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Abstract

The purpose of this thesis is threefold: First, to explain how learning shapes consumer 

behaviour over a comestible (experience) good. Second, to examine the role of feedback 

information and information aggregation for consumer choices and market performance in 

markets for experience goods. Third, to understand how firms react to heterogeneous 

consumer choices in the supermarket industry when faced with institutional constraints.

To shed light on how learning influences consumer choices over time in particular when 

new products or new characteristics are introduced, we employ in Chapter 2 a model of 

reinforcement learning over products as well as characteristics and apply it to yoghurt 

drink purchases from a large British consumer panel. We find that learning over both, 

products and characteristics, is important in explaining consumer choices over time.

How consumer choices are influenced by the choice of others is analysed in Chapter 3 

which introduces and studies a new model of aggregate information cascades. We find that 

if only one of two possible actions is observable —say, how many others bought a 

particular product but not how many chose not to buy it—only one type of cascade arises 

in equilibrium. Herding only takes place on the observable action.

A different angle on how the provision of information bears on choices is taken in Chapter 

4 on learning trust. Here we examine the effect of different forms of feedback information 

to consumers and sellers in a market with sequential exchange. Experimental evidence 

shows that both feedback information on sellers’ history to consumers but also feedback 

information about sellers trading history to other sellers improves market efficiency.



How firms optimally react to institutional constraints when consumer choice heterogeneity 

is important is developed in Chapter 5 in a model of supermarket entry into different store 

formats and applied to data from the UK. We are interested in estimating the cost of the 

institutional constraint of restrictive planning regulation. We find that the institutional set­

up matters but the impact of restrictive planning regulation on firm profits is small and 

increases barriers to entry for large supermarkets only.
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Chapter 1

Introduction

The purpose of this thesis is threefold: First, to explain how learning shapes consumer behav­

iour over a comestible (experience) good. Second, to examine the role of feedback information 

and information aggregation for consumer choices and market performance in markets for 

experience goods. Third, to understand how firms react to heterogeneous consumer choices 

in the supermarket industry when faced with institutional constraints.

The second chapter focusses on how learning influences consumer choices over time, in 

particular when new products or new characteristics are introduced. We employ an adaptive 

learning model — reinforcement learning — that assumes that the behaviour of consumers 

confronted with a repeated choice problem is shaped by their past experiences and is best 

described by a dynamic learning rule. The model takes both, learning over products and 

characteristics, into account and applies it to yoghurt drink purchases from a large British 

consumer panel. In this context consumers are faced with a simple recurring decision prob­

lem — buying a good in the supermarket where the quality is not perfectly known a priori. 

This uncertainty plays, of course, a particularly important role when a new characteristic is 

introduced. Additionally, the evaluation of quality might be heterogeneous and imprecise, 

i.e.. consumers may need a while to find out whether they prefer a particular taste over 

another. Since each purchasing decision is relatively unimportant to the individual con-
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CH APTER1. INTRODUCTION
sumer a boundedly rational reinforcement model may explain actual individual choices well. 

This view is confirmed in the empirical analysis. The results suggest that consumers’ past 

purchasing history plays an important role in their present choices. But not only product 

familiarity is important, consumers decompose products into characteristics and these char­

acteristics experiences matter when deciding between different products the next time. This 

plays a particularly important role when consumers decide to switch to a product with a 

new characteristic: If consumer switch from one product to another they are more likely to 

switch to a new product that shares some of the characteristics of the previously consumed 

one. These results are robust to the introduction of price changes of both, purchased and not 

purchased, goods and disregarding learning altogether leads to an significant upward bias 

in both of the price elasticities. Including household characteristics into the analysis sheds 

further light on choice heterogeneity over time.

How consumer choices are influenced by choices of others is analysed in Chapter 3 where 

we introduce a new model of aggregate information cascades. We find that if only one of two 

possible actions i.e. how many people chose a particular product but not how many chose 

not to buy it is observable only one type of cascade arises in equilibrium. This information 

structure arises very naturally in many applications. Consider, for example, a venture capital 

firm who discusses a project with an inventor who needs capital to develop a new product. 

The inventor may gladly mention the credits he has already secured with other investors but 

probably wants to disclose the number of investors who have rejected the project. Or if we 

take the example of a central agency in the health sector who must decide how to disclose 

information on the adoption of a new treatment. It has the choice to inform the doctors 

on how many others have already decided to adopted the new treatment or on how many 

have considered it but decided not to adopt. Our central result is that only one type of 

cascade arises in equilibrium, the aggregate "up cascade" on the observable action. Herding 

never occurs on the unobservable action. This is crucial for the example of the health agency 

that can decide which information to disseminate. If it chooses to disclose the number of

2



CHAPTER 1. INTRODUCTION
doctors who have adopted the procedure the only cascade that can arise is one where all 

adopt and vice versa. Depending on the severity of different bad cascades, the central agency 

may optimally decide to withhold information. So the aggregate information set up that is 

introduced here has not only several intriguing properties — some in stark contrast to the 

predictions of the standard model — it also has potentially important policy implications. 

We then take our theory to the laboratory. The experimental data suggests that our model 

does fairly well. We find that the main comparative statics go all in the right direction.

A different angle on how the provision of information bears on choices is taken in the 

chapter on learning trust. Here we examine the effect of different forms of feedback infor­

mation to consumers and sellers in a market with sequential exchange. These markets are 

particularly prone to moral hazard and orthodox theory predicts that providing consumers 

with information about sellers’ trading history should help alleviate this problem. Experi­

mental evidence shows that feedback information on sellers’ history to consumers does indeed 

boost market performance. However, the key finding is that two-sided market transparency 

where both, consumers and sellers, have access to sellers’ trading history improves market 

performance even further which may be important for the design of new electronic markets.

How firms optimally react to institutional constraints when consumer choice heterogene­

ity is important is developed in a model of supermarket entry into different store formats and 

applied to data from the UK. Here the interest lies in estimating the cost of the institutional 

constraint of restrictive planning regulation. The change in the planning regulation mainly 

in 1996 centralised the planning regulation and changed it to encourage in-town (small) store 

formats over out-of-town (large) store formats. As a result we would expect it to restrict the 

number of large stores and increase the number of small stores in equilibrium. Unsurprisingly, 

after the reforms we do see an increase in town centre stores and an increase in smaller store 

formats. However, other factors may have also affected this shift towards the smaller store 

formats. In particular changes in consumer demand patterns or strategy diversifications by 

several firms in the supermarket industry may have contributed significantly to this increase

3



CHAPTER 1. INTRODUCTION
in smaller store formats. Thus incorporating a model of heterogeneous consumer demand 

is crucial in isolating the effect of planning regulation on market structure and firm profits. 

This is implemented by estimating the structural parameters of the profit function and iso­

lating the increase in fixed costs that is associated with more restrictive planning regulation. 

The results show that the institutional set-up matters but the impact of restrictive planning 

regulation on firm profits is small and increases barriers to entry for large supermarkets only. 

Each Chapter of this thesis can also be read as a stand alone article.
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Chapter 2 

Learning to Consume - on the 

Importance of Characteristics

2.1 Introduction

Consumer choices have generally been seen as a sequence of rational decisions. Recent 

research has pointed out that this might not always be the case. Several recent empirical 

papers have found violations of the most general rational choice assumption for a significant 

portion of the population. For instance Blundell, Browning and Crawford (2003) find that on 

an aggregated level the general indicator of rational choice, the General Axiom of Revealed 

Preference (GARP), is violated over 10% of the time1 using a repeated cross-section of the 

Family Expenditure Survey for Britain. Mattei (1994) using a micro level Swiss consumer 

panel dataset, shows that half of the households in the panel violate GARP. In a more recent 

micro level study that investigates consumer rationality Blow, Browning and Crawford (2003) 

look at milk purchases in a Danish consumer panel . They find GARP violations in 16% of 

the cases and the purchase behaviour of over 40% of their sample cannot be rationalised with

lrThe GARP rejections axe mainly concentrated in the upper tail of the distribution.
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CHAPTER 2. LEARNING TO CONSUME
a linear characteristics model2. An earlier experimental study by Sippel (1997) documents 

that even in a very limited choice situation GARP had to be rejected in approximately half 

of the cases.3 One lesson from these apparent rationality failures may be that consumers 

use simpler algorithms to make consumption choices and learn about products and their 

characteristics over time. But this is at its heart an empirical question.

Empirical research in the past has taken two different routes in explaining consumer pur­

chasing decisions over time. One originates in the marketing literature following Guadagni 

and Little’s (1983) first use of scanner data of ground coffee purchases over Erdem (1996, 

2004) to Ho and Chong (2003) work on modelling stock keeping unit (SKU) choices, focussing 

particularly on the effect of marketing mix strategies and shopping experience on consumer 

brand choice. This research uses scanner data or data that is collected at the point of sale 

in combination with loyalty card information, so that the researcher observes very detailed 

information about the product but no information about the household. While Guadagni 

and Little are mainly concerned with brand loyalty4, Erdem decomposes the product into 

its characteristics (modelling brand as one of them) and investigates whether the similarity 

between different characteristics explain product choice. Ho and Chong additionally differen­

tiate between consumption and shopping experience where the latter applies to all familiar 

and available characteristic levels and products that the consumer could be purchasing. 

None of them investigate the effect of consumer characteristics on the individual shopping 

behaviour, nor have they looked at the introduction of a new product or characteristic.

The other route evolved from Gorman’s work on pure product characteristics (1980) to 

estimating non-parametric revealed preferences that are consistent with these characteristics 

models.5 This literature places the consumer choice problem in a fully rational and static

2See e.g. Gorman (1980), Lancaster (1966) or Heckman and Scheinkman (1987).
3A more recent similar experimental study by Mattei (2000) confirmed Sippel’s results with GARP 

violations between 25% and 44%.
4 There is a large marketing literature in brand loyality: some of the main most recent papers are Akgura 

et al. (2004), Erdem (1998), Osselaer (2000) and Villas-Boas (1999, 2004).
5See e.g. Blow, Browning and Crawford (2003).
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CHAPTER 2. LEARNING TO CONSUME
setting while additionally assuming a time invariant utility function. There are some very 

recent extensions by Crawford and Rickman (2006) that look at product purchases in a 

dynamic framework splitting consumption into a rational and addictive part over whole 

products. Our model is closely related to a product characteristic version of their model 

that gives zero weight to the rational part of consumption and makes some more structural 

assumptions on the "addiction" mechanism.

This paper builds on both of these strands of literature and extends the analysis to a 

dynamic framework of product characteristics. We incorporate consumer learning as well as 

demographic characteristics to explain - at least partially - choice heterogeneity over time 

and estimate our model using a large British consumer panel dataset, that covers all grocery 

purchases for a three year period.

But, what kind of consumer learning? In this context agents are faced with repeated 

decision problems. The consumer is going on a regular basis to a supermarket to buy gro­

ceries, where the goods are typically experience goods. One has to try them out before the 

quality is known. Also the evaluation of this quality might be heterogeneous and imprecise 

for example whether I liked the taste of a particular characteristic. Adaptive learning mod­

els - like reinforcement learning models - attempt to describe exactly this, the behaviour of 

agents confronted with repeated decision problems assuming they use simple learning rules. 

Additionally experimental evidence has shown that these reinforcement learning models de­

scribe actual human behaviour quite well.6Also because each purchase decision is relatively 

unimportant to the individual consumer a boundedly-rational behaviour may explain actual 

choices well. 7

In the past one major obstacle for empirically analysing micro-level consumer choice be­

haviour was the absence of micro-level data that combined detailed purchasing and household 

information over time. The latest availability of micro-level consumer choice data enables us

6 See Erev and Roth (1998).
7In a recent theory paper Hopkins (2006) studied the effects of this type of adaptive consumer learning 

over two types of product quality on firm pricing.

7



CHAPTER 2. LEARNING TO CONSUME
to take a closer look at individual shopping behaviour in conjunction with the demographic 

characteristics of the shopper. In this paper we use data from the TNS British consumer 

panel focussing on probiotic yoghurt drink purchases.

Why probiotic yoghurt drinks? With a comparatively low number of characteristics 

probiotic yoghurt drinks are rather simple, and are additionally very homogeneous within 

their characteristic space.8 They are also increasingly popular hence we have a reasonably 

big heterogeneous consumer sample. The market for probiotic yoghurt drinks has also seen a 

large number of successful new characteristic introductions during or just before our sample 

period. The implementation of a new products makes learning a paritcular important issue. 

Looking at a successful product introduction also helps us to understand learning from 

the very beginning so we don’t have to make assumptions about initial conditions. Thus 

it can serve as an ideal benchmark of understanding consumer preferences and learning 

over products and characteristics. Concerns about separability from other consumption or 

labour market decisions may be not as acute with yoghurt drinks as with other product 

innovations that, more often than not, are new durables like consumer electronics. An 

additional advantage of this data set is that it not only contains barcode level product, 

characteristic and price information it also entails detailed information on the purchasing 

household. Thus we can incorporate a large amount of observable consumer heterogeneity 

into our estimation.

Our results suggest that consumers purchasing history plays an important part in their 

present product choice. But not only product familiarity is important, consumers decom­

pose products into characteristics and these characteristic experiences matter when deciding 

between different products. This is particularly crucial when consumers decide whether to 

switch to a product with a new characteristic.

The paper is organised as follows: The reinforcement model is discussed in Section 2, 

Section 3 introduces the estimation strategy, Section 4 gives an overview over the data and

8 See Bajari and Benkard (2001) for a model if product characteristics are unobserved.



 CHAPTER 2. LEARNmG TO CONSUME
the results axe shown in Section 5, Section 6  concludes.

2.2 T he m odel

The goal of the model is to predict which product j  the consumer i will choose on a purchase 

occasion given her purchase history, the price of the product and her personal characteristics.

The model assumes that in each time period t (purchase occasion) the consumer chooses 

from J  different products. Let Uijt denote the utility to consumer i of purchasing product j  

at time t consisting of an observed component Vijn and an unobserved component The 

utility may depend on observed and unobserved characteristics of products, observed and 

unobserved characteristics of consumers, including their purchasing history.

Uijt — V%jt 4“ &ijt ( 2*1)

=  otjZijt +  IjPjt +  (3jXit +  £ijt (2-2)

Individual household i's utility is the sum of an intrinsic valuation Zijt and the associ­

ated price of the product and a vector of household characteristics Xu. The error structure 

captures serial correlation in characteristic-level and product-specific utilities. The additive 

form has been used by most prior models and is adopted here for simplicity.

The intrinsic value Z^t of the product j  consists of both product-specific (Cijt) and 

characteristic-level {Cinit) experiences. Formally,

N  L

Zijt — ^   ̂ — Cinit • Ijnl +  Cijt (2-3)
n=l 1=1

Cjnit is a vector of observed characteristics-level experiences of individual i of character- 

ist level I in characteristic n, it is multiplied by an indicator variable Ijni is 1 if product j

9



CHAPTER 2. LEARNING TO CONSUME
has characteristic level I in characteristic n and 0  otherwise, this is added to the overall 

product-specific experience Cijt of individual i of product j  at time t - or in other words 

the ideosynchratic likening of the product beyond it’s characteristics. Over time consumers 

accumulate product and characteristic experiences. For example consumer Smith's cumula­

tive product experience or in other words her cumulative attraction to product 2 = {original, 

light, yakult} is a sum of her cumulative experience for Yakult, original flavours and light 

products.

^ S m ith ,2,t  =  0 S m ith ,orig inal,t "I- "t- 0 S m ith ,ya k u lt,t “I- 0 S m ith ,2,t

These cumulative experiences or attractions for the characteristics as well as the product 

as a whole are updated over time as follows:

G inlt =z 4*k ' C in l(t—1) lin lt (2-4)

Cijt =  0p ' Cij(t—1) lijt (2-5)

where <f>k and (f>p are decay factors. This updating rule will be called reinforcement learn­

ing, upon receiving a payoff the agent updates the respective choice propensities. The 1 ^  

describes an incremental reinforcement that consumer i derives form level I in characteristic 

n in time t. Additionally she receives an incremental reinforcement from the product j  as

a whole. The distinction between the two incremental reinforcements is that characteristic-

level reinforcement affects the intrinsic value of all products that have similar characteristic 

levels while the product-level reinforcement does not. This captures on the one hand the 

products uniqueness as well as the shared characteristics with other products.

Characteristic level incremental reinforcement for a characteristic level I in time period 

depends on whether it was chosen in time period t — 1 .

10



CHAPTER 2. LEARNING TO CONSUME

0

1 if level I in characteristic n was chosen in t — 1

otherwise
(2.6)

In addition to characteristic-level reinforcement the product-level reinforcement captures the

consumer’s idiosyncratic liking for a product beyond the shared characteristic levels. This

will therefore only affect the product’s own cumulative attraction and will not influence the 

attractions of other products. So the incremental reinforcement depends on whether the 

product j  was chosen in time period t — 1 .

Thus the more often a product or a characteristic has been chosen in the past, the higher 

the cumulative product experience and the higher the intrinsic valuation of this product. This

of choosing this product at the next purchasing occasion.

Supplementary to the assumption that consumer characteristics influence their choices 

over time this model is based on the behavioural proposition that the consumer accumulates

on their familiarity. In the psychological literature Alba and Hutchinson (2000) argue that 

since the grocery-shopping environment is highly complex, consumers often rely on recall to 

recognise products. So, when consumers look at the grocery display without preconceptions, 

characteristic level and product familiarity are likely to influence how easily a product is 

recognised on the shelf.

Switching between different products or different characteristics can be interpreted as 

variety-seeking behaviour.9 A consumer seeks variety if the conditional probability of choos­

ing a product on an occasion (given that the same product was chosen on any prior occasion)

9For a comprehensive review on variety-seeking behaviour see Kahn (1998).

l i j t  ^
1 if product j  was chosen in t — 1

(2.7)
0 otherwise

V

leads to an increased utility associated with this product and therefore a higher probability

characteristic level and product-level experiences and her consumption experience depends

11



CHAPTER 2. LEARNING TO CONSUME
is smaller than the unconditional probability of choosing the product. In our model variety- 

seeking on a product level would occur if aj < 0 , this might be due to satiation of a particular 

characteristic or the product as a whole. Switching to an unfamiliar product characteristic 

may be caused by satiation on the part of the consumer or it may be the reaction to a change 

in the relative price (i.e. a change in due to a promotion).

2.3 T he E stim ation Strategy

To estimate our product choice model we use the multinomial logit estimator dating back 

to McFaddens (1974) early work on random utility models that emulates our choice rule 

particularly well. We assume that the error £ijt is extreme value independent over i , j  and t. 

We include the consumer behaviour over time as the accumulated attractions in the exoge­

nous variable, prices and household characteristics as specified above. So if individuals are 

reinforcement learners over characteristics we would expect the estimated aj coefficients to 

be positive. 10 If the marginal consumption experience decreases with characteristic familiar­

ity, we would expect satiation to occur. This can be one of the reasons for variety-seeking 

between characteristics. In this case we would expect the aj coefficients to be negative. 11 

The choice probabilities have the following structure:

Pr* = (2.8)
} 2 j t  exp(%t)

or more specifically:

exp (ajZjj, +  'yj Pjt +  ^ X a)
,J1 Y.j’ exP + ifPj’t + PjXit)

10There are several possibilities of entering past consumption in the utility function. Adamowicz (1994) 
enteres the number of times a particular product is chosen, rather than simply a dummy for the immediately 
previous choice. Erdem (1996) looks at the number of times a particular attribute was chosen in the past 
without reinforcing the product as a whole.

11 For empirical evidence on this type of variety seeking behaviour see e.g. McAlister (1982) or Erdem 
(1996).

12



CHAPTER 2. LEARNING TO CONSUME
where Pr^t is the probability of household i choosing product j  at time t. The Vijt include 

the product and characteristic level familiarity (Zyt), the price components (Pjt) and the 

household characteristics component (Xu) that might all effect household’s choice behaviour. 

The choice probabilities sum to one. In order to identify the model we must normalise one 

of the coefficients to zero. We use the incumbent product as the baseline outcome and 

thus all estimates are relative to this baseline outcome. To estimate the multinomial logit 

model we maximise the log-likelihood function using the Newton-Raphson algorithm. The 

log likelihood can be derived by defining an indicator variable for each household i, and 

product j

lij — ^
1 if product j was chosen

(2.10)
0  otherwise

where for each i at a particular point in time t only one /y  is equal to one:

i  j

In L =  EE /y in  Pr^ (2 .1 1 )
i= 1 j= 1

The inclusion of the lagged dependent variable - the cumulative product and characteristic 

attractions - still gives us unbiased estimates as long as it is uncorrelated with the current 

error and the errors are independent over time. In order to account for the dependence of 

observation within households we cluster on households.

The estimated a , (3 and 7  coefficients can only be directly interpreted in terms of their 

sign and their significance level. For example a positive sign on a particular a  coefficient 

makes it more likely that this product is chosen with increasing Z's (product & characteristic 

familiarity). Consumers are not yet satiated with this product. A negative sign on the a  

coefficient on the other hand makes it more likely that consumers switch away from this 

product - seek product variety- with increasing Z's. To interpret the magnitude of the effect 

we calculate marginal effects for the different a , (3 and 7 .

13



CHAPTER 2. LEARNING TO CONSUME
One drawback of using the multinomial logit model is its restrictive substitution pat­

tern. It can only capture proportional substitution across alternatives, if one characteristic 

becomes more attractive i.e. due to a promotion the increase in this characteristic’s probabil­

ity necessarily means a proportional decrease in the probability of the other characteristics. 

In other words the multinomial logit model has the property of independence of irrelevant 

alternatives (IIA). This might be particularly crucial if new choices become available. In 

our case this would be e.g. new characteristics like strawberry flavour. We undertook two 

robustness checks to test the severity of the IIA restriction in our setting. First we esti­

mated the basic characteristic reinforcement attraction model without price or consumer 

characteristics with a small random sample of our population using a multinomial probit 

which can represent any substitution pattern. Because the probit probabilities do not have a 

closed-form expression we approximate the choice probabilities numerically using the GHK 

12simulator13. As a second test we excluded the newly introduced characteristics (strawberry 

and multifruit flavour) and reestimated the multinomial logit of the basic model (only char­

acteristic level reinforcement). The Hausman and McFadden (1984) test was used to test 

whether the two estimates were significantly different from each other.

2.4 T he data

We us the TNS Consumer Panel from January 2002-December 2004. This unbalanced panel 

consists of around 50,000 households over the period of 3 years, their yearly socioeconomic 

characteristics all fast moving consumer good purchases (these include all groceries but also 

cleaning products etc.). We extracted all probiotic yoghurt drink purchases. There is some 

attrition, so we observe households on average for 650 days. 6,308 of those households

12Geweke, 1989; Hajivassiliou and McFadden, 1998; Keane, 1994.
13A summary of probit simulators is given in Hajivassiliou et al.(1996). In a comparison they found the 

GHK to be the most accurate in the setting they examined.
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purchase probiotic yoghurt drinks at least once within the 3 years.14Since we are interested 

in repeated purchasing behaviour over time we constrained the sample to individuals that 

have bought a probiotic yoghurt drink at least ten times during the three years. This 

leaves us with 1883 households that bought on average 26 probiotic yoghurt drinks in 3 

years. This amounts to 50,082 yoghurt drink purchases. The purchasing data contains 

information on date of purchase, store type, store postcode, extensive item characteristics 

on a barcode level, price, quantity and offer description between January 2002 and December 

2004. The demographic data comprises yearly information on age and employment status 

of the main shopper, household size, social class, number and age of children, household 

durable equipment (cars, appliances), most frequent shopping method, hours watched TV 

per week and total spend on fast moving consumer goods. The purchasing variables are 

collected continuously every day and each product has a unique identifier on the bar code 

level. Equally each household can be identified by a unique number and is updated every 

year. The data only covers home consumption.

2.4.1 The Product Category

We chose probiotic yoghurt drinks because it is a new product that is only storable for a 

short period of time so we do not have to consider bulk purchases or other shopping patterns 

that are only induced by the longevity of a product. Additionally probiotic yoghurt drinks 

have a rather small number of characteristic and are homogeneous within their characteristic 

space. One major advantage is that there have been several successful product introductions 

in this category in and just before the period of observation. One of the three major brands - 

Muller - introduced their probiotic yoghurt drink in March 2002 and even though the official 

introduction of the current market leader Danone already happened in 2001 a large number 

of households tried it for the first time in the middle of 2002. The third major brand that has

14TNS estimated that their purchasing data reflects approx. 80% of total food consumption and their 
sample is representative of the total UK population.
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been in the market the longest is Yakult. On top of new brand introduction the companies 

also introduced two new flavours during our observation period, strawberry in early 2003 

and multifruit in the middle of 2003. This allows us to observe the purchase history from the 

very beginning and see exactly how characteristic and product familiarity influence consumer 

choices. We restrict the brands to the three main competitors due to estimatability. 15

Probiotic yoghurt drinks have three different characteristics flavour, fat content and 

brand, where fat content has only two levels (light, normal), flavour has six levels (orig­

inal16, orange, peach, raspberry, strawberry and multifruit) and we observe three major 

brands (Danone, Yakult, Muller) in our sample. Since not all brands come in all the flavours 

we do not have 3x2x6 but only 10 different products.

We observe a considerable amount of heterogeneity between purchasing behaviour. The 

number of individual yoghurt drink purchases ranges between 10 and 210 times within 3 years 

with a mean of 26 times. Households purchase their yoghurt drinks on average every 21 days. 

The average household shops at 3 different stores and 2 different storetypes17 over the 3 year 

period. Table 2.1 shows the market shares of the 10 different products within our sample, 

the biggest is still the incumbent Yakult original with slightly over 15% but aggregating over 

the different characteristics Danone accounts for more than 50% of all purchases within our 

sample.

There is significant price heterogeneity, both, between products and characteristics but 

also over time. Figure 2.2 shows the kernel density distribution of unit price per liter and unit 

price per pack the difference between the two is mainly due to Yakult being packaged in 65 

milliliter bottles whereas the other two brands are in 1 0 0  milliliter bottles. Since households 

choose between these prepackaged sizes their price comparison will more likely be on the 

pack than on the milliliter base, particularly since one bottle is advertised as one daily

15These three brands amount to over 90% of our sample.
16The original flavour is similar to a "plain" yoghurt taste
17There are eight different storetypes, the four biggest supermarket chains (Asda, Morrison/Safeway, 

Sainsbury, Tesco), discounter, co-ops, cornershops and the upmarket supermarket chain Waitrose.
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portion. Figures 2.3 and 2.4 show the kernel density distributions of price per pack of the 

different characteristics. We see that the low fat is more expensive than the normal fat and 

even after adjusting for size Yakult is still the most expensive brand with the smallest price 

variation. Fruit flavours are less expensive than the original flavour but there is no obvious 

price difference between new flavour introductions (strawberry, multifruit) and old ones. 

The price differences between different storetypes are shown in Figure 4 and our empirical 

analysis indicates that individuals usually compare prices between different products within 

the same storetype. This is not so surprising since at least for our sample the price ranking 

between different storetypes stays rather constant over the three year period (see Figure 

2.6). Overall prices have fallen very slightly over the three year period mainly due to price 

reductions from Danone. New flavours were introduced in the middle of the price range with 

higher than average price variation (see Figure 2.6).

2.4.2 Household data

Every household included in this analysis has purchased probiotic yoghurt drinks at least 

ten times in the last 3 years and did not have missing household characteristics. Figure 

1 shows the distribution over number of different products, brands and flavours purchased 

by households. Most households purchase two different brands and three different flavours, 

but around 1% of households have tried all ten products. Further household characteristics 

included in the analysis are summarised in Table 2, so 80% of the main shoppers are women, 

the average age is 48 and they watch on average 18 hours television per week. Household size 

is on average 2 .8  and we will look at single households separately to see whether switching 

behaviour is due to variety seeking or different preferences within households.
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2.4.3 Switching

Since we axe interested in how past product and characteristic familiarity shape future choices 

we look at the transition probabilities between different characteristics and different prod­

ucts. We count the transitions from one purchasing occasion to the next and document 

them in a transition matrix where the rows reflect the initial values, and the columns reflect 

the final values. We do this separately for singles and larger households and neither uncon­

ditional characteristic nor product switching patterns seem significantly different for single 

households. Tables 2.5 to 2.7 show that brand has the lowest switching probability with 

more than 80% of the probability mass on the main diagonal, fat content is also a highly 

persistent characteristic in households choices, but they rather stick with the normal fat con­

tent than the light version. Most of the switching takes place between different flavours and 

in particular between the different fruit flavours (in contrast if a household has consumed the 

original flavour last period it will do so again this period with 85% probability). Looking at 

the whole product transition matrix this impression is confirmed with the lowest switching 

probability for Yakult original (21.5% probability of switching from last purchase) and the 

highest for Muller peach (71.43 % probability of choosing something different this period) 

and the main switching within brands across different fruit flavours (see Table 2.9&2.10).

A good example of individual switching behaviour is documented in Figure 7 where we 

show 5 typical switching patterns of single households. Household A is a good example 

of someone trying out a different brand once and sticking with it without ever switching 

back. Households B and C switch between different characteristics of the same brand (fat 

content for B and flavour for C). The difference is that A has made the transition to the 

new characteristic after three trials whereas C is still undecided between raspberry and 

strawberry but the interval between switches decreases. Household D switches between 

three characteristics of the same brand and does not seem to have settled down on one in 

particular one and household E’s purchases are all over the place switching between all three
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characteristic types, the rarest of switching patterns.

But what happens to switching over time? If we believe in a learning based model 

of behaviour one would expect behaviour to settle down after some initial period and the 

frequency of switches to decrease over time. Figure 2.8 plots the average number of switches 

across all households over time. On the horizontal axis we use purchase occasions since 

households have different actual shopping frequencies and on the y-axis we document the 

number of average switches. We can see that product and flavour switches decrease over 

time with experience whereas brandswitches stay nearly constant on a significantly lower 

level. In combination with the fact that price variation is not decreasing over time within or 

between characteristics this is one indication that a learning based model fits actual consumer 

purchases quite well.

2.5 The R esults

As a benchmark we estimated the simple product-only reinforcement model. The exogenous 

variables here are only cumulative product attractions but no characteristic attractions, or 

in other words the C'inlts are all equal to zero. In this baseline model we also do not include 

prices or household characteristics or any other covariates. This should give us an indication 

whether adding characteristic familiarity makes a difference. If it does we would learn that 

consumers not only accumulate product but also characteristic experiences when they make 

their purchasing decisions, and that these experiences influence their future purchases. Thus 

characteristic models are not only a parsimonious way of estimating consumer choices but 

they are actually the superior behavioural model. Table 2.9 shows the estimated coefficients 

of the multinomial logit for the different product attractions. We can see that most but not 

all own product attractions are positive and significant. Table 10 now shows the estimated 

coefficients for our model of product and characteristic reinforcement. The two main differ­

ences are that now all own attractions are positive and significant and that the R2 increased
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from 22 to 30 percent. The fact that all own attractions are positive in the characteristics 

model points out that the probability of choosing a particular product again today does 

not only depend on my past experience with this exact product but on my past experience 

with all its characteristics. The overall higher explanatory power of the model confirms 

our behavioural rational that consumers decompose choices over products into choices over 

characteristics.

Looking more closely at our estimates from the product and characteristic level rein­

forcement model reveals that on a characteristic level brand familiarity seems to be more 

important than flavour or fat content. The same brand attractions are positive a number 

of times whereas the same fat content or the same flavour i.e. the coefficient for Muller 

strawberry when looking at Danone strawberry, shows hardly ever a positive and significant 

coefficient. This is over and beyond the familiarity that is already included in our cumulative 

attractions. Our cummulative attractions give equal weight to each characteristic and this 

might be evidence that some characteristics are more important than others. The propensity 

to choose familiar brands is consistent with the finding of Erdem and Keane (1996) where 

consumers were found to avoid less familiar brands because they were not certain about the 

brands’ benefit.

Not Surprisingly including unit price per pack as one of the exogenous variables into the 

model does make a big difference. Table 2.11 shows that the own unitprice per pack coeffi­

cients are significantly negative for all products except Yakult light. This is not unexpected 

since Yakult light exhibits a very similar price pattern than the baseline product of Yakult. 

But own price is not the only important price variable that influences consumer decisions 

the price of competitor products matters as well. 18 Here all the coefficients are positive so 

an increase in the average of competitor product prices within the same storetype leads to

18 For own price we calculate the unitprice per pack (100ml for danone muller products and 65ml for 
yakult). For competitor unit prices we use the unweighted monthly price average of all competitor products 
within the same storetype. We tried several other price averages across regions or only across products but 
this one worked best. Which is not completely surprising since one would expect consumers to compare 
different yoghurt drink prices within the same store rather than across different ones.
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an increase purchasing probability of the incumbent product. Again with the exception of 

Yakult light, here consumers seem not to be influenced by competitor price changes. But 

even though including prices into the model improves the overall explanatory power it does 

not change the significance of the reinforcement coefficients.

Table 2.12 shows the estimated coefficients for the full model including household charac­

teristics. Household characteristics that play a significant role in choosing between different 

products are age and sex of the main shopper. 19 Households with a male main shopper are 

significantly less likely to shop light products. Older main shopper are less likely to purchase 

a new brand and more likely to stick with the original unfruity flavour.

The amount of hours a household watches TV per week has also a differential impact on 

their product purchases. It is solely important for the newest brand - Muller - and increase 

it’s purchasing probability significantly. Changes in weekly TV exposure do not have an 

impact on Danone or Yakult branded products. We cannot distinguish whether the newest 

brand advertises more on television or whether households that watch a lot of television are 

more likely to try out new brands.

To see how strongly our estimates are biased if we do not take learning into account is 

shown in Table 2.12b. Here we estimate the model with prices and household characteris­

tics only. Not only decreases the overall explanatory power of the model form 0.41 to 0.21, 

the remaining coefficients are also consistently biased. This is particularly crucial for the 

own and other price coefficients. All own price coefficients are biased upwards and also the 

influence of competitor price changes is significantly exaggerated for all but two products. 

The household characteristic coefficients are also mostly upward biased when learning is not 

taken into account. Age is still important when choosing a new brand but the coefficients 

are significantly overestimated, the same is true for the hours of TV exposure per week. The 

gender of the household head does not come in significant if learning is ignored. This un­

19 Other household variables that we investigated like employment status, social class or household size do 
not play a significant role.
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derlines the importance of learning when analysing repeated consumer choices of experience 

goods. It also points at the importance of the panel dimension of the data set. Only if we 

can observe the same individual making purchases over time and take their learning patterns 

into account can we correctly assess i.e. own and other price elasticities.

We also estimate the full model for singles only. Table 2.13 shows the results and we can 

see that singles behave very similarly in terms of product and characteristic level reinforce­

ment learning. They also react similarly to changes in product prices, but age has a slightly 

different impact for singles. It does not influence the choice of new brands negatively but 

increasing age makes singles rather less likely to choose light products. Male singles as male 

shoppers of larger households choose significantly less often the light fat version of a product. 

The main difference between only singles and the whole sample seems their reaction to TV 

exposure. TV exposure does not seem to influence purchase decisions for singles at all.

The multinomial logit coefficients are only informative insofar as to whether they are 

positive or negatively significant. We can not infer the direct economic impact from their 

size in this nonlinear model. To understand the economic significance we need to calculate 

marginal effects. One way of understanding the magnitude of the effect of product and 

characteristic familiarity is to look at the difference in the marginal effects after a change 

in this variable. We increase the number of a particular product purchase for everyone and 

calculate the marginal effect before and after this change. The distribution of the difference 

in marginal effects over all products is shown in Figure 2.9. All differences are positive which 

shows that even after increasing product and characteristic experience by 1 0 % consumers 

are not satiated. The positive difference is particularly pronounced for newer characteristics 

like the strawberry flavour that was only introduced halfway dining our sample. Here the 

impact of an additional 1 0 % of experience leads to a 1 2 % higher probability of consuming 

it in the future for Danone strawberry and a 5.5% higher probability for Muller strawberry.

But this impact looks rather modest if we compare it to a 10% own price increase. 

Figure 2.10 shows the impact of a 10% own product price increase and a 10% change in the
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increase of the average of all the other products in the same storetype. As expected all own 

price increases lead to a negative difference in marginal effects with the exception of Yakult 

where consumers seem particularly price inelastic. Muller’s products seem particularly price 

sensitive which might be due to the fact that Muller is the newest brand and has not yet 

established the same brand familiarity/loyalty. This can be very costly and a 10% own 

price increase can lead to up to 50% less purchase probability (e.g. for Muller raspberry). 

An average price increase of all the competitor products by 10% has a comparatively small 

impact on purchase probability. The main beneficiaries seem to be Danone products that 

increase their purchase probability up to 20% (for Danone multifruit).

In terms of household characteristics the biggest impact is the gender of the main shopper 

(Figure 2.11). Increasing the percentage of male shopper by 10% leads to an 11% decrease 

in light product purchases (more pronounced for Yakult than for Danone). Increasing TV 

exposure by 1 0 % (an average extra 1 .8  hours per week) leads only to a modest increase in 

Muller (the newest brand) purchases of around 2.3 % in total. Increasing average age by 10% 

(4.8 years on average) has a very small economic impact it decrease the purchase probability 

of the newest brand and the new flavour introduction by less than one per cent in total. 

Hence we can explain a significant portion of choice heterogeneity by including household 

characteristics.

Concerned about this restrictive property of the IIA assumption we did two robustness 

checks. We estimated the basic characteristic reinforcement attraction model without price or 

consumer characteristics with a small random sample of our population using a multinomial 

probit which can represent any substitution pattern. The results did not look significantly 

different. As a second test we reestimated the multinomial logit of the basic model (only 

characteristic level reinforcement) on a subset of choices (leaving out the new characteristics)

. The Hausman and McFadden (1984) test indicated that the coefficients of the subset of 

alternatives are not significantly different from the full model.
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2TB Conclusion and D iscussion

In a simple framework of reinforcement learning we have shown that both product and 

characteristic-level experiences matter for the product choice of the consumer. We find 

evidence that consumers decompose their consumption choice between products into their 

characteristics and that characteristic familiarity explains a significant part of product choices 

over time. Overall we see that our adaptive learning model does explain consumer choices - 

particularly of new products - well. Our empirical analysis for probiotic yoghurt drinks shows 

that there is no satiation of any of the products or characteristics yet. All the own product 

attraction coefficients are positive and significant. We see more within brand switching than 

across brand switching which is documented in the transition matrix but can also be seen 

in the positive significant same brand attractions versus often insignificant same flavour or 

fat content attraction coefficients. This finding is in line with Erdem & Keane (1996) and 

others who focus on brand loyalty only. Of course our model gives the same weight to all 

characteristics and it would be an interesting extension to test the relative importance of 

the different characteristics.

Including prices does improve the model significantly but does not change the significance 

or sign of the reinforcement coefficients. Both own as well as competitor price changes play 

an important role. The economic impact of a 10% own price increase can decrease product 

purchase probability up to 50%.

Household characteristics have a differential impact on product choices. Older households 

are less likely to switch to the newest brand and male main shoppers are significantly less 

likely to purchase products with a lower fat content. The amount of television watched 

by the main shopper only influences their purchase of the newest brand positively. Single 

households react similarity to product and characteristic familiarity than families. Also 

gender and age play a similar role for singles the only difference in single household behaviour 

is that purchasing decisions do not change with the amount of TV exposure. Thus including
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household characteristics helps us significantly to explain choice heterogeneity over time. To 

understand how learning is distributed over household is interesting but would go beyond 

the scope of this paper. Similarly it could be worthwhile investigating whether households 

can be clustered into meaningful subgroups. For example looking at individuals with lots of 

observations could help to understand the sofar omitted individual effects.

In the future we would like to allow for more general substitution patterns between 

different product characteristic as well as allowing unobserved factors to be correlated over 

time. Since this is not possible within the framework of the multinomial logit model we 

might want to use more flexible simulation based estimators like the multinomial probit. 

So far we have only checked the robustness of our multinomial logit estimates with a small 

random subsample and only for the case without household characteristics and prices. Here 

the results looked very similar indicating that the IIA property of the multinomial logit does 

not pose a crucial restriction in this simple case.20 This might change when looking at the 

total sample and including other exogenous variables.

20 Due to computational restrictions we could so far only reestimate the model for this very small random 
subsample.
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2.7 Tables and Figures

Table 2.1: Product market shares
Product Frequency Percent

danone multifruit 2,077 4.15
danone orange 7,354 14.68
danone original 6,751 13.48
danone original light 6,993 13.96
danone strawberry 4,671 9.33
muller peach 3,521 7.03
muller raspberry 5,408 10.8
muller strawberry 3,456 6.9
yakult original 7,656 15.29
yakult original light 2,195 4.38
Total 50,082 100

Table 2.2: Descriptive statistics
mean std

Stores
total number of stores 1839.00
# of stores by HH 3.26 1.90
# of storetypes by HH 2.53 1.18
purchases
HH tenure 654.89 305.10
Purchase Frequency 21.31 43.90
# of products by HH 3.99 1.85
# of brands by HH 1.81 0.69
# of flavours by HH 3.09 1.45
Learning
Attraction "light" 20.54 20.01
Attraction "flavour" 17.26 19.34
Attraction "brand" 19.72 20.00
Attraction "product" 15.00 17.00
Attraction "z" 72.37 74.52
households
HH size 2.83 1.27
% of female shoppers 81.84
Age 48.14 15.01
7V
weekly TV hours 18.52 11.04
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Table 2.3: Transition matrix light
all

light light
singles

Light 0 1 0 1 Total
0 92.19 7.81 90.77 9.23 100
1 34.17 65.83 31.41 68.59 100
Total 81.51 18.49 77.33 22.67 100

Table 2.4: Transition matrix brand
all

brand
singles
brand

Brand danone muller yakult danone muller yakult Total
Danone 88.77 7.23 4.00 90.00 5.97 4.03 100
Muller 15.46 81.38 3.16 16.69 81.25 2.06 100
Yakult 11.83 4.27 83.91 12.97 2.37 84.66 100
Total 55.57 24.77 19.65 59.27 20.40 20.33 100

Table 2.5. 
All
Flavour

Transition matrix flavour (all)

multifruit orange original peach raspberry strawberry Total
Multifruit 41.84 17.11 13.69 3.21 3.84 20.32 100
Orange 4.80 59.72 17.69 3.10 3.66 11.03 100
Original 1.26 5.53 85.02 1.63 1.98 4.58 100
Peach 1.77 5.69 10.47 28.57 30.98 22.52 100
Raspberry 1.34 4.56 8.00 20.61 46.50 18.98 100
strawberry 5.94 8.90 12.5 8.88 12.71 51.07 100
Total 4.2 14.48 47.13 6.99 10.81 16.39 100

Table 2.6. 
Singles
Flavour

Transition matrix flavour (singles) 

multifruit orange original peach raspberry strawberry Total
Multifruit 49.35 13.87 11.94 2.26 2.58 20.00 100
Orange 4.84 69.31 14.42 2.42 2.03 6.97 100
Original 1.19 4.31 87.78 1.40 1.83 3.49 100
Peach 2.90 5.31 13.77 33.57 29.71 14.73 100
Raspberry 1.63 3.42 7.17 20.85 54.23 12.70 100
strawberry 8.39 9.25 13.51 9.82 11.10 47.94 100
Total 4.99 15.59 52.20 6.39 9.61 11.21 100
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Table 2.7: Transition matrix product (all) 
all 1

product 1 multifruit Orange

danone

original light strawberry peach

muller

raspberry strawberry

yakult

original light Total

multifruit 41.84 17.11 5.08 6.22 17.52 3.21 3.84 2.80 1.56 0.83 100
a>c orange 4.80 59.72 7.96 4.89 9.30 3.10 3.66 1.73 4.11 0.73 100
oc
-§

original 1.69 8.18 56.39 19.31 4.85 1.83 2.01 1.25 4.04 0.44 100

light 1.76 5.87 17.18 62.14 4.51 1.55 2.28 1.18 2.57 0.96 100

strawberry 8.98 13.78 6.39 6.84 50.05 2.16 4.03 4.39 2.68 0.70 100

peach 1.77 5.69 3.63 2.95 4.13 28.57 30.98 18.40 3.33 0.56 100
3
E raspberry 1.34 4.56 2.45 2.45 3.52 20.61 46.50 15.46 2.45 0.66 100

strawberry 1.79 2.22 2.46 1.91 6.07 18.08 24.58 40.41 1.69 0.80 100
3 original 0.52 3.77 3.92 2.44 1.79 1.58 1.83 0.93 78.50 4.72 100
(0

light 0.95 2.37 1.51 3.03 1.80 1.37 1.51 1.14 14.81 71.51 100

Total 4.20 14.48 13.42 14.06 9.42 6.99 10.81 6.97 15.22 4.43 100

Table 2.8: Transiti 
singles

prodcode

on matrix product (singles)
danone

multifruit orange original light strawberry peach

muller 

raspberry strawberry

Yakult

original Light Total

multifruit 49.35 13.87 4.84 3.87 17.74 2.26 2.58 2.26 0.32 2.90 100
CDc orange 4.84 69.31 6.97 4.36 6.00 2.42 2.03 0.97 2.42 0.68 100
ocCO-0 original 1.11 7.10 53.66 23.17 2.77 2.88 2.33 1.44 4.77 0.78 100

light 1.77 4.30 15.18 67.62 2.45 1.43 2.11 1.18 2.78 1.18 100
strawberry 11.46 14.32 5.97 6.21 49.64 2.39 2.63 3.58 0.95 2.86 100

a> peach 2.90 5.31 5.80 6.04 2.42 33.57 29.71 2.32 1.93 0.00 100
3
E raspberry 1.63 3.42 2.28 3.75 1.79 20.85 54.23 0.91 0.81 0.33 100

strawberry 3.87 1.76 3.87 1.76 5.28 20.77 23.59 4.86 1.41 2.82 100
3 original 0.38 2.17 5.09 2.64 1.04 0.38 1.04 0.47 82.38 4.43 100
(0

light 2.08 3.47 3.47 3.82 6.25 0.35 2.08 1.74 12.85 63.89 100

Total 4.99 15.59 13.65 18.22 6.82 6.39 9.61 4.39 15.88 4.45 100



Table 2.9: Coefficients from a multinomial logit model with only product reinforcement

All danone muller yakult
multifruit orange original original light strawberry peach rasberry strawberry yakult light

multifruit 0.8510* 0.4674** 0.2496 0.3368* 0.4471** 0.4448 0.3378 0.4484 0.3147
(0.449) (0.144) (0.152) (0.182) (0.152) (0.448) (0.256) (0.254) (0.187)

orange 0.1013** 0.1537 0.0121 0.0357 0.0873** 0.0331 0.0375 0.0129 0.0142
(0.033) (0.323) (0.026) (0.034) (0.033) (0.033) (0.032) (0.035) (0.034)

co original 0.0162 -0.0114 0.1269** 0.0698** -0.0146 -0.0223 -0.0389 -0.0299 -0.0422
c
"O (0.031) (0.026) (0.028) (0.029) (0.028) (0.038) (0.027) (0.029) (0.041)

original light 0.1715 0.0554 0.2067** 0.2971** 0.1546** 0.1015* 0.1142* 0.0878 0.0888
(0.152) (0.051) (0.049) (0.049) (0.052) (0.055) (0.057) (0.051) (0.055)

strawberry 0.2345** 0.1132** 0.0468 0.1071 0.3672** 0.0291 0.0785 0.1539** 0.0759
(0.061) (0.059) (0.062) (0.065) (0.061) (0.069) (0.064) (0.061) (0.083)

peach 0.3273** 0.2299 0.1227 0.1363 0.3024 0.5164** 0.3674** 0.4007** -0.0487
(0.088) (0.871) (0.092) (0.089) (0.486) (0.085) (0.086) (0.087) (0.119)

o rasberry 0.1307 0.0696 -0.0151 -0.0128 0.1012 0.1998** 0.2923* 0.1967** 0.00513
E (0.146) (0.044) (0.090) (0.071) (0.065) (0.043) (0.163) (0.042) (0.071)

strawberry 0.3921* 0.1260 0.2303 0.2242* 0.4644** 0.4532** 0.4668** 0.6459** 0.0476
(0.226) (0.152) (0.140) (0.128) (0.124) (0.126) (0.125) (0.125) (0.158)

yakult -0.1593** -0.1831** -0.1511** -0.1594** -0.1619** -0.1731** -0.1816** -0.1722** -0.0608**
"5 (0.021) (0.023) (0.022) (0.071) (0.017) (0.017) (0.019) (0.016) (0.009)
(0> yakult light -0.2301** -0.2348** -0.3407** -0.0632 -0.1751* -0.0573 -0.0929* -0.0627 0.1557**

(0.086) (0.059) (0.092) (0.068) (0.099) (0.049) (0.054) (0.049) (0.048)
const. -1.8788** 0.0785 -0.0848 -0.3692** -0.8221** -0.9333** -0.5857** -1.0210** 1.3371**

(0.116) (0.105) (0.112) (0.113) (0.109) (0.112) (0.103) (0.105) (0.161)
R2 0.2261
Obs. 50082

baseoutcome: yakult original
Standard Errors are reported in brackets and clustered on the household level 

* Statistically significant at the 10 percent level, ** statistically significant at the 5 percent level



Table 2.10: Coefficients from a multinomial logit model with product and characteristic reinforcement

All
multifruit orange

danone
original original light strawberry peach

muller
rasberry strawberry

yakult 
yakult light

multifruit 0.2995** 0.1535** 0.0695 0.1117* 0.1306** 0.1684** 0.1206* 0.1677** 0.1318*
(0.061) (0.061) (0.063) (0.061) (0.064) (0.062) (0.066) (0.065) (0.074)

orange 0.0753** 0.0034** 0.0492** 0.0388 0.0492** -0.0375 -0.0295 -0.0501** -0.0185
(0.020) (0.001) (0.019) (0.021) (0.021) (0.021) (0.021) (0.022) (0.023)

co original 0.1172** 0.0666** 0.0201** 0.0331 0.1015** -0.0570 -0.0630** -0.0625** -0.0585
cCOTJ (0.027) (0.025) (0.003) (0.025) (0.027) (0.031) (0.026) (0.025) (0.036)

original light 0.1016** 0.5249** 0.1382** 0.1190** 0.0935** 0.6431** 0.0809** 0.0612** -0.0052
(0.036) (0.031) (0.036) (0.032) (0.037) (0.034) (0.033) (0.030) (0.037)

strawberry -0.0665 -0.0349 -0.0882* -0.0516 0.0325** -0.1081** -0.0785 -0.0881* 0.0009
(0.045) (0.047) (0.048) (0.047) (0.004) (0.048) (0.046) (0.045) (0.055)

peach 0.0500 0.0570 0.0148 0.0270 0.0517 0.1149** 0.0499 0.0502 -0.0248
(0.044) (0.044) (0.049) (0.044) (0.427) (0.042) (0.042) (0.043) (0.056)

aj rasberry -0.0483* -0.2306** -0.0542 -0.0475 -0.0489* -0.0434* 0.1245** 0.0518* 0.0021
E (0.026) (0.029) (0.039) (0.035) (0.027) (0.026) 0.003) (0.026) (0.042)

strawberry 0.1157* 0.0225 0.1126 0.0968 0.1165* 0.1373** 0.1389** 0.2169** 0.0229
(0.065) (0.076) (0.071) (0.067) (0.064) (0.066) (0.065) (0.065) (0.086)

yakult -0.0478* -0.0459** -0.0054 -0.0586** -0.0517* -0.0968** -0.0849** -0.0973** -0.0551**
"5 (0.027) (0.019) (0.028) (0.021) (0.029) (0.021) (0.020) (0.018) (0.021)
CO>, yakult light -0.0551 -0.0454 -0.7566** -0.0377 -0.0392 0.0162 -0.0055 0.0180 0.0837**

(0.046) (0.031) (0.048) (0.036) (0.051) (0.030) (0.031) (0.028) (0.034)
const. -1.8769** 0.0588 -0.0947 -0.3692 -0.8426 -0.8382** -0.4448** -1.0201** -1.3209**

(0.115) (0.104) (0.111) (0.112) (0.108) (0.102) (0.102) (0.106) (0.159)
R2 0.3028
Obs. 50082

baseoutcome: yakult original
Standard Errors are reported in brackets and clustered on the household level 
* Statistically significant at the 10 percent level, ** statistically significant at the 5 percent level



Table 2.11: Coefficients from a multinomial logit model with product and characteristic reinforcement & price parameters
All danone muller yakult

multifruit orange original original light strawberry peach rasberry strawberry yakult light

multifruit 0.1702** 0.0399 0.0447 -0.0048 0.0126 0.0435 -0.0052 0.0386 0.0931*
(0.049) (0.049) (0.052) (0.051) (0.052) (0.056) (0.061) (0.061) (0.053)

orange 0.0331* 0.0363** 0.0112 -0.0019 -0.0111 0.0019 0.0142 -0.0022 -0.0085

CD (0.018) (0.018) (0.017) (0.019) (0.019) (0.021) (0.021) (0.021) (0.017)
Coc original 0.0814** 0.0344 0.0549** 0.0002 0.0655** -0.0195 -0.0237 -0.0295 -0.0524
(0Q (0.026) (0.024) (0.025) (0.024) (0.025) (0.031) (0.027) (0.026) (0.032)

original light 0.0912** 0.0485** 0.1317** 0.1192** 0.0806** 0.0649* 0.0796** 0.0697** -0.0034
(0.034) (0.021) (0.034) (0.031) (0.035) (0.035) (0.034) (0.032) (0.033)

strawberry -0.0339 -0.0278 -0.0770* -0.0410 0.0611** -0.0752* -0.0530 -0.0651* 0.1000**
(0.036) (0.039) (0.040) (0.041) (0.025) (0.041) (0.042) (0.039) (0.041)

peach 0.0720* 0.0726* 0.0358 0.0496 0.0676 0.1432** 0.0737* 0.0749 -0.0162
(0.042) (0.044) (0.048) (0.046) (0.041) (0.043) (0.044) (0.045) (0.048)

<5
" 3

rasberry -0.0273 -0.0180 -0.0379 -0.0334 -0.0289 -0.0331 0.0234** -0.0415* 0.0072
E (0.023) (0.024) (0.034) (0.038) (0.024) (0.025) (0.011) (0.024) (0.032)

strawberry 0.0104 -0.0318 0.0460 0.0301 0.0201 0.0327 0.0403 0.1207** 0.0117
(0.045) (0.055) (0.052) (0.053) (0.044) (0.048) (0.047) (0.047) (0.061)

yakult -0.0478* -0.0246 0.0072 -0.0390* -0.0319 -0.0699** -0.0594** -0.0663** -0.0548**
3 (0.027) (0.019) (0.027) (0.021) (0.025) (0.021) (0.019) (0.019) (0.020)
03> yakult light -0.0551 -0.0548 -0.1592** -0.0535 -0.0411 0.0012 -0.0154 -0.0028 0.0823**

(0.046) (0.033) (0.046) (0.037) (0.044) (0.032) (0.032) (0.031) (0.032)
UP own -0.4536** -0.4571** -0.4389** -0.4370** -0.4668** -0.7561** -0.7318** -0.7643** -0.0211

CD
O (0.035) (0.037) (0.036) (0.034) (0.034) (0.036) (0.036) (0.036) (0.016)
Q . UP other 0.1981** 0.0679** 0.0943** 0.0932** 0.0918** 0.0504** 0.0727** 0.0811** 0.0182

(0.015) (0.001) (0.015) (0.012) (0.015) (0.017) (0.016) (0.018) (0.015)
const. 7.7466** 13.7851** 12.3685** 12.0741** 12.5733** 20.9294** 20.0975** 19.8650** -1.0034

(1.243) (1.317) (1.299) (1.231) (1.261) (1.337) (1.324) (1.363) (0.705)

R2 0.4134
Obs. 50082
baseoutcom e: yakult original
Standard Errors are reported in brackets and clustered on the household level

* Statistically significant at the 10 percent level, ** statistically significant at the 5 percent level



Table 2.12a: Coefficients from a multinomial logit model with product and characteristic reinforcement & price parameters & household characteristics

R2
Obs.

0.4155
50082

all
multifruit orange

danone 
original original light strawberry peach

muller
rasberry strawberry

yakult 
yakult light

multifruit 0.1723** 0.0419 -0.0436 -0.0026 0.1596** 0.0398 -0.0040 0.0394 0.0964*
(0.051) (0.049) (0.052) (0.051) (0.053) (0.056) (0.062) (0.061) (0.052)

orange 0.0322* 0.0368** -0.0116 -0.0016 -0.0101 0.0038 0.0164 -0.0001 -0.0091

a> (0.018) (0.017) (0.017) (0.018) (0.018) (0.020) (0.021) (0.021) (0.016)
co original 0.0812** -0.0344 0.0534** -0.0014 0.0641** -0.0169 -0.0205 -0.0253 -0.0522
c
-§ (0.026) (0.025) (0.025) (0.024) (0.025) (0.031) (0.027) (0.026) (0.032)

original light 0.0911** 0.0491 0.1319** 0.1190** 0.0801** 0.0668 0.0789** 0.0690“ -0.0046
(0.034) (0.031) (0.034) (0.031) (0.035) (0.035) (0.033) (0.032) (0.033)

strawberry -0.0356 -0.0297 -0.0751* -0.0397 0.0581** -0.0773 -0.0572 -0.0691 0.0086
(0.036) (0.039) (0.041) (0.041) (0.025) (0.041) (0.041) (0.045) (0.041)

peach 0.0709* 0.0698 0.0304 0.0454 0.0684* 0.1426 0.0740* 0.0762* -0.0165
(0.039) (0.044) (0.046) (0.044) (0.038) (0.041) (0.041) (0.042) (0.048)

rasberry -0.0276 -0.0178 -0.0328 -0.0303 -0.0297 -0.0329 0.0225** 0.0426* 0.0076
"3
E (0.022) (0.029) (0.033) (0.037) (0.023) (0.024) 0.002) (0.026) (0.031)

strawberry 0.0104 -0.0307 0.0440 0.0285 0.0189 0.0328 0.0402 0.1199“ 0.0121
(0.044) (0.076) (0.051) (0.052) (0.043) (0.046) (0.046) (0.046) (0.059)

yakult -0.0261 -0.0233 0.0078 -0.0387 -0.0325 -0.0681 -0.0600** -0.0678** -0.0556**
3 (0.025) (0.019) (0.027) (0.021) (0.025) (0.021) (0.019) (0.019) (0.021)
(0>* yakult light -0.0595 -0.0568 -0.1606** -0.0536 -0.0407 -0.0027 -0.0153 -0.0022 0.0835“

(0.042) (0.033) (0.045) (0.037) (0.044) (0.032) (0.031) (0.031) (0.032)
UP own -0.4573** -0.4615** -0.4450** -0.4420** -0.4683** -0.7609** -0.7355** -0.7677“ -0.0209

oo (0.036) (0.037) (0.037) (0.035) (0.035) (0.037) (0.037) (0.037) (0.016)'CQ. UP other 0.1980** 0.0677** 0.0933** 0.0919** 0.0929** 0.0511** 0.0751** 0.0849** 0.0179
(0.015) (0.001) (0.016) (0.015) (0.015) (0.017) (0.016) (0.018) (0.015)

> TV 0.0042 0.0048 0.0012 -0.0034 0.0019 0.0181** 0.0130** 0.0164“ -0.0060
F- (0.006) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006)

ageMS -0.0002 0.0036 0.0111** 0.0080* -0.0068 -0.0046** -0.0104** -0.0163“ -0.0020
o
E (0.004) (0.004) (0.004) (0.004) (0.004) (0.002) (0.004) (0.004) (0.005)
0"O sexMS -0.2161 -0.1985 -0.1875 -0.3883** -0.2811* -0.2730 -0.3262 -0.1768 -0.1152“

(0.180) (0.157) (0.156) (0.159) (0.168) (0.175) (0.181) (0.188) (0.017)
const. 8.0716** 13.9998** 12.2549** 12.4118** 13.2197** 21.2554** 20.7609“ 20.5040** -0.6811

(1.273) (1.345) (1.333) (1.267) (1.295) (1.385) (1.375) (1.417) (0.776)

CN
CO

baseoutcom e: yakult original
Standard Errors are reported in brackets and clustered on the household level, * Statistically significant at the 10 percent level, ** statistically significant at the 5 percent level



Table 2.12b: Coefficients from a multinomial logit model only price parameters & household characteristics

All danone muller yakult
multifruit orange original original light strawberry peach rasberry strawberry yakult light

UP own -0.5190** -0.5143** -0.4859** -0.4806** -0.5240** -0.8246** -0.8040** -0.8369** -0.0272*
<Do (0.035) (0.036) (0.037) (0.036) (0.035) (0.038) (0.037) (0.038) (0.016)
L_Q. UP other 0.2373** 0.0671** 0.0768** 0.0840** 0.1415** 0.0945** 0.0965** 0.1393** 0.0308*

(0.013) (0.001) (0.014) (0.015) (0.014) (0.026) (0.017) (0.020) (0.018)

&
TV 0.0173* 0.0068 0.0027 -0.0053 0.0076 0.0209** 0.0139 0.0179* -0.0040

(0.009) (0.009) (0.009) (0.009) (0.008) (0.008) (0.009) (0.009) (0.011)
ageMS -0.0085 -0.0021 0.0080 0.0078 -0.0209** -0.0123* -0.0208** -0.0272** 0.0012

o
E (0.007) (0.007) (0.006) (0.007) (0.006) (0.007) (0.007) (0.007) (0.007)
<0TD sexMS 0.0272 0.1866 -0.1460 -0.3032 -0.0504 -0.0161 -0.2597 0.0816 -0.3437

(0.244) (0.245) (0.241) (0.255) (0.236) (0.280) (0.266) (0.274) (0.296)
const. 8.9529** 15.1821** 13.8906** 13.8661** 13.9039** 21.8812** 22.6742** 21.2910** -0.8637

(1.377) (1.425) (1.513) (1.454) (1.402) (1.758) (1.546) (1.622) (0.992)
R2 0.2055
Obs. 50082



Table 2.13: Coefficients from the full multinomial logit model (TableH) for singles
Singles danone muller yakult

multifruit orange original original light strawberry peach rasberry strawberry yakult light
multifruit 0.3324** 0.1737 0.1649 0.1252 0.0966 0.2166 0.1291 0.0735** 0.2585

(0.161) (0.167) (0.169) (0.171) (0.198) (0.169) (0.178) (0.199) (0.174)
orange 0.1257* 0.1921** 0.1261* 0.1403** 0.1825** 0.1549** 0.1751** 0.1768** 0.0661

<1) (0.063) (0.059) (0.065) (0.058) (0.067) (0.062) (0.063) (0.063) (0.059)
Co original ^0.0556 -0.0236 0.0592** 0.0341 -0.1167 -0.0212 -0.0136 0.0001 -0.1112
c(0"O (0.099) (0.073) (0.023) (0.062) (0.088) (0.085) (0.101) (0.086) (0.081)

original light 0.0702 0.0271 0.1415** 0.1370** 0.1108* 0.0904 0.0605 0.0542 -0.0301
(0.062) (0.058) (0.056) (0.047) (0.059) (0.064) (0.066) (0.058) (0.057)

strawberry -0.5183** -0.4526** -0.5791** -0.5317** 0.3747** -0.5694** -0.4776** -0.4617** -0.1756
(0.155) (0.145) (0.151) (0.140) (0.155) (0.159) (0.157) (0.161) (0.157)

peach -0.2040** -0.2093** -0.3338** -0.2356** -0.1755** 0.1298** 0.1937** 0.1941** -0.0473
(0.086) (0.088) (0.097) (0.098) (0.085) (0.063) (0.093) (0.092) (0.095)

0 rasberry -0.2582** -0.2201** -0.2077** -0.2085** -0.2353** 0.2784** 0.1779** 0.2447** -0.15293
E (0.073) (0.075) (0.077) (0.081) (0.075) (0.077) (0.075) (0.077) (0.091)

strawberry 0.8749** 0.7634** 0.9504** 0.8623** 0.8566** 0.8977** 0.8213** 0.9285** 0.3648
(0.290) (0.288) (0.289) (0.291) (0.292) (0.293) (0.294) (0294) (0.313)

yakult -0.1551** -0.1435** -0.0964** -0.1429** -0.1444** -0.1581** -0.1736** -0.1801** -0.1459**
"5j* (0.038) (0.049) (0.042) (0.037) (0.037) (0.041) (0.042) (0.039) (0.041)
>% yakult light 0.0938 0.0898 -0.0742 0.0173** 0.1137 0.0851 0.1262* 0.1341* 0.2411**

(0.063) (0.079) (0.078) (0.064) (0.070) (0.075) (0.068) (0.069) (0.078)
UP own -0.3570** 0.3694** -0.3218** -0.3427** -0.3862** -0.6783** -0.6562** -0.6482** 0.0214

0o (0.052) (0.050) (0.057) (0.050) (0.051) (0.052) (0.051) (0.053) (0.033)■i_Q. UP other 0.1971** 0.0916** 0.0799** 0.0881** 0.1080** 0.0738* 0.1084** 0.1794** 0.0353
(0.039) (0.003) (0.036) (0.031) (0.037) (0.041) (0.038) (0.044) (0.030)

e
TV -0.0133 0.0010 -0.0143 -0.0228* 0.0221 -0.0022 -0.0145 0.0061 -0.0125

(0.014) (0.013) (0.013) (0.012) (0.016) (0.016) (0.016) (0.015) (0.017)
ageMS -0.0067 -0.0002 0.0038 -0.0046** -0.0153 -0.0003 -0.0120 -0.0079 -0.0243**

o
E (0.011) (0.009) (0.010) (0.002) (0.011) (0.011) (0.012) (0.011) (0.012)
0■a sexMS -0.1185 -0.3213 -0.3513 -0.8184** 0.2545 -0.2453 -0.5864 -0.0394 -1.0310**

(0.384) (0.341) (0.348) (0.346) (0.424) (0.398) (0.406) (0.422) (0.407)
const. 4.9768** 10.3484** 9.1920** 10.8635** 8.4325** 17.5973** 17.7213** 12.8095** h0.7547

(2.247) (2.048) (2.333) (2.121) J2.331) (2.303) (2.339) (2.455) (T631)
R2
Obs.

.4461
6767!

baseoutcom e: yakult original
Standard Errors are reported in brackets and clustered on the household level, * Statistically significant at the 10 percent level, * *  statistically significant at the 5 percent level



CHAPTER 2. LEARNING TO CONSUME

Figure 2.1: Household purchases across products and characteristics
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Figure 2.2: Unitprice kernel densities by litre and by pack
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Figure 2.3: Unitprice kernel densities by pack & by fatcontent/brand
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CHAPTER 2. LEARNING TO CONSUME

m u l t i f r u i t -------------orange
original -------------  peach
raspberry -------------  strawberry

Other/Comershop -----------  Discounter

-----------  Morrison/Safeway -----------  Sainsbury
-----------Tesco -----------  Waitrose

Figure 2.4: Unitprice kernel densities by pack & by flavour/storetype
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Figure 2.6: Unitprices over time by storetype
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CHAPTER 2. LEARNING TO CONSUME

Figure 2.7: Typical switching patterns
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Figure 2.9: Impact o f  a 10% increase in own product/brand purchases
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Figure 2.10: Impact o f  a 10% increase in own/competitor prices
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Figure 2.11: Impact o f a 10% increase in TVexposure/age/% male shopper
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Chapter 3

Aggregate information cascades

3.1 Introduction

A central agency in health policy must decide how to disclose information on the adoption 

of a new treatment. One possibility is to inform the doctors on how many others have 

already decided to adopt the new treatment. Another is to inform them on how many have 

considered doing it but have judged that it is preferable to stick to the old practice. Another 

possibility is to reveal both, the number of doctors in favor of the new practice and the 

number of physicians in favor of the old one. Can the way the information is disclosed make 

a difference for the diffusion of the new treatment? Suppose the agency is uncertain on the 

effects of the new treatment and considers as the worst case scenario the situation in which 

the new treatment is widely adopted while ultimately resulting in worse health outcomes 

than the old one, for instance because of side effects. Which disclosure policy should the 

agency employ?

Intuitively, one would think that the disclosure of all available information should max­

imize social welfare. However, this only hold if there are no externalities and a doctor’s 

decision about a treatment for a patient is obviously a case with huge externalities. While 

the life of a patient may matter a lot to the physician it surely matters more to the patient,
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CHAPTER 3. AGGREGATE INFORMATION CASCADES
at least in most cases.

Bickchandani et al. have argued in their seminal paper on information cascades that 

the adoption of medical procedures is often based on fairly weak information and that in 

many cases doctors tend to imitate others. As an example they cite the widespread use of 

tonsillectomies in the sixties and seventies and argue that it was essentially an information 

cascade (where the shere the fact that the majority of physiscians employed the procedure 

overrode any private information individual doctors might have had access to). And in this 

case it was a “down cascade”—a cascade that generated the worst outcome since it eventually 

turned out that tonsillectomies did more harm than good.

One of the questions we raise in this paper is whether a central agency that can influence 

the transmission information may want to decide to withhold some information. And indeed 

it turns out that this might be the case. This is due to the following simple result: If agents 

have access to information about both, how many have others adopted and how many have 

not, both types of cascades are possible—cascades where everybody adopts and cascades 

where everybody does not adopt. (This is, of course, what we know from the literature 

already.) However, if the agency decides only to inform about how many have adopted 

then there is only one type of cascade—one where evrybody adopts. And if the agency only 

reports about those who have decided not to adopt, there is also only one type of cascade, 

one where everybody decides not to adopt. Thus, if the really bad outcome is the one where 

everybody herds on the new treatment while the new treatment is, in fact, worse than the 

old, the agency can avoid that this happens—by withholding the information about how 

many others so far have decided to adopt.

While information about medical procedures appears to be a particularly appealing 

policy-relevant example for the theory we develop here, there are, in fact, many other ap­

plications. At the core of our paper is simply a model of social learning where agents have 

to make binary decisions, like adopting a new treatment or not, making an investment or 

not. Our crucial assumption (where we deviate from the previous literature) is that when an
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agent makes his decision, he can only observe the total number of others who have already 

taken one of the two available actions, for example, the total number of others who have 

already decided to adopt the new treatment while he cannot observe the number of those 

who have previously contempleted the choice but opted otherwise.

This structure appears very natural for many examples that have previously been dis­

cussed in the literature on social learning. A restaurant goer who must decide whether or not 

he wants dinner at a particular restaurant he stands in fron of, may be able to peer through 

the window to see how many others decide to have dinner there but he can only speculate 

about how many others tood before the door and decided to pass. A similar example is 

that of a manager of a venture capital firm who discusses a project with an inventor who 

needs capital to develop a new product. Say, the inventor has already secured funds from 

two other venture capital firms. Then we may expect that the inventor gladly mentions 

this to the manager with whom he negotiates. The manager who will have some private 

information about the viablity of the project will, of course, also extract some information 

from knowing that there were two others who obviously had information telling them that 

the project is good. On the other hand, since we can safely assume that the inventor will 

not tell the manager about how often he was turned down, the manager can only guess how 

many other firms had information telling them that the project was bad. Of course, knowing 

the number of venture capital firms that would, in principle, finance such a project will help 

him to update his beliefs about this.

In all these examples agents who have to decide between two options have only aggregate 

information about one of the two options while in all models present in the literature so far, a 

decision maker has access to information about the individual choices of others who decided 

before him. The standard model of social learning (Banerjee, 1992, and Bikhchandani et 

al., 1992), for instance, contemplates a sequence of binary decisions which are all observable. 

Agent n knows whether each predecessor in the sequence, from agent 1 to agent n —1, decided 

in favor of one option or the other. We find that our set up captures quite naturally some
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situations frequenlty arising in social interactions. Like in the case of the restaurant goer or 

the venture capital firm in many circumstances, a decision maker can gather some aggregate 

information (how many agents have already adopted, invested, chosen a restaurant), but he 

can rarely observe all the individual decisions. Clearly, if the decision is binary, knowing 

the number of agents who have made a certain decision helps to update on the number of 

agents who have already made the opposite decision. But this is not equivalent to knowing 

it. And we can show that it makes an important difference. In particular, we can show, as 

we have mentioned already above, that with aggregate information there can only be one 

type of information cascade.

An information cascade occurs when agents rationally neglect their own private infor­

mation, i.e., when they choose the same action independently of the signal they recieve (for 

instance following their predecessors). In the standard sequential model of Banerjee (1992) 

and Bikhchandani et al. (1992) different types of cascades can arise. If the decision is binary, 

say, between investing and not, there can be cascades where, from a certain point onwards, 

all decision makers decide to invest, as well as cascades where, from a certain point onwards, 

all decisions makers decide not to invest At a first glance, one could think that this is the 

case in our set up, too. If a restaurant goer sees many people in a restaurant, he could 

cascade and join the crowd; if he sees the restaurant empty, he could cascade and decide 

to pass on the restaurant too. However, we can prove that, on the contrary, only the first 

cascade is possible. In equilibrium it cannot be that there is a cascade on the unobservable 

action, e.g., that the restaurant remains empty altough some people have read good reviews 

on it.

In many cases, one of the available actions arises naturally as the observable action. In one 

of the examples above it is the number of investment decisions (as opposed to the number 

of declined investments). In another it is the number of decisions to dine in a particular 

restaurant (as opposed to the number of passes). There are, however, important cases where 

third parties may have the power to decide what kind of information is provided to agents.
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This is the case from which we started: the disclosure policy of a health agency. The worst 

case scenario for the agency is that in which agents start to herd on the wrong action. This 

induces the biggest welfare loss. The central agency may not know what the wrong action 

is (if it did, it could simply announce it) but often the welfare losses will be asymmetric: the 

case where the new treatment is indeed more effective but everybody sticks to the old one 

may be better or worse than the opposite case, where the old treatment is more effective but 

everybody switches to the new. Since the central agency can choose which action to make 

observable, it can rule out one of the two erroneous cascades—by withholding information. 

In summary, we like to argue that the aggregate information set up that we introduce here 

has not only several intriguing properties—some of which in stark contrast to the predictions 

of the standard model—it also has a potenatially important policy implications.

We extend the literature on social learning not only theoretically but also experimentally. 

After establishing our theoretical results, we have also implemented our set up in a laboratory 

experiment. The aim of this experiment is to have a first “reality check,” since we believe 

that a theory like ours is more appealing if it is not completely off the mark. Previous models 

of social learning, starting with the standard sequential model with all observable actions, 

have been extensively tested in the laboratory, with results that are sometimes positive and 

sometimes less favorable. We find that our theory finds support in the laboratory, although 

some interesting anomalies emerge.

Two papers close in spirit to ours are Celen and Kariv (2004 and 2005). Similarly to our 

approach, Celen and Kariv are interested in understanding what happens when we remove 

the strong assumption that agents can observe the entire history of individual decisions. 

Celen and Kariv (2004) extend the standard model of sequential social learning by allowing 

each agent to observe the decision of his immediate predecessor only. Celen and Kariv (2005) 

test this model in the laboratory. The theoretical predicion of these authors is that, when 

each agent can only observe his immediate predecessor’s decision, behavior does not settle 

on a single action. Long periods of herding can be oserved, but switches to the other action
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occur. As time passes, the periods of herding become loger and longer, and the switches 

more and more rare. However, their predictions find limited support in the laboratory.

Our model, in contrast, does fairly well in the laboratory. In just two simple treatments 

we find that the main comparative statics go all in the right directions. Moreover, most of 

the deviations we observe pretty much mirror those that have dosumented in the previous 

experimental literature on standard cascade models. There is, however, one interesting 

anomaly that deserves to be mentioned here. With a fifty-fifty prior we find some “reluctance 

to go first.” Agents who observe the empty restaurant but have a good signal (and who should 

therefore decide to enter the restaurant) do so in only 56% of all cases. We conjecture that 

this reluctance to go first may stem from the fact that in many other environments, in 

particular in those with endogenous seqeuncing, one would indeed prefer others to do the 

first costly experiment. We also conjecture that this behavioural effect mirrors the non- 

triviality of our theoretical result.

The remainder of the paper is organized as follows. In Section 2 we introduce the formal 

model. We present its equilibrium analysis in Section 3 and Section 4 contains an example. 

Section 5 describes the experiment and Section 6 concludes.

3.2 The M odel

In our economy there are n agents who have to decide in sequence whether or not to take up 

a certain option. For convencience, we shall refer to this choice as the decision on whether 

or not to invest. Time is discrete and indexed by t =  1 , 2 , n. Each agent makes his choice 

only once in the sequence. Agent Vs (i =  1,2,..., n) action space is given by {0,1}, where 1 

is interpreted as investment. Player Vs action is denoted by Ii G {0,1}. An agent’s payoff 7r* 

depends on his choice and on the true state of the world u  G {0,1}. The prior probability of 

cj =  1 is r G (0,1). If u; =  1 agent i receives a payoff of 1 if he choses to invest, and a payoff
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of zero otherwise; vice versa if u =  0. That is,

7Ti =  u l i  +  (1 -  u ;)( l -  I i ) .

The sequence in which agents make their choices is randomly determined before the first 

agent makes a decision, and agents are, w.l.o.g., (re-)numbered according to their positions: 

agent i chooses at time i only. All sequences are equally likely. The agents, however, are 

not informed about which sequence has been chosen. Furthermore, they do not know their 

own position in the sequence. When called upon, agent i is only informed about the total 

number of agents before him who have decided to invest. In other words, the decision to 

invest is assumed to be the only observable action. This means that, while the aggregate 

number of investments is observable, each individual decision to invest or not is not publicly 

known. We denote the total number of agents who have invested before agent i b y  Ti, i.e., 

agent i is informed about Ti =  addition to observing Ti, each agent i receives a

private signal cq E {0,1} that is correlated with the true state u j . In particular, we assume 

that each agent receives a symmetric binary signal distributed as follows:

Pr(cq =  1 | u j  =  1) =  Pr(crj =  0 | u j  =  0) =  q.

Note that, conditional on the state of the world, the signals are i.i.d.. We shall refer to 

u j  =  1 as the “good state” and to u j  =  0 as the “bad state.” A signal pointing in the direction 

of the good state (<7 ; =  1 ) shall be called “good signal” and a signal pointing in the opposite 

direction (<7 * =  0) “bad signal.” We assume that 1 > q > r and that r +  q > 1. These 

conditions ensure that, in the one-agent case, an agent would invest after a good signal and 

would not invest after a bad signal, which renders the problem interesting. Note that these 

two conditions also imply that q >  25 i-e-? that the signal respects the monotone likelihood 

ratio property. Finally, the signal is not perfectly informative, which makes social learning
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possible and relevant.

Agent i ’s information set is, therefore, represented by the couple ( T i ,  cq). An agent’s 

strategy 3 i  maps ( T i ,  d i )  into an action, i.e.,

3i : {0 , 1 , 2 ,..., n — 1 } x {0 , 1 } —> {0 , 1 } .

An agent’s mixed strategy induces, for each (T*,^), a probability with which the agent 

invests. We denote the probability with which agent i invests after observing (T i , O i ) by

l i ( T i , O i ) .

To conclude the description of our model, it is useful to introduce the notion of an 

aggregate information cascade. The definition is virtually identical to the standard definition 

of information cascade, with the characteristic that histories are summarized by the aggregate 

statistic T i .

Definition 1 An aggregate information cascade (AIC) occurs when, along the equilibrium 

path, there is a decision after which all agents choose an action independently of their signal. 

In particular:

In an aggregate up cascade (AUC) there is a critical trigger value T u p  such that if 

Tfc =  T u p  all agents from k onwards choose to invest regardless of their private signals. 

Consequently, there is some k such that Tk+j =  Tk +  j  for all j  =  1,..., n — k.

In an aggregate down cascade (ADC) there is a critical trigger value T D O W N  such that 

if Tfc =  Tdown all agents from k onwards choose not to invest regardless of their private 

signals. Consequently, in an ADC there is some k such that Tk+j =  Tk for all j  =  1,..., n — k.

We axe now ready to start analysing the equilibrium decisions in our economy.
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5T3 Equilibrium A nalysis

The ultimate goal of our analysis is to understand the social learning process that occurs 

in our economy. Each agent can learn about the true state of the world from the aggregate 

information that he receives about other agents’ choices. This can lead to better decisions. 

On the other hand, it may be that also in our economy, as in the canonical model of social 

learning of Banerjee (1992) and Bickchandani et al. (1992), there is room for information 

cascades, i.e., for situations in which agents take the same decision independently of their 

private information. In such a case, the process of information aggregation will not be 

efficient. We will show that, indeed, “up cascades” of investments are possible even in our 

set up, as they are in the canonical model. In contast, “down cascades” of non-investments 

never occur in equilibrium.

We restrict the entire analysis to symmetric Bayesian Nash equilibria. Our economy is 

represented by a symmetric game and there is nothing in the environment that could help 

agents to coordinate on an asymmetric outcome. Therefore, the restriction to symmetric 

equilibira is very natural.

To start our analysis, it is convenient to focus first on the case of Ti =  0, in which an 

agent observes that no one has invested before him. At a first glance, the decision problem 

in such a situation appears to be fairly complicated. If the agent knew that Ti — 0 simply 

because he is the first decision maker, then he should certainly follow his private signal, since 

that is the only information available. If, instead, he knew that he is not the first decision 

maker, then he may decide to ignore the signal and not invest independently of it, as other 

agents have already chosen the non-investment option. Intuitively, one might think that 

Ti =  0 is pretty bad information if there are many players. Suppose that n is very large and 

you observe that nobody has invested before you. But at the same time you own private 

signal is good. Would you trust your own signal? Of course, this will depend on the other 

agents’ strategy choices. While the problem is made hard due to the fact that the agent does
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not know his position in the sequence it is made easier due to the fact that the only thing 

that matters about other agents’ strategies is what these specify for the very same case of 

T =  0.

To attack the problem, let us start with the following definition:

Definition 2 An initially-pure equilibrium (IPE) is a Nash equilibrium that prescribes pure 

actions for Ti =  0  and both possible signal realizations cq =  0  and cq =  1 .

Note that there can be mixing in an IPE after observing Ti >  0. The definition of an 

IPE just excludes the cases in which an agent mixes after observing Ti — 0. We are able to 

establish some results that focus on T* =  0. First, we prove that in any IPE agents must 

follow their signals after observing Ti — 0: there cannot exist IPEs in which an agent plays 

independently of his signal or play against it.

Lemma 3 In any IPE, an agent follows his own signal if he observes that nobody has in­

vested so far, i.e., Z*(0 , <7j) =  <7* for all i.

Proof. We prove this by contradiction. Suppose that for T{ — 0 agents choose either 

to invest always or never (independently of the private signal). Consider the latter 

possibility first, i.e., consider a pure-strategy equilibrium with Z*(0,0) =  Zj(0,1) =  0. 

Then, along the equilibrium path, nobody ever invests and, for all agents j  =  1, ...,n, 

Tj =  0. Hence, Ti =  0 does not reveal any information on the true state of the world. 

Since the posterior probability that to =  1 is still r, agent i is better off by following 

his informative signal <7j. Next, consider the case of investment after Tj =  0, i.e., an 

equilibrium with Zj(0,0) =  Zj(0,1) =  1. In this case, along the equilibrium path, only 

the first agent in the sequence observes that nobody else has invested before. That 

is, Ti =  0 if and only if i =  1. Hence, after observing T, =  0 agent i knows that he 

is the first agent in the sequence and, thus, should follow his signal. Finally, suppose 

that for Ti =  0 agents choose to play against their private information, i.e., consider a
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pure-strategy equilibrium with 2i(0, cq) =  1 — cr*. Then, along the equilibrium path, 

after observing T; =  0 , agent i knows that he is either the first in the sequence or other 

agents before him have received the good signal. In both cases, he should follow his 

signal. ■

While we have shown that in any IPE an agent who observes zero investments should 

follow his signal, it remains unclear whether such equilibria exist. The next lemma identifies

a necessary and sufficient condition under which an IPE does indeed exist.

Lemma 4 An IPE exists if and only if r >  2_î Zqyl_qn •

Proof. We first prove that it is indeed optimal for an agent i to follow his own signal

after 7* =  0  provided that everybody else does so and that the condition stated in the 

lemma holds. (Notice that what another agent j  does for 7} > 0 is irrelevant for agent 

Vs optimal choice of Z;(0, ai).) Assuming such behaviour of others, an agent i who

observes 7̂  =  0  and cq =  1 attaches to the good state a posterior of

Pr(u =  1 | Ti =  0, <Ti =  1) =

rgEJ=i(! -  g)i_1 + (1 -  r)(! -  g) E"=i g*"1 ’

He will follow his good signal if this posterior is at least 1/2, i.e., if

n n
r g B 1- ^ 1 > (1 —r)(l —

j =i j = i

Solving for the sums and rearranging the terms, we get the condition in the lemma. 

To complete the proof we have to show that an agent i who assumes that the others

play according to the rules stated in the lemma and who observes T{ =  0 and cq =  0
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does not invest, i.e., we need that

Pr(u; =  1 | Ti =  0, cr* =  0) =

 r(!-g) E"=i(1-g)J'~1_______
r ( i  -  q) E " = i( i  -  q)j ~ l +  ( i  -  r )qYTj=i qj ~l
i

r(x - q ) ~ q}J 1 < (1 ~ r)q'52qj
j = 1 .7=1

which can be written as

r q2 1 — qn
jt=7) K ( i - , ) * i - ( i - , r  (3-1}

Since r < g we also have yz; < y^ . Hence, inequality (3.1) holds if y^y^y^yr > 1.

This can be rewritten as 2q >  1 +  qn+1 — (1  — q)n+1 which is obviously true for q >  1 / 2 .

■

Notice that the condition imposed in the lemma is always fulfilled if r >  1/2, i.e., when 

the good state is initially more likely than the bad state, an IPE always exists.

We now turn our attention to Nash equilibria that are not initially pure. The next lemma 

trivially follows from Bayesian updating. We state it formally because we shall need it later 

on. The lemma after that shows that in an equilibrium that is not an IPE agents who observe 

T{ =  0  never invest if their signal is bad, but will invest with some positive probability if 

their signal is good.

Lemma 5 (i) In any equilibrium, Ii(Ti, 1) > Ii{Ti, 0) for all Ti, with the inequality being 

strict if li(T i,0) <  1. (%%) In any equilibrium, 0 < Ii(Ti,0) < 1 => J<(Ti, 1) =  1 and

0 < Ii(Ti, 1 ) < 1 =» Xi(Ti, 0) =  0 for all T*.
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Proof. In equilibrium, each agent will infer the same information from observing a par­

ticular value of T  ̂ Whatever the posterior induced by just observing T;, it follows 

immediately from Bayes’ rule that an agent who has an additional good signal will 

be more optimistic about the good state than an agent with a bad signal. Hence, 

the first part follows. Note that the inequality is weak only when 2i(T*, 0) =  1. The 

first part of the proposition results from these considerations and from expected payoff 

maximization. The second part follows from the same argument and the additional 

observation that mixing requires indifference. ■

Lemma 6  In any equilibrium that is not an IPE, 2^(0,0) =  0 and 0 < 2j(0 ,1) < 1 for all i.

Proof. Given Lemma 5 we just need to rule out an equilibrium with 0 < Z*(0,0) < 1 and 

2 i(0 ,1) =  1. For an agent to be indifferent between investing and not after Ti — 0 

and Gi =  0 we need Pr(u> =  1 j Ti =  0, cq =  0) =  1/2. Using Bayes’ rule this can be 

re-written as

r  Pr(Ti =  0, Gi =  0 | u  =  1) =  (1 — r) Pr(T; =  0, =  0 | u =  0),

or

r ^ 2 ( \ - (i Y ( 1 - p Y  1 = C1 “ O X y t 1 ~ p Y \
j=i j=i

where p denotes the probability with which all other agents who see Ti =  0  and cr =  0  

invest. Rewriting this as

n

5 Z [W 1 ~  qY - i 1 - r v )  (x ~  p )J_1] = 0
j= 1

makes it obvious that there is no p >  0  that solves the equation: since we have 

q >  max {I , rjthe left-hand side is strictly negative for any positive p. m

Having characterized equilibria that are not initially pure, we must discuss whether they
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exist. The next lemma introduces a necessary and sufficient condition for such mixed-strategy 

equilibria to exist.

Lemma 7 Mixed-strategy equilibria with 2^(0,0) =  0 and 0 < 2^(0,1) < 1 for all i exist if 

and only if there is a p £ (0,1) that solves

r{ 1 -  (1 -  pq)n\ =  (1 -  r) [1 -  (1 -  p( 1 -  g))n].

Proof. The lemma follows from observing that, if all other agents j  ^  i use 2(0,0) =  0 

and 2 (0 , 1 ) =  p  agent z’s indifference between investing and not investing after T; =  0  

and Gi =  1 requires Pr(u; =  1 | Ti =  0 ,cr =  1) =  1/2. After applying Bayes’ rule and 

some algebraic manipulation, this gives

n n

=  C1 ~ r )0- - P i 1
j =i j =l

which is equivalent to the equation in the lemma. ■

This lemma completes our characterization of equilibrium decisions after observing Ti =  

0. In the following proposition we summarize what we have learned so far.

Proposition 8 If r >  1/2 agents who observe Ti =  0 follow their signal in all equilibria.

V  2-(l-q)n-qn < T <  1 / 2  there is an equilibrium where agents who observe Ti =  0  follow 

their signal but there may also be other (mixed-strategy) equilibria where agents who observe 

Ti — 0  follow their signal if it is bad and mix if it is good.

If r ^ 2^[iE^r_qn there can only be equilibria where agents who observe Ti =  0  follow 

their signal if it is bad and mix if it is good}

1 Notice that the third part of the proposition touches on an existence problem. For obvious reasons we 
have restricted our analysis to symmetric Bayesian Nash—in case of bad priors these may fail to exist.
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Proof. The proposition follows immediately from the four lemmas and the observation 

that <  1 / 2 . ■

Our analysis essentially shows that, when facing a situation with no previous investments, 

an agent should either follow his signal or use a mixed strategy. An agent should never decide 

independently of his signal, neither should he decide against it. This clearly indicates that we 

should not observe a “down cascade” where all agent choose not to invest. In other words, a 

restaurant will not stay empty forever only because it is empty now. While this puts already 

a lot of structure on the equilibrium solution of our game, we still need to investigate what 

happens for different values of the aggregate investment T.

To this purpose, we establish in the next step an intuitive monotonicity result, according 

to which a higher value of T is always (weakly) good news: when an agent observes a higher 

number of investments made before him, he cannot be less willing to invest himself. Once 

this monotonicity lemma is established, we will be able to prove two fundamental results 

about aggregate cascades.

Lemma 9 In any equilibrium, T[ <  T" ==> Ti(Tf (Ti) < Ti(T", (Ti) for both cri =  0 and

Oi =  1 .

Proof. From the first part of Lemma 5 we get that prob(T* =  T' +  1 | u =  1 , T*_i =  T') >  

prob(T* =  T r +  1 | u j  =  0, Tj_i =  T'). Hence,

prob(Ti =  T  \u  =  1 )r 
prob(Ti =  T  | uj =  0)(1 — r)

is increasing in T, which gives, by Bayes’ rule,

prob(o; =  1 | T{ =  T") >  prob(u; =  1 | Ti =  T') T" >  T .

The statement in the lemma follows directly from that and expected payoff maximiza­

tion. ■
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The intuition for the lemma is as follows. Due to the first monotonicity result in Lemma 

5 we know that, for any given player, the transition from T to T +  1 is more likely in the 

good state than in the bad state. This is simply true because a good signal is more likely 

in the good state and a good signal makes an agent more likely to invest. Hence, for any 

expectations about your own position in the sequence the higher T the more likely it is that 

you are in the good state. In other words, the more people you see in the restaurant the 

more likely it is that it is a good restaurant.

We are now ready to state our two main propositions that characterize which forms of 

cascades will or will not arise. In particular, we will see that aggregate down cascades never 

arise, while aggregate up cascades are always part of an equilibrium.

Proposition 10 In any equilibrium, TiiTi, 1) > 0 for all Ti, i.e., an agent with a good signal 

always invests with positive probability and an ADC never occurs in equilibrium.

Proof. The proposition follows from Proposition 8  and Lemma 9. ■

There are no cascades on the unobservable action. Incidentally, we note that such a result 

just comes from an equilibrium argument. One could imagine that, when facing a “low” value 

of Ti, in order to make his decision, agent i should consider all possible sequences and attach 

a probability to the event that he is the first in the sequence, or the second, etc. After all, 

a low number of investments may merely come from the fact that only few agents had the 

opportunity to invest so far, in which case the low value of Ti should be considered “good” 

news. Or it could arise from many agents having the option of investing but few only using 

it, in which case the low Ti should be viewed as bad news. All this inference process could 

be quite complicated. Our analysis solves the problems by just invoking some equilibrium 

arguments.

The next proposition considers cascades on the observable action and it shows that AUCs 

do arise—and are, in fact, part of any equilibrium.
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Proposition 11 AUCs are part of any equilibrium. In particular, in any equilibriumTi(Ti, (Ti) =  

1 for all Ti >  | .

Proof. Consider an agent i who observes Ti >  |  and suppose he knew that he were the 

last agent in the sequence. Further suppose there were no AUC. Then, due to Lemma 

9, this agent knows that there were at least T i  good signals and no more than n — T i  — 1 

bad signals. Hence, even if this agent’s own signal is bad, he knows that there were 

altogether more good signals than bad signals and he will decide to invest. Of course, 

agent i can’t be sure that he really is the last agent. But if he isn’t, this means that 

there were fewer bad signals so far, while he can still be sure that there were Ti good 

signals. Hence, an agent who observes Ti >  ra/2 will always invest and, thus, trigger 

an AUC. ■

The value |  is just a lower bound for the critical mass of observable choices that triggers 

an AUC. Depending on the parameters’ values, AUCs may be triggered earlier. But AUCs 

are indeed part of all equilibria. Of course, this does not necessarily imply that AUCs will 

actually be triggered, since there is always the possibility of sufficiently many bad signals 

occurring such that the critical T i  that triggers an AUC may not be reached.

3.4 A n exam ple

It is now the moment to illustrate our theory through a simple example. The example will 

highlight some properties of the equilibrium analysis and will be the basis for the experiment 

that follows.

Consider the case in which n =  3 and r >  1 /2 . From Proposition 8  we know that 

A(0, (Ji) =  (Ti and from Proposition 8  we know that /*(2, cq) =  1 and that J j(l,1) =  1. But 

what do agents do after observing Ti =  1 and cq =  0. As is clear from the results illustrated 

in Table 1, this depends on further conditions on r and q. Let us first check under which
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conditions agent i rationally follows his bad signal. Recall that we are analysing a symmetric 

equilibrium, therefore suppose each opther agent j  chooses I j {  1,0) =  0. Then it is optimal

for agent i to do the same if his posterior for the good state is not bigger than 1/2, i.e., if

______________r[q( 1 -  g) +  2 g( 1 -  q)2}_______________< I
r[q( 1 -  q) +  2q{l -  q)2} +  (1  -  r)[q(l -  q) +  2q2(l -  q)] ~  2  

which is equivalent to

Similarly, A (1,0) =  1 is optimal if

r[q( 1 -  q) +  q{ 1 -  q)2\ >  (1  -  r)[q( 1 -  q) +  q2(l -  g)]. 

which is equivalent to

q <  3r — 1 =  q.

Observing that q < q, we obtain three equilibrium regions. For q < q there is a unique 

pure-strategy equilibrium in which 7,(1,0) =  1 and an AUC starts with 7* =  1. For q > q 

there is a unique pure-strategy equilibrium in which 7^(1,0 ) =  0 and an AUC starts only 

with Ti =  2. Finally, for q <  q <  q both the two pure-strategy equilibria exist and there is 

a mixed-strategy equilibrium as well—with 7<(1,0) =  -+̂ ~ 4r.

3.5 A n experim ent

In order to check whether our theory can reasonably be expected to be of any empirical 

relevance we conducted a laboratory experiment. Basically, we implemented the three-agent 

example that we analysed above for two sets of parameters. In both treatments the signal 

precision is q =  0.7. But while the prior in treatment A is r =  1/2, the prior in treatment B 

is more optimistic, r =  3/4. For both treatments, theory predicts unique equilibria, shown
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in Table 3.1. The only difference between the two treatments concerns the critical T that 

triggers an AUC. In treatment A an AUC is only triggered for T  =  2, while in treatment B 

an AUC starts already with T  =  1 .__________________________

Treatment A (r =  1/2) 

(7 =  0 ( 7 = 1

Treatment B (r =  3/4) 

(7 =  0 c r = l

II o 0 1 0 1

T =  1 0 1 1 1

II to 1 1 1 1

Table 3.1: Equilibrium investments in both treatments

The experiments were fully computerized and run at the ELSE laboratory at UCL in 

Spring 2005. In each session subject were matched in multiple groups of three at the begin­

ning of the experiment. The experiment consisted of 15 rounds of game playing and groups 

remained constant over time. We employed the strategy method, i.e., subjects had to indi­

cate for each possible combination of T  and a  whether or not they would invest. Specifically, 

they had to click radio buttons in a table that was precisely structured as the left panel of 

Table ??. Once everybody had submitted a strategy the computer drew the state of the 

world, the sequence in which agents had to decide and each agent’s signal. Using subjects’ 

strategies the computer then determined the outcome and subjects received feedback about 

their actual choice that was relevant, i.e., about their a  and T, as well as about the state u 

and their resulting payoff. They did not receive any feedback about other subjects’ behavior 

or outcomes. Altogether, we observed 57 subjects who were randomly assigned to the two 

treatments, with 11 groups in treatment A, and 8  groups in treatment B .2

Table 3.2 summarizes the results using an identical format to Table 3.1. For each com­

bination of <7 and T  the table shows the mean investment rate. A number of observations 

is in order. For most cells, average investments are actually quite close to equilibrium pre­

dictions. Also, standard errors (shown in parentheses) are rather small, so groups did not

2 One session we had scheduled for treatment B was cancelled due to too many no-shows.
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behave wildly different. However, there appear to be two outliers: the investment rates 

after, both, T  =  0 and a =  1 in treatment A and after T =  1 and a =  0 in treatment B, 

are substantially smaller than the equilibrium prediction of full investment. In case of the 

first deviation there seems to be some reluctance to go first. This reluctance disappears in 

treatment B where the prior is much more optimistic. The second deviation is different. 

Here and AUC should be triggered with T =  1 but observed investment rates are below 1/2. 

Again there is more scepticism in actual behavior than in equilibrium behavior.

Treatment A (r =  1/2) Treatment B (r =  3/4)

(7 =  0 (7 =  1 (7 =  0 (7 =  1

T =  0
0.15 0.56 0 .2 1 0 .8 6

(0.03) (0.03) (0.09) (0.05)

T =  1
0.24 0.87 0.41 0.94

(0.04) (0.03) (0.06) (0.03)

T =  2
0 .6 8 0.85 0.76 0.94

(0.07) (0.03) (0.09) (0.04)
Table 3.2: Average investments rates in both treatments.

(Standard errors in parentheses)

However, the theory captures the comparative statics remarkably well. In particular, 

after T  =  1 and a  =  0, the only information set for which the equilibrium predictions differ 

for the two treatments, we do observe a substantial and highly significant difference between 

the two treatments. The doubling of the investment rate is significant at the 5% level.

It is interesting to compare our data for T  =  2 with results from standard information 

cascade experiments because with T  =  2 subjects know for sure in which position they 

are in the sequence and they also know the entire history, namely that everybody before 

them invested. We observe that the majority of subjects does herd in this case in both 

treatments. But herding is far from perfect in this case. However, as it turns out this reluc­

tance pretty much mirrors the data from standard cascade experiments (see, for example,
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the nice overview in Kubler and Weizsacker 2005). With a more optimistic prior the reluc­

tance becomes smaller. This, too, has been observed in the previous literature (and is also 

documented in Kubler and Weizsacker.)

Overall, we consider the results from our experiment encouraing. While not offering a 

full-fledged empirical analysis of our model it does lend its credibility some support and 

should, in fact, encourage further investigations.

3.6 D iscussion

We have introduced a new model of aggregate information cascades. The crucial difference 

between our model and the models already in the literature is that only one action taken by 

agents is observable to others who, when it is their turn, simply receive aggregate information 

about how many others before them took the observable action. We argue that this setup 

is in many cases realistic, for example, when entrepreneurs seek investors they will typically 

not inform new investors whom they approach about how many others have turned them 

down but, surely, they will mention who else decided previoulsy to invest in their project. 

This asymmetry in observability, which in many cases arises naturally, dramatically affects 

all equilibria in such games. Most importantly, there can be no down cascades. If an action 

is unobservable, there can be never information cascades where agents take this action.

This has an important consequence for applications where a third party can decide which 

information it is to release. Consider the case of a central health agency that has observes 

how many doctors choose a new treatment to cure some diseases. There are two potentially 

grave scenarios: The new treatment is better but everybody sticks to the old. Or the old 

treatment is better but everybody switches to the new. While both scenarios are bad, from 

the view point of the central agency one might be much worse than the other. Say, that the 

worse scenario is the one where the new treatment is better but not adopted. In that case 

we have shown is that by withholding information, i.e., by publishing only the number of
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doctors who previously decided to switch and by withholding the information about those 

who decided to stay with the conservative treatment, the central agency can rule out the 

worst case where the old treatment is administered by all docotors despite the superiority of 

the new. Of course, from the viewpoint of the agents more information will always be better 

than less and, if there are no externalities, total welfare will be reduced if some information 

is withheld. But if there are externalities, say, if this is about life and death and if patients’ 

care more about their own survival than their doctors do then the central agency may indeed 

have very good reasons to withhold some information it has access to.

Finally, we provide a first experimental test of our model. The theory organizes the data 

remarkably well. In particular, all major comparative statics are as predicted. However, we 

also observe an interesting anomaly: a pronounced reluctance to go first in an environment 

with a fifty-fifty prior. The intuition that an empty restaurant may be bad news is perhaps 

deeply rooted—rendering our theoretical result perhaps non-trivial and inducing subjects’ 

deviation from its prescription. Nevertheless, the vast majority of decisions does follow the 

equilibrium prediction which we view as encouraging for our theory.
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377 A ppendix

3.7.1 Instructions

Welcome to our experiment!

Please be quiet during the entire experiment. Do not talk to your neighbours and do 

not try to look at their screens. Simply concentrate on what you have to do. If you have a 

question, please raise your hand. We will come to you and answer it privately.

You are participating in an economics experiment in which you interact with two other 

participants for 15 rounds. There are more participants in this room, but you will interact 

with only two of them.

Depending on your choices, the other two participants’ choices and some luck you can 

earn a considerable amount of money. You will receive the money immediately after the 

experiment. Notice that all participants have the same instructions.

T he experim ent

What you have to do

You will have to decide whether you want to invest in a project or not. The project may 

be good or not and we will give you some useful information about how the chances are. 

Additionally, you will also know something about what the other two participants decided 

to do.

What determines whether the investment is good or not

The computer will decide randomly whether in a given round the investment is good or 

not. The two possibilities are equally likely. This is equivalent to say that the computer will 

choose whether the investment is good or not by tossing of a coin.

Note that if in a given round the investment is good, it is good for all three participants. 

Similarly, if it is bad, it is bad for all three of you.

What you earn if you decide to invest or not
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In real life, if you choose a good investment the prize is that you enjoy a good return. 

And if it is bad, the cost is that you have spent money on something that was not profitable. 

In our experiment, if the project is good and you choose to invest we give you £3 for the 

smart decision. If, instead, you decide not to invest, then you get nothing. Similarly, if the 

project is bad and you decide not to invest, we pay you £3 for the smart decision. And if 

you decide to invest, we pay you nothing.

How you can make your decision

As we said the computer will choose one of the two projects. Of course, we will not tell 

you which one has been chosen. But we will give you a piece of information.

If the project is good, then the computer will draw a ball from an urn containing 70 green 

and 30 red balls. If it is bad, it will draw a ball from an urn containing 70 red and 30 green 

balls. You (and only you) will be told the colour of this ball. Clearly if the ball is green, it is 

more likely (but not sure) that the project is good. If it red, it is more likely (but not sure) 

that it is bad.

Note that the computer will draw a different ball for each participant. It will choose a 

ball for you and then replace it in the urn. Then a ball for another participant and then 

replace it. And so on. Therefore, it is well possible that you receive a green ball and another 

participant a red one, and vice versa.

This is not the only information that you will get. In the next paragraph you will discover 

why.

When you make your decision

You and the other two participants will make the decision to invest or not in the project 

in sequence. Therefore, you may be the first, or the second, or the third. Your position in 

the sequence is assigned to you randomly by the computer. Whether you will be first, or 

second, or third is equally likely. However, we will not tell you your position. But we will 

tell you the number of people who have decided to invest before you.

Let us briefly look at the different possibilities that can arise. You might see that two

63



___________________ CHAPTER 3. AGGREGATE INFORMATION CASCADES
others have decided to invest in which case you know that you must be the last to make

a decision. If you see that just one other participant has invested before you the situation

is less clear. Obviously, you are not the first in the sequence. You might be the second

and the first might have decided to invest. But you might also be the last with one of your

predecessors having decided to invest and the other having decided to pass the opportunity.

Finally, you might observe that none of the others has decided to invest so far. In that case

you might be the first in the sequence. But you might also be second and the first passed

the opportunity, or you might be the third and both others decided not to invest.

The 'procedure

At the beginning of each round the computer will decide whether the project is good or 

bad. Moreover, it will draw a ball for you and one for each other participant. And it will 

decide the sequence in which the three of you decide.

Then it comes to your decision. But notice instead of telling you your ball colour and 

the number of people who have decided to invest before you, we will do something different. 

We will ask you to make your decision for each possible case. We will ask you to make a 

decision to invest or not depending on the number of people who have already decided to 

invest and on the colour of your ball. Specifically, you will see a table like this:

Green Ball Red Ball

Nobody has invested before you

One other has invested before you

Two others have invested before you
For each possible combination you will have to decide whether you invest or not. Of 

course, when we compute your payoff, we will take into account only the decision corre­

sponding to the actual situation (that will be revealed to you afterwards). The other five 

decisions will not be taken into account. Therefore, you can decide for each case as you if 

knew the ball colour and the actual number of people who decided to enter before you.

Is all this clear? If not, do not worry, here are two examples.
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Example 1

Suppose you make the following decisions:

Green Ball Red Ball

Nobody has bought before you NO NO

One other has bought before you NO INVEST

Two others have bought before you NO INVEST
At the end of the round the computer tells you that actually in this round you 

received the red ball. Moreover, that you were third and another participant decided to 

invest before you. This is equivalent to the case “One other has invested before you”. 

Therefore, we will compute your payoff considering only your decision to INVEST for the 

case “One other has INVESTED before you”. All the other decisions are irrelevant. Hence, 

if the project is good, we will pay you £3.

Example 2

Suppose you make the following decisions:

Green Ball Red Ball

Nobody has bought before you NO NO

One other has bought before you INVEST INVEST

Two others have bought before you INVEST INVEST
At the end of the round the computer tells you that actually in this round you received 

the green ball and you were first. This is equivalent to the case “Nobody has invested 

before you”. Therefore, we will compute your payoff considering only your decision NOT 

to INVEST for the case “Nobody has invested before you”. All the other decisions are 

irrelevant.

Procedures for each round

Remember that the experiment is organized into different rounds and that within each 

round you will have to make six investment decisions. So, now it is time to summarize what 

happens within each round.
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1 . At the beginning of each round the computer randomly chooses whether the project 

is good or bad. The project is the same for all participants. But you will not be told 

which project has been chosen.

2. The computer draws a ball from an urn for each participant. The ball is drawn and 

then replaced, so that the total number of balls in the urn is always the same before 

the computer makes another draw. The computer draws a ball for participant one 

and puts it back into the urn. Then it does the same for participant 2. And then for 

participant

3. If the project is good, the computer draws the ball from an urn containing 70 green 

and 30 red balls. If it is bad, from an urn containing 70 red and 30 green balls. You 

will be the only one knowing your ball colour.

4. The computer decides randomly which participant is first, who is second and who is 

third.

5. You will make your decisions for the six cases illustrated above. Of course, given that 

you do not know in which case you actually are, you will have to think of the best 

solution for each of the six cases in which you may be.

Once the round is over, you will be informed of your ball colour. We will also tell how 

many other participants decided to invest before you. And of course we will tell you whether 

the project was indeed good or bad and how much you earned.

Then, we will repeat the same procedure for the second round at the beginning of which 

the computer will choose again a project and so on. Note that at the beginning of each 

round the computer chooses the project always with an equal chance of being good or bad, 

independently of what was chosen in previous rounds. We will repeat the same procedures 

for altogether 15 rounds.

Final payment
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For the simple fact that you showed up in time for the experiment you earn £4. The 

rest of the payment depends on how you perform. The computer will randomly choose one 

round out of the first 5 rounds, one among the 6 th through the 10th and one among the 11th 

though the 15th. Your payment will depend on how you performed in the selected rounds. 

We will sum up your payoffs in these three rounds. Your final payment will be equal to this 

amount plus the £4 for showing up.
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Chapter 4

Learning Trust

4.1 Introduction

Reputation building in repeated trust games requires that trustors have some information 

about trustees’ behavior in the past. Consider a buyer-seller framework where sequential 

exchange induces a moral hazard problem. First, buyers make a decision about whether or 

not to send some money to a seller who has advertised a good. After having received the 

money, the seller then decides whether or not to deliver the promised good. In such a market 

a seller can build up a reputation for being honest if and only if buyers can at least partially 

observe the seller’s trading history.

Thus, providing buyers with information about sellers’ past should help to alleviate the 

moral hazard problem. We shall call such feedback provision to buyers one-sided market 

transparency. The first result that we establish in this paper is that it indeed helps to 

improve efficiency in laboratory markets that suffer from moral hazard. However, our key 

finding is that two-sided market transparency where both, buyers and sellers, have access to 

sellers’ trading history improves market performance even further. From the vantage point of 

orthodox theory, this is a surprising result. Whether or not sellers can observe other sellers’ 

past should be irrelevant. But as we conclusively show, it is not.
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The key to understanding this result is very simple. There are some sellers who, when 

left to their own devices, simply do not understand the mechanics of reputation building. 

In markets with one-sided transparency only, they make use of any opportunity to rip off 

their customers despite the drastic consequences this implies for their reputation. Typically, 

it does not take long until such sellers establish a firm reputation as cheats and lose all 

business. This is different in markets with two-sided transparency because here sellers can 

learn from other sellers. In particular, sellers who initially do not understand the incentives 

for reputation building can now observe others who do. And they can see that those who 

do, get more business and are soon much better off than they are. Given a second chance, 

they can now imitate successful reputation building. This process of social learning gave this 

paper its title.

While the benefits of one-sided market transparency have already been documented in 

the literature,1 the interaction of social learning and reputation incentives that makes two- 

sided transparency superior in our experiment has, to the best of our knowledge, not been 

demonstrated before.2 Of course, the often cited example of ebay’s feedback mechanism is one 

that implements two-sided transparency. On ebay, everybody, buyers and sellers, have access 

to information about sellers’ history. However, previous studies have—probably guided by 

orthodox reasoning—ignored the role of providing sellers with information about each other. 

Our results suggest that, in fact, two-sided transparency is an important ingredient for the 

design of well-functioning markets that are prone to moral hazard.

4.2 Experim ental design and procedures

In our experiments subjects play the binary-choice trust game shown in Figure 4-1. Payoffs 

are in pence and strategies and player roles are labelled exactly as in the experiment. As-

1See, for example, Keser (2002), Bolton, Katok, and Ockenfels (2004) or Bohnet and Huck (2004).
2 Studies that show how subjects can learn from other subjects to improve their decision making in other 

contexts include Offerman and Sonnemans (1998) and Slembeck and Tyran (2004).
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A

A: 20p 
B: 15p

rightleft

A: 5p 
B: 50p

A: 3 Op 
B: 25p

Figure 4-1: The trust game.

suming that players maximise some monotone function of their monetary payoff and that 

this is common knowledge the game has a unique Nash equilibrium, in which the first mover 

chooses “X”, i.e., not to trust, and the second mover chooses “right”, i.e., not to honour 

trust if being trusted. In the following we will refer to the first mover as the buyer and to 

the second mover as the seller.

Payoffs are deliberately chosen to be asymmetric in order to make the moral hazard 

problem as difficult as possible.3 Subjects play this game in all treatments for 30 periods. 

Keeping their roles they are randomly rematched at the start of each period. Each matching 

group consists of four sellers and four buyers.

The treatments differ in what subjects know about the past. In the baseline treatment, 

N o I n f o , subjects have no information about the past. Whenever they are rematched, 

they are simply told “You have been rematched with a new participant” without knowing 

anything about this particpant’s identity or history. In all other treatments sellers can be 

identified with labels (Bl, B2, B3, and B4). In treatment R e p u t a t i o n , all buyers know 

all sellers’ past. In treatment I m it a t io n  all sellers know each other’s past. And, finally,

3With symmetric payoffs after honored trust (Y, right) subjects find it much easier to achieve efficiency 
already in one-shot games, see, for example, Bacharach, Guerra, and Zizzo (2001) or Bolton, Katok, and 
Ockenfels (2004).
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Sellers know sellers’ history 

No Yes
Buyers know No N o In f o  I m it a t io n

sellers’ history Yes R e p u t a t i o n  T w o - S id e d

Table 4.1: The 2x2 design.

in treatment Two-Sided both, sellers and buyers, can observe all sellers’ past.4 This 2x2 

design is summarized in Table 4.1.

The experiments were computerised5 and sellers’ history was made available using a 

simple graphical tool. In the left part of the screen subjects could see four columns consisting 

of 30 hash signs, each column representing one seller. Each row represented one period. 

Initially, all hash signs were white. Then, after each period, hash signs in the row representing 

this period changed their colour. They turned black if the seller had not to make a decision 

because his buyer did not trust him. They turned green if the seller honoured the buyer’s 

trust. And they turned red if the seller exploited the buyer’s trust. This colour coding 

is, of course, obvious and makes it rather easy to read the comparatively complex history 

information.

The experiments were conducted at the University of London. For each of the four treat­

ments we conducted six separate sessions, each with eight subjects who had been recruited 

via emails to the college’s entire student body. Altogether, 192 subjects participated in 

the experiments which lasted on average less than an hour. Average earnings were £11.07 

(including a £5 show-up fee).

4In each treatment, the information structure is publicly known. For example, in R e p u t a t i o n ,  both, 
buyers and sellers know that buyers can oberseve sellers’ past while sellers cannot.

5We used Fischbacher’s (1999) z-tree.
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NoInfo Reputation Imitation Two-Sided

0.19 044 019 062
(0.11) (0.26) (0.16) (0.23)
0.21 0.31 0.14 0.43

(0.15) (0.17) (0.11) (0.15)
0.05 0.17 0.04 0.29

(0.05) (0.14) (0.04) (0.18)

Table 4.2: Average honor, trust, and efficiency rates in all four treatments. (Standard 
deviations in parentheses.)

4.3 R esults

4.3.1 A  static view

Table 4.2 shows, for each treatment, average honour rates, i.e., the average frequency with 

which sellers honour buyers’ trust, average trust rates, i.e., the average frequency with which 

buyers trust sellers, and, finally, average efficiency rates, i.e., the average frequency with 

which subjects play (Y, right) and reach the individually rational efficient outcome (which, 

from here on, we shall simply call the “efficient outcome” or refer to it as “efficient trade”) .6 

Figures 4-2, 4-3, and 4-4 show the same information graphically and, in addition, honour, 

trust, and efficiency rates for, both, the best and the worst session in each treatment. A few 

observations are in order.

1 . In treatments without incentives for reputation building (N o I n f o  and I m it a t io n ) 

honour rates are very low (below 20%) and so are trust rates. Consequently, there is 

hardly any efficient trade.

2. Introducing incentives for reputation building in treatment R e p u t a t i o n  more than 

doubles the average honour rate which also boosts the trust rate. As a result the 

number of efficient trades is more than tripled. However, there is considerable variance 

between sessions and the overall outcome is far from perfect.

6 Notice that the sum of payoffs is equal in both end nodes that can be reached after the first mover 
decision to trust. Again, this is a feature that makes it harder for subjects to cooperate. See also footnote 3.

honour rate 

Trust rate 

Efficiency rate
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Figure 4-2: Honour rates in all treatments.

3. The reputation effects are considerably enhanced in treatment Two-Sided where both, 

buyers and sellers, have access to sellers’ trading history. Again, there are considerable 

differences between sessions.

Conducting statistical tests7 reveals that the effects of introducing incentives for repu­

tation building are highly significant.8 However, despite the consistently higher averages 

in treatment Tw o-Sided, tests fail to show any significant benefits of two-sided market 

transparency. Comparing treatments R eputation  and Two-Sided, we find no significant 

differences—neither for honour rates, nor for trust and efficiency rates. Does this mean that 

there are indeed no effects of added market transparency and that, as orthodox theory pre­

dicts, it only matters whether or not buyers can observe sellers? In the next subsection we 

shall argue that this conclusion would be premature.

7 We always take one session as one independent observation and then perform pairwise MWU-tests with 
six against six observations.

8 Comparing N o I n f o  with REPUTATION we find that, both, honour and efficiency rates are significantly 
higher in the latter (one-sided p  =  0.023 and p  =  0.074, respectively). Comparing IMITATION and T w o- 
SlDED reveals that all three rates are higher when buyers know sellers’ history [p  =  0.005 for trust, p  =  0.008 
for honour, and p  =  0.004 for efficiency).
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Figure 4-3: Trust rates in all treatments.

N o I n f o  R e p u t a t i o n  I m i t a t i o n  T w o - S i d e d

Figure 4-4: Efficiency rates in all treatments.
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N o I n f o  R e p u t a t i o n  I m it a t io n  T w o - S id e d

Honour crowding effect 

Trust crowding effect 

Efficiency crowding effect

0 .1 1 0.05 0.19 0.33
(0.17) (0.31) (0.16) (0.49)
-0.04 -.0 .06 -0.03 0 .2 2

(0 .1 1 ) (0.28) (0.15) (0.26)
0 .0 1 0 .0 0 0.04 0 .2 0

(0.07) (0 .2 1 ) (0.04) (0.23)

Table 4.3: Crowding effects in all four treatments. Crowding effect is computed as aver­
age rate minus initial rate. (Standard deviations in parentheses.) Notice that the honour 
crowding effect in treatment I m it a t io n  is due to an initial honour rate of zero.

4.3.2 A dynamic view

Two-sided market transparency has the advantage that sellers who do not understand the 

mechanics of reputation building can learn from other sellers who do. If such learning 

is important one would predict that two-sided transparency crowds in honour, trust, and 

efficiency over time.9 To test for such dynamic effects we will, therefore, analyse a very 

simple measure capturing the market dynamics. For each session we shall compute the 

difference between the average honour (trust/efficiency) rate over time and the initial honour 

(trust/efficiency) rate. In the case of trust and efficiency, these initial rates are simply 

computed for the first round. This approach does not work for initial honour rates since 

there are many sellers who do not have to make a decision in their first round. Hence to 

compute initial honour rates, we take for each seller the first instance where he or she had a 

decision to make.10 Table 4.3 shows the differences between average and initial rates for all 

four treatments.

The table reveals rather dramatic effects of two-sided transparency. The average honour 

rate is 33 percentage points higher than the initial rate. This basically amounts to one third 

of the seller population learning that building up a good reputation pays. Put differently, it

9Bohnet, Frey, and Huck (2001) provide a theoretical model for crowding in of trustworthiness.
10Notice that these measures, while somewhat crude, are extremely clean. In particular, more sophisticated 

measures for the initial propensities to trust or honour would unavoidably be confounded with learning or 
other dynamic effects. Also, by taking simply one ratio we avoid making any assumptions about the functional 
form of the dynamics.
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amounts to every third seller turning from a cheat into a reliable trading partner.

In treatment R e p u t a t io n  there is also a slight increase in honour rates but, the effect 

is both, smaller and without consequences for overall market performance. Under two- 

sided market transparency increasing honour rates translate into increasing trust and, hence, 

increasing efficiency rates. In treatment T w o -S id e d  overall efficiency is 20 percentage points 

higher than initial efficiency while in all other treatments efficiency does virtually not change 

over time.

Not surprisingly, these dynamic effects of two-sided market transparency are not only 

strong in size but also highly significant. A comparison of treatments R e p u t a t i o n  and 

T w o - S id e d  tests for the additional benefit of sellers observing other sellers in the presence 

of incentives for reputation building. Pairwise tests reveal that all three crowding effects 

are significantly higher in T w o - S i d e d  than in R e p u t a t i o n .11 Thus, we see that two-sided 

market transparency has indeed an important beneficial effect for market performance that 

could not have been predicted by orthodox theory.

4.4 Conclusion

We examine the effects of different forms of feedback information on the performance of 

markets that suffer from moral hazard problems due to sequential exchange. We find that, 

as orthodox theory predicts, providing buyers with information about sellers’ trading his­

tory boosts market performance. With such one-sided market transparency sellers have an 

incentive to build up a reputation as reliable trading partners and many sellers use this 

opportunity, which helps to alleviate moral hazard. This beneficial effect of incentives for 

reputation building is considerably enhanced if sellers, too, can observe other sellers’ trading 

history. Apparently some sellers do not understand the mechanics of reputation building on

11 The p -values are p  =  0.055 for the crowding in of trust and honour and p  =  0.075 for the crowding in of 
efficiency (one-sided MWU-tests).
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their own. However, with two-sided market transparency these sellers can learn from those 

who manage to build a good reputation. Thus, there is a systematic learning process turning 

sellers who initially cheat into reliable trading partners. This dramatically increases market 

performance over time.

This result adds to the existing literature on feedback information, some of which has 

been motivated by the success of ebay’s celebrated feedback mechanism. It suggests that 

ebay benefits from having sellers’ feedback rating freely available to both market sides. While 

this was perhaps a very natural design choice for ebay where people act as both, buyers and 

sellers, this might be less obvious for specialised trading and procurement platforms where 

the two market sides are more separated. Here two-sided transparency might be a less 

obvious but—as our findings suggest—very recommendable choice.
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Chapter 5 

Supermarket entry and planning 

regulation

5.1 Introduction

The UK retail sector has been the focus of policy concern because of its relatively low 

productivity growth, high prices and concentrated market structure. The wholesale and 

retail sector account for around one-fifth of the UK’s productivity gap, with the US and 

supermarkets accounting for the single biggest component of this sector. 1 Additionally, the 

supermarket industry has been repeatedly investigated by the UK competition authorities. 

The literature has emphasised the importance of entry to productivity growth in US retail, 

perhaps enabling the more rapid introduction of ICT in newer stores or reallocation from 

less productive to more productive stores. In contrast, in the UK growth has come mainly 

from incumbents.2 One potential reason for this productivity gap that is emphasised by the 

Competition Commission 2002 report is that most stores in the UK operate below efficient 

scale.

1See, for example, Griffith, Harrison, Haskel and Sako (2003), Figure 3.
2 For the US see Foster, Haltiwanger and Krizan (2002) and for the UK see Haskel and Khawaja (2003).
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Attention has focused on planning regulation as one of the root causes. An influential 

report by McKinsey (1998) highlighted planning regulations as one of the major policy issues 

affecting productivity in this sector. And in his recent Pre-Budget Report, on 5 December 

2005, the Chancellor and Deputy Prime Minister announced a review of the land use planning 

system in England. It will consider how land use regulation affects economic growth.

Yet there is relatively little work studying the overall impact or cost of planning reg­

ulation. A notable exception is a paper by Bertrand and Kramarz (2002) who show that 

planning regulation in France created an important barrier to entry for large supermarkets. 

Evaluation by the Office of the Deputy Prime Minister (ODPM) have suggested that plan­

ning regulation has affected entry by new large stores.3 But this work does not control for 

other factors that may affect store entry decisions. For example, a report by CB Hillier 

Parker to the ODPM notes that "... food retailers are changing their store formats and fo­

cusing more on town centre and edge of centre sites, this has been as much due to commercial 

considerations as to [planning regulations] . . .”

Our interest in this paper is to quantify the impact that planning regulation has had on 

market structure in the UK supermarket industry, and thus the cost of this regulation. This 

is of course only part of the story, as these costs then need to be set against any potential 

benefits. Before 1993 planning regulation in England was decentralised. Over the late 70s 

and 80s there was rapid growth in large out-of-town store formats. Driven by a desire to stem 

this trend, which government feared was harming social cohesion in communities, reforms 

in 1993 and more stringently in 1996 centralised planning regulation and changed it to 

encouraged in-town (small) store formats and discourage out-of-town (large) store formats.

What impact would we expect planning regulation to have on equilibrium market struc­

ture?

We would expect it to restrict the number of large stores and increase the number of small

3See, for example, ODPM (2005), para 1.5, “.. emerging evidence suggests that since the mid-1990s na­
tional planning policy has had a significant impact in terms of increasing the proportion of retail development 
locating in town centres...”
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stores. Unsurprisingly, after the reforms we see an increase in town centre stores and an 

increase in smaller store formats. However, as highlighted by the quote above, other factors 

may have also affected this shift towards smaller store formats. In particular, recent strategy 

diversification by several firms in the supermarket industry, for example Tesco moving into 

the Express and Metro format and Sainsbury moving into the Local format, suggests that 

at least some of the shift from large to small store format over the late 1990s may be due 

to changing consumer preferences and store strategy. So incorporating a model of consumer 

demand is crucial in isolating the effect of planning regulation on market structure and firm 

profits.

We take the model of Bresnahan and Reiss (1991) as a starting point and estimate the 

impact of planning regulation on market equilibrium. We use regional variation in planning 

applications granted and treat these as exogenous. We assume that firms make decisions 

about entry into the large store format independently of the number of small stores whereas 

the decision to enter into the small store format takes the number of large stores as given.4

The structure of the paper is as follows: Section 2 describes the planning and land use 

regulations as they apply to grocery stores in England. Section 3 describes a model of 

supermarket entry and equilibrium market structure and our estimation strategy. Section 4 

discusses the data. Our results are shown in Section 5 and a final section concludes.

5.2 P lanning regulation

Land use regulation is often cited as an important barrier to entry0 and in the UK it has been 

held largely responsible for higher prices and lower labour productivity in retail stores, and 

particularly in supermarkets.6 However, land use regulation is rarely a barrier to all forms

4Some of the main papers are Bresnahan and Reiss (1991), Berry (1992), Mazzeo (2002).
5 See, inter alia, Djankov et al (2002), Bertrand and Kramatz (2002).
6 Bertrand and Kramatz (2002) show that such regulation in France has had a negative impact on em­

ployment. See also McKinsey (1996), Haskel and Khawaja (2003), Competition Commission (2000).
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of entry, but rather imposes a constraint on certain types of entry. A good example of this 

is English planning regulation. Rapid growth in the number of out-of-town supermarkets 

in the late 1980s and early 1990s led to concerns about out-of-centre development and the 

impact this was having on the vibrancy of city centres, and the possible impact this had on, 

for example, social exclusion. Changes to regulation sought to encourage, for example, retail 

development in town centres.

Land use regulation in England changed in 1993 and more importantly in 1996 with the 

introduction of Planning Policy Guideline 6  (PPG6 ). It changed in a way that favoured in 

town developments over out of town. PPG6  put forward the sequential approach which 

states that out-of-town centres should only be build as a last resort, if there is not viable city 

centre alternative. PPG6  stated that LPAs should take a ‘plan-led’ approach to development 

control. LPAs are required to have a development plan. This should set out the authority’s 

policies for the development and use of land in its area. LPAs should identify which centres 

should grow and identify sites for specific types of development where a need for additional 

provision has been identified. City, town and district centres should be the preferred locations 

for developments that attract many trips. This type of planning regulation therefore favours 

the opening of certain types of stores (smaller city centre stores) over other types of stores 

(larger out-of-town stores). What impact will such regulation have on profitability and 

market structure?

On the one hand, smaller stores may be less efficient (more costly) to run.7 On the other 

hand, there is a trade-off between higher fixed costs for larger out-of-town stores versus lower 

variable costs to run these stores. The over all impact will depend on: the strategic response

7 The Competition Commission (2000) report into supermarkets surveys the literature on economies of 
scale and argues that there are economies of scale up to 30,000 sq. m in supermarkets, but not after that. The 
economies of scale were especially in staff costs, which, the CC shows, are the bulk of value added in retailing. 
The CC present data on international comparisons of supermarket shop size. Britain has significantly fewer 
supermarkets and they are much smaller than the US, but they are larger than Continental Europe. In 
addition, US supermarkets are, on average just over 3,000 sq metres, which is just above the minimum scale 
required to achieve the highest levels of labour productivity. UK supermarkets are below that, suggesting 
that this might account for part of our productivity disadvantage.
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of firms that would have opened large stores, do they now open more small stores; the entry 

response of other firms, are other barriers to entry lower for small stores, did the presence 

of large out-of-town stores raise the entry barriers to small stores; the relative cost efficiency 

of small and large stores.8

5.3 A  m odel o f superm arket entry and equilibrium

We take Bresnahan and Reiss (1991), henceforth B&R, as our starting point and consider 

N  symmetric firms entering into a Cournot competition. We allow for two type of store - in 

town and out of town. As emphasised above, this is an important characteristics of the UK 

supermarket industry where there are two different types of stores - small city centre stores 

like Tesco Metro and Sainsbury Local and large often out of town supermarkets which were 

differentially affected by planning regulation.

We assume that demand for groceries takes the following form: consumers demand the 

bulk of their groceries in a one-stop shopping trip in big stores; they subsequently top-up 

with additional items that were forgotten or unexpectedly needed in small stores. Adding two 

product types to the simultaneous-move entry game of B&R introduces multiple equilibria 

(some of which might be mixed strategy equilibria) . 9 In order to get a unique pure-strategy 

equilibrium we need some additional assumptions. Mazzeo (1992) and Toivanen and Wa- 

terson (1999) model entry with more than one type of entrant and introduce two additional 

assumptions for uniqueness. First, they introduces Stackelberg competition, with an exoge­

nously defined sequence in which firms make irrevocable choices whether or not to enter, and 

of which type. This seems an implausible assumption for the supermarket industry where

8To the extent that retailing productivity growth is due to firms closing older, low productivity stores, 
and opening newer, high productivity shops to replace them, this might result in lower productivity growth, 
which may feed through into higher prices. Recent work has suggested that the adoption and use of ICT 
has been an important contributor to the US productivity acceleration of the late 1990s.

It is likely that ICT usage is higher and more effective in newer shops, but it is not clear whether a market 
with fewer large out-of-town stores or more small in-town-stores will lead to more entry and exit.

It may also be that ICT is easier to adopt in larger out-of-town stores.
9See Tamer (2002) for empirical strategies of estimating multiple equilibria in discrete games.
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there is no natural ordering. The second assumption is that the decrease in profits is larger 

if the competitor is of the same type, which seems natural.

In this paper we introduce differential fixed costs across store type to reflect the impact of 

planning regulation. This is easier and more natural to incorporate into a simultaneous move 

game. 10 More formally, we consider firms to play a three-stage game. In the initial stage, 

firms decide whether to enter by opening a big store. Once these entry decision have been 

made, small firms compete for the residual demand. Profits of large stores therefore do not 

depend on the presence of small stores, but small stores take the number of big stores into 

account when deciding whether to enter or not. Once firms have made their entry decisions 

symmetric price competition between each type ensues and payoffs are determined. We 

assume a free entry equilibrium - firms enter up to the point where profits cover fixed costs. 

The profits of firms that do not enter are normalised to zero.

In the Nash equilibrium the following inequalities hold (B  is the total number of big 

stores, is the number of big and small stores of others and CB,C s  are the fixed

costs of a big and a small store):

(1 ) entry of Big  if HiB(B-i) > CB

(2) entry of Small if I lis^ -t, B) > Cs

(3) exit from Big  if IIiB{B^i — 1 ) < 0

(4) exit from Small if IIts(<S'_i — 1, B) < 0

A store enters if profits are sufficient to cover fixed costs, and they exit the market if they 

make negative net profits. To prove the existence of a pure strategy equilibrium we need 

to impose some structure on the profit function. One natural restriction is that firm profits 

decline in rivals’ entry so we assume that profits decline in number of big firms in the first 

and second stage and profits decline in number of small firms on the second stage.

10In a sequential game like Mazzeo’s (1992) varying fixed costs would effect the entry sequence as well as 
the product choice, so he focusses on varying variable costs by type.
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5.3.1 Market demand and supply

Market demand is characterised in the following way. Consumers demand a composite good 

“groceries” and thus aggregate demand can be modelled in the form

Q =  d(X, P)S(Y)  (5.1)

where Q is total quantity of groceries demanded, d( X , P)  is the demand of a representative 

consumer, which is a function of demographic variables X  and the price P  of the groceries. 

S(Y)  denotes the number of consumers. So the demand function is homogeneous of degree 

one. We also assume that demand increases linearly in 5 . 11

We can take two different approaches to introducing different store formats, one through 

the demand function, the other through the cost function.

The dominant model of consumer shopping behaviour is the one-stop shopping model. 12 

Different store formats arise because of consumer preferences and shopping habits. Con­

sumers demand groceries. They buy a large portion of their groceries in one shopping trip 

and then top-up forgotten items of perishables in small trips. For the one-stop shopping trip 

they prefer a large variety of different goods and therefore prefer a large store format. For 

the top-up shopping, on the other hand, a small convenient store that is in close proximity is 

preferred. In this case we can model aggregate quantity demanded from one-stop shopping 

as Q i and top-up shopping by Q2 as

Q =  Q i + Q 2 =  di(X, P)S(Y)  +  d2(X,  P, Qi)S(Y)  (5.2)

where d\ (X , P)  is the demand of a representative consumer from one-stop shopping and 

d2(X,  P, Qi)  the demand from top-up shopping. Both are a function of demographic variables 

X  and the price P  of the groceries. S ( Y ) denotes the number of consumers. This demand

11 This assumption is crucial since non-linear demand in S  might lead to multiple equilibria.
12See, inter alia, Smith (2004), CC (2000).
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function is homogeneous of degree one. We also assume that demand increases linearly in

S. Demand from one-stop shopping is unaffected by the demand from top-up shopping, the 

cross derivatives ^ - is  equal to zero, can be different from zero since it depends on the 

residual demand after one-stop shopping of Qi.  This assumption of independent demand for 

one-stop shopping is fairly strong, but it allows us to estimate the resulting profit functions 

for big format stores independently from small format stores, to investigate the differential 

impact of planning regulation, using an ordered probit model. In estimating the resulting 

profit functions for small format stores we include the number of big stores in line with our 

residual demand hypothesis.

An alternative approach to introducing different store types is from the supply side. On 

the supply side firms profits equal revenue minus costs. Firms incur fixed costs of F{R)  

and have per capita variable costs of V(W)  where W  are variable cost shifters and R  are 

exogenous variables that affect fixed costs. As mentioned above we assume a free entry 

equilibrium - firms enter up to the point where profits cover fixed costs. Fixed costs can vary 

with the number of firm in the market, so the fixed costs for a duopolist can be different 

than for a triopolist. Thus firms have U-shaped average total costs, declining initially due to 

fixed costs and rising later due to marginal costs. Consider two supply curves. The first is 

for firms operating at or above minimum efficient scale (30,000 sq ft)13, these have high fixed 

costs and low variable costs, but variable costs rising at some point. The second supply curve 

is for small firms, with low fixed costs but high variables costs. Where demand is sufficient 

to cover the fixed costs of a large firm, then they will enter. If excess demand is smaller than 

the amount needed to cover fixed cost, then a small store will enter.

13 Definition of the Competition Commission (2000).
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5.3.2 Firm profits

Assuming profits to be additively separable in observed and unobserved components we have 

the following profit function, where subscript n denotes the number of firms (1  monopoly, 2  

duopoly etc.), j  denotes the area and f  denotes the store format (big or small).

n  njf =  Sf(Yj )Vf (Wj , a, 0) +  Ff(Rj,  7n, 9) +  enjf (5.3)

where a, (3, 7  and 6 are parameters to be estimated, Yj are factors that vary across region 

and affecting market size, Wj are factors that vary across region and affect per capita profits 

(demand and variable costs) and Rj  are factors that shift fixed costs (e.g. regulatory con­

straints) and the unobserved error e captures idiosyncratic variation in profits. We assume 

that e follows a normal distribution and is independent across markets and from observables, 

with zero mean and constant variance.

We model firms per capita variable profits as a linear function of the observables W  ,

V/ ( W, a , 0 ) = a  +  0 / Wj (5.4)

Fixed costs depend on exogenous variables R,  including planning regulation and land 

prices, and a market structure level unobservable, 7n

N

Ff(Rj »In) =  7l +  OfRj +  ^ 2  (5-5)
n= 2

The 7n terms allow for later entrants to have higher fixed costs. If we observe 7n > 0 we 

conclude that later entrants have higher fixed costs.
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5.3.3 Empirical model

Under the assumption that the error is i.i.d. in profit specification (5.3), we can write the 

probabilities of observing a particular market structure for the baseline case of no store 

type differentiation in the following way. Let IIn denote the estimated per firm profits - so 

the monopolist’s profit is III =  III +  e . We assume that profits can be ordered, so that 

IIi > II2 > II3 >  .. > Iljv, i.e. a monopolist’s profit is higher than a duopolist’s and higher 

than a triopolist’s. We assume that there is no heterogeneity between firms, we can write 

any market structure profits in terms of monopoly profits14

III =  n n +  Mn-l (5 -6 )

where fin is the constant difference between n and n — 1 profits and fin >  /in_i- Thus 

the probabilities of observing a particular market structure with $  the cumulative normal 

density function can be written as

•  Empty market

Pr(y =  0) =  Pr(ni +  e <  0) =  Pr(e < - H i )  =  1 -  (̂TTi) (5.7)

•  Monopoly

Pr(y =  1) =  Pr(IIi +  e >  0 and n 2 +  e < 0) =  Pr(—IIi < e <  —n 2) (5.8)

=  * ( S i )  -  $ ( n 2) =  *(/*! -  H i) -  * ( - H i )  (5.9)

14In the case of no firm heterogeneity this is an unproblematic assumption, but with firm heterogeneity it
would be more crucial.
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•  Duopoly

Pr(y =  2) =  Pr(n2 +  £ >  0 and n 3 +  e < 0) =  Pr(—n 2 < e <  — n 3) (5.10)

=  $ ( n 2) -  $ ( n 3) =  $(//2 -  n o  -  $ ( /q  -  n o  (5.11)

•  Triopoly

Pr(y =  3) =  Pr(n3 +  £ > 0) =  Pr(e > n 3) (5.12)

=  $ ( n 3) =  i - $ 0 i 2 - n o  (5.13)

•  etc.

The probabilities sum to one.

Under these assumptions we can now estimate the equilibrium market structure using 

a standard ordered probit model. The estimated coefficients can be directly translated as 

structural coefficients of the underlying monopoly profit function, and with the estimated 

constants /in we can also recover the profit function coefficients.

The choice probabilities allow identification only up to an arbitrary normalisation. If 

we make assumptions about the constant coefficients - either fi0 or /30 is 0 , we assume 

/30 =  0 -.and the variance of the error term equals unity (as in Bresnahan and Reiss). Using 

equations (5.3), (5.4) and (5.5) we can rewrite profits as,

IIIj — Yjicx. d- PWj) — (7i d~ @Rj) d- (5.14)

^2 j  =  Yj((* d- &W j)  — { 'h  +  QRj  +  7 2) +  £ j ,

f l 3j =  Y j ( a  +  P W j )  — (7 X +  ORj  +  7 2 +  7 3) d- £j

etc. (5.15)
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If we define dummy variables 12j =  1 if there are two or more stores in j, 13j =  1 if there

are three of more stores in j , etc., we can collapse these into one expression,

n nj =  aYj +  fiYjWj. -  7i -  72 - . . . - 9 R j +  £j. (5.16)

The i s  can be interpreted as the thresholds between monopoly and duopoly profits and 

triopoly and monopoly profits, respectively. For the /3 and 0 we can only directly interpret 

the sign: a positive sign shifts to higher categories when x increases, a negative sign shifts 

to lower categories when x increases. In order to interpret the magnitudes we calculate 

marginal effects for the different /? and 6.

5.4 D ata

In order to estimate the model described above we need data on: the location and character­

istics of existing and new store; planning applications and decisions taken by LEAs; regional 

demographics. These data are available from several different sources.

5.4.1 Superm arket entry and location

Opening dates and size of each grocery store in England comes from the Institute of Grocery 

Distribution (IGD) data. The data comprises 12,503 observations of grocery stores in the 

UK. It covers all large chain stores and Co-ops and around 80% of independent stores. The 

data record the company name, the fascia, the postcode, the opening and closing dates.

Figure 5.1 shows the number of new store openings over time. The grey shaded firms 

represent the larger store formats and we can see that at the beginning of the 90s up to 

1996 the majority of store openings took place in this large format. After 1996 the number 

of smaller store format (coded in green colours) openings increased substantially and the 

number of big store openings decreased at the same time.
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The UK supermarket industry is dominated by four main companies whose market shares 

in terms of grocery sales add to around 75% (these are Asda, Sainsbury, Safeway/Morrisons 

and Tesco). Eventhough our empirical analysis takes all stores into account Figures 5.2-5.6 

use the big four to illustrate the main trend. In Figure 5.2 we see that since 1997 the number 

of new out-of-town stores opening has declined, while the number of new town-centre stores 

opening has increased. The CC (2000) report suggests that the minimum efficient scale for 

supermarkets is around 30,000 sq ft. Figure 5.2 shows the number of new store openings 

above and below this size, with the vertical bar indicating the introduction of new planning 

regulation. There has been a marked increase in the number of smaller stores opening, 

suggesting that this could be a reason for the lower efficiency growth in the UK.

Figure 5.3 shows that much of the new store opening was accounted for by Tesco, and 

Figure 5.4 shows that this was dominated by the Tesco Express format. As highlighted above, 

an open question is the extent to which this diversification was driven by planning regulation, 

or a strategic decision by Tesco to differentiate itself and target a different demographic (or 

a response to changes in consumer preferences towards this type of format). We hope to be 

able to disentangle these effects in our empirical analysis.

We identify two types of stores, those above and below 30,000 square feet.10 We consider 

the number of stores in a postcode sector (this is the first word plus the first character of the 

second word, e.g. for the postcode WC1E 7AE the postcode sector is WC1E7).A postcode 

sector has a median diameter of 2.4 kilometer and an average population of 6700 people. 

For small stores we use demographic variables within the postcode sector. For large stores 

we use demographic variables for all postcode sectors within a 10 km radius.16,17,18

15 This is the minimum efficient scale defined by Competition Commission in its 2000 report on the su­
permarket industry. As a robustness check we also consider stores above and below 15,000 square feet to 
distinguish between different consumer purchasing behaviour by the CC

16Precisely, we use information from all postcode sectors for which the mid point of that postcode sector 
is 10 km or less from the centre of the postcode sector under consideration.

17The Competition Commission report suggests that the average distance for a one-stop shopping trip is 
8 miles.

18 We are aware that we have overlapping regions which might bias our estimates. We are investigating 
the direction of a possible bias and also look into isolated areas to check the robustness of our results.
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Table 5.1 shows the number of small stores within postcode sectors and the number 

of large stores within 10k of a postcode sector midpoint. We have truncated the market 

outcome for small stores at five and for large stores at 10. There are very few postcode 

sectors that have 6, 7 and 8 small stores. For large stores the maximum value is 33. As a 

robustness check we also estimate using the non-truncated variable.

5.4.2 Planning applications

Data on the number of planning applications approved comes from the Office of the Deputy 

Prime Minister (ODPM). We have information on the number of applications and approval 

for major retail establishments (use class A1 and A3) and change of use. Class A1 contains 

all establishments where one can buy food to consume it elsewhere and A3 is the necessary 

permit for establishment with on-site food consumption. These include not just supermarkets 

but also other large retail sites and restaurants. The data is provided to the ODPM by the 

Local Planning Authorities. It includes: number of new use applications made; number 

of new use applications approved; number of change of use applications made; number of 

change of use applications approved. Figure 5.6 shows the number of decisions granted, 

decided and the approval rate over time. To measure the extend to which the regulation 

poses an entry barrier we use the number of decisions granted. The approval rate seems less 

good a measure since firms may have reacted to the policy and might have applied less for 

out-of-town sites. This is in fine with the decreasing number of application in Figure 5.6.

5.4.3 O ther data

A key contribution of this paper is to control for other demographic variables. The demo­

graphics we focus on include the population, number of single person households, number 

of unemployed people, average distance traveled to work, whether the postcode sector is a 

metropolitan area (and whether it is in London). In the UK these are available from the
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Office of National Statistics at the Output Area /Enumeration District level which is roughly 

half the size of a postcode sector and there are 16,000 in England.19 For earlier years we do 

not have information on distance travelled to work, so we use the total number of cars per 

household to capture mobility and access to a car. We also use the average rateable value 

of retail property, available from the ODPM, and the distance to the supply centers of the 

big four (from IGD).

Descriptive statistics of the variables used appear in Table 5.2.

5.5 R esults

Table 5.3 shows the estimated coefficients from an ordered probit on the number of small 

stores in a postcode sector and the number of large stores within 10 kilometers for cross- 

sections in 1993 and 2002. We estimated our model for every year from 1991 to 2003 and the 

results are very similar. In general the estimates accord with our prior expectations. There 

are more stores in more populated areas. The factors that affect variable profits suggest that 

these are higher for small stores in areas with a large proportion of single person households. 

This captures the fact that single people might have a more uncertain demand for groceries 

and therefore do more of their shopping as top-up shopping in small in-town stores. This 

is confirmed in the estimates for large stores where the proportion of single people effect 

variable profits negatively. Variable profits are lower for small stores in areas where people 

have more access to cars (perhaps picking up an effect that these people are more willing 

to drive to a large store) The effect on for large stores is also positive but even bigger 

reflecting the fact that cars are even more important when doing a large one-stop shopping 

trip. Variable profits also depend on whether a store locates within a metropolitan area or 

in London which both has a negative effect on variable profits (perhaps reflecting higher

19 For the earlier years we use information coded as Enumeration Districts which leads to a lower number 
of overall observations.
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variable costs in these areas). Again this effect is more pronounced for small stores. The 

proportion of unemployed people also effects variable profits in both store formats negative 

this might proxy for lower income or worse access to alternatives.

In terms of fixed costs we see that planning regulations had a statistically significant 

impact on small stores in 1993, but not in 2002. This accords with the policy changes 

described above, up until 1996 planning regulations were on the whole locally determined 

and did not explicitly target small or large store formats. After 1996 there was a national 

mandate that prejudiced against development of large out of town stores and in favour of 

smaller town centre stores. The positive coefficient makes sense - more applications granted 

means lower fixed costs of entry. Here we see a different picture with respect to large store 

formats. There is no effect of planning regulation in 1993 and then a significant effect in 

2002.2°Property have a significant negative effect on variable profits of small stores but seem 

to have little effect on fixed costs of large stores possibly due to cheaper land prices in out- 

of-town locations. Our residual demand hypothesis is also confirmed since the number of big 

stores does have a negative and significant effect on the profits of small firms in all years.

The Vs represent unobservable market structure differences and we would expect them 

to increase with the number of firms in a market. They are significant and increase with 

number of firms the fact that they do increase overproportionally21 indicates that entrants 

into markets with more incumbents have higher fixed costs. But we can’t distinguish whether 

this is true because of lower efficiency or higher entry barriers.

While the sign and statistical significance of the coefficients in Table 5.3 make sense, 

in order to understand the economic significance we need to calculate the marginal effects. 

These are shown in Table 5.4 for our main variable of interest - planning regulations. We 

show the marginal effects for small stores for the outcome of zero stores (an empty market)

20 When we run the regressions for all years this variable is positive and significant in all years for large 
store formats after 1996 except 2000 when it is insignificant.

21 overproportional in the sense of: i f  >  7i-
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and 5 stores (the maximum number) for small stores and 10 stores for large stores.22 For 

comparison Table 5.5 shows the marginal effects from a model where we only include planning 

regulations, and don’t condition on any demographics. The marginal effects for large stores 

are statistically significant from 1997 onwards, though small in magnitude. If we compare 

the effect with the model without demographics the effects look substantially larger, showing 

that omitting to control for variation in demographics and market variables gives a misleading 

picture of the impact of planning regulations and increases its impact tenfold.

To understand the magnitude and the distribution across market types of the effect of 

planning regulation better we additionally undertake the following policy experiment. We 

increase the amount of planning regulations by 10% i.e. a 1/3 additional application approved 

on average in every Local Authority and calculate the marginal effects. The distribution of 

the difference in marginal effects for large stores is shown in Figure 5.7. The negative 

difference in an empty market shows that increasing planning approvals by 10% leads to a 

0.08% decrease in empty markets and an increase in 0.1 % markets with 10 or more large 

stores. We get more markets with 5 or more stores the decrease in entry barrier leads to an 

increase in the number of stores. Is this a big or a small effect in economic terms. To gain 

more insight into the magnitude of the effect we compare it with a 1% increase in population, 

both are contrasted in Figure 5.8. This comparison suggests that planning approvals play a 

significant part in restricting entry of large store formats but the magnitude of the effect is 

rather small.

5.5.1 A sim ple version of observable firm heterogeneity

One important extension to our model is to include firm heterogeneity. We need some 

additional assumptions in order to get existence and uniqueness of a pure strategy equilibrium 

with firm heterogeneity. We follow Berry (1992) in assuming that firms can be ranked in

22 Interpreting the marginal effects at intermediate rates is tricky as they capture movement from both 
lower and higher groups. We consider this explicitely in our policy experiment.
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terms of their profitability and that ranking does not change when the number or the set of 

entering firms change.

We do this by imposing a single index of profitability Ujk (j  denotes the area and k 

denotes the firm) and it is easy to show that a Nash equilibrium exists in each market but it 

is not a unique one. There are several equilibria which entail the same number of firms which 

we will focus on. To ensure uniqueness of the number of firms in equilibrium we assume that 

firm differences in profitability only affect the fixed portion of profit and thus the post-entry 

pricing game remains symmetric. This is obviously restrictive but more general formulations 

of firm heterogeneity would lead to multiplicity of equilibria. So the resulting profit functions 

looks like this

n nifc =  S(Yj)V(Wj,  a n, (3) -(- F(Rj , j n, 0) -I- ujk +  enj (5-17)

In the most general version the equilibrium number of firms in a market j  has a multinomial 

distribution with the (Nj +  1) distinct and mutually exclusive outcomes. Thus the region of 

integration to obtain the probability of market outcomes given the number of combination 

of firms that lead to e.g. a quadropoly gets increasingly complicated.23 In the most simple 

case we assume that there is no unobserved firm heterogeneity and there is an effectively 

infinite supply of potential entrants. This allows us to include firm heterogeneity into our 

ordered probit model.24

As described above our first approach to include firm heterogeneity is to focus on ob­

servable firm differences. One important observable difference between at least the big four 

supermarkets in the UK is their supply network. We include the distance to the closest 

supply center of the big four supermarket chains (Asda, Sainsbury, Safeway/Morrison and 

Tesco) into our model and assuming that there is no further unobserved heterogeneity we

23For a more detailed analysis see Berry (1992).
24 This places restrictions on possible combinations of entering firms and limits the amount to which firm 

profitability can differ.
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can estimate the profit functions with ordered probit. These results are documented in Ta­

ble 5.7. Since our main focus is on the impact of planning regulation it is reassuring to 

see that the effect is robust to including heterogeneity in distance to the different supply 

networks. The coefficients are jointly significant for large stores and thus do capture some 

of firm heterogeneity. Distance to the closest supply network seems to decrease profits more 

for Safeway/Morrison whereas it does not have a significant impact on the other three.

5.6 Conclusions and future work

This paper develops a model of supermarket entry and applies it to data for the UK. We are 

interested in estimating the cost of restrictive planning regulation. We do this by estimating 

the parameters of the profit function and backing out the increase in fixed costs that is 

associated with more restrictive planning regulations. Our estimates suggest that planning 

regulation did have a statistically significant impact on market equilibrium outcomes and 

that it has represented an entry barrier. However, the economic magnitude of this effect is 

substantially overestimated by not controlling for variation in demographic variables and a 

small number of other variable and fixed cost drivers.

In further work we would like to allow for more flexibility in the profit function, for exam­

ple, by allowing more general heterogeneity between firms and between types and allowing 

for multi-store firms.
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5.7 T ab les and F igures
Table 5.1: Number o f  Stores
Number of stores Small stores in postcode sector Large stores within 10km

1992 2002 1992 2002
0 4,536 4,446 1,210 1,025
1 2,000 2,102 796 541
2 893 948 765 538
3 436 387 714 549
4 153 156 662 640
5 82 61 477 631
6 498 460
7 410 362
8 476 286
9 330 325
10 1,762 2,743
Total 8,100 8,100 8,100
Source IGD

Table 5.2: Descriptive statistics
Mean 

(std. dev.)
Mean 

(std. dev.)
Market size 1992 2002
Population in postcode sector (in 1000s) 7.014 6.841

(4.001) (3.924)
Population within 10k (in 1000s) 608 649

(736) (805)
Variable pro fits
singles (% all households) 0.127 0.171

(0.078) (0.098)
families (% all households) 0.192 0.169

(0.055) (0.059)
unemployed people (% all people) 0.031 0.034

(0.019) (0.018)
distance traveled to work (km) 1034

(3.38)
number of cars 0.950

(0.256)
metro area 0.244 0.244

(0.430) (0.430)
London 0.137 0.137

(0.344) (0.344)
Fixed costs
rateable value retail land (£/m2) 52.65 52.65

(89.43) (89.43)
decisions granted 4.229 3.817

(4.866) (4.751)

Source ONS, ODPM, Experian for 2002
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Table 5.3: Coefficients from ordered probit model for number o f  small and large stores
Small stores Large stores

1992 2002 1992 2002
Market size
Population in pc/lOk 0.394 0.208 0.234 0.018

(0.022) (0.017) (0.004) (0.005)
Variable profits
singles in pc/lOk 0.072 0.063 -0.029 -0.034

(0.481) (0.031) (0.001) (0.011)
unemployed people in -0.218 -0.116 -0.143 -0.047
pc/lOk (0.002) (0.129) (0.021) (0.027)
families in pc/lOk -0.297 -0.547 0.033 -0.030

(0.058) (0.045) (0.016) (0.015)
distance traveled to work 0.0004 0.0004
in pc/lOk (0.0006) (0.0001)
number of cars -0.156 -0.014

(0.015) (0.016)
metro area -0.026 -0.011 -0.002 -0.0014

(0.005) (0.005) (0.0004) (0.0006)
London -0.044 -0.042 -0.001 -0.002

(0.007) (0.006) (0.0005) (0.0006)
Fixed costs
number of big stores -0.017 -0.009

(0.006) (0.005)
decisions granted (t-1) 0.004 0.0008 0.022 0.034

(0.004) (0.003) (0.018) (0.016)
rateable value retail land -0.115 -0.679 0.051 0.409
(2000) (0.016) (0.140) (0.418) (0.252)
yi 0.790 0.815 0.504 0.801

(0.051) (0.055) (0.126) (0.096)
72 1.601 1.652 1.223 1.433

(0.053) (0.057) (0.160) (0.104)
y3 2.180 2.273 1.868 1.995

(0.056) (0.060) (0.198) (0.116)
y4 2.729 2.789 2.485 2.555

(0.065) (0.065) (0.233) (0.137)
Y5 3.179 3.313 3.100 3.201

(0.073) (0.077) (0.275) (0.156)
y6 3.617 3.838

(0.307) (0.193)
y7 4.202 4.365

(0.343) (0.191)
y8 4.728 4.845

(0.383) (0.198)
y9 5.418 5.274

(0.415) (0.199)
ylO 5.942 5.781

(0.479) (0.218)
R2 0.058 0.065 0.391 0.423
Observations 8096 8096 8096 8096
Standard errors are reported in brackets and clustered on Local Authority level
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Table 5.4: Marginal effects o f  decisions granted (t-1) on number o f  small/large storest from Table 5.3
small large

1992 2002 1992 2002
outcome empty market -0.0013 0.0003 -0.00009 -0.977e-06

(0.0015) (0.0015) (0.0001) (0.00001)
outcome 5 stores 0.00005 -0.00001

(0.00006) (0.00005)
outcome 10 stores 0.0005 0.0068

(0.0005) (0.0032)

Table 5.5: Marginal effects o f  decisions granted (t-1) from regression with only this variable
small large

1992 2002 1992 2002
outcome empty market 0.0018 0.0044 -0.0092 -0.014

(0.0038) (0.0033) (0.0037) (0.003)
outcome 5 stores -0.0001 -0.0002

(0.0002) (0.0002)
outcome 10 stores 0.012 0.028

(0.084) (0.007)

Table 5.6: Differences in supply networks (distance)
Mean 

(std. dev.)
Distance to nearest ASDA supplier (km) 42.90

(35.51)
Distance to nearest Sainsbury supplier (km) 38.18

(37.06)
Distance to nearest Safeway/Morrison supplier (km) 75.95

(43.54)
Distance to nearest Tesco supplier (km) 42.54

(40.81)
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Table 5.7: Coefficients from  ordered probit model with heterogeneity
2002 small 2002 large

Market size
Population in pcs /10k 0.219 0.027

Variable profits
(0.015) (0.004)

singles in pcs /10k 0.045 -0.042
(0.042) (0.013)

unemployed people in -0.139 -0.079
pcs /10k (0.135) (0.028)
families in pcs/10k -0.549 -0.037

(0.046) (0.015)
metro area -0.014 -0.002

(0.005) (0.0007)
London -0.042 -0.135

Fixed costs
(0.006) (0.047)

number big stores -0.015
(0.005)

decisions granted (t-1) 0.0018 0.0345
(0.0039) (0.018)

ASDA dist. Supply net. -0.043 -0.313
(0.090) (0.336)

Tesco dist. Supply net. 0.052 0.471
(0.060) (0.241)

Sainsbury dist. Supply -0.002 -0.042
(0.094) (0.381)

Safeway/Morrison dist. -0.025 -0.351
Supply net. (0.054) (0.159)
yi 0.809 0.391

(0.055) (0.136)
1.645 1.007

(0.057) (0.142)
y3 2.266 1.551

(0.060) (0.148)
y4 2.782 2.095

(0.065) (0.163)
y5 3.306 2.726

(0.077) (0.177)
y6 3.351

(0.209)
y7 3.868

(0.197)
Y8 4.343

(0.201)
y9 4.771

(0.206)
ylO 5.283

(0.229)
R2 0.065 0.418
Observations 8696 8696
Standard errors are reported in brackets and clustered on Local Authority level
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Figure 5.1: Supermarkets in the UK - store openings
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Figure 5.2: Supermarkets in the UK - store openings by location
by big four (Asda, Sainsbury, Safeway/Morrison, Tesco)
Source: Authors’ calculations using IGD

-  160 -

o> 140

iT 120

£ 100

o  80

□ Out-of-Town ■ High street

101



CHAPTER 5. SUPERMARKET ENTRY

Figure 5.3: Supermarkets in th
by big four (Asda, Sainsbury, Safeway/Morrison, Tesco)
Source: Authors’ calculations using IGD
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Figure 5.4: Supermarkets in the UK - store openings by company
by big four (Asda, Sainsbury, Safeway/Morrison, Tesco)
Source: Authors’ calculations using IGD
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Figure 5.5: Tesco in the UK - store openings by store format
Source: Authors’ calculations using IGD
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Figure 5.6: Retail applications, decisions granted and approval rate (A1& A3)
Source: Authors’ calculations using ODPM
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Figure 5.7: Impact o f a 10% increase in planning approvals
(Differences in the marginal effects after a 10% increase in planning decisions granted)
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