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Abstract

Vertebrate hosts are frequently infected with multiple helminth species. There is a 
body of experimental evidence to suggest that infection with one parasite species can 
have either an antagonistic or synergistic effect on another species; such interactions 
may occur through parasite establishment, survival and fecundity. The extent to 
which such interactions are involved in the organization of helminth communities is 
largely unknown.

Mathematical models based on Markov processes are used to explore two themes:
1) The effect of interspecific interactions on the joint distribution of helminth par­
asites in a population of hosts, and 2) conditions under which interacting species 
can coexist. To explore the former, models are formulated that describe the pro­
cess by which helminths of two species are acquired and lost in a cohort of ageing 
hosts. In these models, the interspecific interaction occurs at the point of parasite 
establishment within the host such that the rate of establishment depends on the 
current worm burdens of the two species. The results are used to highlight some 
of the difficulties associated with inferring interspecific interactions from ecological 
data.

The relationship between competition and species coexistence is investigated us­
ing models of the long-term dynamics of interacting species. Models are developed 
in which there is a free-living larval stage whose population size is dependent on 
the size of the adult worm population. The models are analyzed using ‘hybrid’ 
and ‘moment-closure’ approximations; the former involves replacing stochastic com­
ponents of the model with deterministic approximations, and the latter assumes a 
functional relationship between higher and lower order moments based on a specified 
distribution.

The Lotka-Volterra model of competition is derived for the case where hosts 
are equally exposed to parasites of the same species. Coexistence of two compet­
ing species is promoted by heterogeneous host exposure to each parasite species, 
provided that the rates of exposure to the two parasite species are not perfectly, 
positively correlated, and provided that the degree of heterogeneity in host expo­
sure is similar for both species. In addition, it is shown that the conditions required 
for coexistence are the same regardless of whether competition occurs at the point 
of parasite establishment within the host or via parasite fecundity. These results 
are discussed within the context of helminth community ecology.
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Glossary

A biotic factors Non-living factors that affect ecosystems, e.g. rainfall, sunlight; 
cf. biotic which refers to living.

A ntibodies Glycoproteins produced by B-cells that bind to antigens on foreign 
particles. Antibodies provide the immune system with a way of recognizing 
invading pathogens. There are five classes of antibodies (also known as im­
munoglobulins): IgA IgD IgE IgG IgM each of which has different properties. 
For example, IgE binds to mast cells.

A ntigens Molecules, usually on the surface of pathogens, to which antibodies bind.

A ntibody-dependent cellular cy to tox ic ity  (A D C C ) The process by which 
antibody-coated cells are destroyed by cells of the immune system such as 
macrophages.

B-cells Cells that produce antibodies

Convex age intensity profile The unimodality often observed when mean worm 
burden is plotted as a function of age, i.e. mean worm burden rises in young 
age groups, reaches a peak and then declines to an equilibrium level at older 
ages. This definition does not correspond to the definition of a convex function 
in mathematics.

Cospeciation The simultaneous speciation of two or more species, e.g. a host and 
its parasite species.

Covariance The covariance of random variables X  and Y  is

Cov(A, Y ) = E[{X -  E[X])(Y -  E[T])]

where E stands for expectation.

Cytokines Chemicals produced by cells of the immune system to communicate 
with one another.
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Determ inant For a 2 x 2 matrix

A  =

the determinant of A is Det(A) — ad — be. For an n x n matrix, A, the 
determinant can be computed using the following property of determinants

Det(A) — anCn — a ^C ^  +  0 *3 ^ 3  — • • • Q-ivPv

where is the j th  element of row i in A, and Cy is the determinant of the 
‘submatrix’ obtained by deleting row i and colum j  from A.

Eigenvalue The eigenvalues (A) of a matrix A  satisfy

A v =  Av

where v is a vector known as an eigenvector. They are found by solving 
Det(A — AI) where I is matrix of l ’s on the diagonal and zeros elsewhere. 
Eigenvalues are used to determine the stability of equilibrium points.

Eigenvector See eigenvalue

Equilibrium x* is an equilibrium point for a system of differential equations ^  if
dx*_ 0 
dt u'

Expectation For a random variable X  tha t takes on values 1,.., n  the expectation, 
or mean, of X  is E[X]= S * = i = x). When X  is a continuous random
variable E[X]= f*™ x f ( x ) dx  where f ( x )  is the density function associated 
with X.

Interactive site segregation The phenomenon whereby the location of one par­
asite species within the host is determined by the presence/absence of another 
species. See also selective site segregation.

Jacobian m atrix For the system of differential equations

 ̂ dxi /dt  \  /  . . . ,  xn) ^

y  d x n f  dt  J  y  f n ( x  1, • • • , Xji) J

the Jacobian matrix is given by
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/  M  §1L \
9x1 ‘ ‘ ' 9 x n

I din
\  dxx ' ' ' dxn /

In the analysis of non-linear differential equations, the eigenvalues of the Ja­
cobian evaluated at an equilibrium, x*, can be used to determine properties 
of x*, e.g. whether it is stable/unstable.

K -selection The opposite of r-selection, i.e. the selection for low fecundity and 
high offspring survival that is predicted to occur in an environment where 
resources are limited.

Laplace transform The Laplace transform of a function f ( t )  is F(s) = J0°° e~stf(t)dt.  
It is a useful tool for solving certain differential equations.

Markov Process A stochastic process, X  (t ), is a Markov process if the probability 
of transition from current state, i, to a future state, j ,  depends only on the 
current state and not on previous states. Formally,

P {X{t  +  s) = j \X{t )  = i, X{u)  =  x(u)) = P {X(t  +  s) = j \X{t )  = i)

where s > 0 and 0 < u < t.

M ast cells Inflammatory cells that bind IgE and secrete histamine.

Phylogeny A tree representing the evolutionary relationships between species

Poisson distribution Arises when counting the number of occurrences of an event 
(e.g. infection) in an interval of time. If a random variable, X , follows a 
Poisson distribution with mean A, then the probability of x  events is 
P( X = x) = e~x\ x/x\.

r-selection In an environment where resources are plentiful individuals that are 
able to rapidly exploit their environment are selected for. This corresponds 
to selection for high rates of fecundity, at the expense of high rates of off­
spring survival. When resources are scarce, low fecundity and high rates of 
survival are selected for (K-selection). This hypothesis was originally proposed 
by Mac Arthur & Wilson (1967), r and K refer, respectively, to the parame­
ters for intrinsic growth rate and carrying capacity in the logistic equation of 
population growth.
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Selective site segregation The non-random distribution of present-day parasite 
species within hosts arising from historic interspecific competition.

Stationary point See equilibrium point.

T-cells Have a receptor (the T-cell receptor) that binds to antigen when presented 
on an MHC molecule. Certain T-cells are involved in the regulation of the 
immune response through cytokine signalling (T-helper cells and Treg cells) 
others destroy invading pathogens (cytotoxic T-cells).

Trace The trace of an n  x n  matrix, A, corresponds to the sum of the diagonal 
components, Tr(A) =  =  da-

Trophic levels Levels within the food chain.

Variance The variance of a random variable X  is Var[A]=E[A2]— E[X]2, where E 
stands for expectation.
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Chapter 1 

Overview

The study of helminth communities has a relatively long history. The first substan­
tial body of work has been attributed to the Russian scientist V. A. Dogiel (Esch 
et al., 1990), and certainly since the 1960s considerable data have been collected 
on the composition of helminth communities. The subject is now sufficiently well 
developed to have its own concepts and terminology, set apart from those of general 
community ecology.

Helminth communities are unusual in that the component species tend to oc­
cupy a single trophic level: predator-prey interactions between helminth species are 
extremely rare. Nonetheless despite the absence of predator-prey interactions there 
is a reasonable body of experimental evidence to suggest that there are other inter­
actions between helminth species arising through competition for limited resources 
or indirectly mediated through the host’s immune system.

The experimental evidence supporting interspecific interaction has not been fol­
lowed up with conclusive field data. Yet it is both of theoretical and practical bene­
fit, in terms of human and animal health, to identify interactions between helminth 
species in natural settings.

Currently data on the distribution of worm burden is often interpreted intuitively 
in terms of interspecific interaction. By exploring the effects of interactions between 
helminth species on the distribution of worm burden, this thesis aims to inform intu­
itive interpretations of data. In particular, the thesis identifies difficulties associated 
with attributing positive correlations between species to synergistic interactions and 
negative correlations with antagonistic interactions, as is commonly done.

As well as examining the distribution of worm burden, the question of species 
coexistence is addressed. Competitive exclusion of one species by another is to be 
expected when two species share the same limiting resource. This applies equally to 
helminth species. Further, antagonistic interspecific interactions mediated through

13



the host’s immune system may also lead to competitive exclusion. Explaining how 
interacting helminth species are able to coexist is key to understanding helminth 
diversity. Yet, surprisingly, this question has received little attention.

Chapter 2 begins by introducing the subject of helminth community ecology. 
This chapter is fairly general and considers a number of models aimed at describing 
helminth community structure. Chapters 3 and 4 also function as review. Chapter 
3 evaluates the evidence for interactions between helminth species, while Chapter 4 
introduces mathematical models of helminth infection.

Chapters 5-8 form the original component of the thesis in which models of in­
terspecific interaction are developed. Chapters 5 and 6 are derived from work in 
Bottomley et al. (2005), and chapters 7 and 8 from work in Bottomley et al. (2006).

A deterministic model for the accumulation of worm burden of two interacting 
species within a single host is introduced in Chapter 5. This model provides a basis 
for the stochastic model of Chapter 6 which explores the effects of synergistic and 
antagonistic interactions on the distribution of worm burden in different host age 
groups.

Chapter 7 presents a single species model in which the population size of infective 
larvae depends on the numbers adult worms in the host population. The model 
is extended in Chapter 8 to examine the effect of interspecific competition on the 
coexistence of species. Finally, Chapter 9 concludes with a discussion of the potential 
for future research in this area.

14



Chapter 2 

The Structure of Helm inth  
Communities

2.1 Introduction

The assemblage of species to be found in a particular environment can often be 
predicted from a knowledge of the species found in similar environments. It is in 
general difficult to determine when environments are similar or dissimilar; therefore 
ecologists often require that the species within an assemblage must interact, or at 
least share the same resources if they are to be considered a ‘community’ (e.g. 
Whittaker, 1975). For helminth species (see table 2.1), however, the situation is 
simpler since the environment can be clearly defined in terms of a host, or population 
of hosts. Communities of helminths are therefore often defined without reference to 
interspecific interactions, and simply in terms of the species present within a single 
host, or population of hosts.

Helminth communities can be thought of in terms of a hierarchy. At the lowest 
level of the hierarchy, the species found within an individual host form a community. 
At the next level up there is a community of helminths within a population of hosts 
of the same species. Finally, grouping together the communities from different 
host species, there is a community consisting of all helminths found in a particular 
ecosystem. These three levels of helminth community are known, respectively, as the 
infracomrnunity, the component community, and the compound community (Holmes 
& Price, 1986; Esch & Fernandez, 1993).

It is of interest to community ecologists to uncover the processes responsible 
for organizing communities. Here, and subsequently, the definition of community 
organization given by Hairston (1964) will be adopted: ‘animal communities may 
be considered organized if any property of a natural assemblage of species can be
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Phylum

C la ss
Description

Examples

Nematoda 
(Round Worms)

Nematodes are generally 
cylindrical in shape. They 
have a gut with both a 
mouth and anus. Most 
species are dioecious and 
exhibit sexual dimorphism, 
although some species are 
hermaphrodite. The basic 
nematode life-cycle involves 
six stages: adults, eggs and 
four larval stages. The larval 
stages resemble the adult, 
but lack a reproductive 
system. Depending on the 
species, transmission can be 
either direct or indirect.

The Guinea worm (Dracun- 
cuius medinensis) is a hu­
man parasite primarily found 
in Africa. Adult females in­
duce the formation of a blis­
ter. The blister bursts on 
contact with water, releas­
ing larvae. The intermediate 
host, a copepod, ingests the 
larvae. Humans become in­
fected by drinking water that 
contains infected copepods.

M o n o g en ea
Monogeneans are
dorsoventrally flattened. 
Their gut lacks an anus. 
Unlike other platy- 
helminths they have a 
posterior attachment 
organ to secure them  
to their host. Typically 
they are ectoparasitic, 
living on the skin or gills 
of fish. Adult worms 
are hermaphrodite, 
and both cross- and 
self-fertilization are 
possible. Transmission 
between hosts is direct, 
but requires water.

Gyrodactylus salaris has 
had a severe impact on 
Wild salmon (Salmo 
salar) populations in 
Norway since its in­
troduction from the 
Baltic. Unusually the 
parasite species has no 
transmission stage, with 
females giving birth to 
live adults (Olstad et al., 
2006).

Platyhelminthes 
(Flat Worms) 

Digenea
Digenea are variable in 
shape and size ranging 
from 0.5mm to 100mm. 
They usually possess two 
oral suckers for host at­
tachment and have an 
incomplete digestive sys­
tem. With some excep­
tions (e.g. Schistsoma 
sp.), adult worms are 
hermaphrodite. Trans­
mission involves at least 
one intermediate host. 
The first intermediate 
host is always a mollusc 
and often a gastropod.

Schistosoma sp. in­
fect approximately 200 
million people worldwide 
(Mascie-Taylor & Karim, 
2003). Chronic infection 
can lead to damage of 
the liver, lungs and intes­
tine. The intermediate 
hosts are snails. Schis­
tosome species have free- 
living aquatic stages that 
infect snails and humans.

Cestod 
t.rally f 
sist of i 
merit e 
of segn 
each o 
a hern 
ductivt 
typical 
testina 
brates 
partial’ 
ents. 
usually 
one or 
hosts.

Ligula 
sitizes 
The f 
hosts a 
taceam 
by fisl 
swim i 
ing th< 
predati 
definiti

Table 2.1: A description of the taxonomic groups to which helminth spec



predicted’. Which factors are involved in the organization of helminth communities 
depends on the level within the hierarchy of communities being considered. This 
is partly a consequence of the different time-scales over which the communities ex­
ist: infra-communities are short-lived while component and compound communities 
have longer life-spans. For infra-communities, host susceptibility, host age and par­
asite survival are, for example, important to community organization. In contrast, 
component and compound communities are organized by processes that occur on 
longer time-scales, such as colonization, extinction, host switching and cospeciation.

The work presented in the following chapters deals with interactions between 
species and their role in community organization. To introduce the subject, an 
overview of models used to describe and explain the organization of helminth com­
munities is given.

2.2 D istribution o f the number of species per host

The component community can, relatively simply, be described by the distribution of 
the number of species per host; often this is compared with the Poisson distribution. 
For example, the number of parasite species per host appears to be approximately 
Poisson for black bears and muskrats (Dobson, 1990).

Testing the null hypothesis of a Poisson distribution is in effect testing the hy­
pothesis that the component community was formed by a simple stochastic process. 
The number of species per host will be approximately Poisson under the following 
conditions: 1) infections by different species occur independently from one another;
2) the number of possible infecting species is large, and 3) the probability of infec­
tion by any one species is small. If in addition the probability of infection is the 
same for all species, then the distribution will be binomial (N  is the total number 
of species and p is the probability of infection with any given species). In this case, 
assumptions 2) and 3) amount to the Poisson approximation to the binomial dis­
tribution. However, this latter condition is not necessary for the distribution of the 
number of species to be Poisson; it is sufficient that conditions l)-3) are upheld.

In many situations there will be fewer species and/ or some species will have high 
prevalences, i.e. assumptions 2) and 3) are not upheld. Under these circumstances, 
the distribution of parasites can be modelled by the distribution of a random variable 
E i - i  ^  where /* is a random variable indicating infection with species i {i =  1,..., n) 
for which P (/* =  1) is given by the prevalence of species i. Janovy et al. (1995) find 
that this model fits well with data sets of intestinal helminths within Wiscosin bats, 
and digeneans within snails (Physa gyrina).
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The number of helminth species per host is a summary property of the joint 
distribution of worm burdens, for all helminth species, across the population of hosts. 
Thus while the data sets may appear consistent with very simple models according 
to this summary property, there may exist discrepancies between the models and 
data that are not evident from the distribution of the number of helminth species 
per host.

2.3 Nestedness

Nestedness is a concept that was originally proposed to explain patterns of species 
distribution in fragmented habitats. As with the distribution of the number of 
species per host, measures of nestedness are used to detect departures from a ran­
dom assemblage of species, either within hosts or within a collection of component 
communities.

Consider a large habitat that becomes fragmented such that there exist a num­
ber of smaller habitats of varying sizes. These smaller habitats will support smaller 
population sizes and are therefore likely to contain only a subset of the species 
that existed in the original, unfragmented habitat. If there is an order in which 
extinctions occur such that vulnerable species exist only in large patches and re­
sistant species are present in smaller patches, then a nested pattern is predicted: 
the species present in a patch will be a subset of the species in any larger patch. 
In reality there is unlikely to be an exact order for the extinction of species, thus 
Atmar & Patterson (1993) have proposed a measure for degree of nestedness where 
at one extreme communities are perfectly nested, and at the other extreme they are 
simply random samples from all available species.

The concept of nestedness has been appropriated by parasite community ecol­
ogists, and the extent to which infracommunities and component communities are 
nested has been determined in various field studies. To date, the exploration of 
nestedness has been restricted to fish species and their parasites. Most studies 
have focused on determining the nestedness of infracommunities (Norton et al., 
2004; Rohde et al., 1998; Matejusova et al, 2000; Poulin & Valtonen, 2001, 2002; 
Vidal-Martinez & Poulin, 2003), although Simkova et al. (2001) have shown that 
component communities of roach (Rutilus rutilus) from different lakes are nested.

The identification of nestedness involves testing the null hypothesis that the 
communities are composed of species randomly selected from all available species. 
In general, infracommunities are not sufficiently nested to reject the null hypothesis. 
However, a large number of fish species has been examined and a nested pattern of
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infracommunities has been identified in a significant number of these species.
In its original application to fragmented habitats, nestedness is explained in 

terms of ordering in the extinctions of different species. Nestedness of helminth 
infracommunities can most easily be explained in terms of an ordered colonization 
so that hosts are initially colonized by the most, prevalent species when they are 
young, and then less prevalent species as they become older (Norton et al., 2004). 
Assuming that this hypothesis is true, then the degree of nestedness should be 
greatest for host species where there is a strong correlation between species richness 
and host size (a proxy for host age); both Vidal-Martinez & Poulin (2003), and 
Poulin & Valtonen (2001) have found this to be the case.

The concept of nestedness suggests the concept of ‘anti-nestedness’: a collection 
of communities is anti-nested if species-poor communities are less likely to be sub­
sets of species-rich communities than would be expected in a random assemblage of 
communities. Note that this is in contrast to nestedness where species-poor com­
munities are more likely to be subsets of species rich communities than would be 
expected by chance. Data on the ectoparasite communities of 50 marine fish species 
examined by Rohde et al. (1998) was reanalyzed by Poulin & Guegan (2000). In 
addition to the 15 fish species for which parasite infracommunities were nested, 
Poulin & Guegan (2000) identified 15 fish species in which infracommunities were 
anti-nested. The causes of the anti-nestedness identified by the study are unclear, 
sampling infracommunities from a heterogeneous habitat may be one possibility. For 
example, consider a collection of infracommunities sampled across two habitats, one 
of which has a greater number of species than the other. Anti-nestedness will occur 
if the species in the species-poor habitat are different, i.e. not a subset of those in 
the species-rich habitat.

As with the distribution of the number of helminth species per host discussed in 
the previous section, nestedness is a summary measure of the joint distribution of 
parasite burden. The absence of nestedness should not be interpreted as an absence 
of organization within a helminth community. Interestingly, nestedness of some 
degree should be expected in all communities since young hosts are likely to be 
infected initially with the most prevalent species. It is therefore potentially more of 
a challenge to explain why nestedness is not more commonly observed.

2.4 Core and satellite species hypothesis

The core and satellite species hypothesis was originally proposed by Hanski (1982), 
based on a metapopulation model for a community of free-living species. Hanski
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observed that the proportion, p, of patches occupied by a species was bimodally 
distributed under the assumptions of the metapopulation model, and termed species 
with high and low values of p as core and satellite species respectively. The original 
model has since been elaborated, and it appears that bimodality is a product of the 
rescue effect: the process whereby increased p leads to increased immigration which 
reduces the number of local extinctions (Hanski & Gyllenberg, 1993).

In his original paper, Hanski (1982) also observed that the abundance of a species 
at different sites was positively related to the proportion of sites where it was present. 
This is intuitively reasonable and Hanski provides many examples from field data. 
In the parasitological literature, this relationship between the proportion of sites 
occupied and abundance within sites is used as the basis for the definition of core and 
satellite parasite species; core species are regionally common and locally numerous, 
i.e. both prevalence and intensity of infection in a population of hosts are high, and 
satellite species have the opposite characteristics (Bush & Holmes, 1986b; Holmes & 
Price, 1986; Esch & Fernandez, 1993). Defining core and satellite species in this way 
seems reasonable given that infection prevalence and intensity are strongly positively 
related for helminth species. However, the definition used in the parasitological 
literature applies in the absence of the original hypothesis (i.e. that the distribution 
of p is bimodal). Thus Bush & Holmes (1986b), for example, identify ‘core’ and 
‘satellite’ species in their analysis of the intestinal helminth species of the lesser 
scaup (Athya affinis) duck based on prevalence, even though the distribution of 
species’ prevalence is not bimodal.

The relevance of the original core-satellite species hypothesis to parasite commu­
nities is still open to debate. Hanski & Gyllenberg (1993) cite data on the intestinal 
helminths of grebes (Podicipedidae) (Stock, 1985; Stock & Holmes, 1988) where p 
is clearly bimodal; while later studies have been unable to identify a bimodality in 
the distribution of p (Rohde et al., 1995; Simkova et al., 2002).

2.5 Island biogeography

The theory of island biogeography was developed over 40 years ago by MacArthur 
& Wilson (1963, 1967). Since then, various authors have suggested that ideas from 
the theory could be used to interpret patterns of species richness in helminth com­
munities (e.g. Esch & Fernandez, 1993; Holmes & Price, 1986). The theory can 
be employed at different levels of the parasite community by defining the “island” 
and its corresponding area in different ways. The most direct comparisons with 
the original theory can be made by defining islands to be geographically separated
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habitats, e.g. lakes, and area as either host population size or the area of the habi­
tat. Alternatively it has been suggested that different host species act as islands 
with the geographic range of the host corresponding to island area (Dritschilo et al., 
1975). Finally, the individual host may itself be treated as the island. Kuris et al 
(1980) have questioned the usefulness of this latter analogy for the following reasons: 
1) these “islands” exist for a short period of time (the life-expectancy of the host) 
such that, the number of parasite species may not reach an equilibrium; 2) host life- 
expectancy may depend on parasite burden; 3) when hosts are mobile, the distance 
between “islands” will vary; 4) adult helminths do not multiply within their hosts, 
population sizes are determined by immigration-death processes and may change 
dramatically over time. Despite suggestions that island biogeography might be use­
ful in explaining structure in parasite communities, application of the theory has 
been limited, although a certain amount of progress has been made with species 
area curves, as is nowT discussed.

The relationship between the number of species, S, and the size of a geographical 
area, A is well described by S  = kA z where k is a constant and the exponent, z, is 
typically in the range of 0.25 to 0.35 for island faunas (MacArthur & Wilson, 1967). 
The empirical relationship has been explained in terms of the distribution of species 
abundances. Preston (1962) argues that a power law species-area relationship with 
z =  0.26 is predicted by a lognormal species abundance curve. However, this simply 
involves replacing one empirical relationship with another. The species area curve 
is explained mechanistically either in terms of increased habitat heterogeneity, and 
therfore species richness with increasing area, or in terms of diminished extinction 
rate with increased area (Hanski & Gyllenberg, 1997). Metapopulation models have 
been successfully fitted to species-area data supporting the latter hypothesis (Hanski 
& Gilpin, 1997). The power law has also been derived by a self-similarity argument, 
in particular, by assuming that the proportion of species in an area, A, that are also 
found in half the area of A, is independent of A (Hart.e et al., 1999).

Using data from Kennedy (1978) for the number of parasite species in brown 
trout (Salmo trutta) from different British lakes, the exponent for the species-area 
relationship is estimated to be z =  0.45 (Fig.2.1). Price & Clancy (1983) found an 
almost, linear relationship, i.e. z = 1, between the number of parasites and host 
range in fish. And Dritschilo et al. (1975) found z = 0.37 for the number of mite 
species on cricetid rodents, again using host range as the measure for area. These 
z values are slightly in excess of z values reported for island faunas (0.25 — 0.35), 
and substantially in excess of z-values for continental areas (0.15 — 0.17) (MacArthur 
& Wilson, 1967). MacArthur & Wilson (1967) suggested that z is increased by

21



o
CM

■1 20 1

log(area)

Figure 2.1: Log-log plot of number of parasite species of brown trout and
lake area for 10 British lakes (Kennedy, 1978). The regression line is 
log(no.species)=1.94+0.45 xarea, which implies no.species is proportional to area0 45.

reducing migration; thus the ‘parasite1 islands in these studies are more isolated 
than is typical for geographical islands.

2.6 Host-parasite cospeciation

Cospeciation occurs wrhen allopatric host speciation (speciation due to geographic 
separation of populations) leads to geographically separate parasite populations and 
allopatric parasite speciation. Thus cospeciation, if it occurs, will affect the distri­
bution of parasite species across host species, and therefore the structure of the 
compound community (Brooks, 1979).

The role of cospeciation in structuring parasite communities can be determined 
by examining the degree of congruence between host and parasite phylogenies. This 
may be done, for example, by treating the presence/absence of parasite species as bi­
nary characters (Brooks, 1988). By mapping these characters onto the phylogeny of 
host species, incongruences can be detected as cases where the parasite has ‘evolved’ 
on more than one occasion. Congruent host and parasite phylogenies implies cospe­
ciation (Fahrenholz’ rule). Incongruence between the phylogenies may arise through 
a number of different mechanisms such as host switching (a parasite species colonises 
another lineage), extinction, sympatric speciation (parasite speciation in the absence 
of host speciation), the absence of parasite speciation after host speciation.

When there is little incongruence between host and parasite phylogenies, then 
incongruences are usually easy to explain. On the other hand, when the extent 
of the incongruence is large, systematic methods are required. For example, the
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program Treemap examines all possible switching events (and the accompanying 
sorting and duplication events) that are consistent with the observed parasite and 
host phylogenies; the program then chooses the scenario that maximizes the number 
of cospeciation events. For a review of this and other systematic methods (see 
Paterson Sz Banks, 2001).

Desdevises et al. (2002) examined the congruence between the phylogenies of 
fish in the family Sparidae (Teleosts) and their parasites of the genus Lamellodiscus 
(Monogenea). They used a number of different methods, e.g. TreeFitter, TreeMap, 
ParaFit, and observed that host-switching events were common. Based on this 
observation, they concluded that parasite-host associations, in this instance, are due 
more to ecological factors than co-evolutionary processes. Moreover they argue that 
host switching is to be expected among monogenean parasites since transmission is 
direct and the larval stages are highly motile.

In general, host switching appears to be prevalent in marine host-parasite systems 
(Hoberg Sz Klassen, 2002). However, there is no reason to assume a priori tha t this 
must be true. Indeed, in a study of the chondracanthid copepod parasites of teleost 
fish, Paterson & Poulin (1999) concluded that there were a significant number of 
cospeciation events, and that host-switching was rare. Interestingly, these copepods 
are transmitted directly and have a free-living larval stage, although the larvae are 
small and cannot move long distances which may explain why host switching is not 
more common.

In other host-parasite systems biological features of the system make host switch­
ing improbable; cospeciation is therefore the dominant process. For example, cospe­
ciation has been observed between chewing lice of the genera Geomydoecus and 
Thomomydoecus and pocket gophers. It has been postulated that this is because 
the lifecycle of the lice is restricted to the fur of host, and different host species 
rarely interact (Hafner et a/., 1994).

2.7 Interspecific interactions

Ultimately population sizes must be regulated by negative density-dependent effects; 
otherwise exponential growth of populations would be unhindered; this applies to 
parasitic as well as free-living species. However, if abiotic factors periodically re­
duce population sizes such that they are substantially below their carrying capacity 
(equilibrium size) then density dependence will have a limited role to play. This 
is clearly true on the time-scale overwhich ecological processes take place, but it is 
also true on the timescale of evolutionary processes. MacArthur & Wilson (1967)
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pointed out that in an environment where resources are plentiful, traits that, lead to 
rapid exploitation (termed r-selection in the biological literature) will be selected, 
while for populations close to carrying capacity, selection will favour efficient use of 
resources (K -selection).

Given the existence of intraspecific competition, it seems reasonable to suppose 
that there will also be interspecific competition between ecologically similar species. 
The importance of interspecific competition in structuring parasite communities 
has been an area of considerable debate. While ecologists tend to focus on the 
role of competition, there is also evidence that the establishment of one helminth 
species in a host may further facilitate the establishment of members of that and 
other parasite species (see Chapter 3); clearly this will also have a role to play in 
structuring communities.

At the level of the infracommunity, workers have examined the spatial distribu­
tion of helminth species along the host gut. By examining different individual hosts, 
it is sometimes observed that the spat ial distribution of one parasite species is altered 
by the presence of another species. This phenomenon is known as interactive site 
segregation and has been observed in both natural (e.g. Bush & Holmes, 1986a), and 
experimental (Holmes. 1961) systems. Intuitively one can imagine that if the niches 
of two competing helminth species overlap, then one or both species may alter their 
distribution when the two species co-occur to minimize interspecific competition. 
However, this phenomenon has not been formally modelled, and it seems likely that 
whether or not interactive site segregation occurs will depend on the details, e.g. 
the extent of overlap in the fundamental niches, the strength of intra- and interspe­
cific competition, and the distribution of the resource(s) over which competition is 
taking place. It should not be assumed that competition between helminth species 
necessarily leads to interactive site segregation.

On an evolutionary timescale, competition may alter the fundamental niche of 
a species to reduce overlap with other species; in the parasitological literature this 
is referred to as selective site segregation (see above). More generally, selective site 
segregation is an example of character displacement, the character in question being 
the position occupied by the species along the intestine.

Selective site segregation (or character displacement) can be detected in helminth 
infracommunities by determining whether the distribution of parasites within the 
intestine is more uniform than expected by chance. The phenomenon has been 
observed in studies of the intestinal helminths of lesser scaup ducks (Ay thy a affinis) 
(Bush & Holmes, 1986a), and the European tortoise ( Testudo graeca) (Schad, 1963).

As with interactive site segregation, the absence of selective site segregation
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does not imply an absence of competition. Several quantitative population genetic 
models of character displacement have been proposed (Drossel & McKane, 1999; 
Slatkin, 1980; Buhner, 1974; Doebeli, 1996) to elucidate the circumstances under 
which character displacement is possible. These models make the following biological 
assumptions (Slatkin, 1980):

• A quantitative character such as size is under genetic control, and the mean and 
variance of the character’s distribution can be modified by natural selection.

• The extent to which an individual of either species can utilize a subset of 
resources that are in limited supply, depends on the measure of the character 
in the individual.

• The extent of the competition between two individuals of the same or different 
species, depends on the relative values of the character.

• Each species is limited by the same set of resources and individuals of each 
species utilize these resources in the same way.

In the model of Slatkin, the distribution of the character is assumed to be normal, 
but the mean and variance are allowed to evolve over time. Thus the distribution 
of parasites in the gut, for example, should follow the normal curve being centred 
at a particular position in the gut. The model allows the mean and variance of 
this distribution to change from generation to generation in response to selection. 
Slatkin proposed that displacement will only occur if either: 1) the variance of the 
character is sufficiently constrained, e.g. because the genetics of the character do 
not allow the variability of a character to exceed a certain value; or 2) resource 
utilization is different for the two species. In the example of helminths within the 
host’s gut, resource utilization would be different for the two species if some aspect 
of the resource varied along the length of the intestine, and one species was a priori 
more adept at utilizing the resource towards the proximal end while the other species 
species was better suited to using the resource at the distal end. Clearly, character 
displacement is not an inevitability of sustained competition between species, and 
even if it does occur, there is no guarantee that it will be sufficiently large to be 
perceptible.

While competition between species need not result in selective site segregation, 
the existence of non-overlapping niches is not necessarily explained by competition. 
Rohde (1991,1994) has proposed that selective site segregation has evolved as a 
mechanism to increase mating success. In support of his hypothesis, Rohde ob­
serves that for ectoparasites of fish, niches are more restricted amongst adults than 
juveniles, and among sessile species compared with motile species.
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2.8 Summary and concluding remarks

Many of the concepts of parasite community ecology are derived from metapopu- 
lation models and island biogeography. Although the concepts have to a certain 
extent been successfully applied to helminth communities, the usefulness of models 
that treat hosts as islands or patches is questionable.

Summary measures of the joint distribution of parasite burden such as nestedness 
and the distribution of number of parasite species per host, are often found to be 
consistent with very simple ‘null’ models for the construction of parasite assemblages. 
However, aspects of community organization are potentially being overlooked since 
these summary measures lack statistical power.

The effects of interspecific interactions 011 the spatial distribution of helminths 
within infracommunities have not been formerly modelled, but the results of more 
general models of character displacement suggest that selective site segregation need 
not occur when there is interspecific competition. Thus interspecific competition is 
potentially difficult to detect from the spatial distribution of helminths within the 
host.
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Chapter 3 

M echanisms of Interspecific 
Interaction

3.1 Introduction

The strongest evidence for the existence of interactions between helminth parasite 
species comes from experimental systems. At the most basic level, experiments of 
coinfection reveal whether one species has a numerical effect on another species,
i.e. whether there is a measurable impact on establishment, survival or fecundity 
(Poulin, 1998). Such work has a long history and has been undertaken in many 
animal models, (reviewed by Christensen et a l , 1987). More recently, work has 
focused on the helminth parasites of livestock (Helwigh et al, 1999; Christensen 
et al., 1997; Dobson & Barnes, 1995).

Although experiments using animal models provide evidence for the existence of 
interactions between helminth species, the results from such experiments should be 
interpreted cautiously since experiments never fully mimic the acquisition of larvae 
in a natural setting. Typically in animal models of helminth infection each species 
is administered to the host as a single, artificially large dose of infective larvae. 
Occasionally one species is administered as a trickle infection, i.e. through smaller 
repetitive doses (Helwigh et al, 1999), though, with the exception of experiments 
conducted by Dobson & Barnes (1995), the two species are almost never both ‘trick­
led’ into the host. This is problematic since there is evidence to suggest that the 
immune system reacts differently to a single dose infection compared with a trickle 
infection (Bancroft et al, 2 0 0 1 ). Furthermore, this extends to the ability of the 
parasite to survive within the host. For example, Nippostrongylus brasiliensis when 
administered to hosts in a single large dose, leads to a strong host immune response 
and the infection is short-lived. On the other hand, the infection is chronic in young
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rats if the parasite is acquired by trickle infection (Jenkins & Phillipson, 1971). Al­
though it should be noted that later studies have been unable to replicate this latter 
result in adult rats (Jenkins, 1974).

With a better understanding of the immune system, investigators are now able to 
offer more elaborate mechanistic explanations for the outcome of coinfection exper­
iments than was possible when many of the experiments reported by Christensen 
et al. (1987) were undertaken. For example, the immunology of interactions be­
tween helminth species in rodent models has been relatively recently reviewed by 
Behnke et al. (2001). However, non-innnunologically-mediated interactions are also 
potentially significant and should not be neglected.

As with free-living species it is likely that parasites compete for limited resources.
In the ecological literature competition for resources is termed exploitative compe­
tition, while indirect competition such as competition in parasites that is mediated 
through the host immune system is referred to as interference competition. To be­
gin with, exploitative competition and non-immunologically-mediated mechanisms 
of interaction will be discussed. In general, immunologically-mediated competition 
is not exploitative, although this classification is not entirely clear-cut. For example, 
if there is local inflammation within the gut such that parasites cannot establish in 
close proximity to one another, then space may become a limiting resource for which 
parasites compete, although inflammation is itself immune-mediated. Nonetheless 
exploitative competition is not usually immune-mediated and is therefore discussed 
in conjunction with other non-immunological mechanisms of interaction.

3.2 Exploitative com petition and non-immunologically 
mediated interactions

The identification of resources through which interspecific exploitative competition 
occurs is not straightforward. In Gausse’s classic experiments of exploitative compe­
tition among free-living Paramecium species (Gausse, 1934), the experiments were 
carefully controlled to ensure that factors other than the supply of bacterial food 
source were not limiting the growth of the Paramecium populations. The prob­
lem of environmental control becomes even more acute when studying competition 
in species that are not free-living. Nonetheless, a very significant discovery was 
made by a number of parasitologists working in the 1920’s and 1930’s who showed 
that helminths often exhibit stunting when worm burdens are high (Woodland, 1924;
Short), 1933; Hunninen, 1935; Chandler, 1939). Read (1951) termed this the ‘crowd­
ing effect.’ Although crowding was originally described as an intraspecific effect in
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cestodes, it has since been shown also to operate interspecifically (Holmes, 1961, 
1962) and in non-cestode species (e.g. Holmes, 1961, 1962; Fleming, 1988).

Read (1951) originally hypothesized that the crowding effect was due to compe­
tition for oxygen. Since then, it has been shown that the availability of oxygen does 
not affect the development of Hymenolepis diminuta (Roberts k  Mong, 1969), and 
neither does the availability of vitamins in the host diet (Platzer k  Roberts, 1969). 
On the other hand, carbohydrate appears to be a significant limiting resource (Mead 
k  Roberts, 1972), and interference competition may also play a role in the crowding 
effect. For a full discussion of the potential mechanisms for parasite stunting see 
Roberts (2000).

The crowding effect is a manifestation of competition. It does not in itself rep­
resent a quantitative effect that will influence helminth population dynamics. How­
ever, crowding can be used as a marker for such effects. In particular, fecundity is 
typically positively correlated with the size of adult worms (e.g. Holmes, 1961; Jones 
k  Tan, 1971; Stear k  Bishop, 1999).

Exploitative competition is hard to demonstrate and yet likely to be a pervasive 
mechanism for interaction, while other rare forms of interaction are much easier to 
identify. Predator-prey interactions have been observed amongst digenean trema- 
tode species, where the larvae of large species tend to prey on those of smaller 
species within snail intermediate hosts (Kuris & Lafferty, 1994). Amongst schis­
tosome species, interbreeding has been observed in natural settings (Cunin et al., 
2003), and experimentally (Tchuem Tchuente, 1994) where it has also been shown 
that the hybrid miracidia have low-infectivity. Combining these observations, it 
is likely that fertility of one or more species is reduced where several schistosome 
species are coendemic.

3.3 Cross-reactivity

Antibody-antigen interactions are highly specific. However, occasionally the anti­
bodies produced in response to one antigen will have a strong affinity for a different 
antigen; this usually occurs when two antigens have the same epitope, but may also 
occur when two antigens have very similar chemical properties (Kuby, 1997).

It is not only antibodies that exhibit cross-reactivity, T-cell receptors may also 
bind to more than one antigen (Regner, 2001). More generally, if the memory cell 
populations (which include both T-cells and B-cells) that respond to two differ­
ent antigens are identified, the cells belonging to both populations constitute the 
cross-reactive response (Smith et al., 1997). Although memory T-cells produced
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in response to one parasite species (or strain) may be of importance in fighting a 
different species (or strain), most experimental evidence concentrates on the cross­
reactivity of antibodies.

A strong line of evidence for cross-reactivity potentially leading to interspecific 
interaction, comes from experiments in which the host response to parasite antigen 
from one species provides protection against another parasite species. For example, 
Almeida et al. (2003) demonstrated that the Schistosoma mansoni derived recombi­
nant antigen Sml4 can be used to vaccinate against Fasciola hepatica in both sheep 
and mice. Similarly, Rosas et al. (2002) have shown that the recombinant antigen 
Ts018 derived from Taenia saginata protects against Taenia erassiceps infection in 
mice. Interestingly, in this latter example, antibodies induced by the vaccine reacted 
to a 6 6 kDa antigen fraction from both T. erassiceps and T. saginata antigens. In 
addition CD4+ and CD8 + T-cells proliferated in response to antigens from both 
species suggesting these cells play a role in the protective effect induced by the 
vaccine.

It is difficult to show directly that cross-reactivity leads to cross-protection, but 
it is usually assumed to be the mechanism of cross-protection when the two species 
involved are closely related, as is the case when two strains of the same species 
cross-protect against one another.

The filarial nematode species Onchocerca volvulus and Onchocerca ochengi are 
closely related and exhibit substantial protein homology (Hoch et al., 1994). Cat­
tle are the definitive host of O. ochengi, and humans are the definitive host of
O. volvulus, but both species share the same vector, Simulium damnosum s.I. In 
Cameroon, the prevalence of onchocerciasis in humans seems to be low where there 
is intensive cattle breeding (Wahl et al., 1998) and it is thought that this may be 
due to human infection with O. ochengi larvae cross-protecting against O. volvu­
lus. The production of specific antibodies to O. ochengi antigens was found to be 
very high in onchocerciasis patients with low microfilarial densities, suggesting that 
cross-reactivity of antibodies produced in response to O. ochengi provide protec­
tion against O. volvulus (Hoch et al., 1994). Cross-protection between other filarial 
species has also been demonstrated experimentally (Geiger et al., 1996). Again, be­
cause the species are closely related it is deemed likely that cross-protection is due 
to cross-reactivity.

Cross-reactivity does not necessarily result in interspecific interaction. Smith 
et al. (2 0 0 1 ) found that proteases from Haemonchus contortus were not protec­
tive when given as a vaccine against Teladorsagia circumcincta in sheep, even 
though anti-sera specific to the Haemonchus proteases recognized some Telador-
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sagia polypeptides.
It is also possible that cross-reactivity may facilitate rather than protect against 

parasite establishment as certain antibody isotypes can inhibit a protective immune 
response. IgG4, for example, is known to competitively inhibit IgE (Vercelli et al., 
1998). The interaction between Trichinella spiralis and Heligmosomoides poly gyrus 
is potentially an example of cross-reactivity facilitating establishment. Antibodies 
to the two species cross-react and the establishment of T. spiralis is enhanced by 
the presence of H. poly gyrus (Robinson et al., 1997), although it should be noted 
that the interaction is not mutually synergistic as the inflammatory response to T. 
spiralis acts to expel H. polygyrus (Behnke et al., 1992).

3.4 T h l/T h 2

In the mid-1980’s Mosmann et al. (1986) showed that T-helper (Th) cells in mice 
could be classified into one of two groups based on patterns of cytokine expression. In 
a Thl-type (type 1) response, the dominant population of T-helper cells secrete the 
cytokines interleukin-2 (IL-2) and interferon-y (IFN-y). These cytokines reinforce 
the T hl status of T-helper cells and also activate cytotoxic T-cells and macrophages. 
Thus a type-1 response is generally associated with the activation of the cellular arm 
of the immune system. In a Th2-type response, the predominant cytokines are IL-4, 
IL-5, IL-10 and IL-13; these cytokines reinforce the Th2 nature of the T-helper cells, 
while the effector mechanisms they induce are associated with an antibody-mediated 
(humoral) response.

Evidence for the importance of the type 2 response in host immunity to helminths 
comes from mice that are unable to produce a Th2 response because IL-4 has been 
eliminated, either by knocking out the IL-4 gene or by producing antibodies against 
the IL-4 receptor. These mice are often unable to produce an effective response 
against helminths. For example, IL-4 knock-out mice become chronically infected 
with THchuris muris (Bancroft et al., 1998), as do resistant strains when the IL-4 
receptor is blocked by antibodies (Else et al., 1994).

In addition to the experimental evidence, epidemiological data on humans also 
supports the hypothesis that Th2 cytokines in general are associated with protection 
against intestinal helminths. In an ex-vivo study using blood from Ascaris lumbri- 
coides infected individuals, Turner et al. (2003) found that levels of the cytokines 
11-4, IL-9, IL-10 and IL-13 produced in response to Ascaris lumbricoides antigen 
were inversely related to the intensity of infection. Another Th2 cytokine, IL-5, 
has been found associated with resistance to reinfection with Necator americanus
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(Quinnell et al., 2004) and also with T. trichiura, but not A. lumbricoides (Jackson 
et al., 2004).

There are difficulties with this simple paradigm of Th2 responses providing pro­
tection against helminth infection. Maizels & Yazdanbakhsh (2003) cite several 
anomalies. First, helminths do not always induce a type 2 response. For instance 
T. muris induces Till or Th2 depending on the strain of mouse, and the microfi- 
larial stage of Brugia rnalayi consistently causes a Till response in mice. Secondly, 
even if a Th2 response is induced, it is not necessarily protective. In humans there 
is evidence that individuals who are put.atively immune to onchocerciasis produce 
a Thl-dominated response to Onchocerca volvulus. And in general, the Th2 re­
sponse is often associated with chronic helminth infection. Maizels et al. (2004) 
have recently suggested that this may be because the helminth parasites are able 
to down-regulate the Th2 effector mechanisms such as eosinophils and IL-5 without 
affecting the regulatory cytokines (IL-4 and IL-10) which give the Th2 ‘signature’.

Given that at least certain aspects of the type 2 response are protective, it seems 
reasonable that a Th2 response induced against one species may help protect against 
a second species. This is thought to be why strains of mice that produce a T h l 
response, and are therefore susceptible to Trichuris muris, can be made resistant by 
infecting with a strong Th2-inducing parasite such as Trichinella spiralis (Hermanek 
et al., 1994) or Schistosoma mansoni (Curry et al., 1995). Citing the reinfection 
studies of Jackson et al. (2004), Bradley & Jackson (2004) have proposed that the 
Th2 cytokine IL-5 induced by Ascaris lumbricoides may hinder the establishment of 
Trichuris trichiura in humans. They speculate that the reverse interaction is unlikely 
since there is no association between the level of IL-5 and the rate of reinfection with 
A. lumbricoides.

It is surprising that more interspecific interactions mediated by the Th2 response 
have not been identified. This may be in part because the type 2 response is different 
for different parasites, and in particular, the effector mechanisms associated with 
protection are often species-specific (Maizels et al., 2004). It may also be because 
the immune responses are often compartmentalized. For example, mice coinfected 
with the filarial parasite Litomosoides sigmodontis and the protozoan Leishmania 
major, exhibit a type 1 response to L.major in the popliteal lymph nodes and a type 
2 response to L. sigmodontis in the thoracic lymph nodes (Maizels et al., 2004).
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3.5 Immunosuppression

In the previous section it was argued that in some situations, a type 2 response to 
one parasite species can act to diminish establishment or survival of another species. 
A similar argument can be made for a species that induces an immunosuppression. 
This seems, for example, to occur in coinfections involving Heligmosomoides poly­
gyrus (Nematospiroides dubius). Adult H. poly gyrus worms suppress the mast cell 
response (Dehlawi et al., 1987)) and induce the T-regulatory (Treg) phenotype in 
T-cells (Else, 2005) (discussed below). Potentially as a consequence of one or both 
of these immunomodulatory effects, infections with Trichinella spiralis, Trichuris 
muris and Hymenolepis citelli are prolonged by the presence of H. polygyrus (Behnke 
et al., 1978; Jenkins &; Behnke, 1977; Alghali et al., 1985). Also, tapeworms recov­
ered from mice coinfected with H. polygyrus and Hymenolepis microstoma are larger 
than those recovered from mice infected with H. microstoma alone (Courtney & For­
rester, 1973). Again this may be a consequence of the immunomodulatory effects of
H. polygyrus. The following is an overview of the mechanisms of immunosuppression.

A down-regulated immune response is often observed during chronic helminth 
infection in which T-cell proliferation and the production of inflammatory cytokines 
are reduced (Maizels h  Yazdanbakhsh, 2003). It is thought that a population of 
T-cells known as T-regulatory (Treg) cells and their associated cytokines, primar­
ily IL-10 and transcription growth factor fd (TGF-/3), may be responsible. Studies 
undertaken in onchocerciasis endemic areas show that peripheral blood Mononu­
clear Cells (PBMC) from individuals with generalized onchocerciasis (GEO) are 
hyporesponsive to Onchocerca volvulus antigen (i.e, show reduced proliferation) as 
compared to PBMC's from individuals who are putatively immune; and it is the 
PBMC’s from GEO individuals that produce much higher levels of TGF-/? and IL- 
10 (Doetze et al., 2000). This pattern of high IL-10 levels and hyporesponsiveness in 
individuals with high worm burdens has also been documented for schistosomiasis 
(King et al., 1996) and lymphatic filariasis (Mahanty et al., 1996).

The connection between hyporesponsiveness and protection against helminth 
infection has been made experimentally for mice infected with the filarial parasite 
Litomosoides sigmodontis. In these experiments, clearance of L. sigmodontis is 
enhanced by neutralizing Treg cells using antibodies to the cell surface markers 
CD25 and GITR (Maizels et al., 2004). There is potentially also a relationship 
between hyporesponsiveness observed in patients with onchocerciasis and enhanced 
parasite establishment. Duerr et al. (2003b) have shown that cross-sectional data on 
worm burden (Duerr et al., 2003b) from W. Africa is consistent with a mathematical 
model of O. volvulus infection that treats parasite establishment as an increasing
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function of host worm burden.
Helminths manipulate the immune system by secreting immunomodulatory com­

pounds. Homologues of host-produced cytokines form an important class of im­
munomodulatory compounds. Brugia malayi produces two homologues of the cy­
tokine TGF-/L Since TGF-(3 is an downregulatory cytokine that induces naive 
T-cells to adopt the T-regulatory phenotype, Maizels et al. (2004) have proposed 
that this may be the mechanism behind hyporesponsiveness in B. malayi. Another 
example is provided by Trichiuris muris which secretes an IFN-y-like molecule that 
is able to bind to IFN- 7  receptor, thereby establishing a non-protective type 1 re­
sponse in mice (Grencis & Entwistle, 1997).

Helminths also secrete molecules that have a more targeted effect; often these 
molecules are proteases. By way of example, the digenean Fasciola hepatica secretes 
a cysteine protease which cleaves IgG antibodies (Berasain et al., 2 0 0 0 ); the dog 
hookworm, Ancylostoma caninum, secretes a glycoprotein that acts as a neutrophil 
inhibitory factor (Moyle et al., 1994); and the rodent hookworm, Nippostrongylus 
brasiliensis, secretes acetylcholinesterase which is thought to inhibit peristalsis and 
decrease mucus production (Lee, 1996).

3.6 Specific vs non-specific effector mechanisms

Antibody and T-cell responses are typically specific to one species or even a partic­
ular strain within a species. Effector mechanisms that involve either antibodies or 
T-cells, e.g. cytotoxic T-cells, or antibody-dependent cellular cytotoxicity (ADCC), 
tend therefore to be species or strain specific, unless they exhibit cross-reactivity 
as discussed above. However, whilst some effector mechanisms are closely linked 
with antibody or T-cell receptors, many are non-specific, e.g. mucus production 
or enhancement of peristalsis. Such non-specific mechanisms have by definition the 
potential to act interspecifically if the timing of infections is right. For instance, a 
non-specific environmental change in the gut appears to be responsible for the pre­
mature expulsion of Nippostrongylus brasiliensis in mice in which Trichinella spiralis 
are established prior to expulsion and, conversely, for the premature expulsion of 
T. spiralis in which Nippostrongylus brasiliensis are established (Kennedy, 1980). 
Similarly, the non-specific inflammatory repsonse occuring during the the rejection 
phase of T. spiralis reduces rates of survival for Hymenolepis diminuta in both rats 
and mice (Christie et al., 1979; Behnke et al., 1977).

Non-specific effector mechanisms would seem to make interactions between species 
unavoidable. However, helminth species differ substantially in the niches they utilize
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within the host and often immune responses are specific to the locality of the infec­
tion (Maizels et al., 2004). Even when species occupy the same locality, the effector 
mechanisms to which parasites are susceptible may still be particular to each species. 
For example, mast cells are superfluous in infections of Trichuris muris (Betts & 
Else, 1999), but are critical in the elimination of Trichinella spiralis (Grencis et al., 
1993). The specificity of effector mechanisms has also been demonstrated in dual 
infections. In a coinfection of N. brasiliensis and Strongyloides ratti in athymic 
mice, the injection of IL-4 and subsequent induction of mastocytosis facilitates the 
expulsion of S. ratti but not N. brasiliensis (Nawa et al., 1994).

3.7 Summary

There is a large literature on experiments undertaken in animal models where it is 
demonstrated that one species of helminth alters the survival or establishment of 
another species. The artificial nature of these experiments makes it difficult to infer 
that interactions between helminth species are frequent outside laboratory settings.

Broadly speaking, interactions can be classified according to whether or not 
they are immunologically-mediated, although in practice it is sometimes difficult 
to distinguish between the two. Exploitative competition is potentially the most 
significant form of non-immunologically-mediated interaction, and is implicated by 
the ‘crowding effect1. The availability of carbohydrate has been identified as a 
limiting resource.

When parasite species are closely related, cross-reactivity of antibodies (or T- 
cells) may lead to interspecific interaction. On occasion, cross-reactivity can occur 
when species are not closely related, and it may be involved with synergistic as well 
as antagonistic interactions.

The Th2 type response is engendered by most helminth species and, through 
Th2-2-dependent. effector mechanisms, may provide some protection against rein­
fection. It is therefore a potential cause of interspecific interaction. However, the 
compartmental nature of many immune responses and the variability of the type 2  

response may make it of little significance.
Many helminth species are able to down-regulate the immune system. This is 

achieved by secreting homologues of host-produced cytokines to interfere the regula­
tion of the immune response, or by secreting proteases to hinder particular effector 
mechanisms. It is likely that immunosuppression by one species will have wider 
effects on infection with other species.
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Chapter 4 

M athem atical M odels of H elm inth  
Infection

4.1 Introduction

Kostizin (1934) realized early on in the development of epidemic models that the 
standard SIR (Susceptible, Infected, Recovered) model framework was not gener­
ally applicable to host infection by helminth parasites. Helminth infection differs 
fundamentally from infection with bacteria, viruses and protozoa since hosts are 
classified not by being infected/uninfected, but rather by the number of worms that 
they harbour. Anderson & May (1991) have introduced a functional classification of 
parasites into micro- and macroparasites. Macroparasites, which includes helminths 
and arthropods, do not multiply within the host, they tend to be large, long-lived 
and unable to induce significant acquired immunity, thus reinfection is the norm for 
these parasites. On the other hand, microparasites, which includes most bacteria, 
viruses and protozoa, multiply within the host have short-life generation times and 
induce immunity to reinfection, often for the duration of the host’s life.

Most models of macroparasite infection have been developed for species that par­
asitize humans. The first models were for schistosomiasis (Macdonald, 1965; Nasell 
& Hirsch, 1972), but there are now numerous models covering most of the major 
human helminth infections (Anderson & May, 1985a; Chan et al., 1994; Basahez & 
Ricardez-Esquinca, 2001; Michael et al., 2006). The economic impact of gastroin­
testinal nematodes of livestock (Tallis & Leyton, 1969; Cornell et al., 2004) has also 
provided motivation, as has theoretical ecology. Here mathematical models have 
been used to explore the potential of helminths to regulate host population size 
(Crofton, 1971; May, 1977a; Anderson & May, 1978; May & Anderson, 1978).

In general, models of helminth infection have been developed with the aim of
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achieving one of the following: 1 ) explaining age-specific patterns of host worm 
burden; 2) explaining the distribut ion of worm burden among hosts; 3) describing the 
long-term dynamics of host and parasite populations and 4) exploring the efficacy of 
possible control interventions. Both deterministic and stochastic models have been 
proposed to deal with these various problems.

To understand age-specific patterns, worm burdens can be modelled determinis- 
tically within a single host. Alternatively, mean worm burden within a population 
of hosts can be treated as a deterministic variable (Anderson & May, 1985b; Wool- 
house, 1992b), although since the model is no longer individual-based, the interpre­
tation of model parameters is less clear in this case. Stochastic models have the 
advantage of being individual-based, and also allowing population-level properties, 
such as mean and variance to be explored. In fact they provide the only means of 
analyzing the higher moments, such as variance, of the distribution of worm burden.

The long-term dynamics of interacting host-parasite populations are modelled by 
incorporating a ‘feedback’ mechanism so that larval population size depends on the 
size of the adult worm population. As yet, long-term dynamics have only successfully 
been explored using deterministic models (e.g. Anderson & May, 1978; Hadeler &; 
Dietz, 1984; Kretzschmar, 1989; Pugliese et al., 1998). Fully stochastic models 
that incorporate a feedback component are difficult to analyze. However, assuming 
that parasites do not affect host mortality, the long-term dynamics of the parasite 
population alone can be analyzed using models that combine both stochastic and 
deterministic elements (Nasell & Hirsch, 1972; Nasell, 1985). Models that are less 
formally defined but nonetheless incorporate stochastic elements have been explored 
through simulation to predict the outcome of control scenarios (Davies, 1993; Plaisier 
et al., 1998).

No attempt will be made to give a comprehensive review of all models of helminth 
infection, but significant classes of model will be discussed. The order in which 
models are presented will mirror that of later chapters in as much as deterministic 
models of infection in a single host (either with a single or multiple parasite species) 
can be viewed as a prelude to stochastic models that deal with the distribution of 
worms in the host population.

4.2 Determ inistic models of infection in the defini­
tive host

The deterministic immigration-death model (Anderson & May, 1991) is a useful 
starting point for a discussion of mathematical models of helminth infection. It
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describes the establishment and subsequent death of adult worms in a single host. 
Though simple, the model offers insights into the nature of age-intensity profiles of 
helminth infection.

Consider a host whose exposure to infective larvae is a function of age (a).  Then 
the rate at which mature adult worms become established within a host, A (a), is also 
a function of age. Once inside the host, adult worms die at a constant percapita 
rate, //a/- This leads to the following differential equation for the change in the 
mature worm population size, M (a), in a host with increasing age

dM  w . .
—  =  A (a) - / i A/A/. (4.1)

Assuming that A/(0) =  0, then the solution to Eqn 4.1 is

M( a)  =  [  X ( s ) e - ^ {a- s)ds. (4.2)
Jo

In the special case where exposure is constant, A(a) =  A, the solution to Eqn 4.1
is

M(a) =  —  (i 
flM

In this simple case, the adult worm burden increases monotonically with age, 
approaching the equilibrium value, —  (Fig.4.1(a)). If exposure varies with age 
then the number of worms may no longer increase monotonically. For example,
exposure may decrease with age. This could be modelled using A (a) =  A0 e~7a, then
the solution to Eqn 4.1 with initial condition A/(0) =  0 is

AoM e  ia -  e »Ma) 7  ^  hmM( a)  =   ̂ mm-7 '  ' ' ' . (4 .3 )
[ A0ae ^Ma 7  =  /XM

Eqn 4.3 has a maximum, so the worm burden in this model has what is often 
referred to as a ‘convex’ age-intensity profile (Fig.4.1(b)). A decreasing rate of 
exposure with age is not the only possible mechanism for generating convex age- 
intensity profiles; the action of acquired immunity may also be significant in this 
respect. The following is a description of a model with acquired protective immunity 
proposed by Anderson & May (1985b).

Assuming that acquired immunity reduces the probability with which an adult 
worm becomes established in a host, (Anderson & May, 1985b) propose the following 
model for change in worm burden with host age
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Figure 4.1: Age profiles of infection intensity, a) Host exposure is constant with 
age, A =  10 year-1, b) Exposure decreases with age, A (a) = Aoe~7°,Ao =  10 
year- 1 , 7  =  1/20 year-1 . In both a) and b) the per capita death rate of adult 
worms, h m , is 1/3 year-1 .
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—-  =  A(1 -  el (a)) -  h m M. 
da

(4.4)

Here A is the rate of exposure, and the ‘probability’ of establishment is assumed 
to be linearly dependent on an immune variable, 7; the strength of the dependence 
is determined by a positive parameter, t. (Note that technically the model is only 
clearly defined for regions of parameter space where the quantity 1 —el(a) is positive.) 
As before, adult worms die at a rate

If the rate at which immunity is acquired is proportional to the current worm 
burden (immunity is concomitant) and decays at a rate cr, then the rate of change 
in the immunity variable is

Using the initial conditions 7(0) =  A/(0) =  0, Eqn 4.5 can be integrated to 
express immunity as a function of A/(a).

For, multiplying both sides by eaa, Eqn 4.5 becomes

Eqn 4.6 lends itself to another interpretation of the immunity variable. 1(a) may 
be thought of as the sum of past parasite loads, each parasite load being weighted 
by an exponentially decaying term according to how far in the past it occurred, so 
that distant parasite loads accrue less weight than loads that are closer in time to 
a; the parameter a controls the extent to which past values are weighted.

This model can produce monotonic and convex age-intensity profiles (see Fig.l, in 
Anderson & May, 1985b). Convexity is possible since acquired immunity introduces 
a time lag into the system: the rate at which worms are acquired is dependent 
on past numbers of worms. Factors that make convexity more likely are: 1) long 
immune memory (small a); 2 ) high transmission (large A); 3) a long worm life 
expectancy (small /xm). If the age intensity profile is convex, then the age at which 
peak intensity occurs is primarily a function of fiM and e.

An alternative model, where acquired immunity is a function of past exposure to 
infective larvae rather than adult worms, can be formulated by assuming that the 
number of larvae acquired by the host is proportional to exposure. Thus exposure

(4.5)

-j-eaaI(a) = eaaM(a)
da

and integrating both sides gives

(4.6)
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is a surrogate measure for the number of larvae and Eqn 4.5 is modified so that

The results of this model are not qualitatively different from the first model 
(Woolhouse, 1992b), which is to be expected since past numbers of adult worms are 
dependent on past exposure to larvae.

A drawback to these deterministic models is that, technically, the results apply 
only to the worm burden within an individual host. Often, to facilitate comparisons 
with data, results are compared with data 011 mean worm burden in a population 
of hosts even though the comparison is not strictly correct. Part of the motivation 
for using stochastic models, as discussed in the following section, is that they can 
be used to determine mean worm burden over a population of hosts.

4.3 A stochastic m odel of infection in the defini­
tive host

A simple model for the distribution of adult parasites in the definitive host will be 
presented. The model is based loosely on that of Tallis & Leyton (1969), though 
the complexities that are dealt with in their paper (clumped input of the infective 
stages and a non-constant hazard of death for adult worms) have been ignored.

If a host of age a acquires adult parasites singly and independently at a rate 
A(a), and there is no parasite death (a pure birth process), then the number, N (a ), 
of adult worms in a host of age a has a Poisson distribution with mean

Without parasite death, the model is only useful over time-spans that are short 
relative to the parasite’s life-expectancy; over longer time-spans, parasite death must 
be incorporated.

If there is worm death, then N(a) represents the cumulative number of worms 
that have established themselves within the host by age a. The distribution of the 
number of live worms within the host at age a, Ah (a), is obtained by computing 
the probability that an arbitrary worm of the N(a) establishments is still alive in a 
host of age a. The age of the host at the point of establishment for this arbitrary 

worm has density j^x^ds  011 (0>a)- Î n the special case where A is constant this 
corresponds to a uniform distribution on (0, a).] If a worm that infects a host at

(4.8)
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age, s, survives until the host is of age a with probability P(s, a), then the arbitrary 
worm is still alive at a with probability p(a) where

Assuming that the lifetimes of worms are independent and conditional on there 
being N(a) =  n establishments, the distribution of live worms i.e. Ni(a)\N(a) = n 
is binomial with parameters n,p(a). It is then straightforward to show that N\(a) 
has a Poisson distribution with mean

Intuitively, the mean number of worms in a host of age a that infected the host 
at age s is the product of the expected number of infections at s, \ ( s )d s , and the 
probability of survival P(s, a). Thus the mean number of worms at age a is the sum 
of A(s)P(s,a) over all ages up to a. In the special case where the hazard of death 
for the parasite is a constant, hm (he. survival times are exponentially distributed), 
P(s, a) = and the mean of the Poisson distribution is the same as the
solution of the deterministic model (Eqn 4.2), i.e.

The equivalence is not surprising since the deterministic model (Eqn 4.1) also 
effectively assumes a constant hazard of death.

4.4 Dispersion

The model of the previous section, predicts that worm burden should follow a Pois­
son distribution. The variance and mean of the Poisson distribution are the same. 
However, empirical studies have frequently shown that the variance in worm bur­
den exceeds mean worm burden (Anderson & May, 1985a). One of the main uses of 
stochastic models has therefore been to identify processes that generate this overdis­
persion and modify its severity.

It is immediately apparent from the preceding model that heterogeneity in the 
rate at which worms are acquired over time and the distribution of parasite lifespan 
have no effect on the degree of dispersion under the simple assumptions of this 
model. This also seems to be the case for more complicated models that allow for 
host death (Herbert & Isham, 2000; Isham, 1995).

f  \(s )P (s ,a )ds (4.9)
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One of the simplifications of the basic model is that the rate of infection, A (a), 
is the same for all hosts. In reality hosts differ in their susceptibility to helminth 
infection due to behaviour, genetics and local environment. This variability can 
be modelled by treating the rate of infection, A (a), as an age-dependent random 
variable (Tallis & Leyton, 1969; Isham, 1995; Herbert & Isham, 2000). The model 
described previously is then equivalent to conditioning on a particular rate of infec­
tion A(a) =  A(a). Therefore the mean number of adult worms in a host of age a is 
computed as follows

E[Ah(a)] =  E[E[A/j(a)|A(a)]]

=  f  E[A (s)]P(s,a)ds. (4-10)
Jo

[where E[ ] is the expectation or mean, and | means ‘conditional on’]. 
Similarly the variance is

Var(Ah(a)) =  E[Var(Ah(a)|A(a))] +  Var[E(Ah(a)|A(a))]
pa pa
/ E[A (s)]P(s,a)ds +  Var[ / A(s)P(s,a)ds], (4.11)
'o Jo

and the index of dispersion (variance:mean ratio) is therefore

1 (a) =  i +  Vari/o° A(s)-P(Si a)ds\
1 } +  / 0° E[A(s)]P(s, a)ds ' ( ‘ j

Clearly the index of dispersion is greater than one. For the special case where A 
is not age-dependent, and parasite survival is exponentially distributed,

" • ’ ■ " w i 1 1 - ” 1 ( 413 )

In this case it is apparent that the index of dispersion for worm burden increases 
with host age.

Overdispersion also arises when infective stages are acquired in clumps rather 
than singly as is assumed in the above model. In a model where parasite survival is 
exponentially distributed and the rate of helminth infection is constant across hosts, 
Isham (1995) shows that overdispersion will arise provided that there is a chance 
that more than one parasite is acquired in a single exposure. Moreover, dispersion is 
increased in this model by increasing the chance of getting a large number of worms 
in an infection instant. The formula given for the index of dispersion is
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(4.14)

where C is a random variable representing the number of parasites acquired in an 
exposure. In contrast to Eqn 4.13 it can be seen here that dispersion decreases with 
increasing host age. Thus, from the simple models analyzed, it would appear that 
overdispersion increases with host age when caused by heterogeneity in parasite 
acquisition amongst hosts, and decreases with host age when caused by parasite 
clumping. Intuitively this is because differences between host worm burdens become 
exacerbated with age if there is heterogeneity among hosts, while differences become 
less significant with age if there is clumping as hosts acquire both small and large 
chimps over time.

The models considered so far have all assumed that worm burden has no effect 
on host survival. Assuming instead that the per capita host death rate, a , is pro­
portional to worm burden then, in the absence of clumping and host heterogeneity, 
Herbert & Isham (2000) show that the number of adult worms is Poisson with mean

s has not killed the host by time a.
Herbert & Isham (2000) further explore the effect of parasite-induced host death 

on dispersion. In their model, the rate of host death is assumed to be proportional 
to the parasite load and overdispersion is introduced through clumping. They find 
that the effect of parasite induced host mortality is to reduce the index of dispersion, 
although it cannot be reduced below unity; this is intuitive since it is the hosts with 
the most parasites that are being removed from the population.

4.5 M odels of population dynamics

The models described thus far have considered worm burden either within a single 
host, or a cohort of hosts. Further, the models have implicitly assumed that the 
number of infective larvae in the environment is constant. However the size of the 
larval population clearly depends on the number of adult worms over the population 
of hosts. Therefore the models described so far effectively assume that the size of 
the adult worm population has reached an equilibrium level. To determine whether 
such an assumption is reasonable, and to understand what factors can influence

The integrand is as it is in the model of section 4.3 (Eqn 4.9) except for the 
factor of e~Q(a~s); this corresponds to the probability that a parasite acquired at age
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equilibrium parasite population sizes, models must allow larval population size to 
depend on the number of adult worms across the host population. The following de­
terministic model was originally proposed by (Anderson & May, 1978), and variants 
have been analyzed by many authors.

Let n.i(t) represent the number of hosts carrying i worms at time t in an infinite 
population of hosts. Therefore N(t)  =  is the total number of hosts
and P(t.) =  is tllc total number of parasites. Also let L(t) be the
numbers of larvae at time t,. Treating hosts with i worms as a subpopulation for 
each of i =  0 , 1, 2 . . . . ,  an infinite set of differential equations can be derived to 
describe changes to these subpopulations as worms are acquired and lost from the 
subpopulations and hosts are born and die. The parameters are defined in table 4.1.

=  bN +  /ini — (a +  4>L)tiq

dfi ■
= ( f )L r i i_ i- \ - f i ( i l )n i+\ — (a + Si + ni + (J)L)rii

^  = eP — a LL — <j>NL. (4.16)
at

Since ^  ^  an(  ̂ ^  =  terms of N  and P  we have,

dN
—  = (b — ot)N — SP
dt v ;
dP  00
—  =  4>LN — (h + a )P  — S i2rii

i = 1

^  =  eP  — n i L  — <f>LN. (4.17)

Assuming that worm burden does not affect host life expectancy so that 6 = 0 
and also that host population size is constant (b =  a), then the system is linear, 
and can be written in matrix form as

- («  +  p) *N  (418)
e ~(fiL +  (f>N)

There is a single equilibrium point (P  =  0, L =  0) that is stable provided the 
matrix in Eqn 4.18 has a positive determinant. If the determinant is negative then 
P —> oo and L —► oc. The determinant is positive provided that

^  < 1. (4.19)
(a +  p )(pl  +  0 Â )

45



Parameter/Variable Definition

n, Number of hosts with i worms
N = E “ o «< Host population size
p  = E ” o'«* Worm population size
o Host death rate in absence of infection
6 Per worm increase in host death rate
b Host birth rate
<t> Per larva rate of host infection
M Worm death rate
Ml Larval death rate
t Per worm rate of larval production

Table 4.1: Parameter definitions for model defined in Eqn 4.16

The quantity on the left hand side (LHS) of Eqn 4.19 is referred to as the 
basic reproduction number, Rq, and provides a criterion for the establishment of a 
helminth infection in a population of hosts. The basic reproduction number may 
also be defined biologically as the number of adult worms produced by an adult 
worm (assuming the worm is hermaphrodite) during its lifetime. It is easy to see 
that the two definitions are equivalent if one considers Rq to be the product of two 
terms: 1 ) the number of infective larvae produced by each adult during its lifetime; 
2) the probability that a larva survives to infect a host. Thus R q maybe written as

" » -  ( r a )  t , m

which is equivalent to the definition of R q based on Eqn 4.19.
Complications arise arise if the worm species is dioecious (has two separate sexes). 

In this case the expression for R q will depend on the probability of mating which is 
determined by the distribution of parasites among hosts (May, 1977b).

Originally Anderson & May (1978) used the model defined by Eqn 4.17 to in­
vestigate the circumstances under which a helminth species is able to regulate host 
population size. In their analysis, Anderson & May (1978) express Eqn 4.17 in 
terms of mean worm burden m{t) — and assume that the relationship between 
between mean and variance is the same as it is in the negative binomial distri­
bution, i.e. (r2(t) =  m(t) +  where k is an inverse measure of the degree of
overdispersion. Under this assumption, Eqn 4.17 becomes
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—— = (b — a )N  — 5mN  
dt v '

d m  I T  t  ^  ^  2—— = (pL — Ui +  a +  o)m — —rn
dt k

^  = emN  — fiiJj — (pLN. (4.21)

The endemic equilibrium for Eqn 4.21 exists only when k is sufficiently large 
relative to S (see Anderson & May, 1978), i.e. as parasite induced host mortality 
increases, the level of aggregation must decrease (k —> oo) for the equilibrium to 
remain stable. This is because as aggregation increases, the number of worms lost 
through host mortality must be reduced if the helminth is to regulate the host popu­
lation. The model can be further extended to incorporate other regulatory processes 
such as parasite-induced reduction in host fecundity, and density dependence in the 
parasite population (Anderson & May, 1978; May & Anderson, 1978).

A difficulty with the model of Eqn 4.21 is that it implicitly assumes that the
degree of overdispersion is constant over time and therefore independent of other
parameters in the model. This assumption is not necessarily upheld since the degree 
of overdispersion is known to depend on, for example, the level of parasite-induced 
host mortality (Herbert & Isham, 2000). The problem can be overcome by ana­
lyzing the infinite set of differential equations of Eqn 4.16 (Hadeler & Dietz, 1984; 
Kretzschmar, 1989). Alternatively, Kretzschmar & Adler (1993) use the infinite 
system to derive equations for mean and variance:mean ratio of worm burden and 
then apply the negative binomial approximation to this system, thereby allowing 
aggregation to vary over time.

As the models mentioned above do not include aggregation-generating mecha­
nisms such as host heterogeneity and parasite clumping, the level of aggregation in 
these models is necessarily much lower than is typically observed for distributions 
of worm burden (Shaw et al., 1998). Pugliese et al. (1998) and Rosa & Pugliese 
(2 0 0 2 ) address this problem by incorporating either parasite clumping or host het­
erogeneity into the model; they find that the stability of the endemic equilibrium is 
strongly dependent on which mechanism for generating overdispersion is used.

A further drawback to the model defined in Eqn 4.16 is that density-dependent 
mechanisms that operate within the host, e.g. acquired immunity, do not fit natu­
rally within this framework. Subsequent chapters will focus on within-host density 
dependence. To accommodate within host mechanisms an individual-based mod­
elling framework developed in Nasell & Hirsch (1972) and Nasell (1985) is intro-
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Parameter/Variable Definition

X{ Worm burden of host i
I Number of infected snails

(f>H per infected snail rate of host infection by cercariae
Mx per capita worm death rate

Per host rate of snail infection by miracidia
M/ per capita death rate of infected snails

Table 4.2: Parameter definitions for the schistosomiasis model 

duced. This framework combines both stochastic and deterministic elements.

4.6 Hybrid models

The following is a presentation of the hybrid model developed by Nasell & Hirsch 
(1972) and Nasell (1985) for schistosomiasis.

Consider a populations of N h definitive hosts and Ns  snails. Let i =  1 , ...Nh 
be the worm burden in host i and I  be the number of infected snails. A fully 
stochastic model is defined in terms of a N h +  1 dimensional Markov of processes. 
The Markov property implies that rates of transition to other states depend only on 
the current state, not on past states. Thus the process can be specified in terms of 
the following transitions (parameter definitions given in table 4.2),

1 . Xi —> Xi + 1 at rate f in l

2 . Xi Xi — 1 at rate n x X i

3. /  -  /  +  1 at rate 3>s (iVs -  /)  £ ,'! '!  X t

4. / —> /  — 1 at rate ////.

Analysis of the model is simplified by replacing /  with m/ in the first transition 
and Xi with NHm x  in the third transition, where rrij and m x  represent the 
mean number of infected snails and mean worm burden respectively. If A*(0) (i =  
1, ..TV//) are independent and identically distributed (i.i.d.), then X / t )  will also be 
i.i.d. for t > 0 , and mi  and m x  can be expressed in terms of a pair of differential 
equations which will now be derived.

Given (X t, /*), the expected change in worm burden over a small interval of time, 
6, is
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E [ X t+s ~  X t \ X t , h ]  — <f>H^i8 ~  V x X t8 (4.22)

to first order in S.
The unconditional mean is obtained by taking the expected value of both sides

E[Xt+s -  X t\ = 4>urn1 8  -  fix m x 8. (4.23)

Then dividing by 8, and taking the limit as 8 —► 0 gives

dmx
— —  =  (f)Hmi -  fix m x . (4.24)

Similarly my can be expressed in terms of a differential equation

(J)SN Hm x (Ns -  my) -  //ymy (4.25)

Eqns 4.24 and 4.25 exhibit a threshold phenomenon in terms of the quantity

The equilibrium m x  =  m i  =  0 is stable when R$ < 1 and unstable when 
Ro > 1 . The model as defined is for a hermaphrodite species; Nasell (1985) also 
explores an extension of this model for a parasite species with two sexes. For this 
system, there is either a single stable equilibrium at m x  =  my =  0, or 3 equilibria: 
a stable zero equilibrium and a stable nonzero equilibrium separated by an unstable 
equilibrium. The unstable equilibrium is referred to as the transmission ‘breakpoint’ 
by Macdonald (1965) since m x  —> 0 if worm burden is reduced below this value. 
The transmission breakpoint arises because parasites cannot meet and mate below 
a certain density. Although for an overdispersed distribution the critical density, 
can be very small (May, 1977b).

Density dependence appears implicitly in these schistosomiasis models since the 
number of infected snails cannot exceed Ng- The models of Chapters 7 and 8  in­
corporate density dependence explicitly, by assuming that either the probability of 
parasite establishment or adult worm fecundity are functions of current worm bur­
den. Furthermore, in contrast to the model presented here, the models of Chapters 
7 and 8  will allow for death of the definitive host.

(t>H4>sNs N H
n o — --------------------

fixHi
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4.7 Summary

A range of mathematical models have been developed in the literature to describe 
various aspects of helminth population biology. Deterministic models have been 
used to explain age-dependent patterns of infection intensity and to model the reg­
ulation of host populations through parasite-induced host mortality. Properties of 
the distribution of worm burden have been elucidated through the use of stochastic 
models. In the following chapters, these various approaches will be drawn upon to 
address multispecies infection. To begin with, the worm burdens of two interacting 
species are modelled deterministically in a single host (Chapter 5). This model will 
form the basis of a stochastic model to explore the distribution of worm burden in 
a population of hosts (Chapter 6 ). Finally, a hybrid model will be developed to 
explore the long-term dynamics of a single species (Chapter 7), and two competing 
species (Chapter 8 ).
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Chapter 5 

Coinfection in a Single Host

5.1 Introduction

Before exploring the distribution of worm burden in a population of hosts, it is 
necessary to understand the dynamics of worm burden within a single host. Deter­
ministic models for the worm burdens of two interacting species, in a single, ageing 
host will be formulated and analyzed here. The results of these models are helpful 
in understanding age-intensity patterns. Furthermore, the model itself will be used 
as the basis for a stochastic model (Chapter 6 ) which explores the distribution of 
worm burden in a cohort of ageing hosts.

The models developed here assume that the mode of interaction is through the 
density of adult, established worms affecting the rates of establishment of incoming, 
larval stages of their own (homologous) species or the other (heterologous) species. 
These interactions may arise as the result of direct effects (e.g. exploitation com­
petition) or may be immunologically-mediated (Chapter 3), although the immune 
response is not modelled explicitly.

The terminology of Behnke et al. (2001) will be adopted and interactions catego­
rized as antagonistic or synergistic. In addition, mutually antagonistic interactions 
are defined as those in which parasites of each species reduce the establishment 
of parasites of the other species. Thus, these interactions induce host-protection 
from heterologous infection. Mutually synergistic interactions are defined as those 
in which parasites of each species enhance the establishment of the other species. 
These interactions result in increased host susceptibility to heterologous infection.
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5.2 Formulation of determ inistic model (D )

A model for two interacting helminth species in a single  ageing host, can be con­
structed by modifying the simple immigration-death framework (Tallis & Leyton, 
1966; Anderson & May, 1991; Duerr et al., 2003a).

The model includes larval (I1J2)  and adult (x\,X 2 ) stages. At age a =  0, there 
are 110 larvae or adults of either species: /*(0) =  .t*(0) =  0 (i = 1,2). For a > 0, 
the rate of change with respect to host age a of the numbers of larvae and adults of 
each parasite species can be modelled as follows,

= A, — ri\eyilxl^')2lX2li — a\l\
da

dx  1
—— =  (T ili- f l iX i
da

= M - V 2 e n'lx^ 1'2Xlh - ° 2 hda

=  (J2 I2 - I 12 X 2 - ( 5 . 1 )
da

In this model, A* represents the net rate at which larval stages of species i 

(i = 1,2) invade the host. Incoming larvae either die or become established and 
reach the adult stage. Larvae of species i become adults at a per capita rate cq, and 
in the absence of any adult worms (of either species) die with a per capita death 
rate 77*. When adult worms are present, 77* is modulated by a factor of elji for each 
adult worm of species j  (j =  1,2). Thus adult worms of species j  increase the larval 
death rate of species i if 7 ^  > 0 and decrease it if 7 ^  < 0. Note that the modulation 
is due to homologous adult worms when j  — i and heterologous adult worms when 
j  /  i. The per capita death rate, //*, of adult worms of species i is unaffected by the 
worm burden of either species (it is density-independent). The notation, definition 
and units of the parameters for this model are summarized in Table 5.1.

The model can be simplified by making the assumption that the larval stage 
in each species is short-lived, relative to the adult lifespan ( ^  »  fii i =  1 , 2 ). 
Under this assumption, the dynamics of adult worm numbers are well described by 
a model in which larval numbers are at equilibrium, i.e. ^  ^  = 0  (for a formal
justification of this procedure based on Korzuhin’s theorem, see Klonowski, 1983); 
Eqn 5.1 then becomes
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Figure 5.1: Solutions to the deterministic model (D) giving worm burden as a 
function of host age. Three scenarios are illustrated: a) no interaction ( 7 2 1  =  
7 1 2  =  0); b) mutually antagonistic interaction (7 2 1  =  0.01,7 1 2  =  0.07), and c) 
mutually synergistic interaction ( 7 2 1  =  —0.01,7 1 2  =  —0.005). For each scenario, the 
thick line represents species 1 and the thin line species 2. Other parameter values: 
Xi =  1.5 month-1, er* =  1 month-1 , /z* = 1/72 month- 1 , 77* =  0.5 month - 1  (z =  1,2), 
7 1 1  =  0.03, 7 2 2  =  0.01.

dx 1 
da 
dx2 
da

The model will be referred to as D (for deterministic). The differential equa­
tions in the system of Eqn 5.2 can be solved numerically to give numbers of worms 
of species 1 and species 2 as functions of host age. It is worth stressing that Xi(a) 
has been defined as the species i worm burden in a single host. Alternatively, 2 7 (a) 
may be viewed as the mean worm burden of species i in an ageing cohort of hosts 
(Woolhouse, 1992b). This interpretation is advantageous in that it allows compar­
isons to be made with data from a population of hosts. However, the interpretation 
of the inter- and intraspecific interaction parameters (the 7  coefficients) is now less 
obvious since the model is no longer individual-based.

For mutually antagonistic interactions, simulations frequently show that the in­
tensity of infection of one of the species is convex, i.e. it peaks, while that of the 
other species increases monotonically to approach an equilibrium. This is illustrated 
by the bottom two curves (the dashed lines) in Fig.5.1. Since processes explaining 
‘convex’ age-infection patterns are of interest in parasitology (Chapter 4), we explore

ai Ai
---------------- t ----------H1X1(JX _|_ ^lC7i 1̂ 1+721̂ 2

° 2^ 2 [L2X2. (5.2)
<72 +  mel22X2+ll2Xl

Mutually Synergistic

60

50
No Interaction

40

30
Mutually Antagonistic

20

10
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Parameter/variable Definition Units

u Number of worms of species i no units
Xi Number of adult worms of species i no units
Xi Rate at which host acquires species i larvae larvae month - 1

(?i Maturation rate of species i larvae month - 1

Vi Per capita death rate of species i larvae month - 1

Pi Per capita death rate of species i adults month - 1

elij Factor by which each adult worm of species i 
( i , j  =  1 , 2 ) modifies species j  larval mortality

no units

Table 5.1: Parameter definitions for the deterministic model (model D).

this phenomenon further in the next chapter.

5.3 Number and stability of equilibria

An important feature of the dynamical system specified by Eqn 5.2 is that trajec­
tories (x\(a),x2(a)) are contained within the region 0  < x\ < 0  < £ 2  < ^

/f 1 2

(provided that they start in this region). This follows from the fact that dxi/da  < 0 
for all values of £ 2  whenever x\ > A1 //X1 , and dx2/da < 0  for all values of £ 1  when­
ever £ 2  > A2 / / i‘2 - The property of boundedness can be used in conjunction with 
properties of the Jacobian matrix to deduce the number and type of equilibria that 
occur when intra- and interspecific terms are antagonistic (7 ^ > 0 , i , j  = 1 , 2 ).

The Jacobian matrix, J , is obtained by differentiating (dx\/da ,dx2/da) with 
respect to x\ and £2 .

— A i< 7 i7 i i r / i e 7 i i :ci + 7 2 i x 2 —A i < 7 i 7 2 i m e 7 l l X l + 72 i ;r2
/ P 1 / T2-
( c r i  +  m e 7 H * l + 7 2 l * 2 )  ( a 1 + m c 7 l l ' l + 7 2 1 * 2 )

— A2 <727l2T72e722x 2 +712*1 -  A2 <72722T?2e722 *2 + 7 1 2 * 1 _

( c r 2 f T 7 2 e 7 2 2 x 2 + 7 1 2 * 1  )  ( CT2 ■+ Tfce7 2 2 ^  +  7 1 2 * 1  )

The eigenvalues of J  evaluated at an equilibrium point determine the behaviour 
of trajectories close to the equilibrium. Let (i = 1,2;k = 1,2) be the element 
of J  in the i th row and k ih column; then the eigenvalues of J  can be expressed as 
|(T r( J) ±  \ /T r2( J) — 4Det( J)) where Tr J = Jn + J22 and Det( J) — J 1 1J 22 — <̂2 1 ^ 1 2- 

Intra- and interspecific effects are antagonistic when 7 ^ > 0  (j, i =  1,2). Under 
this condition, it is immediately apparent that T rJ  < 0. Furthermore, 4D etJ < 
Tr2 J, since Tr2J  =  ( J n  + J22)2 > 4 J n J 22 > 4Det(J) for all values of (£ i,£ 2).
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Figure 5.2: The index of the curve, 6 Y, is + 1 : Moving around the curve, C, defined 
by the lines X\ =  0 ,xo =  0 ,Xi =  ^ , ^ 2  =  hi a counterclockwise direction, the 
vector field (^ C  ~ff) rotates 360° in the counterclockwise direction therefore C  has 
index + 1 .

Imposing the further restriction on the intra- and interspecific terms that 7 1 1 7 2 2  > 
7 1 2 7 2 1  guarantees that D etJ > 0 for all values of (2 7 , o^)- Therefore all eigenvalues 
of J  are real and negative if intra- and interspecific effects are antagonistic, and the 
product of the intraspecific terms is less than the product of the interspecific terms. 
When the eigenvalues associated with an equilibrium are real and negative, then 
the equilibrium is a stable node. In the vicinity of a stable node a trajectory will 
approach the equilibrium point without oscillation (Strogatz, 1994).

Information on the number of equilibria can be obtained through the use of 
indices. The index of a simple, closed curve in the vector field defined by 
is the net number of counter-clockwise revolutions made by the vector field as a 
point (2 7 ,£ 2 ) moves around the curve (Strogatz, 1994). Consider the closed curve, 
C, formed by the lines Xi =  0, £ 2  =  0 , 2 7  =  ^ , £ 2  =  Moving around C, theMl M2

vector field rotates 360 degrees in the anticlockwise direction, thus the index of C  
is +1 (Fig.5.2). This is informative since the index of C is the sum of the indices of 
all the equilibrium points contained within it. The index of an equilibrium point is 
determined by what type of equilibrium it is; saddle points (both eigenvalues real, 
but with opposite signs) have an index of -1 while all other types of equilibria have 
an index of +1.

It has been shown that all equilibria are stable nodes when intra- and interspecific 
effects are antagonistic (7 ^  > 0 j, i =  1,2), and the interaction between species is 
greater than within ( 7 1 1 7 2 2  > 7 1 2 7 2 1 )- Based on the fact that the index of C  is +1 
it is therefore possible to conclude that under this condition there can be only one 
equilibrium since otherwise the index of C  would have to be greater than +1.

Conversely, when 7 1 1 7 2 2  < 7 1 2 7 2 1  (and 7 ^ > 0) then there may be more than
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Figure 5.3: When intra- and interspecific effects are antagonistic, and the interaction 
between species is greater than within species, there may be three equilibria: two 
stable nodes and one saddle point, a) Age-intensity profiles, b) A phase portrait 
where the arrow indicates the stable equilibrium that is approached. The parameter 
values for a) and b) are: 7 n  =  7 2 2  =  0 .0 1 , 7 2 1  =  0.12, 7 1 2  =  0.13,7/1 =  772 =  1 
month-1, u\ — <72 =  1 month-1 , Ai =  A2 =  6 month-1 , fL\ = /i2 =  0.05 month-1 . 
Figures c) and d) are produced with identical parameter values except that 7 2 1  =  
0.13 and 7 1 2  =  0.12. This minor change in parameter values results in a trajectory 
that approaches the other equilibrium.
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one equilibrium. Since the index of C  is + 1 , the number of equilibria must be odd. 
Moreover if there are 2n +  1 equilibria, then n of these are saddle points. For the 
remaining n +  1 equilibria Det J  > 0 otherwise they would also be saddle points, and 
4Det J < Tr2 J  because 7 ^ > 0. These n +  1 equilibria are therefore stable nodes.

Numerical work shows that when 7 ^ > 0 (j , i  = 1,2) and 7 1 1 7 2 2  < 7 1 2 7 2 1 , 
then there are frequently three equilibria. In this situation the (unstable) saddle 
point is a mixture of the two species while in each of the stable nodes one species 
dominates the other (Fig.5.3). The situation is inherently unstable in the sense that 
the parameter values that give rise to two very different trajectories may be quite 
similar. Biologically this implies that when interspecific antagonistic effects are 
much stronger than intraspecific antagonistic effects, one might find the paradoxical 
situation of similar hosts in similar environments with very different worm burdens 
of the two species. This result is a prelude to results that will be derived in the 
following chapter, where it will be shown than the size of interspecific effects relative 
to intraspecific effects is critical in determining the distribution of worm burden in 
host population.

5.4 Linear model

The non-linear model of the previous section may be approximated by a linear one. 
By making this approximation, expressions for the worm burdens of each species as 
functions of host age can be derived.

For species 1 define Z\ = 7n£ i + 7 2 1 ^ 2 ; then a Taylor expansion of the immigra­
tion rate for species 1 in terms of Z\ gives

oyAi (J1A1 <̂1 Ai?7i
---------- = -----------------7 ZKZi +  OiZi)
(Ti + 7)ieZl (J\+r)x  ( c r i + r / 1 ) 2

^ lAl ^  A , < \1    Z\ ) +  o(zi)
tf i  +  m  V m  +  /

Ai(l -  qi)(l -  qizi) +  0 (2 1 )

where 1 — q\ — ^ 7 7 7  is the probability of a species 1 larva surviving to become an 
adult worm in the absence of density-dependent effects.

Similarly, for species 2

=  A2(l -  q2)( 1 -  Q2 Z2) +  0 (2 2 )
0 2  +  72 e22 
2 X1 and <£

Provided that z\ <C 1 and z2 <C 1 the non-linear model maybe approximated by
where 22 =  7 2 2 ^ 2  +  7 1 2 ^ 1  and q2 =
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the following linear model

dx i
—— = Ai (1 — 7 1 1 X1 — 7 2 1 X2 ) — i.i\X\ (5.3)
da
dX‘2 ~ / ~ \ / \

—  = A2(l — 722^2 — 1\2%\) ~  Ll‘2%2 (5.4)

where A, =  ( 1  -  <fc)A* and 7 ^ = qciij.

Solution to the linear m odel (L ) Using the initial conditions xi(0) =  x2(0) =  0 
it is possible to obtain an analytic solution to the pair of differential equations using
Laplace transforms. By integrating Eqn 5.4, and substituting into Eqn 5.3, the 2-
dimensional system is reduced to a 1 -dimensional integro-differential equation, the 
solution of which is the number of worms of species 1 at host age a.

dx\
—  = A i( l - 7 1 1 X1 - 7 2 1 ^ 2 ) - / i i x i  (5.5)
da

x 2 =  A2 [  e ^ a u)(l -  7 1 2 X1 (u))du 
Jo

(5.6)

where f t  =  A2 7 2 2  + P2 -
This integro-differential equation may be solved by taking the Laplace transform 

of both sides. The Laplace transform of the function xi (a) is x\  (s) =  J0°° e_5axi (a)da. 
On the LHS of Eqn 5.5, the Laplace transform of x[(a) is sxj(s) — Xi(0) =  sxj(s). 
On the RHS of Eqn 5.5, the Laplace transform of 1 is 1/s; and the Laplace transform 
of the convolution, x2(a), given in Eqn 5.6 is (1/s — 7 2 ix*)/(s +  f t)  (the product of 
the Laplace transforms of the 2 functions in the convolution, namely (1/s — 7 2 1 X*) 
and l / ( s  + /?2))- The Laplace transform is a linear operator, therefore taking the 
Laplace transform of both sides yields,

* x ( l ~ * t ~ \ “ 7 i 2z ; \
s x j  =  Ai  I -  -  7 n X j  -  A2721 s +  p 2 J  ~

Thus the Laplace transform of Xi(a) is

x *(s) =  h  (■** +  ~   (5 .7 )
s (S + + P2 ) ~  ^02721712

where f t  =  Aifti +  fi\.
Using partial fractions, Eqn 5.7 can be rewritten as

58



where c q , a 2  are the two roots of (s  +  A ) ( s  +  P2) — A1A2721712 =  0. Thus a \  =

\  ( - (A  +  P2) + t)  and a 2 =  \  ( ~ ( P \  + fh) ~  r) where r  =  yj(Pi -  p2)2 + 4AiA272i7i2 
and the coefficients .4], # i,C i have the following values

M(p2 — 721^2)
P1P2 — A i A 27 i 2721

A i ( c q  +  $ 2  — 7 2 1 A2)_  ------------------
c q r

r ,  _  ~  A i ( « 2  +  @2 — 721A2)
V'i — ----------------------------

<a2r

To find Xi(a), the inverse Laplace transform is applied to Eqn 5.8,

aq(a) =  A\ +  Bieaia +  C\6a2d

Oil +  f o  ~  72lA2 ea ia  _  Q?2 +  P 2 ~  72lA2 ^a2Q j ^  ^
OL1 Of2

Even if r  is not real valued, aq(a) is still real valued. When the imaginary component 
of tau is nonzero (/m (r) ^  0), a more useful formulation of aq(a) can be obtained 
by using an alternative partial fraction expansion of the Laplace transform of xi(a)

®i(«)
A l  (s +  p2 — 721A2)________

s (s +  Pi)(s +  P2) — A1A2721712

D 1
+

E\s  +  Fi
s S2 +  (Pi +  P2)s + A$2AlA27l2721

F ( s + £ )

(«
(/3j +/?2) \2 _  (Pi-fo)' 

2 / 4 — AiA27l2721
(5.10)

where Zb = Ai, = —A x, F\ =  Ai — >4i(ft +  p2). The inverse Laplace transform 
of Eqn 5.10 is

— D\ H- Fi e 2 cos£a +
F i _  W i + f c )  
E \  2 sin £a (5.11)

where £ =  W - ( A  -  A>)2 -  4AiA27i272i-



From the symmetry of the system of ODE’s (Eqn 5.3 and Eqn 5.4), it is easy to 
see that the number of worms of species 2  at host age a is

x j a) =  A + h  (  a ' +  & ~  e°.« -  02 +  ~ glaAl eaA  (5.12)
t V a , a-2

where A2 = or if /m (r ) ^  0,z /3l/32-AiA27l2721 v ’ '

X 2( a )  =  D ‘2 +  E ‘2

/  F2 ( P r l - f o )  N
Wl ±Mg  / c . E2 2 • c

2 I cos H—  ---------  sin (5.13)

where D2 =  A2, E2 =  — E2 = X2 — A 2(/3\ +  (32).
The solutions for x\ (a) and x 2(a) imply that both species will approach stable 

equilibria, (xi =  A \ , x 2 = A 2), provided that the real components of au and a 2 are 
negative, or equivalently, provided that (3\ -\- (32 > Q and pi[32 — \ 1 \ 2 J 1 2 J 21 > 0. If 
these conditions are not met then x \ (a) —> ± o c ,x 2(a) —► ± 0 0 . This will occur, for 
instance, when intra- and interspecific terms are positive and the interspecific terms 
are much greater than intraspecific terms, or alternatively, when the intraspecific 
terms (7 1 1  and 7 2 2 ) are negative, (i.e., immunosuppressive) and sufficiently large in 
magnitude. Clearly under these circumstances, the linear model is inadequate.

5.5 A criterion for convexity

Despite producing unrealistic behaviour in certain parameter ranges, the fact that 
the linear model has an analytic solution offers insights into the sorts of age profiles of 
infection intensity that can be produced, and the conditions that produce them. For 
instance, the age-intensity profiles for both species will exhibit damped oscillations 
when r  has a nonzero imaginary component /m (r  /  0), which only occurs when 
the interspecific terms (7 1 2 , 7 2 1 ) have different signs.

An important result obtained from numerical simulation of the non-linear model 
is that when intra- and interspecific effects are antagonistic (7 ^  > 0, i , j  =  1,2), it 
is often observed that the age-intensity profile for one species is convex (see chapter 
4), while the other is monotonic. The solution to the linear model allows a condition 
to be derived for the existence of convex age-profiles of infection.

If intra- and interspecific effects are antagonistic then Im(r)  =  0, and the solu­
tion is given by Eqn 5.9 and Eqn 5.12 with real values of ol\  and a2. By differen­
tiating Xi(a) (Eqn 5.9) and setting to zero, it can be seen that X\(a) has at most
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one stationary point. Furthermore, when this stationary point exists it must be a 
maximum since x\(a) is initially an increasing function of age. The age at which 
the maximum occurs is denoted a\max where

1  ( OL2 + fh  ~  7 2 1  ̂ 2  \  /r 1 ;\
max k>§ I ~ J • (5-14)

t  \ a x + fa ~  7 2 1 A2 /

Thus a criterion for the existence of the maximum and therefore convexity in 
species 1 is that

£*2 +  ^2 ~  721^2

or alternatively that
(^ 1 +  (h ~  7 2 1 A2 

P2 ~  Pi ~ t  — 2 7 2 1 A2

> 0,

> 0.
02 ~  Pi +  T ~  2 7 2 1 A2

Since intra- and interspecific effects are antagonistic, the numerator must always be 
negative, therefore the requirement for a maximum is that the denominator also be 
negative i.e. — Pi +  r  — 2 7 2 1 A2 < 0 ; this condition can be simplified:

P2 — (3\ +  t  — 2721A2 <  0

=> 02 — +  y  {fh , — A )2 +  4A1A2712721 — 2721A2 <  0

{@2 — A ) 2 +  4A1A2712T2I <  ^2721A2 — ($ 2  —

=» fa ~ Pi < 7 2 1 A2 — 7 1 2 A1 . (5.15)

By symmetry, the condition for the existence of a maximum in species 2 is

Pi ~ P2 < 7 1 2 A1 — 7 2 1 A2

=> P2 ~  Pi > 7 2 1 A2 — 7 1 2 A1 . (5.16)

From the inequalities given in Eqn 5.15 and Eqn 5.16, it is apparent that whilst
one of the two species must be convex, they cannot both be convex. The inequalities
will determine which of the two species is convex, but they give no information as 
to the degree of convexity. This is most easily obtained by examining the solution 
for particular sets of parameter values. Figure 5.4 illustrates how quite substantial 
convexity may arise in one of the parasite species as a result of: 1) mutually an­
tagonistic interspecific effects and differences in immunological parameters between 
the two species and 2) mutually antagonistic interspecific effects and differences in
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life-expectancies of the two parasite species.
While there is often a lack of age-specific data on the distribution of worm bur­

dens in non-human hosts, in humans such age-specific data are frequently available. 
Convexity is a common feature of these data (e.g. ScMstosoma, Ascaris, Trichuris 
parasites in humans). Based 011 mathematical models (Anderson and May, 1985b; 
Woolhouse, 1992b; Woolhouse et al. 1994) two explanations for this phenomenon 
have been proposed: 1) host exposure or susceptibility decreases with age; 2) hosts 
build up protective acquired-immunity to the helminths. Whilst these proposals are 
undoubtedly the most likely explanations for ‘convex’ age-intensity patterns, it is 
tempting to speculate that in some situations convexity may be the result of mu­
tually antagonistic interactions between two species. The analysis of the linearized 
version of model D demonstrates that a mutually antagonistic interaction must al­
ways result in one of the two species having a convex age-intensity pattern. However, 
two features (both illustrated in Fig.5.4) of the age-intensity pattern suggest that 
such an interpretation of an observed age-intensity profile should be employed with 
caution. First, even though in theory one of the two species must have a convex 
age-intensity profile when there is a mutually antagonistic interspecific interaction, 
the degree of convexity maybe negligible and therefore practically irrelevant. Sec­
ondly, it would appear that often the peak worm burden occurs at younger ages in 
the model than is observed in data sets of human helminth infection (Anderson and 
May, 1985a).
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Figure 5.4: Worm burden as a function of host age (from Eqns 5.9 and 5.12 ). In A) 
- C) intra- and interspecific interactions are antagonistic, and one of the two species 
has a convex age-intensity profile. A) Worm burden as a function of age peaks in 
species 1 and increases monotonically in species 2 due to differences in the intra 
and inter-specific terms. Parameter values: Ai =  A2 =  1 month-1 , pi =  p 2 =  1/72 
month-1, 7 1 1  =  0.01,7 2 2  =  0.03,7 2 1  =  0.04,7 1 2  =  0.001. B) When all the in­
teraction parameters are equal, then the species with the shorter life-expectancy 
(species 1) will exhibit the peak. Parameter values Ai =  A2 =  1 month-1,/i! =  1/24 
month-1, p 2 =  1 / 1 2 0  month-1 , 7 1 1  =  7 2 2  =  72 1  =  7 1 2  =  0 .0 2 . C) The peak maybe 
imperceptible so that both species appear to increase monotonically. Parameter val­
ues: Ai =  A2 =  1 month-1 , pi =  p 2 =  1/36 month- 1 , 7 2 2  =  7 1 2  =  7 2 1  =  0 .0 1 , 7 n =  
0.005. D) The interspecific terms have opposite signs and age-intensity curves for 
both species are convex. Parameter values: X\ = A2 =  1 month-1 , pi =  p2 =  1/72 
month-1, 7 n =  7 2 2  =  7 2 1  =  0.01,7 1 2  =  -0 .1 .

63



5.6 Summary

A non-linear model of the dynamics of worm burden in a single ageing host is derived. 
The number and type of equilibria are analyzed when intra- and interspecific effects 
act antagonistically. To further facilitate analysis a linearized version of the model 
is derived. From the linearized model, expressions for species 1 and species 2 worm 
burdens as functions of host age are obtained. Further, it is shown that if there is a 
mutually antagonistic interaction between two species then the age-intensity for one 
of the two species will be convex and the other monotonically increasing towards an 
equilibrium. These results are discussed in light of the current hypotheses proposed 
to explain convexity in age-profiles of helminth infection.
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Chapter 6 

Coinfection in a Cohort of H osts

6.1 Introduction

Worm burdens in individual hosts are often small. For any given host, the dynamics 
of worm burden are therefore ostensibly governed by chance. For this reason, when 
comparisons are made between models and ecological data it is useful to consider 
properties of the distribution of parasites among hosts, e.g. mean and variance. 
Stochastic models that explore how processes such as heterogeneity in exposure, 
parasite clumping, parasite-induced host death and host acquired immunity, influ­
ence the distribution of a single parasite species among hosts are reasonably well 
understood (see Chapter 4 for a review of these models). However, there appear 
to be no models that examine the joint distribution of several interacting parasite 
species, despite evidence from experimental and field studies to support the exis­
tence of interspecific interactions (see Chapter 3), and the ubiquity of multispecies 
coinfection (Petney k, Ross, 1998).

In the previous chapter, differential equations were employed to model changes 
in worm burden for two interacting helminth species within a single, ageing host. 
Here these equations will be used to define the transition rates of a bivariate Markov 
process. Realizations of this process mimic patterns of worm burden in individual 
hosts, and moments of the process, e.g. mean, variance and covariance, resemble 
the empirical moments for a large population of hosts.

The Markov process is used to examine the effects of different types of interaction 
on mean worm burden and aggregation for each parasite species, and the correlation 
between these species. The joint distribution arising from the Markov process is a 
function of age. Since ecological data on animal hosts are often not age-specific, the 
effects of combining measures of parasite aggregation and association across host 
age-classes are also explored.
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Parameter Definition Units

A* Rate at which host acquires species i larvae larvae month-1
Oi Maturation rate of species i larvae month-1
Vi Per capita death rate of species i larvae month-1
/h Per capita death rate of species i adults month-1

Factor by which each adult worm of species i
(i =  1,2; j  =  1,2) modifies species j  larval mortality

no units

Table 6.1: Parameter definitions for model S.

6.2 Non-linear model (S )

Consider possible changes of state for a host of age a, with X \ a worms of species 
1 and X 2 a worms of species 2, during a small time period of length S. By making 
6 arbitrarily small, the changes of state are limited to: 1) a worm of species i is 
acquired; 2) a worm of species i dies. The stochastic model is specified by the 
rates of transition from one state to another. Formally, a Markov model is assumed 
for the bivariate process { X ia;a > 0} with initial conditions P(A*(0) =  0) =  1. 
The transition rates for this process are based on model D of the previous chapter. 
Specifically, the possible transitions for species 1 and the corresponding rates are as 
follows,

(Aifl, A2a) > (A ia +  P A2a) at rate 6i(Aia, X 2 a) 

where b\(x\,X2 ) =  Ai/(<ti + rjieyilXl+'niX2)] and

(Aia, X 2 a) —* (Aia —  P  A 2 a )  at rate d i(A la, A 2 a )

where d i(x i,x 2) =  H\x \-
Similar rates can be defined for species 2, i.e. for the transitions 

( A l a ,  X 2a) -> ( A l a , X 2a +  1 ) and ( A l a , A 2 a )  -> ( A l a , A 2 a  -  1). This model will be 
referred to as model S  (for stochastic). The parameter definitions are as for model 
D of the previous chapter, and are repeated here for convenience in Table 6.1.

Model S  is analyzed by simulating species 1 and species 2 worm burdens in a 
number of ageing hosts using two properties of Markov processes. First, given that a 
host has x\ species 1 worms and x2 species 2 worms, the amount of time for which a 
host is in state (x i,x 2) is determined by sampling from an exponential distribution
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with rate b\ + b2 +  di +  d2 (note that the arguments of 6 1 , etc. have been dropped 
for notational convenience). Secondly, on leaving state (x i ,  x2), the host enters state 
(xi  + 1, x2) with probability bi+62̂ di+d2, state ( x i - 1 , x 2) with probability ^ bf t dTCd* ’ 
etc. This can be simulated by generating a uniform random number, U, in [0,1]. If

it enters (x\ — \ , x 2) and so on.
The non-linearity of the functions b\ and b2 makes analysis of model S  difficult. 

A model, L, is therefore defined in the following section where the functions b\ and 
b2 are replaced by linear approximations.

6.3 Linear model (L)

Provided that 7 1 1 X1 +  7 2 1 X2 1 and 7 2 2 X2 +  7 1 2 X1 1, the functions &*(xi,X2 )
(i =  1,2) may be approximated by the first terms of Taylor series expansions (see 
Chapter 5). The resulting approximations are linearly dependent on xi and x 2,

where A* =  Ai(yq^-), i'ji =  7 (i , j  =  1,2). These new ‘composite’ parameters 
can be thought of as follows: A* represents the rate of parasite establishment of 
species i in the absence of adult worms, and 7 ^  (z, j  =  1,2) represents the extent 
to which each adult worm of species j  alfects the rate of establishment of species i. 
The effect is homologous (intraspecific) for j  =  i and heterologous (interspecific) for

j
Using this linearization, we define a linear stochastic model (L). In this model, 

the rates at which adult worms are acquired are given by the linearized form of 
&i(xi,x2) and 6 2 (x i,x 2) provided that these functions are non-negative. For those 
values of xi and x 2 where the functions are negative, the rates are set to zero. Again, 
let the random variables X ia represent the numbers of worms of species i (i — 1,2) 
in a host of age a. Model L is a bivariate Markov process {X ia\ a > 0} with initial 
condition P(Aj0 =  0) =  1 and transition rates:

 ___
b 1 + 6 2 + ^ 1  - M 2

, the host enters state (xq +  l,x*2 ), if b 1___________ <  I I  <T b i + d i
b i + f o - l - d\-\ d,2 —  biXb2+diXd,2

b\{x i , x 2) «  A i (1 -7 1 1 X 1  -7 2 1 X 2 )  

6 2 ( x i , x 2 )  w  A2(l - 7 2 2 X 2  - 7 1 2 X 1 ) (6 .1)

{Xia,X2a) —> (Aia +  1, A 2a) at rate Ai(l — 7 1 1 X1 — 72iX2)+

( A l a ,  X 2a) -> ( A l a  -  1, X 2a) at rate ^ iA ia.

where the notation implies =  z if z > 0 and 0 otherwise. The rates for
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1
■721

Â2

2̂(1 -  722*2 -  71227) - 0

Figure 6.1: State space for model L; the circles represent the possible states. In the 
figure, 7 n  > 7 2 1  > 0  and 722 > 712 > 0 , but similar diagrams may be constructed for 
different relationships between the intra- and interspecific interaction parameters.

species 2  transitions ( X la, X 2a) -> (X ia, X 2a +  1) and ( X la, X 2a) -► (X ia, X 2a -  1) 
are similarly defined.

The Markov process L has a finite state space illustrated in Fig.6.1. Furthermore 
all states inter-communicate (it is possible to reach any state from any other state 
in a finite number of transitions). Given these two properties, it follows that the 
process will approach an equilibrium distribution, as a —> 0 0  (Cox & Miller, 1965, 
p.183).

Further analysis of L is undertaken by deriving a set of differential equations, 
whose solutions is used to approximate the first and second moments.

6.4 An approximation to first and second mo­
ments of model L

Assuming that ^ ( ^ u X ia +  7 j iX ja > 1) <C 1 for all a (i =  l , 2 ; j  /  i), a set of 
differential equations to approximate the first two moments of model L can be 
derived as follows:

After a small time period of length <5, the expected change in the number of 
worms of species 1, given X \ a and X 2a is

E[Xla+, -  =  61 ( X la, X 2a)S -  + o(&).

The unconditional mean is obtained by taking the expected value of both sides,
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E[Xla+i -  X la] = E l h i X ^  X 2q)<5 -  <*,(*,„, X 2a)S + o(5)].

Dividing by <5 and taking the limit <5 —* 0 gives the differential equation

^ E [ X lo] =  E M X ^ X ^ - d . i X ^ X ^ ) ]

= Y1 (i>t(Xux 2) -  d l(Xi,X-2)')pa(XuX2)
( x i , x 2 )

= A](l -  7nE[X la] -  7 2 iE [^ 2a]) -  m E [ X la] -  Ej 

where pa(xu x2) := P ( X ia =  x u X 2a =  x2),

El =  Ai(l -  7ii£i -  721^2)Pa(^l,^2),

and the summation for Ei is over the set { (x \ ,x2) : ju X \  +  7 2ix2 > 1}.
Similarly,

^ E p T 2J  =  A2(l — 722E[X2a] — 7i2E[X1o]) — ii2E[X2a] — E2

where E2 is equivalently defined. Therefore if pa( x \ ,x 2) is negligible in the sets over
which the summation in Ei and E2 takes place, then E[Xla] and E[Af2a] can be
approximated by the solution to the following pair of differential equations

^ E [J f la] = A1( l - 7 nE[X 1J - 7 2 iE[X2„ ] ) - / t 1E[Xla] (6.2)

^ E [ X 2a] =  A2 ( l -  722E[X2J - 7 i 2 E [ X la] ) - ^ 2E[A:2a]. (6.3)

Under the same assumptions, and given E[Xla] and E[X2o], the derivatives of 
the second moments are approximated by the following set of differential equations

JjE pf* ,] =  2Ai (E[A'lo] -  7 nE[X,2J -  721E [ X M )

+ 2/i, (E[X ,J -  E[XU)  + (6 .4 )
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Figure 6.2: Means, variances and correlations obtained through simulation of model 
L (100,000 realizations), and using the set of differential equations that approximate 
the moments of L. Parameter values as in Fig.5.4B of Chapter 5.

^ E [ X 2J  =  2A2 (E[X2o] -  722E[X22J -  7 i2E[X1oX2o])

+  2 h 2 (E[X2o] -  E [xL]) +  (6.5)

^ E [ ^ loX 2a] =  A j E ^ J  -  72iAiE[A:220] +  A2E[Xla]

-  7i2A2E[X,2J  -  (A  +  P 2) E \ X l a X 2a\. (6.6)

where fa = fain +  ^  i =  1, 2 .
The approximation is known to be good if P(7 u^Ca +  I j i^ ja  > 1) <  1 (i =

1,2; j  /  i) for all host ages, a. Unfortunately, the parameter values under which this
probability is small are unknown. However, to be consistent with a small probability, 
the equilibrium solution of Eqns 6 .2-6. 6  should satisfy
(i =  1,2; j  7  ̂ i) (e is used to denoted equilibrium value). In practice, it seems that 
the solution to Eqns 6 .2-6. 6  approximate the first two moments of model L well 
when this condition is met (Fig.6 .2).
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6.5 Properties of ODEs approximating model L

Existence and stability of the equilibrium Eqns 6.2-6.6 can be written in 
matrix form as

d
da

x =  Ax + b (6.7)

where

x =  ( E[^2],E [^f],E [^ |],E [^!^:2]) )'

A =

b = ( Ai., a2,Ai, a2, 0 y

- A —A1721 0 0 0

—A2712 - A 0 0 0
2(Ai + fi\) -- A -A 1721 -2 A 0 —2A1721

—A2712 2(a2 +  H2 ) — A 0 - 2 A —2A27i2
Ai -^2712 — Ai721 — ( A + A )  /

At equilibrium ^ x  =  0, and provided that DetA /  0 there is a single solution
to Eqn 6.7

x  =  - A _1b.

DetA can be computed by expanding on the first row

(6 .8 )

where

and

DetA =  A A D etC  -  A1A27 2 i7 i2 DetC

(  - 2 A
C  =

0 —2 A1 7 2 1  \
0  — 2 A  — 2 A2 7 1 2

V —A2712 —A1721 — ( A + A )  )

DetC — 4(A + A ) (Ai A2 7 1 2 7 2 1  — A A  )■

Therefore,

DetA =  — 4(A +  A ) ^A A  ~  An 

Clearly DetA ^  0 provided that A  +  A  /  0 and (A1A2 7 1 2 7 2 1  — A  A ) /  0. To
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determine the stability of the equilibrium, it is necessary to compute the eigenvalues 
of A. The eigenvalues of A are the roots of the polynomial Det(A — x l )  where I  is 
the identity matrix.

Det(A -  xl)  =  (A +  x)(fi2 +  x)Det(C -  x l)  -  AiA27 i2 7 2 iDet(C -  x l )

=  Det(C -  x l )  ((A  + x){fi2 +  x) -  A1 A2 7 1 2 7 2 1 )

where Det(C -  xl)  =  (fix +  A  +  %) (4AiA27i272i -  (2 A  +  x)(2/32 +  #)) .
The 5 eigenvalues of A are therefore:

- ( A + f t )  ~(ft7 2)±T - ( A + f t ) ± r

where r  =  y 7 i -  A )2 + 4 AiA2 7 2 i 7 i2 -

The eigenvalues are all negative provided that

(A + A ) > 0 and A  A  ~  A1A2 7 1 2 7 2 1  > 0- (6-9)

Under these conditions, the ODE’s 6.2-6.6 approach an equilibrium as a —> 0 0 . 
As has already been discussed, the Markov process defined by L approaches an 
equilibrium as a —> 0 0 . These conditions therefore provide a necessary but not 
sufficient condition for the ODE’s 6.2-6.6 to reasonably approximate the first two 
moments of L.

M ean w orm  b u rd en  Eqn 6.2 and Eqn 6.3 are identical in form to the linear 
differential equations of Chapter 5 that describe change in worm burden in a single 
ageing host. Thus the dynamics of mean worm burden in the stochastic model 
L are approximately equivalent to the dynamics of worm burden in the linearized 
version of the deterministic model D. Specifically, solving Eqn 6.2 and Eqn 6.3 as 
in Chapter 5, mean worm burden as a function of host age is approximately given 

by

E [*ja] =  E[A',]t +  ^  V v .a _  «2 +  f t - 7 j 7 eQ A  (6 10)
T y  a  x a 2 J

where i, j  =  1, 2 i ±  j ,  ax ,2 = \  ( - ( A  +  A ) ±  t )  and E[X*]e =  is the
mean species i worm burden at equilibrium.
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At equilibrium (where (5\ +  f32 > 0 and (5\ fo — A1A2 7 1 2 7 2 1  > 0), the mean worm 
burdens, E[A*]e, are nonnegative if, and only if,

( # 2  -  721A2) > 0 and {(31 -  712 Ai) > 0. (6.11)

Worm burden cannot be negative in model L. Thus Eqn 6.11 should hold for a 
reasonable approximation. Provided /i i , / / 2  > 0, both the conditions in Eqn 6.9 and 
Eqn 6.11 are satisfied when

7 n  >  I712I and 722 >  I721I- (6 . 1 2 )

Hence Eqn 6.12 is a sufficient condition for the approximation of the first two mo­
ments (Eqns 6.2-6.6) to approach a stable equilibrium where mean worm burden is 
positive for both species. In the subsequent analysis of the approximate equilibrium 
covariance and index of dispersion, it will be assumed that Eqn 6.12 holds.

73



E quilibrium  covariance At equilibrium Eqns 6.2-6.6 reduce to

0 =  Ai(E[Ai]e — 7nE[X 2]e — 72iE[AiA2]e) -  /nE[A 2]e +  /qE[Ai]e

(6.13)

0 =  A2(E[X2]C — 722E[X]]e — 7i2E[XiX2]e) — //2E[Xf]e -I- //2E[X2]e

(6.14)

0 =  AiE[A2]e +  A2E[Ai]e — Ai7 2iE[A2 ]e — A27r2E[X2]e — {(3\ +  /32)E[JXx AC2]e

(6.15)

where E[ . ]c denotes expectation at equilibrium.
From Eqn 6.13 and Eqn 6.14, E[X2]e =  ^-(XjE[Xj]e — Aj7 yE[XiX2]e +  /XjEpfj]e). 

Substituting into Eqn 6.15,

E[XtX 2]e E  A -  =  E  -  ^ ( A E [ X i l e +  /XfEpfjJe). (6.16)
^  P i  a  P j

where A =  {(z, j)  : i, j  =  1,2 j  /  z}. Multiplying both sides by ft/?2,

EtXiXaJefA +  -  Ai A27217i2)

=  E E [x i ] ' ( '9^ - ' 3X i O i + / tj ) ) -  (6 -17)

Therefore,

E[x,x2]e = ~  l i i W j  -  i A h  + h )) (6-18)
A

where _ _
Ai A2

K
((3\ +  # 2) (A  #2 — AiA272i7 i2)2 

Subtracting E[Ai]eE[X2]e from Eqn 6.18 gives the covariance between X\  and 
X2 at equilibrium,

Cov(X ,,X 2)e =  / c E A t A - T i A i K ^ - T i i O i  +  Mj))
A

— K(f3\+  A )  (A  — 7 1 2 ^ 1  )(p2 — 7 2 1 A2)
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which simplifies to

Cov(Xl , X 2)e — —K  7 2 1 /4 2  (A — 7 1 2 A1) +  A 7 1 2 M1 (ft‘2 — 7 2 1 ^ 2 )^ • (6.19)

It is apparent from Eqn 6.19 that the covariance between the two species is 
negative if 72 1 and 7 1 2  are both positive, and positive if they are both negative 
(given that Eqn 6.12 holds). Thus mutually antagonistic interactions yield a nega­
tive correlation between worm burdens at equilibrium whereas mutually synergistic 
interactions give a positive equilibrium correlation.

E qu ilib rium  index of d isp ersio n  Aggregation is a key feature of virtually all 
parasitic helminth distributions. Here, and subsequently, the example of Isham 
(1995), Fulford et al. (1992) and others will be followed and the variance : mean 
ratio (VMR) will be used as a quantitative measure of aggregation (aggregation 
=>VMR > 1). When the variance is greater than the mean, the distribution is said 
to be overdispersed relative to the Poisson distribution; when it is less than the mean 
it is underdispersed. Mathematical models have been used to investigate the effects 
of various processes 011 the VMR, e.g. parasite-induced host mortality (Herbert 
and Isham, 2000); clumping of infective stages (Isham, 1995); heterogeneity in host 
susceptibility (Tallis and Leyton, 1969), and host immunity (Anderson and Gordon, 
1982; Pacala and Dobson, 1988). However, to date, it appears that the impact of in­
terspecific interactions on dispersion has not been examined. In fact it is an implicit 
assumption of most ecological models of competition between helminth species that 
interspecific interactions have no effect on the level of aggregation (Dobson, 1985; 
Roberts and Dobson, 1995; Gatto and De Leo, 1998).

Using the properties of the equilibrium covariance given above, it will be shown 
here that both mutually antagonistic and mutually synergistic interactions increase 
the equilibrium VMR relative to the case where there are no interspecific interac­
tions.

From Eqn 6.4, the equilibrium VMR of species 1 can be written as 

Varpf,], 1 (,-x , , E \X ,X 2 ]e\  r ,( v l
" E p C T  “  A ( ( ' Ml) “  1721 E [* ,]e J  “ E[X]le' (6 0)

In the absence of interaction, Eqn 6.20 simplifies to Therefore an interspecific 
interaction will increase the VMR if the following condition is met

7 (W,HXA,?i 7 7 EPf,i->5 (62i)
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This condition may be re-expressed as

E[AT1]C(A1 -  PiE[Xx\e -  Ai72iE[X2]c) > \ 1'y2lCov[Xu X 2]e.

At equilibrium dE[Xi]/da =  0, hence from Eqn 6 .2 , it can be seen that Ai — 
PiE[X\]e — Ai7 2 iE[A2]e =  0. Interspecific interactions therefore increase VMR if

72iCov[Ai, V2]e < 0. (6.22)

This condition is satisfied when the interspecific interaction is mutually antago­
nistic or mutually synergistic.

Now a condition for overdispersion in species 1 is derived. The equilibrium VMR 
for species 1 is greater than 1 if Var[Vi]e >E[Vi]e. This can be written in terms of 
the equilibrium values of the first two moments

+  /i,E[X 1]e) -  (E p G U 2 > E[X,]e>
Pi

or, in terms of Cov[Xi,X2]e,

E[X1]e(A1 + H i -  P i -  P M X i ] e -  Ai72iE[V2]e) > \ ^ 2iCow[XiX2]e. (6.23) 

Since Ai — /3iE[Xi]e — Ai7 2 iE[V2]e =  0 at equilibrium, Eqn 6.23 becomes

72iCov[V1,X 2]e +  7~nE[Vi]e < 0. (6.24)

Substituting in the equilibrium values for E[Xi]e and Cov[Xi ,X2]e gives the 
following condition

A i | 7 h (/32 — A27 2i ) ( / 3i +  P2 ) ( P i P 2 — A1A2721712)

— A2 7 2 1  7 2 1 /̂ 2 {P\ ~  7 1 2 A1) +  p2 l \ 2 p\{P‘2 ~  7 2 1 A2)^ j  < 0. (6.25)

It is immediately apparent that Eqn 6.25 is not satisfied when 7 1 2  < 0 and 
7 2 1  < 0. Thus the equilibrium variance : mean ratio is not greater than unity 
for mutually synergistic interspecific interactions. By contrast the distribution may 
be overdispersed when the interspecific terms are positive. This can be seen, for 
example, by setting 7 n =  0 , which implies 7 1 2  =  0  since it is assumed that 7 1 1  >

I7 1 2 I.
However, it seems that equilibrium overdispersion is not possible when the inter-
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specific effect acting on a species is smaller than the intraspecific effect ( 0  < 7 2 1  < 
7 1 1 ). This is demonstrated for the symmetric case (parameters for the two species 
are identical). Under these assumptions, Eqn 6.25 can be written as

7 i . ( $  -  A?722i ) -  < 0 . (6-26)

Eqn 6.26 does not hold when 0 < 7 2 1  < 7 1 1 . Thus VMR < 1 for symmetric 
mutually antagonistic interactions when 7 2 1  < 7 n-

6.6 Simulation results for model S

The effects of interspecific interactions on dispersion and correlation have been in­
vestigated for model L for regions of parameter space where intraspecific terms are 
antagonistic and larger in magnitude than the interspecific terms, i.e where 7 a > |7 y | 
(2 , j  =  1 , 2 ; i % j).  Here results from the simulation of model S  are presented. These 
simulations examine regions of parameter space that were not explored in model L. 
In particular, model S  is used to investigate the effect on dispersion and correlation 
of synergistic intraspecific terms (7 ^ < 0 ) (i =  1 , 2 ), and interspecific terms that 
are larger in magnitude than the intraspecific terms (|7 y| > |y^| ( i , j  =  1 , 2 ;z % j)).  
Simulations of model S  also cover part of the parameter space explored in model 
L; the results are consistent with those obtained for model L in these regions (see 
Table 6.2 and Fig.6 .3).

The conclusions drawn from the linear model regarding equilibrium correlation 
and VMR were only dependent on the signs and relative magnitudes of the intra- 
and interspecific effects. It is therefore expected that the qualitative behaviour of 
equilibrium correlation and VMRs of model S  are governed by the signs and relative 
magnitudes of the intra- and interspecific effects. Nonetheless parameter values are 
used for the simulations that are consistent with the life-cycles of a number of 
human and non-human helminth species; some examples are given in Table 6.3. For 
simplicity it is assumed that all parameters (demographic and interaction) are the 
same for both species.

A helminth life-expectancy, //*, of 20 months and a maturation time, cq, of 1 
month are chosen. The larval life-expectancy in the absence of immunity, rji: is 
taken to be 1 month. This implies that 50% of larvae become established as adult 
worms ( 7 7 7 7  =  0.5) which is consistent with establishment in some experiments 
(Leathwick et al. 1999). The level of exposure (A* =  5 larvae per month) was chosen 
to give worm burdens in the region of 0-100 (Hall and Holland, 2000). The 7 ’s range 
between 0  and 0 .1 , implying that each adult worm increases or decreases the death
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Case
Interaction Parameters 
Intra- Inter- Relative 

specific specific magnitude

Description

a oA e2VI£ Intra- and interspecific interactions antagonistic, and 
intraspecific effects equal or larger than interspecific effects.

b

If a 0

9? A o \lji\ 5; 7a Intraspecific interactions antagonistic, interspecific interactio 
Intraspecific effects equal or larger in magnitude than intersj

c

oA£

7ji ^  7ii Intra- and interspecific interactions antagonistic, and 
interspecific effects much greater in magnitude than intraspe

d oV

|7ji 1 ^  7ii Intraspecific interactions antagonistic, interspecific interactio 
Interspecific effects much greater in magnitude than intraspe

e

oA

7ji — \lii\ Intraspecific interaction synergistic, interspecific interactions 
Intraspecific effects equal or larger than interspecific effects.

f

la <  0

7ji A 6
VI

jy
1 Intra- and interspecific interactions synergistic, and 

intraspecific effects equal or larger in magnitude than intersp

g 'Jji > 0 Kji ^  l7*i| Intraspecific interactions synergistic, interspecific interaction 
Interspecific effects much greater in magnitude than intraspe

h oV

l7ji| ^  |7m| Intra- and interspecific interactions synergistic, and 
interspecific effects much greater in magnitude than intraspe

Table 6.2: Equilibrium index of dispersion (variance to mean ratio, VMR) for each helminth spec 
between species at equilibrium for stochastic model S. Correlations that approach zero at equ: 
negative at younger ages are denoted by «  0(+ve) and «  O(-ve) respectively. Results are based oi 
are identical for both species.



Parasite species Life expectancy 
(years )

Length of maturation 
(days)

Ascaris lumbricoides 1 — 2 1 50 -  801
Trichuris trichiura 1 - 2 1 50 -  84’
Schistosoma japonicum 2 2 25 -  30*
Haemonchus contortus > 2 3 21 -  254

Table 6.3: Some examples of helminth demographic parameter values. 1 Tables 15.2 
and 15.3 of Anderson and May (1991), 2 Table 5.1 of Esch and Fernandez (1993), 3 

Gems (2000).

rate of incoming larvae by an amount between 0  and 1 0 %.
The findings are summarized in Table 6.2. For the simulations undertaken, 

equilibrium was reached after about 5 years (or roughly two parasite life-times). In 
general, it can be seen that the magnitude of the interspecific terms (7 ^) relative to 
the size of the intraspecific terms (7 ^) and the signs of intra- and interspecific terms 
are critical in determining the equilibrium index of dispersion and the sign of the 
equilibrium correlation.

D ispersion  From the analysis of the linear model, it was shown that the equi­
librium distribution is not overdispersed when the interspecific effect acting on a 
species is smaller in magnitude than the intraspecific effect. In contrast, from the 
simulation of model 5, overdispersion can occur if the relative magnitudes of the 
inter- and intraspecific terms are reversed so that interspecific terms are positive and 
larger in magnitude than the intraspecific terms. This is true both when 7 a > 0 
(Fig.6.3A) and when 7 a < 0 (Fig.6.4A).

For the situation in which interspecific effects are much larger than intraspecific 
effects (7 ji 17n |), each species has a bimodal equilibrium distribution in which
hosts have either no (or very few) worms or very many (Fig.6.5). The joint distri­
bution of the two species reveals that under these conditions those hosts with no 
(or very few) worms of one species tend to have a large number of worms of the 
other species. The bimodal marginal distribution of each species can be interpreted 
in light of this: hosts tend to have either a high or a very low worm burden of one 
species at equilibrium, depending on the abundance of the other species.

Such distributions are likely to be rare since both interspecific terms must be
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much larger than the intraspecific terms. Nonetheless, occasionally such distribu­
tions have been identified and interspecific interaction suggested as an explanation. 
For example, Kennedy (1975) tentatively explains the observation that Haema- 
toloechus sp. and Rhabdias bufonis seldom occur together in lungs of frogs in this 
way. A more plausible scenario for the generation of aggregation by interspecific 
interaction is that one species, species 1 say, has both a large interspecific effect as 
well as intraspecific effect, while the species it interacts with, species 2 , has smaller 
intra- and interspecific effects. If the difference is sufficiently large then species 1 
will cause the equilibrium distribution of species 2  to be overdispersed.

When interactions are mutually synergistic they have less impact on dispersion 
than they do when they are mutually antagonistic. From Fig.6 .3A and Fig.6.4A, 
it appears that the index of dispersion is bounded by one, no m atter how large a 
mutually synergistic interaction becomes and irrespective of whether each species 
regulates (7 ^ > 0 ) or enhances (7 ^ < 0 ) itself.

C o rre la tio n  In keeping with the results of the linearized model, in all age classes 
mutually antagonistic interspecific terms yield negative correlations (cases (a) and 
(c) in Table 6 .2 ), and mutually synergistic interspecific interactions yield positive 
correlations (Fig.6.3B). However, for mutually synergistic interactions that are large 
in magnitude relative to the intraspecific terms (7 ^ < 0 , |t^ | »  7 ^ > 0 ) the corre­
lation peaks in the younger age classes, and then approaches zero at equilibrium.

Although this is an interesting result, it seems unlikely that a helminth species 
would operate to decrease its own rate of establishment (7 # > 0 ) whilst facilitating 
the establishment of the larvae of another species (7 ^ < 0). It is more plausible 
that a helminth species facilitates the establishment of larvae of its own species and 
as a byproduct also enhances the establishment of another species. This situation 
(7 a < 0) is explored in Fig.6.4B where it is apparent that the equilibrium correlation 
is close to zero for both small and large mutually synergistic interactions. Interest­
ingly, the equilibrium correlation is also close to zero for small mutually antagonistic 
interactions ( 0  < 7 ^ < |7 **|).

These results suggest that inspection of the equilibrium correlation is not a good 
predictor for the existence of an interaction between helminth species when adult 
worms of each species facilitate the establishment of their own species. Furthermore, 
even when intraspecific interactions are antagonistic, the equilibrium correlation may 
still be zero for a mutually synergistic interaction if the interspecific terms are greater 
in magnitude than the intraspecific terms.

80



A

Mutually Synergistic Mutually Antagonist
4

DC5
>

i i  c  
o cn 3
0)
1
£ 2 o
X<D■oc” 1 VMR=1

-0.05 0 0.05 0.1
Interspecific terms

B  o.5

c
o

®

oO
-0 .5

y-0 .06
' ji

Y=0.10Jll

20
Age (years)

Figure 6.3: Equilibrium dispersion index, and correlation as a function of host age 
from 1 0 0 , 0 0 0  realizations of model S, when the intraspecific terms are antagonistic 
{la > 0 i =  1,2). A) Equilibrium dispersion index (VMR) for different strengths of 
interspecific interaction (7 ^). B) Correlation between species 1 and 2 as a function 
of host age. Parameter values are: A* =  5 month-1, cq =  1 month-1,/ij =  0.05 
month-1, r)i =  1 month- 1 , 7 ^ =  0 . 0 1  i = 1 , 2 .
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Figure 6.4: Equilibrium dispersion index, and correlation as a function of host age 
from 100,000 realizations of model S, when the intraspecific effects are synergistic 
(7 a < 0 i =  1,2). A) Equilibrium dispersion index=log(VMR) for varying in- B) 
Correlation between the worm burdens of species 1 and 2 as a function of host age. 
Parameter values: 7 ^ =  —0.05 i = 1,2, others as in Fig.6 .3.
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Figure 6.5: The A) joint equilibrium distribution, and B) single species distributions 
of species 1 and species 2  worm burdens (1 0 0 , 0 0 0  realizations of model S) for a 
mutually antagonistic interaction in which the interspecific effects are much stronger 
than the antagonistic intraspecific effects (7 ^  »  7 a > 0). Hosts tend to have a 
large worm burden for one species and a very small or zero worm burden for the 
other species. Parameter values: A* =  5 month-1, cq =  rji = 1 month-1, Hi = 0.05 
month-1, ju  = 0 .0 1 , 7 ^  = 0 .1 , i =  1 , 2 ; j  ^  i.
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6.7 Incorporating heterogeneity (model S r e )

Model S  can be modified by treating the rates of exposure as a pair of correlated 
random variables (A1( A2); this model will be referred to as S r e  (where RE stands 
for random exposure). This adds biological realism because: 1) there is hetero­
geneity among hosts in their exposures/susceptibility to the infective stages which 
can be modelled by the variability of A\ and A2; 2) pairs of helminth species with 
similar biologies often share' similar route's of transmission implying a positive corre­
lation be'tween the rate's e)f e'xpe)sure (e.g., soil-transmitted helminths such as Ascaris 
anel Trickmis); anel 3) susceptibility to one species may be linked with susceptibil­
ity to many species through, for example, genetic prc'disposition (Quinnell, 2003). 
Although Ai, A-2 will be referred to as ‘exposure’ random variables, they may incor­
porate heterogeneity and correlation due to susceptibility because, for the purpose's 
of this model, exposure and susceptibility are essentially indistinguishable.

The' random exposure model, S r e , is analyzed by simulation. For eac'h realiza­
tion. the rates of exposure (Ai, A2) are sampled from a bivariate normal distribution, 
truncated so that Ai > 0. A2 > 0 . The bivariate normal distribution is used because 
it provides a straightforward way of introducing correlation between the exposure 
rates (one of the parameters of the bivariate normal is the correlation coefficient); 
while truncation is necessary to ensure non-negative exposure rates. The normal 
distribution is parameterized to have mean vector (Cm C2 ) and covariance matrix

I  V\ pv \V2

V PV\V'2 U2

where vf (i =  1 , 2 ) is the variance in exposure for species i and p is the correlation 
between exposures for the two worm species. In practice, the truncation is achieved 
by sampling from the full bivariate normal distribution and excluding samples where 
either A1 < 0 or A2 < 0. Results will be presented from simulations where Q =  5, Ui =  
2,p = 0.5; i = 1 , 2 . The means, standard deviations and correlation for Ai and A2 

can be computed by numerical integration. For the parameter values used, they are 
5.049,1.949 and 0.485 respectively.

D ispersion  The effects of both mutually antagonistic and synergistic interspecific 
interactions 011 the equilibrium index of dispersion differ qualitatively in models S  
(homogeneous exposure) and S r e  (random exposure). For mutually antagonistic 
interactions, the equilibrium VMR in model S r e  is crucially dependent 011 the size 
of the interaction. When the interspecific interaction is small (0 < 7 ^ <C 7 **), 
the equilibrium VMR is smaller than it would be in the absence of interaction,
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Figure 6 .6 : Index of dispersion at equilibrium and correlation as a function of host 
age from 1 0 0 , 0 0 0  realizations of model S r e , where exposure to species 1 (Ai) and 
exposure to species 2  (A2) are positively correlated random variables. A) Equilib­
rium dispersion index (VMR) for varying 7 ^. B) Correlation between the worm 
burdens of species 1 and 2  as a function of host age. The distribution of (Ai, A2) 
has parameter values: Q = 5 , 1 7  =  2,p =  0.5; i — 1,2. All other parameters are as 
in Fig.6 .3.
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while for large mutually antagonistic interspecific interactions (7 ^ ;»  7 ^ > 0 ), it is 
substantially greater (Fig.6 .6 A). This is in marked contrast to the results of model S  
described earlier, where mutually antagonistic interactions increase the equilibrium 
index of dispersion (as compared with the no interaction case) irrespective of their 
magnitude (Fig.6.3A).

This is of interest because it demonstrates that while it is often useful to explore 
different factors independently and assume that they combine linearly to determine 
the degree of aggregation (Anderson and Gordon, 1982), on occasion factors may 
combine in a non-linear way. A similar phenomenon has been shown to occur with 
parasite-induced host mortality (Herbert and Isham, 2000): when there is hetero­
geneity in host exposure/susceptibility, parasite-induced host mortality will reduce 
the VMR, but in the absence of this heterogeneity it has no effect.

In the homogeneous exposure model, S', mutually synergistic interactions in­
crease the equilibrium index of dispersion when, in the absence of interaction, the 
distribution is underdispersed, but appear not to be able to induce overdispersion. 
However, in the random exposure model, S r e , mutually synergistic interactions can 
greatly increase the extent to which equilibrium worm burdens are overdispersed.

Correlation If exposures to the two helminth species are positively correlated, 
worm burdens will also tend to be positively correlated. In Fig.6 .6 B it can be seen 
that for small mutually antagonistic interactions the correlation between exposures 
dominates and the equilibrium worm burdens are positively correlated, but when the 
interactions are large the correlation between exposures is countered by the strong 
interaction and the equilibrium correlation becomes negative.

6.8 Averaging across age classes

The results for the models presented have assumed knowledge of host age. That 
is to say, they describe the joint distribution of the two worm species for a given 
age. In contrast, in field studies of non-human parasites, host age is usually not de­
termined explicitly, although surrogate measures are sometimes used (Morris, 1972; 
Lello et al., 2004). When age is ignored, the distribution that is sampled and de­
scribed is averaged across all age groups in the population. Here, the effect that this 
has 011 the index of dispersion and correlation will be discussed.

Consider model S  in the absence of inter- and intraspecific effects. The worm 
burdens X \ a and X 2a for the two species at age a are then independent Poisson 
variables with means
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— i = 1,2. (6.27)
Hi

The mean worm burden across all ages can be computed by weighting the mean 
worm burden at age a by the probability of a host being in age class (a, a + 6) and 
summing over all age classes. For simplicity it is assumed that the distribution of 
ages in the host population is exponential with parameter /t#; then the mean worm 
burden of species i in the population of hosts is

A’ (6.28)
Hi +  HH

The variance in species i worm burden for the population of hosts is the sum 
of two components: the average variance within age classes and the variance of the 
mean between age classes. Specifically it is

  (6.29)
Hi  +  H h  (2 // j  +  H H ) ( H i  +  H h ) 2 

where the first term corresponds to the ‘within’ component and the second to the 
‘between’ component. From Eqn 6.28 and Eqn 6.29 it is apparent that the VMR 
is greater than unity. The covariance between the two species can similarly be 
decomposed into the weighted sum of the average covariance within age classes and 
the covariance of the mean worm burdens between age classes. For a given host 
age, the worm burdens of species 1 and species 2  are independent, thus within age 
classes the covariance is zero; between age classes it is given by

~Xl~X2liH (6.30)
( H \  +  H2 +  H h ) { H i +  H h ) ( H 2  +  H h )

The worm species will therefore be positively correlated when the host population 
is not stratified by age even in the absence of interaction. Furthermore, this positive 
correlation can be large. For example, using the parameter values of Fig.6 .3 (A* =  2.5 
month-1, /ii =  1/20 month-1 ; i — 1,2) and setting /t# =  1/48 month-1 , gives a 
correlation of 0.86 (from Eqn 6.29 and Eqn 6.30).

6.9 Inferring interspecific interaction from eco­
logical data

In the absence of extraneous factors, the correlations at equilibrium between species 
associated with different types of interaction are in agreement with intuition. Mu­

87



tually antagonistic interactions yield negative correlations; mutually synergistic in­
teractions yield positive correlations, and when there is a mixed interaction (one 
interspecific term positive, the other negative) then the correlation can be positive 
or negative. Therefore if the correlation at equilibrium between two species is nega­
tive this implies that at least one of the interspecific terms is positive (antagonistic), 
and conversely if it is positive then one term must be negative (synergistic). This 
intuition has been used to identify potential interactions between species from ma­
trices of correlations for data on intensity of infection (Hayward, Perera and Rohde, 
1998; Byrne et al. 2003) or contingency tables for presence/absence data (Kuris and 
Lafferty, 1994; Jackson et al. 1998). Here some of the difficulties of inferring the 
existence of interactions will be discussed in light of the current models.

In the section on Averaging Across Age Classes it is shown that in the absence of 
interaction and correlation between exposures, the species will be positively corre­
lated if correlation is measured in the population of hosts as a whole, i.e. across all 
age classes. Indeed this correlation may be very strong. Intuitively, the reason for 
this is that young hosts tend to have fewer worms of both species than older hosts. 
Unfortunately, many studies of helminth communities in non-human hosts are not 
age-specific. It is therefore not surprising that in many of these studies there are 
an excess of positive associations between species (Bush and Holmes, 1986b; Lotz 
and Font, 1994; Hayward et al. 1998). Recently, a number of studies have controlled 
for the effects of age statistically by fitting regression models that include age and 
then examining the correlation between species in the residuals from these models 
(Pion et al., 2006; Behnke et al., 2005; Faulkner et al., 2005; Tchuem Tchuente et a/., 
2003). It is interesting that an analogous situation has been addressed in the context 
of immunity to a single parasite species. Here sampling across age groups similarly 
leads to positive associations between antibodies such as IgG and IgA and worm 
burden. This suggests that antibody-mediated immunity is ineffective at reducing 
worm burdens. However, these positive correlations are weakened or reversed after 
controlling for age (Woolhouse, 1992a).

An important feature of strong synergistic intra- and interspecific effects is that 
they frequently lead to an equilibrium correlation between species that approaches 
zero at large ages. Beyond a certain degree of strength, mutually synergistic inter­
actions produce a zero equilibrium correlation between the two species. In general, 
this is not true of mutually antagonistic interactions. However, if intraspecific terms 
act synergistically there may also be zero correlation at large ages if the mutually an­
tagonistic interaction between species is sufficiently weak relative to the synergistic 
intraspecific terms.



These effects occur because the rate at which worms become established has un 
upper bound. If either intra- or interspecific effects are sufficiently synergistic so that 
the worm burden for each species and thus the rates of establishment are maintained 
at an ‘upper limit’, then the rate of establishment for each species is effectively 
independent of worm numbers producing a zero correlation between species. This 
phenomenon will make it difficult to detect interactions in older age groups. In 
ecological studies, it is therefore important to sample the young hosts. Mutually 
synergistic interactions, for example, will be manifest in younger age classes as a 
positive correlation between species even though the correlation may disappear in 
older age classes.

The identification of interspecific interactions is complicated by heterogeneity in 
host exposure (or susceptibility) if there is correlation between the exposure rates 
for the two species as in model S re (Kuris and Lafferty, 1994). This heterogeneity 
may be due to: 1) differences between hosts due to factors such as host sex (Behnke 
et al. 2005; Wilson et al 2002), host genetics (Quinnell, 2003) and host behaviour 
(Wong, Bundy and Golden, 1988); 2) the spatial distribution of infective stages; 3) 
the distribution of infective stages amongst any intermediate hosts. To a certain 
extent, these complexities can be eliminated; either by controlling statistically for 
the effect of area, sex, etc. (Haukisalmi and Henttonen, 1998; Behnke et al. 2005), 
or by sampling appropriately. On other occasions, stratification alone will not deal 
with the problem, as in the case when two helminth species share an intermediate 
host. In this situation, it might be worthwhile exploring how correlation changes 
with host age. Model S re suggests that there is often a decline in correlation in 
older age groups for a mutually antagonistic interaction; such a decline does not 
occur when there is no interaction.

The models analyzed in this chapter have been restricted to two interacting 
species. In reality, many species of parasite may occupy a single host. Under these 
circumstances, the interpretation of correlations between species becomes even more 
complicated because interspecific interactions can cause associations between species 
that do not interact (Moore and Simberloff, 1990; Haukisalmi and Henttonen, 1998). 
For example, a mutually antagonistic interaction between species 1 and species 2; 
and between species 2 and species 3 will result in a positive correlation between 
species 1 and species 3 in the absence of any interaction between these latter species. 
Species 2  is in effect a ‘confounding factor’ of the relationship between species 1 and 
species 3. One way of dealing with this is to use partial correlations (Kleinbaum 
et al. 1998); this provides the correlation between species 1 and species 3 having 
controlled for species 2. Such an approach has been used by Thomas (1964) to
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explore associations between helminth species in brown trout. However, it assumes 
that the joint distribution of the numbers of each parasite species is multivariate 
normal, which may often not be a reasonable assumption to make.

6.10 Summary

A non-linear stochastic model, S, of worm burden for two interacting species in a 
cohort of ageing hosts is defined; the model is based on the deterministic single host 
model of Chapter 5. An analytically tractable linear model, L, and an extension 
of S  that incorporates heterogeneous exposure, model S r e , are also defined. These 
three models are used to explore changes in the joint distribution of worm burden 
for the two species that occur within an ageing cohort of hosts. In particular, mean 
worm burden, variance : mean ratio (VMR) and correlation between worm burdens 
are examined.

In Chapter 5 it was shown that interspecific interactions often lead to convex 
age intensity profiles of worm burden in individual hosts. Since the dynamics of 
mean worm burden in model L approximate the dynamics of worm burden in the 
linearized version of the deterministic model D , convex age-intensity patterns can 
also be expected in data on mean worm burden when helminth species interact.

The Markov processes defined in model L approaches an equilibrium distribution. 
Simulation suggests that models S  and Sre also approach equilibrium distributions 
for the range of parameter values examined. The equilibrium distributions are used 
to approximate the distribution of worm burden in older hosts. Both the VMR and 
the correlation between species are explored at equilibrium.

The VMR is used as a measure of aggregation. At equilibrium, the marginal 
distribution of worm burden for a species becomes increasingly aggregated (VMR> 
1 ) when the interspecific effect acting on the species exceeds the intraspecific effect.

In the absence of correlated exposures, the sign of the correlation between species 
at equilibrium is in agreement with intuition: mutually synergistic (antagonistic) 
interactions lead to positive (negative) correlations. However, strong synergistic 
inter- or intraspecific effects can result in correlations that tend to zero at large 
ages, suggesting that synergistic interactions are hard to detect in older age groups. 
Correlation between the rates of exposure (model S r e )  to the two species trans­
lates into correlation between worm burdens, and may therefore mask the effect of 
interspecific interactions on correlation.

It is often not possible to identify host age when collecting data on worm burden 
of non-human hosts. Averaging correlation across age groups, as is done implicitly
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when there is no stratification by host age can leaH f
between species. ' S ronS Positive correlations
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Chapter 7

Single Species M odels of H elm inth  
Population Dynam ics

7.1 Introduction

To model the long-term dynamics of helminth populations, it is necessary to allow 
the size of the larval population to depend on the number of adult worms in the 
host population. This creates a feed-back loop, that makes the analysis of stochastic 
models difficult. One method of simplification involves incorporating deterministic 
elements into stochastic models (Nasell & Hirsch, 1972; Nasell, 1985). These ‘hybrid’ 
models can be viewed as approximations to fully stochastic models (see Chapter 4).

Here the techniques developed by Nasell & Hirsch (1972) and Nasell (1985) 
will be used to examine the effect of heterogenous rates of host exposure on the 
dynamics of mean worm burden. Host heterogeneity has previously only crudely 
been incorporated in deterministic models, by assuming that hosts fall into a fixed 
number of exposure classes (usually two) (Anderson & May, 1985b; Pugliese, 2000; 
Rosa & Pugliese, 2002). The stochastic models used here allow host exposure to 
vary continuously. Furthermore, the models will form the basis of the models used 
in the following chapter to explore competition between helminth species.

7.2 A model for density-dependent establishm ent

The following is a description of a fully stochastic model for a single, directly- 
transmitted, helminth parasite species in a population of n hosts. In this model, 
the population of larvae with the potential to infect hosts is of size L, and there 
are X{ adult worms within host z, where L and Xi  are random variables. Infective 
larvae are produced by the population of adult worms at a rate, e S L i  Thus the
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parameter e represents the product of the rate of egg production and the probability 
that an egg develops into a larva with the potential to infect a host. Larvae are lost 
from the larval population either through larval death, at a per capita rate /zl, or 
through host infection and subsequent maturation to the adult stage. Host i comes 
into contact with infective larvae at a rate, <E\L ,  therefore larvae are lost through 
infection at rate j It is assumed that density dependence acts on the rate at 
which worms become established in a host, so that a larva infecting host i survives 
to become established as an adult worm with probability (1 — ' y X i )  + . Thus the 
current worm burden. X i ,  of host i affects the establishment of incoming larvae, and 
the parameter 7  measures the severity of density-dependent establishment. The 
notation is introduced because ( 1  — 7  A*) can become negative if ^ is not an 
integer; it should be interpreted as =  z if z > 0 and =  0 otherwise. The 
number of adult worms in host i decreases by one when a worm dies and becomes 
zero when the host dies. The per capita rate at which worms and hosts die are, 
respectively, fix and a. It is assumed that the rate of host death, a , is independent 
of worm burden and that each time a host dies it is immediately replaced by an 
uninfected host. One might imagine, for example, a host population limited by the 
number of available territories: as soon as a territory becomes available it is filled 
by a young, uninfected host. This assumption ensures that the host population size 
is maintained at size n.

The model is defined in terms of the following n +  1 dimensional Markov process 
for larval population in the environment, and adult worm burdens within each of 
the hosts. Parameter definitions are given in Table 7.1.

1. L —*• L + 1 at rate e $ ^ = 1  ^

2. L -> L -  1 at rate (fiL + Yl'Li

3. Xi —* Xi +  1 at rate 1 — 7 A*) +

4. Xi —> Xi — 1 at rate f ixXi

5. Xi —> 0  at rate a.

To begin with it is assumed that each host has the same per larva rate of contact, 
</>, with the population of infective larvae so that =  (j) for all i. To facilitate 
analysis, the random variable L is replaced by its mean, m/J? in the third transition 
rate defined above. The model is no longer fully stochastic; such ‘hybrid models’ of 
helminth infection have been proposed by Nasell & Hirsch (1972) and Nasell (1985). 
As a result of this simplification, and assuming that Xj(0) are independent and 
identically distributed (i.i.d.), then X i ( t )  are i.i.d. for all t .
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Pammeter Definition Units

per infective larva rate of parasite exposure for host i month - 1

7 per worm reduction in probability of establishment dimensionless
Px per capita death rate of adult worms month - 1

Pl per capita death rate of larvae month - 1

a per capita death rate of hosts month - 1

( per worm infective larva production rate month - 1

Table 7.1: Parameter definitions for the single species model with density-dependent 
establishment

7.3 Homogeneous exposure

When exposure is constant, it is straightforward to derive differential equations for 
the mean larval population size mean host worm burden, m x {t), and the
variance in worm burden, cr2x (t)\ the derivations follow.

Let host i (i =  1, ...,n) have a worm burden Xfit)  at time t, and a rate (j) of 
contact with infective larvae. Let L(t) be the size of the larval population at time 
t. Then given (L(t), Xfit)),  the expected change in the number of infective larvae 
over a small time interval of length 6 is

n

E [L(t + 5) -  L(t)\L(t),  Xi(£)] =  e ^  X {6 -  (/zL + n<f>)L(t)S. (7.1)
i

to first order in S.
Taking the expectation with respect to (L(t) ,X(t))  (the subscript i has been 

dropped since the Xfit)  are i.i.d. random variables), dividing through by S and 
taking the limit as S —> 0  gives

dmL
= nemx -  (pL +  (7.2)

Recall that m,}J has been substituted for L in the rate for the X  —> X  +  1 
transition, then applying the above1 procedure to X t gives the following expression

drrix x / x / x— — = m L(j)(l -  7 m x ) -  (px  + a)rnx . (7.3)

Strictly speaking,  ̂ must be an integer for Eqn 7.3 to hold. This is because 
(1 — ryX) might otherwise be negative. However, Eqn 7.3 appears to work well as 
an approximation, even when ^ is not integer-valued.
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It can also be shown that the variance, crXl satisfies

<
= m L(f) { 1  -  7 (2 ax  +  rnx )} +  Hxm-x +  a m 2x  -  (2/ix  +  (7-4)

Technically, m x  and represent limiting values of the mean and variance as 
the host population size tends to infinity. In practice, they describe the dynamics in 
finite populations well, provided that these are of a reasonable size (in Chapter 8 , 
n=100 hosts are successfully used in simulations). The quantity rrii,(t) is the average 
larval population size at time t ignoring stochastic noise. Imagining infinitely many 
realizations of the same process, i.e. infinitely many identical populations, rrii{t), 
is the average larval population over all these realizations. Alternatively, when the 
distribution of larval population size is at equilibrium, may be viewed as the 
long-term average larval population size.

Dynam ics of mean worm burden Assuming that larval dynamics occur 011 a 
faster time-scale than those of adult worms so that (/xl +  n(p) »  (//*• +  a), and 
consequently setting =  0  (for a formal justification of this procedure based on 
Korzuhin’s theorem, see Klonowski, 1983), the dynamics of the mean worm burden 
can be expressed in terms of the following differential equation

=  e'mx (l - i m x ) -  (fix  + a )m x  (7.5)

where e' =  is the product of the rate, e, at which an adult worm produces
transmission stages and the probability, , with which a larva survives to infect 
a host.

Eqn 7.5 can be understood in terms of the basic reproductive number, R q =  

■ When Ro < 1 the helminth species is unable to establish itself in the 
host population since the fixed point m x  =  0 is stable. When Rq > 1, m x  =  0
is unstable and mean worm burden increases approaching an equilibrium where

m x =  7 1 -  « o ') .
Since the model is stochastic, there is a significant chance of extinction soon 

after parasites are introduced into the host population. For the purposes of the 
analysis given above, parasite ‘establishment’ refers to the tendency of the mean 
worm burden to increase from a zero value. Taking this approach, even if extinction 
occurs after one particular introduction, future introductions will eventually lead to 
the establishment of a parasite population when R q >  1.
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Overdispersion At the non-zero equilibrium, the variance : mean ratio of 
worm burden satisfies

(7.6)
rnx 2 f 7 -  a

When a  =  0 (which approximates the case where host death rate is much smaller
than all other rates), the variance : mean ratio simplifies substantially to R q 1.

2

Hence, if R q > 1 then < 1 which implies that, for this simple model, wormTTlX
burden is distributed more evenly across hosts than if worms were assigned to hosts 
at random (which would lead to a Poisson distribution). However, empirical data 
show that the distribution of worm burden is almost always aggregated (Anderson 
& May, 1985a; Shaw et al., 1998) so that worm burden is less evenly distributed 
amongst hosts than in the Poisson distribution; realistic models must therefore in­
corporate mechanisms for generating aggregation (Anderson & Gordon, 1982). One 
such mechanism is heterogeneity in host exposure, and a model incorporating het­
erogeneity in host exposure is developed in the next section.

7.4 Heterogenous exposure

It is well established that heterogeneous exposure is significant to the population 
dynamics of helminth infection. In host-parasite systems in which there is parasite- 
induced host death, heterogeneity has either indirectly (Anderson & May, 1978) or 
directly (Rosa &; Pugliese, 2002) been shown to stabilize the equilibrium at which 
both host and parasite coexist. The stabilizing effect of heterogeneity contrasts 
with the destabilizing effects of parasite-induced reduction in host fecundity, and 
time delays introduced as a consequence of the maturation process in larval stages 
(May & Anderson, 1978).

Heterogeneity is incorporated into deterministic models either through the level 
of aggregation in worm burden (as measured by the parameter k in the negative bi­
nomial distribution) (Anderson & May, 1978; May & Anderson, 1978), or explicitly 
by assuming that hosts fall into different categories (usually just two) of suscepti­
bility to infection (Anderson & May, 1985b; Pugliese, 2000; Rosa & Pugliese, 2002). 
We now extend the stochastic model described in the previous section to allow for 
heterogeneity in host exposure. It is mathematically convenient to do this by allow­
ing each host to have a random rate of contact with infective larvae, <!>*, where the 

i =  1 ,.., n are independent and identically distributed (i.i.d.) each with mean ra<*> 
and variance crj. A set of differential equations describing the dynamics of the mo­

96



ments of the process can be derived, as was done for the case of constant exposure. 
However, in order to do so, it is necessary to use several additional approximations. 
The derivations of the differential equations, and the approximations used are now 
described.

Given (L(t), X l(t), <f>*), the expected change in the number of infective larvae 
during a small interval of time of length 8 is

E [L(t + 6) -  L(l)\L(t), $i] =  f X '6 ~ (V- + Y  (7-7)

to first order in 8.
To deal with the dependence between $  and L, is approximated by m<$>n.

It is then straightforward to obtain a differential equation for m i , by dividing by 8 
and taking the limit as 6 —> 0

Thus E[<f>A] must be determined. The differential equation for E[$X] is a func­
tion of E[$2X}:

In general, to determine E[<I>nA], E[$>n+1A] must be known leading to an in­
finite set of differential equations. However, the system of differential equations 
can be closed by expressing E[<I>2 A] in terms of lower moments. One way to 
do this is based on the bivariate normal distribution, in which case, E[<I>2 A] =  
2 E[<f>]E[<I>X]+E[<f>2 ]E[X] — 2E[<I>]2 E[A]. In terms of the covariance, cr^x, Eqn 7.9 
and Eqn 7.10 become

An expression for the variance in worm burden can be derived along the same 
lines. The second moment of worm burden satisfies the following differential equa-

n n

ncmx — (fiL + m ^ n )m i (7.8)

With random <f>, the equation for m x  is

m L(m<t> -  7 E[<f>A]) -  (fix  +  a)m x
at

(7.9)

dE[<f>X]
dt

raL(E[<I>2] -  7 E[<f>2 A]) -  (fix  +  a )m x . (7.10)

m L(m$> -  7 (oqx + rn^mx )) -  (fix +  a )m x (7.11)

=  m L(o\  -  ~f((T<i>x m<s> +  cr%mx )) -  (fix +  a)(r*x- (7.12)

97



tion

=  m L {2E[$X] -  27E[$;C2] +  m , -  l E ^ * ] }  +  ( i j in ,  -  (2t i x  +  «)E [X 2].

Using the bivariate normal moment closure approximation

E[<i>X2] =  2E[A’]E[$A’] +  E[;C]E[<J>] -  2 E[JC]2 E[$]

and writing the above equation in terms of variances and covariances gives

For the approximation to be effective, it is sufficient that the relationships be­
tween higher and lower order moments are similar to those of the bivariate normal 
distribution; it is not necessary for the joint distribution of (4>, X(t))  to be bivariate 
normal. Indeed, since and X  (t ) are non-negative, their exact distribution cannot 
be bivariate normal, although it may be a good approximation if their means are 
sufficiently large relative to their standard deviations.

A greater degree of accuracy may be obtained by basing approximations on other 
joint distributions (Chan & Isham, 1998), or using higher moments. However, at 
this stage we restrict ourselves to the first two moments and use the bivariate normal 
moment closure to demonstrate analytically tractable results.

Dynam ics of mean worm burden By setting =  0, and making the change 
of variables r  =  e't and a<t>x =  Eqn 7.11 and Eqn 7.12 can be written as

where ^  is the coefficient of variation for the rate of exposure.
Again the dynamics are determined by the value of Rq. When Rq < 1 the 

helminth species cannot establish itself in the host population, while when R0 > 1 
it tends to a non-zero equilibrium distribution. From Eqn 7.14 it can be seen that 
there are in fact two nonzero fixed points, however, only one of these is stable; this

m i  { 2 <j<j>x +  rn<i> — ^ { 2 ( j ^ x rn^x  +  -I- a ^ x  +  m ^ m x ) }

+ V x m x  +  OLm\ -  (2fix +  ot)v2x - (7.13)

rnx ( 1 -  7 (&<i>x + m x )) -  R0 Xm x  

rrixivl -  7 { ^ x  + v l m x ) )  ~  R q 1̂ x (7.14)
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F ig u re  7.1: P hase portraits o f m ean  worm  burden, mx,  and th e  covariance betw een  
exposure and worm burden, cr$>x, scaled by m ean exposure, ra<j>. O ne o f tw o scenarios 
is possib le, depending on th e level o f heterogeneity  in host exposure as m easured by v<t>. 
In a) v$> <  1 and m x  is n onnegative at th e  single fixed point. In b) v$  >  1 and m x  is 
p ositive at b oth  fixed points, but on ly  one o f the fixed poin ts is stab le. T h e  tw o scenarios 
are illustrated  using param eter values jRo — 5 and 7  =  0.01  per worm.

is demonstrated in the phase plane analysis of Fig.7.1. At the stable non-zero fixed 
point,

mx = \  2 7 ( 4 - 1 )  “  1 +  2 K o '  X) 2 +  4t , l ^ o ^ 7 1 5 J

I  -  ^ o ' )  i’4> =  !•

Thus, it can be seen that the equilibrium mean worm burden is dependent on 
the strength of density-dependence, 7 , the degree of heterogeneity, v<j>, and the 
basic reproductive number, Rq. This result is analogous to that of the deterministic 
models where mean worm burden is a function of 7 , Ro and the level of aggregation 
in the distribution of worm burden as measured by the overdispersion parameter, 
k , of the negative binomial distribution (Anderson & May, 1985a; Churcher et al., 
2005).

The equilibrium mean worm burden decreases as heterogeneity in exposure, (7 <t>, 
increases. A maximum mean worm burden of nix =  ^(1 — Rq1) is reached at 
(J4> = 0; mean worm burden approaches zero as a<t> —> 0 0 . Intuitively this can 
be explained as follows. With increasing heterogeneity there are more individuals 
with very high and very low rates of exposure. However, since no host can harbour 
more than ^ adult worms, those individuals with very high rates of exposure do not 
have correspondingly high worm burdens. On the other hand, hosts with rates of
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F ig u re  7.2: M ean worm burden at equilibrium  as a function o f h eterogeneity  in  host 
exposure, tq> =  O ther param eters: R q  =  5 ,7  =  0.01 per worm

exposure close to zero will have very low worm burdens. Thus mean worm burden 
decreases as heterogeneity increases (Fig.7.2).

The negative relationship between heterogeneity and mean worm burden can be 
demonstrated formally by showing that m x  is a decreasing function of v$ at the 
stable equilibrium. Differentiating m \  at the stable equilibrium with respect to v<*> 
gives

dmx  2 e<
( v a  i,;. . i s ' * h y ' " " 2 - 2 /I’, ,1)

dv$ 2 j (v l  -  l ) 2 V

where A = (u | -  l ) 2 +  4 v % R q 2  .

Furthermore, it can be seen from the following that < 0 on [0, oo) when 
R q > 1 :

dm^ < o
av<t.

*> VA -  (vl  -  -  2  V  < 0

A - ( v l - l ) { v l - l  + 2 l t f ) - 2 R o 1̂  < 0 
2 -  (v% -  l ) « o ‘ -  V A  < 0  

^  (v'l +  1 )2 //(i 2 < {/'I — l ) 2 +  4dJ/i>1 2
Rq > 1 .

o

O verdispersion  As in other models (Pacala & Dobson, 1988; Isham, 1995), the
2

variance : mean ratio, ^ , can be shown to be an increasing function of the hetero­
geneity in host exposure. For heterogeneous exposure, the equilibrium variance to 
mean ratio is
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o \  _  ^ 4 > x ( 2  -  2 7 m x  -  7 )  +  c ' ( l  -  j m x ) +  Mx  +  a m x  ,

m x  2 /ix +  « +  2 7  e'rax

Recall that at the non-zero equilibrium cr<*>x =  7 ( 1  — R ^ 1) — m x • Therefore in 
terms of mx, Eqn 7.16 becomes

a 2 e'  ( 7 ( 1  -  R q 1) -  m x ) (2 -  2 ^ m x  -  7 ) + f'(! ~ 7™x) +  Mx +  am x 

mx 2 /ix +  a  +  2')t,m x
2 i ' jm 2x  +  (2/ix +  3o — 4e')mx + 7 ( 1  — / ^ 1)(2 — 7 )  + e' +  Mx

2 //x +  a  + 2 7  f'mjf

The numerator of Eqn 7 .1 7  is a convex quadratic in m x  with a minimum at
L = 4e ~4^ ~ 3q- Let m x  =  7 ( 1  _  Rq !) be the maximum possible value of m x
(attained when there is no heterogeneity in exposure). The numerator is positive
at 771 x , and is a decreasing function of m x  on the interval (0,m x), since L > ?n x .
Hence the numerator is a positive, decreasing function on (0, rax)- The denominator

  2
is clearly a positive increasing function on (0, rax). Thus is a decreasing functionTTlx
of m x  on (0, mx)- Since m x  is a decreasing function of rq>, the variance to mean 
ratio must be an increasing function of v$.

This suggests that a comparison between the distributions of helminths of differ­
ent communities will reveal a negative relationship between variance : mean ratio 
and mean worm burden. Indeed, such a negative relationship has been observed for 
Onchocerca volvulus (Basanez et a/., 2002). However, this argument assumes that 
there is no relationship between m$ and <7 <$>. If, for example, an increase in ra<*> is
accompanied by an increase in er$, then this will affect the nature of the relationship

a2
between m x  and -JL.

At equilibrium, ff<t>x =  7 7 ^  =  7 ( 1  — R q 1) — m x . Thus the covariance (and 
therefore correlation) between worm burden and susceptibility is positive since the 
equilibrium mean worm burden cannot exceed 7 ( 1  — R q - 1 ) .  This is important in terms 
of anthehninthic control. At any given time, targeting individuals with the highest 
worm burdens for continued treatment will ensure that those most susceptible and 
therefore responsible for greatest transmission in the future will be treated. The 
extent to which this is true depends on the magnitude of the correlation between 
susceptibility and worm burden which will vary for different parameter combinations; 
this will be the subject of further investigation.
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7.5 Density-dependent fecundity

In the model presented above it is assumed that density dependence affects para­
site establishment. Alternatively, density dependence may impact the rate of egg 
production. Parasite stunting and low rates of egg production in hosts with high 
worm burdens were originally observed in cestodes (Read, 1951). This ‘crowding 
effect’ has also been observed in non-cestode species (e.g. Fleming, 1988; Stear & 
Bishop, 1999) and has been shown to be attributable to both intra- and interspecific 
competition (Holmes, 1961, 1962).

Density dependent fecundity can be modelled using the framework previously 
described by making the rate of increase of the larval population a function of 
the within-host worm burden. Thus, larval L —► L +  1 transitions occur at rate 
e Xi{l  — 7 (X{ — 1))+. Observe that 7  now represents the effect of each estab­
lished worm on the per capita rate of egg production. Notice also that 7 (A* — 1 ) is 
used rather than 7 because there is no density-dependent effect 011 egg production 
when only one adult worm is present. For simplicity, density-dependent, establish­
ment is neglected so that the rate of A* —> X { +  1 transitions is L<fv Otherwise 
transition rates are as in the model for density-dependent establishment. Specifi­
cally,

1. L —► L + 1 at rate e Y^=i ~  7(^i* “  1))+

2. L —► L -  1 at rate (fiL +

3. X{ —► Xi  +  1 at rate L<f>*

4. Xi —► Xi — 1 at rate fiXi

5. Xi —> 0 at rate a

where <f>j are i.i.d. random variables. As with the model for density-dependent, 
establishment, to facilitate analysis L is replaced by m i  in the third transition rate, 
and m$n  replaces Yl t  \ $*• If in addition the condition

\x(l -  7 (0: -  1))P(A( =  x)\ <  1
{ x : x > l  f  1 }

holds, then closed set of differential equations for the first, and second moments may
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be derived

ne ( ( 1  + 7 )mx  -  l ( v 2x  + rn2x )) -  (fiL + m$>n)mL

dmx mim<s> -  (^x  + a)mx  

mim<$> + fix'fnx + 2 mL<7 <i>x — ( 2  fix + cO^x + am‘xdt

= m La4, -  (fix + a)(r*x (7.18)

The accuracy of the approximation is only good when host death, a , is small rel­
ative to other rates. Intuitively this is because net egg output per host is maximized 
at intermediate levels of worm burden, and intermediate levels will be attained with 
higher probability when old, heavily parasitized hosts are frequently replaced by 
unifected hosts, i.e. when the rate of host death is high. Subsequently, it will be 
assumed that the host death rate is small relative to other rates so that a  =  0 .

When exposure is constant (<h =  <f>) the covariance terms are zero. Furthermore 
if =  0 then Eqn 7.18 becomes

If m x ( 0) =  cr^(0) then mx(t)  =  (?x(t) for all t. In fact it is apparent from the 
transition rates, having replaced L by m i  in the third rate, that the distribution 
of adult worms is given by a non-homogeneous immigration-death process with 
immigration rate mi4> and death rate f i x X , and is therefore Poisson provided that 
the initial distribution is Poisson (Nasell, 1985). Therefore

This is identical to the expression for in the establishment model (Eqn 7.5) 
with a =  0. The dynamics of mean worm burden is therefore the same regardless 
of whether density dependence acts through parasite establishment or fecundity.

e' ( ( 1  +  7 )mx -  l((J2x  + m 2x )) -  fix m x

e' ( ( 1  +  7 )mx  -  7 (<7x + ™x)) +  V x m x -  2 fix cr].2x- (7.19)

where e' =  ^  e.llL+<Pn

dm,x ,n  x
—j —  =  m x c (1  -  7 ?tjx ) -  l i x m x .
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7.6 Summary

Singles species, stochastic models are developed in which the size of the larval pop­
ulation depends 011 the number of adult worms in the host population. The models 
are used to explore long-term dynamics of mean worm burden in a population of 
hosts when density-dependence occurs either at the point of establishment of larvae 
within hosts or during egg production by adult worms.

The establishment of helminth infection in a population of hosts is determined 
by Ro (the basic reproductive number): a helminth species is only able to survive 
within a host population when R q > 1. For R q  > 1 mean worm burden in a 
population of hosts approaches an equilibrium value. When hosts vary in their 
exposure to infective larvae, the mean worm burden is a decreasing function of the 
level of heterogeneity. This result suggests a negative relationship between mean 
worm burden and the variance : mean ratio, although in practice the nature of the 
dependency will also be determined by the relationship between mean and variance 
in exposure.

The dynamics of mean worm burden are the same irrespective of whether density 
dependence occurs through parasite establishment or fecundity. Thus these results 
apply under both models.
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Chapter 8 

Interspecific C om petition

8.1 Introduction

The existence of interspecific interactions is becoming increasingly well documented 
in helminth parasites of mammalian hosts (see chapter 3). Although the overall 
importance of interspecific interactions in shaping helminth communities has been 
questioned (Kennedy, 1975), it is likely that both exploitation competition (indi­
viduals interact negatively on one another indirectly through a limiting resource), 
and interference competition (individuals have a direct negative effect on other in­
dividuals) play a role in structuring some parasite communities (Roberts, 2000). 
Simberloff (1990) discusses four possible mechanisms for within-host competition: 
1 ) competition for space (exploitation); 2 ) competition for nutrients (exploitation); 
3) local inflammation of the gut (interference); 4) cross-reactivity to specific immune 
responses (interference). In addition to these within-host mechanisms, if parasite 
infection increases host mortality, then exploitation competition occurs as the host 
itself becomes the limiting resource.

Each of the above-mentioned mechanisms of within-host competition may affect 
one or more parameters in the life-cycle of the parasite. Parameters that might be 
impacted by competition are: 1 ) the rate at which adult worms establish in the 
host; 2) the death rate of adult worms; 3) the death rate of the host; 4) the rate 
of egg production by the parasite. To date, mathematical modelling of competition 
between helminth species has focused on parasite-induced host mortality (Dobson, 
1985; Roberts & Dobson, 1995; Gatto & De Leo, 1998; Pugliese, 2000); the effects 
of competition on life-history parameters of the worms themselves seem not to have 
been investigated. In this chapter, Markov processes are used to explore the pop­
ulation dynamics of two competing species, where competition occurs either at the 
point of establishment or during egg production by the adult worm.
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The models proposed here are extensions of the models of the previous chap­
ter; like those models they incorporate heterogeneous host exposure. It is currently 
unclear how heterogeneity influences the coexistence of helminth species. Macropar­
asite models that include aggregation phenomenologically suggest that aggregation, 
and therefore by implication the mechanisms such as heterogeneity that generate 
aggregation, act to promote coexistence. On the other hand, by incorporating 
aggregation-generating mechanisms explicitly, Pugliese (2000) has shown that co­
existence is not necessarily promoted.

The model proposed by Pugliese (2000) assumes that the mode of interaction 
between helminth species is via parasite-induced host mortality, whereas the models 
presented here assume that competition takes place within hosts either at the point 
of parasite establishment or via parasite fecundity. Furthermore, the heterogenous 
rates of host exposure are not assumed to be perfectly positively correlated as they 
are in Pugliese (2000).

8.2 A model for two species interacting via density- 
dependent establishment

The single species models of the previous chapter can be extended to include a 
competitive interaction with a second species. In the following model, competition 
may be for limited resources (e.g. space, nutrients) or it may be indirectly-mediated 
through the host immune system. Competition occurs at the point of establishment
within the host: the probability with which a larva of either species becomes es­
tablished is dependent on the number of adult worms of the heterologous species 
already residing within the host (as well as the number of adult worms of its own 
species). Host i now has X u (t) adult worms of species 1 and X 2i(t) worms of species 
2 at time t. The numbers of species 1 and species 2  larvae are, respectively, L\(t) 
and L2{t). Transition rates for species 1 adult worm burdens in each host, and 
numbers of larvae are as follows (transitions for species 2  are similar):

1. L\ —> L\ + 1 at rate <7 \ X u

2 . Lj ^  Lx -  1 at rate (/xLl + YTi=.\

3. X\i —► X\i +  1 at rate L-[<$>u(l — 7 \ \Xu  — 7 2 1 ^ 2

4. X u —> X u  -  1 at rate HxxX u

5. X u  —> 0  at rate a.

106



The parameter 7 j k j , k  = 1 , 2  represents the effect of species j  worms on the 
probability of establishment of species k. Other parameters are defined as in Chapter 
7. The notation z + (which implies z+ =  z when z > 0 and 0 otherwise) is used as 
the quantity ( 1  — 7 n X H — 7 2 1 X 2*) could become negative and so the transition rate 
for Xu  —> X u  + 1 is set to zero whenever this occurs. As in the single species models, 
analysis is facilitated by replacing L\ with rri[Jl in the third transition rate above, 
and when <f>i is random, replacing JX-.i m *in m  second transition
rate. The pairs of random variables (X H(£), X2*(£)) i =  1, ..n are then i.i.d. for all t 
(provided they are i.i.d. at t = 0 ).

Taking larval exposure to each species to be the same for all hosts, so that 
$ 1  i — <f> 1 an(i = 4*2 for i — 1 ,..,n , and setting >̂ ± =  =  0 , the mean
worm burdens can be approximated by quantities satisfying the pair of differential 
equations,

I = m Xle\(l  -  7H771X! -  72 i^x2) -  +  «)m Xlat 
dm x
——2l =  m X2e2( 1 -  722m X2 -  712m Xl) -  {nx2 +  «)m X2 (8 .1 )

where e' =  tlĈ ni 2 =  1 , 2  is the product of the rate at which potentially infective 
larvae are produced by an adult worm, and the probability a larva survives to infect 
a host.

The solution to these differential equations only approximates the mean worm 
burdens for the two species because ( 1  — 7 1 1 X 1 —7 2 1 X 2 ) (and the equivalent species 
2 expression) is potentially negative. More specifically, the approximation given in 
Eqn 8.1 is good if the following two quantities are small in magnitude

~ ^ 3JX 3 -  lkjXk)Pt{x\,x2) {i ,k = 1,2; j  /  k)

where pt(x 1 , 3:2 ) =P(X k =  aq,X 2 1 =  £2 ) and the summations are over the sets 

{ ( x u x 2) : 1 -  7 j jXj  -  7 kjXk < 0 } .

The solution to the differential equations is compared with mean worm burden 
obtained by simulating the model. Parameters were chosen, for the comparison, 
to be consistent with estimates for helminth species (e.g. see Table 6.3 and Tables 
15.2-15.4 Anderson & May, 1991), where such estimates are available. I11 Fig.8 .2a,b 
it can be seen that the approximation works very well for the parameters used.

The two ODE’s in Eqn 8.1 are identical in form (though the interpretation of the 
model parameters is different) to the Lotka-Volterra model used to explore the effects
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of competition on the coexistence of free-living species (e.g. Maynard-Smit.li, 1974). 
The behaviour of the system is determined by the basic reproductive numbers for 
the two species and the inter- and intra-specific interaction parameters. For m x k ( t )  

k = 1 , 2  to increase, it is necessary that

l h k > 1 k = 1 , 2

where Rok = Q is the reproductive number for species k.
When both reproductive numbers exceed unity, and worms of both species are 

present initially, it is straightforward to show, by phase-plane analysis, that, the 
system approaches either a single species equilibrium where one species has excluded 
the other, or a mixed equilibrium where both species coexist (Maynard-Smith, 1974). 
The next section explores a special case in relation to the competitive exclusion 
principle.

C om petitive exclusion principle It is useful for conceptual purposes to distin­
guish two different types of interspecific competition, namely exploitative competi­
tion and interference competition (Schoener, 1983). Exploitative competition occurs 
when both species utilize the same limiting resource. Once a unit of resource has 
been consumed by one species, it is no longer available for consumption by the other 
species. In cestode species, for example, it appears that the carbohydrate intake of 
the host is frequently a limiting resource (Roberts, 2000).

The alternative, interference competition, encompasses a wide variety of mecha­
nisms that cause one species to have a negative impact on the other, and that are not 
resource-mediated, e.g. territoriality, excretion of toxins, overgrowth in plants. A 
pertinent example for helminths is any negative effect that the host immune response 
elicited by one parasite species has on the establishment, survival or fecundity of 
another parasite species.

As defined, the model does not distinguish between the two classes of interaction. 
However, whilst there are no restrictions on the int.ra- and interspecific terms for 
interference competition, when competition is exploitative and the probability of 
establishment is determined by the availability of a single resource, then 7 1 1  =  
712 and 722 = 721- To see this, recall that the term ( 1  — 7 1 1 A 1 — 7 2 iA 2) + , (and 
the equivalent term for species 2 ) represents the probability of establishment in a 
host where X\  worms of species 1 and X 2 worms of species 2  are present,. If the 
probability of establishment in both species is determined by the availability of a 
single resource, then the probability of establishment, for both species, is reduced 
by the same amount for each worm of species 1 present, and therefore we must have
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A

B

(a) (b)

F ig u re  8.1: P hase plane analysis for tw o species com peting  for a single resource (711 =  
712 and 722 =  721 )• T he circle represents th e stab le  equilibrium  in  each figure, and  

A = ^ F (1  — -Rqj1 ), B  — ~ ( I  — R q̂ )  are? respectively, th e values o f th e  isoclines —̂ L =  0

and d™£2 — 0  at =  0. a) W hen R q \  >  R q 2 then  A  <  B  and species 1 excludes species  
2. b) W hen Rq2 >  -^01 species 2 excludes species 1.

7 n =  7 i2 - Similarly each worm of species 2 has the same effect on the probability 
of establishment of species 1 and species 2 , and therefore 7 2 2  =  7 2 1 -

Under this restriction, phase plane analysis reveals that the two non-zero isoclines 
are parallel lines; the mixed equilibrium can therefore not exist. The species with 
the higher Rq ‘wins1, excluding the species with the lower Rq (Fig 8.1b). This 
result is equivalent to that obtained for free-living species by Volterra (Armstrong & 
McGehee, 1980). As with the result for free-living species, it implies the competitive 
exclusion principle which states that two species cannot occupy the same ecological 
niche (Hardin, 1960).
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8.3 Heterogeneous exposure

Heterogeneity in exposure can be modelled by reverting to the case of a correlated 
pair of random variables, ($ 1 , <£>2),  as in the original description of the model in the 
previous section. The same simplifying assumptions are made as in the model with 
homogeneous exposure. In addition, it is assumed that the expectation of products 
of three random variables can be expressed in terms of lower order moments as 
would be the case if they followed a multivariate normal distribution, i.e.

E[W}W2W3] =  E[H/1]E[H/2IT3]+E[IT2]E[Vb1Vb3]+E[Vb3]E[lT1H/2]-2 E [iy 1]E[IT2]E[IT3]

This moment closure assumption is similar to that used for the single species model 
with heterogeneous exposure.

Setting =  0, the following set of differential equations can be derived
(the notation E (Z) =  mz,  var(Z) =  <j|, cov(Y,Z)  =  oyz  is used as for the single 
species model)

drnXl
dt

d(7<&xx  1 
dt

do<& ix2 

dt

/ f  1 / 0 *1* 1  1 \ /0"4>i*2 i /e1m Xl 1 -  7 n ( -------+ m Xl ) ~  721-( -------+  % 2) -  V x ^ x ,
y  TR$>1 ?Ti<j> j J

(8 .2)

1 2 (  -1  ^ * 1X1 . m x l . r v $ l x 2 . m x 2 . \  ,
<1 111$  -  7 n ( — 2—  +  — ) -  7 2 i ( — 5—  +  — — ) -

\  u i $ x cr<j>i rri$>1 j

(8.3)
/  (  - 1  / 0 * 1 * 2  , m * 2  7 Z*7 * ! * !  , /

e2m X 2cr*l4>2 -  7 22( -----------+ --------- ) -  y 12( ---------- + ----------) -  H x 2° * x X 2
\  <7*! *2 ?77/<j>2 0"*i*2 Tn$>2 J

(8.4)

where //Xfc =  nXk + a  (fc =  1 , 2 ).
Similarly, differential equations may be derived for rax2 , 0 *2x2 and cr<j>2x 1, to give 

a closed set of differential equations.

C oexistence The criterion that will be adopted for the coexistence of two species 
is that of mutual invadability: two species coexist when each species can invade 
an equilibrium where only the other species is present (Hutson & Schmitt, 1992). 
Introduction of a small quantity of worms of the invading species will perturb the 
means and covariances by a small amount. To determine whether invasion is likely 
to be successful we therefore perform stability analyses for the equilibria where 
only species 1 or only species 2  is present; we denote these equilibria by e\ and 
e2 respectively. Our criterion for coexistence will be that both e\ and e2 must be
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unstable, i.e. each species is susceptible to invasion by the other species.
The Jacobian matrix, J, corresponding to the system of differential equations for 

two competing species with random exposure (Eqns 8 .2-8.4 and the corresponding 
differential equations for species 2 ) is

C l  - f ^ l i r n X j  “ / ' A ,  - ( i 7 2 1 m X !  1 7 7 7 ^ “ 7 2 1  ™ X ,  0  0

" £ 2  m ^ , 22  7 l 2 m X 2 - < 2 7 1 2 ™ X 2 - £ 2 7 2 2  ^ X 2 ~  ^ X 2 B i  °  °

— £ 2 7 1 2  m X 2 0  0  -4 2  -  M x 2 - 777̂ — 7 2 2 ™ X 2 - 777̂ — 7 1 2 ™ X 2
ct2 2  2

~ f 2 r n ^ ~  7 l 2 m X 2 0  0  C 2 - < 2 7 2 2 m X 2  ~  - £ 2 7 l 2 ™ X 2

s 2 0  0  - t '[ * 1̂ 2  7 2 1  m X l  - £ i  7 2 1  ™ X i  ~ e 'i 7 1 1  m x ,  -  n'X  l

where

A \ =  ei f l - 7 n ( ^ i ^ L +  2 m x 1) - 7 2 i ( ^ i^ i + ^ x 2)>)

(7<J>1 <J>2 . \
 m Xl)m$2 J

^  , (  ° \  1 / o X
Ci =  Ci I -----------7 n ( cr4>iXi +  2 ------ f t t x j  — 721(^1X2 H---------m x 2)\ m $>, ra ^

/4 fc =  /*xfc+ a  k = 1 , 2 ,

and A2, B 2,C2 are the species 2 counterparts to Ai, At e2 (the equilibrium
where species 2  is present and species 1 is absent),

By =  (‘ ■ <*>1<t’2 ~  7 2 2 ( ^ 1 X 2  +  2 — m x 2 ) — 7 i 2 (ct<j>iX! +  m<j>2 m<j>2

where

Det( J | e2 -  A/)

=  (/4q + A)2(/ijVj — A i|e2 +  X)(e>2'y22m x 2 + fi'x2 +

x ( (//'x -  A2 |e2 +  A)(d2 72 2m x2 +  li'x2 + A) + 6 ^ 2 - ^ - 7 2 2 ^X 2 ) (8.5)
\  m <t>2 J

A iU  = f-i f l  - 7 2 i ( ^ ^  +  rax2))V /
A2 |e2 =  4  ( 1 -  7 2 2 ( ^ ^  + 2 mx2))V ra* 2 y

/  2 2 \

f-̂ 2|e2 =  4  ( ——----  722(^$2X2 +  2—̂ - m x 2 ) )\  m<j>2 m 4>2 y

and mx2, cr4>!X2, ^ 4>2x2 take on the values that they have at the equilibrium, e2. The
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notation |C2 is used to emphasize that J, A\, A 2 and C2 are being evaluated at at the 
equilibrium e2.

The roots A =  —(('2 1 2 2 ^ X 2 +  /*x2) an<̂  ^ =  ~tJL'xx are both negative. The 
stability of the equilibrium, e2, is therefore determined by a third order polynomial 
in A. Using the Routh-Hurwitz criterion for a third order polynomial (May, 1973), 
e2 is stable if the following conditions are met

771$,

> 0 (8 .6 )

> 0 (8.7)

> 0 . (8 .8 )

At e2, from the species 2 equivalent of Eqn 8.2, cr$2x 2 can be written in terms of 
m x 2 as

=  — ( 1  -  -R^1) -  m X2.
77i$ 2 y22

Using this relationship, p 'X2 — A 2 \e 2 =  e27 2 2 ^ix2 > 0 and so condition Eqn 8.7 is 
satisfied.

Rewriting Eqn 8 .8 ,

C  I
/hv2(/Us:2 — A 2 \e2) +  e27 2 2 ^ v 2( +  R x 2 ~  M U 2 ) >  0.

771<j>2

For Eqn 8 . 8  to hold, it is sufficient to show that “ ~ + A ix 2 — ̂ 2  \e2 > 0 . Rewriting 
this condition,

^ 0 2  +  (vl 2 ~  1 ) ( 1 ~  272 2m x2) > 0 (8.9)

where * 7TI4) 2
Recall from the single species model that m x 2 is a decreasing function of u$ 2 and 

that at iq>2 =  1, rnx2 — ^ ~ (1  — R0 2  )• Eqn 8.9 holds as a result of this (and hence 
so does Eqn 8 .8 ) because when v%2 > 1

771 2̂ <  ~  (1 — 7?Q2 ) = >  (1 — 2 7 22771x2) >  R q 2

and when v%2 < 1

m X 2 ^ 2 7  ^  ^ ° 2  ̂ ^  ^  d̂l22'm X 2) <  R q2 •

112



The stability of e2 is therefore determined by Eqn 8.6. From this condition and 
a similar condition for the stability of e\ , it follows that the two species can coexist 
if and only if

R\ > 1 and /?2 > 1 (8.10)

where

R floi 721 (— l—̂ + m x 2) \V )
( 8 . 11)

R2 Rq2 (1 -  + rriXl ) ]
V m >̂2 /

(8 . 12)

Ah and R 2 are, respectively, the effective reproductive numbers of species 1 at e2 
and species 2 at ei. That is to say, i?i(/?2) is the number of adult worms produced 
by an invading parasite of species 1(2) during its lifetime, at the equilibrium where 
only species 2(1) is present. Each effective reproductive number is the product of the 
basic reproductive number and a term representing the probability of establishment. 
It can be seen that this probability depends not only 011 the average worm burden 
of the resident species, but also on the covariance between the worm burden of 
the resident species and the host’s susceptibility to the invading species. This is 
intuitively reasonable since the probability of establishment for the invading species 
will be small if hosts that are more susceptible than average to the invading species 
have large worm burdens of the resident species; conversely the probability will be 
large if these hosts have few worms of the resident species.

The criteria for coexistence, formally derived above via stability analysis can 
also be derived intuitively as follows. Consider perturbing e2 by introducing a small 
number of worms of species 1. Species 1 will invade if, after a small time increment, 
there is an increase in i.e. if > 0. Since the number of worms of species 1 
introduced is small, the quantities and are small relative to m x 2- From
Eqn 8.2 the rate, 7*1 , of increase in m x 1 is therefore given by

The rate rq determines the stability of e2: the equilibrium is stable when r\ < 0 
and unstable when rq > 0. An equivalent rate, r2, determines the stability of e\. 
The two species will coexist if rq > 0  and r 2 > 0, which is equivalent to the condition 
that R \ >  1 and R 2 > 1 given above.

At e2, o’$1x 2 |e2 can be written in terms of m x 2 |e2 since

r 1 =  ei 1 — 72 i( ^ 1X2

m<pl + m X2)
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|   I ~ I \
Ĵ 2 162 9 -^2 IE2 \ ^ JX2 '̂.X’2 |e2 / 1

^4>2

where rhx2 =  ~ ( 1  — ^W ) is the maximum possible value of the equilibrium mean
worm burden for species 2 , attained when tq>2 =  0 , and p =  is the correla­
tion between susceptibility to species 1 and susceptibility to species 2. Similarly, 

^*2*! lex =  ~ m x 1\el ), where m Xl =  ^-(1  -  Rm)-  Thus the effective
reproductive numbers can be written as

At, e2, the equilibrium where species 2  alone is present, the species 2  mean worm 
burden, m x 2 |e2, is independent of the correlation, p, between host susceptibility to 
species 1 and host susceptibility to species 2. From Eqn 8.13, the effective reproduc­
tive number for species 1 at e2, is therefore a decreasing function of p. Similarly, R2 
is also a decreasing function of p. Thus, as one might expect intuitively, coexistence 
is promoted by decreasing the correlation between exposure rates.

When heterogeneity, as measured by the coefficient of variation for host exposure, 
is the same for both species, i.e. v<$,l =  v^2 — v$, then the effective reproductive 
numbers R \ and R2 are increasing functions of u<*> for p < 1 . This result follows from 
the results of the single species model which imply that at ei, is a decreasing 
function of v$, as is rrix2 at e2. Consequently, coexistence is facilitated by increasing 
the heterogeneity in host exposure to both parasite species, iq>, provided that p /  1 .

Heterogeneity in host exposure is most likely to facilitate coexistence when hosts 
have similar degrees of heterogeneity in their exposure to both species. When p > 0, 
it can be seen from Eqn 8.13 and Eqn 8.14, that it is hard for a species for which 
host heterogeneity in exposure is relatively high to invade a population where host 
heterogeneity to the already established parasite species is relatively low. For exam­
ple, if species 1 is invading a host population where species 2  is already established, 
and > >  c<j>2, then the effective reproductive number for species 1 (Eqn 8.13) 
will be small because »  1 . Coexistence therefore becomes increasingly hard 
the more the degree of heterogeneity in host exposure differs between the parasite 
species.

These results are illustrated in Fig.8 . 2  through the results of model simulations 
as well as by numerical solution of the set of differential equations that approximate

(8.14)

(8.13)
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the moments (Eqns 8 .2-8.4). For the simulations (Fig.8.2c,d), 100 realizations were 
obtained from each of two independent gamma distributions representing rates of 
host exposure to the the two species. Dependence was introduced (Fig.8 .2d) by 
splitting the 1 0 0  realizations for each species into quartiles and pairing values at 
random from each quartile of species 1 with the corresponding quartile of species
2. Results from the simulation were compared with the approximation using the 
means, variances and correlation of the two sets of realizations as the values for 
Tfi$>k, (k = 1,2) and p, respectively. The results of the simulation suggest that 
the approximation is qualitatively reasonable for the parameters used, although it 
tends to underestimate mean worm burden.
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F ig u re  8.2: C oexistence and com p etitive  exclusion for density-d ep en d en t parasite  es­
tablishment. M ean worm burden as a  function  o f tim e obtained  by sim ulating  from  th e  
Markov process defined in the text; resu lts for the corresponding approxim ation  using  
Eqns 8 .2-8.4 are also given. Species 1 and species 2 m ean worm  burdens are given by  
the dashed and solid lines respectively  (for b oth  sim ulation  and approxim ation). For 
a) - c) R o\ >  Rq2 , and hence species 1 has a com p etitive advantage, a) C om p eti­
tive exclusion of species 2 by species 1 w hen all h osts have th e  sam e rate o f exposure  
to  parasites (fa  =  fa  =  0 .001). b) C oexistence w hen host exposure is h om ogeneous  
(fa  =  fa  =  0.001) due to  weak interspecific term s (712 =  721 =  0 .025). c) C oexis­
tence w hen rates of exposure to  species 1 and species 2 are heterogeneous, im perfectly  
correlated and the degree o f heterogeneity  is approxim ately th e sam e for b o th  para­
site  species. M eans, variances and correlation for th e rates o f exposure to  species 1 
and species 2 are: m ^  =  0.0010, v ^ 1 =  0.82, =  0.0012, v$>2 — 1.0, p  =  0.07. d)
C om petitive exclusion w hen R q is th e  sam e for b oth  species (ei — — 10) and rates
o f exposure are positively  correlated and differ substantia lly  betw een th e tw o species. 
M eans, variances and correlation for th e  rates o f exposure to  species 1 and species 2 are: 

=  0.0009, =  1.0, ra<*>2 =  0.0012, r><j>2 =  3.3, p =  0.51. P aram eter values (unless
otherw ise indicated): n =  100, ei =  15, =  10,/iX j =  0.05, — 5, a  =  0 .0 1 ,7 ^  =  0.05
j ,k  = 1 , 2 .
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8.4 Density-dependent fecundity

As in Chapter 7, density-dependent, fecundity can be modelled by allowing the rate 
of larval production to depend 011 host worm burdens. The transition rates for 
species 1 in the model of density-dependent, fecundity are as follows (species 2  rates 
are equivalently defined):

1 . L x -+  L x +  1 at rate <7 £ " = 1  X u (l -  (X u -  1) -  7 2 1 ^ ) +

2. L x -> Li — 1 at rate (fiLl +  Y a = 1 $ u ) L 1

3. X u  —► X u  + 1 at, rate

4. Ah —► X xi — 1 at rate /iiA H

5. X u  —» 0 at rate a

where ($ ii ,$ 2t) are i.i.d. pairs of random variables.
As with the model for density-dependent establishment, to facilitate analysis L x 

is replaced by m i x in the third transition rate, and m ^ xn  replaces ^
closed set of differential equations for the first and second moments may be derived 
by assuming

$ > ( 1  -  7ll(£l -  1 ) -  l2lX2)Pt{Xl,X2) <C 1 ,

where pt(x 1 , X2 ) = P (XU =  2 7 , A 2 1 =  X2 ) and the summation is over the set (xx, £2 ) •

1 ~ 7 n (x i  -  1) - 721X2 < 0.

ne 1 ( ( 1  +  71\ ) mXl -  7 n ( o x 1 +  -  7 2 1  (^XiX2 +  m Xlm X2)) -  ( Ph  +  m<s>xn)m Lx

m Llm<bl -  (/ixj +  a ) m Xx

m Lxm<i>1 + / i X i m Xl  +  2 m L l <JXx<i>x -  { 2 ( iX l  +  ol)(J2X x + a m Xl  

r r i Ll a % l -  ( p Xx + q ) o ’<i>1x 1 

rriLx(J<&x&2 -  { f iX  1 + a)(74>2X i

m L i < 7*lX2 +  +  o t m X l m X2 -  { f i Xx +  p x 2 +  a ) a X l x 2 - (8 .15)

When exposure is constant (47 =  </>*) i =  1,2 the covariance terms are zero.
Furthermore setting =  0, and a  =  0, Eqn 8.15 becomes

dm Ll
dt

dmXl
dt

d°x, 
dt 

dcr<t> 1X1 
dt 

dcr^2Xx
dt

doXxX2
dt
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Figure 8.3: Coexistence and competitive exclusion for density-dependent parasite fecun­
dity. The different scenarios and parameter values are as in Fig.8 .2.

=  nei ((1 +  7 n )m Xl ~  7 n ~  7 2 im Xlm X2) -  ^ x 1m Xl

d̂ L =  ((1 + 7 n W ,  -  7n(^X! + m \ l ) “ 7 2 1  m Xlm X2) + tix xm Xl -  2[iXx( j \x.

(8.16)

If 772Xi (0) =  cr^(O) then it follows from Eqn 8.16 and the species 2 equivalent 
that m Xi(t) =  0 * (£) (* =  1* 2) for all t. Hence the mean level of worm burden for 
species 1 and species 2 satisfy the pair of differential equations in Eqn 8.1 implying 
that the dynamics of mean worm burden are not affected by the mechanism of 
competition. For heterogeneous exposure, the model is analyzed by simulation. 
As with the model for density-dependent establishment, coexistence is promoted by 
heterogeneity provided that the degree of heterogeneity is similar for the two species 
and the rates of exposure are not perfectly correlated. It can be seen in Fig.8 .3 (as 
in Fig.8 .2) that the approximation tends to underestimate mean worm burden, and 
is only qualitatively reasonable.
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8.5 Com petition, coexistence and the structure of 
communities of helm inth species

Competition between species is responsible for structure at each level of helminth 
community organization, be it in terms of a functional or numerical response (Poulin, 
1998) at the level of the individual host, the distribution of worm burdens in a com­
ponent community, or the distribution of helminth species in a compound commu­
nity. In this chapter, competition has been examined in terms of the coexistence of 
helminth species in host populations; the focus of the following discussion is there­
fore on the structuring of the component and compound communities by interspecific 
competition.

The models developed here for homogeneous host exposure, suggest that com­
petitive exclusion will occur if the probability of establishment or fecundity for both 
parasite species is determined by a single, limiting resource. This is because un­
der such circumstances, the effect that each species has on the establishment (or 
fecundity) of members of its own species is the same as the effect it has on the 
establishment of the heterologous species. In the situation where interspecific ef­
fects between two species are weaker than intraspecific effects, the species with the 
higher basic reproductive value ( R q ) may still drive its competitor to extinction 
if the difference between the reproductive values of the two species is sufficiently 
great. In particular, competitive exclusion is most likely to occur in communities 
where reproductive values are close to unity, and parasite densities are correspond­
ingly low. This result is of significance because component communities are often 
classified according to the interactive-isolationist continuum based on parasite pop­
ulation densities (Poulin & Luque, 2003). At the interactive end of the continuum 
are component communities where parasite population densities are high. Because 
the potential for interaction is high in such communities, it is argued that compe­
tition maybe a significant structuring force. Conversely, competition is thought to 
play a minimal role in isolationist component communities where parasite densities 
are low. The concept was originally proposed by Holmes & Price (1986) at the level 
of the infra-community. At this level it is intuitively reasonable that competitive 
interactions will only become important in determining the spatial distribution of 
parasite species within the host, e.g. in the intestine, if parasite densities are suffi­
ciently high. However, as we have shown, competitive exclusion may be more likely 
in component communities where parasites occur at low density. One can imagine 
that the component communities of different localities may vary in the composition 
of their parasite species as a result of small shifts in competitive advantage. Thus
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it may be that the variability in the combinations of species that parasitize eels in 
different localities (Kennedy, 2001) is, in part, the result of shifting competitive ad­
vantage, since parasite densities are small and competitive interspecific effects have 
been demonstrated (Bates & Kennedy, 1990, 1991).

A potentially significant factor in determining when species will coexist is the 
distribution of worm burdens amongst hosts, or for noil-parasitic species, the dis­
tribution of individuals amongst patches. It has been argued that independent 
aggregation of species promotes their coexistence (Shorrocks et al., 1979; Atkinson 
& Shorrocks, 1981). The hypothesis considers a species utilizing a temporary re­
source that is patchily distributed, such as Drosophila species laying eggs on fruit. 
Atkinson & Shorrocks (1981) simulate a model where each species lays eggs in the 
patches independently of the other according to a negative binomial distribution. 
Competition is then assumed to take place between the fly larval stages. In this 
model, coexistence is promoted by increasing aggregation in the distribution of eggs 
amongst patches.

Similar conclusions have been drawn from models of competition between helminths 
species, where the mechanism of competition is parasite-induced host mortality 
(Dobson, 1985; Roberts & Dobson, 1995; Gatto & De Leo, 1998). Again helminths 
occur in patches (hosts) and typically follow an overdispersed distribution among 
hosts. In these models, it is assumed that the relationship between the mean and 
variance of worm burden is the same as the relationship between mean variance in 
the negative binomial distribution with a constant degree of overdispersion. The 
covariance between worm burdens of different species is assumed to be zero (Gatto 
& De Leo, 1998) or a function of mean worm burden (Dobson, 1985; Roberts & 
Dobson, 1995).

However, in the case of competition between helminth species, such results are 
harder to interpret since the level of aggregation is itself dependent on the degree 
of parasite-induced host mortality (Anderson & Gordon, 1982; Herbert &: Isham, 
2000). Similarly, it is likely that the dependence (and therefore covariance) between 
worm burdens of the two species is determined by the severity of parasite-induced 
host mortality.

Pugliese (2000) has incorporated causes of aggregation, namely host heterogene­
ity in exposure and clumping of infective stages, into a multispecies model where 
competition is through parasite-induced host mortality. He finds that including 
these causes does not in itself promote coexistence. However, for heterogeneity in 
host exposure, Pugliese considers only the case where each host is equally suscepti­
ble to both species. Here this assumption has been relaxed so that the correlation
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between host exposures to the two species, p, is not necessarily + 1 . By doing so 
it is apparent that coexistence can be promoted by heterogeneity in host exposure 
when p < 1 and the extent of the heterogeneity is similar for both species. However, 
heterogeneity in host exposure may reduce the likelihood of coexistence if p > 0  

and there is a substantial difference in the level of heterogeneity for the two species. 
These results hold when competition occurs through either density-dependent es­
tablishment or fecundity. The case where competition acts through parasite-induced 
host mortality has not been examined, but it maybe possible to extend these results 
to cover this case.

For clarity, two examples are given of scenarios that will promote the coexistence 
of competing species. First, consider the case where heterogeneity among hosts is 
a result of differences in immune status between hosts. This may be due to host 
genetics as well as environmental determinants such as nutrition and exposure to 
other parasite species. The many determinants of immune status are likely to affect 
susceptibility to the two species differently, thus while host susceptibility to one 
parasite species may be positively correlated with susceptibility to a different species, 
the correlation is unlikely to be close to unity. For the second example, consider two 
species, each of which preferentially parasitizes a different host type, e.g. young vs 
old hosts. In this case, hosts will differ in their exposure to each species depending on 
the variable used by the parasite to identify preference, e.g. host age. Furthermore, 
in this example exposures to the two species will be negatively correlated: those 
hosts that have greater exposure to one species are less likely to be exposed to 
the other species. This negative correlation will greatly enhance the likelihood of 
coexistence.

These ideas can be extended to competing strains within a single species. The 
second scenario, favouring coexistence, seems particularly relevant. One can imagine 
different strains becoming adapted to different host types. Evidence for the existence 
of genotype-dependent life-history traits is limited. Nonetheless the hypothesis has 
been tested in Strongyloides ratti (Paterson & Viney, 2003) using genetically ho­
mogenous lines. Differences were observed in the number of worms present in rats 
23 days post-infection for different genetic lines, reflecting differences in establish­
ment and/or survivorship. Clearly these differences require explanation in terms of 
other differences that might exist between the lines. Otherwise one would predict 
that in a natural setting the genotype with the greatest rate of establishment (and 
therefore greatest R q ) should out-compete the other genotypes. Paterson & Viney 
(2003) explained this finding in terms of a trade-off between survivorship and fecun­
dity. An alternative explanation is that the different genotypes parasitize different
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host types so that the heterogeneity allows coexistence even if the R$ values differ.
Understanding how competing species are able to coexist has been a long-standing 

question in ecology. Here it has been shown that the coexistence of helminth species 
is promoted by heterogeneity under a range of circumstances. In particular, het­
erogeneity promotes coexistence when the correlation between exposure rates is 
imperfect and the degree of heterogeneity in host exposure to the competing species 
is not too dissimilar.

8.6 Summary

The models of Chapter 7 are extended to explore competition between two helminth 
species. Under the assumption of homogeneous host exposure, the Lotka-Volterra 
model is derived thus demonstrating that two helminth species cannot coexist on 
a single limiting resource. Heterogeneity in host exposure promotes coexistence 
provided that the rates of exposure to the two species are not perfectly correlated, 
and, if they are positively correlated, provided that the degree of heterogeneity in 
host exposure is similar for the two competing helminth species. These results are 
robust to the mechanism of competition.
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Chapter 9

Discussion

9.1 Models in helminth community ecology

Although the community ecology of parasites has received reasonable attention, and 
ecological theory is often tested on parasites, there are few models that deal specif­
ically with the ecology of helminth species. Broad comparisons have been made 
with metapopulation models, models from island biogeography and epidemiological 
models (Bascompte k  Rodriguez-Trelles, 1998; Nee, 1994). In parasite community 
ecology, concepts such as nestedness (Atmar k  Patterson, 1993) and ‘core’ and 
‘satellite’ species (Hanski, 1982) are derived from metapopulation models. However, 
results from these models should be cautiously applied to helminth communities 
since there are fundamental differences between helminth infracommunities and is­
lands or patches. Perhaps the most important is that helminths do not multiply 
directly within their host (although there are some species where auto-infection 
is common such as Enterobius and Strongyloides); thus population size is depen­
dent on the age of the host and the rate of parasite establishment. In contrast, in 
metapopulation models it is assumed that once colonized, a population will achieve 
its equilibrium size so that it is sufficient to treat patches as colonized or empty 
(Levins, 1969).

The existing models that specifically describe the population dynamics of mul- 
tispecies helminth infection are limited to deterministic models that assume that 
the mode of interaction is through parasite-induced host mortality (Dobson, 1985; 
Roberts k  Dobson, 1995; Gatto k  De Leo, 1998; Pugliese, 2000). The lack of multi­
species models is particularly surprising given that the development of single species 
models is considerably advanced. The negative impact of helminth infection on the 
health of humans and livestock has provided motivation for the development of a 
range of models for parasites of different life-histories.
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9.2 Extending single species models

Apart from the model of Chapter 5 that considers a single host, all other models are 
stochastic. The models developed seem to be the first application of stochastic mod­
elling to multispecies helminth infection, and as such allow features of interspecific 
interactions to be explored that are not amenable to analysis through deterministic 
models. The model of Chapter 6  provides the first exposit ion of the effect of interspe­
cific interactions on the distribution of worm burden in a host population. Similarly 
the stochastic model of Chapter 8  is a first attempt at examining the impact of 
within host interspecific competition on the coexistence of parasite species.

One of the advantages of using stochastic models rather than deterministic mod­
els is that heterogeneity in the susceptibility of hosts to infection can be incorporated 
into models with relative ease. Heterogeneity in susceptibility is known to be impor­
tant for the dynamics of microparasites as very susceptible individuals are rapidly 
infected at the beginning of an epidemic, so that the remaining population is less 
susceptible (Veliov, 2005). In models of macroparasite infection, heterogeneity has 
been identified as an important mechanism for generating an overdispersed distri­
bution of worm burden (Anderson & May, 1985a), and deterministic models have 
shown that the degree of overdispersion can affect the long-term dynamics of mean 
worm burden in a population of hosts (Anderson & May, 1978). The effect of incor­
porating heterogeneity directly into models of macroparasite population dynamics 
has received limited attention (Rosa & Pugliese, 2002). In this thesis, the effects of 
heterogeneity have been examined in the context of single and multispecies models.

While all the stochastic models explored have been fully stochastic at the point 
of definition, to analyze the models, both hybrid techniques and moment closure 
assumptions have been used. There is considerable scope for improvement of these 
approximations, particularly with regard to the moment closure approximations. In 
Chapters 7 and 8  the moment closure approximations assumed that third order mo­
ments could be expressed in terms of lower order moments according to a functional 
forms based on the multivariate normal distribution. Alternatively, the ‘closure’ 
could use higher order moments; expressing fourth order moments, say, in terms 
of lower order moments. Alternative functional forms based on other multivariate 
distributions would also be possible (Chan & Isharn, 1998).

9.3 Directions for future work

This thesis proposes models of interspecific interaction among helminth species. 
The behaviour of the models is examined to determine what effects interactions
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may have on the distribution of worm burden and the coexistence of species. To a 
certain extent such exploration sheds light on the interpretation of data with regard 
to the existence of interspecific interaction. For instance, the models of Chapter 
6  highlight the inadequacy of examining pairwise associations between species to 
identify interspecific interaction. However, if further progress is to be made, these 
models or similar ones should be fitted to data. The following is a brief sketch of 
methods that might be used to do this. Methods are proposed for dealing with 
both the cross-sectional data that is frequently collected on humans (e.g., Booth 
et al., 1998; Bundy et al., 1988), and data from non-human hosts that is usually not 
age-specific (e.g., Behnke et al., 2005; Lotz & Font, 1994; Bush & Holmes, 1986b).

Approxim ating the distribution o f worm burden To fit models to data us­
ing maximum likelihood, the distribution of worm burden according to the model 
must be known. Unfortunately, for the models of Chapter 6 , it was not possible to 
determine the distributions analytically. However, for the linear model, it was at 
least possible to derive approximations to the first two moments. One approach to 
fitting the linear model would therefore be to solve the differential equations for the 
approximations to the first two moments and assume a bivariate normal distribu­
tion. This approach is not ideal. Firstly, the moments are only well approximated 
for a parameter range that will exclude most synergistic interactions; and secondly, 
the bivariate normal distribution may not be appropriate if the distribution arising 
from the model is markedly different from the bivariate normal. To address this 
latter problem other distributions could be fitted. Unfortunately when multivariate 
distributions other than the multivariate normal are used it is difficult to allow suf­
ficient flexibility in the covariance. For example, Chan & Isham (1998) have used 
a multivariate distribution based on the negative binomial, but the covariance for 
this distribution is constrained to be non-negative.

Empirical likelihood As an alternative to specifying a form for the distribu­
tion of worm burden to obtain a likelihood, the distribution can be approximated 
through model simulation. This method of obtaining an empirical likelihood has 
been adopted by Riley et al. (2003) and Duerr et al. (2003b), although Duerr does 
not simulate a fully stochastic model.

Consider observing cross-sectional data {(aq, a i ) , ..., (xn, an)} from a random 
sample of a host population; where aq =  (x \i,x2i) is the species 1 and species 2  

worm burden in the ith host and a* is host age. Given host ages, the Xi may be 
viewed as independent realizations of the non-linear model of Chapter 6  (with het­
erogeneity) with a certain parameter vector 6 — (7 ^ , ẑ , p; h j  — 1,2). Thus
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for given host ages and parameter vector, 9, the distribution of worm burden can 
be approximated by simulating from the model. The log likelihood of the data is

where p{Xi\9, a») is the probability given 9 that a host of age a* has a worm burden 
Xi, while p(a*) is the probability a host survives to age a* (treating age as a discrete 
variable).

To obtain a maximum likelihood estimate of the parameter vector, 6, it is suffi­

cient to maximize 1°S P(x*l^ ai) resPect to # since the distribution of host
age, p(a), is independent of 9. The quantity X^=i P(x i\^^ai) can be estimated
by fixing a value of 9 and simulating the distribution of worm burdens at each of 
the ages a*. The maximum likelihood estimate is then given by the 9, from a grid 
of 9 values, that maximizes this quantity.

Frequently host age is unknown. Under such circumstances, empirical likelihood 
can still be used if host ages come from a known distribution p(a|A) with parameter 
vector A. Then the maximum likelihood estimate is obtained by integrating out host 
age and maximizing

with respect to (6, A). In practice, the distribution p(x\9, A) can be simulated for 
given (6, A) by simulating a host age, and then using the model to simulate worm 
burden at this age.

A drawback to the empirical likelihood approach is that the level of computa­
tion may be prohibitive. For a model of filariasis, Riley et al. (2003) found that the 
number of simulations required to ensure a non-zero likelihood was too large for em­
pirical likelihood to be a feasible method of fitting the model to data. Instead, Riley 
et al. (2003) fitted the model using fewer simulations to estimate the distribution 
function F(x\0, a), and minimizing a goodness of fit statistic comparing the estimate 
of F(x\0,a) with the empirical distribution function. Alternatively, the number of 
simulations could be reduced by smoothing the simulation-derived density function 
to ensure that there are no zero densities. However, this approach has, as yet, not 
been tried and it rriav not be computationally feasible.

Presence/absence data Models can be simplified by considering only the pres­
ence/absence of species. Let A be a vector of random variables where Xi, i =  1,..., n,

n

n

£ l ° g  p(xi\9, A)
t = i
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denotes the presence/absence of species i in a random host. There are only 2n pos­
sible states since Xi =  0 or A* =  1. A simple model for the transitions between the 
states can be specified assuming that: 1 ) hosts become infected by species i at a 
rate (Xi — 1 ) (i.e. at a rate proportional to to the prevalence of infection) and 
remain infected throughout their lifetime; 2 ) hosts die at a constant rate, a , and are 
replaced by uninfected hosts. The equilibrium distribution can be determined for 
this model and used to fit the model to data.

The model, as specified, assumes infections with different species occur indepen­
dently of one another. Thus the model should be viewed as a ‘null model’ to test 
for associations between species. It is possible to define models where the rate of 
infection for a particular species depends on the presence/absence of other species. 
However, if too many dependencies are introduced into the model, then parameters 
become unidentifiable.

As it stands, the null model is quite crude, in particular it takes no account of 
varying host susceptibility. One way of incorporating variable host susceptibility 
would be to assume that a fraction q of hosts have an increased susceptibility to 
parasite infection such that the rate of infection with any parasite species is increased 
by a factor n. The distribution of presence/absence for the n parasite species, 
p(x|, (j)i: a , «:), can be expressed as a mixture of: (i) the distribution that arises given 
that the random host is of low susceptibility, s =  0 , and (ii) the distribution given 
the host is of high susceptibility, 5  =  1, i.e.

p(x|, fa  a, k) =  p{x\s =  1 , fa, /c, a)q +  p(x\s =  0 , <j>u  a ) ( l  -  q)

The expectation-maximization (EM) algorithm has been developed for maximiz­
ing likelihood when there are mixtures of distributions, and it may be useful to apply 
it in this context.

The advantage of using null models such as the ones proposed here over those 
described in Chapter 2 is that they attem pt to model the process of infection and 
are able to eliminate associations driven by host age and general susceptibility to 
parasites. Although, by using only presence/absence information, and not incopo- 
rating host age explicitly, the models may be too crude to detect weak interactions. 
Departures from the null model can be identified using a goodness of fit statistic, 
and should be interpreted in terms of ecological associations between species such 
as a shared intermediate host or interspecific interaction.
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9.4 Concluding remarks

Helminth communities are often described in the terminology of Holmes & Price 
(1986) as either interactive or isolationist. The terminology is based on the premise 
that interactions between species are of significance to parasite community structure 
when parasite densities are high and niches overlap. Thus communities with high 
parasite densities in which the niches of different species overlap are ‘interactive’, 
while communities with low densities and segregated niches are non-interactive. 
Unfortunately this terminology gives the impression that interactions have been 
identified in ‘interactive’ communities. Furthermore it suggests that interactions are 
unimportant in structuring communities where parasite densities are low. In reality, 
far less is known about either the existence or the role of interspecific interactions 
than these definitions would suggest. This thesis has addressed the latter issue; using 
mathematical models to provide a framework within which to explore the effect of 
interspecific interactions on the distribution of worm burden and coexistence of 
species.

The work presented here has confirmed some of the previously used intuitive 
results regarding the distribution of worm burden, and also produced some less 
intuitive results and potential avenues for new research. For instance, in contrast 
to the intuition of Holmes & Price (1986), it has been shown in Chapter 8  that 
competitive exclusion is more likely in communities where parasite densities are 
low. Identifying the role of competitive exclusion in determining the composition 
of low-density parasite communities appears to be an area of research that has thus 
far been overlooked.

The models developed have not yet been explicitly fitted to data. While this 
may be a useful undertaking, it should not be seen as a panacea to the problem 
of identifying interspecific interactions in natural settings. Models are only likely 
to be useful in situations where the natural history of the helminth species, and 
heterogeneities in host exposure are reasonably well understood. Moreover, mod­
els of interactions between two parasite species should only be applied when there 
are no confounding effects of interactions with parasite species other than the ones 
under investigation. Ideally mathematical models should be used when a putative 
mechanism for interaction has already been identified through experimental stud­
ies. Hopefully, developments in immunology will make this scenario increasingly 
commonplace.
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