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By using graphical representations of simple portfolio choice prob-
lems, we generate a very rich data set to study behavior under un-
certainty at the level of the individual subject. We test the data for
consistency with the maximization hypothesis, and we estimate pref-
erences using a two-parameter utility function based on Faruk Gul
(1991). This specification provides a good interpretation of the data
at the individual level and can account for the highly heterogeneous
behaviors observed in the laboratory. The parameter estimates jointly
describe attitudes toward risk and allow us to characterize the distri-
bution of risk preferences in the population.

JEL Classification Numbers: D81, C91.

Key Words: uncertainty, revealed preference, Expected Utility The-
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We report the results of a series of experiments studying decision mak-
ing under uncertainty. In our experimental design, we use an innovative
graphical interface. Subjects see a graphical representation of a standard
budget constraint on a computer screen. This can be interpreted either as a
portfolio choice problem (the allocation of wealth between two risky assets)
or a consumer decision problem (the selection of a bundle of contingent com-
modities subject to a standard budget constraint). Subjects use the mouse
to choose a portfolio by pointing-and-clicking on the budget line. This intu-
itive and user-friendly interface allows for the quick and efficient elicitation
of many decisions per subject from a wide variety of budget constraints.
The result is a rich individual-level data set that constitutes the foundation
of this paper’s contribution.

The richness of the data set is immediately evident from inspecting the
scatterplots corresponding to individual subjects’ choices. These diagrams
reveal distinctive behavioral patterns. Some individuals behave as if they
are highly risk averse and always choose safe portfolios. Others behave as
if they are risk neutral and maximize the expected value of payoffs. Still
others combine elements of these behaviors with an attempt to exploit the
usual risk-return tradeoff. The behavior of subjects is generally complex
and we found it impossible to classify in a simple taxonomy.

Although individual behavior is quite heterogeneous, a second striking
fact is the high level of consistency in the individual level decisions. That
is, most subjects behave as if they were maximizing a complete, transitive
preference ordering over lotteries (portfolios). A well-known theorem of
Sidney N. Afriat (1967) states that an individual’s choices from a finite
number of budget sets are consistent with maximization of a well-behaved
utility function if and only if they satisfy the Generalized Axiom of Revealed



Preference (GARP). In our experiment, individuals make a large number of
choices subject to very different budget constraints. In particular, the shifts
in income and relative prices are such that budget lines cross frequently. The
variety of different choice problems experienced by subjects produces data
that lead to a powerful test of GARP. Subjects attain very high scores on
standard measures of consistency and most are close to the ideal of perfectly
rational behavior.

The consistency of individual decisions naturally leads us to ask what
kind of preferences are consistent with the observed choices. Our third
discovery is that the data is well explained by a preference ordering in which
the indifference curves have a kink at the 45 degree line, which corresponds
to a portfolio with a certain payoff. One interpretation of this preference
ordering is that it displays loss or disappointment aversion (Eddie Dekel,
1986; Gul, 1991). Expected Utility Theory (EUT) is a special case of this
theory. The family of utility functions we estimate is characterized by two
parameters, one of which measures loss or disappointment aversion.

To implement this approach, we have followed prior literature in using
a constant relative risk aversion (CRRA) specification, assuming the power
utility function which is commonly employed in the empirical analysis of
choice under uncertainty. We have also estimated the model using a constant
absolute risk aversion (CARA) specification, assuming the exponential form,
and integrated the results of the CRRA and CARA specifications. For
simplicity, the estimation technique, for both power and exponential utilities,
is non-linear least squares (NLLS), rather than maximum likelihood (ML).
However, we also carry out the ML estimation, which is relegated to an
appendix.

The parameter estimates vary dramatically across subjects, implying
that individual behavior under uncertainty is very heterogeneous. However,
over half of our subjects have a significant degree of loss or disappointment
aversion. The remainder appear to be well approximated by preferences
consistent with EUT (John von Neumann and Oskar Morgenstern, 1947;
Leonard J. Savage, 1954). Because preferences are characterized by two
parameters, we cannot easily summarize attitudes toward risk by a single
number. However, we can compute a risk premium based on the difference
between the expected value of a gamble and its certainty equivalent. Com-
paring the risk premium to a standard measure of risk aversion suggests
that our estimates are within the range found by other researchers (cf. Kay-
Yen Chen and Charles R. Plott, 1998; Charles A. Holt and Susan K. Laury,
2002; Jacob K. Goeree, Holt, and Thomas R. Palfrey, 2002, 2003; Goeree
and Holt, 2004).



The rest of the paper is organized as follows. Section 1 provides a dis-
cussion of closely related literature. Section 2 describes the experimental
design and procedures. Section 3 illustrates some important features of
the data and establishes the consistency of the data with utility maximiza-
tion. Section 4 provides the econometric analysis, and Section 5 concludes.
Experimental instructions, technical details, and individual-level data are
gathered in appendices.

1 Related literature

The experimental literature on choice under uncertainty is vast and cannot
be summarized here. Colin F. Camerer (1995) provides a comprehensive dis-
cussion of the experimental and theoretical work, and Chris Starmer (2000)
provides a more recent review that focuses on evaluating non-EUT theo-
ries. The typical experimental design presents subjects with a number of
binary choices. The objective is to test the empirical validity of particular
axioms or to compare the predictive abilities of competing theories. These
theories tend to be systematically disconfirmed by the data. This has moti-
vated researchers to develop more descriptive models, and the investigation
of these models has led to the discovery of new empirical regularities in the
laboratory.

Typically, the criterion used to evaluate a theory is the fraction of choices
it predicts correctly. A theory is “rejected” when the pattern of violations
appears to be systematic. More recently, following the seminal work of
John D. Hey and Chris Orme (1994) and David W. Harless and Camerer
(1994), a number of papers compare models while allowing for randomness.
In these studies, randomness can be interpreted as the effect of a trembling
hand, calculation error, and so forth. While Harless and Camerer (1994)
fit models to aggregate data, Hey and Orme (1994) use data derived from
decisions over a very large menu of binary choices and estimate functional
forms for individual subjects. They test EUT as a restriction on non-EUT
theories and find that EUT appears to fit as well as non-EUT alternatives
for almost 40 percent of their subjects and that violations of EUT decay
with repetition.

A few other studies, such as Imran S. Currim and Rakesh K. Sarin
(1989), Richard L. Daniels and L. Robin Keller (1990), and Pamela K. Lat-
timore, Joanna R. Baker and A. Dryden Witte (1992) have also estimated
parametric utility functions for individual subjects. These studies find that
many subjects obey EUT, with considerable variation in risk aversion across



subjects. Our paper — both in its experimental method and theoretical appa-
ratus — substantially extends this research program by providing new tech-
niques and larger samples that enable more precise estimation and better
predictions. Camerer (1995) emphasizes the need for such improvements in
advancing the research program in this area.

The distinctive features of the present paper are the new experimen-
tal design and the application of tools from consumer demand theory to
individual decision making in the laboratory. This experimental design gen-
erates data that are better suited in a number of ways to estimating risk
preferences. First, the choice of a portfolio from a convex budget set pro-
vides more information about preferences than a discrete choice.! Second,
the large amount of individual-level data generated by this design allows
us to apply statistical models to individual data rather than pooling data
or assuming homogeneity across subjects. Hence, we may generate better
individual-level estimates of risk aversion. Third, these decision problems
are representative, both in the statistical sense and in the economic sense,
rather than, as in existing methods, being designed to test a particular the-
ory.

Syngjoo Choi, Raymond Fisman, Douglas M. Gale, and Shachar Kariv
(forthcoming) show how to extend the revealed preference techniques used in
this paper to test the rationality of individual behavior. They also illustrate
how revealed preference techniques can be used to recover the underlying
preferences non-parametrically.

The experimental technique described in this paper can also be applied
to many types of individual choice problems. For example, Fisman, Kariv,
and Daniel Markovits (2007) employ a similar experimental methodology
to study social preferences. While the papers share a similar experimental
methodology, they address very different questions and produce very differ-
ent behaviors.

'In Graham Loomes (1991) subjects also allocate wealth in a portfolio of risky assets.
The focus of his paper is on providing a test of the independence axiom, so the results are
not directly comparable to those presented here. Loomes (1991) showed that most subjects
made nearly rational choices but systematically violated the independence axiom, and that
the observed behavior cannot be accommodated by a number of non-EUT alternatives.



2 Experimental design and procedures

2.1 Design

In the experimental task we study, individuals make decisions under con-
ditions of uncertainty about the objective parameters of the environment.
In our preferred interpretation, there are two states of nature denoted by
s = 1,2 and two associated Arrow securities, each of which promises a payoff
of one unit of account in one state and nothing in the other. We consider
the problem of allocating an individual’s wealth between the two Arrow se-
curities. Let xs; denote the demand for the security that pays off in state s
and let ps denote its price. We normalize the individual’s wealth to 1. The
budget constraint is then pyx1 + poxrs = 1 and the individual can choose any
portfolio (x1,z2) > 0 that satisfies this constraint.

An example of a budget constraint defined in this way is the straight
line AB drawn in Figure 1. The axes measure the future value of a possible
portfolio in each of the two states. The point C, which lies on the 45
degree line, corresponds to a portfolio with a certain payoff. By contrast,
point A (point B) represents a portfolio in which all wealth is invested in
the security that pays off in state 1 (state 2). A portfolio such as C' is
called a safe portfolio and portfolios such as A and B are called boundary
portfolios. A portfolio that is neither a safe nor a boundary portfolio is called
an intermediate portfolio. Notice that, given the objective probabilities of
each state, positions on AB do not represent fair bets (portfolios with the
same expected value as the a safe portfolio). If 7 is the probability of state 1
and the slope of the budget line —p; /p2 is steeper than —m /(1 —m), positions
along AC' have a higher payoff in state 1, a lower payoff in state 2, and a
lower expected portfolio return than point C.

[Figure 1 here/

2.2 Procedures

The experiment was conducted at the Experimental Social Science Labo-
ratory (X-Lab) at UC Berkeley under the X-Lab Master Human Subjects
Protocol. The 93 subjects in the experiment were recruited from undergrad-
uate classes and staff at UC Berkeley. After subjects read the instructions
(reproduced in Appendix I), the instructions were read aloud by an ex-
perimenter. Each experimental session lasted about one and a half hours.
Payoffs were calculated in terms of tokens and then converted into dollars.



Each token was worth $0.5. A $5 participation fee and subsequent earnings,
which averaged about $19, were paid in private at the end of the session.

FEach session consisted of 50 independent decision rounds. In each round,
a subject was asked to allocate tokens between two accounts, labeled x and
y. The x account corresponds to the x-axis and the y account corresponds
to the y-axis in a two-dimensional graph. Each choice involved choosing a
point on a budget line of possible token allocations. Each round started by
having the computer select a budget line randomly from the set of lines that
intersect at least one axis at or above the 50 token level and intersect both
axes at or below the 100 token level. The budget lines selected for each
subject in his decision problems were independent of each other and of the
budget lines selected for other subjects in their decision problems.

The z-axis and y-axis were scaled from 0 to 100 tokens. The resolution
compatibility of the budget lines was 0.2 tokens. At the beginning of each
decision round, the experimental program dialog window went blank and
the entire setup reappeared. The appearance and behavior of the pointer
were set to the Windows mouse default and the pointer was automatically
repositioned randomly on the budget line at the beginning of each round.
To choose an allocation, subjects used the mouse or the arrows on the key-
board to move the pointer on the computer screen to the desired allocation.
Subjects could either left-click or press the Enter key to record their alloca-
tions. No subject reported difficulty understanding the procedures or using
the computer interface. (The computer program dialog window is shown in
the experimental instructions which are reproduced in Appendix I.)

At the end of the round, the computer randomly selected one of the
accounts, x or y. Each subject received the number of tokens allocated to
the account that was chosen. We studied a symmetric treatment (subjects
ID 201-219 and 301-328), in which the two accounts were equally likely
(m = 1/2) and two asymmetric treatments (subjects ID 401-417, 501-520 and
601-609) in which one of the accounts was selected with probability 1/3 and
the other account was selected with probability 2/3 (7 = 1/3 or 7 = 2/3).
The treatment was held constant throughout a given experimental session.
Subjects were not informed of the account that was actually selected at the
end of each round. At the end of the experiment, the computer selected
one decision round for each participant, where each round had an equal
probability of being chosen, and the subject was paid the amount he had
earned in that round.



3 From data to preferences

3.1 Data description

We begin with an overview of some important features of the experimental
data. We will focus on the symmetric treatment, where the regularities in
the data are very clear, and select a small number of subjects who illustrate
salient features of the data. One must remember, however, that for most
subjects the data are much less regular. Figure 2 depicts, for each subject,
the relationship between the log-price ratio In (p;/p2) and the token share
x1/(x1+x2). The figures for the full set of subjects are available in Appendix
I1, which also shows the portfolio choices (z1,x2) as points in a scatterplot,
and the relationship between the log-price ratio In(p;/p2) and the bud-
get share p1x1 (prices are normalized by income so that piz; + pexa = 1).
Clearly, the distinction between token share and budget share is only rele-
vant in the presence of price changes.

[Figure 2 here]

Figure 2A depicts the choices of a subject (ID 304) who always chose
nearly safe portfolios z1 = xo. This behavior is consistent with infinite risk
aversion. Figure 2B shows the choices of the only subject (ID 303) who,
with a few exceptions, made nearly equal expenditures p1jx; = paxo. This
behavior is consistent with a logarithmic von Neumann-Morgenstern utility
function. This is a very special case, where the regularity in the data is
very clear. We also find many cases of subjects who implemented “smooth”
responsiveness of portfolio allocations to prices, albeit less precisely. Among
these subjects, we find considerable heterogeneity in price sensitivity. Per-
haps most interestingly, no subject in the symmetric treatment allocated
all the tokens to x1 if p1 < p2 and to xg if p1 > po. This is the behavior
that would be implied by pure risk neutrality, for example. Nevertheless,
boundary portfolios (x1,0) and (0, z2) were used in combination with other
portfolios by many subjects, as we will see below.?

Another interesting regularity is illustrated in Figure 2C, which depicts
the decisions of a subject (ID 307) who allocated all of his tokens to x; (x2)
for values of In(p;/p2) that give a flat (steep) budget line. This aspect of

ZA single subject (ID 508) almost always chose z1 = 0 if p1 > p2 and z2 = 0 otherwise.
However, he participated in the asymmetric treatment (7 = 2/3) and thus his choices do
not correspond to risk neutrality. Three subjects (ID 205, 218 and 320) chose a minimum
level of consumption of ten tokens in each state, and allocated the residual to the less
expensive security.



his behavior would be consistent with risk neutrality. However, for a variety
of intermediate prices corresponding to In(p;/p2) around zero, this subject
chose nearly safe portfolios x1 = xo. This aspect of his choice behavior is
consistent with infinite risk aversion. So this subject is apparently switching
between behaviors that are individually consistent with EUT, but mutually
inconsistent. In fact, as we will see in the econometric analysis below, this
subject’s preferences exhibit loss or disappointment aversion (where the safe
portfolio x; = o is taken to be the reference point).

There are yet more fine-grained cases where the behavior is less stark,
such as the subject (ID 216) whose choices are depicted in Figure 2D. This
subject combines intermediate portfolios for a variety of intermediate rela-
tive prices with boundary portfolios for prices that give sufficiently flat or
steep budget lines. Further, the subject (ID 318) whose choices are depicted
in Figure 2E combines safe, intermediate and boundary portfolios. There
is something distinctly discontinuous in the behavior of these subjects and
their choices are clearly not consistent with the standard interpretation of
EUT.

These are of course special cases, where the regularities in the data are
very clear. There are many subjects for whom the behavioral rule is much
less clear and there is no taxonomy that allows us to classify all subjects
unambiguously. But even in cases that are harder to classify, we can pick out
the safe, intermediate, and boundary portfolios described above. Overall,
a review of the full data set reveals striking regularities within and marked
heterogeneity across subjects.

3.2 Testing rationality

Before proceeding to a parametric analysis of the data, we want to check
whether the observed data are consistent with any preference ordering, EU
or non-EU. To answer this question, we need to make use of some results
from the theory of revealed preference. A well-known result, due to Afriat
(1967), tells us that a finite data set generated by an individual’s choices can
be rationalized by a well-behaved (piecewise linear, continuous, increasing
and concave) utility function, if and only if the data satisfies the Generalized
Axiom of Revealed Preference (GARP).?> GARP requires that if a portfolio
x is revealed preferred to 2’ then 2’ is not strictly revealed preferred to x.
So, in order to show that the data are consistent with utility-maximizing

3This statement of the result follows Hal R. Varian (1982), who replaced the condition
Afriat called cyclical consistency with GARP.



behavior, we can simply check whether it satisfies GARP (simple in theory,
though difficult in practice for moderately large data sets).

Since GARP offers an exact test (either the data satisfy GARP or they
do not) and choice data almost always contain at least some violations, we
also wish to measure the extent of GARP violations. We report measures
of GARP violations based on an index proposed by Afriat (1972). Afriat’s
critical cost efficiency index (CCEI) measures the amount by which each
budget constraint must be adjusted in order to remove all violations of
GARP. Figure 3 illustrates one such adjustment for a simple violation of
GARP involving two portfolios, 2! and 22.* It is clear that z! is revealed
preferred to 22 because z? is cheaper than z! at the prices at which z! is
purchased, and 22 is revealed preferred to z!, since x! is cheaper than z?
at the prices at which z? is purchased. If we shifted the budget constraint
through 2 as shown, the violation would be removed. In this case, the
CCEI would equal A/B (A/B > C/D).

[Figure 3 here]

By definition, the CCEI is a number between 0 and 1, where a value
of 1 indicates that the data satisfy GARP perfectly. There is no natural
threshold for determining whether subjects are close enough to satisfying
GARP that they can be considered utility maximizers. Varian (1991) sug-
gests a threshold of 0.95 for the CCEI, but this is purely subjective. A more
scientific approach, proposed by Stephen G. Bronars (1987), calibrates the
various indices using a hypothetical subject whose choices are uniformly
distributed on the budget line. We generated a random sample of 25,000
subjects and found that their scores on the Afriat CCEI indices averaged
0.60.> Furthermore, all 25,000 random subjects violated GARP at least
once, and none had a CCEI score above Varian’s 0.95 threshold. If we
choose the 0.9 efficiency level as our critical value, we find that only 12 of
the random subjects had CCEI scores above this threshold.

Figure 4 compares the distributions of the CCEI scores generated by the
sample of 25,000 hypothetical subjects (gray) and the distributions of the
scores for the actual subjects (black).® The horizontal axis shows the value

*In fact, here we have a violation of the Weak Axiom of Revealed Preference (WARP).
Note that choices that violate WARP also violate GARP, but the opposite is not true.

SEach of the 25,000 random subjects makes 50 choices from randomly generated budget
sets, in the same way that the human subjects do.

To allow for small trembles resulting from the slight imprecision of subjects’ handling
of the mouse, all the results presented below allow for a narrow confidence interval of one
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of the index and the vertical axis measures the percentage of subjects cor-
responding to each interval. The histograms clearly show that a significant
majority of the subjects did much better than the randomly generated sub-
jects and only a bit worse than an ideal (rational) subject. Our experiment
is thus sufficiently powerful to exclude the possibility that consistency is the
accidental result of random behavior. As a practical note, the consistency
results presented above suggest that subjects did not have any difficulties in
understanding the procedures or using the computer program.

[Figure 4 here]

The power of the experiment is very sensitive to the number of obser-
vations for each subject. To illustrate this point, we simulated the choices
of random subjects in two experiments which used the design of this paper
except that in one, subjects made 10 choices and in the other, they made 25
choices. In each case, the simulation was based on 25,000 random subjects.
In the simulated experiment with 25 choices, 4.3 percent of random sub-
jects were perfectly consistent, 14.3 percent had CCEI scores above Varian’s
0.95 threshold, and 28.9 percent had values above 0.90. In the simulated
experiment with only 10 choices, the corresponding percentages were 20.2,
37.3, and 50.6. In other words, there is a very high probability that random
behavior will pass the GARP test if the number of individual decisions is
as low as it usually has been in earlier experiments. We refer the interested
reader to Choi, Fisman, Gale and Kariv (forthcoming) for further details on
the power of tests for consistency with GARP.

Appendix III lists, by subject, the number of violations of WARP and
GARP, and also reports the values of the three indices according to descend-
ing CCEI scores. Although it provides a summary statistic of the overall
consistency of the data with GARP, the CCEI does not give any information
about which of the observations are causing the most severe violations. We
refer the interested reader to Appendix III for precise details on testing for
consistency with GARP and other indices that have been proposed for this
purpose by Varian (1991) and Martijn Houtman and J. A. H. Maks (1985).
The various indices are all computationally intensive for even moderately
large data sets. (The computer program and details of the algorithms are
available from the authors upon request.)

token (for any ¢ and j # ¢, if |xi, ;rj| < 1 then z% and 27 are treated as the same portfolio).
We generate virtually identical results allowing for a narrower confidence interval.
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4 Econometric analysis

4.1 Specification

The near consistency of subjects’ choices tells us that there exists a well-
behaved utility function that rationalizes most of the data. Additionally,
because of the nature of the data, particularly the clustering at the safe
and boundary portfolios, EUT cannot provide a plausible fit for the data
at the individual level. The particular patterns observed in the data lead
us to consider the theory of loss/disappointment aversion proposed by Gul
(1991), which implies that the utility function over portfolios (x1,x2) takes
the form

min {ou (1) + u (x2) ,u (1) + au(z2)}, (1)

where @ > 1 is a parameter measuring loss/disappointment aversion and
u(+) is the utility of consumption in each state. In this interpretation, the
safe portfolio 1 = zo is taken to be the reference point. If o > 1 there is
a kink at the point where 1 = 22 and if &« = 1 we have the standard EUT
representation. This formulation thus embeds EUT as a parsimonious and
tractable special case and allows for the estimation of the parameter values
in our empirical analysis below.

4.2 Constant relative risk aversion (CRRA)

To implement this approach, we assume that wu(-) takes the power form
commonly employed in the analysis of choice under uncertainty,

=P
(1-p)’

where p is the Arrow-Pratt measure of relative risk aversion. The parameters
in this two-parameter specification, a and p, jointly describe the attitudes
toward risk and allow us to characterize the distribution of risk preferences
in the population.

The use of the power function has one limitation, however, in that the
function is not well defined for the boundary portfolios. We incorporate
the boundary observations (1/p1,0) or (0,1/p2) into our estimation using
strictly positive portfolios where the zero component is replaced by a small
consumption level such that the demand ratio x;/x2 is either 1/w or w,
respectively. The minimum ratio is chosen to be w = 1073, The selected
level did not substantially affect the estimated coefficients for any subject.

u(z) =
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With this adjustment, maximizing the utility function subject to the
budget constraint yields a non-linear relationship between In(p;/p2) and
In(x1/z2), which is illustrated in Figure 5 below. If the security prices
are very different, then the optimum is the boundary portfolio with the
larger expected payoff. If the security prices are very similar (log-price
ratios are close to zero), then the optimum is the safe portfolio. In these
cases, the optimal choice is insensitive to small price changes. For log-
price ratios that are neither extreme nor close to zero, the optimum is an
intermediate portfolio and the choice is sensitive to small changes in the
risk-return tradeoff.

[Figure 5 here/

The subject’s demand will belong to one of five possible cases: (i) a
corner solution in which x; = wZy if z1/x2 < w; (ii) an interior solution
where w < x1/x9 < 1; (i4i) a corner solution where x5 = w1 if 1/w < x1/x9;
(1v) an interior solution where 1 < z1/z2 < 1/w; and (v) a solution at the
kink where x1 /z9 = 1.7 The two interior solutions are characterized by first-
order conditions in the form of equations; the two corner solutions and the
kink are characterized by inequalities. Combining these cases, we can define
an individual-level econometric specification for each subject n separately,

and generate estimates of &, and p,, using nonlinear least squares (NLLS).
50

i=1’
where (mzl,a:%) are the coordinates of the choice made by the subject and
(iﬁ, ié) are the endpoints of the budget line, (so we can calculate the relative
prices pi/ph = z4/Z} for each observation 7). Next, we identify the five
different cases discussed above (corner solutions, interior solutions, kink).
The first-order conditions at the optimal choice (a:zl*,mé*), given (le,?vé),
can thus be written as follows (here we have taken logs of the first-order
conditions and then replaced prices with the observed values):

The data generated by an individual’s choices are {(Z},z5, z},25) }

Inw if In (%) >lna—plhw,
—% [ln(i—%)—lna} if lnailn(i—%) <lna-plhw,
ln<§;>:f[ln(%>;a,p,w} =< 0 if —1na§ln(§2> <lna,
2 1 —% {ln (;—%) —i—lnoz} if — lnq+plnw1< In <§—:i> < —lna,
\ —Inw if In (%) <—Ina+phw.

"Intuitively, these conditions set the ratio of demands 21 /22 equal to w or 1/w when
observations are near to the boundary.
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Then, for each subject n, we choose the parameters, o and p, to minimize

50 ‘ i 2
> [ (%) - (i (5) s00n)
i=1 2 1

Before proceeding to estimate the parameters, we omit the nine subjects
with CCEI scores below 0.80 (ID 201, 211, 310, 321, 325, 328, 406, 504 and
603) as their choices are not sufficiently consistent to be considered utility-
generated. We also exclude the three subjects (ID 205, 218 and 320) who
almost always chose a minimum level of consumption of ten tokens in each
state, and the single subject (ID 508) who almost always chose a boundary
portfolio. This leaves a total of 80 subjects (86.0 percent) for whom we
recover preferences by estimating the model. Finally, we note that out of
the 80 subjects, 33 subjects (41.3 percent) have no boundary observations
and this increases to a total of 60 subjects (75.0 percent) if we consider
subjects with less than five boundary observations.

Appendix IV presents the results of the estimations &, and p,, for the
full set of subjects. Table 1 below displays summary statistics for the esti-
mation results. Of the 80 subjects listed in Appendix IV, 56 subjects (70.0
percent) exhibit kinky preferences (&, > 1). Also, a significant fraction of
our subjects in both treatments have moderate levels of p,. However, our
specification allows the kink («) to “absorb” some of the curvature in the
indifference curves (p). More importantly, because the model has two para-
meters, a and p, it is not obvious how to define a measure of risk aversion.
In the next section, we define one particularly useful measure and discuss
its properties.

[Table 1 here/

Figure 6 presents, in graphical form, the data from Appendix IV by
showing a scatterplot of &, and p,, split by symmetric (black) and asym-
metric (white) treatments. Two subjects with high values for p,, (ID 304
and 516) are omitted to facilitate presentation of the data. The most no-
table features of the distributions in Figure 6 are that both the symmetric
and asymmetric subsamples exhibit considerable heterogeneity in both &,
and p,, and that their values are not correlated (2 = 0.000).

[Figure 6 here]

Finally, Figure 7 shows the relationship between In(p;/p2) and In(Z1/Z2)
for the same group of subjects (ID 304, 303, 307, 216, and 318) that we fol-
lowed in the non-parametric analysis. Figure 7 also depicts the actual choices
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(x1,x2). The figures for the full set of subjects are available in Appendix
V. An inspection of the estimation results against the observed data reveals
that the fit is quite good for most subjects. However, it also shows that the
specification has difficulty dealing with the subject (ID 307) who combines
safe portfolios for values of In(p;/p2) close to zero with boundary portfolios
for values of In(p;/p2) that give steep or flat budget lines. His estimated
parameters & = 1.043 and p = 0.076 may be reasonable given the fact that
boundary portfolios are chosen also for intermediate values of In(p; /p2), but
leaves the safe portfolio choices largely unexplained. For similar reasons,
the estimated curve does not pick up the apparent kink in the scatterplot
of the subject (ID 318) with & = 1.056 and p = 0.173 that often chose safe
portfolios. Clearly, no continuous relationship could replicate these patterns.

[Figure 7 here]

The estimation also seems sensitive to “outliers,” as can be seen in the
case of the subject (ID 303) with & = 1.641 and p = 0.284, who is the
only subject that very precisely implemented logarithmic preferences, apart
from a small number of deviations. Although his behavior is very regular
and consistent with standard preferences, the attempt to fit the outlying
observations exaggerates the non-linearity and leads to the insertion of a
spurious kink. Apart from this subject, the individual-level relationship
between In(p;/p2) and In(Z1/2Z2) does not have a kink unless one is clearly
identifiable in the data. In fact, a review of our full set of subjects shows
that the estimation is more likely to ignore a kink that is evident in the data
than to invent one that is not there. Perhaps most notably, the estimation
fits the “switch” points, when they exist, quite well.

4.3 Measuring risk aversion

Since we have estimated a two-parameter utility function, risk aversion can-
not be represented by a single univariate measure. To summarize the risk
aversion of our subjects, we use the concept of the risk premium. Specifi-
cally, we propose a gamble over wealth levels which offers 50 — 50 odds of
winning or losing some fraction 0 < h < 1 of the individual’s initial wealth
wg. The risk premium for h is the fraction of wealth r that satisfies the
certainty equivalence relationship

(14 @)u(wo(l — 7)) = au(wo(l — h)) + u(wo(l + h)).
Substituting the power function yields

(1+a)(l—r)'7?=al—h)""+1+h)'7,
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which is independent of the initial wealth level wy. This equation can be
rearranged to yield

1
a(l —h)'=P 4+ (14 h)-r] T

h)=1-
r(h) T a

To help us understand the meaning of the parameters a and p, Figure 8
below plots the risk premium (k) for different values of o and p. Note that
an increase in o makes the risk premium curve r(h) steeper and an increase
in p makes it more convex.

[Figure 8 here]

To see the role of a and p more clearly, we consider the second-order ap-
proximation of r(h). Direct calculation yields

2

(0) + 7' (O)h +1(0) %

a—1 2
h —— _n?
ar i TP arE

%

r(h)

- 0+

which reduces to the usual case r(h) ~ ph; when a = 1. The approximation
clearly tells us that « has a first-order effect on the risk premium r while
p has a second-order effect, so the standard practice of considering small
gambles is inadequate. Motivated by the second-order approximation of
r(h), we calculate the following weighted average of p and «:

(1) a—1+ 2
r(l) ~
a+1 p(a+1)2’

which is proportional to the Arrow-Pratt measure of relative risk aversion
when o = 1. We will use (1) as a summary measure of risk aversion.

Although there is no strong theoretical rationale for adopting this for-
mula as our summary measure of risk aversion, it agrees with other measures
of risk aversion. As a benchmark, we use the “low-tech” approach of esti-
mating an individual-level power utility function directly from the data.
By straightforward calculation, the solution to the maximization problem
(xF, z3) satisfies the first-order condition

™ (x3\" p1
1—m \ 2] Py
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and the budget constraint p-z* = 1. This generates the following individual-
level econometric specification for each subject n:

log <x72”> =ap + B, log <pzﬂ> +e€,

1n Dba,

where ¢! is assumed to be distributed normally with mean zero and variance
o2. We generate estimates of é&,, and Bn using ordinary least squares (OLS),
and use this to infer the values of the underlying parameter p, =1/ Bn

Before proceeding to the estimations, we again omit the nine subjects
with CCEI scores below 0.80 as well the four subjects (ID 307, 311, 324 and
508) for whom the simple power formulation is not well defined. This leaves
the group of 80 subjects (82.8 percent) for whom we estimated parameters.
For these subjects, we discard the boundary observations, for which the
power function is not well defined, using a narrow confidence interval of one
token (if { <1 or o < 1 then 2! is treated as a boundary portfolio). This
results in many fewer observations for a small number of subjects.

Appendix VI lists the estimated risk measures 7, and values of p,, derived
from the simple OLS estimation for the full set of subjects. The last column
of Appendix VI reports the number of observations per subject in the OLS
estimation. Table 2 below displays summary statistics. Most notably, the
distribution shifts to the left when calculated using the 7,, estimates as
compared to the distribution calculated using the OLS p,, estimates. The
reason may be the upward bias in the OLS estimates due to the omission of
boundary observations.

[Table 2 here]

Figure 9 shows a scatterplot of 7,, and p,,, split by symmetric (black) and
asymmetric (white) treatments. Subjects with high values for p,, (ID 203,
204, 210, 304, 314, 515, 516, and 607) are omitted to facilitate presentation
of the data. Note that we obtain once more very similar distributions for the
symmetric and asymmetric subsamples, and that there is a strong correlation
between the estimated 7, parameters and individual-level estimates of p,,
that come from a simple expected-utility model (r? = 0.850).

[Figure 9 here]

Much of the existing evidence about risk preferences is based on labo-
ratory experiments. Our individual-level measures of risk aversion are very
similar to some recent estimates that come out of the simple expected-utility
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model. For comparison, Chan and Plott (1998) and Goeree, Holt and Pal-
frey (2002) report, respectively, p = 0.48 and 0.52 for private-value auctions.
Goeree, Holt and Palfrey (2003) estimate p = 0.44 for asymmetric matching
pennies games, and Goeree and Holt (2004) report p = 0.45 for a variety of
one-shot games. Holt and Laury (2002) estimate individual degrees of risk
aversion from ten paired lottery-choices under both low- and high-money
payoffs. Most of their subjects in both treatments exhibit risk preferences
in the 0.3 — 0.5 range.

4.4 Constant absolute risk aversion (CRRA)

While we have followed prior literature in using a constant relative risk
aversion (CRRA) specification, we are concerned that our estimates may
be sensitive to this assumption. In particular, one difficulty with assuming
CRRA is that behavior depends on the initial level of wealth wg, and since
wq is unobserved, the model is not completely identified. In the analysis
above, we have followed the standard procedure of setting wg = 0. To
provide a check on the robustness of these results, we have also estimated
the model under the assumption of constant absolute risk aversion (CARA).
The CARA utility function has two advantages. First, it allows us to get rid
of the nuisance parameter wq (which bedevils most attempts estimate power
utility functions). Secondly, it easily accommodates boundary portfolios.
To implement this approach, we assume the exponential form

u(z) = —e~ 4%

where A > 0 is the coefficient of absolute risk aversion (we assume without
loss of generality that wy = 0). By direct calculation, the first-order con-
ditions that must be satisfied at each observation (Z%,z},x%,2%) are given
by

( A In (iﬁz) > Ina + Az,
—i zl =1 .
Lin(£2) -na Ina<ln(2) <lna+ Az,
A 1 Ty ) 2
zh—al = f [f’i,isé;a,A] = 0 —Ina <In (%{) <Ine,
1 1n ?—:2 +Inal —lna+ Az <In ?—:2 < —Ina,
A 1 ) 1 1
— 7} In (ﬁ) < —Ilna+ Azi.
\ Zy
Then, for each subject n, we choose the parameters, o and A, to minimize
50 o 5
Zl (5 —a}) — f (71, 3%, A) |7
1=
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The CARA specification implies a (non-linear) relationship between log(pi /p2)
and x1 — x9. Since the variation in log(p;/p2) is quite small relative to the
variation in x1 — x9, the estimated individual-level regression coefficients are
bound to be small. This implies that the estimated coefficients of absolute
risk aversion A,, will be small too. The individual-level estimation results,

& and A, are also presented in Appendix VII. Table 3 displays summary
statistics.

[Table 3 here]

To make the coefficients of absolute and relative risk aversion compa-
rable, we multiply the absolute risk aversion by average consumption and
divide relative risk aversion by average consumption. As our measure of a
subject’s average consumption, we use the average demand for the security
that pays off in state 1 over the 50 budgets.® Figure 10A shows a scatterplot
of the estimates of relative risk aversion from the CRRA specification (p,,)
and estimates of absolute risk aversion from the CARA specification (A,,)
multiplied by average consumption (RRA). Similarly, Figure 10B shows a
scatterplot of the estimates of absolute risk aversion from the CARA specifi-
cation (A,) and estimates of relative risk aversion from the CRRA specifica-
tion (p,,) divided by average consumption (ARA) (subjects ID 304 and 516
are omitted because they have very high values of fln).In both scatterplots,
we see a strong linear relationship between the suitably scaled coefficients
of risk aversion.

[Figure 10 here]

4.5 Maximum likelihood estimation

Finally, we note that we have also explored a maximum likelihood (ML)
estimation of the utility function in (1). In contrast to the NLLS estima-
tion reported above, the parameter estimates from the ML method seemed
implausible in certain situations. Specifically, the values of p and A we ob-
tained were much lower than those estimated by NLLS and in fact were
close to zero when we observed clustering of choices around the safe port-
folio. The corresponding values of o were significantly greater than 1 as a
result. Although the specified error structure is consistent with the observed
choices, it makes them very unlikely. Intuitively, with a sharp kind and very

8We have also used the subject’s average value of (1 + x2) /2 as an adjustment factor
with very similar results.
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flat indifference curves away from the kink, the observed choices should be
almost always either at the kink or at the boundary. The specification of the
error structure we used may have been inappropriate for this purpose, which
is why we adopted the NLLS method, which is consistent with a broad range
of possible error structures. We refer the interested reader to Appendix VIII
for precise details on the ML estimation.

5 Conclusion

We present a set of experimental results which build on a graphical computer
interface that contains a couple of important innovations over previous work.
The primary contribution is an experimental technique for collecting richer
data on choice under uncertainty than was previously possible. Perhaps
the most interesting aspect of the data set generated by this approach is
the heterogeneity of behavior. In the present paper, we have shown that
this behavior can be rationalized by “kinky” preferences that are consistent
with loss or disappointment aversion. The potential of this data set to
teach us about individual behavior has not been exhausted, however. One
aspect of the data that invites further scrutiny is the “switching” between
stylized behavior patterns exhibited by some subjects. Subjects’ behavior
appears to be made up of a small number of stylized patterns of behavior,
sometime choosing safe portfolios, sometimes choosing boundary portfolios,
and sometimes choosing intermediate portfolios. We plan to explore this and
other themes in future work based on extensions of the present experimental
design.
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Table 1: Summary statistics of individual-level CRRA estimati

2} All =12 | ©#l1/2

Mean 1.315 1.390 1.248
Std 0.493 0.584 0.388
pS 1.000 1.000 1.000
p25 1.000 1.000 1.000
p50 1.115 1.179 1.083
p75 1.445 1.477 1.297
p95 2.427 2.876 2.333

p All =172 | w#1/2

Mean 1.662 2.448 0.950
Std 7.437 10.736 1.206
pS 0.053 0.048 0.080
p25 0.233 0.165 0.290
pS0 0.481 0.438 0.573
p75 0.880 0.794 0.990
p95 3.803 3.871 3.693




Table 2. Summary statistics of risk measures and OLS estimation results

r(1) All =172 | w#1/2
Mean 0.919 1.316 0.559
Std 3.588 5.177 0.588
pS 0.066 0.059 0.125
p25 0.246 0.266 0.233
p50 0.379 0.383 0.372
p75 0.529 0.516 0.538
p95 1.914 2.005 1.894

OLS All =172 | w#1/2

Mean 3.168 1.401 4.888
Std 15.025 1.362 | 21.060
pS 0.439 0.439 0.375
p25 0.648 0.597 0.700
pS0 0.904 0.826 1.011
p75 1.434 1.426 1.533
p95 5.348 5.158 5.448




Table 3: Summary statistics of individual-level CARA estimation

2} All =12 | ©#l1/2

Mean 1.154 1.121 1.182
Std 0.488 0.332 0.595
pS 1.000 1.000 1.000
p25 1.000 1.000 1.000
p50 1.000 1.000 1.000
p75 1.083 1.066 1.110
p95 1.787 1.929 1.506

A All =172 | w#1/2

Mean 0.043 0.038 0.047
Std 0.052 0.042 0.059
pS 0.003 0.004 0.003
p25 0.014 0.016 0.014
pS0 0.029 0.029 0.031
p75 0.046 0.038 0.050
p95 0.159 0.144 0.159




Figure 1: An example of a budget constraint with two states and two assets.
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Figure 2: The relationship between the log-price ratio In(p,/ p,) and the token share
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Figure 3: The construction of the CCEI for a simple violation of GARP.




Figure 4: The distributions of GARP violations Afriat's (1972) efficiency index (CCElI).
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Figure 5: An illustration of the relationship between In(p,/ p,) and In(x, / x,)
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Figure 6: Scatterplot of the estimated CRRA parameters ¢, and p, .
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Figure 7: The relationship between In(p,/ p,) and In(x, / x,) for selected subjects.
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Figure 8: The risk premium r (%) for different values of « and p.
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Figure 9: Scatterplot of the risk measures 7, and values p, derived from the simple OLS estimation.
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Figure 10A: Scatterplot of the CRRA p, estimates and the CARA adjusted relative risk aversion (RRA) estimates
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Figure 10B: Scatterplot of the CARA 21,1 estimates and the CRRA adjusted absolute relative aversion (4RA) estimates
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