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Despite what the somewhat technical name might suggest, multiple cue probability learn-
ing (MCPL) problems are commonly encountered in daily life. For instance, we may have to
judge whether it will rain from cues such as temperature, humidity, and the time of year. Or, we
may have to judge whether someone is telling the truth from cues such as pitch of voice, level
of eye contact, and rate of eye blinks. While informative, these cues are not perfect predictors.
How do we learn to solve such problems? How do we learn which cues are relevant, and to what
extent? How do we integrate the available information into a judgement?

Applying a rational analysis (Anderson, 1990; Oaksford & Chater, 1998), we would answer
these questions by specifying a rational model, and then compare individuals’ judgements to the
model-predicted judgements. Insofar as observed behaviour matches the predicted behaviour,
we would conclude that people learn these tasks as rational agents. Here, we take a slightly dif-
ferent approach. We still use rational models, but rather than comparing predicted behaviour to
actual behaviour (a comparison in what we might call observation space), we make the compar-
ison in parameter space.

To be a little less obscure, let’s take an agent who must repeatedly predict share price from
past share price. A rational agent would make predictions which are optimal given an observed
pattern of past share price. The question is whether a real (human) agent makes predictions
as the rational agent would. Assume current share price Yt is related to past share price Yt−1

as Yt = βYt−1, where β is an unknown constant. In order to make accurate predictions, the
agent must infer the value of β from repeated observations of share price. A rational agent, with
optimal estimates w t , will make predictions ŷt = w t Yt−1. Since the relation is rather simple,
and the agent is rational, the inferences w t (and hence predictions ŷt ) will be accurate quite
quickly. Enter the real (rational?) agent, making predictions Rt . Rather than assuming these
predictions follow from rational estimates w t , we assume they are based on Rt = u t Yt−1, where
u t is a coefficient not necessarily equal to w t . Thus, we assume the same structural model for
rational and actual predictions, but allow for different parameters u t and w t . By comparing
u t to w t , we can see how the real agents’ learning compares to the rational agents’ learning.
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Moreover, we can compare both u t and w t to the true value β , to see how well the rational and
real agent adapt to the environment.

The values of u t can be estimated in different ways. A common approach is to assume
that the real agent learns in a similar way to the rational model; for instance, by changing u t

according to the error of predictions. To match the values of u t to the real agents’ predictions,
the changes are allowed to be of a sub-optimal magnitude. The fitted learning model is then
used to derive the values of u t . This procedure is reasonable if the agent learns according to the
model. However, as the estimates of u t are constrained by the learning model, they will be biased
if the agent learns in a different way. An alternative approach is to make minimal assumptions
regarding the process by which u t changes (i.e., not assuming the change is related to the error
of prediction), and estimate u t directly from the predictions and cues (e.g. Kelley & Friedman,
2002; Lagnado, Newell, Kahan, & Shanks, 2006). The resulting “unconstrained” estimates will
not be biased towards the learning model, and hence provide more information regarding its
validity.

The lens model

Our analysis owes much to Brunswik’s (1955) lens model. The lens model has its origins
in perception, and was proposed to describe how organisms perceive a distal (unobservable)
criterion, through proximal (observable) cues. Hammond, Wilkins, and Todd (1966) formulated
the lens model in statistical terms, and proposed it as a general framework for judgement analy-
sis. Since then, the lens model has been a standard tool in the study of multiple cue probability
learning (Cooksey, 1996). Figure 1 depicts a simple version of the lens model. The left hand side
of the lens represents the environment, consisting of the cues and the criterion. How well an
individual can perceive, judge, or predict the criterion (we will use the generic term “respond”
from now on), depends on the relation between the cues and the criterion. Adopting the stan-
dard terminology, we will refer to these relations as cue validity. The right hand side of the lens
represents the response system, consisting of the cues and the responses. The relations between
the cues and the responses reflect how an individual actually uses the cues in forming a response.
These relations are referred to as cue utilization. How well an individual performs in a multiple
cue task depends on the relation between the criterion and the responses; central to the lens
model is that this relation can be ascertained by comparing cue validity and utilization.

Usually, the parameters of the lens model are estimated by multiple regression analysis.
For instance, estimates of cue validity are obtained as the regression coefficients of a model
which relates the criterion to the cues. Similarly, by regressing the responses onto the cues, we
can obtain estimates of cue utilization. In its original form, the lens model is static, and pro-
vides constant cue validity and utilization weights for a period in time (e.g., the duration of the
task). As such, these estimates are valid under the assumption that the environment and the re-
sponse system are stationary. However, in a typical MCPL task, the environment is unknown to
the agent, who must infer its structure as the task progresses. As such, even if the environment
is stationary, the response system (which relies on these inferences) will be non-stationary. Of
course, we could apply the lens model after an extensive period of training, such that learning
will have converged to a particular representation of the environment. However, we are inter-
ested in the learning process itself, in how an agent learns to adapt his/her predictions to the
structure of the environment. To study this process, we must deal with non-stationarity.

Previously, “rolling regression” has been proposed as a method to estimate the changes
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Figure 1. The lens model.

in cue utilization (Kelley & Friedman, 2002; Lagnado et al., 2006). In rolling regression, the re-
gression model is repeatedly fitted to a moving window of trials. For a window of size W , cue
validity and utilization at trial t are estimated from regression models applied to observations
from trials t −W + 1 to t . While this method is a straightforward extension of usual lens model
analysis, it has certain drawbacks. For one, utilization and validity can only be estimated from
trial W onwards. Since the window size may have to be large to get reliable estimates, this will
be problematic if we are interested in the early stages of learning. And although the window size
allows manipulation of something akin to memory limits, the type of memory represented is not
very plausible. More particularly, each observation within the window affects estimates to a sim-
ilar extent, but observations outside the window have no effect. A more gradual form of memory
loss seems more appropriate. Finally, as a method of tracking slowly changing weights, rolling
regression is not optimal in a statistical sense. In this chapter, we will propose an alternative
method, which has clear advantages over rolling regression.

Overview

In the remainder of this chapter, we will first describe a generalized lens model, which is
still static, but incorporates situations in which linear regression is unsuitable. We then extend
this framework into a dynamic lens model, which is suitable for non-stationary environments
and response systems. Of particular interest in the context of rational analysis is that we can
replace part of the model with a rational learning model. This allows a comparison between the
structure of the environment, optimal inference, and actual inference as evident from the re-
sponses made. Finally, we will illustrate the methods by re-analysing data from an earlier MCPL
study (Lagnado et al., 2006).

A framework for MCPL

In multiple cue probability learning tasks, the objective is to make a prediction R of the
value of a criterion variable Y , on the basis of a number of cues X j . The relation between criterion
and cues X= (X1, . . . , Xn )T is probabilistic, and each cue pattern is associated with a probability
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distribution over the possible values of Y ,

P(Y |x) = P(Y , X= x)/P(X= x). (1)

This conditional probability distribution is initially unknown, and has to be inferred from re-
peated observations of training pairs (y , x) drawn from the environmental distribution P(Y , X).

Generalized linear model

We consider environments which fit in the framework of generalized linear models (Mc-
Cullagh & Nelder, 1983, see also Dobson, 2002). That is, we assume the conditional distribution
P(Y |X) to be a member of the exponential family, and the existence of a function g and parame-
ters β = (β1, . . . ,βm )T such that

g (µx ) = zTβ , (2)

where T denotes the (matrix) transpose. The link function g linearises the relation between
the criterion and the effective cue pattern z, which is a vector of dimension m . If Y is Normally
distributed, a good choice is the identity function g (µx ) = µx . When the distribution of Y is
binomial, a logit function g (µx ) = log(µx/(1−µx )) is often used. The effective cue pattern z is
related to the actual cue pattern x (a vector of dimension n) as

z= h(x). (3)

Often, h will be the identity function, so that the effective cue pattern is the original cue pat-
tern. This corresponds to the assumption that the cues affect the criterion independently. If this
assumption does not hold, the effective cue vector can be extended to include interaction be-
tween the cues. In this case, the dimension of z will differ from the dimension of x. When the
cues are categorical variables, function h will map the cue patterns to corresponding patterns
of dummy variables. Finally, function h can also represent the mapping of cue patterns to their
representations in some psychological space.

The lens model fits neatly into our framework. We assume that P(Y |X) and P(R |X) are of
the same form (e.g., both normal or both binomial), with expectations E (Y |x) = E (Y |z) =µz and
E (R |x) = E (R |z) =ρz , that g and h are identical for both the environment and response system,

g (µz ) = zTv, (4)

and
g (ρz ) = zTu. (5)

Here, v represents cue validity, and u cue utilization. For our purposes, it is crucial that h, and
as a result the effective cue vector z, is identical in both models. Without this equivalence, cue
validity and utilization are not directly comparable.

Since the dimension of v is usually smaller than the number of possible cue patterns,
learning is simplified. Rather than having to infer the conditional distribution (or expected
value) of the criterion for each cue pattern x directly, the agent infers the value of v, and de-
termines the conditional distribution from these. Estimates of v will be more reliable than direct
estimates of P(Y |x) or E (Y |x), and also require less storage in memory than a direct representa-
tions of these.
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Optimal responses

Associated with the response and the criterion is a loss function L(R , Y ), and the objective
for the agent is to give responses R = r ∗x to cue patterns x which minimize the expected loss

r ∗x = arg min
r

E (L(r, Y )|x). (6)

For real valued criterion and predictions, a squared loss function

L(r, y ) = (r − y )2, (7)

is often used, and the optimal prediction is the expected value

r ∗x = E (Y |x)≡µx . (8)

In terms of cue validity, this can be rewritten as

r ∗x = g −1(zTv), (9)

where g −1 denotes the inverse of the link function g . For nominal criterion and responses in the
same set, a 0-1 loss function

L(r, y ) =

(

0 if r = y

1 if r 6= y
, (10)

is usually appropriate, and the optimal prediction is

r ∗x = arg max
y

P(Y = y |x). (11)

When the criterion Y = {0, 1} is dichotomous, this can be rewritten in terms of cue validity as

r ∗x =

(

0 if zTv< 0

1 otherwise
. (12)

Dynamic lens model

As noted earlier, standard lens model analysis is static, by which we mean that validity
and utilization are assumed to be constant over trials t . In standard MCPL tasks presented in
laboratory studies, the environment is often stationary, so that this assumption will hold for cue
validity. However, as a result of learning, cue utilization will change with t . To study learning,
we need to take a dynamic viewpoint in which we explicitly focus on trial-by-trial changes in cue
utilization.

In dynamic lens model analysis, both cue validity and utilization are allowed to vary over
time. A graphical representation of the structure of the dynamic lens model is given in Figure 2.
To account for the changes in cue validity and utilization, we need a (stochastic) model for the
change process. In most MCPL experiments, the environment is under control of the experi-
menter, and the dynamics of cue validity will be known. Determining the dynamic process of
cue utilization will be more challenging. While there are many possibilities, the assumption of a
simple random walk will suffice in most cases. That is, we assume

ut =ut−1+et , (13)
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Figure 2. The dynamic lens model. Observed variables are depicted in squares, while unobserved (latent)
variables are depicted in circles. The criterion Yt is dependent on the effective cue vector zt and cue
validity vt . The response Rt depends on the effective cue vector and cue utilization ut . Cue validity vt

depends on previous cue validity vt−1, and utilization ut on previous utilization ut−1.

with et ∼N (0,Σu ), i.e., following a zero-mean multivariate normal distribution with covariance
matrix Σu . The model for the responses resulting from the combination of Equations 5 and 13
is known as a dynamic generalized linear model (West & Harrison, 1997). When the process for
environmental change is also unknown, a similar model can be used for cue validity.

Estimation of ut from all observations Rt , xt , t = 1, . . . , T , where T denotes the total
number of trials, is known as smoothing. When Σu is known and the conditional distribution
p (Rt |xt , ut ) is Normal with known variance, optimal estimates can be derived analytically, and
the solution is known as the Kalman smoother (e.g., Durbin & Koopman, 2001; West & Harrison,
1997). When Rt is not normally distributed, analytical solution are usually unavailable, and ap-
proximate methods must be used. In the application described later, we will use a Monte Carlo
Markov Chain (MCMC) procedure for this purpose.

Incorporating rational models

In the dynamic lens model, trial-by-trial variation in utilization is assumed to be indepen-
dent of (variation in) cue validity. While this assumption may be false if an agent makes accurate
inferences of cue validity, the assumption reflects the wish to “let the data speak for itself”. If
validity and utilization are indeed related, this should be evident from the (estimated) validity
and utilization weights. As such, the dynamic lens model allows one to analyse learning without
making explicit assumptions regarding how this learning proceeds. Of course, rational mod-
els do make such assumptions, which is part of their strength. To incorporate rational learning
models, we need to extend the response part of the dynamical lens model.

A graphical representation of the extended model is given in Figure 3. The model now
consists of three related sub-models, one for the environment, one for learning, and one for the
responses. The model of the environment, consisting of the criterion, cues and cue validity, is
identical to the one in Figure 2. The learning model consists of the criterion, effective cue pat-
tern, and inference. Here, the agent infers validity vt from training pairs (yt , zt ). We will denote
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Figure 3. A general model of learning and prediction in MCPL. The criterion Yt depends on the effective
cue vector zt and cue validity vt . Inferred cue validity wt+1 depends on the previous inference wt , effective
cue vector zt , and criterion value yt . Predicted cue utilization ût depends on the inferred cue validity wt .
The prediction Rt depends on predicted cue utilization ût and effective cue vector zt .

the inference of vt as wt . As before, the response model consists of the responses, effective cue
patterns, and cue utilization. In this context, utilization is referred to as predicted utilization ût ,
to distinguish it from the utilization in Figure 2. Predicted utilization does not depend on previ-
ous utilization, but on the current inferred cue validity wt , and changes in ût are taken to depend
completely on changes in wt .

The models in Figures 2 and 3 can be made equivalent by removing the links from zt−1 and
yt−1 to wt , and assuming identity of wt and ût . However, learning models which incorporate
these links are of main interest here. We will describe such models in the next section.

Learning in the Weather Prediction Task

Up to now, the models have been described in general terms. We will now apply them
to an MCPL task which has received much attention over recent decades, especially in the field
of neuroscience. In the so-called Weather Prediction Task (Knowlton, Squire, & Gluck, 1994),
the objective is to predict the state of the weather (sunny or rainy) on the basis of four “Tarot
cards” (cards with geometrical patterns). On each trial t , one to three cards are presented, and
the agent is asked whether the weather will be sunny or rainy. Each cue pattern x is associated
with the state of the weather with a different probability. These probabilities are given in Table 1.
The environment is constructed so that each card is associated with the outcome with a different
probability. For example, the probability of rainy weather is .2 over all the trials on which card 1
is present, .4 for trials on which card 2 is present, .6 for trials on which card 3 is present, and .8 for
trials on which card 4 is present. Thus, two cards are predictive of rain, one strongly (card 4), one
weakly (card 3), and two cards are predictive of sun, one strongly (card 1), one weakly (card 2). A
more detailed description of the weather prediction task can be found in Lagnado et al. (2006).
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Table 1: Learning environment in the Weather Prediction Task. P(sun|pattern) denotes the actual condi-
tional probability of sunny weather, while mz is the predicted probability (see text).

Pattern Cards present z Total P(pattern) P(sun|pattern) mz

A 4 0001 19 0.095 0.895 0.891
B 3 0010 9 0.045 0.778 0.641
C 3,4 0011 26 0.130 0.923 0.936
D 2 0100 9 0.045 0.222 0.359
E 2,4 0101 12 0.060 0.833 0.821
F 2,3 0110 6 0.030 0.500 0.500
G 2,3,4 0111 19 0.095 0.895 0.891
H 1 1000 19 0.095 0.105 0.109
I 1,4 1001 6 0.030 0.500 0.500
J 1,3 1010 12 0.060 0.167 0.179
K 1,3,4 1011 9 0.045 0.556 0.641
L 1,2 1100 26 0.130 0.077 0.064
M 1,2,4 1101 9 0.045 0.444 0.359
N 1,2,3 1110 19 0.095 0.105 0.109

Total 200 1.00

Environment

The environment consists of the criterion Yt and the cue patterns xt . The model of the
environment consists of the criterion, effective cue patterns zt , and cue validity weights vt . The
environment is stationary, so that cue validity is independent of trial t , and vt = vt+1 = v, for all
t . The criterion is dichotomous, and P(Yt = y |zt ) is constant and a Bernouilli distribution,

P(Y = y |x) =µy
x (1−µx )1−y , (14)

where we use the scoring of y = 1 for rainy, and y = 0 for sunny weather. Since the cues are cat-
egorical variables, with g being the logit-function, there will exist a function h and vector v such
that Equation 4 will hold1. The resulting model can be recognised as a logistic regression model.
For simplicity, we will let z be a binary vector of dimension 4, in which the elements are binary
dummy variables for the main effects of the four cues. In other words, the outcome is assumed
to be a function of the additive combination of the individual cue validities. The resulting values
for z can be found in Table 1, and the associated cue validities are v= (−2.10,−.58, .58, 2.10)T.

We should note that the model is not entirely correct, and the predicted values mz =
g −1(zTv) only approximate µx . In the correct model, z also contains dummy variables for all cue
interactions, resulting in a vector of dimension 14 rather than 4. For practical purposes, the re-
sulting 10 additional parameters were deemed unnecessary (and possibly detrimental, as the in-
crease in parameters will decrease the reliability of their estimates, and result in generally poorer
inferences in a limited data set). As can be seen in Table 1, the approximation with z is generally

1In general, for a binary cue vector x, h can be a function which maps x to a set of 2J dummy variables (J is the
dimension of x), representing an intercept, the main effects, and all possible (two-way, three-way, etc.) interactions
between the cues. The resulting saturated model has the same number of validity parameters as possible cue patterns
and can fit any set of conditional probability distributions P(Y |x) for these possible patterns x perfectly.
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quite close, but fails somewhat for the relatively rare patterns B, D, K and M. This is due to the fact
that the model assumes P(Y |pattern B) = P(Y |pattern K) and P(Y |pattern D) = P(Y |pattern M),
while in reality, they are different (e.g., the effect of card 2 is stronger in the presence of cards 1
and 4 than in their absence). Finally, as the deviations from the predictions mz are not drastic,
and there is much evidence to suggest that simple additive rules of cue integration are a default
strategy (Cooksey, 1996; Einhorn, Kleinmuntz, & Kleinmuntz, 1979; Hastie & Dawes, 2001), we
expect z to be adequate to model the responses.

Learning process

The objective for the agent is to infer cue validity v, and then base responses on these
inferences. There are many ways in which cue validity can be inferred. As depicted in Figure 3,
a restriction we place is that observations of the cues and criterion affect inferences only once.
In other words, we assume an on-line learning process, such that learning consists of updating
inference wt on the basis of yt and zt . We will describe two learning strategies in more detail, a
Bayesian and an associative procedure.

Bayesian learning.
On-line learning has a natural representation in Bayesian terms. In Bayesian learning, a

learner represents the uncertainty regarding v as a probability distribution over v. After each trial
t , this probability distribution is updated by incorporating the new evidence presented on that
trial. Letting Pt (v) denote the prior probability distribution, the posterior distribution after trial
t is the product of the prior distribution Pt (v) and the likelihood P(yt |v, zt ) of v for observations
yt and zt , i.e.

Pt+1(v) = P(yt |v, zt )Pt (v)/K (15)

where the proportionality constant K =
∫

P(yt |v, zt )Pt (v)d v ensures that Pt+1(v) is a probability
distribution. The likelihood is given in Equation 14. If the agent has to give a point estimate wt+1

of v, (s)he may give the posterior expectation of v, or the maximum a posteriori (MAP) value of v.
When we represent an agents’ learning state in terms of inference wt , we choose the first option.

Associative learning.
In associative learning, a learner adapts associations between cues and criterion on the

basis of observations. The Rescorla-Wagner model (Rescorla & Wagner, 1972) is a long-time
favourite for associative learning, and is equivalent to a single-layer feed-forward network, where
the weights are adapted according to the LMS (or delta) rule (Gluck & Bower, 1988). We use
a somewhat different representation than Gluck and Bower (1988) with a logistic rather than
linear activation function. This has the advantage that the model provides direct estimates of
the (conditional) probability of the criterion, rather than having to transform the activation later
to derive these probabilities. The associative model learns by a gradient descent on the cross-
entropy error (Bishop, 1995), resulting in the following rule for trial-by-trial updates of inferred
cue validity:

wt+1 =wt +ηt (yt −m t ,z )zt , (16)

in which ηt stands for the learning rate, and m t ,z is the current inference of the expected value
of the criterion

m t ,z = g −1(zT
t wt ), (17)
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with g −1 denoting the inverse of the (logit) link function. Note that if an identity link function
were used, Equation 16 would be identical to the weight updates of Gluck and Bower (1988). The
effect of the logit link function is that the absolute weights can grow without bound, while the
predictions m t ,z are still on the same scale as the criterion Yt .

Under certain conditions2, it can be shown that repeated application of Equation 16 will
result in inferences wt which converge to v as t →∞ (Robbins & Monro, 1951). A simple scheme
obeying these conditions is ηt = η/t . Another option, which does not guarantee convergence,
is a constant learning rate ηt = η, for which Equation 16 becomes the LMS rule (Gluck & Bower,
1988). With such a constant learning rate, wt will fluctuate around v as t → ∞, with variance
roughly proportional to η. Although inference with a constant learning rate is not consistent in
the statistical sense (the variance of estimations does not approach 0 as t →∞), it is preferable
over a decreasing learning rate when the environment is non-stationary (i.e., when vt changes
with t ).

Response process

Having inferred the cue validity weights, the agent must form a prediction. Under squared
loss, the (subjectively) optimal prediction would be r ∗t ,z =m t ,z , as in Equation 8. However, since
the agent must predict the state of the weather, and not the probability of a state of the weather,
this optimal response is not an allowed prediction. For responses Rt = {0, 1} in the same set as
the criterion, squared loss is identical to 0-1 loss, and the optimal prediction is as in Equation 11,
which can be restated as

r ∗t ,z =

(

0 if m t ,z < .5 (or equivalently zT
t wt < 0)

1 otherwise
. (18)

Since the optimal prediction is a deterministic function of zt and wt , the distribution P(Rt |zt )
for an optimally responding agent is degenerate (all probability mass is on a single point). This
is somewhat problematic for our model; therefore, we let the variability of predictions approach
0, rather than being 0 exactly. More precisely, we assume that responses are made by a variant of
Luce’s (1959) choice rule

P(Rt = 1|zt ) =
mλ

t ,z

mλ
t ,z +(1−m t ,z )λ

, (19)

in which parameter λ determines the consistency of responses. The effect of this parameter is
depicted in Figure 4. For a rational agent, λ→∞, so that the relation between m t ,z (the inferred
probability of the criterion) and the probability of the response approaches a step function. The
distribution P(Rt |zt ) is still a Bernouilli distribution, with parameter ρt ,z = g −1(zT

t ût ). Finally,
it is easy to prove (e.g. Speekenbrink, Channon, & Shanks, 2007) that the assumed response
function results in a linear relation between inferred validity and predicted utilization

ût =λwt . (20)

For a rational agent, absolute utilization weights are thus infinitely larger than the absolute in-
ferred validity weights. We will assume a similar response rule for actual individuals, but with λ
possibly not approaching infinity.

2These conditions are (1) limt→∞ηt = 0, (2)
∑∞

t=1ηt =∞, and (3)
∑∞

t=1η
2
t <∞.
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Figure 4. Effect of response consistency λ on the relation between m t ,z , the (inferred) expected value of
the criterion, and P(Rt = 1|zt ), the probability of response.

Application

Lagnado et al. (2006, Experiment 1) collected data from 16 healthy human subjects on the
Weather Prediction Task, and used rolling regression analysis to estimate rational inference and
cue utilization. Here, we will re-analyse their data using the dynamic lens and rational models.

Are Bayesian and associative learning rational?

The two learning models have different properties. Here, we will address how they com-
pare, assuming a maximising response strategy. To derive inferences wt from Bayesian learning,
we discretisized the parameter space (i.e., the domain of v) as a multidimensional grid with 74

equally spaced points, and then applied exact Bayesian inference on this grid3. A uniform prior
P1(v) was used. Such a uniform prior is optimal when no prior information about v is present,
and results in rapid convergence of w to v. For the rational version of the associative model with
decreasing learning rate, we used a learning rate of ηt = 5.66/t , where the constant (5.66) was
derived as 1 over the largest eigenvalue of the expected Hessian matrix, evaluated at the optimal
parameter vector. This is an optimal learning rate for the environment (e.g., LeCun, Bottou, Orr,
& Miller, 1998). For the associative model with constant learning rate, we used a value of ηt = .32
(this value resulted in the best predictions in a simulation study with 500 randomly generated
WP tasks of 200 trials each). For both associative models, the weights w1 were initialized to 0.

We used the three learning models to form inferences wt in 1000 simulated Weather Pre-
diction Tasks of 200 trials each. These inferences were then used to form responses by a max-
imising strategy, as in Equation 18. We then compared the expected performance of the rational
agents between the different models. For each set of trials, expected performance is computed

3We used grid points -3,-2,-1,0,1,2 and 3 for each cue.
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as
1

T

T
∑

t=1

rt P(Y = 1|xt )+ (1− rt )[1−P(Y = 1|xt )]. (21)

The maximum performance in the Weather Prediction Task is .83, which is only obtained
by giving the optimal response on each trial. The mean expected performance was .81 (SD = .01)
for the Bayesian model, .80 (SD = .02) for the associative model with decreasing learning rate,
and .81 (SD = .01) for the associative model with constant learning rate. These values are all
rather close to the maximum performance, and while the difference between the models is not
large, a repeated measures ANOVA shows it is significant, F (2, 1998) = 326.56, p < .001. Paired-
sample t-tests show that the Bayesian model performs significantly better than the associative
model with decreasing or constant learning rate, t (999) = 21.65, p < .001, and t (999) = 21.37,
p < .001, respectively, while the associative model with constant learning rate performed bet-
ter than the one with decreasing learning rate, t (999) = 13.16, p < .001. A maximising Bayesian
thus outperformed a maximising associative learner in this environment. It is somewhat surpris-
ing that the constant learning rate outperformed the decreasing learning rate in the associative
model. This is due to the fact that, in a few cases, relatively improbable cue-criterion pairs at the
start of the task pushed the model to a suboptimal solution. Due to the decreasing learning rate,
it then takes relatively long to move to the optimal solution. Thus, although convergence to the
optimal solution is guaranteed, and the optimal learning rate should result in an optimal rate of
convergence, actual convergence can be very slow due to “adverse” initial observations. Other
schemes, in which the learning rate only decreases after an initial period of constant learning,
can help avoid such problems.

Model fitting

Out of the three learning strategies, Bayesian learning was best. Here, we will compare the
different strategies in how well they describe participants’ learning. We fitted several versions of
each model to the data.

For the Bayesian learning model, we fitted versions with different prior distributions on
the weights v. All prior distributions were multivariate Normal, v∼N (0,Σ), with the covariance
Σ a diagonal matrix with elementsσ. The first model (B.0) was identical to the rational Bayesian
model used earlier, and had an uniform prior over v, i.e. σ→∞. In the second model, B.σ, we
estimated the prior standard deviation σ as a single free parameter. In the third model, B.σi , σ
was estimated separately for each individual. In all these models, we fixed the response scaling
parameter to λ = 1. We thus assumed a probability matching strategy, rather than a maximis-
ing strategy. Probability matching is often found in research with real subjects (Shanks, Tunney,
& McCarthy, 2002), so this is likely to describe participants’ responses better than a pure max-
imising strategy. Moreover, the models are more distinguishable under probability matching.
However, we also fitted variants of each model in which the response scaling parameter λi was
estimated as a free parameter for each individual. These models are referred to as before, but
with a λi added (e.g., B.0 becomes B.0.λi , B.σ becomes B.σ.λi , etc.). As before, the Bayesian
models were estimated by discretisising the parameter space. The parameters σ and λ were
estimated by maximum likelihood4.

4We maximised the likelihood of responses Ri t following from a Bayesian agent i learning about criterion Yi t and
responding according to the response process in Equation 20.
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Table 2: Model fits: pseudo-R2 and Bayesian Information Criterion (BIC). Best fitting models are signalled
in bold.

#par Model pseudo-R2 BIC Model pseudo-R2 BIC Model pseudo-R2 BIC
0 B.0 0.321 3010.51 A.0 0.222 3452.49 Ac .0 0.341 2922.98
16 B.0.λi 0.360 2967.14 A.0.λi 0.291 3273.68 Ac .0.λi 0.387 2846.08
1 B.σ 0.332 2971.92 A.η 0.261 3286.06 Ac .η 0.343 2921.72
17 B.σ.λi 0.374 2913.68 A.η.λi 0.295 3262.25 Ac .η.λi 0.388 2852.85
16 B.σi 0.354 2992.42 A.ηi 0.290 3275.89 Ac .ηi 0.370 2925.38
32 B.σi .λi 0.383 2995.35 A.ηi .λi 0.314 3300.86 Ac .ηi .λi 0.397 2933.39

We also fitted several versions of the associative learning model. As mentioned earlier,
we used a version with a decreasing learning rate, referred to as A, and one with a constant
learning rate, referred to as Ac . We fitted the rational versions described earlier, with learning
rate ηt = 5.66/t for model A.0 and ηt = .32 for model Ac .0. We also fitted models, A.η and Ac .η,
in which a single learning rate parameter was estimated as a free parameter, as well as models
A.ηi and Ac .ηi , in which the learning rate was estimated freely for each individual. In all these
models, we assumed probability matching, but we also fitted versions in which the consistency
parameter λi was estimated for each participant. As before, parameters η and λ were estimated
by maximum likelihood.

The results of the model fitting are given in Table 2. This table contains the values of
the McFadden pseudo-R2 (e.g., Dobson, 2002) and the Bayesian Information Criterion (BIC,
Schwarz, 1978). The pseudo-R2 represents the the proportional improvement in the log-
likelihood of the fitted model over a minimal model, and values between .20 and .40 are usually
taken to indicate good fit. The pseudo-R2 does not take the number of estimated parameters
into account. Since the versions of the models differ in this respect, the BIC provides a better
criterion for comparison. The pseudo-R2 of all models is in the acceptable range. However, the
associative model with decreasing learning rate is clearly outperformed by the other two models.
When we compare the Bayesian learning models with the BIC, we see that B.σ.λi fitted best. The
estimated parameter σ = .77 indicates that individuals learned slower than a Bayesian learner
with a uniform prior. The mean response consistency λi was 1.41, with a standard deviation of
.65. For the associative model with decreasing learning rate, the best fitting model was A.η.λi .
The estimated parameter η = 3.41 indicates slower learning than the optimal value (5.66). The
mean of λi was 1.07, with a standard deviation of 0.47. For the associative model with a constant
learning rate, the best fitting model was Ac .λi . Hence, there was no strong evidence that par-
ticipants’ learned at a different rate than optimal (indeed, the estimated learning rate in model
Ac .η.λi was η= .28, which is only slightly below the optimal η= .32). The mean of λi was 1.39,
with a standard deviation of 0.70.

Overall, model Ac .0.λi fitted the data best. This corroborates an earlier finding in an
experiment with amnesic and control groups (Speekenbrink et al., 2007), where the associa-
tive model with a constant learning rate also fitted best (although there, we did not include a
Bayesian model with estimated prior variance). The model fits are not informative as to the
reason for this better fit. Since inference wt converges to v for both the Bayesian model and
associative model with decreasing learning rate, but not the associative model with a constant
learning rate, the better fit of the latter could be due to this difference. To get more insight into
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the reasons for relative misfit, we compare the predicted cue utilization to the unconstrained
estimates of cue utilization.

Cue utilization

The dynamic generalized linear model was used to estimate the utilization weights. The
parameters ut in this model were estimated by MCMC analysis, using the WinBUGS software
(Spiegelhalter, Thomas, Best, & Lunn, 2003)5.

The estimated cue utilization profiles are depicted in Figure 5. As can be seen, most in-
dividuals adapted their utilization rather quickly to the environment. Moreover, the weights
diverge in the expected direction, and weights for strongly predictive cards (1 and 4) are more
extreme than those for weakly predictive cards (2 and 3). When we compare the cue utilization
weights to the cue validity weights (-2.10, -.58, .58, and 2.10 for the four cues respectively), we
see that for most participants, utilization weights are more extreme than cue validity, reflecting
a tendency towards a maximising strategy.

To gain some more insight into the validity of the different learning models, we can com-
pare the estimated cue utilization weights to those predicted by the learning models. In Figure 6,
we have done so for the best (1), closest to average (10) and worst performing (7) individuals. For
the best and average individuals, the utilization profiles predicted by best fitting models B.σ.λi

and Ac .0.λi are quite close to each other, and reasonably close to the estimated utilization. The
profiles predicted by A.η.λi are further removed. For the worst performing individual, all pre-
dicted profiles are very close to each other. This is mainly due to the low consistency parameter
λi , which was estimated around .5 in all three models. This individual hardly appeared to use
cards 3 and 4, and, while predictive of rain, used card 2 as predictive of sun (cue validity is nega-
tive, but utilization positive).

In Figure 7, we averaged the estimated and predicted utilization profiles over participants.
We also included the average rational inference wt , as derived from models B.0, A.0 and Ac .0.
Comparing the estimated utilization to the rational inference, we see that at the end of the task,
utilization weights were more extreme than rational inference, again indicating a tendency to-
wards maximising (i.e., consistency λ> 1).

Interestingly, the model-predicted utilization was closer to the rationally inferred validity
than to estimated utilization. While the consistency parameter allows predicted utilization to be
more extreme than the inferred validity, and hence closer to the estimated utilization weights,
on average, the estimated consistency parameter failed to match the two. As such, the models
predict responses to be more variable than estimated. There are a number of possible reasons
for this. First, we should note that due to the logit link function, differences on the higher ends of
the scale affect the probability of responses less than differences nearer the middle of the scale
(i.e., nearer 0). For example, the difference between u = 1 and u = 2 corresponds to a difference
in probability of .15, while a difference between u = 8 and u = 7 corresponds to a difference in
probability of 5.76×10−4. As such, matching observed to predicted utilization at the start of the
task is more important than matching them at the end of the task. That said, an interesting pos-
sibility is that consistency was not constant, as assumed, but increased over time. Comparison

5As a prior distribution for each cue utilization weight u j , we used an (independent) zero-mean Normal distri-
bution with a variance of 1. As a prior distribution for Σ, the covariance matrix of et , we used an inverse Wishart
distribution with 16 degrees of freedom and covariance matrix V = diag(1, 1, 1, 1). For all estimations, we ran three
parallel Markov chains, with a burn-in period of 4000 and a further 20,000 draws for the actual estimation.
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Figure 5. Cue utilization weights for each of the 16 participants. Strongly predictive cards (1 and 4) have
thick lines, weakly predictive cards (2 and 3) thin lines. Cards predictive of sun (1 and 2) have solid lines,
cards predictive of rain (3 and 4) broken lines.
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Figure 6. Estimated and predicted cue utilization weights for the best (top), closest to average (middle)
and worst (bottom) performing participants. Participants’ performance was computed by Equation 21.
Predicted utilization weights were derived from the best fitting Bayesian model (B), best fitting associative
model with decreasing learning rate (A) and best fitting associative model with constant learning rate (Ac )
(in the main text, these are referred to as B.σ.λi , A.η.λi , and Ac .0.λi respectively).

of the individual estimated and predicted utilization showed that, in most cases, they matched
quite well in the first part of the task, but that later on the task, estimated utilization started
to diverge from the predicted utilization. In those cases, the observed responses indicated a
pure maximising strategy6. At the start of the task, this pure maximising was clearly not evident.
Such possible changes in consistency deserve further attention, although their identification will
probably require strong constraints on the change process.

Comparing predicted utilization to rationally inferred validity, we see that the shapes of
the lines match more closely for the associative model with constant learning rate than for the
other models. While rational inference by the Bayesian model and associative model with de-

6While a pure maximising strategy corresponds to infinite utilization weights, the estimated utilization weights are
evidently not infinite. However, an absolute utilization weight of 11 (e.g., participant 1, cue 1, Figure 5), is practically
infinite, as the predicted probability of a suboptimal response to card 1 is approximately only 1 in 100,000. The
random-walk assumption, which predicts relatively smooth trial-by-trial changes in utilization, keeps the estimated
utilization within bounds.
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Figure 7. Mean estimated cue utilization weights (utilization), mean predicted cue utilization weights
(predicted) and rationally inferred cue validity weights (inferred validity), for the Bayesian model (B), as-
sociative model with decreasing learning rate (A) and constant learning rate (Ac).

creasing learning rate show quick convergence, rational inference from the associative model
with constant learning rate is more “linear” like the shape of the estimated utilization curves. By
decreasing the prior variance in the Bayesian model, learning becomes slower (and more “lin-
ear”). Although the associative model with constant learning rate fitted participants’ responses
best, the difference with the best fitting Bayesian model was not large. This is also evident from
Figure 7, which shows that the predicted utilization from both models is rather similar. As such,
the apparent gradual learning could be due to participants being conservative Bayesian learn-
ers, or associative learners geared towards a non-stationary environment. At present, there is
little to distinguish between these two accounts. However, environments encountered by partic-
ipants outside the laboratory will often be (slowly) changing. Hence, if learning is geared towards
non-stationary environments, this can be given a rational explanation.

Conclusion

In this chapter, we introduced the dynamic lens model and a general framework to study
learning in multiple cue probability learning tasks. As in the original lens model, the objective
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is to compare cue utilization to rational utilization and the structure of the environment. By al-
lowing utilization and validity to change over time, the dynamic lens model offers a fine-grained
overview of the learning process, allowing for a precise comparison of observed and ideal learn-
ing dynamics.

Applying the methods to the Weather Prediction Task, we showed that participants
learned to predict the criterion rather well. This learning was best described by an associative
learning model with a constant learning rate, and participants appeared to learn at an optimal
rate for the task. Furthermore, the average response consistency showed participants responded
in a better way than probability matching. However, using the dynamic lens model to obtain
relatively unconstrained estimates of cue utilization, we saw that participants’ responses were
more indicative of a maximising strategy than predicted from the learning models. As such, the
response part of these models failed to match predicted and estimated utilization. A possible
reason for this discrepancy is that participants’ became more consistent as the task progressed.
The discrepancy was only evident from a comparison between the unconstrained estimates of
utilization and those predicted from the rational learning models. This illustrates the advantages
of combining the dynamic lens model and rational analysis.

The sorts of interesting question our framework raises are: what happens in a changing
environment, how many cues can individuals learn about, how do results from tasks with a dis-
crete criterion, such as the weather prediction task, generalise to tasks with a continuous crite-
rion, such as forecasting share price? These questions will be addressed in future work.
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