for determining optimal 

product prices. A motivating example is then solved in order to validate the 

applicability of both formulae and the proposed algorithm.

5.3.1 Analytical formulae

Consider two firms 1 and 2, each one offering a single product to the market. Suppose 

their products are close substitutes and compete with each other over the same 

customer base. However, there is at least some degree of differentiation between the 

two products and therefore each firm faces different demand curves (Q1, Q2) and 

different variable (VC1, VC2) and fixed (FC1, FC2) manufacturing costs while the 

products are sold for different prices (PI, P2). The sales volume for every firm is 

defined as a linear function of its own price (PI) and the competitor’s price (P2):

Firm 1: Q1 = a l - b l • PI + c l2 • P2 (5.1)

and

Firm2: Q2 = a 2 -b 2 -P 2  + c21-Pl (5.2)
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Where al, a2 are demand coefficients, bl, b2 are demand elasticity parameters and 

c72, c21 are demand cross-elasticity parameters. All parameters in our formulation 

take positive values.

Note that the quantity each firm can sell decreases when the firm raises its own price, 

but increases when its competitor charges a higher price. Each firm will choose its 

own price, taking the competitor’s price as fixed. The profit of firm 1 equals its 

revenue minus the variable and fixed manufacturing costs:

Where VC1 is the variable unit cost, Capl is the available capacity and FC1 is the 

fixed cost for Firm 1. Depending on the values of Q1 and Capl, the profit of Firm 1 

equals to:

Case 1: Unconstrained-Unconstrained

In that case both firms have unlimited resource capacity, meaning that Ql<Capl, 

Q2<Cap2, P1>P1C and P2>P2C. The resulting profit for Firm 1 is calculated as

777 = (PI -VC1)- min(Ql, Capl) -  FC1 (5.3)

(P I -  VC1 ) Q 1- FC1 when Ql < Capl,
-  FC1 otherwise

(5.4)

If Ql equals Capl, then:

a l - b l  - PI + cl 2 • P2 = Capl (5.5)

and the critical value for the price of Firm 1 equals to:

pyc Capl + c l2 • P2
~ bl

(5.6)

Similarly for Firm 2:

2 C _ a 2 -  Cap2 + c21 • PI 
~ b2

(5.7)

follows:

777 -  ( P I -  VC1 ) Q1-FC1 (5.8)
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and substituting Ql we get:

I I I  = al P I - b l ■ P I2 + c l2 -P 2-P 1-  ,5 9 .
al ■ VC1 + b l-P l- VC1 -  cl2 ■ P2 ■ VC1 -  FC1

Firm’s 1 profit is maximised when the incremental profit from a very small increase 

in its own price is zero. Taking P2 as fixed, Firm l ’s profit is concave in PI and 

therefore the maximising price is given by:

A]T1 /  API = al -  2 -bl - PI + bl -VC1 + cl2 - P2 = 0 (5.10)

This can be rewritten to give the following pricing rule or reaction curve for Firml:

al + bl.VC l + cl2 .P 2  
2-bl

This equation dictates the price Firm 1 should set, given the price P2 that Firm 2 is

setting. Similarly, we can derive the pricing rule (reaction curve) for Firm 2:

a2 + b2.VC2 + c21.Pl 
2-b2

The point where the two reactions curves cross determines the Nash equilibrium in 

prices. At that point each firm is doing the best it can, given the price its competitor 

has set and therefore, neither firm has the incentive to change its price.

By substituting P2 from equation (5.12) in Firm l ’s reaction curve equation (5.11), 

we get:

p ] • = 2-b2-(a l + VCl-bl) + cl2-(a2 + VC2-b2) 
4-b l-b2 -c l2 -c21

Similarly, we get:

. = a2 + b2- VC 2 + c21 • P i' 
2-b2

Nash equilibrium in prices is determined at point (PI*, P2*).
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Case 2: Constrained-Constrained

In that case both firms have limited capacity resources meaning that 

Ql > Capl, Q2 > Cap2, PI < P lc and P2 < P2C. The resulting profit for Firm 1 is 

calculated as follows:

n i  = (P I -VC1)- Capl -  FC1 (5.15)

In that case, the firm’s profit is a monotonically increasing function of price Pl.

Therefore, reaction curve for Firm 1 is given by the critical price P lc.

_ a l-C a p l + c l2 -P2
bl '

and similarly for Firm 2 we have:

P2 = a2~  Cap2 + c21 PI
b2 *

Again, Nash equilibrium in prices is determined at the point where the two reactions 

curves cross each other.

By substituting P2 from equation (5.17) in Firm l ’s reaction curve (5.16), we get:

D j* _ al -b 2 - Capl • b2 + c l2 • a2 -  c l2 • Cap2 fc t ON
PI —--------------------------------------------------------- (5.1o)

b l'b 2 -c l2 -c2 1

and similarly:

P2‘ = °2 ~  Cap2 + c21 PI* 
b2

Nash equilibrium in prices is determined at point (PI*, P2*).

Case 3: Unconstrained-Constrained

In that case it is assumed that Firm 1 has unlimited capacity resources (unconstrained) 

while Firm 2 has a limited amount of capacity resources (constrained), meaning that

Ql < Capl, Q2 > Cap2, PI > P lc and P2 < P2C. The reaction curve for Firm 1 is

calculated as in Case 1:
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P I  = ? i± lL ' -I £ i + c i 2 - P 2  ( 5 2 0 )

2 -bl

While the reaction curve of Firm 2 is calculated as in Case 2:

P2 = °2 ~  Cap 2 + c21 PI 
b2

By substitution in Firm 1 ’s reaction curve, we get:

pj* _ al -b2 + b2 • VC1 • bl + c l2 • a2 -  c l2 • Cap2 
~ 2 'b l 'b 2 -c l2 'c 2 1

and similarly:

. .= a2-Cap2 + c21-Pl' 
b2

♦ *
Therefore, Nash equilibrium in prices is determined at point (PI ,P 2 ).

5.3.2 Iterative algorithm Al

In the previous section, the analytical form of the Nash equilibrium was derived for 

the case of price competition between two firms that manufacture and sell two 

substitute products. Based on the capacity resource levels of each company, three 

different cases were studied, namely the unconstrained-unconstrained, the 

constrained-constrained and the unconstrained-constrained case respectively. For each 

case, the closed form of the resulting Nash equilibrium in prices was calculated.

In this section, we propose an iterative algorithm [Algorithm Al] able to 

accommodate all the aforementioned cases and derive the Nash Equilibrium point by 

employing mathematical programming techniques. In every iteration of the algorithm, 

each company decides on its individual pricing policy while taking into account the 

price its competitor is currently charging (P°). The pricing decision-making process 

for each firm is formulated as a non-linear programming (NLP) mathematical model 

that tries to maximise the company profit given the competitor’s price. The 

optimisation problem for Firm 1 in iteration m is mathematically formulated as 

follows:
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[Problem Firm 1]

max n i m =  ( P l m -V C 1)-  Q l m -  FC1 

Subject to:

Demand Constraints

Q lm = al - b l  - P lm + cl 2 - P2m

Q2m = a 2 -b 2 - P2m + c21 - P lm

Price Constraints

P2m = P2°

Capacity Constraints

Q lm < Capl

Similarly, the optimisation problem for Firm 2 in iteration m is formulated as follows: 

[Problem Firm 2]

max IT2m = ( P2m -V C 2)-Q 2m - FC2

Subject to:

Demand Constraints

Q lm = a l - b l -  P lm + cl 2 - P2m

Q2m = a 2 -b 2 -P 2 m +c21-Plm 

Price Constraints

p i m = p i °

Capacity Constraints 

Q2m < Cap2

The proposed algorithm [Algorithm Al] comprises the following steps:
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[ A l g o r i t h m  A l ]

S t e p  1 .  S e t  p r i c e  l e v e l s  t o  c u r r e n t  m a r k e t  p r i c e s  P 1 = P 1 °  

a n d  P 2=P 2°  a n d  i n i t i a l i s e  i t e r a t i o n s  c o u n t e r  m : = 0 .

S t e p  2 .  S e t  i t e r a t i o n s  c o u n t e r  t o  m : = m + l .  I f  rn>rnmax t h e n  

STOP.

S t e p  3 .  S o l v e  [ P r o b l e m  F i r m  1]  & u p d a t e  P l °  p r i c e  l e v e l .  

S t e p  4 .  S o l v e  [ P r o b l e m  F i r m  2]  & u p d a t e  P2°  p r i c e  l e v e l .

O t h e r w i s e ,  g o  t o  S t e p  2 .

The proposed algorithm simulates the pricing decision-making process between two 

competing firms. Each firm decides on its optimal pricing policy while taking into 

account the observable current price charged by its competitor firm. Therefore, the 

algorithm is able to capture the game-theoretical nature of the pricing problem and 

successfully simulate the sequential decision-making process between the two firms. 

The algorithm terminates at a point where neither company wants to change its 

pricing policy given the price of its competitor. At that point both companies are 

doing their best, therefore neither company wants to deviate from that point and that 

is by definition, the Nash equilibrium point in prices. The applicability of the 

proposed algorithm is demonstrated by solving a motivating example as described in 

the following section.

5.3.3 Motivating example

Consider two firms that offer two differentiated products that are close substitutes to 

each other. Suppose that the two companies are facing the following demand curves:

Firm 1: Ql = 160-30  • PI + 4 -P2 and

----------------< e  a n d
n r

ri2m -n 2 m~l
I72m

< s  t h e n  STOP.

Firm 2: Q2 = 180 -  40 • P2 + 3 • PI

The additional input data concerning the two companies is shown in Table 5.1.
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Table 5.1: Additional input data

Parameter Firm 1 Firm 2
Variable Cost (VC) 0.5 0.4

Fixed Cost (FC) 20 25
Capacity (Cap) in Case 1 Unlimited Unlimited
Capacity (Cap) in Case 2 60 50
Capacity (Cap) in Case 3 Unlimited 50

Three different cases, namely Case 1, Case 2 and Case 3 are examined based on the 

capacity resource availability. In Case 1, both firms have unlimited capacity 

resources. According to the analytical form equations derived in the previous section, 

the Nash Equilibrium in prices is determined at point (PI*, P2*) = (3.09, 2.57). Also, 

Algorithm Al successfully predicts the exact same Equilibrium point within less than 

3 iterations depending on the starting point (initial price vector) as illustrated in 

Figure 5.3. Most importantly, product prices converge to the same equilibrium point 

irrespective of the starting point, thus illustrating the robustness of the proposed 

methodology.

4

3.5

3

2.5

2

P1J
1.5

-  P 1 _ 2 --------------P2_2

1 P1J3 P2_3

-  -+ - P1_4
0.5

Figure 5.3: Nash equilibrium - Case 1

In Case 2, both firms have limited amounts of capacity resources, therefore their 

output levels are restricted by the resource availability of every firm. Consequently, 

the Nash equilibrium in prices is also influenced by the lack of unlimited resources.
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According to the theoretically derived equations, Nash equilibrium in prices is now 

determined at point (PI*, P2*) = (3.80, 3.54). The proposed algorithm derives the 

exact same equilibrium point irrespective of the initial price vector employed as 

shown in Figure 5.4. It is very interesting to notice that the equilibrium prices in this 

case are slightly higher than the equilibrium prices in Case 1. This is mainly attributed 

to the fact that the outputs in Case 2 are restricted to the available resource levels. At 

the equilibrium point, both companies make full utilisation of their resources, 

producing 50 and 60 units of product respectively which are less compared to the 

equilibrium outputs in Case 1 (77.6 and 86.6 respectively). In order to compensate for 

the decreased output levels, both firms are now forced to raise their prices so as to 

maximise their profits.

3X
a. 2 ■

-  1--------- * - 3 4 ---------- * - 3 4 ---------- * - 3 4 ---------- * 3 4 ---------- * - 3 4 ----------- *  3.1

P2_1

— — P 1 _ 2 -----------P2_2

— P1_3 P2_3

- - f -  P1_4 P2_4

Figure 5.4: Nash equilibrium - Case 2

Finally in Case 3, Firm 1 has unlimited amount of capacity resource while Firm 2 has 

a finite level of capacity resource. The closed form equations predict that the Nash 

equilibrium in prices lies at point (PI*, P2*) = (3.15, 3.49). The proposed algorithm 

converges at the exact same equilibrium point as shown in Figure 5.5. Unlike Cases 1 

and 2, the equilibrium price for Firm 1 is now slightly lower than the price charged by 

Firm 2. Firm 2 has a limited capacity resource and therefore its equilibrium output is 

restricted to 50 product units. The lack of resources for Firm 2 is inevitably reflected
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on the resulting high price. On the other hand, Firm 1 is able to produce a larger 

output and charge a lower price for its product so as to benefit from the economy of 

scale. The results from Case 3 clearly illustrate what takes place in a real life 

marketplace, where it is very common that big companies supply large quantities in 

relatively low prices and consequently outrun the small companies who struggle to 

cover their costs by charging high prices.

4

3.5

g  v * 3 4 5 ----------* W 5 -------- * 3 4 5 -----------* 3 4 5 ----------* -3 4 5 ----------* 3 4 5 ----------«  3.15
3

2.5

2

P1_1 P2_1
1.5

P1_2 P2_2

P1_3 P2_31

— I— P1_4
0.5

Figure 5.5: Nash equilibrium - Case 3

The Nash Equilibrium points for Cases 1, 2 and 3 are summarised in Table 5.2. In all 

three cases the proposed algorithm Al successfully determines the exact same Nash 

Equilibrium point as the one predicted from the closed form equations.

Table 5.2: Nash equilibrium points

Case 1 Case 2 Case 3
Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm 2

Price 3.09 2.57 3.80 3.54 3.15 3.49
Output 77.6 86.6 60 50 79.47 50
Profit 180.89 162.63 178.28 131.77 190.53 129.31
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Algorithm Al is further extended so as to accommodate the case of multi-product 

competing firms trying to satisfy the anticipated customer demand forecast while 

considering outsourcing options as described in the next section.

5.4 Multi-product price optimisation

In the previous sections, we investigated the case of price competition in a duopolistic 

market environment where each company is producing only one product. However, 

process industries nowadays usually operate multi-product plants producing a set of 

differentiated products (e.g. different paints, detergents, carbonated drinks, etc). 

These products belong to the same family of products (product class) and they share a 

number of common characteristics (e.g. water-based paints). On the other hand, 

products are differentiated from each other in such a way so as to cover a broad range 

of customer preferences (e.g. different paint colours/quality).

Market segmentation is a widely used marketing strategy that recognises the different 

ways customers perceive product value and make their purchase choices accordingly. 

In order to deliver value to the different existing customer segments, most companies 

decide to market launch a wide variety of slightly differentiated products so as to 

attract customers via a tailor-based marketing approach. Each one of the company 

products is a unique brand name with unique features that clearly differentiates itself 

from the rest of the family products. The unique attributes of each product appeal to a 

very distinct customer base that is choosing to buy that specific product over the 

entire range of products present in the marketplace. Customers are willing to buy their 

preferred product as long as the product price charged by the company reflects their 

perceived value of the product. Product brand loyalty is expressed by repeat 

purchases of the installed customer base. Alternatively, the customer may well switch 

to a lower-priced substitute product offered by the same company or a rival company.

Pricing in a multi-product competitive market environment is not an easy task. The 

analytical formulae presented in section 5.3 for the two-products pricing problem 

cannot be applied to the multi-product pricing problem so as to derive a meaningful 

Nash equilibrium in prices. In the multi-product case, price competition exists not 

only between company and non-company products but also between differentiated 

brands belonging to the very same company. Moreover, company products are
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manufactured by utilising a common pool of available resources. Products belonging 

to the same family compete with each other for scarce and shared manufacturing 

resources. Therefore, product cannibalisation effects have to be seriously taken into 

account when determining an optimal pricing policy. On the same time though, the 

company has to account for the market competition by considering the pricing policy 

adopted by the rival company for its products also present in the marketplace. On top 

of that modem process industries have recently realised the benefits of adopting 

outsource manufacturing policies in an attempt to drive manufacturing costs further 

down and avoid any unnecessary capacity expansion overheads. Such outsource 

options should be addressed in a proper manner before deciding on a comprehensive 

pricing strategy.

Reaction curve analysis cannot be applied in a straightforward way as in the previous 

two-products case. However, in order to capture the trade-off between product price 

and market share in a multi-product environment, an extension of the previously 

developed non-linear programming (NLP) mathematical model is proposed. Based on 

that mathematical model, an extended algorithm [Algorithm A2] is also proposed able 

to determine optimal pricing polices for multi-product competing companies.

5.4.1 Mathematical model

The following nomenclature is used in our mathematical model formulation:

Indices

i,j products

s production sites

r resources

Sets

Pc set of products i for company C

Sc set of production sites s for company C

Rc set of resources r for company C

Zc set of products i using resource r at site s in company C
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Parameters

cii demand coefficient for product i

bj demand elasticity coefficient for product /

cy demand cross-elasticity coefficient between products i and j

rvcs relative variable cost coefficient for site s

rtcs relative transportation cost coefficient for site s

VCj variable manufacturing cost for product /

FQ fixed manufacturing cost for product i

TQ unit transportation cost for product i

OCi unit outsource cost for product i

pir unit consumption coefficient for product i using resource r

Ars availability level of resource r at site s

DF total market demand forecast

Variables

Pi price for product i

Vi sales volume for product i

Qis amount of product i manufactured at site s

Oi amount of product i outsourced

77c total profit for company C

The derivation of the general mathematical model for Company C [Model Ml] is 

described next.

Price Elasticity Constraints

The sales volume for every product i is a monotonically decreasing function of its 

price and a monotonically increasing function of the price of all other competing 

products, including substitute products belonging to Company C as well as non­

company products. The sales volume for every product i is given by the following 

linear function:
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Vl = a ,- b r P ,+ Y .C r pJ V /  (5-24)
j*i

Mass Balance Constraints

The total sales volume of every product i equals to the amount manufactured in-house 

at all production sites belonging to company C plus the amount manufacturing from 

outsourcing:

V i ePc (5.25)
se S c

Resource Availability Constraints

The amount of company products manufactured in-house at every production site s is 

limited by the availability of the shared company resources. The following constraints 

safeguard that the resource availability levels are not exceeded.

Qis <Ars V r s  Rc ,s  6 Sc (5.26)
ieZ c

Demand Forecast Constraints

Market research surveys are conducted periodically so as to assess the current trends 

and predict future customer demand of a specific product class. The total sales 

volume of all products present in the marketplace should be greater or equal to the 

forecasted customer demand.

Y / , ^ D F  (5.27)
I

Objective function

The objective function employed in our mathematical model corresponds to the nett 

profit generated by the subset of the products belong to Company C. The nett profit is

calculated as sales revenue minus the different costs, namely variable and fixed

manufacturing costs, transportation and outsourcing costs. Mathematically we have:
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max

n c = Z pr V l - ' Z  X ™ s-V C , -Q,s -  X  I ]rfcs •FC, -
iePc  iePc seSc  iePc seSc

22 rtcs -Tc r Qls- ' Z ° c r Ol 

Summary of the mathematical model

In the general case, the optimisation problem for Company C is mathematically 

formulated as follows:

[Model Ml]

max

n C =  Z rv c s -VC, Q,s -  2 2 ~
iePc iePc seSc  iePc seSc

22 rtcs -T C ,Q ls- ^ O C r Oi
iePc seSc  iePc

Subject to:

Vi = at - b r p!+ 2 Cf Pj  V»
j * i

r, = 2 .Q u + 0 i v  ' Gpc
seSc

Z P-r • &  2 Ars v  r& Rc ,s e S c
i eZc

2 Vt >DF
i

5.4.2 Iterative algorithm A2

The extended algorithm [Algorithm A2] comprises the following steps:

[ A l g o r i t h m  A 2 ]

S t e p  1 .  S e t  p r i c e  l e v e l s  t o  c u r r e n t  m a r k e t  p r i c e s  Pt = P? 

a n d  i n i t i a l i s e  i t e r a t i o n s  c o u n t e r  m : = 0 .
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S t e p  2 .  S e t  i t e r a t i o n s  c o u n t e r  t o  m : = m + l .  I f  m>mmax t h e n  

STOP.

S t e p  3 .  F o r  e v e r y  c o m p a n y  C p r e s e n t  i n  t h e  m a r k e t p l a c e :

i .  S o l v e  [ M o d e l  Ml]  f o r  c o m p a n y  C

i i .  U p d a t e  p r i c e  l e v e l s  f o r  a l l  p r o d u c t s  b e l o n g i n g  

t o  c o m p a n y  C o n ly .

j j m _  f j m I
S t e p  4 .  I f  —  --------- — < £  f o r  a l l  c o m p a n i e s  t h e n  STOP.

O t h e r w i s e ,  g o  t o  S t e p  2 .

Clearly, the restrictions imposed by the analytical formulae and Algorithm A1 are 

now alleviated. Extended Algorithm A2 is able to accommodate the case of 

oligopolistic market competition where more than two firms are competing. 

Furthermore, every company present in the marketplace is allowed to manufacture in- 

house and/or outsource more than one product. The proposed generalised algorithm is 

able to determine optimal production policies and prices for all products, as it is 

demonstrated by the illustrative example described in the next section.

5.4.3 Illustrative examples

Consider two firms, namely Company A and Company B that manufacture and sell 

products PI, P2, P3, P4 and P5, P6, P7 respectively as shown in Figure 5.1. Products 

P1-P7 are close substitutes to each other and therefore each product has a unique 

demand function curve associated with it, as described by equation (5.24). Demand 

coefficients include parameter a„ elasticity 6, and cross-elasticity c y  parameters as 

shown in Tables 5.3 and 5.4. Every company has two available manufacturing sites 

(sites 1 & 2 for Company A and sites 3 & 4 for company B). The products can be 

manufactured in-house by using shared manufacturing resources available at each site 

(in-house manufacturing). Resource utilisation coefficients for every product are 

given at Table 5.5 while resource availability levels for every resource at each site are 

given at Table 5.6. Manufacturing sites are geographically distributed facilities, 

therefore relative manufacturing cost and transportation cost coefficient are used so as 

to capture the effect of different manufacturing locations (see Table 5.7). Final 

products are transported from the manufacturing sites to the end-customers at a given
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transportation cost TC\. Alternatively, a certain amount of production can be 

outsourced by a third-party company at a given outsource cost OCj. Note that since 

we are dealing with products belonging to the same product class, fixed costs are 

assumed to be the same for all products, therefore they are not considered explicitly in 

the illustrative example.

Given an initial price vector (current market prices Pt°) for all products, the problem

is to determine optimal product prices, output levels and outsource amounts so as to 

derive a comprehensive Nash equilibrium point for companies A and B that neither 

company would wish to deviate from.

Table 5.3: Product input data

Product at bi VQ TCi OCi Pf
PI 160 25 4 1 5.3 8
P2 200 30 3 1 5.3 10
P3 150 25 4 1 5.3 9
P4 120 20 5 1 5.3 11
P5 170 30 3 1 4.2 9
P6 110 25 4 1 4.2 10
P7 180 30 3 1 4.2 8

Table 5.4: Cross-elasticity parameters (cij)

Product PI P2 P3 P4 P5 P6 P7
PI - 4 3 2 6 1 4
P2 2 - 5 3 5 4 2
P3 3 3 - 2 3 2 5
P4 4 2 4 - 2 6 3
P5 2 4 3 5 - 3 2
P6 5 3 4 3 2 - 3
P7 3 3 2 2 4 3 -
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Table 5.5: Resource utilisation coefficients (pir)

Product resl res2 res3 res4 res5 res6
PI 1 1.1 0.8 - - -

P2 0.7 1.2 0.7 - - -

P3 1.2 1.4 0.9 - - -

P4 1.1 1.3 0.4 - - -

P5 - - - 0.9 1.2 0.7
P6 - - - 0.8 1.4 0.6
P7 - - - 1 1.6 0.8

Table 5.6: Initial resource availability levels across manufacturing sites

Resources Site 1 Site 2 Site 3 Site 4
Resl 200 340 - -

Res2 300 370 - -

Res3 150 270 - -

Res4 - - 140 150
Res5 - - 210 220
Res6 - - 110 130

Table 5.7: Manufacturing sites related data

Manuf Site rvcs rtcs
Site 1 1 1
Site 2 0.8 1.2
Site 3 0.7 1.4
Site 4 0.9 1.1

Initially, both companies A and B manufacture their products in-house by only 

relying on the manufacturing capabilities of their own production sites while no 

outsourcing is considered. In particular, the allocation of production between the 

different sites is shown in Tables 5.8 and 5.9. The total amount of sales for the 

specific product class equals the combined manufacturing volume of both companies 

(703 units). Given the initial price vector and output levels for all products, the initial 

profit is 2194 rmu* and 1129 rmu for company A and B, respectively.

* rmu = relative monetary units
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Table 5.8: Initial state o f Company A

Products Site 1 Site 2 Outsource
PI - 205 -

P2 95 - -

P3 68 20 -

P4 - 90 -

Total 163 315 0

Table 5.9: Initial state o f Company B

Products Site 3 Site 4 Outsource
P5 84 -

P6 41 -

P7 32 68 -

Total 157 68 0

A recent market research survey has estimated future customer demand

product family under investigation to be equal to 712 units and therefore the two 

companies are competing over the anticipated customer demand. Every company has 

the strategic choice to consider outsourcing options or rely entirely on its own in- 

house manufacturing capabilities, thus resulting in four distinct cases as explained in 

the following sections. All four cases were implemented in GAMS (Brooke et al., 

1998) using the CONOPT NLP solver (Drud, 1985) while all runs were performed on 

an IBM RS/6000 workstation.

Case 1: In-house/In-house

In this case both companies A and B manufacture their products in-house while no 

outsourcing is allowed to take place. Algorithm A2 is applied with the outsource 

variable fixed to zero for both companies. As shown in Figure 5.6, Nash equilibrium 

is reached after 5 iterations resulting in profits 2259 rmu and 1262 rmu for company 

A and B, respectively. Optimal product price levels are determined as illustrated in 

Figure 5.7. More specifically, equilibrium prices for PI and P3 lie above their 

original levels while a price decline is suggested for products P2, P5 and P6. Finally, 

the optimal prices of products P4 and P7 are very close to their original values. Nash 

Equilibrium profits and prices for both companies across all cases are given at Table 

5.10.
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Table 5.10: Nash equilibrium results across all cases

Company A Company B
Profit PI P2 P3 P4 Profit P5 P6 P7

Initial 2194 8 10 9 11 1129 9 10 8
Case 1 2259 10.46 8.52 9.50 11.06 1262 8.09 8.74 7.78
Case 2 2241 10.45 8.54 9.51 11.05 1284 8.07 8.57 7.78
Case 3 2288 10.49 8.55 9.53 10.92 1259 8.08 8.74 7.77
Case 4 2269 10.48 8.57 9.54 10.90 1281 8.06 8.56 7.77

Case 2: In-house/Outsource

In this case company A manufactures its products entirely in-house while company B 

has the option to outsource a certain amount of production. Algorithm A2 is applied 

with the outsource variable fixed to zero only for company A. Starting from the same 

initial state as in case 1, Nash equilibrium results in profits 2241 rmu and 1284 rmu 

for company A and B respectively while optimal product prices follow the same 

trends as in case 1 and their values are given in Table 5.10. However the main 

difference in this case is that Company B outsources 84 units of product P6 while the 

rest of the production is taking place in its own manufacturing sites 3 and 4 as shown 

in Figure 5.8.

Company A Company B

Outsource
0%

Outsource
28%

Figure 5.8: Allocation o f production - Case 2
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Case 3: Outsource/In-house

This case is the exact inverse of case 2. Company B manufactures all of its products 

in-house while company A has the option to outsource a certain amount of 

production. According to the results, profits of 2288 rmu and 1259 rmu for company 

A and B respectively are achieved at the Nash equilibrium point while optimal 

product prices are given in Table 5.10. Notice that in this case Company A outsources 

91 units of product P4 representing 22% of its total production as depicted in Figure 

5.9.

Company B

Outsource
0%

Site 4 
44%

Site 3 
56%

Company A

Site 1 
6%

Outsource
22%

Site 2 
72%

Figure 5.9: Allocation o f production - Case 3 

Case 4:Outsource/Outsource

In this case both companies A and B have the option to manufacture products in- 

house and/or outsource a certain amount. Nash equilibrium results in profits 2269 rmu 

and 1281 rmu for company A and B, respectively. In this case, Company A 

outsources 90 units of product P4 and Company B outsources 84 units of product P6. 

Optimal product prices can be found in Table 5.10. The allocation of production 

between manufacturing sites and outsourcing in Case 4 is given as pie charts in Figure 

5.10 for both companies. Notice that the largest share of production is allocated to site 

2 and site 3 since they both offer low variable manufacturing cost compared with sites 

1 and site 4 respectively. According to the obtained results, outsourcing activity 

constitutes over 20% of total production for both companies.
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Outsource
22% Outsource
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Figure 5.10: Allocation o f production - Case 4 

Game-theoretical insight

Previously, we examined four different cases of duopolistic competition. By 

comparing the derived Nash equilibria, useful insight can be gained from a game- 

theoretical point of view. The duopolistic game under investigation is defined as 

follows. The competing companies are regarded as two players. Each player in the 

game has a number of possible strategies, courses of action that he may choose to 

follow. In our particular case, companies have the choice to either produce their 

products entirely in their own manufacturing sites (in-house strategy) or produce a 

certain amount in-house and also outsource a certain percentage of production 

(outsource strategy). The strategies chosen by each player determine the so-called 

outcomes of the game. In our example, we end up with four different combinations of 

outcomes, namely in-house/in-house, in-house/outsource, outsource/in-house and 

outsource/outsource, each one representing a case examined in the previous sections. 

In every formally stated game, there is a collection of numerical payoffs, one to each 

player, associated with every possible outcome of the game. Those payoffs represent 

the value of the outcome to the different players. In this example, Nash equilibrium 

profits can play the role of companies payoffs for every particular case examined. 

Overall, we are dealing with a two-person game with two strategies per player and a 

game payoff matrix as shown in Table 5.11. The values in parentheses are the Nash 

equilibrium profits determined previously for all four cases, with the first number 

being the profit for Company A and the second one the profit of Company B.
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Table 5.11: Game payoff matrix

Company A
In-house Outsource

Company In-house Case 1 
(2259,1262)

Case 3 
(2288,1259)

B Outsource Case 2 Case 4
(2241,1284) (2269,1281)

Game theory is the study of how players should rationally play games. Each player 

would like the game to end in an outcome which offers him the largest possible 

payoff. He has some control over the outcome, since his choice of strategy will 

influence it. However, the outcome is not determined by his choice alone, but also 

depends upon the choices of all other players. In general, there might be conflict 

because different players value outcomes differently (Straffin, 1993).

In the illustrative example, companies are faced with the question of which strategy to 

adopt in order to reach the Nash Equilibrium associated with the highest profit for the 

company under investigation. First, let us consider Company A. Company A does not 

have any indication of which policy rival Company B will adopt. If Company B 

adopts a strictly in-house manufacturing policy, then Company A has a choice 

between Case 1 and 3. Since the profit for Company A in Case 3 is higher than the 

one in Case 1 (2288 vs. 2259), Company A decides to adopt an outsourcing strategy. 

In case Company B adopts an outsourcing policy, Company A has a choice between 

Case 2 and 4. Case 4 offers Company A with a profit of 2269 which is higher that the 

Case 2 profit (2241). So, in both scenarios, Company A is better off by choosing to 

outsource a certain amount of its production, irrespective of the production policy 

adopted by rival Company B. Similarly, we can prove that the exact same rule applies 

for Company B as well. Without any prior knowledge of the production policy 

adopted by company A, Company B always earns a higher profit by adopting an 

outsourcing strategy.

It is very interesting to notice that Case 3 provides the highest profit for Company A 

while Case 2 provides the highest profit for Company B. However, Case 4 is 

considered to be the most likely outcome of the game since the outsource/outsource 

policy guarantees higher profits for both companies no matter what policy the rival
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company decides to adopt, thus providing a robust Nash equilibrium for both 

companies.

5.5 Concluding remarks

A systematic mathematical programming approach for active demand management 

through price optimisation was presented in this chapter. First, we derived analytical 

formulae for calculating Nash equilibrium points in a duopolistic market environment 

where each company produces and sells only one product. An iterative algorithm was 

then proposed able to simulate the decision-making process and derive the exact same 

equilibrium points predicted by the closed-form formulae as demonstrated by a 

motivating example.

Following that, the proposed algorithm was further extended in order to accommodate 

the case of multi-product firms and also consider additional features such as customer 

demand forecast and mixed in-house and outsourcing production policies. An 

illustrative example was solved in order to demonstrate the applicability of the 

proposed methodology across four different cases. Finally, a comparison among the 

different cases provided us with valuable game-theoretical insight concerning the 

problem of duopolistic competition coupled with outsourcing options.



Chapter 6

Conclusions and future directions

The aim of the thesis was to facilitate business decision-making by applying 

mathematical programming techniques for multi-site capacity planning and business 

optimisation in process industries. Towards that goal, a number of mathematical 

models and solution algorithms have been developed in order to assist business 

decision-making in process industries. The key contributions of the thesis are 

summarised in the next section, while section 6.2 suggests promising new directions 

for future research work.

6.1 Contributions of the thesis

6.1.1 Multi-site capacity planning

Part I of the thesis was concerned with the problem of multi-site capacity planning 

under uncertainty in the pharmaceutical industry. First, a simultaneous approach for 

multi-site capacity planning was developed. An extensive literature survey was 

presented in order to familiarise the reader with the current status of the 

pharmaceutical industry and highlight recent academic contributions in the area of 

mathematical programming related to the problem of capacity planning. Following

133
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the literature survey, we focused on the specific characteristics of the multi-site 

capacity planning problem under uncertainty and the overall problem was formally 

stated. According to the simultaneous approach, the overall problem was formulated 

as a comprehensive two-stage, multi-scenario mixed-integer linear mathematical 

programming (MILP) model incorporating issues related to product management, 

clinical trials uncertainty, capacity management and trading structure of the company. 

The proposed MILP model was solved using traditional branch-and-bound techniques 

via the direct application of the commercially available XPRESS-MP (Dash 

Associates, 1999) MILP solver. The applicability of the simultaneous approach was 

illustrated by five illustrative examples of varying sizes. According to the results, 

small and modest size example problems were solved successfully by employing the 

proposed methodology. However, the solution of large-scale instances of the problem 

proved to be a very demanding task in terms of computational effort needed due to 

the inherent complexity of the problem.

The previously revealed computational limitations of the simultaneous approach 

necessitated the implementation of an alternative solution methodology. For that 

reason, a hierarchical approach was also developed able to accommodate the 

combinatorial nature of the problem. The proposed hierarchical approach was based 

on the decoupling of the strategic and operational decision-making levels identified in 

our problem via the employment of an efficient suite-aggregate model formulation. 

The aforementioned five illustrative examples were revisited in order to validate the 

applicability of the proposed hierarchical solution algorithms HI and H2. According 

to the results, the proposed algorithms were able to alleviate the computational burden 

and yield near-optimal solutions within reasonable computational time even for large- 

scale MILP problems. A comparative study was also performed in order to assess the 

computational performance of the proposed hierarchical algorithms against the 

simultaneous approach and a previously developed hierarchical algorithm found in 

the literature (Rotstein et al., 1999). In both cases, the proposed hierarchical 

algorithms outperformed both the simultaneous approach and the previously 

developed algorithm by achieving significant computational savings and most 

importantly, without compromising the solution quality.
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6.1.2 Business optimisation

Part II of the thesis was concerned with the problem of business optimisation for 

customer demand management. Initially, we highlighted recent approaches in the area 

of demand forecasting and identified their major strengths and weaknesses. Based on 

the recently developed statistical learning theory (Vapnik, 1998), we then presented 

the essential mathematical background of support vector regression (SVR) analysis. A 

systematic mathematical programming approach for customer demand forecasting 

was proposed based on SVR analysis. The proposed approach employed a three-step 

algorithm able to extract information from historical data training points and identify 

an adaptive basis regression function before carrying out a recursive methodology for 

customer demand forecasting. Three illustrative customer demand forecasting 

examples were solved so as to validate the applicability of the proposed algorithm. 

According to the results, the proposed algorithm successfully handled complex 

nonlinear customer demand patterns and derived forecasts with prediction accuracy of 

more than 93% in all cases.

A mathematical programming approach for active demand management of close 

substitute products through price optimisation was also developed. The proposed 

methodology identified price as the ultimate driver behind customer purchasing 

behaviour and aimed to maximise company profits while taking into consideration 

manufacturing costs, resource availability, customer demand elasticity, outsourcing 

and market competition. Analytical formulae for calculating Nash equilibrium points 

in a duopolistic market environment were derived. An iterative optimisation-based 

algorithm was then proposed able to simulate the decision-making process and obtain 

the exact same Nash equilibrium points as the ones predicted by the closed-form 

formulae. The proposed algorithm was then extended so as to accommodate the case 

of multi-product firms and consider additional features such as customer demand 

forecasts and mixed in-house and outsourcing production policies. Four illustrative 

example cases were solved in order to demonstrate the applicability of the proposed 

methodology while a comparison among them provided us with some valuable game- 

theoretical insight concerning the problem of duopolistic competition coupled with 

outsourcing options.
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6.2 Recommendations for future work

A number of promising future research directions related to multi-site capacity 

planning and business optimisation problems are presented in this section. Our aim is 

to provide the reader with some future insight in the area of multi-site capacity 

planning and business optimisation as well as highlight a number of emerging 

research issues that could benefit from the developed mathematical modelling 

frameworks presented in the thesis. Next, we consider those future research issues in 

detail.

6.2.1 Tax minimisation

In Chapter 2 of the thesis a mathematical model for multi-site capacity planning was 

proposed that successfully incorporated issues related to the trading structure of the 

company. The proposed model employed a priori given tariff percentages parameters 

for the cost-minus and profit-plus pricing formulas of the production sites and sales 

regions respectively. Alternatively, those tariffs could be treated as variables to be 

determined by the optimisation algorithm. By doing so, the mathematical model 

would become more flexible in terms of where and how much product to manufacture 

so as to maximise the after-tax expected nett present value (eNPV) by properly 

adjusting financial flows between the various business centres resulting in minimum 

overall taxes paid by the company.

From a mathematical point of view, the aforementioned modification to the proposed 

mathematical model would add more degrees of freedom into the optimisation 

problem and therefore the objective function (eNPV) would become less constrained. 

In that fashion, the optimisation algorithm would be able theoretically to derive a 

solution with increased after-tax profitability by performing a tax minimisation based 

on the derived internal trading structure of the company.

6.2.2 Multi-objective optimisation

The proposed mathematical model for multi-site capacity planning under uncertainty 

employed a profit maximisation objective function (eNPV). However, it would be 

very beneficial to incorporate multiple business performance criteria (see for example 

Hugo et al., 2003). Apart from the profit-based eNPV, the proposed mathematical
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model could also incorporate financial risk assessment criteria so as to minimise the 

effect of adverse scenarios realisation.

Towards that direction, a multi-objective approach could leverage high-profit 

aspirations with low-risk capital investment and operating policies (see for example 

Barbaro and Bagajewicz, 2004). Solutions lying on a pareto optimal curve could be 

obtained in order to resolve the trade-off between profit and risk in an optimal 

manner. Depending on the managerial view towards risk, the company would then be 

able to choose from a wide range of risk-averse or risk-taking multi-site investment 

strategies.

6.2.3 Training of support vector machines

Chapter 4 of the thesis described a support vector regression-based methodology for 

customer demand forecasting while illustrative examples provided some very 

promising results. However, the field of support vector machines training constitutes 

a very active research area with numerous open issues still seeking for an answer.

In particular, parameter selection for support vector regression is an issue of crucial 

importance. In our proposed methodology, support vector regression parameters were 

determined based on heuristic rules recently proposed in the literature (Cherkassky 

and Ma, 2004). However, a more formal way of parameter selection is needed in 

order to make support vector regression less dependant on heuristic-based rules.

Scholkopf et al. (2000) have proposed a new class of support vector algorithms for 

classification and regression problems. Based on the original e-SVR formulation, they 

developed the v-SVR formulation. Instead of choosing the width parameter of the e- 

insensitive tube, they introduced parameter v that effectively allows control of the 

number of support vectors while eliminating the need to determine parameter e 

explicitly. Chalimourda et al. (2004) have recently proposed theoretically optimal 

values for the v parameter, although these values have derived under strong 

theoretical assumptions that are not satisfied in practical support vector machines.

According to a recent study by Smola and Scholkopf (2004), reduced set methods is 

an important topic for speeding up training of support vector machines. Platt (1999) 

recently proposed a sequential minimal optimisation (SMO) algorithm for fast
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training of support vector machines. However, at the moment, data mining application 

require algorithms that are able to deal with databases that are often at least one order 

of magnitude larger than the current practical size of support vector regression (Smola 

and Scholkopf, 2004).

6.2.4 Marketing-based pricing

Chapter 5 of the thesis presented the case of both single-product and multi-product 

firms competing in an oligopolistic marketplace. The proposed methodology took into 

account manufacturing costs, resource availability, customer demand elasticity, 

outsourcing and market competition to determine optimal pricing policies.

However, it would be very interesting to consider a marketing-based pricing approach 

for oligopolistic competition where issues related to product lifecycles are 

incorporated as well. Instead of determining static price levels, a marketing-based 

approach should adopt a dynamic perspective of oligopolistic competition where 

product price profiles could be proposed over a short to medium-term horizon. Such 

an approach could incorporate issues related to product advertising and promotions 

and also consider the special cases of new product development (NPD) and market 

product launching (MPL). Such a marketing-based pricing tool would help process 

industries not only to attract new customers, but on the same time, fairly reward 

existing customers via the deployment of properly envisaged loyalty brand schemes.

6.2.5 Customer demand uncertainty

The active demand management approach, presented in Chapter 5, employed 

deterministic values for customer demand elasticity and cross-elasticity parameters. 

Another interesting aspect of future research work would be to address the uncertain 

nature of those parameters and assess their impact in a more formal way. Towards 

that direction, different values of elasticity and cross-elasticity parameters could be 

used resulting into a large number of possible market scenarios so as to map the entire 

space of uncertainty.

Alternatively, chance-constrained programming (CCP) techniques (Chames and 

Cooper, 1959) could be employed in order to incorporate parameter uncertainty in a 

more affordable way, in terms of computational effort, by deviating the need for
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discrete scenarios. In that fashion, chance constraints could capture efficiently the 

effect of uncertain elasticity and cross-elasticity parameters and assess company 

performance across a wide range of possible market conditions.
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Appendix A

Translation-fixing step for Algorithms HI 

and H2

Based on the solution of the aggregate model [Problem A], the goal of the translation- 

fixing step is to map the derived aggregate investment decision and suite availability 

variables into the corresponding detailed decision variables [Problem D]. The 

proposed translation-fixing step features a unique mapping between integer and 

binary investment decision variables so as to mirror the information deriving from the 

solution of the aggregate model. A simple example is described next in order to 

elaborate the use of the translation-fixing step.

Say for example that the solution of the aggregate model [Problem A] results in the 

following integer investment decision variables for production site B.

hE^ = 2 and nEf2 -  4 (A.l)

For the sake of the argument, we assume that initially there are no manufacturing 

suites available at site B. The aggregate solution suggests the investment of two 

header suites at time period t=tl and four non-header suites at time period t=t2. 

Notice that the proposed solution satisfies aggregate constraints (3.5) and (3.6).
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According to these constraints, the total number of invested non-header suites at time 

period t=t2 has to be greater or equal to 3 and lower or equal to 6. These lower and 

upper bounds are based on the assumption that each manufacturing block is made up 

of one header and three non-header suites (M=4).

Before we translate the aggregate investment plan into a detailed investment plan, we 

need to discriminate between header and non-header suites in the detailed model. The 

suite investment decision variables in the detailed model are binary variables 

E lu where suite index i represents both types of suites. The classification between 

header and non-header suites is done as follows:

M od(ord(i)- 1,M) = 0 => i = header suite (A.2)

M od(ord(i)- 1,M)  * 0 => i = non -  header suite (A.3)

Therefore, the translation-fixing step disaggregates the integer investment decision

variables into the following binary investment decisions variables for each individual 

manufacturing suite, used in the detailed MILP model:

Efu, = 1, E?2j2 = 1,E?Sj2=1,E?4,2 = 1, E*„ = 1 andE*j2 = 1 (A.4)

E?t =0 V i ^ {H,i2,i3,i4,i5,i6}, t (A.5)

In our case, the proposed investment plan consists of one complete manufacturing 

block with 4 suites and one semi-complete block with 2 suites. By taking into account 

the suite construction lead times Sj (3 and 2 years for header and non-header suites, 

respectively), we can then determine the suite availability binary decision variables 

for the entire planning horizon by employing equation (2.3).

In our specific case, we end up with the following binary suite availability variable 

levels:

A?t = 1 V i e {H,i2,i3,i4,i5,i6}, t>t4  (A.5)

A# =0 V i e  \il, i2, is, i4, i5, id}, t < 13 (A.6)

(A.7)
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Having calculated the levels of binary variables E lit and A lit, there is no further need

to consider detailed constraints related to suite investment decisions and suite 

availability. Instead, the derived levels for the binary variables are fed into the 

original detailed model [Problem D] as given parameters resulting in the reduced 

detailed MILP model as described in Chapter 3.


