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Abstract

A collection of large traders hold heterogeneous prior beliefs regarding market
fundamentals. This gives them a motive to engage in speculative trade with
respect to market prices. Rather than assuming an exogenous set of �nancial
instruments, we aim to characterize the �nancial instrument that maximizes the
traders�gains from speculative trade, subject to the incentive constraints that
result from the traders�ability to manipulate market prices. We show that this
instrument a¤ects price volatility without destroying ex-post e¢ cient allocations.
We also characterize the implementability of optimal speculative trade when the
traders�prior beliefs are private information.

1 Introduction

When traders have heterogeneous beliefs about the future price of some commodity,

they can make speculative gains by betting on the price. Such bets can be made in

a forward market, where traders sign contracts that specify monetary transfers as a

function of the future price. Di¤erent forms of contracts may generate di¤erent levels

of speculative gains. Therefore, in order to understand the role of these �nancial

instruments in speculative trade, it is important to have a theoretical benchmark that

identi�es the limits to the speculative gains that can be made using such instruments.

This paper takes a �rst step towards this goal, adapting a theoretical framework �rst

presented in Eliaz and Spiegler (2005).
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A major obstacle to the analysis of speculative trade in the presence of heteroge-

neous beliefs is that speculative gains may be unbounded. This is because risk-neutral

traders with di¤erent prior beliefs would be willing to take in�nite bets on the future

price. We circumvent this problem in this paper by focusing on an imperfectly com-

petitive market with large traders who can a¤ect market prices. This ability to a¤ect

prices, and hence, to manipulate the outcome of bets places restrictions on its stakes.

There are a number of important commodity markets in which there are only a

few participants with signi�cant market power, who are also active in the futures

market associated with that commodity. Notable examples of such commodities include

electricity, natural gas, crude oil and grains (see Newbery (1984), Dong and Liu (2005),

Haigh, Hranaiova and Overdahl (2005)). Indeed, there have been public concerns with

regards to the possibility that large participants in these commodity markets would

abuse their market power by trying to a¤ect the price of the commodity in order to

reap gains in the forward market (for concerns regarding the grain market, see Pirrong

(2004), and for concerns regarding the electricity market, see Borenstein et al. (2005)

and FERC (2003)).

In our focus on imperfectly competitive markets, we also follow a convention in the

literature on speculative trade (most notably, Kyle (1984,1985,1989), Harris and Raviv

(1993), Kyle and Wang (1997) and Odean (1998)). The main di¤erence between these

works and the present paper is that we do not impose a set of exogenous instruments

for speculation. Rather, we ask the following question: if the traders themselves could

design a �nancial instrument that maximizes their total surplus (including speculative

gains due to di¤erent priors), subject to the incentive constraints that result from their

ability to in�uence market prices, what would that instrument be?

Our contribution is modest, in the sense that we present our ideas in the context of

a highly stylized market model. There are two time periods. In period 2, a commodity

is traded in a market with identical sellers having a unit supply, and identical buyers

having a unit demand. In addition to these traders, there is an external demand that

may either be zero or high. The realization of this external demand is known to the

buyers and sellers when they trade in the commodity market. Trade is carried out

according to a complete-information market games adapted from Dubey (1982). In

the absence of betting, Nash equilibrium (NE) induces the competitive outcome in

each state.

In period 1, the traders have di¤erent prior beliefs regarding the size of external

demand. We assume that neither the level of external demand nor the traders�ac-

tions in period 2 are veri�able. Therefore, the traders can give an expression to their
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heterogenous beliefs only by betting on the future market price. A bet is a contract

that assigns transfers among traders conditional on whether trade takes place and at

what price. Each bet modi�es the payo¤s in the market game, and therefore its NE

need to be recalculated.1 A bet is optimal if it is (constrained) interim Pareto e¢ cient

- that is, if it maximizes the sum of the traders�interim expected utilities, calculated

according to their individual priors, subject to the constraint that a NE of the market

game (modi�ed by the bet) is played.

After presenting the model in Section 2, we analyze the structure of constrained

interim-e¢ cient bets in Section 3. We show that they can be interpreted as non-

linear futures contracts. While in some cases the e¢ cient bet a¤ects market prices and

introduces price volatility which would not exist in the absence of bets, it does not

destroy ex-post e¢ ciency. The transfers administered by the bet assume the role of

prices and provide the incentives that restore ex-post e¢ ciency.

In Section 4, we assume that prior beliefs are private information (drawn from

some distribution) and ask whether the e¢ cient bet can be implemented by some

mechanism. To answer this question, we apply the mechanism design approach �rst

presented in Eliaz and Spiegler (2005,2006). In these papers we focus on bilateral

speculation problems, where two agents hold di¤erent priors over an unveri�able state

of nature, which a¤ects the outcome of a game they are about to play. We characterize

interim-e¢ cient bets and discuss their implementability in terms of the underlying

game�s payo¤ structure. This characterization relies on a formal analogy between the

problem of implementing interim-e¢ cient bets and the problem of e¢ ciently dissolving

a partnership, which was originally studied by Cramton, Gibbons and Klemperer (1987)

- henceforth, referred to as CGK.

The main result in Section 4 establishes that the problem of implementing the

interim-e¢ cient bets in our market model is also equivalent to CGK�s model. (The

equivalence does not follow from Eliaz and Spiegler (2005,2006). In these papers we

provide a su¢ cient condition for the equivalence, which is not satis�ed in general by

our current model.). Using this equivalence, we show that the answer depends on

asymmetries between buyers and sellers in the basic market game. As the number of

sellers increases, and as the gap between buyers�and seller�s valuation of the traded

asset diminishes, the e¢ cient bet an be implemented for a larger set of distributions

1This observation was used by Allaz and Vila (1993) to derive a rationale for forward markets, in
an environment without uncertainty. They show that producers may wish to use forward contracts
in order to improve their situation in a future, imperfectly competitive spot market. In their model,
producers �rst trade in forward contracts, and then play a Cournot game in which their payo¤functions
are modi�ed by the positions they took in the forward market.
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from which priors are drawn. When the numbers of buyers and sellers are identical,

the e¢ cient bet can always be implemented, using a natural, auction-like mechanism.

Thus, in this case, the "derivative market" is designed as an auction for an option-like

asset.

Our main point in this paper is to demonstrate, via a simple example, that mean-

ingful statements about speculative trade (its volume and e¤ect on prices and resource

allocation) can be made in models with non-common priors, as long as one relaxes

the assumption that the asset market is perfectly competitive. Imperfect competi-

tion means that traders can manipulate the outcome of bets, so that the stakes of

incentive-compatible bets are bounded. Of course, bounded bets could also be gener-

ated by alternative assumptions, such as risk aversion or liquidity constraints. For a

survey of some recent works on speculative trade which employ these assumptions, see

Scheinkman and Xing (2003).

2 The Model

There are two time periods, 1 and 2. In period 2, the following market game is played.

There are S sellers and B buyers. Each seller s 2 f1; : : : ; Sg is able to supply a single
unit of an indivisible good at a cost of c � 0: Sellers derive no utility from consuming

the good. Each buyer b 2 fS + 1; : : : ; S +Bg is willing to pay 1 for a single unit, and
derives no utility from consuming additional units. There is also an external demand

for � units at a price of 1. External demand behaves stochastically, depending on the

state of nature, !. There are two states of nature: ! = l (no external demand) and

! = h (high external demand), such that � = 0 in state l and � = h (abusing notation)

in state h. We assume that h > S.

The market agents trade according to the following simultaneous-move double-

auction, adapted from Dubey (1982). Every agent (buyers and sellers alike) submits

a buy order, consisting of a bid price and a number of demanded units, which may

be any integer from 0 to S. In addition, every seller submits a sell order, namely an

ask price for the unit he is able to produce. Both bid and ask prices must lie in [0; 1].

The market price is the highest market-clearing price, given the aggregate supply and

demand curves induced by the agents�buy and sell orders. If there exists no market-

clearing price, the outcome is �no trade�. If there is excess demand at the market price,

then agents are serviced according to their supply and demand (i.e., on the demand

side, agents who submitted a higher bid get a higher priority, and on the supply side,

agents who submittied a lower ask get a higher priority), and ties are broken by a
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symmetric lottery.

Agents have quasi-linear utilities. A buyer�s payo¤ is min(1; qbuy )� pqbuy if he ends
up buying qbuy units at a price p. A seller�s payo¤ is (p� c) � qsell � pqbuy if he ends up
selling qsell units to other agents and buying qbuy units from other agents at a price p

(qbuy gets the values 0; 1; 2; :::; S, and qsell gets the values 0; 1). Note that we assume

that when a seller purchases a unit from himself, he does not incur the production cost

c. We denote agent i�s payo¤ function by ui.

The realization of � is common knowledge in period 2. Hence, in each state ! the

agents play a complete information market game denoted by G(!). This game has the

following properties.

Remark 1 The market price in any NE of G(h) is 1. The market price in any NE of
G(l) is c if S > B; 1 if S < B; and any value in [c; 1] if S = B.

In period 1 agents have con�icting prior beliefs regarding the likelihood of each

state. Let �i denote the prior probability that agent i assigns to state h. Denote

� = (�1; : : : ; �S+B). It is common knowledge that every agent i independently draws

his prior belief �i from a continuous cdf F with support [0; 1] and positive continuous

density. Thus, F may be interpreted as the distribution of opinions regarding future

external demand in the general population of traders.

A bet is a multilateral contract, which maps a set of veri�able contingencies to

budget-balanced monetary transfers among the traders. We assume that neither the

state of nature nor the agents�actions are veri�able. The only contingencies that can be

contracted upon are whether trade occurs in the second period and at what price. For

every action pro�le a in the market game, let x(a) 2 [0; 1] [D represent the veri�able

market outcome induced by a, where x(a) = D if a induces no trade, and x(a) is the

market price if a induces trade. Thus, a bet is a pro�le of functions t = (ti(�))B+Si=1 ;

where ti : [0; 1] [D ! R; ti(x) is the monetary transfer received by agent i when the
second-period outcome is x; and

PB+S
i=1 ti(x) = 0 for all x 2 [0; 1] [D:

If agents sign a bet in period 1, their second-period payo¤ function is modi�ed,

such that agent i�s payo¤ from an action pro�le a is ui(a) + ti(x(a)). For each state

!; we let G(!; t) denote the second-period market game that is played in state ! after

the agents agreed on a bet t in the �rst period. Consider an agent j who signed the

bet and expects the second period action pro�le in state ! 2 fh; lg to be a!. Denote
a = (ah; al): Given the agent�s �rst-period prior belief, his expected utility is:

5



Ui(a; t) � �i[ui(ah) + ti(x(ah))] + (1� �i)[ui(al) + ti(x(al))]

We conclude the description of the model with a few comments. First, note that

second-period trade takes place once and for all. If an agent purchased more units

than he is able to consume, he cannot resell those extra units. Second, the model rules

out short-selling: a seller cannot o¤er more than one unit and a buyer cannot o¤er any

unit. Consequently, there is an asymmetry in the agents�ability to in�uence market

outcomes. If a certain action pro�le induces a market price of p < 1, then every agent

can unilaterally induce a higher price p0 2 (p; 1], by demanding a su¢ ciently large

quantity at p0. In contrast, downward price manipulation is often impossible, because

a comparable �dumping� strategy is unavailable. This asymmetry between upward

and downward price manipulation will play an important role in the sequel. Third,

the assumptions imposed on the stochastic behavior of external demand simplify the

restrictions imposed on the traders�incentives to manipulate the market outcome in

the second period. To see this, note that because the size of external demand in state

h is higher than S, trade must take place in that state at a price of 1, regardless of the

agents�actions. Hence, when agents contemplate signing a bet in period 1, they all

agree that the veri�able market outcome in state h will be xh = 1. Therefore, market

manipulation is possible only in state l.

Finally, note that our model is formally indistinguishable from a model in which

every agent i assigns probability 1
2
to each state, and his utility function is multiplied

by a state-dependent constant (�i in one state and 1 � �i in the other state). The
motivation for signing side contracts under this re-interpretation is risk sharing rather

than speculative trade. Note that this re-interpretation requires us to assume that

the utility from money is state-dependent, whereas the trade-o¤ between money and

consumption is state-independent. We �nd it hard to imagine other motivations than

non-common priors for such preferences.

Constrained interim-e¢ cient bets
We are now able to de�ne the limits to potential gains from speculative bets, imposed

by the agents�ability to manipulate market prices. Consider the following constrained

optimization problem. For every pro�le of priors �, choose a bet t(�) and a state-

contingent action pro�le a(�) so as to maximize

B+SX
i=1

Ui[a(�); t(�)] (1)
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subject to constraint that for every state ! 2 fh; lg, the outcome a!(�) is a NE in
the modi�ed market game in which agent i�s payo¤ function is ui(a!) + ti(x(a!)): We

refer to this constraint as �second-period incentive compatibility�(SPIC). In order to
be sustainable, a bet must satisfy the SPIC constraints - that is, it must provide the

agents with incentives not to manipulate the market price.

A solution (a(�); t(�)) to the constrained optimization problem is referred to as

constrained interim e¢ cient (or CIE for short). In other words, for any pair (a; t)

which is not a solution, the agents can �nd a bet t0 and a state-contingent action

pro�le a0, such that (a0; t0) satis�es the SPIC constraints and every agent prefers (a0; t0)

to (a; t), given his prior. We refer to the optimal value of (1) as the �CIE surplus�.

Occasionally, we refer to t(�) as a �CIE bet�. We shall say that a pair (a; t) is a

candidate solution if the action pro�les, ah and al, are NE of the t-modi�ed game in

states h and l, respectively.

The following pair of examples illustrates how the SPIC constraints a¤ect the sus-

tainability of bets. In both examples, S = B = 1. Our �rst example describes a bet

which cannot be sustained, once SPIC constraints are taken into account. Suppose

that b and s sign a bet requiring s to pay b the amount A if trade occurs in period

2, and receive A from b if trade does not occur. Thus, ts(D) = �tb(D) = A, and

ts(x) = �tb(x) = �A for every x 2 [0; 1]. Occurrence of trade in state h is assured,
regardless of the players�actions. Suppose that there is an action pro�le al such that

x(al) = D. Then, the agents��rst-period interim expected utilities are:

Us(a; t) � �s � [1� c� A] + (1� �s) � A
Ub(a; t) � �b � [1� 1 + A]� (1� �b) � A

However, the buyer can impose trade in state l by demanding one unit at p = 1. Both

before and after this deviation, his bare-game payo¤ is zero, but the deviation tilts the

outcome of the bet in his favor. Therefore, as long as A > 0, there is no action pro�le

that satis�es the SPIC constraints.

Now suppose that b and s sign an alternative bet requiring s to pay p � c if there
is trade at a price of p > c, and zero if there is no trade, or if there is trade at a price

of p � c. This contract resembles a call option which is settled in cash, giving the

buyer the right to purchase a unit of the good for a price of c in period 2. In state

h trade occurs at p = 1, regardless of the agents�actions. Suppose that in state l,

s o¤ers one unit at a price of c, and b demands one unit at this price. Let us show

that this action pro�le constitutes a NE in the market game modi�ed by the bet. The
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only way a seller can manipulate the outcome of the bet is by raising the ask price to

p > c. However, his bare-game payo¤ will remain zero and in addition he will have

to pay p � c to the buyer. The buyer can manipulate the outcome by raising his bid
price also to p. The increase in the side payment that the buyer receives as a result

of this deviation is exactly o¤set by the decrease in his bare-game payo¤. Therefore,

none of the agents wish to manipulate the bet�s outcome. It follows that the bet and

the constructed action pro�le satisfy the SPIC constraints.

3 Characterization of interim-e¢ cient bets

A priori, it is not clear whether traders would prefer to sacri�ce e¢ ciency in the bare

market game in order to increase their speculative gains. But as our �rst result shows,

interim-e¢ cient bets do not compromise ex-post e¢ ciency.

Proposition 1 For every pro�le of priors �, there exists a CIE solution, which is also
ex-post e¢ cient.

There are two reasons why this result is not self-evident. First, in principle, the

traders could sustain a no-trade outcome in state l. This could be achieved with a

pair (a; t) in which all sellers submit an ask of 1, all buyers submit a bid of 0; and t

is de�ned such that it is not pro�table for a seller or for a buyer to unilaterally induce

trade. However, as we show in the proof of the proposition, the SPIC constraint that

prevents trade from occuring in l implies, by budget-balanceness, that t(Dj�) = t(1j�)
for all �. This means that by enforcing no trade in state l; not only do traders earn

zero speculative gains, they also lose the bare-game surplus that is available in that

state. Hence, it cannot be interim-e¢ cient not to trade in state l:

Second, the agents could also use the bets� transfers to sustain ine¢ cient trade

where some agents either do not trade, or purchase useless units. However, as we

show in the Appendix (see Lemma 1), the total surplus attained by a bet that induces

ine¢ cient trade cannot exceed the surplus that is generated by a bet that induces

e¢ cient trade.

In light of Proposition 1, we proceed to explore the properties of those CIE solutions

that are ex-post e¢ cient. More speci�cally, we ask whether there exist such solutions

in which the agents�behavior in each state is similar to their behavior in the NE of

the bare game in the following sense: the agents�actions are independent of their prior
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beliefs, all buyers submit the same buy order, all sellers submit the same sell order

and the outcome is individually rational (i.e., sellers do not purchase any units, buyers

purchase at most one unit and the price is in [c; 1]). We refer to e¢ cient CIE solutions

with these properties as natural CIE solutions.

De�nition 1 The CIE surplus is attained by natural solutions if there exists a bet t(�)
and a pair of action pro�les, ah and al; which are e¢ cient and individually rational in

states h and l respectively, such that for all �, the tuple ((ah; al); t(�)) is CIE.

We begin by characterizing the bets that are used in any natural CIE solution.

Since there is no speculation when pl = ph = 1; we focus on the case in which a natural

CIE solution induces pl < 1. For our characterization we shall need the following

notation. Let p! denote a NE market price in state !. Let i�(�) = mini �i. Given that

F is continuous, we ignore the case in which several agents share the same prior. To

simplify the exposition, we shall refer to i� as the l-optimistic agent.

Proposition 2 Suppose the CIE surplus is attained by a natural CIE solution that
induces pl < 1: Then a bet t(�) attains this surplus if and only if for every s, b and

p 2 (pl; 1];

ts(pj�)� ts(plj�) � minf1; B
S
g � (pl � c) + p(S � 1) (2)

tb(pj�)� tb(plj�) � minf1; S
B
g � (1� pl) + pS � 1 (3)

and if at p = 1, the above conditions hold with equality for every s 6= i�(�) and b 6= i�(�).

Since in equilibrium, the market prices in states h and l will be 1 and pl respectively,

we may interpret
��tj(1)� tj(pl)�� as the stakes of the �bilateral bet� between i� and

j 6= i�. In other words, this is the volume of the speculative trade between these

agents. it is constrained by j�s gain from following his equilibrium strategy, relative to

manipulating the market price in state l from pl to 1 (the fact that only upward price

manipulation is relevant can be traced to our assumption of no short-selling). The loss

from manipulating the market price is equal to the net cost of buying S units at a

price of 1. For a buyer, who consumes the �rst unit he buys, this cost is equal to his

expenditure, S; minus his utility from the �rst unit. For a seller, who can purchase

the �rst unit from himself, this cost is equal to his expenditure on the remaining S� 1
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units. This buyer-seller di¤erence in manipulation costs will play in important role in

the next section. Finally, note that the CIE bet characterized in Proposition 2 has the

property that the stakes of the bet between i� and every j 6= i� are independent of �.
Proposition 2 is proven by actually constructing a natural CIE solution in which the

l-optimistic agent essentially bets on a low price (pl < 1) against each of his opponents,

where this price pl is independent of �. The following result is an immediate corollary

of this construction in the proof.

Corollary 1 The CIE surplus is attained by natural solutions.

It is interesting to note that the bets in natural CIE solutions can have a simple

form that resembles some real-life �nancial instruments. In particular, such bets can

take the form of a contract that speci�es constant transfers as long as trade occurs at a

price p � pl or does not occur at all, but if p > pl, agent i� pays an additional amount
which is linear in p. This contract may be interpreted as a non-linear option.

Proposition 2 allows us to analyze the e¤ect of speculative trade - at the CIE

solution - on prices. Our assumption on the size of external demand in state h implies

that the NE in that state must be 1; regardless of the form of bets signed in the �rst

period. We therefore focus on the e¤ect that CIE bets have on the price in state l.

Proposition 3 CIE solutions have the following implications for market prices.

(i) When S > B; there exists a CIE solution with the property that pl is perfectly

competitive.

(ii) When B > S > 1; the CIE surplus is attained without bets and with perfectly

competitive prices.

(iii) When B > S = 1 and the l-optimistic agent is a buyer (i.e., i� > 1), the CIE

surplus is attained with non-trivial bets, sustaining any pl 2 [c; 1). When B > S = 1

and the l-optimistic agent is a seller (i.e., i� = 1), the CIE surplus is attained without

bets and with perfectly competitive prices, as well as with bets and any pl 2 [c; 1).

(iv) When B = S; there exists a CIE solution with the property that pl is perfectly

competitive. However, there exists no CIE solution that induces pl = 1.

This result highlights some important features of the market price in the presence

of CIE bets. First, although the CIE bet is a function of the priors, the market price
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does not depend on them. Second, when B > S > 1; there is no speculation. In this

case, the competitive forces push the price in state l all the way up to 1, regardless of

the bet. But this means that the prices in both states are equal, hence traders cannot

bet. Competition pushes the price to its competitive level in the case of B < S, too.

In this case, however, the price is c; hence there are non-trivial CIE bets. These bets

are �purely speculative� in the sense that they have no e¤ect on the second period

market outcome. That is, the NE of the modi�ed game is exactly the same as the

NE of the bare game: the outcome is e¢ cient and the price is perfectly competitive.

When B > S = 1, CIE bets lead to indeterminacy, since pl can get any value in [c; 1).

In this case, bets assume the role otherwise played by prices, providing the incentives

needed for an e¢ cient allocation. Finally, when S = B, pl = 1 is not a NE price in the

modi�ed game, although it is a NE of the bare game.

Comment: the upper bound on bid and ask prices
In our market model, bid and ask prices are bounded in [0; 1]. What is the economic

justi�cation for this assumption? Recall that the agents�valuations are common knowl-

edge in the model. Therefore, it is also common knowledge that if an agent submits

a bid price above 1, he must be exploiting his market power to tilt the outcome of a

previously signed bet. An external regulatory agency may respond to such a transpar-

ent attempt to manipulate the price by shutting down the market, or by punishing the

manipulator.

Suppose that we relax this assumption, and allow agents to submit any non-negative

bid and ask price. When S = B = 1, this perturbation does not alter our analysis. The

reason is that every agent can unilaterally impose no trade whenever the market price

is strictly between 0 and 1. The SPIC constraints that follow are su¢ ciently strong to

render the bounds on bid and ask prices irrelevant.

When there are more than two agents, removing all bounds on prices implies that

CIE bets do not exist, because the agents can sustain bets with arbitrarily high stakes.

The trick is to set pl between c and 1, and let ph be arbitrarily high (the external

demand thus becomes irrelevant). In this way, the cost of manipulating the price from

pl to ph is also arbitrarily large, which allows agents to raise the stakes of their bet

without limit.

Actually constructing a second-period NE that will sustain an arbitrarily high ph

is not trivial. The reason is that such a price exceeds the buyers�willingness to pay,

hence at most one buyer purchases the good at this high price (otherwise, buyers

could pro�tably deviate by demanding zero units, thereby cutting their loss without

a¤ecting the market price). The equilibrium construction takes this into account: only
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one buyer b� purchases the good in h. The bet is designed such that when p = ph,

a second agent i gives b� a transfer that compensates him for purchasing the good at

ph > 1. The reason i is willing to incur this cost is that he bets with a third agent that

the second-period price will be ph, and the speculative gains in this bilateral bet are

su¢ cient to cover the compensatory transfer to b�.

To conclude, while the bounds on market prices are irrelevant in the S = B = 1

case, they are crucial for our results when there are more than two agents.

4 Mechanism design

Corollary 1 in the previous section established that given any pro�le of priors �; there

exists a natural CIE solution in which the market outcome in each state is e¢ cient,

individually rational and independent of the agents�priors. However, the CIE bet in

these solutions does depend on �. This raises the question: would agents be able to

sign such a bet when their prior beliefs are private information?

Our approach to addressing this question is borrowed from the mechanism-design

literature. We ask, is there a mechanism - i.e., a game played in the �rst period

whose outcome is a bet - such that for every �, there exists a perfect Bayesian Nash

Equilibrium (PBNE) in which the �rst-period outcome is a bet t(�) and the second-

period outcome is ah in state h and al in state l, such that ((ah; al); t(�)) is a natural

CIE solution? Whenever the answer to this question is positive, we say that the

mechanism implements a natural CIE solution.2

We require the mechanism to satisfy a participation constraint. Every agent can

veto the mechanism, in which case the agents play a NE of the bare market game in

period 2. Therefore, the interim expected utility that any agent earns in the PBNE

of the two-stage game induced by the mechanism cannot be lower than his interim

expected utility in the NE of the bare game. Note that when S = B, there are multiple

equilibria in the bare game. In this case, the participation constraint is non-standard,

in the sense that the agents�reservation utility is determined in equilibrium, rather

than being exogenous.

We consider implementation via a direct mechanism. This means that the agents

play a two-period game, denoted �(t) In the �rst period, every agent submits a report

�̂j 2 [0; 1] or chooses to veto the mechanism. If all agents choose to participate,

2Our focus on this class of CIE solutions may entail some loss of generality in that there may
be cases where a symmetric, natural CIE solution is not implementable for some distribution F, but
another CIE solution is. However, we have not been able to obtain necessary or su¢ cient conditions
for implementing some CIE solution.
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their pro�le of reports �̂ = (�̂1; :::; �̂S+B) is assigned a pro�le of transfer functions

t(xj�̂) = (t1(xj�̂); :::; tS+B(xj�̂)): In period 2, the state of Nature is realized and the
agents play the market game whose payo¤s are modi�ed by t(xj�̂): We identify the
direct mechanism with t(xj�̂).
In order to formally de�ne our notion of implementation, we require the following

notation. Given an action pro�le in state !; a!; we denote x! � x(a!). For each state
!; de�ne T !i (�

0
i) � E��iti(x!(�0i; ��i)j�0i; ��i): That is, if agent i reports a prior �0i; while

all other agents are truthful, then T !i (�
0
i) is agent i�s expected transfer in state ! under

the mechanism t(xj�̂):

De�nition 2 A direct mechanism t(x j �̂) implements a natural CIE solution for a
given distribution F if there exist two pairs of action pro�les, a = (ah; al) and d =

(dh; dl) such that for every � the following conditions hold:

(CIE) [a; t(xj�)] is a natural CIE solution,

and there exists a PBNE in �(t) satisfying:

(veto-SPIC) In each state !, the action pro�le d! is a pure-strategy NE in G(!)

(IC) Conditional on participating, agent i weakly prefers to report his true prior in

period 1. That is, for every i and every �i; �
0
i:

�iT
h
i (�i) + (1� �i)T li (�i) � �iT hi (�0i) + (1� �i)T li (�0i)

(IR) Each agent chooses to participate in period 1. That is, for every i and every �i:

�i[T
h
i (�i) + ui(a

h)] + (1� �i)[T li (�i) + ui(al)] � �iui(dh) + (1� �i)ui(dl)

Condition (CIE) and (veto-SPIC) imply that in the second stage of �(t), the agents

play a NE of the market game. If at least one of the agents vetoed the mechanism, they

play a NE of the bare game. If all agents opted to participate, then they coordinate on

a NE of the t-modi�ed game, independently of their �rst-stage announcements. The IC

and IR constraints refer to the agents��rst-period decisions. Bare-game payo¤s are su-

pressed in the IC constraint because the agents�second-period actions are independent

of the reported priors.

Let us begin with the case of S 6= B, in which the bare game admits a unique

equilibrium price in each state. We ignore the case of B > S > 1, since as we al-
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ready know from Proposition 3, , there is no speculation in this case, and therefore no

implementation problem.

Proposition 4 When B > S = 1, the CIE surplus is not implementable for any F .

When S > B, there exists a distribution F for which the CIE surplus is implementable.

To develop an intuition for the above result, de�ne i�(�̂) to be the l-optimistic agent

according to the pro�le of reports �̂. Consider a mechanism that satis�es the following

condition:

ti(1 j �̂)� ti(pl j �̂) =

8><>:
minf1; B

S
g � (pl � c) + S � 1 if i = s and s 6= i�(�̂)

minf1; S
B
g � (1� pl) + S � 1 if i = b and b 6= i�(�̂)

�
P

j 6=j� [tj(1 j �̂)� tj(pl j �̂)] if i = i�(�̂)

(4)

Note that when �̂ = �, equation (4) is consistent with the condition given by Propo-

sition 2. From the proof of Proposition 2, it follows that if a mechanism satis�es (4),

then regardless of the �rst-period outcome, the following are NE in the second period

(modi�ed) market game. In state h; regardless of whether S > B or B > S;each seller

submits an ask of 1 and each buyer demands one unit and bids 1. If S > B; then in

state l, each seller submits an ask of c; and each buyer demands one unit and bids c.

If, however, B > S = 1; then in state l, the seller submits an ask of pl 2 [c; 1); and each
buyer demands one unit and bids pl. Thus, if �̂ = �, the bet assigned by the above

mechanism is CIE. The problem is to design such a mechanism t(x j �̂), which also
ensures that the parties participate and report their true priors.

Our approach to analyzing this problem involves reinterpreting it as a problem of

allocating an asset to the person who values it the most. Suppose that in period 1; all

agents agree to participate and report their true priors. Consider the decision problem

faced by a single agent, say a buyer, in the second period. What is his gain from

following the action pro�le al, relative to unilaterally moving the price up to 1? By

de�nition, the gain is zero in state h since the market price in that state is already 1:

However, in state l the gain is

minf1; S
B
g � (1� pl) + S � 1� [tb(1 j �)� tb(pl j �)] (5)

By our construction of t(x j �̂), and the assumption that �̂ = �, the value of this

expression depends on the relation between S and B and whether b = i�. If b 6= i�;

14



then the gain given by (5) is zero. If b = i�; then (5) is equal to S(S � 1) + B(S � c)
when S > B; and equal to 1� c when B > S = 1:
Thus, the agent�s gain may be interpreted as a right to receive a prize whenever the

second period market price is pl or lower. The size of the prize is S(S � 1) +B(S � c)
if S > B; and 1 � c if B > S = 1: We may therefore describe the right to receive the
above prize as an asset, whose �rst-period valuation by each party i is (1� �i)[S(S �
1)+B(S� c)] if S > B; and (1� �i)(1� c) if B > S = 1. Note that the buyer receives
this asset if and only if (1� �b) > (1� �i) for all i. This is analogous to allocating the
asset to the party who values it the most.

When no bet is signed in period 1, the agents play the bare market game. Note

that when S 6= B, this game has a unique NE in state l: each seller o¤ers one unit

and each buyer demands one unit at a price pl; where pl = c if S > B and pl = 1 if

S < B: It follows that the buyer�s gain from following his equilibrium action, relative

to pushing the price up to 1 is again zero in state h: But in state l; this gain is S � c
if S > B and 0 if B > S = 1. Thus, when S > B, it is as if the buyer initially holds a

share of S � c in the asset described above. Similarly, when B > S = 1, it is as if the
buyer initially holds zero shares in the asset. His �rst-period valuation of this asset is

(1� �b)(S � c) in the former case and 0 in the latter case.
These observations suggest that the problem of implementing the CIE surplus is

analogous to the problem of dissolving a partnership e¢ ciently. In this problem, S+B

agents jointly hold an asset. If S > B; then the asset is of size S(S�1)+B(S� c) and
the agents�shares in the asset are S�c

S(S�1)+B(S�c) for B of the agents and S�1
S(S�1)+B(S�c)

for S of the agents. If B > S = 1; then the asset is of size 1� c and the agents�shares
in the asset are 1 for one of the B + 1 agents and 0 for all other agents. Each agent

privately and independently draws a valuation of the asset. The problem is to design

a mechanism that allocates the entire asset to the agent with the highest valuation,

subject to the constraint that all agents agree to participate in this mechanism.

CGK showed that implementing this objective depends on the initial ownership

structure. If (S � c)=(S � 1) is close to 1 - that is, if some of the agents enter the
negotiation mostly as �sellers�of the asset - the same forces that underlie the Myerson-

Satterthwaite theorem make it hard to allocate the asset e¢ ciently. As the gap between

S� 1 and S� c shrinks, each agent enters the negotiation both as a seller and a buyer,
and thus he has �countervailing incentives�when reporting his valuation. Translated

into the language of our model, this result means that implementing the CIE bet

becomes easier when the equilibrium payo¤s in the bare game become more equal

across traders. Put di¤erently, when the value of not speculating is more or less the
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same for all traders, it becomes easier to implement the CIE bet.

The technical basis for this result is a formal analogy to the partnership dissolution

model of CGK. In that model, an asset is jointly owned by a collection of agents,

who are characterized by their initial ownership share and their valuation of the asset,

which is independently drawn from a commonly known distribution. A partnership

is dissolved e¢ ciently if full ownership of the asset is assigned to the agent with the

highest valuation. CGK show that implementability of e¢ cient partnership dissolution

diminishes as the initial ownership structure becomes more asymmetric.

At the other extreme, when B > S = 1, the net gain of a buyer from following his

equilibrium strategy in the bare game, relative to pushing the price up to 1, is always

zero. This is because the price of the good is 1 in each state. In contrast, the seller�s

net gain is 1� c, which is precisely the entire size of the asset in the analogous partner-
ship problem. This extreme buyer-seller asymmetry leads to a Myerson-Satterthwaite

impossibility result.

Let us turn to comparative statics.

Proposition 5 Fix F , and suppose that the CIE surplus is implementable for some
S;B; c, S > B. Then:

(i) The CIE surplus is also implementable for c0 2 (c; 1).
(ii) The CIE surplus is also implementable for S 0; B0 satisfying S 0 > S;B0.

As c approaches 1, the NE payo¤s in the bare game become similar for buyers and

sellers. Similarly, when the number of sellers becomes larger, the di¤erence between

buyers�and sellers�valuation of a single unit becomes negligible relative to the number

of units that need to be purchased in order to drive the price up. Therefore, these

changes in market fundamentals facilitate implementability of the CIE bet.

The case of S = B turns out to be special because of the multiplicity of prices in

the NE of the bare game. Consider the following indirect mechanism. In period 1,

every agent exercises a veto option, or submits a bid for a lottery ticket which entitles

its owner to a prize of Z = 2B � (B � 1+c
2
) conditional on the occurrence of trade

at a price p < 1. If at least one agent exercises his veto option, the agents play the

bare market game in the second period. Otherwise, the lottery ticket is assigned to

the highest-bidding agent, who then pays his bid. After the ticket is allocated to the

winner, the agents play the market game in the second period. Both the revenues from

the winner�s bid and the cost of paying the prize are distributed equally among all

agents.
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The �rst-period auctioning of the lottery ticket modi�es second-period payo¤s as

follows (the bids are sunk at that stage, and therefore we can ignore them). If the

market price is below 1; then in addition to the bare-game payo¤, the auction winner

receives a net payment of (2B � 1) � (B � 1+c
2
). The other agents�net payo¤ is their

bare-game payo¤ minus B � 1+c
2
. If the market price is equal to 1, or if there is no

trade, then the agents�net payo¤ is equal to their bare-game payo¤. Let � denote the

two-stage game induced by the betting auction.

Proposition 6 Let S = B. Then, � implements the CIE surplus for all distributions
F: Moreover, in the PBNE that implements the CIE, ph = 1 and pl = 1+c

2
in period 2,

after every history.

As we explained above, implementability of the CIE bet is easier when all traders

face the same reservation value from not speculating. This value is equal to their

NE payo¤s in the bare game. When S = B any price in [c; 1] can be sustained in

the NE of G(l). We may therefore select a NE in which buyers and sellers have the

same payo¤s. This can be achieved by choosing a NE in which pl = 1+c
2
, such that

1 � pl = pl � c. Our implementation problem then becomes formally equivalent to

the problem of implementing e¢ cient dissolution of an equal-share partnership, which

CGK show to be possible under any distribution of valuations. Moreover, CGK show

that such a partnership can be e¢ ciently dissolved using a simple indirect mechanism.

Proposition 6 highlights two important features of the CIE bet. First, this bet

may be interpreted as a future contract (which is essentially a step function of the

market price if we ignore the possibility of no trade), competed for in a market which

is designed as a �rst-price auction. Thus, the indirect mechanism described above may

serve as a theoretical benchmark for the design of market institutions for speculative

trade in derivatives.

Second, the PBNE that implements the CIE surplus has the property that market

prices are history-independent. In other words, the bets induced by the mechanism are

�purely speculative�, in the sense that they do not a¤ect the outcome in the second-

period market.

5 Conclusion

In this paper we characterized �e¢ cient speculative trade�, where the object of specu-

lation is the future price in a simple, imperfectly competitive market model, populated
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by the betting parties themselves and external, �noise�traders. The main features of

�optimal speculation�can be summarized as follows. First, optimal speculation may

involve price volatility which does not exist in the absence of bets. However, it does

not compromise the ex-post e¢ ciency of resource allocation. Second, a non-linear con-

tract of the future market price, which may be contrasted with the linearity in prices

of standard options, is an e¢ cient instrument for speculation (the CIE bet). Finally,

optimal speculation depends on the pro�le of prior beliefs only in-so-far as it relies on

the identity of the agent with the lowest assessment of external demand.

Applying the mechanism design approach of Eliaz and Spiegler (2005,2006), we

discussed the implementability of optimal speculation when the agents�prior beliefs

are private information. When there is a single sellers, it is impossible to implement

optimal speculation. When there are more sellers than buyers, implementation becomes

possible for a larger set of distributions of priors as the number of sellers increases and as

the gap between buyers�and sellers�valuations decreases. When the numbers of buyers

and sellers are the same, optimal speculation is implementable for any distribution of

priors. Furthermore, it is implementable via an auction-like mechanism.

References

[1] Allaz, Blaise and Jean-Luc Vila (1993): �Cournot Competition, Forward Markets

and E¢ ciency,�Journal of Economic Theory, 59, 1-16.

[2] Borenstein, Severin, James Bushnell, Christopher R. Knittel and Catherine Wol-

fram (2005): �Ine¢ ciencies and Market Power in Financial Arbitrage: A Study of

California�s Electricity Markets,�Mimeo, Haas School of Business, University of

California at Berkeley.

[3] Cramton, Peter, Robert Gibbons and Paul Klemperer (1987): �Dissolving a Part-

nership E¢ ciently,�Econometrica, 55, 615-632.

[4] Dong, Lingxiu and Hong Liu (2005): �Equilibrium Forward Contracts on Nonstor-

able Commodities in the Presence of Market Power,� forthcoming in Operations

Research.

[5] Dubey, Pradeep (1982): �Price-Quantity Strategic Market Games,�Econometrica,

50, 111-126.

18



[6] Eliaz, K�r and Ran Spiegler (2005): �A Mechanism-Design Approach to Specula-

tive Trade,�Econometrica, forthcoming.

[7] Eliaz, K�r and Ran Spiegler (2006): �E¢ cient Bargaining over Bets,�Working

Paper, New York University and University College London.

[8] Federal Energy Regulatory Commission (2003): �Final Report on Price Manip-

ulation In Western Markets. Fact Finding Investigation of Potential Manipu-

lation of Electric and Natural Gas Prices,� Part 2, Chapter 6. Available at

http://www.ferc.gov/industries/electric/indus-act/wec/enron/info-release.asp.

[9] Haigh, Michael S., Jana Hranaiova and James A. Overdahl (2005): �Price Dy-

namics, Price Discovery and Large Futures Trader Interactions in the Energy

Complex,�Working Paper, US. Commodity Futures trading Commission.

[10] Harris, Milton and Artur Raviv (1993): �Di¤erences of Opinion Make a Horse

Race,�Review of Financial Studies, 6, 473-506.

[11] Kyle, Albert S. (1985): �Continuous Auctions and Insider Trading,�Economet-

rica, 53, 1315-1336.

[12] Kyle, Albert S. (1989): �Informed Speculation with Imperfect Competition,�Re-

view of Economic Studies, 56, 317-355.

[13] Kyle, Albert S. and F. Albert Wang (1997): �Speculation Dupoly with Agreement

to Disagree: Can Overcon�dence Survive the Market Test?,�Journal of Finance,

52, 2073-2090.

[14] Newbery, David M.G. (1984): �Manipulation of Futures Markets by a Dominant

Producer,� in The Industrial Organization of Futures Markets (Ronald W. An-

derson, Ed.), Lexington Books, Lexington, MA.

[15] Pirrong, Craig (2004): �Detecting Manipulation in Futures Makets: The Feruzzi

Soybean Episode,�American Law and Economics Review, 6, 28-71.

[16] Morris, Stephen (1994): �Trade with Heterogeneous Prior Beliefs and Asymmetric

Information,�Econometrica, 62, 1327-1347.

[17] Jose Scheinkman and Wei Xiong (2003): �Heterogeneous Beliefs, Speculation and

Trading in Financial Markets,� Paris-Princeton Lectures on Mathematical Fi-

nance, Springer-Verlag, Berlin, 217-250.

19



Appendix: Proofs

The following Lemma will be instrumental in proving Propositions 1-3.

Lemma 1 Let ((ah; al); t) be any candidate solution with the property that al induces
trade in state l. There exist a bet t̂ and an ex-post e¢ cient action pro�le âl such that

((ah; âl); t̂) is a candidate solution with a total interim-expected surplus, which is higher

or equal to the surplus generated by ((ah; al); t). Moreover, âl can be chosen so that

every seller submits the same ask p̂ 2 [c; 1], and every buyer demands one unit and
bids p̂.

Proof. Let âl be the following action pro�le: every buyer submits a bid of p̂ and
demands exactly one unit and every seller submits an ask of p̂. Under this action pro�le,

each seller sells a unit with probability minfB
S
; 1g and each buyer buys a unit with

probability minf S
B
; 1g. Let p be the market price induced by al: If p � c; then p̂ = p:

Otherwise, p̂ = c. Let ui(al) and ui(âl) denote the bare game payo¤s induced by al and

âl respectively. Note that ub(âl) = minf SB ; 1g � (1� p̂) and us(â
l) = minfB

S
; 1g � (p̂� c).

For i = b; s, let qi denote the expected number of units that agent i buys in the

pro�le al. De�ne �q � minfS;Bg �
P

bminfqb; 1g. Note that �q � 0. Similarly, for

every seller s let �s denote the probability that s sells his unit to another agent under

the pro�le al. De�ne �� � minfS;Bg �
P

s �s. Note that �� � 0. Note also that

because there may be a seller s with qs > 0, it follows that
P

b qb �
P

s �s.

To de�ne the bet t̂, we distinguish between two cases.

Case 1 : p � c

In this case, p̂ = p. We construct t̂ as follows. First, for every agent i and for every

x 2 (p; 1]; let t̂i(x) = ti(x): Second, for every x 2 [0; p] [D and for every s > 1; let

t̂s(x) = ts(x) + (�s �minf
B

S
; 1g)(p� c)

and for s = 1; let

t̂1(x) = t1(x) + (�s �minf
B

S
; 1g+ ��)(p� c)

Finally, for x 2 [0; p] [D and for b > S + 1; let

t̂b(x) = tb(x) + (minfqb; 1g �minf
S

B
; 1g)(1� p)
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and for b = S + 1; let

t̂b(x) = tb(x) + (minfqb; 1g �minf
S

B
; 1g+ �q)(1� p)

Note that by construction, the bet t̂ is budget balanced (
P

i t̂i(x) = 0), and has the

property that for every agent i;

ui(â
l) + t̂i[x(â

l)] � ui(al) + ti[x(al)] (6)

This inequality is strict if qb > 1 and qs > 0 for some buyer b and seller s. It follows

that
P

i Ui(â; t̂) �
P

i U(a; t).

It remains to show that âl is a NE of the t̂-modi�ed market game in state l: To

show this, note �rst that the action pro�le âl has the property that no agent i can

manipulate the price downwards. Second, note that by our assumption that (a; t) is

CIE, no agent has any incentive in state l to push the price up to some p0 > p. This

implies that for every buyer b and seller s;

ub(a
l) + tb[x(a

l)] � 1� Sp0 + tb(p0)
us(a

l) + ts[x(a
l)] � p0 � c� Sp0 + ts(p0)

In addition, if any agent i can unilaterally impose no trade, he has no incentive to do

so:

ui(a
l) + ti[x(a

l)] � ti(D)

But by (6), no agent has any incentive to either push the price up or to impose no

trade in the pro�le âl.

Case 2 : p < c

Noting that in this case p̂ = c, we construct t̂ as follows. First, for every agent i

and for all x 2 (c; 1]; let t̂i(x) = ti(x): Second, for x 2 [0; c] [D, let

t̂s(c) = ts(p) + minf
B

S
; 1g(p� c) + (�s �minf

B

S
; 1g)(p� c) + qs(1� p) (7)

t̂b<S+B(c) = tb(p) + minf
S

B
; 1g(c� p) + (qb �minf

S

B
; 1g)(1� p) (8)

t̂S+B(c) = tS+B(p) + minf
S

B
; 1g(c� p) + (qS+B �minf

S

B
; 1g)(1� p) (9)

�(
S+BX
i=1

qi �minfS;Bg)(1� c)
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Note �rst that for every outcome x 2 [0; 1] [ D, we have
P

i t̂i(x) = 0: This is

obvious for x 2 (c; 1]. To see that this also holds for x 2 [0; c] [D, note that since the
number of units sold must equal the number of units bought,

PS+B
i=1 qi =

P
s �s.

The bet t̂ also has the property that (6) holds. To see this, note that for every

buyer b:

ub(a
l) + t̂b[x(a

l)] = minfqb; 1g � qbp+ tb(p)

Compare this with ub(âl) + t̂b[x(âl)]; which for every b < S +B is given by

minfS
B
; 1g � (1� c) + t̂b(c)

Substituting t̂b(c) with the expression in (8) yields

minfS
B
; 1g � (1� c) + tb(p) + minf

S

B
; 1g � (c� p) + (qb �minf

S

B
; 1g)(1� p)

= qb(1� p) + tb(p)
� minfqb; 1g � qbp+ tb(p)

Similarly, for b = S +B,

uS+B(a
l) + t̂S+B[x(a

l)] = qb(1� p) + tb(p)� (
S+BX
i=1

qi �minfS;Bg)(1� c)

� minfqb; 1g � qbp+ tb(p)

where the last inequality follows from the fact that
PS+B

i=1 qi � minfS;Bg.
With regards to the sellers,

us(a
l) + t̂s[x(a

l)] = �s(p� c) + ts(p)� qsp

while

us(â
l) + t̂s[x(â

l)] = t̂s(c)

= �s(p� c) + ts(p) + qs(1� p)
� �s(p� c) + ts(p)� qsp

By essentially the same argument given in Case 1 above, it follows that âl is a NE

of the t̂-modi�ed market game in state l: �
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Proof of Proposition 1
The proof proceeds in several steps.

Step 1. There exists a CIE solution, (a(�); t(�)).

Because traders are risk-neutral and have quasi-linear utilities, their payo¤s are linear

in the market prices and in the transfers. Because bids and asks must lies in [0; 1];

market prices must also lie in this interval. By the SPIC constraints, the di¤erences,

tj(1) � tj(pl); are bounded for every agent j: Hence, the constrained optimization
problem that de�nes the CIE surplus must have a solution.

Step 2. The outcome in state h is ex-post e¢ cient.

In state h, the market price is ph = 1, regardless of the agents�actions. Therefore, in

equilibrium they will act as price takers: each seller will o¤er one unit and demand

zero units, while each buyer is indi¤erent between demanding one unit and demanding

zero units. Therefore, a(�) must induce an e¢ cient outcome regardless of the buyers�

strategies.

Step 3. There is trade in state l.

Assume the contrary. Each agent can manipulate the outcome and impose trade at

p = 1, by demanding a single unit at a price of 1: Moreover, each seller can impose

this at no cost by simultaneously submitting a bid of 1 and and an ask of 0; in which

case he would buy the good from himself (it must be the case that all the other sellers

quote a strictly positive ask price - otherwise, trade would occur). It follows that the

SPIC constraints in the no-trade state must include the following inequalities:

ts(D) � 1� 1 + ts(1)
tb(D) � 1� 1 + tb(1)

By budget balancedness, �iti(D) = �iti(1) = 0. Hence, ti(D) = ti(1) for all i, such

that total surplus is equal to the bare-game surplus, given the agents�behavior. But

since the bare-game outcome is ex-post ine¢ cient in state l, it obviously does not

maximize total surplus.

Step 4. There exists an ex-post e¢ cient CIE solution.

By Steps 1-3, there exists a CIE solution [(ah(�); al(�)); t]with the following properties:

(i) the outcome in state h is ex-post e¢ cient, and (ii) there is trade in state l. By Lemma

1, there must exist a CIE solution [(ah(�); âl(�)); t̂] where âl(�) is ex-post e¢ cient. �
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Proof of Proposition 2
Let ah be the pro�le of actions in which every seller submits an ask of 1 and every

buyer bids 1 and demands a single unit. Let al be the pro�le of actions in which every

seller submits the same ask pl 2 [c; 1], and every buyer demands one unit and bids pl.
By Proposition 1, there exists an ex-post e¢ cient CIE solution, hence, by Lemma 1,

for every pro�le of priors �, there exists a bet t(�) such that ((ah; al); t(�)) is CIE. We

show that we can let t(�) be a bet that satis�es (2) and (3).

We begin by characterizing the SPIC constraints that the solution ((ah; al); t(�))

must satisfy. Note that if pl = 1; there is no speculation and the CIE surplus is

attained without any transfers by simply playing in each state a NE of the bare game.

We, therefore, focus on the case in which pl < 1. By de�nition, the action pro�les

(ah; al) have the property that no player can unilaterally impose a price below pl: In

addition, ah has the property that no player can impose a higher price. Therefore,

the only relevant SPIC constraints are those that al and t(�) must satisfy in order to

prevent a single agent from unilaterally imposing a price p > pl. These constraints are

given by the following inequalities:

minf1; B
S
g � (pl � c) + ts(pl) � p� Sp+ ts(p) (10)

minf1; S
B
g � (1� pl) + tb(pl) � 1� Sp+ tb(p) (11)

Note these are precisely the constraints given by (2) and (3).

If minfS;Bg = 1; then there is at least one agent who can unilaterally impose no
trade in state l. Hence there are additional SPIC constraints that are needed to prevent

such a deviation. We can minimize these constraints by having all agents quote the

same price. Hence, if S = 1 and B > 1; or if B = 1 and S > 1; only a single agent -

either the single buyer or the single seller - can impose no trade. To prevent him from

doing so, we can impose an in�nite �ne on him whenever there is no trade. That is, if

S = 1 and B > 1 we set ts(D) = �1; and if B = 1 and S > 1; we set tb(D) = �1:
If S = B = 1; then each agent can unilaterally impose no trade in every state. This

means that we need to satisfy additional SPIC constraints:

pl � c+ ts(pl) � ts(D) (12)

1� pl + tb(pl) � tb(D) (13)

Note that when S = B = 1, the SPIC constraints (10) and (11) with respect to p = 1
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become

pl � c+ ts(pl) � ts(1) (14)

1� pl + tb(pl) � tb(1) (15)

Hence, by setting ts(D) = ts(1) and tb(D) = tb(1); we make the constraints (12) and

(13) equivalent to (14) and (15). It follows that the additional constraints required

to prevent no trade when minfS;Bg = 1 can be satis�ed without imposing further

restrictions on tj(p), beyond those implied by (10) and (11). Hence, inequalilties (2)

and (3) are necessary for attaining the CIE surplus with a natural solution.

The candidate solution ((ah; al); t(�)) generates a total interim-expected surplus

equal to

X
s

f�s[(1� c) + ts(1j�)] + (1� �s)[minf
B

S
; 1g � (pl � c) + ts(plj�)]g (16)

+
X
b

f�btb(1j�) + (1� �B)[minf
S

B
; 1g � (1� pl) + tb(plj�)]g

where ti(xj�) denotes i�s transfer when the outcome is x, given that the pro�le of priors
is �.

To simplify the exposition, let �lb = minf S
B
; 1g and �ls = minfB

S
; 1g. For each

p > pl, de�ne

zs(p;�) � �lsp+ ts(p;�)� �lspl � ts(pl;�) (17)

zb(p;�) � ��lbp+ tb(p;�) + �lbpl � tb(pl;�) (18)

where we Note that by budget-balanceness,
PS+B

i=1 zi(p;�) = 0 for all p: The total

interim-expected surplus may then be written more compactly as follows:X
i

�izi(1;�) + (1� c)
X
s

�s(1� �ls) + (1� c)minfS;Bg (19)

Notice that we have no freedom in choosing the values of the second and third terms

in the above expression for the surplus. These are uniquely determined by the realized

vector of priors and by the values of S and B: However, we can a¤ect the �rst term in

(19) through the bet we choose. Thus, the problem of achieving the CIE surplus can be

reduced to the problem of maximizing
P

i �izi(1;�), subject to the SPIC constraints.

These constraints impose an upper bound on
P

i �izi(1;�); and hence, on the total
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surplus.

To derive this bound, we rewrite the SPIC constraints, given by (10) and (11), as

follows:

zs 6=i�(p;�) � (S + �ls 6=i� � 1)p� �ls 6=i�c (20)

zb6=i�(p;�) � (S � �lb6=i�)p+ �lb6=i� � 1 (21)

These inequalities imply an upper bound on (19), and hence, on the total interim-

expected surplus. To compute this bound, it is useful to rewrite (19) as follows (we

use here the property that
PS+B

i=1 zi(p;�) = 0 for all p):X
i6=i�(�)

(�i � �i�(�)) � zi6=i�(�)(1;�) + (1� c)
X
s

�s(1� �ls) + (1� c)minfS;Bg (22)

By (20) and (21), the upper bound on total surplus is obtained by substituting

zs 6=i�(�)(1;�) = S � 1 + (1� c)minfB
S
; 1g (23)

zb6=i�(�)(1;�) = S � 1 (24)

into (22). Note that these equations are obtained by requiring the constraints (2)

and (3) to be binding at p = 1 for every s 6= i�(�) and b 6= i�(�). Hence, this

added requirement is also necessary for attaining the CIE surplus. Since the bet we

constructed attains the CIE surplus while satisfying (2) and (3), these properties are

also su¢ cient for attaining the CIE surplus with a natural solution. It follows that

the properties described in the statement of the proposition are both necessary and

su¢ cient. �

Proof of Proposition 3
By Lemma 1 and Propositions 1-2 there exists a CIE solution with the following proper-

ties: (i) in state l every seller submits the same ask pl 2 [c; 1], and every buyer demands
one unit and bids pl, and (ii) if pl < 1, then the CIE bet satis�es (2)-(3). Property (i)

guarantees that no agent can unilaterally impose a price lower than pl. Property (ii)

ensures that no agent has any incentive to impose no trade or a price above pl.

Suppose S > B: The competitive price level in this case is c: If pl = c; then no agent

can deviate and increase his bare game payo¤ without a¤ecting the market price. But

since no agent can lower the market price, and none has any incentive to raise it, we

conclude that the CIE surplus can be achieved with pl = c.

Suppose instead that B > S > 1. The competitive price level in this case is 1: If
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pl < 1; then any buyer who deviates to a bid of 1 raises the probability that he trades

without a¤ecting the price, a contradiction. But if pl = 1; then agents cannot bet and

the CIE surplus is attained without transfers.

Suppose next that B > S = 1. The competitive price level in this case is still 1:

Let us distinguish between two cases. First, assume that i� = 1 - i.e., the l-optimistic

agent is the seller. In this case, according to expressions (23)-(24), zi(1;�) � 0 for

every i 6= i�. Therefore, total interim-expected surplus cannot exceed 1� c. One way
to attaing this surplus is without bets, so that pl = 1. Another way is to set pl 2 [c; 1),
and set t so that inequalities (20)-(21) are binding for every p 2 (pl; 1].
Second, assume that i� > 1 - i.e., the l-optimistic agent is a buyer. In this case,

according to expressions (23)-(24), zs(1;�) � 1 � c for the seller s and zb(1;�) �
0 for every buyer b 6= i�. Therefore, total interim-expected surplus cannot exceed

(1 � c) � (1 + �s � �i�), and it is attained with a bet that sustains any pl 2 [c; 1), by
setting t so that inequalities (20)-(21) are binding for every p 2 (pl; 1].
Finally, suppose that S = B. Then any price level in [c; 1] is competitive. If

pl 2 [c; 1]; then since S = B; any buyer who deviates to a bid higher than pl would

still trade with probability one and would not a¤ect the price. Hence, any pl 2 [c; 1]
can be sustained in the NE of the modi�ed market game. However, since the total

interim-expected surplus generated by any pl 2 [c; 1) equals (22), where zi6=i�(�)(1;�)
satisfy (23) and (24), there cannot be a CIE solution with pl = 1. �

Proof of Proposition 4
The proof relies on a formal relation between the problem of implementing the CIE

surplus in our model and the problem of e¢ ciently dissolving a partnership. This

latter problem is de�ned as follows. A partnership with S + B members is a tuple

hr1; : : : ; rS+B; F i, where ri � 0 is partner i�s initial share in the jointly owned asset

and F is the continuous distribution on [0; 1] from which all partners independently

(but privately) draw their valuations of the asset. The partners are assumed to be risk

neutral with quasi-linear preferences, where 1� �i denotes partner i�s value for a unit
of the asset. A partnership is dissolved e¢ ciently if the entire asset

P
i ri is allocated

to the partner with the highest valuation.

A direct mechanism for dissolving a partnership is a pair of functions (q(�̂);m(�̂))

that assign, for each pro�le of reported values �̂; an allocation of shares, q1(�̂); : : : ; qS+B(�̂);

and a pro�le of monetary transfers, m1(�̂); : : : ;mS+B(�̂); such that for all �̂, qi(�̂) � 0,P
i qi(�̂) =

P
i ri and

P
imi(�̂) = 0:
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De�nition 3 Amechanism (q(�̂);m(�̂)) e¢ ciently dissolves a partnership hr1; : : : ; rS+B; F i
if it satis�es the following properties for i = 1; : : : ; S +B:

(EFF) Whenever �̂ = �,

qi(�) =

( P
i ri if �i � �j for all j
0 if �j < �i for some j

(IC�) There is a Bayesian NE in which every partner reports his true value. That is,

for every i and every �i; �
0
i:

(1� �i)Qi(�i) +Mi(�i) � (1� �i)Qi(�0i) +Mi(�
0
i)

where Qi(�̂i) � E��iqi(�̂i; ��i) and Mi(�̂i) � E��imi(�̂i; ��i):

(IR�) Each partner�s interim-expected payo¤ in the truth-telling Bayesian NE is at least

as high as the value he assigns to his initial share. That is, for every i and every �i :

(1� �i)Qi(�i) +Mi(�i) � (1� �i)ri

We say that a partnership can be dissolved e¢ ciently if there exists a direct mech-

anism that implements its e¢ cient dissolution.

De�ne i�(�̂) to be the lowest indexed agent among those agents with the lowest re-

ported prior on h: Consider a direct mechanism t(xj�̂) that satis�es (2) and (3) with
� replaced by �̂ and i� replaced by i�(�̂) (note that there are many such mechanisms).

We distinguish between two cases: S > B and B > S = 1.

Case 1: B > S = 1
We begin by constructing second-period continuation strategies, which are necessary

for implementation of a natural CIE . If at least one agent refuses to participate in the

�rst-period mechanism, the seller submits an ask of 1 and each buyer demands one unit

at a price of 1. This action pro�le is the NE of both G(h) and G(l), hence it is also a

NE in the corresponding second-period subgame. Now suppose that all agents agreed

to participate in the �rst-period mechanism and submitted a pro�le of reports �̂. In

state h, the seller submits an ask of 1, and each buyer demands one unit at this price.

Denote this action pro�le by ah. It is independent of �̂. In state l, the seller submits

an ask of pl(�̂) 2 [c; 1), and every buyer demands one unit and bids pl(�̂). Denote this
action pro�le by al(�̂). By Propositions 2 and 3, al(�̂) constitutes a NE of G(l; t) for

any t that satis�es (2) and (3).
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Our objective is to examine whether there exist distributions F for which agree-

ing to participate in the mechanism and reporting one�s true prior, together with the

second-period continuation strategies described above, constitute a PBNE. Our ap-

proach is to show that if this is the case, then there is a corresponding partnership

hr1; : : : ; rB+1i that can be e¢ ciently dissolved for some F whenever (ah; al(�); t(xj�))
is implementable for that F . Using Proposition 2 of CGK, we obtain a contradiction.

Assume (ah; al(�); t(xj�)) is implementable for F . Consider the partnership hr1; : : : ; rB+1; F i
where r1 = 1� c and rb = 0 for every b > 1: Let (q(�̂); w(�̂)) be the following mecha-
nism: for each agent i and for every pair of reports �̂,

q1(�̂) � pl(�̂)� c� [t1(1j�̂)� t1(pl(�̂)j�̂)]

qb(�̂) � 1� pl(�̂)
B

� [tb(1j�̂)� tb(pl(�̂)j�̂)]

m1(�̂) = t1(1j�̂)
mb(�̂) = tb(1j�̂)

Because t1(1j�̂) and tb(1j�̂) satisfy (CIE), (veto-SPIC), (IC) and (IR) it follows that
the mechanism (q(�̂);m(�̂)) has the following properties. First, by (CIE), whenever

�̂ = �,

qi(�̂) =

(
1� c if i = i�(�̂)

0 if i 6= i�(�̂)

Hence, q(�̂) satis�es (EFF).

Second, by (IC), we have that for every �0i 2 [0; 1];

(1� �1)[Q1(�1)� (pl(�̂)� c)] +M1(�1) � (1� �1)[Q1(�01)� (pl(�̂)� c)] +M1(�
0
1)

and for every b � 2;

(1� �b)[Qb(�1)�
1� pl(�̂)

B
] +Mb(�b) � (1� �b)[Qb(�0b)�

1� pl(�̂)
B

] +Mb(�
0
b)

By (IR),

(1� �1)[Q1(�1)� (pl(�̂)� c)] +M1(�1) � (1� �1)[(1� c)� (pl(�̂)� c)]
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and for every b � m+ 1;

(1� �b)[Qb(�b)�
1� pl(�̂)

B
] +Mb(�b) � (1� �b)[�

1� pl(�̂)
B

]

These two inequalities imply that (q(�̂);m(�̂)) satis�es (IC�) and (IR�).

It follows that given F , the mechanism (q(�̂);m(�̂)) e¢ ciently dissolves the part-

nership h1� c; 0; : : : ; 0i. But this contradicts Proposition 2 of CGK, which states that
there exists no F for which one can e¢ ciently dissolve a partnership whose entire

assets are owned by a single partner. This implies that our initial assertion - that

(ah; al(�); t(xj�)) is implementable for F - is false.

Case 2: B < S
We begin by constructing second-period continuation strategies, which are necessary

for implementation of a natural CIE. Regardless of the agents� actions in the �rst

period, if state h is realized in the second period, the agents coordinate on the action

pro�le ah described in the previous case. If state l is realized, then regardless of the

agents�actions in the �rst period, the agents play the action pro�le al from the previous

case, only with pl = c for any pro�le of reported priors. Since ah and al are NE of

G(h) and G(l) respectively, they are also NE of the second-period subgame when at

least one agent vetoes the mechanism. In what follows, we shall construct a mapping

from announced priors to bets such that ah and al will constitute NE of the modi�ed

second-period market game.

We now show that there exists a partnership


r01; : : : ; r

0
S+B; F

�
that can be e¢ ciently

dissolved if and only if (ah; al; t(xj�)) is implementable for F . We then apply Propo-
sition 3 of CGK to obtain that there exists a distribution F for which this partership

can be e¢ ciently dissolved, which implies that (ah; al; t(xj�)) for that F .
De�ne:

r0i�S = S � 1 + B
S
(1� c)

r0i�S+1 = S � 1
qi(�̂) = ti(cj�̂)� ti(1j�̂) + r0i
mi(�̂) = ti(1j�̂)

ti(xj�̂) =

(
ti(cj�̂) if x 6= 1
ti(1j�̂) if x = 1

Note that (EFF) holds if and only if ti(1j�̂) � ti(cj�̂) = zi(1;�) for every i 6= i�(�),
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where zi6=i�(�)(1;�) satis�es (23) and (24). Since ti(xj�̂) is constant for all x 6= 1;

it follows from Proposition 2 that (EFF) holds if and only if (CIE) holds. As we

have noted above, our construction of the second-period action pro�les satis�es (veto-

SPIC). By simple algebra, we obtain that (IR) and (IC) hold if and only if (IR�) and

(IC�) hold, respectively. Therefore, the mechanism t(xj�̂) implements a natural CIE
solution if and only if the mechanism (q(�̂);m(�̂)) e¢ ciently dissolves the partnership

r01; : : : ; r

0
S+B; F

�
: Now, we can apply Proposition 1-3 in CGK to obtain the desired

result. �

Proof of Proposition 5
Let (ah; al; t(x;�)) be a natural CIE solution, and consider an (S + B)-member part-

nership where S members own S � 1 shares of the asset and B members own S � c
shares. By Proposition 4, this partnership can be e¢ ciently dissolved if and only

if (ah; al; t(x;�)) is PBNE-implementable. By Proposition 1 of CGK, as the ratio

ri�S=ri�S+1 become closer to one, the set of distributions for which e¢ cient dissolu-

tion is possible weakly expands. This implies that the set of distributions for which

(ah; al; t(x;�)) is implementable, weakly as S increases and as c increases and becomes

closer to one. �

Proof of Proposition 6
We proceed in four steps.

Step 1 : Construction of second-period action pro�les.

Regardless of the agents�actions in the �rst period, they coordinate on the following

action pro�les in the second period. In state h each seller submits an ask of 1 and each

buyer demands one unit and bids 1. In state l; each seller submits an ask of 1+c
2
and

each buyer demands one unit and bids 1+c
2
. Denote these action pro�les by ah and al

respectively. It is straightforward to verify that ah is a NE in G(h) and al is a NE in

G(l).

Step 2 : The action pro�les ah and al are NE in the games that are induced by G(h) and

G(l) and the proposed auction.

Let Z � 2B(B � 1+c
2
) denote the prize, awarded to the highest bidder in the auction.

In state h, no agent can unilaterally alter the outcome. In state l, an agent can alter

the outcome (in the sense of preventing the prize) only by demanding B units at a

price of 1. A seller has no incentive to deviate in this manner if he won the auction

and
1 + c

2
� c+ (1� 1

2B
)Z � 1�B
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or if he lost and
1 + c

2
� c� Z

2B
� 1�B

Similarly, a buyer has no incentive to demand B units and bid 1 if he won the auction

and

1� 1 + c
2

+ (1� 1

2B
)Z � 1�B

or if he lost and

1� 1 + c
2

� Z

2B
� 1�B

(note that the �rst-period bids are sunk, hence they are left out of these constraints).

It is easy to verify that since B � 1, the above inequalities must hold.
When S = B = 1, we need to consider the agents�ability to impose no trade in

state l. If the seller won the auction, the additional SPIC constraints are:

1� 1 + c
2

� (1� c
2
) � 0

1 + c

2
� c+ (1� c

2
) � 0

and if the buyer won the auction, the constraints are:

1� 1 + c
2

+ (
1� c
2
) � 0

1 + c

2
� c� (1� c

2
) � 0

It is easy to verify that these additional constraints are also satis�ed.

Step 3 : There exists a PBNE in which (i) all agents participate in the auction, (ii) the

agent with the lowest prior on h wins the auction, and (iii) the agents play ah and al

in the second period.

The previous step already established that ah and al are NE in the second period

modi�ed games. It remains to show that if agents expect to play these action pro�les

in the second period, then the �rst-period auction has a BNE in which all agents

participate and the winning agent is the one who assigns the highest prior to state l.

Let t denote the proposed auction mechanism. Let j� denote the agent who wins

the auction. Let � � (�i(�i))S+Bi=1 denote a pro�le of bidding strategies. Let �i(�i;�)

denote the probability that agent i wins the auction, given that i�s prior on state h

is �i and that the agents play the strategy pro�le �. The interim expected payo¤ of
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agent i, given �, is equal to:

�i(�i;�)Ui=j�(a
h; al; t) + [1� �i(�i;�)] � E��iUi6=j�(ah; al; t) (25)

where:

Us 6=j�(a
h; al; t) = (1� �s)[

1 + c

2
� c� Z

2B
] + �s(1� c) +

�j�

2B

Us=j�(a
h; al; t) = (1� �j�)[

1 + c

2
� c+ (1� 1

2B
)Z] + �j�(1� c)� (1�

1

2B
)�j�

Ub6=j�(a
h; al; t) = (1� �b)[1�

1 + c

2
� Z

2B
] + �s(1� 1) +

�j�

2B

Ub=j�(a
h; al; t) = (1� �j�)[1�

1 + c

2
+ (1� 1

2B
)Z] + �j�(1� 1)� (1�

1

2B
)�j�

If at least one agent vetoes the auction, then the seller�s interim expected payo¤ is

Us(a
h; al) = �s(1� c) + (1� �s)(

1 + c

2
� c) = �(1� �s)(

1� c
2
) + (1� c)

while the buyer�s interim expected payo¤ is

Ub(a
h; al) = (1� �b)[1�

1 + c

2
] + �b(1� 1) = (1� �b)(

1� c
2
)

We wish to show that that there exists a symmetric BNE in which all agents use

the same bid function �(�i), which is monotonically decreasing in �i. To show this, we

again rely on a formal relation between the problem of implementing a CIE solution

and the problem of e¢ ciently dissolving a partnership.

Consider the problem of e¢ ciently dissolving an equal-share partnership with 2B

members, who each owns 1
2B
of an asset of size Z = 2B(B � 1+c

2
). Agent i�s valuation

of the partnership is 1� �i. Suppose the members of this partnership could participate
in a �rst-price, sealed-bid auction in which the highest bidder wins all shares of the

asset, and the auction�s revenues are equally shared among all partners.

Suppose agent i won this auction. Then his payo¤ would be

(1� �i)Z � (1�
1

2B
)�̂i

where �̂i denotes his bid. If j 6= i won the auction, then i�s payo¤ would be

1

2B
�̂j
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If the auction is not conducted, then i�s payo¤ is

(1� �i)
Z

2B

By Proposition 5 of CGK, this auction has a symmetric BNE in which every player

uses the same bidding function �̂(�i); which is a monotonically decreasing function of

�i. Moreover, the expected payo¤ of each bidder in this equilibrium is at least as high

as his payo¤ when the auction is not conducted.

Note that the payo¤ of player i � S = B in the above partnership-dissolution

auction may be obtained by subtracting (1 � �i)(B � c) � (1 � c) from his payo¤ in

our proposed auction. Similarly, the payo¤ of player i � B + 1 in the partnership-

dissolution auction may be obtained by subtracting (1 � �i)(B � 1) from his payo¤

in our proposed auction. Therefore, if (�̂(�1); : : : ; �̂(�2B)) is a symmetric BNE in the

partnership-dissolution auction, then it must also be a BNE in our proposed auction.

Moreover, the expected payo¤ of each agent in the proposed auction must be at least

as high as his payo¤ when at least one agent vetoes the mechanism.

Step 4 : The proposed auction attains the CIE surplus in the PBNE described in Step

3.

Step 3 described a PBNE in which all agents participate in the proposed auction, the

agent with the lowest prior on h wins, and in the second period the agents play ah in

state h and al in state l. By Proposition 2, the CIE surplus is achieved by a bet with

the following properties: (i) it induces a market game where ah is a NE in state h and

al is a NE in state l; and (ii) the di¤erence between the transfer in state h and the

transfer in state l for an agent i 6= i�(�) (i.e., an agent, who is not the most optimistic
about state l) is

(
1 + c

2
� c) + (B � 1) = B � 1 + c

2

for a seller and

(1� 1 + c
2
) + (B � 1) = B � 1 + c

2

for a buyer (where the di¤erence in these transfers for the most pessimistic agent is

minus the sum of these di¤erences across all the other agents). Hence, to establish that

our proposed auction attains the CIE surplus in the PBNE of Step 3, it su¢ ces to show

that the di¤erence between the equilibrium transfer that any agent i 6= i� receives in
this auction in state h and his transfer in state l is B� 1+c

2
(recall that we have shown

that i� wins the auction).

To show this, consider any agent who loses in the auction. In state h the price is
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above 1+c
2
; hence, his payo¤ in the auction is only his share in the revenue, 1

2B
�̂(�j);

where �̂(�j) is the equilibrium bid of the winner. In state l; the price is at or below
1+c
2
; hence, the agent has to pay B � 1+c

2
to the winner, in addition to his share in the

revenue. Therefore, the di¤erence in transfers is precisely B � 1+c
2
. �
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