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Abstract

In this work, the evolution of sex determination gene networks is inves­
tigated using a modelling approach. Recent evidence indicates that an in­
crease in the complexity of interactions has played an important role in gene 
network evolution. Sex determination mechanisms offer a good model for 
studying gene network evolution because, among other reasons, they evolve 
rapidly. In chapter 2, the potential for evolutionary change of the existing 
Drosophila sex determination gene network is considered. With the aid of 
a synchronous logical model, theoretical concepts such as a network-specific 
form of mutation are defined, as well as a notion of functional equivalence 
between networks. Applying this theoretical framework to the sex deter­
mination mechanism, it is found that sex determination networks generally 
exist within large sets of functionally equivalent networks all of which satisfy 
the sex determination task. These large sets are in turn composed of sub­
sets which are mutationally related, suggesting a high degree of flexibility 
is available without compromising the core functionality. The technique for 
finding functional equivalence between networks suggests a general method 
for gene network reconstruction, which is explored in chapter 3. Lastly, in 
chapters 4 and 5, a hierarchical model is presented which integrates popu­
lation genetics techniques with network dynamics. This model consists of a 
core population genetics simulation within which parameters such as the sex 
and fitness of the genotype are calculated from the corresponding network 
dynamics. The model is used to investigate the early evolution of sex deter­
mination networks. Following from a hypothesis proposed by Wilkins (1995), 
the assumption is made that sex determination networks have evolved in a 
retrograde manner from bottom to top. Starting from the simplest possible 
ancestral system, based on a single locus, we explore the way in which more 
complex systems, involving two or three loci, could have evolved.
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Chapter 1

Introduction

1.1 Biological networks

1.1.1 Networks and com plexity

The study of networks pervades all of science, from neurobiology to statistical 
physics. In fields related to biology, studies of neural networks, ecological 
food webs, cell-signalling, gene and biochemical networks have all attracted 
interest. Beyond biology, a multitude of real-world networks such as electrical 
power grids, the Internet and World-Wide Web and social networks (for 
example, the overlapping boards of directors of the largest companies in 
the United States), have also been analysed. Why is network anatomy so 
important to characterize? Because structure always affects function. For 
instance, the topology of social networks affects the spread of information 
and disease, and the topology of the power grid affects the robustness and 
stability of power transmission. From this perspective, the current interest 
in networks is part of a broader movement towards research on complex 
systems. Networks are inherently difficult to understand, as the following 
list of possible complications illustrates (from [1]):

1. Structural complexity: the wiring diagram could be an intricate tangle.

2. Network evolution: the wiring diagram could change over time. On the 
World Wide Web, pages and links are created and lost every minute.
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3. Connection diversity: the links between nodes could have different 
weights, directions and signs. Synapses in the nervous system can be 
strong or weak, inhibitory or excitatory.

4. Dynamical complexity: the nodes could be nonlinear dynamical sys­
tems. In a gene network or a Josephson junction array, the state of 
each node can vary in time in complicated ways.

5. Node diversity: there could be many different kinds of nodes. The 
regulatory network that controls cell division in yeast consists of a 
bewildering number of genes and protein complexes.

6. Meta-complication: the various complications can influence each other. 
For example, the present layout of a power grid depends on how it has 
grown over the years -  a case where network evolution (2) affects topol­
ogy (1). When coupled neurons fire together repeatedly, the connection 
between them is strengthened; this is the basis of memory and learning. 
Here nodal dynamics (4) affect connection weights (3).

1.1.2 G ene networks

This work will be concerned specifically with transcription-regulatory, or gene 
networks. The elucidation of gene interactions at the molecular level began 
in 1960 with the work of two French biologists, Francois Jacob and Jacques 
Monod, for which they were awarded the Nobel prize [2]. Their research fo­
cussed on the response of the gut bacterium E. coli to lactose, specifically the 
method by which the enzyme (/?-galactosidase, used to digest lactose) was 
synthesized in response to a presence of lactose at sufficient concentration 
in the medium. The mechanism by which the enzyme is induced was found 
to occur at the level of transcription (the process by which messenger RNA 
is produced from DNA) of the /3-galactosidase gene. It was discovered that 
adjacent to the gene there is a short sequence of nucleotides in the DNA to 
which a protein binds. The sequence is called an operator, and the protein 
that binds to it is called the repressor, since its action is to repress transcrip­
tion of the /3-galactosida.se gene. When the repressor is bound to the operator
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site, no mRNA is produced, and as a consequence, no /?-galactosidase en­
zyme (the protein product of the gene) is produced either. This regulatory 
mechanism is coupled to the presence of lactose in the environment by the 
simple fact that lactose binds to the repressor, changing its shape in such a 
way that it can no longer bind to the operator site. Since the operator site is 
free, production of /?-galactosidase occurs soon afterwards. Because the re­
pressor molecule is itself a product of another E.coli gene, the discovery that 
genes could be “switched on” in this way led immediately to the suggestion 
that genes might form networks in which genes turn each other on and off.

In the simplest case, two genes might each repress the other. If gene A 
represses gene B and gene B represses gene A, then such a system might form 
what is known as a bistable pattern of activity. In the first pattern, gene A 
would be on and repress gene B; in the second, gene B would be on and 
repress gene A. Indeed, this simple genetic circuit (a genetic toggle switch) 
has been constructed using plasmids in E. coli [3]. Other simple circuits have 
also been produced: autoregulatory systems [4], oscillators [5] and logic gates 
[6], and have established gene network engineering as a discipline in its own 
right [7].

In spite of a dearth of experimental data, the discoveries of Jacob and 
Monod led rapidly to attempts at theoretical models of gene networks at 
both (a) a macroscopic level [8], in which the ensemble behaviour of large 
networks is considered, and (b) a microscopic level [9], in which the behaviour 
of individual networks is considered. To some extent, this division between 
microscopic vs. macroscopic continues today, though the nascent field of sys­
tems biology [10] aims to bridge this gap by using the priciples of systems 
theory to model and test large (experimentally determined) biological sys­
tems. Arguably the most successful of the macroscopic approaches so far is 
the discovery of patterns in topological features of biological networks such 
as the scale-free property and “network motifs”, which is addressed next. 
This is followed by an overview of microscopic approaches using modelling.

10



y

1.1.3 Topological features

The development of high-throughput data-collection techniques such as mi­
croarrays and the yeast two-hybrid method, has unravelled various types of 
biological networks such as protein-protein, metabolic, signalling and gene 
networks. An intense field of research has emerged recently in which the 
topology of such complex networks is analysed using various network mea­
sures, such as the degree distribution, which allow comparison and charac­
terisation of different complex networks [11]. Such analysis is made possible 
by transforming each network into a graph. For example, in a gene network, 
each node might represent a different gene with the edges representing regu­
latory interactions. Standard mathematical analysis from graph theory can 
then be used on such graphs [12]. The most elementary characteristic of a 
node in a graph is its degree, or connectivity, k, which is the number of con­
nections the node has. If we are dealing with a directed graph (a graph in 
which each connection is directed, usually shown as an arrow), then we can 
measure two distinct values, one for incoming links (indegree k in), the other 
for outgoing links (outdegree &<*,*). Figure 1.1a shows an undirected graph in 
which the node A  has degree k = 5, and figure 1.1b shows a directed graph 
in which the node A  has indegree kin = 4, and outdegree = 1.

Figure 1.1: (a) In this undirected network, node A  has degree k = 5. (b) In 
a directed form of the network, one can further measure indegree kin =  4, 
and kwt =  1 for node A.

The degree distribution, p* gives the probability that a selected node 
has exactly k links, and is obtained by counting the number of nodes rik 
with k =  1 ,2 ,... links and dividing by the total number of nodes N  (i.e. 
Pk = nk/N ). A particular degree distribution which appears to be common
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in biological networks is the scale-free distribution, pk = A;-7 (7 constant). 
Figure 1.2 shows the degree distribution for the yeast protein-protein inter­
action network, which was found to be scale-free [13]. On a log-log plot such 
as figure 1.2, this relationship should be linear, though for finite networks 
such as this one, the relationship will often deviate for lower values of k. The 
protein-protein interaction data for this study was gathered from two data 
sources [14, 15]. Although this data derives mostly from two-hybrid analyses, 
a technique known to give many false positives [16], it is assumed in the study 
that systematic techniques such as this one give a better representation of 
the underlying degree distribution than would be the case if only evidence 
from hypothesis-driven experiments were being used.

3.5 

3

_  2.5
o
C  0d> z
3CT<0
*  1.5bOo
~  1

0.5 

0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

log (k)

Figure 1.2: Log-log (base 10) plot for the degree distribution of the yeast 
protein-protein interaction network as used in [13]. Data set available 
from the URL ( h ttp ://w w w .nd .edu/~netw orks/database/pro te in /bo . 
da t.gz). Note a scale-free distribution appears to be approximately linear 
on the log-log plot.

One important characteristic of the scale-free distribution is the existence
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of a small number of highly-connected “hubs” for which k is large. Scale- 
free degree distributions have also been observed in metabolic networks [17] 
and, at least for outdegree (fcou*), in gene networks [18]. The preferential 
attachment hypothesis [19] suggests that two requirements are sufficient for 
scale-free networks to evolve: (1) the network should grow, and (2) new 
nodes are attached to the existing nodes with probability proportional to the 
degree k of the existing nodes (i.e. “hubs” are more likely to recruit the new 
connections, making them more connected still).

A second approach looks at topological features in an attempt to uncover 
local-scale design principles. “Network motifs” [20] are patterns of intercon­
nections that are found in the gene network of E. coli at numbers significantly 
higher than those in randomized networks. Further studies [21, 22] have ex­
tended this analysis to the yeast gene network, as well as a variety of other 
networks (neural, ecological and electronic). Figure 1.3 shows the 13 possible 
connected directed subgraphs, or “network motifs”, with three nodes and no 
self-interactions.

4 • 5

Figure 1.3: All 13 types of three-node connected subgraphs, or “network 
motifs” (from [21]). Number 5 is the feedforward loop.



In particular, motif number 5 (the “feedforward loop”) has been found to 
occur in far higher numbers in both gene and neural networks (though for the 
latter there may be a fairly trivial explanation [23]) than in comparable ran­
domized networks [21]. The dynamic properties of the feedforward loop have 
since been analysed both theoretically [24] and in vivo [25], with the finding 
that this structure acts to delay input activation but not deactivation, a be­
haviour that is termed “sign-sensitive delay”. The three-node motifs (figure 
1.3) were subsequently used to define profiles, or “superfamilies” , of over(and 
under)-represented motifs [26], again discovering fundamental similarities in 
apparently disparate networks. Interestingly, a related bioinformatics study 
[27] found that, at least for gene networks, over-represented motifs are a 
consequence of convergent evolution rather than gene duplication (i.e. these 
structures evolved repeatedly from scratch rather than through repeated du­
plication of an original template).

Many of the “network motifs” studies have used interaction databases 
which rely heavily on hypothesis-driven experimental results, as reported in 
the literature. Such results may in turn be biased by the type of research 
undertaken. Therefore, as the number of reported interactions approaches 
the full number (version 4.0 of RegulonDB, an E. coli database, contains an 
estimated ~ 20-25% of all interactions [28]), there will be a need for such 
studies to be updated. One such update [29] for the transcription regulatory 
network of E. coli has indeed found qualitatively similar results to the original 
study [20]. For example, the updated study found that the “feedforward 
loop” is still highly represented in the updated network.

Biological networks are abstract representations of complex biological 
systems, necessarily capturing essential characteristics only. Furthermore, 
since real data have only recently become available, the field is still in an 
early phase of development. Network descriptions such as the scale-free 
exponent and the motif “superfamily” profile are likely to become useful 
tools for assessing network function, particularly in view of the abundance of 
data produced by novel high-throughput techniques. These first attempts at 
analysing biological networks have (reasonably enough) used existing tools 
borrowed from graph theory and physics, which often use crude represen­
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tations, such as directed graphs. Obviously, one way in which progress 
will be made in the field, is in the form of greater detail [30]: represent­
ing the strength and sign (repressing or activating?) of the interactions, 
or the functional form of the nodes (do they represent AND and OR type 
logic operations?), and so on. These details are not necessarily easy to dis­
cover experimentally and, at least in the short-term, theorists will often need 
to work with incomplete data. The principal shortcoming of topological 
feature analysis is a static view of the network which does not take into 
account dynamical behaviour. Significant progress will surely come from in­
tegrating these two. Already, one bioinformatics-oriented approach has been 
made which integrates degree-distribution analysis with dynamical data [31], 
though modelling-oriented approaches are likely to play an important role in 
the future, as the techniques improve.

1.1.4 M odelling approaches

The development of mathematical and computational techniques to model 
and analyse gene networks is an integral part of understanding the complex­
ity of gene networks [32]. Spurred on by a vast increase in computational 
power and an improved mathematical understanding of the mechanisms in­
volved [33], gene network models have advanced significantly since the early 
attempts in the 1970s. Moving beyond techniques which deal merely with 
network structure (such as the degree distribution), a wide range of mathe­
matical formalisms have been used to describe dynamical behaviour in gene 
networks [34]. At the simpler extreme are logic models [8, 35] in which the 
expression level of a gene is a simple binary ON/OFF value. At the other 
extreme, are models which represent more fully the system dynamics, such 
as those based on nonlinear Ordinary Differential Equations (ODEs) [3, 7], 
delay differential equations [36], and stochastic algorithms [37]. Specifically 
relevant to the field of developmental biology, network models are now ca­
pable of reproducing the development of complex structures such as somites 
[38], insect abdominal segments [39], and bristle patterns [40].

One topic which has recently become a popular target for investigation
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using models is the robustness of gene networks, understood here as the re­
sistance of a biological system to noise and/or mutations [41]. Robustness 
is in turn related to the concept of canalization introduced in the 1950s by 
Waddington [42]. One approach to this problem [39, 40] defines a system 
of ODEs integrated into a lattice model (each cell of the lattice represented 
by an equivalent set of equations). The robustness of the system is tested 
by varying the model parameters at random and observing the effect. In­
terestingly, it was found that the system was largely robust to even large 
variations in the individual parameter values. Another investigation [43] 
questions the assumption made by Waddington that stabilizing selection is 
needed for canalization (robustness) to evolve. The authors developed a 
modelling framework in which the strength of selection towards an opti­
mal expression pattern could be modulated, simulating different degrees of 
stabilizing selection. Stability in gene expression was also selected for (it 
was argued that this is a necessity in development). Since canalization was 
observed independently of the degree of stabilizing selection, the authors 
conclude that selection for stable (i.e. reaching steady state) network dy­
namics alone is a sufficient condition for producing robust networks without 
the need to invoke evolutionary assumptions such as stabilizing selection. 
Moving beyond theory, the availability of fitness data for yeast [44] has made 
it possible to analyse the role of duplicate genes in robustness [45], with the 
finding that duplicated genes do indeed compensate for null mutations more 
than singleton genes.

Model organisms such as baker’s yeast (Saccharomyces cerevisiae), the 
fruit fly Drosophila melanogaster, and the nematode worm Caenorhabditis 
elegans, have been subjected to intense experimental, molecular and genetic 
studies. As a consequence, some gene networks in these organisms together 
with the network properties (e.g., gene interactions and activation thresholds) 
are well defined. To gain an evolutionary perspective though, comparisons 
are needed with related species, and this is becoming increasingly feasible 
as high-throughput techniques generate genomic, proteomic and functional 
data (e.g. RNAi , microarrays) from an increasingly diverse range of organ­
isms. As far as sex determination mechanisms are concerned, three organisms
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have been studied more intensely than any others: C. elegans (figure 1.4a), 
D. melanogaster (figure 1.4b), and the mammalian system. From an evolu­
tionary perspective, the most convenient of these for study is currently D. 
melanogaster, given recent advances in understanding of related insect sex de­
termination networks: in the Mediterranean fruitfly (Ceratitis capitata) [46], 
domestic house fly (Musca domestica) [47], the phorid fly Megaselia scalaris 
[48], honeybee (Apis mellifera) [49], and silkworm (Bombyx mori) [50].

1.1.5 M odels o f gene network evolution

Relatively few attempts have been made to model the evolution of develop­
mental gene networks in a biologically realistic context which includes both 
dynamical behaviour and evolution. One reason for this, mentioned above, 
is the lack of experimental (comparative) data, but a second important rea­
son is a dearth of theoretical techniques combining dynamical models with 
evolutionary models (though each is individually highly developed). Those 
studies which have been done, have tended to focus on either (a) general 
aspects of network evolution, or (b) the evolution of patterning networks.

Within the first category, one important contribution [51] considered the 
effect of gene duplications on network dynamics, confirming the intuitively 
obvious notion that duplications involving either (a) very few genes or, (b) 
nearly all genes, have the smallest effect on dynamics. A less obvious result 
of the study showed that the largest changes in temporal expression pattern 
are likely to occur when ~40% (rather than 50%) of the genes in the network 
are duplicated. Extensions of this particular model have since been used to 
address several important questions in evolutionary biology such as canaliza­
tion (discussed above) [43], genetic assimilation [52] (when an acquired trait 
loses it dependency on the environmental trigger to become an inherited trait 
[53]), and the prevalence of “evolutionary capacitors” (genes which suppress 
phenotypic variation under normal conditions but release the variation when 
functionally compromised, such as the Drosophila gene Hsp90) [54].

A second important area which has attracted interest is the evolution 
of patterning gene networks. Two recent theoretical studies [55, 56], evolve
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networks together with lattice model simulations to show that as few as 
three or four nodes are sufficient to generate complex spatial expression pat­
terns. Another study [57] has also shown the tendency for small “emergent” 
(reaction-diffusion) type networks to be replaced by hierarchical (cascade) 
networks, as in modern Drosophila.

As may be obvious from this survey, there is remarkably little consen­
sus on modelling methodology. Biological network modelling is similar to 
many other branches of science where modelling is used, in that although 
more progress can be made with simpler models, these simpler methods will 
always be dismissed by critics who believe that more sophisticated meth­
ods (for example, using stochastic formulations) are indispensable [41]. One 
major problem in network modelling is a lack of useful data. In particu­
lar, parameters such as rate constants, and even interactions, must often be 
guessed by random sampling even when most of the network interactions are 
known. For example, in [39], a hypothetical interaction is introduced to make 
the network behaviour more realistic. Many studies are still obliged to deal 
with simulated network structures [58], although the discovery of topological 
features specific to gene networks, is allowing simulated structures to become 
ever more realistic [18]. The focus of experimentalists on model organisms 
makes lack of data an even greater problem for researchers interested in the 
evolution of gene networks, since comparative data are particularly scarce. 
The experimental emphasis on model organisms has caused a parallel em­
phasis on increasingly detailed models of networks in model organisms, with 
no evolutionary perspective. Hope for evolutionary biologists may come from 
technological advances in high throughput methods, which should be capable 
of producing the desired data at low cost in the near future.

Another important point that should be mentioned is that modelling has a 
long history in certain areas of biology, and is often highly developed math­
ematically - population genetics, for example [59]. However, many of the 
new tools being used in biological networks come from different areas such 
as graph theory and engineering. There is an urgent need to reconcile con­
cepts such as pleiotropy which have long been used in genetics, with newer 
ones such as robustness [60]. For example, dominance can be considered as
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equivalent to robustness, though at the level of a single gene, since dominant 
phenotypes are more robust to genetic perturbations than recessive pheno­
types [61]. This integration will be impossible without common definitions, 
which must eventually be quantitative to allow meaningful comparisons of 
model and experiment. Thus far, such statistics have adopted only rather 
crude forms: for example, to measure robustness, the degree to which null 
mutations cause an increase in gene expression variation (which in turn is 
correlated with decreased fitness) [54], and for modularity, the frequency of 
interactions in the network [62] (and even this first attempt at a definition 
may be of limited usefulness [63]).

1.2 Evolution of sex

The question of why sexual reproduction evolved is a fundamental question 
in biology. Behind this broad question, a number of more specific questions 
can be asked. These in turn fall into two principal categories [64]: Firstly, 
why did sex evolve at all, and why is it so pervasive? Most current theories 
suggest that sex offers an evolutionary advantage through genetic recombi­
nation. Recombination seems to be good at removing harmful mutations 
and allowing new combinations of genes to come together, providing more 
opportunities for improved fitness and offering the flexibility to adapt to new 
environments. Secondly, how did these complex sexual systems evolve? Once 
sexual reproduction is in place, we can ask what mechanisms determine the 
differential development of the sexes (sex determination). Here, we will be 
concerned mostly with sex determination, and in particular the evolution of 
the genetic mechanisms involved.

In all organisms that produce two different sexes, sexual development is 
the result of the modification of a basic developmental program in order that 
one of the sexes can develop [65]. Initially, the male and female embryos are 
similar with sexual differences developing at later stages. The determination 
of the somatic sexual phenotype (i.e. the development of the individual as 
either male or female) is usually quite different, and consequently considered 
separately, from the determination of the germline (whether the future germ
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cells become sperm or egg). Another important aspect of sex determination 
is the mechanism by which the embryo compensates for the differences in 
chromosomal composition between males and females, or dosage compensa­
tion.

1.2.1 Variety and flexibility o f sex determ ination  
mechanisms

The single requirement of a sex determining system is that it should cause 
some members of a species to develop as one sex, the rest as the other. Unsur­
prisingly, there is more than one solution to this problem. Sex determination 
systems can be either chromosome-based (genetic sex determination) or envi­
ronmentally controlled (environmental sex determination), or even both [66]. 
In genetic systems, sex chromosomes can contain a single dominant regula­
tor (for example, the mammalian Y chromosome contains Sry, a dominant 
masculinizer), or several dosage dependent regulators (such as in the systems 
of D. melanogaster and C. elegans discussed below).

In many genetic systems, the sex that produces gametes with different 
sex chromosomes is termed heterogametic (the other sex is homogametic). 
If males are heterogametic, as in mammals, then the sex chromosomes are 
called X and Y (XY males are heterogametic, and XX females are homoga­
metic). If the females are heterogametic though (as they are in birds and 
butterflies), the chromosomes are called Z and W. A female mouse is there­
fore XX, but a female butterfly is ZW. In some species, such as C. elegans, 
males have only one sex chromosome (denoted XO), and females (actually 
hermaphrodites) have two (XX). Genetic sex determination can also occur 
without sex chromosomes. In the order Hymenoptera (wasps, bees and ants), 
the copy number of the entire genome is used to determine sex: unfertilised 
(haploid) eggs develop as males, whereas fertilised (diploid) eggs develop as 
females. This mechanism allows females to control the sex ratio among their 
progeny by allocating stored sperm as needed.

An enormous variety of environmental sex determining systems also ex­
ists. For example, certain turtles ( Trachemys scripta) have a temperature
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dependent system in which eggs developing at cool temperatures become 
male, and eggs developing at warm temperatures become female. Other rep­
tiles, such as alligators, have the opposite developmental program, with cool 
eggs developing as female, warm eggs developing as male.

Social environment cues can also determine sex. The fish species Pseu- 
danthias sqamipinnis are sequential hermaphrodites and develop initially as 
females, possibly becoming males afterwards, depending on the social con­
text. These fish form harems in which one male oversees numerous females. 
If the male dies, the dominant female of the harem will undergo a sex change 
from female to male and replace it.

Separate mechanisms can operate in different tissues of the same organ­
ism. For example, in marsupial mammals, germline sex is determined by the 
presence of a Y chromosome, but the choice of a female pouch versus a male 
scrotum depends on X chromosome dosage (with XX leading to a pouch). 
Therefore, mutant XXY kangaroos develop both testes and a pouch [67].

1.2.2 Sex determ ination as a m odel for network evo­
lution

Although we have an intuitive notion of biological complexity, in terms of 
morphological complexity, or the variety of cell types, the term itself is hard to 
define. Traditionally, it was thought that biological complexity was largely 
reflected by the number of genes [68]. More recently though, the various 
genome projects have shown that this is not necessarily the case [69], which 
suggests a better definition is required. At the same time, an increase in 
network complexity appears to be correlated with the evolution of higher 
organisms, whether considered as an increase in the complexity of protein 
interactions [70, 71], or of gene regulation [72, 73]. It has therefore been sug­
gested [12] that complexity measures based upon gene network connectivity 
would correlate better with biological complexity, understood as morpholog­
ical or behavioural complexity, or the variety of cell types. A growing body 
of evidence supports the notion that plasticity in gene regulation (for ex­
ample, changes in the ds-regulatory systems of genes) more often underlies
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the evolution of morphological diversity, than do changes in gene number 
or protein function [74]. A deeper theoretical understanding of how gene 
networks evolve will therefore become increasingly important to evolution­
ary biologists. As gene networks from various organisms are determined in 
the laboratory and data become more plentiful, we can begin to ask how 
networks change as species diverge.

Sex determination mechanisms represent a good model for the study of 
gene network evolution for several reasons:
a) They evolve relatively rapidly [75].
b) Certain sex determination networks (in C. elegans and D. melanogaster) 
are among the best understood of any gene network [76, 77].
c) When modelling sex determination networks, spatial aspects can, and 
indeed have, been ignored [78]. This considerably reduces model complexity.
d) The genes that constitute the network often perform secondary functions, 
which may or may not be sex-specific: for example, in D. melanogaster, 
transformer plays a important role (via fruitless [79]) in male courtship [80], 
Sex-lethal regulates sex-specific dosage compensation [81], and scute/sisb is 
vital for neurogenesis [82]. At a first approximation, we can say that these 
secondary functions (and their contributions to overall fitness) do not interact 
significantly. This is in contrast to other developmental networks, (in pattern 
formation, for example) in which genes interact in nontrivial ways at many 
different levels [83].

Although sex determination systems are known to be diverse, certain 
common features between species do exist [76]. Firstly, sex determination 
is triggered by a primary signal, often as a result of differential expression 
of genes on sex chromosomes (though in other cases the signal can be an 
environmental cue). Secondly, one highly conserved gene (doublesex) does 
appear to exist, usually at a downstream position in the pathway. Homologs 
of the D. melanogaster doublesex gene have been found to be involved in 
sex determination across a wide variety of species including C. elegans [84], 
humans [84] and birds [85]. The discovery of this highly conserved gene 
suggests that sex determination is not as plastic as previously thought, since 
certain constraints exist.
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The discovery of the conserved role of doublesex-like genes added support 
to a hypothesis [86] concerning the evolution of sex determination networks. 
The core idea of the hypothesis is that sex determination networks evolve in 
reverse order from the final step in the pathway up to the first. Evidence 
across insect species also supports the hypothesis. Studies analysing the 
genes of the D. melanogaster sex determination network (figures 1.4b and 1.5) 
in other insect species suggest that indeed the genes may be less conserved 
as we move up the pathway. As mentioned previously, the gene doublesex 
appears to be highly conserved, and has proven to be so in other insects 
which have been studied. The next gene, transformer, is conserved in a sex 
determination role in the Mediterranean fruit fly Ceratitis capitata (separated 
from D. melanogaster approx. 100 mya) [46]. At the same time, the next 
gene, Sex-lethal, has been found to perform a sex determining role within 
the genus Drosophila [87], but not in more distantly related species such 
as Ceratitis capitata [88] and Musca domestica [89]. The sex determination 
pathway is not the only network which contains both conserved and variable 
genes. A recent study of the gene network underlying wing development 
in ants [90] showed that network changes leading to a wingless phenotype 
could occur in a number of different ways (alterations in expression patterns), 
whereas the expression pattern of genes such as Ultrabithorax ( Ubx) and 
distal-less (dll) remain largely conserved.

As mentioned above, relatively few sex determination networks are known 
in real depth. The best understood are probably D. melanogaster, and C. 
elegans [91]. However, interest in sex determination evolution has led to stud­
ies in other insects, such as C. capitata. What is known of the structures of 
these three networks is shown in figure 1.4. There are two common features: 
a) the shared homolog (dsx, mab-3) at the end of all three pathways, and b) 
D. melanogaster and C. capitata both share transformer (tra). Apart from 
this, all three networks are different. In C. elegans and D. melanogaster, 
the primary signal is defined by the X:A ratio (albeit by different genes in 
each), whereas in C. capitata it is defined by a male determining factor (as 
it is in mammals). Musca domestica, which is more distantly related to D. 
melanogaster is likely to have a system based on a dominant feminizing allele
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Figure 1.4: Sex determination networks of a) C. elegans, b) D. melanogaster, 
and c) C. capitata. This diagram is a conventional gene network description 
in which each node represents one or more genes that participate at that 
point in the network. Arrows indicate positive interactions, flat tips indicate 
negative interactions. The gene doublesex (dsx) is denoted dsxF, since it is 
the female form which is activated by tra in each case.

F [92].

1.2.3 Sex determ ination in D. melanogaster

The main features of sex determination in D. melanogaster are now described 
- for general reviews see [91, 76]. The pathway is shown in figure 1.5. The key 
early signal leading to sexual differentiation (whether the fly becomes male or 
female) is the ratio X:A, of X chromosomes to autosomes (X and Y chromo­
somes are sex chromosomes, other chromosomes are known as autosomes). 
The directive for establishing the sexual phenotype is carried out by the 
differential expression of the key gene Sex-lethal (Sxl), together with several
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Figure 1.5: The sex determination gene network in D. melanogaster. The 
X:A signal components are integrated and activate the network on the right 
in females (2X:2A). In males (1X:2A) the network on the right hand side is 
not activated. The dotted box delimits a simplified version of the “known” 
network which will be used in chapter 2.

downstream sex-specific genes. If Sxl is switched “off” , then the pathway pro­
duces the male pathway of determination, whereas the “on” position shunts 
the system into female mode of sex determination. The default mode of the 
pathway culminates in the production of the male-determining transcription 
factor (a generic name for gene regulatory proteins) DSXM, whereas the 
non-default pathway culminates in the production of the female-determining 
transcription factor DSXF (by convention, gene names and their abbrevia­
tions are denoted in italics, but the protein product is denoted in capitalised 
non-italics) Although Sxl is activated by differential transcription regulation 
(qualitatively equivalent to that described for E. coli /?-galactosidase at the 
beginning of this chapter), subsequent links in the pathway occur via a mech­
anism termed alternative splicing.

DNA segments that code for proteins, contain intervening sequences called 
introns. Splicing occurs after transcription of the DNA into the primary RNA 
transcript (pre-mRNAs), and involves removing the introns to bring together 
the coding regions, or exons, to form a mature mRNA which codes for a pro­
tein. Alternative pathways of splicing can produce different mRNAs, and 
subsequently different proteins from the same primary transcript. Whether 
one splicing variant is chosen over another will often depend on the presence 
(or absence) of specific RNA-binding proteins. Often, alternatively spliced
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proteins (such as Sxl) can themselves be RNA-binding and regulate their own 
production (forming autoregulatory loops).

Looking now at this process in more detail: In XX females, the X:A ra­
tio of 2 X chromosomes to 3 pairs of autosomes leads to activation of Sxl, 
whereas in XY males, the corresponding ratio is 1:3 and Sxl is not acti­
vated. The early signal is determined by a key group of “numerator” genes 
(so called due to their differential role in increasing early signal strength) on 
the X chromosome, as shown in figure 1.5. Four numerator genes have so far 
been identified: three sisterless (sisA, sisB, sisC) and runt (run). All encode 
transcription factors which positively regulate Sxl. Other genes are essential 
to the sex determination process, but are expressed equally in males and 
females, and therefore do not have discriminative power. These other genes 
are: a) the single autosomal “denominator” (which tends to reduce the sig­
nal) gene so far found: deadpan (dpn), and b) four maternal genes, of which 
: daughterless (da) and hermaphrodite (her) are positive regulators ( “activa­
tors”) of Sxl, and extramacrochaetae (emc) and groucho (gro) are negative 
regulators ( “repressors”) of Sxl. These transcription factors (numerators, de­
nominator and maternal) have only one sex determination role: in a narrow 
time window in the early Drosophila embryo - roughly from 2 to 3 hours after 
fertilization - they determine if the Sxl regulatory switch gets flipped on.

The outcome of the early signal is activation of SxlPe, the “establishment 
promoter” (promoters are the regions of DNA that signal initiation of tran­
scription) in females only, leading to production of Sxl mRNA transcripts, 
which in turn leads to production of early SXL protein. At this point, SxlPe 
is replaced by the “maintenance promoter” SxlPm, active in both sexes. From 
this stage onwards, the SXL protein itself is necessary for alternative splicing 
leading to more functional SXL protein (i.e. it is autoregulatory). Male pre- 
mRNA transcripts contain an exon with what is known as a “stop codon”, 
which is spliced out in females. A stop codon is the signal for the translation 
machinery (which later converts the RNA to protein) to terminate transla­
tion at that point, which in the case of male SxlPm will create a truncated and 
non-functional protein. Since the early SxlPe transcripts naturally lose the 
stop-codon containing exon during RNA processing, the early burst of SXL
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is possible in the absence of any SXL protein, which permits the initiation of 
this autoregulatory process in females. These steps are summarised in figure 
1.6 .

(stop)

b) SxlPm (female)

c) S x l^  (male) No SXL

Figure 1.6: The initiation and maintenance of the Sxl switch. The boxes 
represent exons, with the crossed box representing the stop-codon-containing 
exon, (a) Early promoter transcripts (activated in females only) naturally 
lose the stop-codon-containing exon, (b) Maintenance promoter transcripts 
have the stop-codon-containing exon spliced out in females due to maintained 
presence of SXL protein, (c) In males, the absence of initial SXL protein leads 
to inclusion of the stop-codon-containing exon and no production of SXL as 
a consequence.

Not only does SXL have to autoregulate, but it must be capable of ac­
tivating the shunt pathway that will lead to female-specific gene expression. 
This activation is accomplished again through RNA-binding. The main tar­
get of SXL protein is the gene transformer (tra), which is spliced (again in 
females only) to produce an mRNA-encoding active TRA protein. In turn, 
TRA protein is an RNA-binding protein that produces female-specific splic­
ing of the doublesex (dsx) pre-mRNA. The mRNA produced by this splicing 
pattern encodes a DSXF protein, a global female-determining transcription 
factor. In the absence of active SXL protein, the splicing pattern of tra
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primary transcript produces an mRNA which contains a stop-codon, and 
produces nonfunctional protein. In the absence of functional TRA protein, 
the default splicing of the dsx pre-mRNA leads to the production of DSXM, 
a global male-determining transcription factor.

It should be noted that there are many other genes involved in the sex 
determination process, which, though crucial, are expressed equally in both 
sexes, and are therefore not discriminatory. For example, the product of the 
transformer 2 (tra2) gene is required for TRA to correctly splice doublesex 
in females [93].

Until recently, the only known targets of dsx were two genes encoding 
the terminal differentiation proteins: Yolk protein-1 and Yolk protein-2 (the 
yp genes), with DSXF activating and DSXM repressing their expression. 
However, several new targets of dsx have recently been discovered [94]. These 
genes (including yp) are shown downstream of dsxF in figure 1.4. Perhaps 
most importantly, dsx acts to promote sex-specific growth of the genital disc, 
leading to development of appropriate genitalia in each sex [95]. Of particular 
interest to evolutionary developmental biologists (since it appears to have 
evolved in the D. melanogaster species) is the interaction of dsxF with bric- 
a-brac (bab) [96]. The net effect of the interaction of DSXF with bab is to 
prevent male-specific pigmentation in two abdominal segments (A5 and A6), 
a distinguishing characteristic of D. melanogaster males.

The above steps describe sex determination of the soma (i.e. not of 
the germ cells). Additionally though, Sxl mediates two other downstream 
pathways: a) dosage compensation and b) germline development. Control 
of dosage compensation is important because XX females have two copies of 
each X-chromosomal gene whereas XY males have only one, and these dosage 
differences could lead to potentially fatal imbalances. In D. melanogaster 
dosage compensation is achieved by hyperactivation of the single X chromo­
some in males. All five male-specific lethal genes (msll, msl2, msl3, mle, 
mof) are required for dosage compensation, though only msl2 is expressed 
exclusively in males. The Sxl gene downregulates msl2 in females, thereby 
halting hypertranscription.

The third pathway controlled by Sxl, germline sex determination (the ge­
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netic mechanism which decides whether egg or sperm is produced), is less 
well understood. Although Sxl is required for oogenesis (egg production) [97], 
it does not function as the key gene of sex determination and its regulation 
is different from that of the soma. If Sxl were the key to sexual development 
in the germline, then female (XX) germ cells lacking Sxl function, in analogy 
to the effect of the gene in the soma, should form sperm, and XY cells with 
mutations of Sxl such that functional Sxl is always produced (“constitutive” 
mutations of Sxl), should form eggs. However, XX cells lacking Sxl function 
do not form sperm, and XY germ cells with constitutive Sxl mutations pro­
duce fertile sperm in male hosts [98]. Additionally, Sxl is activated much 
later in germ cells than in somatic cells, and does not require the “numera­
tor” genes for it to be activated. In summary, it is unlikely that Sxl plays a 
key “switch” role in the germline as it does in the soma. The key gene for 
sex determination in germ cells is still not known, and indeed may not even 
exist [76], since it is possible that several different signals are involved in con­
trolling distinct aspects of sexual development in germ cells. For the purpose 
of this study, we will be concerned only with the somatic sex determination 
network.

1.2.4 Evolution of sex determ ination in D. melanogaster

In [92], a detailed hypothesis is put forward concerning the evolution of the 
Drosophila sex determination pathway. Using the available molecular data 
together with standard population genetics models, the authors postulate a 
step-by-step reconstruction of the pathway in which sexual selection plays a 
fundamental role. Starting with a simple ancestral system in which the dis­
criminatory signal resides at the dsx locus, the following hypothetical steps 
are proposed: (1) the discriminatory signal passes to the tra locus by means 
of a stop codon mutation causing tra mRNA transcripts to be truncated 
prematurely in males (as occurs in modern Drosophila). (2) Recruitment of 
Sxl as a splicing regulator of tra (removing the stop codon from tra mRNA 
transcripts) provokes three further changes in Sxl, as follows: (3) Sxl autoreg­
ulation, (4) appearance of a null allele of Sxl containing a stop codon, (5)
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recruitment of sis (representing the “numerator” signal) as an activator of the 
early promoter SxlPe. (6) Lastly, the appearance of an X-linked null allele of 
sis, changes the discriminatory signal to the sis locus. (7) The null sis allele 
leads to degeneration of the male X chromosome where it resides, leaving us 
with the modern XX/XY Drosophila system (female homogamety and male 
heterogamety). Each hypothetical transition leads to increased fidelity of the 
sex determining signal.

That evolution has favoured increased signal fidelity is supported by a 
recent theoretical study [78], which deals specifically with activation of Sxl 
The authors have shown how through mechanisms such as dimerization (in 
the primary signal elements) and autoregulation of Sxl, the initial 2:1 female 
to male signal ratio is amplified to ~80:1. It is reasonable to suppose that 
such a mechanism has evolved through positive selection for robustness in 
the signal.

1.2.5 Sex determ ination in C. elegans

The sex determination mechanism of the nematode worm Caenorhabditis 
elegans (reviewed in [91]) is perhaps the only other sex determination system 
understood at a comparable level of detail to that of D. melanogaster. As 
in D. melanogaster, the primary signal in C. elegans sex determination is 
determined by the ratio of X chromosomes to autosomal chromosomes (X:A). 
Worms with two X chromosomes develop as hermaphrodites (phenotypic 
“females” generating a limited amount of sperm which can be used for self- 
fertilization), whereas XO worms develop as males. The key difference, as can 
be seen in figure 1.4, between the C. elegans sex determination network and 
that of D. melanogaster is the reliance of the C. elegans system on negative 
genetic switches, each one reversing the action of the previous one, where D. 
melanogaster has a positive cascade.

In C. elegans, the X:A signal itself is determined by at least four numer­
ator signals which act, in XX hermaphrodites, to repress (recall that the D. 
melanogaster numerator genes are activators) the gene XO-lethal 1 (xol-1) at 
the top of the hierarchy. At least two such numerator genes have been found:
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Signal Element on X  (sex-1) and Feminizing gene On X  (fox-1), though two 
other, as yet unidentified, signals are known to act in concert with these two 
to repress xol-1 [99]. More specifically, SEX-1 protein is known to repress 
xol-1 at the transcription level, whereas FOX-1 (an RNA-binding protein) 
represses xol-1 post-transcriptionally. In XO males, where this repression 
does not occur, xol-1 is active.

In worms, dosage compensation occurs by hypo-activation (a reduction in 
overall activity) of the two X chromosomes in XX hermaphrodites, whereas 
no dosage compensation occurs in XO males. The gene xol-1 represses the 
three Sex determination and Dosage Compensation defect genes (sdc-l,sdc-2 
and sdc-3) at the next step in the hierarchy, as shown in figure 1.4. Since xol- 
1 is inactive in XX hermaphrodites, this repression does not occur, causing
(a) her-1, the next gene in the hierarchy, to be repressed via transcription 
regulation, and (b) activation of dosage compensation in which SDC-2 plays 
a crucial role. In this way, the sdc genes play a dual role (in both dosage com­
pensation and the sex determination hierarchy) comparable to that played 
by Sex-lethal in flies.

We find that, as we move down the pathway, the remaining genes act 
essentially as switch genes, i.e. their function is principally to transmit the 
sex-determining signal. Inactivation of her-1 in hermaphrodites causes acti­
vation of two transformer genes tra-2 and tra-3 by default, whereas in males 
these genes are inactive (note that the C. elegans transformer genes are un­
related to the D. melanogaster transformer gene). In turn, activation of tra-2 
and tra-3 causes repression of the FEMinization of X X  and XO animals genes 
fem-1, fem-2 and fem-3. Finally, activation of the key “switch” gene tra-1 
will lead to phenotypic hermaphrodites, whereas inactive tra-1 lead to pheno­
typic male worms. The gene tra-1 also represses several other genes including 
Male ABnormal 3 (mab-3), the previously mentioned homolog of doublesex.

Note that many of the genes described in this pathway only exist to 
control the activity below them. It has been shown that if the appropri­
ate signal can be generated by other means, the sex determination system 
can change markedly and the upstream regulators can become dispensable 
to the process. In one experiment [100], two mutations in the (autosomal)

31



tra-1 gene were used to generate a stable and fertile strain of worms in which 
heterogametic (XY) males were homozygous for the mutant allele, and ho­
mogametic (XX) females were heterozygous. Here, the tra-1 locus had become 
the discriminatory sex-determining locus. Similar experiments have shown 
how temperature-sensitive mutations can transform a previously genetically 
determined system into an environmentally-determined system [101]. These 
experiments demonstrate the plasticity of sex-determining pathways.

1.2.6 Sex determ ination in the mammalian system

Although it has been the object of intense research, sex determination in the 
mammalian system is less well understood than for either C. elegans or D. 
melanogaster. Mammalian sexual development can be divided into several 
steps:
(a) Formation of the undifferentiated gonad,
(b) Gonad commitment to testis or ovary (sex determination),
(c) Differentiation into testis or ovary,
(d) Hormone production which leads to full somatic (rest of the body) sexual 
differentiation.
In the absence of a functional testis, the rest of the body develops as female 
[66]. More specifically, studies have shown that male development is caused 
by making functional testicular Sertoli cells, rather than ovarian follicle cells. 
In turn, Sertoli cells secrete Mullerian Inhibiting Substance (MIS) to promote 
differentiation of Leydig cells. Leydig cells produce testosterone which an­
tagonises female differentiation, whereas MIS promotes male differentiation.

Although the sex determination pathway is not well understood, several 
crucial genes have been identified. The Y-linked testis-determining factor 
Sry, is an essential trigger of male gonad differentiation [102], and its activity 
is required for expression of the related gene Sry-box containing gene 9 (Sox9). 
Another important gene, D axl, antagonizes male differentiation in females
[103]. D m rtl, a mammalian homolog of the Drosophila gene doublesex, has 
been found to play a role in differentiation of different cell types in the testis
[104].
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1.3 Thesis overview

This thesis is concerned with modelling the evolution of gene networks, and in 
particular networks involved in sex determination. Specifically, we attempt 
to model the evolution of these gene networks in a biologically realistic con­
text which includes both dynamical behaviour and evolution. The thesis is 
organised around two models: a simpler synchronous logic model (chapters 2 
and 3), and a more complex hierarchical model (chapters 4 and 5). In chapter 
2, the logic model is used to consider the potential for evolutionary change of 
the existing Drosophila sex determination gene network. With the aid of this 
model, theoretical concepts are introduced, such as a network-specific form 
of mutation, as well as a notion of functional equivalence between networks. 
These concepts are then applied to the sex determination mechanism and 
compared to a population of random networks (which constitute a suitable 
null hypothesis in this case). It is found that sex determination networks gen­
erally exist within large sets of functionally equivalent networks all of which 
satisfy the sex determination task. These large sets are in turn composed 
of subsets which are mutationally related, suggesting that the networks can 
change significantly without compromising the core functionality, namely the 
sex determination task. The technique for finding functional equivalence be­
tween networks suggests a general method for gene network reconstruction, 
which is explored in chapter 3. The technique is used to suggest ways in 
which experiments involving large-scale perturbations can be designed to ob­
tain reasonably accurate reconstructions. It is found that a relatively small 
number of perturbations significantly improve inference accuracy, particu­
larly for low-order inputs, as long as the perturbations themselves alter the 
expression level of approximately half the genes in the network. Lastly, in 
chapters 4 and 5, a hierarchical model is presented which integrates popula­
tion genetics techniques with network dynamics (using Ordinary Differential 
Equations). The model consists of a core population genetics simulation 
within which parameters such as the sex and fitness of the genotype are 
calculated from the corresponding network dynamics. The model is used 
to investigate the early evolution of sex determination networks. Following
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from a hypothesis proposed by A.S. Wilkins [86], the assumption is made 
that sex determination networks have evolved in a retrograde manner from 
bottom to top. Starting from the simplest possible ancestral system, based 
on a single locus, we explore the way in which more complex systems could 
have evolved. Specifically, transitions from single locus to two locus sex de­
termination systems are considered in chapter 4, and transitions from two 
to three loci in chapter 5. Changes in heterogamety are also considered for 
both ancestral conditions.
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Chapter 2

The evolutionary potential of 
the Drosophila sex 
determination gene network

2.1 Background
The fact that certain aspects of the sex determination mechanism seem to be 
highly conserved whereas others have greater plasticity (discussed in chapter 
1), leads us to conclude that an understanding of the evolutionary constraints 
and flexibility imposed by gene networks will be vital to explaining the evolu­
tionary diversification of sex determination. Gene network models, reviewed 
in [34], have been used to investigate many aspects relevant to network evo­
lution. These include gene distribution in the genome [51], robustness [39], 
the preservation of topological motifs [20] and differentiation [57].

In this chapter, we investigate mutability in sex determination networks. 
Network behaviour is characterised using a synchronous logic model, which 
in turn requires a network architecture to be defined. In the network archi­
tecture, each gene is represented as a node and each interaction as a directed 
link. Taking advantage of the fact that the sex determination system has 
been extensively studied in D. melanogaster, we have both a known network 
architecture as well as the pattern of gene expression through time. We pro­
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ceed by analysing various network characteristics, in each case comparing the 
Drosophila network to a population of randomly generated “sex determina­
tion” networks in order to find special properties of the Drosophila network.

of random sex determination networks may apply more broadly, to other 
classes of gene network.

We use a synchronous logical network model. Similar models have been 
used extensively in neural network modelling [105], as well as for gene net-

regulatory systems [8, 107, 108]. Here we are concerned with studying the 
potential for mutational variation in network architecture. We use this the­
oretical approach to propose possible constraints on the evolution of the sex 
determination gene network.

2.2.1 A discrete gene network model

For a system of n  nodes, the state of each node s* (i =  1,.., n) is represented 
by the binary values O(OFF) and l(ON). Note that genes may sometimes be 
represented by more than one node if, for example, they represent different 
products of the same gene as produced by alternative splicing. Addition­
ally, each node is assigned a default ON/OFF state € {0,1}. The node 
interactions are described by an (n x n) matrix C, composed of elements 
Q j € { - 1,0, + 1}, representing the positive(+l), zero(0) or negative(-l) in­
fluence of node j  on gene i. State transitions are calculated as follows:

It is quite possible that the general characteristics found for the population

2.2 Methods

works [9, 106] - often focussing on the global properties of large-scale genetic

Si(t +  1) =  a(ui(t)) (2 .1)

where Ui(t) =
j

1 if x > —0i 
0 otherwise
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The state of the ?'th node at the next timestep, Si(t +  1), is therefore 
determined by the balance of positive versus negative inputs which are ON 
at the previous timestep t. If the balance is positive, then Ui(t) > 0 and the 
next state will be l(ON). Similarly, if the balance is negative, then Ui(t) < 0 
and the next state will be O(OFF). If Ui(t) = 0 (indicating either that there 
are no active input connections, or that they balance out), then the default 
value 9{ determines the next state. This default value needs to be given a 
priori, though how it is defined in practice will depend on the problem. For 
example, one might take the expression level before a certain developmental 
event of interest begins. Alternatively, one might consider the expression level 
in the absence of a mutation or chemical treatment. In the D. melanogaster 
sex determination gene network, the male state for each gene will be used, 
which is reasonable since the default sex in this species is male. By stating 
that the default sex in this species is male we mean that, in the absence of 
the primary signal, the state of the downstream nodes in the pathway will 
remain unchanged, the result of which is a male phenotype.

2.2.2 Network M utations and their neighbourhoods

We define the following distance metric for networks represented by interac­
tion matrices C  and C'\

d(C,C') =  £ £ | C y - c ' y |  (2.2)
i  j

We define any network P  to be a neighbour of C  if d(C , P) =  1. This is 
simply the case where P  is identical to C  except for a single difference: an 
edge deletion (from —1 —> 0, or +1 —► 0), or edge insertion (from 0 —* —1, or 
0 —* +1). Any given network can have between n2 and 2n2 such neighbours. 
Why this is so becomes clear if we consider the n x n = n 2 entries of the 
matrix C : if the network is fully connected, then only deletions are possible 
(n2 possible changes from ±1 —► 0), whereas if there are no connections, both 
positive or negative edges can be inserted (2n2 possible changes from 0 —► —1, 
or 0 —► + 1) for each entry in the matrix C. We define a neighbourhood to be
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Figure 2.1: Four interaction matrices in a 2-gene system. The arrows show 
neighbour relationships. The three networks within the boundary (A, B and 
C) represent a particular neighbourhood, even though B and C are not them­
selves neighbours. D is not in this neighbourhood.

a set of networks in which each element has at least one neighbour in the set 
(Fig. 2.1).

The concept of neighbour is analogous to that of genetic mutations, though 
specific to gene networks. As networks mutate, multiple neighbours may ex­
ist within a species at any given time. Selection will then act upon these. 
For example, if a particular neighbour has an effect on sexual dimorphism, 
then sexual selection may favour this and eventually lead to its fixation. Our 
main assumption is that an evolutionary change in network architecture is 
more likely to involve a succession of single interaction changes as opposed 
to multiple simultaneous changes.

By saying that a network may evolve into any neighbour, we are proposing 
a general model of network evolution in which all changes of a single inter­
action are considered equally probable. In real biological systems, certain 
interactions may be more easily evolved than others. For example, an input 
from a transcription factor may evolve with higher probability [109] than an 
input, say, from a structural gene. However, these probabilities are hard to 
specify a priori and are difficult to determine experimentally. It is also im­
portant to point out that although network mutations are represented as a 
single events in our model, they may involve more than one genetic mutation.
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2.2.3 Determ ining solution networks

Assuming we are given the state dynamics s(t) and the default vector 0, 
the problem is to find the necessary model parameters which will reproduce 
these dynamics. Specifically, a system initialised at s(0) should reproduce 
the given dynamics s(t) for t > 0. Note that multiple s(t) expression patterns 
may be defined: for D. melanogaster sex determination, both female (s*(t)) 
and male (sm(t)) dynamics will be given. Our problem is to find one or more 
interaction matrices that will reproduce the given dynamics s(t). The set 
of such matrices constitutes the solution set Q. The idea of a solution set 
combined with that of neighbourhood is similar to that of a “neutral network” , 
a concept first introduced for a model of RNA folding [110].

We now define a parsimony measure for any network C, as the number 
of non-zero entries in C :

*(C) =  £ £ | C y | (2.3)
* j

Since Q may be very large in practice, it is convenient to use this parsimony 
measure to define a representative subset. The set A4 C Q for which A; is a 
minimum will be referred to as the Most Parsimonious Solution Subset of Q. 
The minimum value of k will be denoted as kj^.

The problem of finding any C  6 Q, may be broken up into n sub-problems, 
since the expression pattern for each node i may be solved independently from 
the others (for a more detailed explanation, see chapter 3, section 3.2.2). This 
reduces the search space from 0 ( 3"2) down to 0(n3n). Since we deal below 
with a small system of just 6 representative nodes, we used a straightforward 
enumerative approach to determine the entire set Q. For each node, all 3n 
possible row vectors are evaluated.

Once the solutions have been found for each node, neighbourhoods within 
the set of row vectors can be easily determined using the distance metric. 
The number of neighbourhoods in Q is simply the product of the number of 
neighbourhoods for each node. Finding Q and determining the neighbourhoods 
are both combinatorial problems which scale exponentially with n. Finding
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only M  will usually require less computation, but generally speaking this 
approach is not practical for more than a small number of genes.

2.2.4 The state dynam ics o f the sex determ ination gene  
network

In order to be able to combine the two models: state dynamics and net­
work evolution,-it is our strategy to work with as small a number of genes as 
possible. We adapt the scheme suggested in [76], and attempt to represent 
the Drosophila network in terms of elementary processes which are common 
to sex determination in many species. In order to simplify the network to 
one node per process, we have chosen to condense the upstream components 
which determine the initial signal ( “numerators”, “denominator” and ma­
ternal factors) down to a single primary signal node denoted as SxlPe. The 
network we wilf use is shown in the dotted box on the right hand side of 
figure 1.5 and will be referred to as the “known” network. It should be 
noted that, although the resulting network appears simple, it is in fact fairly 
complex, given it includes alternative promoters, alternative splicing, stop 
codons, anfl a complex primary signal, all of which has taken many years of 
effort to elucidate [76]. The processes used and their associated description 
are as follows:

1. Primary signal: SxlPe, the Sxl gene 'establishment promoter’, activated 
by the X:A signal.

2. Key gene: Sxl, the key sex determination gene, active expression of 
which is achieved by alternative splicing in XX embryos only.

3. Subordinate control gene: tra, spliced by SXL to a productive form in 
females only.

4. Dosage compensation: msl2, a target of SXL required for dosage com­
pensation in males.

5. Female switch: dsxF, female-specific form of doublesex, a target of tra, 
which activates female-specific and represses male-specific genes.
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6. Male switch: dsxM, male-specific form of doublesex, produced by de­
fault, which activates male-specific genes.

Now that we have a defined network, we need initial states (s^(0), sm(0)) 
and a default vector 6 to produce the state dynamics. Since the initial 
states of these genes are known, and we stated previously that we would use 
9 = sm(0), this task is straightforward, and the results are shown in figure 
2.2. Since these are the state dynamics produced by the “known” network, 
we will refer to them as the “known” dynamics.

Female tsf )
S x lPe ' 1 ' ■ 0 ' '  0 ' '  0 ' '  0 '

Sxl 0 1 1 1 1
tra 0 0 1 1 1
msl2 1 * 1 0 * 0 * 0 J
dsxF 0 0 0 1 1
dsxM 1 1 1 1 0

Male (sm)

Sxl  pe '  0 ■

Sxl 0
tra 0
msl2 1 J
dsxF 0
dsxM .  1 .

Figure 2.2: Female and male patterns of the “known” dynamics. The U- 
shaped arrow to the right of each final state indicates a steady state.

2.2.5 A measure of local dynam ic diversity

Given a particular network and its associated pair of expression patterns (one 
female, one male), it is useful to know the potential it has to evolve changes 
in the expression pattern, while retaining its fundamental function (sex de­
termination). We will now define a general statistic which measures the
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diversity of viable expression patterns available from the local neighbourhood 
of a sex determination network.

We first need a general definition of viability, applicable to any sex de­
termination network. An ordered (female/male) pair of expression patterns 

will be defined as viable if it fulfils the requirements of sex determi­
nation described as follows. Since our gene network model is deterministic, 
the temporal pattern is known completely as soon as we encounter a repeated 
state s(tr) that has ocurred previously at a time tp (i.e. s(tr) = s(tp) , tp < tr). 
If the repeated state occurred at the previous timestep (tp — tr — 1), then the 
system is in a steady state. For the two expression patterns s* and sm, we 
denote this time tp as t?p and £JJ* respectively. To define a pattern as viable, 
we focus on the final state of two sex-defining genes, which we will call F  for 
female and M for male (in D. melanogaster, these would be dsxF and dsxM 
respectively). The criterion for the female expression pattern (s?) in a viable 
pattern pair is:

Sp(U) = 1 and Sm(*i) =  0 for U ^  *p 
In other words, the female-defining node F should be ON and the male- 
defining node should be OFF from time tp onwards. Conversely, the criterion 
for the male expression pattern (sm) is:

Sp(fj) = 0 and sjj(fj) =  1 for tj > t™.
Together, these two statements simply state that, in a viable pattern pair 

the two genes F and M should go to a steady state (even if other genes do 
not) and should be correctly expressed in both sexes.

We now need a second definition. Consider a network C  which produces 
a pattern pair (s^,sm) when initialised with the state vectors s^(0) and sm(0) 
respectively. The default vector 9 is equal to sm(0) or s^(0) depending on 
the organism (for D. melanogaster, 9 =  sm(0)). Each neighbour C ‘ of C  also 
produces a pattern pair (s'^, s,m) under the same conditions (sm(0),s-f (0) and 
9). Two pattern pairs (s^,sm) and (s'^, s 'm) will be considered distinct if there 
are any differences in female expression (e.g. s* ^  s'^), male expression (e.g. 
sm ^  s,m) or both. Furthermore, some of these pattern pairs may be viable, 
others may not.

We now define the local dynamic diversity measure 1(C) of the network
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C  as equal to the number of viable and distinct pattern pairs which can be 
generated from C  and its neighbours. 1(C) will be an integer value ranging 
from 1 (if C  and all its neighbours share a single viable pattern pair), to 
2n2 + 1 (if C  and its n2 neighbours all have distinct and viable pattern pairs). 
For example, the Drosophila network Cd was calculated to have l(Cd) = 19, 
which means that the 67 relevant networks (Cd and its 66 neighbours) are 
capable of generating 19 distinct and viable pattern pairs.

2.2.6 Comparing w ith  random sex determ ination net­
works

We have presented several concepts which we will use to study the Drosophila 
sex determination network. However, we need some kind of null model to 
indicate which of the results describe sex determination networks in general, 
and which indicate something particular about the Drosophila network. We 
therefore generated a population of random networks with six nodes (there 
are six nodes in our simplified Drosophila network). There are a total of 336 
such networks and these were sampled uniformly using a random number 
generator for large integers (part of the GNU MP library). Two random and 
distinct initial condition vectors s*(0) and sm(0) were also generated each 
time, and the network was tested in turn with both defaults 9 = s* (0) and 
0 = sm(0). If the female/male pattern pair (s^,sm) was viable (as defined 
in the previous section) using either default 0, then it was accepted as a 
valid sex determination network. A population of 100,000 such randomly 
generated sex determination networks (together with their initial conditions, 
default and resulting pattern pair) constitute our null model. Each attempt 
to find a viable pattern pair has a success rate of approximately 0.0036 (1 in 
276), indicating that over 2.75 x 107 attempts were needed in order to obtain 
the sample of 100,000.
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2.3 Results

2.3.1 The set Q o f dynam ically equivalent networks

The enumerative search method described above in section 2.2.3 was imple­
mented in the C ++ programming language, and used to find Q and M  for 
both the random network population and the Drosophila “known” dynamics. 
The result of counting the solutions found for each node in the Drosophila 
network is shown in Table 2.1. Since the solutions for each node are inde­
pendent of each other, any combination is possible. Using this knowledge, 
we can easily calculate the size of Q, \Q\ =  2,295,645,300 (2.29 x 109), as 
the product of the number of solutions for each node.

node solutions
Sxlpe 215
Sxl 13
tra 26
msl2 26
dsxF 45
dsxM 27

Table 2.1: Number of solutions found for each node.

Although this may seem like a high number, to put it into context, we 
need to compare it with the results for the population of random networks. 
The distribution for log(|£/|) (using log(|C/|) is appropriate here since \Q\ is 
calculated as a product of the solutions for each node) is shown in figure 
2.3a, and we can immediately see that 2.29 x 109 (indicated by an arrow on 
the graph) is typical for \Q\.

2.3.2 Neighbourhoods w ithin the set Q

We now look at the number of neighbourhoods in Q, and find that in the case 
of the Drosophila sex determination network, Q is divided into 135 neigh­
bourhoods. What is important from the evolutionary point of view though, 
is the neighbourhood N  C Q in which the particular network actually exists, 
since this defines how the network can evolve. The value |A7| can give us
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Figure 2.3: Frequency distribution of (a) log(|C/|) and (b) log(|A7|), neigh­
bourhood size, in the population of random networks, (c) Distribution of 
log(frequency) vs. log(|A4| in the population of random networks, (d) Fre­
quency distribution of 1(C), or local dynamic diversity. The arrows indicate 
the relevant position on the x-axis for the “known” network. All logarithms 
are base 10.

an idea as to how much a member network can evolve while maintaining 
phenotypic equivalence. The neighbourhood in which the Drosophila network 
exists (A/d), contains a total of 24,187,500 (2.4 x 107) networks. Because A/d 
is a neighbourhood, this means that starting from any network in Afd, one can 
reach any other network in A/d by going through successive neighbours and 
without ever leaving A/d- The Drosophila network is just one member of this 
laxge neighbourhood Afd, and in figure 2.4 we show a very different member 
of Afd as an example of the potential range within this set. Although it may 
seem surprising that a small system of just 6 genes should exhibit such a high 
degree of flexibility, a comparison with the population of random networks 
(figure 2.3b) again shows this value to be typical.
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Figure 2.4: Example of a highly connected network in the neighbourhood 
Afd. With a total of 26 connections out of a possible 36, this network sits 
at the opposite extreme in parsimony to the “known” network, with just 6 
connections.

2.3.3 M  represents a single network

We also found the Most Parsimonious Solution Subset, M.. M. was found to 
contain a single network (|A4| =  1, kM =  6), which means no other network 
with 6 (or fewer) interactions can reproduce the dynamics sj(t)  and sm(t) 
shown in Fig. 2.2. This single network matches the “known” network (Fig. 
1.5, dotted box).

In order to find how common this feature is, we again compare with the 
population of random networks. For each random network, we determined Q 
and M. from the expression pattern pair. The distribution of \M\  is shown 
in figure 2.3c (a log scale is appropriate on the frequency axis to improve 
visualisation of this distribution). Since 26.4% of these most parsimonious 
sets contain a single network, we can again see that this feature is typical. 
However, the probability that a random network should itself be the single 
most parsimonious network (as with the Drosophila network) is very small: 
47 in 100,000 (0.047%). The fact that the Drosophila network is also the 
most parsimonious is therefore a particular characteristic of this network.
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2.3.4 The Drosophila network has high local dynamic di­

versity

Measuring the local dynamic diversity, for the Drosophila network Cd, we 
mentioned previously that it has a value l(Cd) = 19. This means that 19 
distinct and viable male/female pattern pairs can be generated from Cd and 
its neighbours. The distribution of 1(C) for networks C  in the population 
of random networks is shown in figure 2.3d. The Drosophila network, with 
l(Cd) — 19 lies 2.4 standard deviations from the mean (y = 8.456, o =  4.393), 
or in the top 2.54%, which indicates a second particular characteristic of 
this network. A logical explanation for this might be that it is related to 
parsimony k , since more parsimonious networks also have more neighbours 
as potential candidates (a network with no connections has 2n2 neighbours 
whereas a fully connected network has only n2 neighbours). This would lead 
to a negative correlation between parsimony (k) and local dynamic diversity 
(I). However, the correlation between these two measurements is weak (r = 
—0.133), which appears to discard this explanation.

2.4 Discussion
We have put forward a simple theoretical framework useful for the study 
of gene network evolution in the short term. Two key theoretical concepts 
were proposed which relate to network mutations: how they change through 
mutation (the neighbour, defined as the insertion or deletion of an interac­
tion), and how networks are mutationally related (the neighbourhood set). 
The synchronous logic model then permits us to define equivalence between 
two networks - defined as reproducing a given dynamics provided we start 
with the same initial state(s). Given a particular dynamics, an exhaustive 
algorithm can be used to reconstruct the entire set of equivalent networks, 
Q, though this algorithm is only appropriate for small systems.

It should be noted that our definition of network equivalence is conser­
vative in that only networks reproducing the exact same expression pattern 
are considered equivalent. The concept of a viable network (as used for lo­
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cal dynamic diversity) introduces a more liberal definition of equivalence (or 
neutrality [110]) which allows variation in the expression pattern while ful­
filling minimal functional requirements. Because the algorithm for finding 
the set Q depends upon the first definition, finding the equivalent set for 
viable networks (a superset of Q, and most likely much larger than Q) is com­
putationally intractable. The question remains though, as to which of the 
two definitions of neutrality is more relevant to evolution. We cannot know 
whether neighbours which change the expression pattern while remaining 
’’viable” (second definition) will not have a detrimental effect, through their 
connections to genes outside the sex determination system (for example, if 
a gene such as tra were oscillating). This is almost certainly not the case 
with neighbours in which the expression pattern remains exactly the same 
(first definition). The two definitions therefore represent respectively lower 
and upper bounds for neutrality, with evolution most likely adopting a path 
between these.two extremes.

We applied our theoretical framework to the Eh melanogaster sex deter­
mination mechanism. Our strategy was to work with as small a number 
of genes as possible, and represent the network as a system of six nodes 
(derived from four genes). An expanded version of the model might have 
taken into consideration non-functional nodes such as “MALE TRA”, the 
non-functional form of tra derived from the stop-codon containing transcript 
in males, or indeed genes outside the sex determination system.

Since the system of D. melanogaster has been extensively studied, there 
exists a known biological network for the chosen genes. We found Q to be 
relatively large, indicating that many networks, including the “known” net­
work, can perform sex determination by producing the same time course. 
Furthermore, these networks in Q exist in large neighbourhoods within which 
any two networks in the set are mutually accessible through single network 
mutations. By comparing against a population of random sex determina­
tion networks, we have also been able to show that these two characteristics 
are general to sex determination networks, and may also therefore apply 
more broadly to other classes of gene network -  a topic for future work. 
However, these general results do tell us that a great deal of plasticity is
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available through network mutations whilst maintaining the core function 
of sex determination. For example, Cctra, a homolog of tra in the medfly 
(Ceratitis capitata), has been shown both to autoregulate and act as a sex 
determination switch [46]. Because one neighbour of the “known” network in 
Q adds a positive autoregulatory interaction to the gene tra, such a change 
indicates that, in an ancestral version of the network, D. melanogaster tra 
might have had this characteristic. An autoregulatory tra is an example 
of a “spurious” interaction (in that it does not qualitatively affect the be­
haviour) which might actually exist in D. melanogaster, but is unlikely to be 
discovered experimentally precisely because it is “spurious”.

Within the set Q, the “known” network occupies a special place in that 
it is the network with fewest interactions (most parsimonious). This result 
is shown to be particular to the Drosophila network and is not necessarily to 
be expected, since: a) there could well be more than one most parsimonious 
network (as occurs in 73.6% of the random population), or b) the “known” 
network might contain additional interactions either for redundancy, or which 
participate in some other process unrelated to sex determination.

Lastly, we show that local dynamic diversity is high in the Drosophila net­
work relative to the population of random networks, which tells us that the 
network has access to many pattern variations within the distance of a single 
network mutation. This characteristic pre-adapts the network into a good 
position for evolutionary adaptation of its expression pattern, while preserv­
ing its sex determination functionality. If these special characteristics of the 
Drosophila network (parsimony, local dynamic diversity) were found to be 
common to other “real” sex determination networks, then it would be worth 
investigating whether “real” sex determination systems are different in this 
respect to other classes of gene network (for example, the highly conserved 
embryonic pattern system). If this is the case, then this would suggest that 
network characteristics are major contributors to the rapid diversification 
observed in sex determination mechanisms.

In the case of gene networks, a dual constraint is imposed: by the required 
temporal dynamics on the one hand and the existing network architecture on 
the other. Evolution overcomes this dual constraint by taking advantage of
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the combinatorial nature of networks, which lends itself to creating flexibility. 
Although this analysis has focused specifically on the sex determination gene 
network of D. melanogaster, we hope the general method of analysis used 
may serve to elucidate such constraints and flexibility in other systems.

2.5 Appendix A: Definitions

Term Description

neighbour

two networks P  and C  are neighbours if P  is identical to 
C  except for a single difference: an edge deletion (from 
— 1 —► 0, or +1 —> 0), or edge insertion (from 0 —► —1, 
or 0 —► + 1)

neighbourhood a set of networks in which each element has at least one 
neighbour in the set

parsimony number of connections in the network

viable a male/female pair of expression patterns are viable if 
they fulfil the requirements of sex determination

distinct

two pattern pairs (sf , sm) and ( s^ , s 'm) will be consid­
ered distinct if there are any differences in either fe­
male expression (e.g. s? ^  s'*) or male expression (e.g. 
sm ^  s'm)

local
dynamic
diversity

the number of viable and distinct pattern pairs which 
can be generated from a network C  and its neighbours
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Chapter 3

Using large-scale perturbations 
in gene network reconstruction

3.1 Background

Recent technological advances have led to an explosive growth in high-thr­
oughput genomic and proteomic data such as DNA microarrays. The rapid 
growth in available data has led in turn to a need for novel quantitive meth­
ods for analysis. As a consequence of this need, the reconstruction of gene 
network architectures from DNA microarray expression data has become a 
major goal in the field of systems biology. An increased understanding of the 
network architectures and their respective dynamics will enable novel ap­
proaches to disease treatments by allowing us, for example, to identify drug 
targets in silico which manipulate the functional outputs of these networks. 
This process is expected to lead to novel classes of drug based on a network 
approach to cellular dynamics.

Frequently, the expression data themselves are derived from so-called ex­
perimental “perturbations” of the gene expression levels in an organism. Such 
experiments usually involve a treatment either at the microscopic level (e.g. 
over-expression of a transcription factor), or at a more macroscopic level 
(e.g. stress conditions, temperature shifts, and chemical treatments, which 
are expected to affect the gene expression level of many genes). Following the
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immediate changes in gene expression as a consequence of the perturbation, 
network connectedness will likely cause the expression level of other genes 
to be changed through time. In this study we use a modelling approach to 
simulate expression patterns for artificial networks, and consider two types of 
expression pattern. The first type is the simulated time-course which reflects 
the “normal” (unperturbed) dynamic behaviour, given a particular set of 
initial conditions. The second type (“perturbation”) is the simulated time- 
course obtained as a consequence of changing those same initial conditions 
at random. The degree to which the initial conditions are thus changed is 
mediated via a tunable “perturbation intensity” parameter q (see Methods).

Although these global perturbations are frequently carried out in order 
to reveal causality between genes, it is not always clear how experiments 
should be designed so as to reveal as much causality as possible, while both 
minimising costly experimentation and remaining computationally tractable.

A range of computational and mathematical techniques have been adop­
ted in the effort to find a successful gene network reconstruction technique. 
Reconstruction methods often have to negotiate a tradeoff between intensive 
(often intractable) computations, and having to perform a large number of 
costly experiments. Certain progress can be achieved by making simplifi­
cations, such as imposing a limit on the number of inputs to each gene, or 
making steady state assumptions about the system [111, 112]. Some tech­
niques described in the literature offer efficient algorithms, but require a large 
number of experiments, perhaps as many as there are genes [113, 114, 115]. 
On the other hand, theoretical work on Boolean models has shown [116] that 
perhaps as few as 0(log(n))  experiments (input/output pairs) might be re­
quired for n genes, but that to infer these relationships requires the use of 
computationally costly enumeration methods.

In this chapter, we propose to explore the issue of how perturbation mi­
croarray experiments might be designed, and to suggest how such experi­
ments might be optimised so as to maximize inference capability (sex deter­
mination is not addressed in this chapter). Logic gene network models, in 
which gene states are represented as binary ON/OFF values, are only able to 
represent gene networks at a simple qualitative level, where gene expression
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(as measured in microarray data, for example) is clearly quantitative. How­
ever, the simplicity of logic models has enabled some progress to be made 
towards understanding complex systems such as gene networks, which would 
otherwise have been more difficult. Logic models have been used to investi­
gate a variety of topics related to gene networks, including robustness [117], 
perturbation dynamics [118] and evolutionary potential [119]. This class of 
model forms the basis of the inference method used in this study. The in­
ference method [119] is similar to others in which networks with a minimal 
number of connections are reconstructed through enumeration [120, 121]. A 
recent study in yeast has found that, for a sample of genes, 93% of these 
had between 1 and 4 known inputs [18]. In spite of the fact that the study 
only deals with known inputs, and also that the number of inputs per gene 
is likely to be larger in higher eukaryotes, it is still reasonable to say that, in 
general, most genes will have few inputs. Additionally, given the significant 
speed advantage of integer computation over floating point computation, an 
enumerative reconstruction method is considered to be adequate for this in­
vestigation.

In this work, we proceed by generating artificial gene networks with bio­
logically realistic in/out degree characteristics. A gene network reconstruc­
tion algorithm is then used to study the effect on inference quality, of adding 
(simulated) perturbed expression patterns. The reconstruction algorithm 
uses an enumeration technique to evaluate up to a maximum of 4 inputs 
of both positive and negative sign (see Methods). Enumeration is compu­
tationally feasible on an ordinary desktop computer for medium-sized net­
works (n  ~  100), and still tractable for large networks (n ~  1000), though 
this would require some parallelisation. The effect on inference quality is 
considered for two experimental parameters: a) the number of perturbations 
required, P, and b) the perturbation intensity, q, mentioned above.
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3.2 Methods

3.2.1 D iscrete dynam ical model

For a system of N  genes (the number of genes was n  in previous chapter), 
the state of each gene s* (? =  1,..,N ) is represented by the binary values 
O(OFF) and l(ON). Additionally, each gene is assigned a default ON/OFF 
state Oi € {0,1}. The gene interactions are described by an (N  x N)  matrix 
C, composed of elements C{j € { —1,0, + 1}, representing the positive(-fl), 
zero(0) or negative(-l) influence of gene j  on gene i. State transitions are 
calculated as follows:

Si(t + 1) =  a(ui(t)) (3.1)

i ^  / \  /  \  i 1 i f  x  >  — Oi
where tii(0 =  *(*) =  , n .j | 0 otherwise

The state of the zth gene at the next timestep, Si(t +  1), is therefore 
determined by the balance of positive versus negative inputs which are ON 
at the previous timestep t. If the balance is positive, then Ui(t) > 0 and the 
next state will be l(ON). Similarly, if the balance is negative, then Ui(t) < 0 
and the next state will be O(OFF). If Ui(t) = 0 (indicating either that there 
are no active input connections, or that they balance out), then the default 
value Oi determines the next state. This default value needs to be given a 
priori, and for the purpose of this study will be random.

3.2.2 Network inference m ethod

Assuming we are given the gene expression pattern (time-course) s(t) and 
the default vector 0, the inference problem is to find the necessary model 
parameters (the interaction matrix C) which will reproduce s(t). Specifically, 
a system initialised at s(0) should reproduce the time-course s(t) for t > 0. 
Note that more than one time-course such as s(t) may be defined. The 
time-courses will be denoted as sr(t) for r  =  0,.., P, and will correspond to
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the “normal” (unperturbed) time-course s°(t), together with P  perturbation 
time-courses sr(t). Our problem is to find at least one interaction matrix 
C  that will reproduce all given dynamics sr(t). The problem of finding an 
appropriate matrix C  may be broken up into N  sub-problems, since each 
gene i may be solved independently from the others. More precisely, the 
inputs to gene i (i.e. Ci, the ?th row of C), can be found independently of 
those for the other genes. Thus the search space is reduced from 0 ( 3 n2) 
(if every entry {0, ± 1} in the N  x N  = N 2 matrix is evaluated), down to 
0 ( N S N) (when only the SN entries for each of the N  rows are evaluated).

Each input z l to gene i is represented as an ordered pair (j , g ), j  € 
{1,.., N},  g G {± 1}, indicating an input from gene j  of sign g. A solution 
y(i) for gene i is a set of K  inputs {z\,  ..., z lK} (with y(i) = 4> if K  =  0).
For K  inputs there are solutions to evaluate. Starting with K  = 0 (no
inputs), we progress up to a maximum of K  = 4, exhaustively evaluating all 
possible solutions for each K.  Making a parsimony assumption, if solutions 
are found for some K s < 4, the method no longer continues the evaluation for 
K  > K s. Note that the method does not stop as soon as a solution is found, 
but evaluates all possible solutions for K s. The failure rate (percentage of 
genes for which no solution was found for K  < 4) never exceeded 3% of the 
genes in any single network for which reconstruction was attempted.

3.2.3 Global Perturbations and the perturbation in­
tensity measure

The control time series s°(t) is generated by setting s°(0) =  9. The other time 
series sr(t), r > 0 axe obtained from initial conditions which are perturbations 
of 9, and correspond to standard experiments such as stress conditions, or 
chemical treatments. Since, experimental perturbations can usually be mod­
ulated in intensity (for example, a temperature shift), this was represented 
using modulated artificial perturbations. Perturbed initial states sr (0) were 
generated by randomly changing each state s°(0) with probability q.
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3.2.4 M easuring inference accuracy

Assuming one or more solutions 3/1 (i), 3/2(2)?... are found for gene i , these are 
consolidated into a solution set, Y =  \Ji{yi(i)}- Note that some information 
about the solutions has been lost using this approach. For example, a solution 
set Y/2) obtained from a single two-input (K  =  2) solution: Y/2̂ =  { 3/ (2)} = 
{2}, z\}, may be equal to another solution set Y/1* resulting from two single­
input (K  =  1) solutions: Y/1* =  {3/1(2) ,3/2 (2)} with yi(i) = {z\}  and 3/2 (2) =

{4}-
The consolidation process is convenient in that the solution set is easily 

compared with the known network structures using standard accuracy mea­
sures such as sensitivity and specificity, which are in turn defined in terms 
of:
1. true positives (TP): members of the solution set Y which are also true 
inputs (true inputs are known because the networks will be generated artifi­
cially).
2. true negatives (TN): members not in Y, which are not true inputs. Note 
that by not belonging to Y, they are implicitly predicted not to exist.
3. false positives (FP): members of Y, which are not true inputs (i.e. incor­
rect predictions).
4. false negatives (FN): members not in Y, which are really true inputs. 
Two standard accuracy measures are defined as:
sensitivity = TP /  (TP+FN), and 
specificity =  TN /  (TN+FP).
Here, accuracy was measured using sensitivity only. The relatively large 
number of true negatives, makes specificity an uninformative statistic (see 
Discussion). We observe many cases where we correctly infer that there are 
110 inputs (Y = 0)j which gives TP=FN =0. Although technically undefined, 
this special case will be assigned sensitivity 1.

Accuracy statistics were gathered from inferences performed on a large 
number of medium-sized random networks (20 < N  < 70). Inferences on 
R  random networks (each with N  genes), will produce approximately R N  
sensitivity measurements (slightly fewer due to the nonzero failure rate).
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Statistics reported, such as average sensitivity and its standard deviation, 
apply to all R N  sensitivity measurements. Note that, since sensitivity has a 
maximum value of 1, the standard deviation must be zero if mean sensitivity 
is 1.

3.2.5 Artificial gene network generation

It appears to be the case in gene networks that indegree follows an expo­
nential distribution, whereas outdegree appears to follow a scale-free distri­
bution. More specifically, for the yeast network, the probability distribution 
for indegree k follows pk ~  Cine~^k with (3 ~  0.45, whereas the distribution 
for outdegree follows pk ~  Coutk~T, with r  ~  1 (Cin,Cout constants) [18]. As 
discussed above, because these results were inferred only for known interac­
tions in yeast, these characteristics may not apply in higher eukaryotes, or 
indeed, even in yeast (due to unknown interactions).

Here, artificial gene networks [58] were created using the algorithm for 
generating directed graphs with arbitrary in/out degree distributions de­
scribed in [122]. The exponential probability distribution for indegree k is 
given by:
pk = { I -  e~0)e~^k,
where (3 = 0.45 is a constant. Similarly, the power law distribution (including 
an exponential cutoff term which is both biologically realistic and necessary 
analytically when r  < 2 [122]) for outdegree k is described by: 
pk = Ck~Te ^ k,
where C,7 , and r  =  1 are constants. Since the algorithm begins by gen­
erating in/out-degree pairs for each node, we require equal means for both 
indegree (< kin >) and outdegree (< k ^  >). Following [122], we obtain 
expressions for the mean in/out degree:

< > =  - < k > =  (l -  e->)ln(l -  e~~<)

Since (3 is given, we obtain a value < kin >= 1.76, and fit the free parameter 
7  = 0.436 to obtain < k ^ t  >=< ki„ >. Since the resulting networks are
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unweighted, non-zero weights (CV, € { — 1, + 1}) are assigned at random with 
probability 0.5, as in [58]. It should be noted that autoregulatory interactions 
can be (and indeed were) generated, and that these present no particular 
problem for the inference method. An example of a network which was used 
in the analysis is shown in figure 3.1.

3.3 Results

3.3.1 Additional perturbations improve accuracy

A discrete dynamical model was used to generate time series data from ran­
dom networks (see Methods). To measure the effect of adding perturbations 
on inference ability, inference sensitivity (defined as true positives/true posi­
tives +  false negatives, see Methods) was measured against P , the number of 
additional perturbations. Figure 3.2 shows the results for predicted solutions 
with one and two inputs, as well as overall sensitivity. The top graph in fig­
ure 3.2 shows that overall sensitivity is clearly enhanced by including more 
perturbation experiments, with lower order solutions (one and two inputs) 
reaching higher levels of sensitivity. Although for low P, we see sensitivity 
going down in some cases, this would appear to be a consequence of the 
limited number of simulations performed. The bottom graph shows the cor­
responding inverse relationship for the standard deviation of the sensitivity 
(lower for higher P).

It should be noted that the algorithm tends to underestimate the number 
of inputs a gene may have. This is to be expected in genes for which dynamics 
cannot be informative: for example, consider a gene i which has one or 
more negative inputs, as well as having default value OFF. Since the discrete 
dynamics for this gene will be the same as if it had no inputs at all (i.e. 
zero gene expression for t > 0), the presence of the inputs is impossible to 
infer. This underestimation effect is clear in table 3.1, which compares the 
distribution of inferred solution set sizes ( | T i | ,  see Methods) with the actual 
solution sizes (i.e. the indegree distribution), and shows that the method is 
only able to produce roughly half the number of one and two input solution
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Figure 3.1: Example of an artificial gene network with N  = 50. Positive 
interactions are shown in black, negative interactions in grey. Note the au­
toregulatory interaction on the upper right hand side. This diagram was 
generated using Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek).
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Figure 3.2: Sensitivity vs. P. (a) Sensitivity vs. number of additional per­
turbations used, (b) The corresponding standard deviation is shown here 
separately for clarity. The curves represent results for overall (i.e. all solu­
tions) sensitivity, and specific sensitivity for (predicted) one and two-input 
solutions. Sensitivity is generally lower for higher order of inputs. Accuracy 
increases significantly with the number of additional perturbations used. The 
results shown are average values for 250 random networks at each data point. 
The remaining parameters are fixed: network size N  =50, perturbation in­
tensity q =0.5.
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IKI 0 1 2 3 >4
inferred 0.57 0.12 0.07 0.05 0.19
actual 0.37 0.24 0.15 0.10 0.14

Table 3.1: Solution set sizes. Distribution for the inferred solution set sizes, 
compared to the distribution of indegree in the actual network for the simu­
lations. These statistics were produced from 250 random networks run using 
the following parameter values: N  =  50, P  = 12, and q — 0.5. The table 
illustrates how the algorithm overestimates the number of solutions with zero 
inputs.

sets that actually exist.

The increase in sensitivity with P  can be explained at least partially, in 
the following way. Since the time series are discrete, many of the genes may 
have identical behaviour over time despite having different inputs (i.e. Si(t) = 
Sj(t) for two different genes i and j) .  If we define a “concatenated” time series 
vector Si = {(s?{t),s](t), ...,s?(t)) ’■ t > 0} for gene i, and then map each 
gene i onto Si, we obtain a many-to-one mapping. As we increase the number 
of perturbations, we might expect the number of distinct time series also to 
increase. We define a simple measure to quantify this mapping, M  =  n '/N  
where n' is the number of distinct vectors Si, and N  is the number of genes. 
The maximum value of M  =  1 indicates that the mapping of genes to time 
series is one-to-one, whereas lower values indicate degenerate mappings. The 
manner in which M  increases with the number of perturbations is shown 
in figure 3.3 , and shows how the increase in M reflects the corresponding 
increase in sensitivity (figure 3.2).

3.3.2 Network size and minimum perturbation inten­
sity

The experiments described above were repeated to consider variations in 
two other parameters: the network size N , and the perturbation intensity 
parameter q (roughly, the proportion of genes whose initial expression level 
is changed in each perturbation experiment - see Methods).

61



8o
$V
6
0«J
i-ia>c
W>DTD
00a
01a,

( m---y-—f-- y—-

0.8 q=0.2 -  
q=0.4 - - 
q=0.5

0.6

0.4

0.2

0
0 5 10 15 20

Number of additional perturbations (P)

Figure 3.3: M  vs. P. M  (the number of distinct “concatenated” vectors 
Si divided by N, the number of genes) increases in value, as the number of 
perturbations (P) is increased. The graph shows curves for three values of 
perturbation intensity q.

62



To consider the first case, the minimum number of perturbations P* re­
quired to reach a given high accuracy criterion was measured for different 
values of the network size N . The high accuracy criterion was defined as 
average sensitivity, A=0.95 for one-input solution sets (A  is found using a 
default value q=0.5 and averaging for all the ~  250./V sensitivity measure­
ments obtained from 250 random networks). To find P*, we first find the 
number of perturbations P +, such that A (P +) > 0.95, and A (P + — 1) < 0.95. 
If A (P +) > 0.95, (i.e. A(P*) = 0.95 lies between A (P +) and A (P + — 1)), 
then P* is estimated by simple linear interpolation.

The resulting values for P* are shown in figure 3.4. Since the relation­
ship is expected to be logarithmic [116], the plot shows log(N) against 
P* (logarithms used are base 10). A least squares best fit gives P* ~  
1.75 log(N) +  7.02, which, for N  = 1000, gives P* ~  12.26. The relative 
straightness of the line shown in figure 3.4 indicates that, at least for one- 
input solution sets, P* scales reliably with N , though we should remember 
that only a limited range for N  is shown, and that, for higher N , the devi­
ations may be larger. In order to obtain a measure of variance for P*, we 
would need to calculate P*-equivalent values for many individual networks 
separately, then consolidate these values to obtain the relevant statistics. 
However, because it was only feasible to consider medium-sized networks 
(20 < N  < 70), and for any such network we often find only a small number 
of one-input solution sets, such statistics were found to be unreliable.

The second case (varying perturbation intensity) suggests an optimal 
range for q. Figure 3.5a shows the inference sensitivity over a range of values 
for q, and figure 3.5b shows the corresponding standard deviation. Again, 
inference sensitivity for one-input solutions is higher than for two-input solu­
tions, which in turn is higher than overall sensitivity. For one-input solutions, 
the results show a clear peak for sensitivity in the range 0.5 < q < 0.6. To­
gether with a corresponding minimisation of the standard deviation in this 
interval (though it still remains fairly high in absolute terms), these results 
suggest that perturbation intensity should be in this range to optimise infer­
ence accuracy.
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3.4 Discussion
A recent analysis of the yeast genetic network has shown that 93% of genes 
are regulated by between 1 and 4 genes [18]. This suggests that enumera- 
tive network reconstruction methods can be useful within computationally 
feasible limits. Experiments involving large-scale perturbations (such as tem­
perature shifts, chemical stress) are a standard way of obtaining time-series of 
gene expression data [123, 124]. A key result of [18] is that indegree appears 
to follow an exponential distribution, whereas outdegree follows a scale-free 
distribution, which has enabled the generation of realistic artificial gene net­
works used here. A logic model [119] was used to simulate the perturbed 
expression data. Subsequently, experimental parameters were considered in 
relation to inference accuracy, namely: a) number of perturbations required, 
P, and b) perturbation intensity, q.

Using sensitivity as the sole accuracy measure has potential drawbacks. 
Conventionally, both sensitivity and specificity are used to quantify the trade­
off which often exists between the two. To see why this is so, consider a 
prediction method which simply increases the number of positive predictions 
in such a way that every gene is predicted to receive inputs from all genes. 
Inevitably, the number of false negatives will become zero, due to the fact 
that there are no negative predictions at all. Because sensitivity does not 
take false positives into account, it will become 1 in this case, with the low 
accuracy being reflected in the specificity measure. However, as mentioned 
above, in this case, the large number of true negatives make specificity an 
uninformative statistic. More importantly though, the fact that we predict 
high sensitivity for low-order inputs (i.e. solution sets with a small number 
of positive predictions) indicates that the reconstruction algorithm is not 
boosting sensitivity in this spurious fashion.

The inference method itself is most useful for low order inputs, with 
inference accuracy maximized for predicted single input genes. More accurate 
methods have been proposed, though these generally require a much larger 
number of experiments [113, 32]. Methods such as the one proposed here, 
which infer relationships from expression data may well be more successful
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when used in conjunction with other methods such as promoter analysis [125, 
126], or when used to drive experimental procedure [127]. Here, the results 
show that only a relatively small number of perturbations are necessary in 
order to achieve a substantial inference accuracy, even for large N . These 
relatively modest experimental requirements would presumably imply lower 
experimental costs. The results also suggest that the perturbations should 
be calibrated (by changing stress intensity, for example), so as to alter the 
expression levels of approximately half the genes in each experiment. Note 
that in this study we have represented the alteration of gene expression levels 
as an extreme (ON <-> OFF) change. How relevant these extreme changes 
are to the real biological situation remains to be elucidated. Generating 
perturbations which alter the expression level of half the genes at random 
may be difficult to achieve in practice, though experiments can be designed 
to come as close to this goal as possible. Even in the absence of optimal 
perturbations, we hope the simulation approach described here will still serve 
as a useful tool for planning experiments.
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3.5 Appendix A: Definitions

Term Description

solution set
Assuming one or more solutions y\(i), 2/2M > ••• are 
found for gene i, these are consolidated into a so­
lution set, Yi = |J/{ v M }

true positives(TP) members of the solution set Yi (predicted inputs) 
which are also true inputs

true negatives (TN) members not in Yi, which are not true inputs

false positives (FP) members of Yi, which are not true inputs (i.e. in­
correct predictions)

false negatives (FN) members not in Yi, which are true inputs

sensitivity TP /  (TP+FN)

specificity TN /  (TN+FP)
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Chapter 4

The early evolution of gene 
networks in sex determination

4.1 Background
Few studies have attempted to model the evolution of gene networks at the 
scale of individual genes and their mutational variants. One important reason 
for this is that population genetics and developmental biology have histori­
cally been separate disciplines, leading to a dearth of theoretical techniques 
which combine the two [128]. Sex determination mechanisms represent a 
good model for the study of gene network evolution since they evolve rela­
tively rapidly [75], and are among the best understood gene networks at the 
molecular level in two model organisms, C. elegans [77] and D. melanogaster 
[76]. In addition, when modelling sex determination networks, spatial aspects 
can be ignored [119, 78], considerably reducing model complexity.

Discussions concerning the evolution of sex determination systems have, 
until recently, been limited by lack of knowledge of the molecular and ge­
netic mechanisms involved. However, as this knowledge has accumulated, 
more attention has been drawn to the issue. One early study of insect sex 
determination suggested that the observed heterogeneity might reflect diver­
sity only in upstream pathway genes [129]. A later analysis of the C. elegans 
sex determination pathway by Wilkins [86], postulated the hypothesis that
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the pathway evolved in reverse order from the final step in the pathway up 
to the first. It was suggested that an initial deviation in sex ratio might re­
cruit a new determiner which favoured the minority sex as a consequence of 
frequency dependent selection. Under normal circumstances, a new (domi­
nant) determiner might be expected to plateau when the minority sex reaches 
about 50% of the population, but if the minority sex were to overshoot in 
size to become a majority sex, a cycle would be initiated in which successive 
determiner genes are recruited, each one reversing the action of the previous 
one. In order for the overshoot to occur, it was suggested that either the new 
dominant allele is (a) tightly linked to another allele under positive selection, 
or (b) itself under direct selection for a trait independent of its effect on sex­
ual development. It is conceptually difficult to see why this overshoot would 
occur consistently though, since it requires that two conditions (selection on 
sex ratio, and an additional selective advantage) be fulfilled simultaneously, 
and that, furthermore, they be repeated each time a new determiner is re­
cruited. However, the core idea of reverse-order pathway evolution has since 
found significant support support from molecular studies [47].

More recently, in [92], the evolution of the Drosophila sex determination 
pathway was considered. In contrast to C. elegans (which contains a succes­
sion of negative genetic switches), the Drosophila system contains positive 
genetic switches and complexities such as alternative splicing patterns, au­
toregulation and stop codons, which are less easily explained. A detailed 
hypothesis was presented using available molecular data and standard pop­
ulation genetics models, with sexual selection proposed as the main driving 
force. Although this study was necessarily more complicated than that pro­
posed by Wilkins for C. elegans, it does retain the common principle that the 
Drosophila pathway also evolved in reverse order (last to first) in stepwise 
fashion from a much simpler ancestral system. A consequence of Wilkins 
hypothesis is that there must exist a simplest-possible ancestral sex deter­
mination system, in which the primary signal and the “switch” gene are 
the same (single locus sex determination). We use a modelling approach to 
ask how the system can evolve from this simplest-possible system to a more 
complex two-locus system.
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We develop a general approach to modelling network evolution, and con­
sider the conditions which permit a single locus system to recruit a gene from 
a previously unrelated locus. In particular, we address the following ques­
tions: (1) Does recruitment of the new gene occur due to an evolutionary 
change in the recruited gene, or in the existing discriminatory gene? (2) Is 
recruitment due to the effect on downstream regulation, or is it due to the 
direct fitness effects of the genes involved? (3) How does the ancestral het- 
erogamety (whether it is male or female) affect the recruitment process? We 
not only consider whether genes were recruited or not, but look into the nec­
essary conditions for recruitment, specifically how the fitness contributions 
of the genes involved may be favourable to one sex over the other [130].

The chapter is structured as follows: We begin by describing the model 
components at both the network and population levels and how the two 
levels interact. We then describe an application of the model to explain early 
evolution of sex determination pathways in general, assuming the hypothesis 
of [86] mentioned above. Finally, we look at how our results may explain 
some key features of known sex determination systems.

4.2 Methods

4.2.1 Gene expression

In a network, gene expression is a result of the interaction of genes. To model 
this, we adopt a network-orientated definition of allele. Let an allele i have 
three properties:
(1) A vector € {—1, 0,+ 1} represents the inputs allele i can receive from 
other alleles j  (e.g. cis-regulatory elements, RNA splicing sites).
(2) A scalar value R t € {0, + 1} represents the existence of a regulatory do­
main in allele i which can influence the expression of other alleles (e.g. the 
allele codes for a transcription factor domain or RNA recognition motif).
(3) A binary reduction parameter, 7* € {0,+1} reduces the output of allele 
i if Ti = 1.
The network dynamics for a genotype with I loci (i.e. 21 alleles) are described

71



by a system of 21 equations, used to calculate an output Si (between 0 and
1) for each allele i :

dSi.

dt
=  <r(ui) -  St

m = lijRjSj
3=1

—  krTi

(4.1)

(4.2)

where cr(x) = 1/(1 +  e-ax) is a sigmoid function with steepness a. k r  is 
a global positive constant which modulates the reducing effect of Ti (when 
Ti =  1) as shown in figure 4.1. The presence of the regulatory domain Rj 
represents the potential for allele j  to influence any other allele. Whether or 
not it actually does so (and how) depends on 1^. The baseline expression 
level of an allele is S;(0) =  a (—krTi). If there are no gene interactions, then 
Si =  cr(0) = 1/2 when Ti = 0, and is lower Si =  a (—kr) when Tt = 1. 
Taking Sj(0) =  a (—krTi) to be the initial values at time t = 0, the steady 
state expression levels Si for each allele, can be estimated in a standard way 
for ODEs (see appendix A).

0.9
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0.6
a  (x )

0.5

0.4
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0.2

-2 - 1.5 - 0.5 0 0.5 1.5 2

Figure 4.1: The graph shows the sigmoid curve o(x) with default steepness 
a = 3.1. Four points on the curve are highlighted: (a) output Si = cr(0) =  1/2 
when Ti = 0. Output Si = a (—kr) when Ti =  1, (b) with the default value 
kr = 1/2, (c) the low value kr  = 1/4, and (d) the high value kr = 1.

Default values used are a = 3.1 and kr = 0.5. Since the value of these
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parameters may significantly affect results, high and low values for each are 
also considered. For a, we chose two extremes from (dimensionless) reported 
measurements for steepness [6]: a — 1.6 (low), and a = 4.6 (high), with 
the default (a =  3.1) at the midpoint of the two extremes. Low and high 
values for kF were chosen above and below the default value at kF =  1/4 and 
hr =  1, as shown in figure 4.1.

The reducing term —krTi is intended to encompass a range of mutations 
which might quantitatively reduce output: for example, (a) a mutation which 
reduces the binding efficiency of a transcription factor in a cis-regulatory el­
ement, or (b) a mutation at a cryptic splice acceptor site which increases 
the probability of a stop codon being included in the transcripts. Crucially, 
the reduced-output effect of mutations such as these can often be counter­
acted by an appropriate input: for example, a mutation in the corresponding 
transcription factor or RNA-binding protein.

4.2.2 Sex determ ination

Each diploid genotype determines a sex (male or female). This depends on 
the combined expression level of the two alleles (f l  and f2) at the F locus, 
S F = 5/ 1+-S/2- We assume that if SF > 9, where 0 is an expression threshold, 
then the genotype is female, otherwise the genotype is male. This system 
mirrors the way doublesex expression is used to determine somatic sex in 
Drosophila and a number of other insects [131] (in Drosophila, activation of 
the sex determining pathway leads to a female phenotype as a consequence 
of high expression of dsxF). Other genetic loci do not directly affect sex 
determination, though they can alter gene expression at the F locus and so 
indirectly alter sex.

4.2.3 Fitness

The overall fitness of the genotype is calculated by amalgamating contribu­
tions from each allele. Fitness in this case is understood to be proportional 
to the probability of survival and rate of reproduction of the genotype. The 
fitness effect of an allele i at a locus L(i) is the product SiWL(i), where wm)
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defines the locus-specific contribution to fitness. Fitness is calculated sepa­
rately for the two sexes, and , which allows alleles to have different 
fitness in each sex, for example to be beneficial in one but deleterious in the 
other [130]. Since the parameters and will not usually be known, 
the fitness contribution of each locus will be sampled from a Gaussian dis­
tribution N (0 ,1) (i.e. with mean 0 and standard deviation 1) unless stated 
otherwise. Alleles also have indirect fitness effects via the gene network by 
altering the expression level of other alleles. The fitness of a genotype W (g) 
is the sum of the 21 allelic contributions,

Tf < \  V '  6  \ V (  \  /  W ( 9 ) W ( 9 ) ~  0If w(g) = Stwm  , then W (g) -  <
i I 0 otherwise

(4.3)
A non-negative W (g) value is required, as negative values would lead to 
negative populations in the evolutionary dynamics (see below). Note that, 
since Si is positive, at least one of the Wl(q values must be positive for W(g) 
to be positive.

A slight complication must be introduced to deal with the F locus, which 
represents the dsx locus in our model. This gene undergoes alternative splic­
ing into female dsxF  or male dsxM  mRNA forms. High levels of dsxF  and 
low levels of dsxM  contribute positively to female fitness, whereas the re­
verse is true for male fitness ([76]). To model this we simplify, and measure 
the effective gene expression for an allele i at the locus F, as Si if the sex is 
female, and 1-5, if the sex is male.

4.2.4 M utation

Network mutations alter the interactions between genes in the sex determi­
nation system. We use the concept of a network neighbour to define possible 
network mutations [119]. Let i* be a neighbour of an allele i if it fulfils exactly 
one of the following three conditions: a) there is a single difference in the in­
put vector Ii*j, which can be either a link deletion (from —1 —► 0, or +1 —► 0) 
or an insertion (from 0 —► —1, or 0 —» + 1); b) there is a change in regulation 
Ri., which can be either a loss (from -fl —̂ 0) or gain (from 0 —* + 1) of
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a regulatory domain; or c) there is a change in the reduction parameter Tj* 
(0 «-► +1). Since these parameters are discrete, there are a finite number 
of neighbours for each allele. Limiting mutation to neighbours makes the 
mutational process incremental and precludes macromutations which change 
many interactions in one event or reversals in the input vector (—1 <-> +1 not 
allowed in I i * j ) .  For the purpose of this study we did not consider mutations 
leading to autoregulatory interactions la  =  ±1 (see discussion).

4.2.5 Evolutionary dynam ics

We start from the simplest-possible “ancestral” population, in which sex 
determination is controlled by a single locus F. The population contains one 
male and one female genotype, determined by two alleles at the F locus: 
/ ,  the normal allele (7/ =  0), and m, a reduced-output allele (Tm =  1). 
There are only two possible “ancestral” populations using these alleles. In 
the first ( ff/m f  ancestral heterogamety), m is a dominant masculinizing allele, 
males are heterozygous m f and females are homozygous f f . In the second 
(m m /m f ancestral heterogamety), / is a dominant feminizing allele, females 
are heterozygous m f and males are homozygous mm  . If the initial male

a  a Q
and female expression levels at the F locus are Sp and Sp respectively, 
then the sex threshold 9 for each experiment is chosen randomly from a 
Gaussian distribution with mean Sp = (S jf + S p ) /2, and standard deviation 
(Sp — S jf  ) /8, sufficiently small that 9 rarely occurs above Sp or below Sp  
(note that Sp > Sj? is a requirement for all ancestral populations).

Setting the mean value for 9 to the mid-point Sp between Sp and Sp  , 
is consistent with our assumption of an unbiased (1:1) sex ratio. The reason 
for this is that there is likely to be certain variability in the expression level 
of both Sp  and Sj? . Although in this model, the steady-state levels of Sp

A j

and Sp  are deterministic, in reality these levels will contain some degree of 
stochastic variability. As a consequence, any mutation moving 9 away from 
Sp (and closer to Sp  or S j f ) would probably cause an imbalance in the sex 
ratio. According to Fisher’s classic theory for the unbiased sex ratio [132], a 
counteracting mutation would then be expected to move 9 back towards S f -
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Therefore, it is reasonable to assume that the mean value for 9 will stabilise
— A Q  a  * 7

around Sp. Initial populations where 9 > Sp or 9 < Sp- are discarded (i.e. 
they not considered viable - see definition below).

Note that the two forms of ancestral heterogamety jff/ra/and mm/m/are 
not symmetrical, as a consequence of the fact that the /  and ra alleles have 
mid-level (7/ =  0) and low-level (Tm = 1) outputs respectively (rather than 
high and low levels). As discussed above in section 4.2.1, our intention here is 
to model particular mutant alleles which may quantitatively reduce output 
(e.g. a mutation at a cryptic splice acceptor site), and which have been 
suggested to play an important role in the evolution of sex determination [92]. 
This class of mutant allele is represented here by the allele m, The “normal” 
(non-mutant) case is represented by the allele / ,  which can upregulated or 
downregulated in equal measure by a single interaction (see figure 4.1).

The “ancestral” population also contains an additional locus A, that is 
monomorphic for the allele a . This allele has no regulatory interactions with 
alleles at the F locus. With the “ancestral” population as a starting point, 
we proceed by introducing random mutations (mutant alleles), and evaluate 
the consequences. For purposes of clarity, the procedure will be explained in 
terms of two nested loops, as shown in figure 4.2: (a) an “outer loop” which 
determines which mutations are tested as well as when the process should 
terminate, and (b) an “inner loop” which follows the fate of each mutation.

The outer loop

The outer loop generates the mutations, tests the effect of inserting each 
mutation into the population, and determines when the procedure should 
terminate. The outer loop is delineated in figure 4.2(a). The starting point 
of the outermost loop is an input population, which in the first instance will 
be the jff/ra/and rara/ra/populations described above.

Mutations are generated and chosen as follows: First of all, a “parent” 
allele needs to be selected for mutation. This is done by: (1) choosing a ran­
dom locus, (2) choosing a “parent” genotype g in proportion to its frequency 
in the population, (3) selecting an allele (if heterozygous) at random. With
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(a) Outer loop (b) Inner loop

Input population 
contains m utant allele 
in single genotype

m utations?. Sex determ ination

yes

G enotype fitness

select next m utation

Using Illness and m ale/fem ale 
genotype frequencies, perform  
random  m ating (unlinked loci)

create m utant genotype and 
insert at low frequency

execute inner loop

yes

new  input population

Figure 4.2: Overview of simulation procedure: (a) Outer loop handles mu­
tation generation and testing, and (b) Inner loop follows the fate of each 
mutation in the input population.

77



the “parent” allele selected, (4) a mutation of this allele is chosen at random. 
The selections for steps (1) and (4), i.e. loci and mutations, are taken from 
randomly shuffled lists, so that they can be evaluated iteratively until all are 
exhausted (this is represented by the decision block “more mutations?” in 
figure 4.2(a))

Once the mutant allele is generated, it is introduced into the population 
in the form of a mutant genotype. The mutant genotype will contain the 
mutant allele, but is otherwise identical to the “parent” genotype. If the se­
lected allele was homozygous, the mutant allele is introduced in heterozygous 
form. The mutant genotype is introduced at low frequency (1% of “parent” 
genotype frequency).

The next step is the inner loop simulation, which will be explained in 
more detail below. It is sufficient to say at this point that the inner loop 
will evaluate the effect of inserting the mutant genotype into the population. 
The inner loop simply decides whether the mutant allele is invasive or not. 
Non-invasive mutations are of little interest and are discarded. However, 
if the mutation was invasive, then the resulting population may represent 
a transition of interest (a change in sex determination locus or a change 
in heterogamety), in which case, it is recorded and the process terminates. 
Populations containing other types of invasive mutations are reintroduced as 
input populations recursively to maximum depth of 3 (i.e. up to 3 invasive 
mutations in succession can be tested). The process of testing successive 
mutations is represented by the outermost loop of figure 4.2(a). Tests with 
recursion depth greater than 3 did not qualitatively change the results. Note 
that the global random parameters (6 , icl(i)) are generated together with the 
initial population, remaining constant throughout (the outer loop process).

This procedure attempts to maximise the probability of finding an inva­
sive mutation without introducing bias in the choice of locus, genotype or 
allele, and was adopted for two reasons of efficiency. Firstly, given that in 
practice most mutations are non-invasive, and that there are a finite number 
of mutations for any given allele, all allele mutations can be generated once, 
then tested without repetition. Secondly, because the procedure increases 
the probability of finding an invasive mutation, it allows efficient evaluation
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of successive invasions (see below). Since only invasive mutations are consid­
ered (non-invasive mutations are discarded), we should emphasize that the 
results do not describe the relative probability of invasive vs. non-invasive 
mutants, but they do allow a comparison of the different starting conditions, 
which is the objective.

The inner loop

The “inner loop” follows the fate of each mutation, and takes the form of a 
standard population genetics simulation (see Appendix A), as used in [92]. 
The model assumes an infinite diploid population with nonoverlapping gen­
erations, as well as a constant 1:1 (maleifemale) sex ratio.

As explained above, the mutant genotype is introduced at low frequency 
(1% of “parent” genotype frequency). The initial zygote genotype frequencies 
are therefore given. At each generation the following steps are taken: gene 
expression (5*) is calculated for each genotype (see section 4.2.1), sex deter­
mination (male or female - see section 4.2.2), genotype fitness (see section 
4.2.3). With the adult male and female genotype frequencies, as well as the 
corresponding fitness of each genotype, random mating amongst adults as­
suming unlinked loci is used to define the zygote frequencies in the following 
generation.

The outcome of the inner loop process is a population which has reached 
equilibrium (see Appendix A). The frequency of the mutant allele is then 
calculated and classified as “invasive” if it has grown in frequency, “non- 
invasive” if it has not.

The choice of inserting the mutant genotype at a “low frequency” corre­
sponding to 1% of “parental” genotype frequency may seem arbitrary. How­
ever, as explained in appendix A, the outcome of the inner loop simulation 
process is to discover whether the mutant allele is invasive or non-invasive 
relative to the frequency at which it was inserted. If the mutant genotype 
(together with any other genotypes which may be generated) have either 
neutral or deleterious fitness relative to the parent genotype, the mutant al­
lele frequency will not increase and the population will be discarded. For
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invasive mutant alleles, the same equilibrium will be reached for any reason­
able choice of “low frequency” . The particular choice of 1% is therefore of 
no consequence.

Iterations for global random parameters

By iterating the entire process (outer/inner loops), we measure the frequency 
and average parameter values required for alterations in the sex determina­
tion system. At each iteration new random values for the global random 
parameters (0, wl(i)) are generated. We are interested in measuring the fre­
quency of: (a) transitions to a two locus system from a single locus system,
(b) changes in heterogamety at the ancestral discriminatory locus (e.g. from 
m f to f f  females) (c) the existence and importance of fitness bias underlying 
the preceding outcomes. The frequency of events (a) and (b) is defined rel­
ative to the total number of viable initial fitness conditions. That is, we do 
not count runs in which the fitness contributions of each locus resulted in 
W(g) =  0 in either sex in the initial population. Fitness bias refers to the 
statistical differences in w values leading to events (a) and (b), relative to 
those which are simply viable.

4.2.6 Evolution from single locus sex determ ination

For sex determination to involve the A locus, a new regulatory connection 
must be formed with the F locus. This connection can be formed by a single 
mutational step in a limited number of ways (figure 4.3):
1) A pre-existing regulatory domain is present at the A locus (R a =  1), 
to which a mutant /  or m allele subsequently gains a positive (or negative) 
inbound link, which can happen in four ways: if ha  —► + 1(—1) creating a 
mutant allele +/ ( - /) , or if Ima —► + 1(—1) creating a mutant allele +m(~m).
2) A pre-existing inbound site is present at the F locus (four possibilities: 
ha — ± 1, or Ima =  ± 1) to which a mutant allele a+ subsequently creates 
the corresponding regulatory link (i.e. R a —► 1).

These five pre-existing cases will be denoted and 7“0 as
in figure 4.3.
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Figure 4.3: Five possible cases of pre-existing conditions which might permit 
a single-locus sex determination system to evolve to a two-locus system. At 
the top of each box, the pre-existing condition is indicated with a graphical 
representation below. Since inbound links are both signed and allele-specific, 
these are indicated by the dotted lines.

Separating connections into regulatory domains and inbound sites in this 
way is intended to reflect key aspects of regulatory changes suggested in [92]. 
Given the importance of regulatory changes mediated by alternative splicing, 
we have ensured this class of regulatory changes are properly represented in 
the model. One such mutation suggested in [92], causes an ancestral form 
of Sxl to be recruited into the pathway. This hypothetical mutation turns a 
non-functional tra allele (traS) to a functional form by causing a stop-codon- 
containing exon to be spliced out of the final transcripts. In our model, this 
mutation would be equivalent to a mutation which activates a regulatory 
domain (e.g. R a : 0 —► 1), creating a link to a pre-existing positive inbound 
link (e.g. I fa). It is straightforward to imagine a negative counterpart of this 
mutation which creates a link to a negative inbound site, thus increasing the 
probability of the stop-codon-containing exon being included.

In addition to the pre-existing cases concerning regulatory connections, 
two other conditions regarding the a priori condition of the A locus will also 
be tested:

The first condition relates to the signal strength of the a allele. We recall 
that, in the absence of inputs, the expression level Sa will be stronger if Ta = 0 
than if Ta = 1. In order to assess the importance of a priori expression level 
for recruitment, both the strong (Ta =  0) and weak (Ta = 1) forms will be
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evaluated, with strong being the default used.
The second condition relates to the fitness parameters at the A locus 

(w^ and w^). Prom a biological standpoint, it is reasonable to assume 
that genes which are not yet involved in the sex determination pathway (the 
vast majority of genes) have no a priori reproductive fitness bias. We are 
therefore interested in analyzing the situation for which the fitness bias at 
the A locus is “clamped” to zero (wjf = =0) .  This condition will be
denoted as “clamped A”, and will be the default condition for the A locus. 
Under these conditions, A does not make a direct contribution to fitness, 
but can only do so indirectly through regulation of the F locus. Note also 
that both Wp > 0 and w*p > 0 are needed for a viable initial population. 
The alternative condition, where wJjf and Wj[ are sampled from a Gaussian 
distribution N (0 ,1) will be referred to as “unclamped A”.

20,000 trials were attempted for each pre-existing regulatory case (R +, 
I f . ,  IJa, 7 ^ , and Ima), across different parameter values and a priori con­
ditions, both for male (jfj/mf) and female (mm/mf) ancestral heterogamety. 
We record the trials resulting in a transition of interest (either a change in 
the sex determination locus or a heterogamety switch) and compare to those 
which were simply viable for each ancestral heterogamety and case combina­
tion. Parameter values used are default unless otherwise stated. Values used 
for all parameters are summarised in table 4.1.

par. description default value alternative value(s)
a
kp
TJ a
wA

sigmoid slope 
reduction factor 
a allele output 
A locus fitness

3.1
1/2
0 (strong) 
clamped

1.6 (low), 4.6 (high) 
1/4 (low), 1 (high)
1 (weak)
unclamped (random)

Wp

e
F locus fitness 
sex-det threshold

random N(0,1)
random N( (Sp + S p ) / 2, (Sp — S p ) / S  )

Table 4.1: Summary of parameter values described. The first four param­
eters are shown with default and alternative values, whereas the last two 
parameters are always random and therefore do not have default/alternative 
values.

Because, as discussed above, we have chosen a method which attempts
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to maximise the probability of finding an invasive mutation, we will refer to 
the relative frequency of transitions of interest as a “transition probability” 
(in quotes). As used here, the concept of “transition probability” is there­
fore closer to “the probability that the initial population is such that, when 
all possible mutations are exhaustively tested, at least one of these will be 
found to be capable of changing the population to a transition of interest, 
understood as a change in the sex determination locus or a heterogamety 
switch” .

4.3 Results

4.3.1 M utation at A causes locus transition

The “transition probabilities” to a two locus sex determination system, in 
which control has passed to the new locus A, are shown in table 4.2. The 
maximum “transition probability” of 1 indicates that for every viable ances­
tral population, every time the mutation selection method is applied (poten­
tially for successive mutations), it provokes a locus transition. Note that the 
” transition probabilities” may in turn represent (a) one or more transitions 
where the final evolved population is the same, but where the intermediate 
steps were different or, (b) one or more transitions where the final evolved 
populations were different. However, we find that most ”transition probabil­
ities” are represented overwhelmingly by a single transition, which should be 
assumed to be the case where not stated otherwise.

We only observe high “transition probabilities” for certain cases where a 
pre-existing inbound link is present at the F locus (in particular pre-existing 
cases I ja and /+a, see figure 4.3). These cases require a mutation at the A 
locus (in the form of the mutant allele a+) to create the necessary regulatory 
link. In the vast majority of cases, this single mutation is sufficient for the 
transition to occur.

In contrast, if we look down the column for case R+ (i.e. when a pre­
existing regulatory domain is present at the A locus), the results show only 
low ” transition probabilities”. There is a fairly obvious reason of parsimony
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Anc. het. case: r : '7« /+■*1710 1ma
defaults 0.04 1.00 1.00 0.08
low a 1.00
high a 0.04 1.00 1.00

f f /m f low kr 0.04 1.00 1.00 0.08
high kr 1.00
weak (Ta =  1) 0.14
unclamped A 0.05 0.69 0.26 0.01
defaults 1.00 1.00
low a 1.00 1.00
high a 0.08 1.00 1.00

m m /m f low kr 0.03 1.00 1.00
high kr 0.28
weak (Ta = 1) 0.01
unclamped A 0.06 0.01 0.33 0.60 0.05

Table 4.2: ” transition probabilities” for changes in sex determination locus 
for each ancestral heterogamety and case. The rows show results for clamped 
A (default parameter values), with low/high values for parameters a (sigmoid 
slope) and kr  (reduction factor), with weak signal strength (Ta = 1), as well 
as for unclamped A. Blanks indicate zero.

for this deficit, because mutations in both loci are required. To see this, 
consider a mutation that occurs at the F locus recruiting a+. This must 
be followed by a second mutation in a+ to create the discriminatory signal, 
before /  can become homozygous in both sexes (by driving out m ). This 
outcome is possible, but the choice of mutation in a+ is very limited, as only 
a change in the signal strength of a+ has any effect on the system, i.e. strong 
(Ta+ =  0) -> weak (Ta+ =  1).

Together, these results suggest that the mutations leading to expansion 
of the sex determination system are far more likely to have been upstream 
(i.e. in the coding region of the recruited gene A), rather than downstream 
(i.e. in the promoter or splicing sites of the F locus). It is quite reasonable 
to assume such mutations are common. For example, it has been suggested 
that recruitment of Sxl into the Drosophila sex determination pathway was 
due to the occurrence of a mutant allele at the Sxl locus [92]. By blocking 
a splice acceptor site in its downstream target tra, the hypothetical mutant
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transformed a nonfunctional tra allele into a functional form.

4.3.2 Locus transition requires strong pre-existing sig­
nal at A

In table 4.2, we observe that when the pre-existing signal strength for the 
allele a is weak, i.e. the entry labelled “weak (Ta = 1)”, ’’transition probabil­
ities” are also low. The strong (Ta =  0) signal for a is the default value used 
for all other rows. This shows that mutations which initially have a weak 
effect on F are less likely to be recruited, suggesting that particular kinds of 
mutations representing strong-signal mutants (e.g. wholesale acquisition of 
an appropriate RNA-binding domain), are more likely to induce recruitment 
than weak-signal mutants (e.g. small-effect point mutations).

The reason for this is clear. Consider the successful locus transitions 
shown in figure 4.4(a) and (b). In both cases the evolved male pathway 
requires a suppression of the ~ f  allele such that both (1) the new phenotype 
be male, and (2) it has higher fitness than the previous male. This dual 
requirement suggests a weak interaction from a+ will not be sufficient, and 
this is indeed what the simulations confirm. Similar arguments apply for the 
transitions shown in figure 4.4(c) and (d).

4.3.3 M utations at A  which downregulate /  or upreg- 
ulate m  are m ost likely to provoke a locus change

Two specific pre-existing cases are most likely to provoke a change in sex 
determination locus:

1) Case IJa, where the a+ mutation at A downregulates / .
The two transitions observed for this case, under default conditions, are 
shown in figures 4.4(a) and (b) for male (ff/mf) and female (mm/mf) ancestral 
heterogamety respectively. Both transitions lead, in a single step, to the same 
population on the right hand side in which males take over the pathway by 
downregulation of the pre-existing allele “ / .  Female becomes the default sex.
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2) Case 7+a, where the a+ mutation at A upregulates m.
Similarly, the two transitions observed for this case, under default conditions, 
are shown in figures 4.4(c) and (d) for ancestral heterogamety m m /m f and 
f f /m f  respectively. Again, these are single-step transitions leading to a single 
population, though now females acquire the pathway by upregulating the +m 
allele, with male becoming the default sex.

As can be seen in table 4.2, for certain non-default parameter values, such 
as high k r , the transitions in figures 4.4(b) and (d) are not observed, though 
the others, shown in figures 4.4(a) and (c), are. However, where nonzero 
” transition probabilities” appear in columns '7 . and /+ a, the observed tran­
sitions were qualitatively equivalent to the corresponding transitions shown 
in figure 4.4.

4.3.4 Other m utations at A are unlikely to provoke a 
locus change

As can be seen in table 4.2, cases I j a, (where the mutation a+ at A will 
upregulate f )  and I~ a (where the same mutation will downregulate m) exhibit 
low ” transition probabilities” . There is a good parsimony explanation as to 
why these pre-existing states do not permit a change in control to the A locus 
in a single step, as follows:

Consider the pre-existing positive inbound site under case 7ya, which is 
then upregulated by a mutant a+ allele. In a female heterogametic popula­
tion (figure 4.5a), the a+ allele has no effect on sex determination as /  is a 
dominant feminizer. In a male heterogametic population (figure 4.5b), the 
a+ allele is likely to change the sex of the double heterozygote (aa+; m f)  from 
male to female. However, both F locus homozygotes will be the same sex, as 
follows: a a ; f f  and aa+; f f  are female, and aa\m m  and aa+;m m  are male. 
So in both cases, even if selection at the A locus favours the a+ allele, it can’t 
drive one of the F alleles to fixation. Secondary mutations are required for 
a transition of the sex determination system. The iterated results show that 
these intuitive arguments are correct, since neither pre-existing case (/y^or 
I ~a) gave a significant transition rate.
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Pre-existing case 7^a(downregulation of / )
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a+m
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Pre-existing case 7+a(upregulation of
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+m +m+m+m

+m

Figure 4.4: Most commonly observed transitions in which the discriminatory 
sex determination signal changes from the F locus to the A locus.
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Pre-existing case I fa(upregulation of +/ )

Figure 4.5: Two examples of mutations for pre-existing case I f a illustrating 
why this pre-existing case is unlikely to lead to a change in sex-determining 
locus. Note that the highlighted mutant is likely to be phenotypically female, 
whereas the parental genotype is male
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Figure 4.6: Most commonly observed transitions in which there is a change 
in heterogamety at the F locus due to recruitment of a gene at locus A, 
under ancestral male heterogamety (ff/m j). Transitions (a) and (c) are for 
pre-existing case R+. Transitions (b) and (d) are for pre-existing cases I f a 
and respectively. Transitions (c) and (d) require one or more intermediate 
states (not shown), since they are at least two mutations removed from the 
ancestral population.
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Figure 4.7: Most commonly observed transitions in which there is a change 
in heterogamety at the F locus due to recruitment of a gene at locus A, under 
ancestral female heterogamety mm/mf.

final population in both cases.
The transition shown in figure 4.6(a) only accounts for ~60% of observed 

transitions for pre-existing case R+ (default values). The second most com­
monly observed transition for this case (accounting for ~30%) is that shown 
in figure 4.6(c). Whether the former or latter transition occurs, is dependent 
upon the order of the mutations: 1) if the first mutation to occur is +f ,  
creating a positive inbound link from a+, then the transition of figure 4.6(a) 
occurs, 2) if the first mutation is “ / ,  creating a negative inbound link from 
a+, then the transition of figure 4.6(c) is observed via at least one interme­
diate step in which a +/  mutation drives m  out. The latter transition is 
similar, though not identical, in its final population to the transition shown 
in figure 4.6(d) (for pre-existing case 7“a) which also occurs via at least one 
intermediate step.

Single-step transitions are observed for ancestral female (mm/mf) het­
erogamety, as shown in figure 4.7. Again, the these transitions represent two 
distinct pre-existing cases: R+ as before, and I~a (a pre-existing negative
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inbound link from a is present at ~m). When the complementary mutation 
(+f  or a+ respectively) appears, a+ fixes at the A locus and heterogamety 
changes to male (f f /m f), leading to the same final population in both cases. 
Although this outcome is comparable to that of figure 4.6(a) and (b), no 
multi-step transitions, comparable to those shown in figure 4.6(c) and (d), 
are observed for ancestral female (m m /m f) heterogamety.

4.3.6 Unbiased fitness o f the recruited gene in locus 
transition

We now consider whether the fitness values w ^ )  are biased in the cases 
leading to transitions in the sex determining locus. Fitness bias (Aw)  was 
calculated for each sex separately, as the difference of mean fitness values 
between: (1) the cases resulting in a transition, and (2) those which were 
simply viable.

Where we observe ” transition probabilities” close to, or equal to, 1 (in 
tables 4.2 and 4.3), we will not, by definition, observe any significant bias, 
since all viable cases result in a transition. Such high ” transition probabili­
ties” were only observed for clamped A. For clamped A (default conditions), 
we observe ” transition probabilities” equal to 1 under both f f /  m f and m m / m f 
ancestral heterogamety. This tells us that no a priori bias (in w ^  or w^) is 
required for the transition to occur.

On the other hand, with unclamped A (random w \f and w%), the ’’tran­
sition probability” is lower than 1. This suggests that when a trade-off is 
allowed between the two loci F and A, the certainty of a transition which 
existed before (for these conditions) is removed. As a consequence, we will 
observe transitions only when particular bias requirements are fulfilled at 
both loci (shown in table 4.4).

Table 4.4 contains several clear patterns. Firstly, for any particular lo­
cus, male (Aw ^ )  and female (Aw$)  bias values are always of opposite sign. 
Secondly, for any particular sex, the bias values for the different loci are also 
of opposite sign. Together, these constraints allow only two possible combi­
nations for each case: (1) A w ^ , A w ^  positive and Aw ^ , A w ^  negative, or
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Anc. het. case locus Aw^ Aw?

f f /m f
'j*

F
A

0.27
-0.096

-0.071
0.11

I L
F
A

0.5
-0.87

-0.095
0.13

m m /m f
F
A

-0.051
0.11

0.69
-0.52

I L
F
A

-0.022 (n/s) 
0.12

0.45
-0.11

Table 4.4: Summary of fitness bias in evolution from single-locus to two-locus 
sex determination (” unclamped A”) for both f f /m f  and m m /m f ancestral 
heterogamety, and both cases ( I ja and /+a). Each line contains the locus 
and the difference of means (Aw) for successful cases relative to the viable 
cases. P values (t-test) for each Aw were calculated for all entries. The single 
entry indicated (n/s) was not significant at the 95% level.

(2) A w ^,A w ^ negative and A w ^,A w ^ positive. Clearly, combination (1) 
occurs when the ancestral heterogamety is f f /m f  and combination (2) occurs 
when the ancestral heterogamety is m m / m f

As far as the magnitudes (|Aw|) are concerned, it appears that the largest 
magnitude entry for each case occurrs in male (Aw^) for ancestral f f /m f  het­
erogamety, and female (Aw?) for ancestral m m /m f heterogamety, although 
there is no clear pattern of consistency as to which locus it occurs in. One 
biologically notable feature is that the highest magnitude entry for case 
/+ atransitions (comparable to D. melanogaster) with ancestral f f /m f  het­
erogamety, occurs at A making this gene highly deleterious in males. The 
corresponding gene transformer is indeed highly deleterious in males, since 
its net effect is to suppress male courtship.

4.4 Discussion
We have presented a model which integrates two previously separate tech­
niques: a) a standard model from population genetics, and b) a network 
model using ODEs [32]. In order to do this, it was necessary to extend the 
concept of allele to include network-specific features such as interactions.
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This definition also allows us to represent mutations as discrete changes in 
the allele parameters [119]. It was our aim to study this system at a coarse­
grained level, representing interactions qualitatively, and the corresponding 
mutations as creation or deletion of these interactions. This coarse-grained 
level definition for mutation was chosen because it appears to be the most 
important class of interaction-related mutation in the evolution of sex deter­
mination [92]. Since quantitative changes appear to be less important, these 
are ignored.

Wilkins hypothesis [86] suggests a simplest-possible ancestral sex deter­
mination system involving a single locus. Specifically, we consider two single 
locus sex determination systems: male heterogamety f f /m f  (m  , a domi­
nant masculinizing allele), and female heterogamety m m /m f ( f , a dominant 
feminizing allele). We have used this as our starting point to examine the 
conditions under which a more complex sex determination system, involving 
two loci may have evolved. We did not consider dosage compensation in our 
model. In model organisms for which the process is best understood, dosage 
compensation initiates after the pathway has been activated, and as a first 
approximation can be considered a separate process to sex determination. 
Also, for simplicity we did not consider autoregulatory interactions in the 
network model. Although autoregulation is necessary for sex determination 
in two known cases, a recent study [92] suggests that in both these cases, the 
autoregulating gene (Sxl in the case of D. melanogaster, and transformer in 
C. capitata) became autoregulatory after recruitment into the pathway, we 
therefore consider this omission to be a reasonable simplification.

In this study, the two loci A and F were considered to be unlinked. 
Linkage may be an important factor, particularly for more complex cases: 
for example, it has been suggested that recruitment of the sis alleles in D. 
melanogaster (involved in primary signal generation), may have depended on
(1) linkage to Sxl and (2) the absence of male recombination [92]. However, 
at the level relevant to this analysis, the same study found that linkage of 
dsx and tra did not qualitatively affect the relevant evolutionary transitions. 
Linkage patterns in C. elegans are more difficult to assess, since it is not 
clear which gene corresponds to the hypothetical F locus: tra-1 is closer to

94



being the “switch” gene, while its target mab-3 is the true dsx homolog. 
While mab-3 (chromosome II) is unlinked to its regulator tra-1 (chromosome 
III), in the case of tra-1, the pattern is complicated by it having three up­
stream signals (fem-1,2,3), one of which (fem-2) is on the same chromosome. 
A more sophisticated model might therefore include extra features such as 
linkage, absence of recombination in one sex, and multiple-signal nodes (e.g. 
molecular complex formation), but these are left for future work.

In the model, genotype fitness W (g) is a linear function of the expression 
levels Si. At a first glance, it would appear this represents a weakness of 
the model, since common biological features such as heterozygote advantage 
are inherently nonlinear. However, because W(g)  depends on the network 
parameters in a nonlinear way, these effects can indeed be represented. Con­
sider, for example, the evolved female network on the right of figure 4.6a-b. 
If we now imagine a polymorphism involving strong (Ta+ = 0) and weak 
(Ta+ =  1) forms of the a+ allele, we found it straightforward to determine 
appropriate parameter values (with w l < 0 and 0) leading to het­
erozygote advantage at the A locus.

Each expression level Si is multiplied by a random variable Wl(*). If the 
resulting value w(g) is negative, the genotype is considered to be lethal (i.e. 
receives zero fitness) to avoid negative population levels. Under condition 
“unclamped A”, a certain trade-off can occur between the two loci (since one 
of the two can make a negative contribution to fitness). There are a number of 
ways one could define fitness in a model such as this. An alternative, perhaps 
more conventional, approach might have construed the fitness value in such 
a way that the ancestral values were equal to 1, with mutant genotypes 
producing values higher or lower than 1. However, changing fitness to a 
relative scale such as this creates new problems. For example, what to do 
when there is more than one male (or female) genotype (this situation may 
occur when evaluating successive mutations - see section 4.2.5, under heading 
“outer loop”). The problem here is to decide which genotype is assigned a 
fitness of 1. The experimental outcome may well depend on this choice. It is 
far from clear whether an alternative model such as this would qualitatively 
change the results seen in this study. The evaluation of alternative fitness
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definitions is a fairly complex issue, and is left for future work.
Starting from the simplest-possible system determined at a single locus 

F, we examine the conditions which allow control to pass to a new locus A, 
with the F locus becoming homozygous in both sexes. For this to occur, 
at least one new interaction between an allele at locus A and another at 
locus F must be formed. It was shown that this is most likely to occur 
when (a) a pre-existing inbound connection exists at the F locus, and (b) 
this is followed by a strong-effect mutation at A creating the connection 
with F, rather than the other way around. Two main outcomes leading 
to two-locus systems were observed. In the first, a male-defining mutant 
allele a+  at the A locus works by downregulating the existing allele “ / a t  
F (case I ja, see figure 4.3), whereas in the second, a female-defining allele 
a+  at A upregulates the existing allele +m  at F (case /^ a), as shown in 
figure 4.4. Both outcomes are only observed when Ta =  0, suggesting they 
would be caused by a strong-signal mutation (e.g. wholesale acquisition of 
an appropriate RNA-binding domain), rather than a weak-signal mutation 
(e.g. small-effect point mutation).

Particular conditions, such as parameter values, affect whether these out­
comes originate from both male and female ancestral heterogamety, or from 
one in particular, see figure 4.4(a),(c). In both ancestral populations, the pa­
rameter kr  affects the difference in F expression level between the two sexes. 
Given (1) the low fitness of intersex phenotypes, and (2) the expectation that 
male and female F (doublesex) expression levels would evolve away from each 
other [92], we might expect kr  to be relatively high, and therefore only the 
transitions shown in figure 4.4(a) and (c) would be observed.

The results suggest that, if the recruited A locus gene had no a priori 
fitness bias (clamped A), recruitment was more likely since it imposes little 
or no bias requirements at the existing F locus. We make the biologically re­
alistic assumption that a random gene choice (from any gene in the genome) 
is unlikely a priori to be involved in a process related to reproductive fitness 
(i.e. in terms of the model, has zero fitness). This assumption makes the un­
biased transition more likely from a biological perspective than a potentially 
biased one, since the latter imposes bias requirements at both A and F before
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the transition can occur. These results suggest that the D. melanogaster gene 
transformer (tra) was recruited due to a strong gain-of-function mutation at 
the tra locus, and that it acquired its sex-specific role (in male courtship 
[80]) after recruitment. However, even if we do allow for the possibility that 
a priori bias may have existed at A (unclamped A), the results appear, for 
one case at least, to be biologically consistent with the known role of tra, 
namely that it is highly deleterious to males. Interestingly, the fitness bias 
results for the potentially biased case (table 4.4) also illustrate the capacity 
for opposing effects, both between loci in the same sex and between sexes at 
the same locus, in shaping sex determination.

“Transition probabilities” for the clamped A case were, in many cases, 
equal to 1, which suggests these transitions are certain to occur. An analyt­
ical approach would help in understanding why this is so. However, several 
factors make a rigorous mathematical analysis of the simulation results an 
unusually complicated task, in particular, (1) the fact that all possible mu­
tations may need to be evaluated before an invasive mutation is found, and
(2) the appearance in the population of additional genotypes (generated by 
mating and recombination) following insertion of a mutant genotype. Clearly 
though, particular parameter values are important in determining whether 
a transition is observed or not. For example, the results for f f /m f  case '7 . 
show “transition probabilities” equal to 1 for all parameter values tested, 
which is of particular concern, since it suggests that the model is constructed 
in such a way that this particular transition will always occur. However, we 
have found that for certain other parameter values (e.g. a = k r  = 2), the 
“transition probability” becomes 0, which shows this is not the case. In this 
study we have made a number of fairly crude assumptions (for example, the 
fact that connections can only be a qualitative ± 1) and, have consequently 
tried to interpret the results in a suitably broad manner. Accordingly, we 
have emphasised the notable differences between the qualitatively distinct 
pre-existing cases, while giving less importance to the differences in outcome 
for different parameter values within each pre-existing case.

Transitions leading to a change in heterogamety at the F locus were also 
considered. It was found that heterogamety changes occur mainly under the
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three pre-existing cases (7?+, 7^a, 7“a , see figure 4.3) where a locus transition 
did not occur. In this case, the transition is likely to occur following a muta­
tion at either locus (A or F), leading to one of the three qualitatively distinct 
populations shown in figures 4.6 and 4.7. These evolved populations were 
subsequently tested as ancestral populations for change in sex determination 
locus, but the ”transition probability” was found to be fairly low (< 0.15 for 
all evolved populations).

Together these results suggest that mutations causing new genes to be 
recruited into the sex determination pathway will have specific consequences 
depending on how the ancestral discriminatory locus is affected. Some mu­
tations in the recruited gene (pre-existing cases tja  and 7+a) may cause a 
transition to a new discriminatory locus at A. Transitions to a two locus 
system requires a strong signal from the recruited gene suggesting only non- 
gradual mutations (e.g. wholesale acquisition of a regulatory domain) will 
provoke the change. Other mutations, both in the ancestral discriminatory 
locus (case 7?+) or in recruited gene (cases I ja and 7“a), cause recruitment of 
A (in a non-discriminatory role), while at the same time inducing a change in 
heterogamety at the F locus (jff/m f ̂  mm/mf). Once a change in heteroga­
mety has occurred, a further change in sex determination locus (involving 
the newly recruited gene) is unlikely.

4.5 Appendix A: Stability criteria
For the population simulations, we consider the dynamics of a discrete time 
series (p(t),p(t -I- 1),...) of genotype frequencies. During the first steps fol­
lowing the introduction of a mutant, the length N  (N  is the number of 
genotypes) of p(t) may increase, as crosses generate new genotypes. Once 
N  has stabilised, we consider the maximum (over all genotypes g) difference 
between successive timesteps, e(t) = max9 \pg(t) — pg(t — 1)|. The system 
is considered stable when e(t) < ep, with ep =  10~6. This simple method 
was found to be more efficient than more elaborate methods such as that de­
scribed in [43]. Recall that the mutant is inserted at 1% of “parent” genotype 
frequency (see section 4.2.5). If the equilibrium mutant frequency is <1.05%
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(slightly above 1% to allow for rounding errors), the mutation is classified 
as non-invasive, which includes deleterious and neutral mutations. Following 
invasive mutations (mutant frequency >1.05%), we look for two exit criteria: 
1) a change in sex determining locus: (i.e. the F locus is homozygous in both 
sexes), or 2) a change in F locus heterogamety. If these criteria are fulfilled, 
and additionally the population consists only of a male and a female geno­
type, we exit and record the transition (including the initial conditions such 
as fitness), otherwise the mutation process is again repeated with the derived 
population. Successive invasive mutations (not fulfilling the exit criteria) are 
assessed in this way to a maximum recursion depth of 3.

For the network simulations, numerical integration proceeds until two con­
ditions are met: a) dS i/d t is below a threshold es =  10“ 5 for all i, and b) 
Re(A) < 0 for all eigenvalues A of the Jacobian matrix. If these two condi­
tions are not met by t = 800 (higher values were found to not qualitatively 
change the results), the system is considered unstable and the genotype is 
deleted from the population. This assumption here is that functional genetic 
networks will reach a stable equilibrium gene-expression state, and that un­
stable networks reflect, in a sense, the failure of development [43, 51]. The 
Jacobian matrix of the system can be computed very efficiently, since the 
function a(x) = l / ( l+ e ~ ax) has a straightforward derivative: o' — aa(l — a). 
Therefore, the elements Jij of the (21 x 21) Jacobian matrix are:

For numerical integration of the ODE system, we use the Runge-Kutta- 
Fehlberg method as implemented in the Gnu Scientific Library (GSL) vl.3.

_  d[a(ui) -  Si] 
J i i  ~  £1 q  .

=  aa(ui)( 1 -  a(ui))IijRj -  Sij

where 5{j is the Kronecker delta,
1 for i = j  
0 otherwise

Eigenvalues for the Jacobian are calculated using the dgeev function imple­
mented in LAPACK v3.0.
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4.6 Appendix B: Definitions

Term Description

regulatory
domain

a binary value defining whether or not a particular allele 
can influence the expression of other alleles

inbound
link

a vector representing the inputs a particular allele re­
ceives from the other alleles

viable an initial population is viable if, for both the male and 
female genotypes, the fitness W(g)  > 0

“clamped”
the locus A is “clamped” when both fitness contribu­
tions for the locus are zero (tc^f = Wa =  0)

“unclamped”
the locus A is “unclamped” when fitness contributions 
(wa ,Wa ) for the locus are sampled from a Gaussian dis­
tribution N (  0,1)

1 0 0



Chapter 5

Evolution of a two-locus sex 
determ ination system  to a 
system  involving three loci

5.1 Background
The discovery that the key Drosophila gene doublesex was highly conserved, 
has added support to a hypothesis proposed by Wilkins [86], that sex de­
termination networks have evolved in a retrograde manner from bottom to 
top. Following this hypothesis, it is reasonable to make the assumption that 
the simplest-possible ancestral sex determination systems would be based on 
a single locus. In the previous chapter, a diploid hierarchical model is pre­
sented which integrates techniques from standard population genetics with 
network dynamics (ODEs). Two possible systems (male and female heteroga- 
mety) based at a single ancestral sex determining locus F, were considered 
as starting points, then the conditions under which a new and previously in­
dependent locus A becomes the new discriminatory locus were studied, with 
the ancestral sex determining locus becoming homozygous in both sexes. It 
was found that recruitment of a new discriminatory gene into a pathway is 
most likely due to an adaptive mutation in the recruited gene rather than in 
a gene from the existing pathway. Furthermore, the mutation must have a
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strong (Ta =  0) effect on its target in order to provoke a transition. Transi­
tions resulting in a locus change predominantly lead to one of two outcomes: 
(a) a dominant masculinizer at A downregulates F locus expression in males, 
or (b) a dominant feminizer at A upregulates F locus expression in females. 
These two evolved populations are shown in figure 5.1. Although it is argued 
that the recruited gene was probably neutral with respect to reproductive 
fitness, if we allow for the contrary possibility that the recruited gene did 
make an independent a priori contribution to fitness, conflicting patterns in 
fitness bias emerge between loci and between sexes (e.g. the same gene has 
a beneficial effect in males and a deleterious effect in females).

a+ a+

-j- <
+171 +771 +171+171

Figure 5.1: These two ancestral populations serve as starting points for anal­
ysis of further evolution in this chapter. Recall that the +m  allele is an F 
locus allele for which T+m =  1.

In this chapter we consider further evolution of the two-locus sex deter­
mination networks derived in the previous chapter 4 (figure 5.1). Specifically, 
we will consider the conditions allowing recruitment of a new locus B into 
the pathway.

5.1.1 Pre-existing cases

Taking the previously evolved two-locus sex determination networks as our 
starting point, two types of transition are again considered: (a) transitions in 
sex determination locus such that the discriminatory signal moves to a new 
locus B, and (b) transitions in heterogamety at the A locus following B locus 
recruitment. Also, as before, we can consider the possible pre-existing cases.
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There are now five cases to consider for each ancestral two-locus network 
(shown in figure 5.2), which will be labelled as cases R b , /*+6, /~+b, I*b and 
I~b for both male and female ancestral heterogamety, as shown. So, a pre­
existing case in which a positive inbound link exists at the the allele +a+ is 
denoted /++b /cf for ancestral male heterogamety, and I++b /$  for ancestral 
female heterogamety.

5.1.2 E xperim ental procedure

Repeating the experimental procedure from the previous chapter, two types 
of transition are considered: locus transitions and heterogamety transitions. 
Transitions in sex determination locus occur when the discriminatory sex 
determination locus passes from the A locus (the ancestral state) to the B 
locus, with the A locus becoming homozygous in both sexes. Heterogamety 
transitions occur when there is a switch between male and female heteroga­
mety at the A locus as a consequence of B locus recruitment. Recall from 
chapter 4 that transitions are reported relative to viable initial populations, 
and that the measured “transition probabilities” (see section 4.2.5) are best 
considered in terms of bias requirements in the fitness contributions. Sex 
determination locus ”transition probabilities” are shown in table 5.1, het­
erogamety ”transition probabilities” are shown in table 5.3.

Note that, as before, the general'''1 transition probabilities” shown in tables 
5.1 and 5.3 may in turn represent one or more qualitatively distinct transi­
tions, i.e. distinct final evolved populations. For example, consider briefly 
the transition shown in figure 5.3a. Most often, this transition is observed 
ocurring in a single step following a single mutation 6+, as shown. Sometimes 
though, the same transition is also observed with one or more intermediate 
states (e.g. following the successful invasion of a mutant of a which receives a 
positive input from a+). These intermediate states turn out to be irrelevant 
since the final population is the same as the evolved population on the right 
of figure 5.3a (i.e. the first mutant was driven out by the second so it is as 
if the first mutant had never occurred). The discussion below will therefore 
treat shortest-possible transitions (e.g. the single-step transition of figure
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Figure 5.2: Ten possible cases of prior conditions which might permit the 
two-locus sex determination systems from figure 5.1 to evolve. At the top of 
each box, the pre-existing condition is indicated with a graphical represen­
tation below. Since inbound links are both signed and allele-specific, these 
are indicated by the dotted lines. The top row represent ancestral male het­
erogamety, where the dominant masculinizer a+ represses the ~ f  allele. The 
bottom row represents ancestral female heterogamety, where the dominant 
feminizer a+ activates the +m  allele.
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5.3a) as equivalent to cases with one or more intermediate steps, but where 
the final population was the same. These shortest-possible transitions will 
be referred to as distinct transitions.

To summarise then, for a particular case, ancestral heterogamety and 
conditions (parameter values), we have a general ”transition probability” , 
which is simply the value corresponding to a change of locus (or of heteroga­
mety), irrespective of how many particular transitions were observed for that 
category. Since several particular transitions can have the same final pop­
ulation, these transitions are grouped into qualitatively distinct transitions, 
which will be represented in each case by the shortest path found.

Since a large number of transitions (both of sex determination locus and 
of heterogamety), were observed at very low frequencies, only the most im­
portant distinct transitions, observed at “transition probabilities” greater 
than 2% in any of the experiments will be considered in detail. This ap­
proach represents a different strategy from chapter 4, where general ’’transi­
tion probabilities” usually represented only one or two distinct transitions.

5.1.3 Ancestral fitness at the B locus

As before, we will consider “clamped B” (w^ = = 0), i.e. the biologically
realistic hypothesis that there is no a priori fitness bias in the recruited gene, 
separately from “unclamped and w% drawn from a random Gaussian
distribution) for locus B. Since the results for clamped and unclamped B 
are now often of similar magnitude (whereas in the previous chapter the 
’’transition probabilities” for the unclamped case were low relative to the 
clamped case) the two conditions are now considered together.

Since the A locus is now taking the place previously occupied by the F 
locus, only unclamped A will be considered here (in chapter 4, both clamped 
and unclamped A were analysed).

5.1.4 Known sex determ ination networks

The best understood sex determination networks are probably D. melano- 
gaster and C. elegans [91]; however, interest in sex determination evolution
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has led to studies in other insects, such as C. capitata. What is known of 
the structures of these three networks is shown in figure 1.4. There are two 
common features: a) the shared homolog (dsx, mab-3) a t the end of all three 
pathways, and b) D. melanogaster and C. capitata both share transformer 
(tra). Apart from this, all three networks are different. In C. elegans and D. 
melanogaster, the primary signal is defined by the X:A ratio (albeit by differ­
ent genes in each), whereas in C. capitata it is defined by a male determining 
factor (as it is in mammals).

In this chapter, we will use the model to explain some features of the 
known biological networks. In the known networks, the new B locus would 
be equivalent to the C. elegans genes fem-1,2,3 (if mab-3 is considered to be 
the equivalent of F in the model), the D. melanogaster gene Sex-lethal, or 
the, as yet unidentified M  gene in C. capitata.

It has been argued by Wilkins [86], that the component genes of the C. 
elegans sex determination pathway may have evolved as a  consequence of suc­
cessive imbalances in the sex ratio, with each new gene being recruited as a 
determiner via frequency dependent selection. In the case of D. melanogaster, 
a more specific hypothesis was proposed for the recruitment of the gene Sex- 
lethal in [92]. Here, it was suggested that Sxl was recruited as a splicing reg­
ulator of tra (removing the stop codon from tra mRNA transcripts), which 
in turn provoked three further changes in Sxl, which we observe today: au­
toregulation, the exon containing a stop-codon, and recruitment of sis as an 
activator of the early promoter SxlPe.

5.2 Results

5.2.1 ’’Transition probabilities” are lower than single 
locus case

Sex determination locus ’’transition probabilities” are shown in table 5.1, 
heterogamety ’’transition probabilities” are shown in table 5.3. Whereas 
for the single locus to two locus transitions, there were many ’’transition 
probabilities” close to or equal to 1, the highest is now 0.16, suggesting
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stronger bias requirements.
As discussed in chapter 4, ” transition probabilities” and fitness bias are 

closel> related. For example, the transition shown in figure 5.3a requires a 
strong negative bias at the A locus for males ( A ~  —1), suggesting A 
must be strongly deleterious for the transition to occur. The majority of 
ancestral populations which are simply viable (mean A i s  zero) will not 
therefore provoke a transition. This fact translates into a lower ’’transition 
probability” , which can be seen clearly by considering the tables showing 
fitness bias for both locus (table 5.2) and heterogamety (table 5.4) transitions.

5.2.2 Locus transitions are m ost likely due to  a m uta­
tion at th e B locus

Looking at the (pre-existing regulatory output at B) column in table 
5.3, we can see that the ’’transition probabilities” are relatively low, which 
seems to indicate that pre-existing cases do not significantly provoke a 
change of sex determination locus. Although under certain conditions we do 
observe general “transition probabilities” above 2%, a closer analysis shows 
that no distinct transition is observed above 2% in this case. This suggests 
that mutations causing a change in the sex determination locus are most 
likely to occur in the recruited gene B, though the difference is not as great 
in relative terms as in chapter 4.

5.2.3 Locus transition  requires strong pre-existing sig­
nal at B

In table 5.1, we observe that when the pre-existing signal strength for the 
allele b is weak (Tb = 1), ’’transition probabilities” are also low. The same 
effect was also observed for the single locus ancestral system considered in 
chapter 4. The strong (Tf, = 0) signal for b is the default value used for all 
other rows. This shows that mutations which initially have a weak effect on A 
are less likely to be recruited, suggesting that particular kinds of mutations 
representing strong-signal mutants (e.g. wholesale acquisition of a DNA-
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Anc. het. /$
case: 4 ++6 ^ a+6 4 1 i 4b K T +

a+6 4 + 6 4 +6 4&
clamped B
defaults 0.01 0.06 0.01 0.01 0.01 0.01 0.02 0.01
low a 0.01
high a 0.01 0.02 0.16 0.01 0.01 0.05 0.01
low kr 0.01 0.05 0.01 0.01 0.02 0.01
high kr 0.06 0.01 0.01 0.01 0.01
Tb = 1 0.01
unclampec B
defaults 0.03 0.08 0.01 0.01 0.06
low a 0.01 0.01 0.01 0.01
high a 0.04 0.01 0.11 0.01 0.01 0.08
low kr 0.02 0.07 0.01 0.01 0.06
high kr 0.02 0.08 0.02 0.01 0.05
Tb = 1 0.01 0.01 0.01 0.01

Table 5.1: General sex determination locus ” transition probabilities”. Blanks 
indicate zero.

binding domain), are more likely to induce recruitment than weak-signal 
mutants (e.g. small-effect point mutations).

5.2.4 T he m ost com m on locus transition resembles C. 

capitata network

The highest general ”transition probability” in table 5.1 is 0.16 for case I~+b 
/9  (see figure 5.2). This high "transition probability” is only observed for 
particular conditions: clamped B (the fitness parameters = 0) and high 
a (the sigmoid slope parameter). For this particular case, the most common, 
by far, distinct transition (representing over 98% of observed transitions) is 
that shown in figure 5.3a. Here, ancestral female heterogamety at the A locus 
has evolved into male heterogamety at the B locus via recruitment of the b+ 
allele, with female becoming the default pathway in the evolved population.

All transitions apart from this one (including A locus heterogamety chan­
ges) occur at frequencies lower than ~5%. Since only those transitions above 
2% frequency will be described, this represents a fairly narrow range of fre­
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quencies in which many transitions are observed.
It is interesting to note the similarity of the evolved pathway with the sex 

determination network of Ceratitis capitata shown in figure 1.4c, where the 
male pathway consists of a dominant masculinizing allele which downregu- 
lates transformer (tra, equivalent to a). The main difference consists in the 
additional tra autoregulation of the real C. capitata network, which is not 
considered as a possibility in our analysis.

Under case I ~+b/ 9 (see figure 5.2) with default conditions we also observe 
a second distinct single-step transition resulting in a similar (in the sign of 
the connections between loci) pathway, shown in figure 5.3b. Comparing this 
transition to the one described before (figure 5.3a), we can immediately see 
that the former male phenotype is the same as the latter female phenotype.

Such a transition is possible because phenotypic sex is strongly parameter- 
dependent, in particular on the two parameters a (sigmoid slope) and 6 (sex 
determining threshold). Since the transition of figure 5.3a is also observed for 
default values of a (albeit at lower frequency), this suggests it is the random 
value of 0 which is more important in deciding which transition occurs.

5.2.5 Locus transitions leading to serial negative inter­
actions

Another class of locus transition which appears to be of particular biological 
relevance is shown in figure 5.3c, and is observed under case I ~+b/cf (see 
figure 5.2) with unclamped B. Here, the b+ allele again forces a change in sex 
determination locus to B, with a new negative interaction forming.

The hypothesis proposed by Wilkins [86], suggested that the C. elegans 
sex determination pathway evolved in a retrograde manner from bottom 
to top, adding a new negative discriminator at each step. Adopting this 
hypothesis, it is reasonable to suppose that a system such as this, with two 
serial negative connections, was ancestral to the sex determination system 
we see today in C. elegans [77], shown in figure 5.3a. As mentioned above, 
Wilkins also proposed an evolutionary mechanism based on successive skewed 
sex ratios. The results here show clearly how a mechanism not based on sex
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Figure 5.3: Commonly observed single-step transitions leading to recruitment 
of B as discriminatory locus.
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ratios (the sex ratio is always 50:50 in these simulations), can also produce 
such a pattern.

5.2.6 Locus transition involving evolution of a negative 
feedback loop

A more complex class of distinct transition, requiring at least one interme­
diate step, was also observed. The most common of these occurs under 
case I~+b/ 9/high a (sigmoid slope parameter) with unclamped B, where we 
observe the transition described in figure 5.4(a). Here the evolved male geno­
type contains a feedback inhibition loop which effectively shuts off the activity 
of the allele ~a+.

A similar transition (also observed at greater than 2% frequency) in which 
a negative feedback loop evolves is shown in figure 5.4(b), though this time 
for I ~+b/cf (ancestral male heterogamety). Here the final female (rather than 
male) genotype contains the feedback inhibition loop. Although both feed­
back inhibition loops shown in figure 5.4 were found to be stable, in reality 
(i.e. under other conditions), such circuits are prone to instability due to pos­
sible oscillations [36]. Since oscillatory behaviour in developmental networks 
would probably be purged by negative selection [43, 51], transitions leading 
to feedback inhibition loops are unlikely to be common in sex determination.

5.2.7 Locus transitions show strongly negative fitness 
bias at A  locus

The fitness parameter bias results for the single-step transitions of figure 5.3 
are shown in table 5.2. In all cases, the strongest bias (i.e. largest |Atu|) 
occurs at the A locus and is negative, indicating that expression of A will 
have a deleterious effect on fitness in both sexes. Furthermore, this negative 
effect is strongest in male for ancestral female heterogamety (transitions 5.3a 
and b), and strongest in female for ancestral male heterogamety (transition 
5.3c), as the highlighted entries show. More generally, we can say that the 
strongest bias (which always negative) occurs at the A locus in the ancestral
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Figure 5.4: Two commonly observed complex transitions in the evolution 
from a two locus system to a three locus system. The diagrams show in each 
case how the population evolves in two steps from left to right. For clarity, 
homozygous loci are shown as a single node and potential connections are not 
shown, as they were previously in figure 5.3. The ancestral population (left) is 
the two locus system, which evolves to an intermediate population (middle), 
through to a final evolved population in which the B locus is discriminating. 
In both cases the transition is such that the negative connection from B to A 
does not appear until after an intermediate stage in which a mutant allele bf 
is upregulated by the existing allele a. Transition (a) is observed under case 
I ~+b/ $ (ancestral female heterogamety), whereas transition (b) is observed 
under case I~+b/&  (ancestral male heterogamety).
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homogametic sex.
The bias effect at the F locus is positive in all clamped B (wB =  w% = 

0) cases. Under clamped B, overall fitness depends on the contributions 
of the F and A loci alone (B only contributes via regulation). If A has 
a strongly negative bias, then the F locus contribution ,Wp) must be 
positive to counteract this, since overall fitness needs to be positive. Under 
unclamped B ( w^ ,w%  random), the negative contribution at the B locus 
can be counteracted by a positive contribution at either remaining locus (F 
or A). Other than this, there is no clear pattern for F and B locus bias under 
unclamped B.

transition WB locus A Aw$
F 0.29 0.33

CL A -1 -0.27
5.3a B N/A N/A
/? F 0.087 0.41

UN A - 1.0 -0.11
B 0.26 -0.096
F 0.13 0.45

CL A -1.3 -0.62
5.3b B N/A N/A
/9 F -0.17 0.22

UN A -1.3 -0.57
B 0.54 0.42
F 0.23 0.47

CL A -0.25 -1.4
5.3c B N/A N/A
!<* F 0.23 -0.23

UN A -0.14 (n/s) - 1.1
B 0.0079 0.6

Table 5.2: Fitness bias observed for single-step locus transitions. The largest 
bias (| Ate |) is highlighted for each transition and corresponds to the ancestral 
homogametic sex. Transitions are represented by the corresponding figure 
number, and the sign of the interaction between the A and F loci in the 
ancestral population. The w B column describes whether the entry is for 
clamped B (CL), or unclamped B (UN). All bias values are statistically 
significant (t-test) at the 95% level, except where indicated (n/s).
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In all single-step cases, we observe transitions for both clamped and un­
clamped B. These results tell us that a priori fitness bias at the B locus is 
not required for the transition to occur, though a particular bias may exist 
at B (as observed in the table) without significantly reducing the chances of 
a transition.

The complex two-step transitions (figure 5.4) are only observed for un­
clamped B. Given the arguments presented in chapter 4 concerning the low 
probability of fitness bias in a newly recruited gene, the fact that this transi­
tion is only observed for unclamped B gives us a second reason for rejecting 
this particular transition (the first reason being susceptibility to oscillations).

5.2.8 H eterogam ety transitions are derived from re­
cruitm ent o f an unbiased gene

Transitions in heterogamety at the A locus are now considered. In this case, 
the B locus may be recruited in a non-discriminatory role, while provoking a 
change in heterogamety at the A locus. The general”transition probabilities” 
for heterogamety are shown in table 5.3. Again, the general "transition 
probabilities” have only coarse-grained informative value since each entry 
may represent more than one distinct transition. We again consider only the 
most important distinct transitions observed at “transition probabilities” 
greater than 2% in any of the experiments. One common feature of the 
distinct transitions is that they are only ever observed for clamped B (w^ = 
w|  =  0). This indicates that heterogamety transitions are most likely to arise 
through recruitment of an unbiased (with respect to reproductive fitness) 
locus B.

5.2.9 H eterogam ety transitions often involve a double 
interaction

The most common of the A locus heterogamety transitions is shown in figure 
5.5a, and is observed for case I^+b/^ (with l°w sigmoid slope a, among 
other conditions). Here, the heterogamety transition occurs in (minimum)
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Anc. het.
case: K # 6

/?
■̂ a+6 Itb 1ab K T +

a+6

/ *  
^a+6 4 +6 1ab

clamped B
defaults 0.03 0.03 0.01 0.01 0.05 0.09 0.01 0.02 0.01
low a 0.04 0.06 0.02 0.01 0.01 0.05 0.07 0.04
high a 0.01 0.02 0.04 0.08 0.01 0.01
low kr 0.03 0.05 0.05 0.07
high kr 0.01 0.02 0.04 0.07

£3 II 0.01 0.01 0.01 0.01 0.03 0.02 0.02 0.01
unclampec B
defaults 0.02 0.02 0.02 0.02 0.01 0.03 0.04 0.02 0.02 0.01
low a 0.03 0.03 0.03 0.01 0.01 0.03 0.03 0.03 0.01 0.01
high a 0.01 0.01 0.02 0.03 0.01 0.01 0.01
low k r 0.02 0.02 0.03 0.02
high k r 0.01 0.01 0.03 0.02
Tb = 1 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01

Table 5.3: General heterogamety ”transition probabilities” . Blanks indicate 
zero.

two steps. In the first step, a mutant allele b+ drives out the previously 
monomorphic b. The allele b+ upregulates a in males, leaving female fitness 
unchanged. A second mutant allele / ' ,  at the F locus, inherits its negative 
input from a and adds a positive input from 6+, with b+ now upregulating 
both the A and F loci. Both steps are facilitated by the strong positive bias 
at the A locus (see table 5.4), since both steps involve the addition of at 
least one positive link upregulating the +a+ allele. This general observation 
applies to all three transitions shown in figure 5.5.

The second most commonly observed heterogamety transition is observed 
for case 7 ^ / 9 ,  again with low sigmoid slope a, among other conditions. This 
transition also occurs in (minimum) two steps, and is shown in figure 5.5b. 
Here, the changes are similar to the previous transition, but for ancestral /$. 
As before, in the first step, b+ drives out the b allele, but in a nondiscrimina- 
tory role. In the second step, the mutant allele m ' adds a negative input to 
the F locus. In the final population, b+ upregulates a, and at the same time 
downregulates the monomorphic allele m'.

A third heterogamety transition involves a fairly complex series of tran-
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Figure 5.5: Three commonly observed sequences in which a change in het­
erogamety at the A locus is observed, leading to a double interaction, (a) 
Observed under case I^+b/ ( f ,  in which there has been a change to female 
heterogamety from male heterogamety. (b) Observed under case I++b/ 9. In 
the final population, there has been a change to male heterogamety from 
female heterogamety. (c) This transition actually occurs in four stages. The 
ancestral stage is identical to that of (a), with only the remaining three steps 
shown.
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sitions (with two intermediate states), and is observed for I~+b/d ' with low 
a and clamped B. This transition is shown in figure 5.5c. In the figure, the 
first (ancestral) stage is not shown since it is identical to the ancestral stage 
of figure 5.5a. In the first step, an (upregulated by a) allele A ', drives out
A. Next, the mutant b+ displaces b by upregulating a. Finally, the mutant 
allele / '  replaces / ,  adding a positive interaction from 6, changing the final 
heterogamety at A from male to female.

What these three complex heterogamety transitions have in common is 
the evolution of a double interaction from the b+ allele to alleles at both 
other loci (A and F). All three evolved networks are instances of a “network 
motif” (patterns of interconnections occurring in complex networks at num­
bers that are significantly higher than those in randomized networks) called 
the feedforward loop [21].

5.2.10 O nly one single-step  heterogam ety transition is 
observed

Only one single-step heterogamety transition was observed, and this was for 
case I~+b/<f, with low sigmoid slope a. This transition occurs in a single step 
and is shown in figure 5.6. Here, the B locus is recruited and downregulates 
the allele a. However, unlike the comparable sex determination transitions 
of figures 5.3a and b, the change is such that only a heterogamety change at 
A takes place, with the mutant b+ becoming homozygous in both sexes.

5.2.11 Strongest fitness bias for heterogam ety transi­
tions is also at A  locus, but in ancestral het- 
erogam etic sex

Table 5.4 shows the bias (Aw) in the fitness parameters for the heterogamety 
transitions shown in figures 5.5 and 5.6. As with the sex determination 
locus transitions, the largest bias in magnitude is at the A locus, though in 
contrast to before, in most cases it now has a positive bias which is strongest 
in the ancestral heterogametic sex. The exception to the positive bias rule,
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Figure 5.6: One commonly observed single-step transition leading to a het­
erogamety change at the A locus.

is the single-step heterogamety transition (figure 5.6), which appears with a 
negative bias.

At the same time, there often appears to be a bias at the F locus of 
comparable magnitude, making the bias results for heterogamety transitions 
less consistent than for locus transitions.

5.3 Discussion
Starting from the two locus systems which were observed as evolved out­
comes in the previous chapter, we now consider recruitment of a third locus 
into the pathway. We found that general ” transition probabilities” (table 
5.1) were lower than for the single-locus case. The low ”transition proba­
bilities” observed, in turn imply significant bias requirements. Fitness bias 
requirements were largest at the A locus for all transitions considered. The 
largest bias values tended to be negative for sex determination transitions, 
and positive for heterogamety transitions.

The general ” transition probabilities” do not give as clear a picture as 
for the ancestral single locus system, since here each ’’transition probabil­
ity” usually represents several qualitatively distinct transitions. Since many
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transition locus A A ufi
F 0.24 -0.64

5.5b A 0.44 0.66
/$ B N/A N/A

F -0.13 0.35
5.5a A 0.5 0.27
/<? B N/A N/A

F 0.11 0.37
5.5c A 0.42 0.16
/ * B N/A N/A

F 0.14 0.20
5.6 A -1.4 -0.23

B N/A N/A

Table 5.4: Fitness bias statistics for all heterogamety transitions. These 
are shown in figures 5.5 and 5.6. The highest magnitude bias (|Atu|) is 
highlighted for each transition. All bias values were found to be statistically 
significant (t-test) at the 95% level.

transitions were observed at low frequency, only transitions observed at fre­
quencies above 2% were considered. A number of locus transitions (where the 
B locus becomes discriminatory), and of heterogamety (where the B locus is 
recruited in a non-discriminatory role causing a change in heterogamety at 
the A locus), were observed in this range.

As was the case with the single locus ancestral system, it is clear from 
the results that the key mutation leading to recruitment will occur at the B 
locus, not at A. Also, as before, the low ” transition probability” for initial 
low output alleles at B (7^ =  1), indicate that a strong-effect mutation (e.g. 
wholesale acquisition of an RNA-binding domain), is more likely to induce 
recruitment than weak-signal mutants (e.g. small-effect point mutations).

Considering locus transitions, it is clear from the results that if expression 
of A is heavily deleterious in one sex, then an incentive exists to suppress 
it in that sex. This is most obvious in the single-step transitions shown in 
figure 5.3, where the effect of the allele a is suppressed by the transition 
in the sex for which it is most deleterious. One of the resulting single-step 
transitions, shown in figure 5.3 (a), leads to a system similar to that of C.
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Figure 5.7: Transition similar to that which may have occurred in the re­
cruitment of Sex-lethal into the Drosophila sex determination pathway.

capitata. Parameter sensitivity (specifically to the sex-determining threshold 
parameter 6) meant that for the same pre-existing case ( / “+b/$) we also 
observe the transition of figure 5.3 (b). Another locus transition, shown in 
figure 5.3 (c), leads to  a system which might reasonably be an ancestral form 
of the C. elegans system.

It was suggested that the remaining locus transitions observed at high 
frequency (shown in figure 5.4) are biologically unrealistic for two reasons: 
1) the inhibitory feedback loop, although stable in this particular case, is un­
likely to be generally robust against oscillations, 2) the transitions were only 
observed for unclamped B which, as was argued previously, is probably less 
biologically realistic than clamped B, since a gene chosen at random is more 
likely to be involved in some process neutral with respect to reproductive 
fitness.

All locus transitions apart from the one just mentioned were observed 
for unclamped B as well as clamped B. It appears therefore that bias in 
the recruited gene is not in any way indispensable for recruitment to occur. 
However, for A locus heterogamety transitions, only clamped B cases are 
observed at frequency higher than 2%. This result suggests it is more likely 
that, at least for heterogamety transitions, the recruited gene was unbiased 
with respect to reproductive fitness.

One notable absence from the described locus transitions is a transition 
which in any way resembles the recruitment of Sex-lethal in Drosophila. How­

120



ever, such a transition was indeed observed at a lower frequency of ~1.6%. 
In the transition shown in figure 5.7, the incorporation of a low output allele 
+ a+/ (i.e. T+0+/ =  1) serves to reduce the expression level of a heavily dele­
terious A locus, particularly in males, who now become homozygous +a+>. 
This change permits recruitment of the mutant allele b+ as discriminatory 
allele, now at the B locus. The second change only affects females, and is 
possible only if the benefit of upregulating m  outweighs upregulation of the 
deleterious allele +a+'. This two-step transition is very similar to that pro­
posed in [92], in which a null allele of transformer is incorporated in a similar 
way as a precursor to recruitment of Sex-lethal.

The fitness bias requirements for locus transitions are clearly different 
from those discovered in the previous chapter. A significant bias at both 
existing loci (F and A) appears to be necessary for recruitment of B as 
a discriminatory locus. A strong negative bias at the A locus occurs in the 
ancestral homogametic sex. The proposed network evolution of [92] made the 
assumption that differential expression of doublesex (F locus) is the primary 
force driving changes in the network. The results here extend the results of
[92], by indicating that differential expression at intermediate loci (in this 
case the A locus) may also play an important role.

In chapter 4 it was suggested that recruitment of the A locus as a dis­
criminatory locus was most likely to occur if it was a priori unbiased, i.e. for 
clamped A (w^ =  w^ =  0). However, in this chapter we have found that 
a strong bias at A is usually needed for recruitment of locus B. Although 
it is beyond the scope of this study to consider why such a change in fit­
ness might occur, we can look for transitions assuming clamped A. Under 
the conditions clamped A and B (tt/f =  = w% =  0), no high
frequency transitions were observed except for one complex transition seen 
at ~8% under pre-existing case #&"/$, which is shown in figure 5.8. Since 
this transition involves two intermediate states involving populations with 
more than two genotypes, only the ancestral and final evolved populations 
are shown. Interestingly, there is a locus transition to B, but in which the B 
locus has replaced the A locus as discriminatory, rather than extend the cas­
cade. The ancestral dominant feminizer allele a+ evolves into a co-regulator

121



0+

Figure 5.8: Transition observed for clamped A and B (w^ = w% = w ^  =
w <b — 0), under pre-existing case R £ . B replaces A as the discriminatory 
locus.

which is homoz}/gous in both sexes. Co-regulators which are not differentially 
expressed are common features in known sex determination networks (e.g. 
transformer-2 in D. melanogaster).

To better understand the issue of fitness bias, it might be useful to con­
sider an extended model in which the fitness contributions Wl(%) were defined 
at the finer-grained allele level rather than at the locus level. The reason 
for doing this would be to consider certain biologically realistic situations in 
greater detail. For example, consider ancestral female heterogamety. Here, 
the dominant feminizer allele a+ is not expressed in males, and therefore 
might evolve independently of a to be strongly beneficial in females, and 
potentially deleterious in males. This is left for future work.

The three transitions in A locus heterogamety shown in figure 5.5 in­
troduce the possibility that a mutant b+ allele evolves a double interaction 
which regulates both the A and the F locus. However, no such pattern has 
been observed in known sex determination systems. Although it might seem 
unlikely that one allele (b+) would be able to regulate another (m') when 
it already regulates +«+, this “network motif” has been shown, not only 
to occur often in gene networks generally [21], but also to have frequently 
evolved de novo [27]. An alternative explanation for the deficit may lie in 
the fitness bias requirements (table 5.4). Although again the largest |Aw| 
values are to be found at the A locus for the ancestral heterogametic sex,
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the principal difference is that the bias is positive rather than negative. If it 
were discovered that the bias at A tended to evolve a negative rather than a 
positive bias, then this would represent a clear argument as to why we only 
observe certain evolved structures in nature. For example, in nature we only 
observe transitions such as those in figures 5.3a (resembling C. capitata) and 
5.3c (resembling an ancestral form of the C. elegans pathway), but not those 
corresponding to the heterogamety changes of figure 5.5.

The heterogamety transition shown in figure 5.6 illustrates how a mu­
tation which in one case can lead to B becoming the discriminatory sex 
determination locus (as in figure 5.3), under different conditions can lead to 
fixation of the new allele b+ and a change in heterogamety at A.

5.4 Appendix A: Definitions
See also previous definitions for chapter 4.

Term Description

distinct
transition

each distinct transition corresponds to a different final 
evolved population

general
transition

probability'

a ” transition probability” which represents one or more 
qualitatively distinct transitions for a particular pre­
existing case
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Chapter 6 

Conclusions and Future work

6.1 Conclusions
The study of networks is an increasingly important part of complex sys­
tems research across many scientific disciplines. Following the discovery of 
transcription regulatory (gene) networks in the 1960s, early theoretical work 
focussed either on simple models of small networks (microscopic), or en­
semble behaviour of large networks (macroscopic). However, more recently, 
advances in mathematical and computational techniques have meant that 
more detailed models are possible, particularly of systems studied in devel­
opmental biology. If we are to address the evolution of (developmental) gene 
networks, sex determination networks are a good choice, since, among other 
things, they evolve rapidly. Of the well characterised sex determination net­
works, the most convenient for study in an evolutionary context is that of 
D. melanogaster, since the sex determination networks of a number of other 
insects are being elucidated (e.g. C. capitata). As more experimental data 
become available from high-throughput techniques such as microarrays, it 
has become possible to use these new data to refine existing models. The 
successes of topological feature analysis (such as scale-free networks and ” net­
work motifs”) give a clear indication of such uses.

The aim of this thesis has been to study the evolution of gene networks 
in sex determination using a modelling approach which takes into account
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the dynamic behaviour of the network, as well as evolution. The growing 
availability of molecular data for D. melanogaster and related insects means 
it is now possible to do such an analysis using real networks as reference, 
rather than hypothetical ones. The thesis is organised around two models: 
a simpler synchronous logic model (chapters 2 and 3), and a more complex 
hierachical model (chapters 4 and 5).

In chapter 2, a simple theoretical framework was proposed which com­
bines gene expression dynamics (the synchronous logic model), together with 
evolution (the concepts of neighbour and neighbourhood). The synchronous 
logic model permits us to define equivalence between two networks - defined 
as reproducing a given dynamics provided we start with the same initial 
state(s), which in turn allows us to find neighbourhoods which can perform 
the sex determination task with the same dynamics as the known network. 
One main result from chapter 2 shows that, not only is the set of networks 
able to perform the sex determination task large, but also that neighbour­
hoods within this set are large, suggesting that a high degree of flexibility is 
available without compromising the core functionality. A second important 
result is that the known network has relatively high local dynamic diversity, 
another indication of high flexibility. Whether or not a particular gene net­
work can produce a novel dynamic pattern will depend on two factors prior 
to a “network mutation” Firstly, the dynamics the network is required to 
produce, and secondly, the network architecture. From the analysis, we can 
conclude that evolution can overcome this dual constraint by taking advan­
tage of the combinatorial nature of networks, which lends itself to creating 
flexibility.

Since the known Drosophila network was sufficiently small, it was possible 
to reconstruct the entire set of equivalent networks, G, using an exhaustive 
algorithm. Although for larger systems reconstructing Q is not feasible, a 
recent analysis of the yeast gene network [18] suggests the number of inputs 
to each gene will in practice be small (93% of genes in yeast were found 
to have between 1 and 4 known interactions). As a consequence, partially 
reconstructing (within computationally feasible limits) only the set of most 
parsimonious networks M  may yield useful results. This assumption was
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put to use in chapter 3, which suggests how experiments involving large-scale 
perturbations can be designed to obtain reasonably accurate reconstructions. 
Keeping in mind that many proposed methods for gene network reconstruc­
tion require as many experiments as there are genes, the main result from 
chapter 3 is that a much lower number of experimental perturbations will 
improve accuracy substantially, particularly for low-order inputs, as long as 
the perturbations themselves alter the expression level of approximately half 
the genes in the network.

In chapter 4, a diploid hierarchical model is presented which integrates 
techniques from standard population genetics with network dynamics (us­
ing Ordinary Differential Equations). The model retains a similar, though 
slightly extended, model of network evolution to that introduced in chapter 
2. The discovery that the key Drosophila gene doublesex was highly con­
served has added support to a hypothesis proposed by Wilkins [86], that sex 
determination networks have evolved in a retrograde manner from bottom to 
top. Following this hypothesis, it is reasonable to make the assumption that 
the simplest-possible ancestral sex determination systems would be based 
on a single locus. The transition from a single locus system to a two locus 
system is analysed in chapter 4, and the further transition from a two locus 
system to a three locus system is considered in chapter 5.

In chapter 4, the two possible systems (male and female heterogamety) 
based on a single ancestral sex determining locus F were considered as start­
ing points. The conditions under which a new locus A becomes the new 
discriminatory locus were studied, with the ancestral sex determining locus 
becoming homozygous in both sexes. It was found that recruitment of a new 
discriminatory gene into a pathway is most likely due to a mutation in the 
recruited gene rather than in a gene from the existing pathway. Furthermore, 
the mutation must have a strong effect (as opposed to a small-effect point 
mutation, for example) on its target in order to provoke a transition. Transi­
tions resulting in a locus change predominantly lead to one of two outcomes:
(a) a dominant masculinizer at A downregulates F locus expression in males, 
or (b) a dominant feminizer at A upregulates F locus expression in females. 
Transitions not leading to a locus change, nonetheless lead to A locus re­
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cruitment in such a way that the ancestral discriminatory locus is switched 
between male and female heterogamety. It is argued that the recruited gene 
was probably neutral with respect to reproductive fitness. However, if we 
allow for the contrary possibility that the recruited gene may indeed have 
made an independent a priori contribution to fitness, conflicting patterns in 
fitness bias emerge between loci and between sexes (e.g. the same gene has 
a beneficial effect in males, a deleterious effect in females).

In chapter 5, the findings of the previous chapter 4 are extended to con­
sider the incorporation of a third locus (B) into the pathway. Again we 
consider locus transitions in which the new B locus becomes discriminatory, 
using the evolved networks from chapter 4 (in which the A locus is discrim­
inatory) as the starting point. As before, heterogamety transitions at the 
previously discriminatory (A) locus are also considered. The resulting tran­
sition rates turn out to be much lower than with one to two locus evolution. 
These low transition rates are in turn caused by strong requirements in the 
fitness contribution from certain loci, particularly the A locus. This suggests 
that differential expression at the A locus (rather than the original discrim­
inatory locus F) is the most important factor affecting recruitment of B as 
a discriminatory signal. Interestingly, the bias at A was again found to be 
negative (deleterious) for locus transitions, but in most cases positive (bene­
ficial) for heterogamety transitions. For locus transitions, the strongest bias 
affected the ancestral homogametic sex, whereas for heterogamety transitions 
it mostly affected the ancestral heterogametic sex.

As in chapter 4, it was found that mutations leading to a locus transi­
tion are most likely due to a strong-effect mutation in the recruited gene B. 
Among the evolved locus transition networks we observe certain similarities 
with known sex determination networks. For example, the most commonly 
observed locus transition led to a network which is qualitatively similar to 
that of C. capitata. A network we might reasonably expect to be ances­
tral to that of C. elegans was also observed at high frequency. In contrast, 
heterogamety transitions led to networks which have not been observed in 
nature, though interestingly, many of these networks developed a double in­
teraction to form a common “network motif” known as the feedforward loop
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[20].
The results of chapters 4 and 5 rely exclusively on computer simula­

tions. The recent growth in computational power has allowed problems of 
ever-increasing complexity to be addressed through simulation. However, 
this approach usually comes with a drawback in that often the results can­
not be properly explained, as they would be using a purely mathematical 
analysis. This drawback appears to relate in particular to the results of 
chapters 4 and 5, since for certain important model parameters, only three 
values (high/default/low) were evaluated. Two points should be mentioned 
here. Firstly, we should consider the research context in which such a study 
surfaces. It is common that, when a particular scientific question is first 
addressed (as is the case here), a simulation-based study will suggest a gen­
eral result which is later developed in greater detail. This has occurred, 
for example, with the issue of robustness in gene networks. A pioneering 
simulation-based study [39] has suggested that the Drosophila segment po­
larity network is both modular (in that its inputs can be rearranged with­
out changing the intrinsic behaviour), and robust to perturbations in the 
system parameters. A subsequent study [133] undertaken by a different re­
search group, has used mathematical techniques to explain certain aspects 
of the observed behaviour, vastly improving the understanding of the prob­
lem. Secondly, it is important to keep in mind that when a model contains 
crude assumptions, as this one does, the results must also be interpreted at 
a suitably coarse-grained level. Accordingly, one of the main aims of the 
study has been to evaluate the qualitatively distinct pre-existing cases (e.g. 
was the mutation likely to have occurred at the A locus?), and observing 
the outcomes in broadest possible way, with less importance given to the dif­
ferences in outcome for different parameter values within each pre-existing 
case. From the observations we also have been able to derive intuitive expla­
nations for many of the results, which, though fairly obvious in retrospect, 
had previously proved elusive.

Comparing the network evolution model introduced in chapter 2 with the 
more sophisticated model presented in chapter 4, a fundamental difference 
between them is that while the first model treated network transitions as be­
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ing neutral, the second model deals with directed, and irreversible, network 
transitions (of sex determination locus or heterogamety). In this sense evo­
lution is “directed” in the second model, where it was not in the first model. 
We can therefore consider that the second model in a way extends the first 
model by introducing a directionality to the neighbourhood.

6.2 Future work

In the last decade, the wide availability of DNA data has allowed the cre­
ation of accurate molecular phylogenies, with useful quantitative estimates 
of properties like branch lengths, which were previously unavailable. Molec­
ular evolution techniques have also helped researchers infer ancestral gene 
sequences, and some have gone as far as to synthesize (or ’’resurrect”) the 
purported ancestral proteins [134]. We propose that phylogenies can be used 
in a similar way with gene network models to generate hypotheses about 
network structures and their associated parameters. This evolutionary ap­
proach to network inference will help in understanding the order in which 
genes were added to networks, whether there are single or multiple origins 
and convergence, and aid in the reconstruction of ancestral networks. Taking 
advantage of these data, the model introduced in chapter 2 should now be 
extended in order to consider how networks evolve between species.

Using similar models to those of chapter 2, we have since done some 
preliminary investigations, and been able to find (by random sampling) evo­
lutionary paths of neighbours between two species, with the constraint that 
the networks maintain viability at each step. By assigning a symbol to ev­
ery possible network mutation, it is possible to represent each evolutionary 
path as a string of symbols. Since a large number of evolutionary paths were 
found, we have analysed the corresponding strings using Hidden Markov 
Models (HMMs) to look for patterns. Applying a standard first-order HMM 
method [135], some constraints were found. The method works by inferring 
a matrix pij, indicating the probability a mutation j  will occur at timestep i, 
taking only the previous state (timestep i — 1) into account. Although eas­
ily implemented, this method is suboptimal as the following simple example
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illustrates: Assume there are three nonrepeatable mutations (A, B, C) and 
we are given the valid strings (BAC, ABC, ACB). The task is to discover the 
(in this case, obvious) pattern that A always precedes C. The HMM method 
will show, for example, that C has zero probability of occurring at the first 
timestep, but that it can occur at later timesteps directly after either A or
B. Although helpful (in that a less specific pattern has been discovered), this 
output makes it difficult to discover the underlying relationships, particularly 
if they are complex. Given the limitations of this approach, a novel method, 
perhaps based on Bayesian inference, might be developed.

The work so far has concentrated on evolutionary paths between just two 
species (D . melanogaster and C. capitata, the Mediterranean fruitfly). The 
inference of the evolutionary paths is constrained much further by introduc­
ing a multi-species phylogeny, since all branches now participate in more than 
one path. The first, approach would be to assume network mutations (appli­
cable to both models) occur along the branches with frequency equal to the 
(scaled) branch length. This would require the development of an algorithm 
for generating random evolutionary paths which are statistically consistent 
with the branch lengths. The need for such an algorithm derives from the 
requirement that the number of mutations along a particular path be of in­
teger length (since for both models, we define mutations as discrete events), 
whereas on a phylogeny inferred from genetic data, they may be real-valued. 
For this, each integer path length would be taken from a discrete probability 
distribution with mean equal to the (scaled) real-valued phylogeny branch 
length. Before we can start though, we need to know the network structures 
for the leaf nodes (existing species) in the phylogeny, and this knowledge is 
at present extremely limited. However, a detailed re-creation of the evolution 
of the Drosophila network based on existing molecular data does exist [92], 
and this study along with emerging understanding in related species should 
be sufficient to build a phylogeny consisting of at least five species (using the 
species above and the domestic house fly [89], honeybee [49] and silkworm
[50]). Generating the phylogenetic tree itself (with branch lengths) is fairly 
straightforward, and could be achieved by reproducing and consolidating re­
sults from published phylogenetic analyses [136, 137, 138]
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