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A b s t r a c t

This thesis consists of three chapters. The first two chapters concern lattice points 

and convex sets. In the first chapter we consider convex lattice polygons with 

minimal perimeter. Let n be a positive integer and || • || any norm in R2. Denote 

by B  the unit ball of || • || and V b ,ti the class of convex lattice polygons with n 

vertices and least || • ||-perimeter. We prove that after suitable normalisation, all 

members of Vb,ti tend to a fixed convex body, as n —> oo.

In the second chapter we consider maximal convex lattice polygons inscribed in 

plane convex sets. Given a convex compact set K  C R 2  what is the largest n such 

that K  contains a convex lattice n-gon? We answer this question asymptotically. 

It turns out that the maximal n is related to the largest affine perimeter that a 

convex set contained in K  can have. This, in turn, gives a new characterisation 

of Ko, the convex set in K  having maximal affine perimeter.

In the third chapter we study a combinatorial property of arbitrary finite 

subsets of Rd. Let X  C Rd be a finite set, coloured with colours. Then X

contains a rainbow subset Y  C X, such that any ball that contains Y  contains a 

positive fraction of the points of X.
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Introduction

The topic of this dissertation is combinatorial properties of convex and discrete 

sets in Euclidean spaces. We shall be considering three separate problems whose 

solutions are presented in three chapters (see also [PI],[BP] and [P2]). In the first 

two chapters we deal with convex lattice polygons in the plane and in the third 

chapter we study a combinatorial property of arbitrary finite subsets of R d.

A convex lattice polygon is a convex polygon whose vertices all lie on the 

integer lattice Z2. Let n G N be a positive integer and || • || be a norm on the 

plane. We consider the set of all convex lattice polygons with exactly n vertices, 

that is, convex lattice n-gons and for each fixed number of vertices n, we examine 

the n-gons that have the least perimeter with respect to a norm || • ||. In other 

words, we look for a polygon with edges x i , . . . ,  xn for which ^2 11®* 11 1S as small 

as possible. We denote the class of minimal polygons by V b ,ti, where B  is the 

unit ball of the norm.

In the first chapter we show that the polygons in V b ,ti have a ‘limit shape’. 

Namely, as n —> oo, all members of V b ,ti, after suitable normalisation, converge 

to a fixed convex body. We also describe this limit shape explicitly in terms of

B.

Inspired by a result of Arnold in [Ar80], Vershik was the first to pose the 

question of whether the members of some class of convex lattice polygons have 

a limit shape. Jarnik appears to have studied the concept of the limit shape 

in [Ja25], where he dealt with a strictly convex curve of length i  —> oo.

12



Introduction 13

Limit shape theorems have been the subject of interest of many papers. The 

most remarkable results, due to Barany, appear in [Ba95] (see also [Si] for a 

different viewpoint and [Ve94]) and [Ba97]. In [Ba95] it is proved that almost 

all convex L-lattice polygons contained in the square [—1 , l ] 2  are close to a fixed 

convex body. In [Ba97], this result is generalised to the case of convex —lattice 

polygons contained in a convex body K  C l 2.

The class of convex lattice polygons with minimal perimeter was studied by 

Stojakovic in [StOl] and [St03], for the case of the ^p-norm. In [StOl] he obtains 

the expression for the ^-perimeter of the convex lattice polygons having the 

minimal ^-perimeter, with respect to the number of their vertices, where p, q 

are positive integers or oo. In [St03] it is proved that as n —► oo, the south-east 

arcs of the convex lattice polygons having minimal ^-perim eter converge, after 

a suitable scaling, to a curve which is described explicitly in parametric form. 

In the first chapter we deal with the case of a general norm. Our approach is 

different from that of Stojakovic: in the previous work, the precise formula for 

the norm was essential. We avoid this by expressing the support function and 

the vertices of the limit shape as an integral over the unit ball of the norm.

In the second chapter, we deal with another limit shape theorem. Let K  C K 2  

be a convex body, that is, a convex compact set with non-empty interior. Consider 

all convex lattice polygons that are contained in K  and have maximal number 

of vertices. We determine the maximal number of vertices that a convex lattice 

polygon contained in K  can have. To be precise, let Z* =  be a shrunken copy 

of the lattice Z 2 (where we think of t as large) and define a convex Z* n-gon to 

be a convex polygon with exactly n vertices, all belonging to the lattice Zt. Now, 

define the number m ( K ,Z t) to be the maximal number of vertices ra, such that 

there is a convex Zt n-gon contained in K.  In Chapter 2, we begin by determining 

the asymptotic behaviour of m ( K ,Z t), as t —► oo. Consider now the set of all 

convex bodies S  that Eire contained in K.  It is known from [Ba97] that there
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is a unique convex body K q C K  which has maximal affine perimeter which we 

denote A(K). We show that m ( K , Zt) and A(A) are related. Moreover, we prove 

that as t —> oo, any maximiser for m ( K ,Z t) converges to K q. With the proof of 

this limit shape theorem, we derive a characterisation of the body K q. We also 

obtain some side results related to K q and K.

The problem of estimating m(K, Z t) goes back to Jarnik’s paper [Ja25] in 

which he asked and answered the following question: what is the maximal number 

of lattice points which lie on a strictly convex curve of length £, as I  tends to oo? 

His estimate is -57=  • £2/3(l +  o(l)). Prom this bound he concluded that when 

the strictly convex curve is the circle of radius r, a convex polygon contained 

in this circle has at most 3\/27rr2/3(l +  o(l)) vertices. This follows from our 

estimate as well. Andrews in [An63] showed that a convex lattice polygon P  has 

at most c(A reaP ) 1 / 3 vertices, where c > 0  is a universal constant, and generally, 

a convex lattice polytope P  C Rd with non-empty interior can have at most 

c/(volP)(d_1)/(d+1) vertices, where the constant d > 0  depends on dimension only.

In the third chapter we consider a problem which is of a different nature from 

the first two, in the sense that we are now moving to a combinatorial property 

of discrete sets. Here we are interested in finite sets X  c  in general position. 

Any d points in a d-dimensional space, define a hyperplane. “General position” 

means that no d +  1 points of X  belong to the same hyperplane. Let us consider 

the planar case first. Let X  be a finite set of points on the plane with no three 

points co-linear. Consider a colouring of the points of X  with two colours, say red 

and blue. We prove that any such set contains a pair of points, one red and one 

blue, with the following property: any disc that contains this pair, contains many 

of the points of A. By many we mean a positive fraction of the total number 

of points. In general we prove that any finite set I  C  l d in general position 

coloured with |_^-J colours contains a rainbow subset, that is a subset which 

consists of exactly one point of each colour, with the property that any Euclidean
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ball that contains it, contains a positive fraction of the points of X .  We show 

that the number of colours is best possible. We also provide an example where all 

points in any such ball (except for the points of the rainbow set itself) come from 

a single colour. In the final section of this chapter, we show that the result still 

holds if instead of Euclidean balls we consider more general families of subsets of 

R d.

This “points-balls” problem was introduced by Neumann-Lara and Urrutia 

in [NU8 8 ]. They proved a planar, non-coloured case, namely, that any finite set 

I c R 2 contains two points such that any disc that contains them, will contain 

at least \(n — 2)/60] points of X , where n is the number of points in X .  This 

expression was improved by Hayward in [Ha89] to \-^(n — 2)] and Hayward, 

Rappaport and Wenger in [HRW89] showed that if n(rc) is the largest number, 

such that for every n-point set X  on the plane, there exist two points x, y € X  

with this property, then |_n/27j +2 < n(n) < [n/4] + 1. The planar case was later 

generalised by Barany, Schmerl, Sidney and Urrutia in [BSSU89] to the case of 

I c M ' 1, and Barany and Larman in [BL90] generalised the d-dimensional result 

from the case of Euclidean balls, to the case of ellipsoids and more generally, 

quadrics in R d.

Our approach is in some ways similar to and in others different from those that 

appear in the previous articles. The planar result uses the facts that among any 

five points on the plane, there are four that form a convex quadrilateral n  and in 

any convex quadrilateral, one of the diagonals has the property that any disc that 

contains it, contains another vertex of n . To extend this to d dimensions what is 

used is the Gale transform by which n points in Rd are mapped to Rn_d_1. In the 

paper [BSSU89], d-1-3 points in R d are mapped into the plane. In both cases, a 

simple counting argument which we also use, gives the main result. A somewhat 

different approach appears in [BL90]. They observed that the family of quadrics 

in R d can be induced by halfspaces in Rm, by using a family of m  =  (d+ l)(d+ 2)/2
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functions. Using these functions, a set Z  C Rd of (m +  1) points is mapped into 

Rm. With these observations, the final element in their argument is the trivial 

fact that Z  is linearly dependent.

The coloured version, as it is often the case, requires a stronger tool. In our 

case it will be a beautiful result of Vrecica and Zivaljevic which is the following 

coloured Tverberg type Theorem from [VZ94]. (For other results of this type, and 

especially for the case of c?+1 colours, see [BL90] or [ZV92].) Let C\, C2 , . •., Cfc C 

Rrf be disjoint finite sets (colours), each of cardinality \Ci\ =  2 p — 1 , where p is 

a prime that satisfies p(d — k +  1) < d. Then there are p disjoint rainbow sets 

A i , . . .  ,A P C yJl=lCi whose convex hulls have a common point. We will apply 

this result for the case when p = 2, which is a coloured Radon type Theorem. 

The proof of this result uses topological methods.



Chapter 1 

The Limit Shape of Convex 

Lattice Polygons with M inimal 

Perim eter

1.1 Introduction and results

Let n £ N be a positive integer. A convex lattice n-gon is a convex polygon with 

n vertices all lying on the lattice Z2. We can define the perimeter of a polygon 

with respect to a norm || • || as the sum of the lengths of the edges, where the 

length is with respect to the specified norm. We shall consider the class of convex 

lattice n-gons having the least perimeter with respect to some given norm. This 

class was studied in [StOl] and [St03]. In particular, in [StOl] an expression for 

the ^-perimeter is given, for the convex lattice polygons having the minimal ip- 

perimeter, with respect to the number of their vertices, where p , q are positive 

integers or oo. In [St03] it is proved that as n —► oo, the south-east arc of 

the convex lattice polygons having minimal ^p-perimeter tends, after a suitable 

scaling, to a certain curve which is explicitly described in parametric form.

In this paper, we consider the case of a general norm. Let || • || be any norm on

17



Section 1.1. Introduction and results 18

R 2 and let B  denote its unit ball. For n a positive integer V b ,ti denotes the class 

of all convex lattice n-gons with least perimeter with respect to || • ||. We will call 

every member of Vs,n a minimiser. The perimeter of a minimiser Q(n) will be 

denoted by per(n). As we will show in Remark 1.4.1, per(n) is increasing. Since 

the perimeter is invariant under lattice translations, we shall always consider 

minimisers that are centred at the origin, if they are centrally symmetric. In the 

case that n is odd, the minimisers cannot be centrally symmetric but we shall 

show that asymptotically their centres of mass can also be taken to be the origin.

In this chapter we are dealing with the following question: As the number of 

vertices n tends to oo, do all sequences of minimisers, after suitable normalisation, 

converge to a fixed convex body? In other words, do the members of the class 

Vs,n have a limit shape?

Denote by hx(')  the support function of a convex body K  (the definition 

will be given in the next section). In Theorems 1.1.1 and 1 .1 .2 , the unit vectors 

uG  R 2  are vectors of length one with respect to the Euclidean norm. We prove 

the following limit shape theorem.

T heorem  1 .1 .1 . Let u E R 2  be a unit vector. I f  Q(n) E V b ,u for all n,

lim n~3/2ho(n) M  =  \ ^ — f  \x • u\dx,
Q( H ' 4 v/6(Area B f  JxeB

where the integration is taken over the unit ball B  of the norm.

It is sometimes more ‘convenient’ to express a polygon as the convex hull of 

its vertices. The vertices of Q(n) satisfy the following limit shape theorem.

T heo rem  1 .1 .2 . Let u € R 2 be any unit vector and let z(u) be the vertex of a

minimiser Q(n) which satisfies u • z(u) = max{w • x, x  € Q(n)}. Then

lim n~3/2z(u) = ^ ^  =  f  xdx.
n~*°° 2  A / 6 ( A r e a i ? ) 3 J x e B

x u > 0

Both theorems say that the members of V b ,u have a ‘limit shape’. We prove 

only Theorem 1.1.1. Theorem 1.1.2 can be proved using similar arguments. Note
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that the result of [StOl] can be recovered from Theorem 1.1.2 when the integral 

is taken over the unit ball of the lp norm.

The proof is composed of four steps. We first obtain an expression for the 

perimeter of a minimiser, when the number of vertices n belongs to a certain 

subsequence (nfc)£L0  °f N. We then extend the result to include any even number 

and then any odd number of vertices. We finally obtain the limit shape of a 

minimiser Q(n), for n € N. The cases of rife-gons and 2ra-gons are straightforward. 

Most of the difficulty arises in the case when n is odd.

It is worth mentioning that other limit shape theorems have also been ob­

tained, for example in [Ba95], [Si] and [Ve94]. It is proved that, as n —> oo almost 

all convex ^Z 2 lattice polygons contained in the square [—1 , l ] 2  are very close 

to a fixed convex body. The proofs of this result are essentially different from 

ours and are more involved: in our case, when the number of vertices belongs 

to (rik)kL1, the minimiser is unique. The size of the class of convex ^Z 2 lattice 

polygons contained in [—1 , l ] 2 is asymptotically expcn2/3.

1.2 Prelim inaries

Let P be the set of primitive vectors 2  € Z2, i.e. lattice points whose coordinates 

are co-prime. If P  is a convex lattice n-gon we can regard the edges of P  in 

the obvious way as a sequence of distinct integer vectors whose sum is 0. Our 

aim is to find n distinct, non-zero lattice vectors x i , . . .  , x n, which sum to 0  and 

with IWI as small as possible. In the case when n is even, we may restrict 

our attention to primitive vectors. In the case when n is odd this is not always 

possible. In Remark 1.2.3 at the end of this section, we discuss the case when n 

is odd.

Let i f  C M2 be a convex body, that is, a compact, convex set with non-empty 

interior and let u G K2 be a unit vector. The support function Hk(') of K  is given
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by

Ji k (u) = max{x • u : x  € K}.

A zonotope Z  C M2 is a convex body which is the Minkowski sum of finitely many 

line segments,
m m

z  = =  Zi e  [Xi,yii’ i = • >m }-
i =  1 i = 1

Let ti, t 2 , . . .  be the possible norms of primitive vectors, taken in increasing order 

and let rik be the number of primitive vectors with norm at most tk ■ Then rik is the 

number of primitive vectors contained in tkB and there are no primitive vectors 

in the interior of tk+\B\tkB. It is easy to see that since the set { p : p G  Pfl  tkB} 

consists of the shortest rik integer vectors which sum to zero, for the case of the 

rifc-gon, the minimiser Q(rik) will be the zonotope

Q(nk) =  X ]  (L1)
peFntkB

whose edges are the primitive vectors in t^B. Note that in this case, the minimiser 

is unique (up to lattice-translations). For convenience only, we will be treating 

Q(rik) as the O-symmetric zonotope

« ( » , ) - 1  £  h | , | ]
pePntkB

which is a translated copy of (1.1). This is not necessarily a lattice polygon but 

it has the same perimeter as (1 .1 ).

We will need to know the size of P fl tB  and more generally, of sums of the

form f{p)i f°r certain functions / .  Let K  C M2  be a convex body and
peFntB

denote by w{K)  the lattice width of AT, that is

w(K) = min max{w ■ (x — y) : x ,y  E K}.  (1.2)
w GZ2\ { 0 }

It is well known that the density of P in Z 2 is asymptotically 6/ir2. Thus, one 

would expect that

IPn  K\ «  krea.(K).
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This is indeed the case when w(K)  is large enough. We state in Lemma 1 .2 . 1  

below a slightly more general result which we will need. The proof of Lemma 1.2.1 

is given in Section 1.7.

L em m a 1.2.1. Let K  C M2 be a 0-symmetric convex body with w =  w(K)  > 3. 

Let f  : R 2  —» R be a homogeneous function of order a  > 0, i.e. f(Xx) = 

|A|Q/(;c), A e l .  Assume that \f(x)\ < c, for x  £ K, (for some constant c) and 

that f  varies by at most V  on any unit square Q intersecting K . Then

1 2  ~ 72 (  f ( x )dx
peF nK ^ x e K

< A rea (K)  +  42(c +  V) b g w '

An immediate consequence of Lemma 1.2.1, for the case when /  =  1, is a well 

known estimate for nk = |P D t kB | (see for instance [Ja25] or [BT04]). In this 

case, V = 0 and the lattice width w =  w(tB ) is within constant times t. For 

convenience, we will be using Landau’s big ‘oh’ notation, O(-).

Lemma 1.2.2. The number nk of primitive vectors contained in tkB , tk > 0 is 

|P n  tkB\ = t \  AreaB +  O f  j •
Remark 1.2.3.

In Section 1.4 we will see that a minimiser Q(n), where n is even, with nk < 

n < nk+1 , contains all nk primitive vectors from tkB  as edges and does not contain 

any edges longer than tk+i- Thus, an integer vector z  G Z 2 \P , with \\z\\ < tk+i 

cannot appear as an edge of Q(n), as it will contain a primitive vector p that has 

been used.

In Section 1.5 we will see that this is not necessarily true for a minimiser Q(n), 

when n is odd. In this case, not all primitive vectors from tkB  are necessarily used 

as edges of Q{n) and there can be minimisers whose edges are not all primitive 

vectors. It is not hard to see that these can only come from the set of edges that 

appear ‘alone’, i.e. z is an edge Q(n) but —z is not. Indeed, if there is a pair
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of edges ± v  from Z 2 \P , then it contains a pair of edges ±p  from P, of shorter, 

primitive vectors that have not appeared as edges. Replacing ± v  with ±p  gives 

a polygon with smaller perimeter. Hence, the only possible non-primitive edges 

come from the set of edges that appear alone and in Section 1.5 we will prove 

that these are few and short.

1.3 The case n — nk

1.3.1 The perim eter o f Q{nk)

We saw in the previous section that for the subsequence {nfc}j£L0  °f N, the min-
E r p p"

— -  . Thus, the perimeter of Q(nk) is
L Z Z ■peFntkB

per (nk) =  ^  ||p||.
peFntkB

Applying Lemma 1 .2 .1 , for f (x )  = ||x||, we get 

Proposition 1.3.1. The perimeter per (rik) of Q(rik) is

per(nk) = t3k j^  ^  ||x||dx +  O ( -^ )  j - (1-3)

or in terms of the number of vertices,

perK)=4/2 {vumF Lb Mdx+0 (!tS) } • (1-4)
Proof The expression (1.3) follows immediately if we apply Lemma 1.2.1 for the 

case f ( x )  = ||z||.

For (1.4) we have that nk = O(tl) and tk = 0 (n ^ 2) from Lemma 1.2.2.

Namely, from the expression for it is easy to see that

t k - v d ^ nl/2\ - clognk'
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Now, by replacing tk in (1.3) we get

p e rK )  =  n f  (^ 7 = = =  +  O ( ^ ) )  £  J  \\x\\dx + O („* lo g .,)
xE.B

_ ^ 3 / 2A  7r J\\x\\dx f l + O  ^ ^ Y \ +  0 ( n k lognk)
k t t 2 \J (6  Area jE?)3 J " " V V 7  7

x £ B

3J 2- 7== =̂==== f  ||x||da; +  0 (nfclognfc).
Ace#y/6(AieaB)3 JxeB 

Thus,

P e r K )  =  { v 6 ( a L b ) » L  lkll<te +  °  ( ^ )  }  '

□

1.3.2 The support function o f Q(rik)

As before, ^Q(nfc)(u ) denotes the support function of Q(nk), for u € R 2 a unit 

vector, hQ(nk)(u) — max{rr • u : a: € Q(nfc)}. For a zonotope Z  = 5»,

where 5i =  [—a'iU», a*v»], the support function is given by hz{u)  =  X]£=i ’ v*l

(see [Sch93]). Since Q(rik) is a O-symmetric zonotope, we have the following

Proposition 1.3.2. The support function of the minimiser Q(nk) is given by

*»<"*>(“) = H i l j x’u]dx+0112? ) } ’
or in terms of nk,

w « )  =  { ^ _  £ s  i .  • «irfx+ o  ( ^ ) } ,

/or  all u e R 2.

Proof We have that

\> (» » ) (“ ) =  S  l 9 ' “ = i  H  lp ' “ '
pePntfcB pePntfcB

p-it>0

where again we applied Lemma 1.2.1, for f (x )  = \x • u\. □
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Since we have determined the asymptotic behaviour of the support function 

of Q(rik) we have determined the asymptotic behaviour of Q(nk) itself, i.e.

Q(nk) =  {z G R 2 : £ • u  <  hQ{nk){u) ,u  G M2, IMI2 =  1}-

1.4 The case n =  2m

Our aim now is to reduce the case in which n is an even, positive integer 2m 

say, to the case already discussed. There is a k G N such that rik < 2m < n^+i. 

We can construct a convex lattice 2m-gon, Q(2m), with minimal perimeter by 

adding to the set of edges of Q(rik) any disjoint set of (2 m — rik) primitive vectors 

from tk+\B whose sum is zero. Since the shortest available vectors are used, the 

polygon will have minimal perimeter. As an even number of vertices is missing, 

we may obviously choose a union of pairs {<?, — <?}, q G tk+iB. These are not the 

only choices, but whatever minimiser we consider, all primitive vectors from tkB 

will be used and no edge will be longer than tk+i- These facts, combined with a 

bound on |njb+i — rik\ will show that as long as the required number of primitive 

vectors sum to 0  and come from at most tk+iB, the results obtained for perimeter 

(and the support function) can be extended to any even number. Clearly, in this 

case the minimiser Q(2m) is not unique, since the choice of a set of (2 m — n*,) 

primitive vectors from at most tk+iB is not unique. Passing, as before, to the 

0 -symmetric zonotope, we have that

n*; 2m

s(*")= E [-?■?]+ E
i —1 j —n k + 1

Pi€Pr\tk B q j ePnbd( tk + 1B)

Our problem is to show that, although there are many minimisers, they all have

essentially the same shape when n is large.
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1.4.1 The perim eter o f Q(2m)

To extend the results of the case n =  nk to any even number of vertices, we will 

need the following two remarks.

R em ark  1.4.1. Let n be any positive integer. Then, per(n) < per(n +  1).

Proof. Indeed, let Q (n + 1 ) be a convex lattice (n+  l)-gon with perimeter per(n + 

1 ). If we remove any one of its vertices and take the convex hull of the remaining 

n, we get a convex lattice n-gon with perimeter say per'(n). Obviously, per'(n) < 

per(n +1) .  Since per(n) is the least perimeter of a convex lattice n-gon, we have 

per(n) < per'(n). Hence, per(n) < per(n +  1). □

Note that equality in Remark 1.4.1 can only hold if the specified norm is not 

strictly convex.

R em ark  1.4.2. \nk+i -  nk\ =  0 (^ + i).

Proof. From the definition of the sequence nk it is clear that \nk+i — nk\ is the 

number of primitive vectors on the boundary of tk+iB. Therefore,

where the constant c > 0 depends on the perimeter of the unit ball B. So,

Proof. From the previous remarks we have,

|per(nfc+i)-p e r(n ) | =  |(per(nfc) +  K +i -  nk\tk+1) - (p e r(n fc) +  |n -  nk\tk+1)\

K + i -  nk| =  |P fl bd(tk+iB)\ < |Z2 fl bd(*fc+iR)| < ctM

|^fc+i Tik | 0 (^+ 1 ). □

P ro p o sitio n  1.4.3. The perimeter of Q(n), for n = 2m is

)}

^ ^ |̂ fc+l T lk l tk + l ^ d 'k + 1 ’
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So, per(n) =  per(nfc+i) +  0 (tl+1). Therefore, for n even, the perimeter in terms 

of n is

per(n) =  n
7r

^ 6 (AreaF? ) 3  JxeB[  imi<*
J xc-B

X  + 0 logn
. V n

(1.5)

□

1.4.2 The support function o f Q(2m)

P ro p o sitio n  1.4.4. The support function of any minimiser Q(n), for n = 2m 

is given by

=  r,3/2

for all unit vectors u G

7T

4-\/6(Area B)3

Proof The support function of Q(n) is,

nk
hQ(n){u)= J 2  \ ^ ' U + E

2771

i= 1 
Pi€P n t k B

P i - u > 0

j=rik +1 
9jePnbd (tk+1 B) 

qj  ’U > 0

Qj 
2 ' U (1.6 )

For the second sum, since any two norms on the plane are equivalent, we may 

assume that c i | | g j | |2  < \ \q j \ \  < C2 | | ^ | | 2 - Thus we have,
2 m

E
J=Tlfc +  l

9 jePnbd (tfc+1B)
qj  -u>0

^ 2 m  ^

- I  H  h j h  - \\u\\2 < ^ \ 2 m  -  n k\tk+1 < cnk+i.
j = n k+ 1

So,
2m

E
j = n fc +  l  

9j-6Pnbd(tfc+1B)
qj  ■ u  >  0

"2" U
= 0 (n*.+i) =  O(n).

The first sum in (1.6) is the support function of Q{nk). So /iQ(nfc) and /ig(n) differ 

by at most O(n). Therefore, for n = 2m

hQ(n) (m ) ^ ^  f  I 11 { \ ° & T—  =  / x • w d r +  O I  7=
4>/6(AreaB)3 \  \ /n

(1.7)

□
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1.5 The case n =  2m + 1

Let n = 2m +  1 be a positive odd number. As before we choose k £ N to 

be such that rik < n < nk+i- Since nk,nk+ 1 are even numbers, we have that 

rik < n — l < n < n  +  l <  rik+i. No minimiser Q(n) (as n is an odd number) 

can be centrally symmetric. There is no immediately obvious choice of a set of 

2m +  1  vectors which sum to zero to give Q{n) as there is in the case of an even 

number. We saw that for an even number 2m with rik <  2m  < n^+i, all edges 

are primitive vectors, all primitive vectors from tkB  are used and no primitive 

vectors longer than tk+i are used. In the present case it may be that none of 

these statements is necessarily true. Some of the edges that appear ‘alone’, that 

is, edges p for which — p is not an edge may not be primitive vectors. It may be 

that not all of the rik edges of Q(rik) are used and some edges may not belong to 

tk+\B. Therefore we need to know an upper bound for the lengths of the edges 

used. We also need to estimate the number of edges of a minimiser Q(n) that 

appear alone. We estimate these quantities in the next three lemmas.

Lemma 1.5.1. The length of each edge of a minimiser Q(n) is at most 2tk+i-

Proof Suppose there is one edge of Q(n) longer than 2tk+i- Then, from the 

definition of the minimiser for an even number of vertices we have

per(2 m +  2 ) =  per(2 m) +  2tk+i < per(2 m  +  1 ).

So, per(n +  1 ) < per(n). From Remark 1.4.1, this is impossible. □

Our aim is to find how many of these vectors do not come from tkB. For this, 

we will first need an upper bound for |J |, the number of edges of a minimiser 

that appear alone.

Lemma 1.5.2. The number of vectors not chosen in pairs is bounded above by 

cn3/4 \/\ogn, where c is a positive constant.
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Proof. Let {±Ui,i G /} , {v j , j  G J}  be the edges of a minimiser Q{n). So there 

are 2 |/ | primitive vectors that appear in pairs and \J\ single integer vectors, all 

of length at most 2tk+i, which sum to zero, with 2 |/| +  | J\ = n. Consider the 

following sets of vectors:

Ui = { ± U i , i  e l }  U {±Vj, j  G J}, U2 = { ± U i , i  G /}.

The vectors in both sets sum to zero and the sum of their lengths is obviously 

2per(n). Using Remark 1.4.1 we have,

2 per(n +  1 ) > 2 per(n) =  ||u|| +  \\v\\
u€.U\ V&U2

> per(2 ( |/ | +  | J |)) +  per(2 |/ |)

=  per(n +  | J |)  +  per(n -  |,/|).

Thus we have

2 per(n +  1) > per(n — | J |)  +  per(n +  | J |) . (1.8)

Since in (1.8) the numbers n +  l ,n  — \ J \ ,n  +  \ J\ are all even, we can use the 

expression (1.5) for the perimeter for an even number of vertices and obtain an

upper bound for |J |. In (1.5), set D =   §xeB\\x\\dx and A  for the

constant implied by the 0  notation. We know that \J\ < n, but we need a slight 

improvement of this. Prom (1.8), we have,

2(n +  1)3/2D(1 +  j jE i )  > per(n -  | J\) +  per(n +  | J\)

> per (n +  | J |)  =  (n +  | J |) 3 / 2 L>(1 +  ^ 2 ),

where Ei, E 2 are the error terms. For n sufficiently large and since (5/3 ) 3 / 2 > 2, 

this gives,
/ 5  \ 3/2
( 3  n \  D > ( n  + \J\)3' 2D

and hence | J\ < (5/3 — 1 )n — | n. Inequality (1.8) can be written

{“- *'0 0 } >- 1“- {D -
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=  {(™ -  \ J \)3/2 +  +  \J\)3/2} D

-  A{(n - \J\) log (n -  | J |)  +  {n +  | J\) log(n +  | J|)} . (1.9)

Using the fact that 0 < | J\ < |n  we get,

5 5
(n -  | J |)  log(n -  | J |)  +  (n +  | J |)  log(n +  | J\) < n  logn +  -n lo g  - n

O O

< 3nlogn.

Combining this with (1.9) we get, 

and hence

1 _ M ) 3 : ( 1 + M ) 3 / 2 u < 2 i ? ( 1 + i ) 3/2+ 5 ^ .
n J \  n J I \ nJ v n

Using the Taylor expansions of the functions (1+a : ) 3 / 2 and (1—x)3/2, for x  G (0 , 1 ) 

we get that

and (l +  I ) 3 / 2 < l  +  -  +  d j < i - f _ l .  So\ n / n n 1 n

v n J  2 y/n 

from which we finally get

\J\ < cn3/4y/logn. (1-10)

□

Write En =  {±Wi, i G 1}  U j  G </} for the set of edges of Q(n) and 

Enk+1 =  P fl tk+iB for the set of edges of Q(rik+1 ). In the next lemma we show 

that the size of the symmetric difference of En and Enk+l is small.

L em m a 1.5.3. \Enk+1A E n\ < 2\J\ +  c'y/rik+i < Scn3̂ 4y/\ogn.
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Proof. Write I  as the disjoint union I  = I-ms U / out» where / ins are the edges that 

appear in pairs and that come from inside tk+iB  and Iout are the edges that 

appear in pairs and come from outside tk+\B. We distinguish two cases.

Suppose /out 7  ̂ 0- This implies that for each pair of vectors {— p,p}  from 

either one of the vectors — p and p or both, appear as edges of Q{n). Indeed, 

if we suppose that neither — p nor p has been used, then by replacing a pair 

±Pi,i € /out with {— p,p} we produce a polygon with smaller perimeter which 

is impossible. Thus only single vectors from inside tk+\B  are missed. But since 

tk+iB is symmetric, the number of single vectors missed from tk+\B  is equal to 

the number of single vectors used from tk+\B. But the total number of single 

vectors that are used as edges of Q{n) is |J |. So, at most \J\ vectors from tk+\B  

do not appear in En. Therefore |l?nfc+1 \i?n| < | J\. Moreover, this implies that 

at least \nk+i — |J || edges of Q(n) come from inside tk+\B and therefore at most 

|n — (rik+i — |«/|)| remain to be used from outside. So,

\En\ E nk+1\ < |n -  (nk+i -  |J |) | < \nk+i -  n\ +  \J\ < \nk+1 -  nk| +  \J\

< c'y/nk+1 +  | J |.

Thus in this case,

\Enk+1 A E n\ < 2| J\ +  c'y/nk+i < 3cn3/4y/\ogn.

Suppose /out =  0- Then no pair of edges of Q(n) comes from outside tk+iB. 

Therefore only the edges of Q(n) that appear alone can come from outside tk+iB, 

which implies that \En\ E nk+1\ < |J |. Also, all |/ | pairs of edges of Q(n) come 

from inside tk+iB , so, at least 2 |/| of the vectors of tk+iB appear as edges in 

Q(n). Therefore at most \nk+i — 2 |/ || vectors are missed out, i.e.

|Enk+1\ E n\ < \nk+i -  2 |/ || =  K + i -  (n -  |J |) | < \nk+i -  nk\ +  \J\

< C y / 7 l k + 1 +  | J\.
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Again, in this case,

\Enk+1A E n\ < 21 J\ +  c'y/nk+i < 3cn3/4y/\og

□

n.

1.5.1 The perim eter o f Q{2m -f 1)

We are finally in a position to compute the asymptotic behaviour of the perimeter 

for n odd. We have that \Enk+1A E n\ < 3cn3̂ 4y/\ogn and the length of each edge 

of a minimiser Q(n) cannot exceed 2tk+i- So, for the perimeter of Q(n) we have,

|per(nfc+i) -  per(n)| < ^  ||p|| < \Enk+lA E n\2tk+1 < 6c'n5/4y/\ogn.
&En

Therefore,

per(n) — n3̂ 2
7T

i / 6 (Area B )3
< cf'n5̂ 4 y/logrij

x£B

and so,

per(n) =  n
7T

^/6 (Area B )3 J  1 4 >x  +  0
yjlogri

n 1/4
.

xEB

□

1.5.2 The support function o f Q(2m +  1)

Since a minimiser Q(n) has an odd number of vertices, it is not centrally sym­

metric. We shall show however that asymptotically there is a natural translate 

of each minimiser, whose centre of mass is close to the origin and that these 

translates converge to the same (O-symmetric) limit shape as the minimisers for 

even n. Indeed, Q(n) may be taken to be the Minkowski sum of the O-symmetric 

zonotope Z \ ~  Yliei ±Ui and the polygon P<i = YljejQj- ^  we choose P2 so that 

the edges {v j , j  = 1, . . .  | J\} are numbered in increasing order according to their
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slopes and place v\ at the origin, then it is easy to see that P2 is contained in a 

ball of diameter at most | J\ • yfn < cn5̂ 4y/logn. Once we apply the appropriate 

normalisation 1 /n 3/2, what we get for the centre of gravity xo of a minimiser Q(n) 

is ||x0|| < ^ i f r • Therefore, for the support function of a minimiser Q(n) for the 

case n odd we have,

ho(n) M  — n3/2— . ^ --------  /  \x • u\dx
Q( H ' 4v /6 (Area B )3 JxeB

< c'n log n +  c"n5/4 \/log n

< cn5̂ 4 y/logn.

Therefore, for n = 2m +  1 odd

kQ(n){u) =  { v 6 (A r e a B )3 . L  '* ' +  °  ( ^ )  }  ' (1’U)

□

1.6 The lim it shape Theorem

We can now prove Theorems 1 .1 . 1  and 1.1.2. All minimisers, after the appropriate 

normalisation, converge to a fixed convex body, as the number of vertices n tends 

to 0 0 . We prove only Theorem 1.1.1; Theorem 1.1.2 can be shown similarly.

P ro o f  o f T heorem  1 .1 .1 . Prom the expressions 1.7 and 1.11, for any n 6  N we 

have,

/ \x • u\dx 
J x E B

hQ(n) ( ^ 0

n3/2 4v/6(Area£ ) 3
< c1

/ yiog n
n 1/4

Therefore,

lim n 3/2hQ{n)(u) = \
7T

4 -y/6 (Area B )3
/ |a; • u\dx.

J x E B

□
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1.7 P roof o f Lemma 1.2.1

In this final section we give a proof of the crucial Lemma 1.2.1 which we used 

throughout the preceding sections. We will use the Mobius function

1 , if d = 1

=  0 , if p2\d, for some prime p

(—l) fc, if d — pip2 "  'Pk, where pi s are distinct primes

We mention here two equivalent forms of the Mobius inversion formula, which 

will be used in the proof of Lemma 1.2.1 below. From the second form we will 

only need the s =  2  case. For details see [HW79] or [Ap76].

d=l

Proof. Let us be reminded that our aim is to prove that, the sum of the values 

of a function /  : M2 —* R, over all primitive vectors in a plane convex body K

provided that /  is bounded on K  and it does not vary much over a unit square 

that intersects K.

We may assume that K  is in standard position. This means that the lattice 

width of K , w(K)  =  w, is obtained for w =  (0,1) in (1 .2 ). Write [—v/2, v/2] for 

the intersection of the z-axis with K.  Once we have fixed K  so that the lattice 

width occurs in the direction (0 , 1 ) we may further assume that after a suitable 

shear, the tangent to K  at the point (u/2,0) has slope between 1 and 0 0 . Using 

the fact that the width of K  in the directions (1,1) and (1,0) is at least w, we 

have that 2v > w. Denote by P (K) and Area(K) the perimeter and area of K

0 , otherwise
( 1. 12)

(1.13)

OO
where £(•) denotes the Riemann zeta function, ((s) = jj.

can be approximated by the integral of /  over K  times the density of P in Z2,
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respectively. Under these assumptions, we get

v w
< Area(if) < v w  (1-14)

and

P (K) < 2v +  4 w <  1 0 t> <  1 0 Area(^ ) . (1.15)
w

The method is standard: we use the Mobius inversion formula (1.12) and re-write

^  f(p)  as follows.
pePnK

oo

X f ( p ) = X /w X ^  = X ^  X •fw
pePnx z=(k,i)eZ2nK d\k,d\i d= l *=(fc,/)ez2nK'

|w j

= XM«o X /(<m>
d=i wei?r\\K

which gives,
LWJ

X /(*>) = x ^ k  X  ■ft™)- (1-16)
pePnK d= l ™ez2niA:

by the homogeneity of / .  As the sum is now over all lattice points in Z 2 fl 

we shall approximate it with the integral over ^K.  In order to do so, let us write 

Q (w )  for a unit square intersecting and centred at w  G Z2. We call w inside

and write w ins, if Q (w ins) lies entirely in the interior int(^Af) of boundary

and write wbd, if Wbd € in t(J/f) but Q(wbd) H \ K C 7  ̂ 0  and outside, u w , if 

Wont & 2 ^  kut Q(wout) D \ K  ^  0 . In the next claim we compare the second sum 

on the right hand side of (1.16) with the integral of /  over

Claim 1.7.1.

Proof. Clearly, the number of lattice points in is the number of Wins and Wbd•

* V ^ A l * t K )  + ( c + V ) ^ .
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Using this, we can write for the integral of /  over l i f ,

[  f (x)dx  = V  f  f i x )dx +  V  [  f(x)dc
Jx^ K w=wins JQi™) w=Wbd JQ ( ^ K

+ f  f(x)dxw=WoutJQ ( ^ dK

= V' f  f (x )dx  — V"' j f (x )dx
w€Z * n \K JQWa

+  [  f (x )dx  (1.17)
. . . "  J Q ( w ) n ± KW — W o u t  ~ d ^

For the first sum in (1.17) we have,

Q(w)

from which we get,

[  f (x )dx  — f(w) < f  \f(x) -  f (w)\dx <V,  
J Q(w) JQ(w)

5 3  / m  -  5 3  /  f W d x
weZ2n^Kwel.2r\±K

< V \ Z 2 n - K \  (1.18)
d

Now we need a bound on |Z2  fl \K\.  This can be obtained as follows,

|Z2 fl ^K \  = ^  1  =  ^  Area(Q(u;)) < Area +
W Ew in 3Uwbd w € w insUwbd '  '

where the last term comes from (1.15) and is the perimeter of the smallest box 

that contains \ K .  Hence,

lOv
T ’

|Z2 n i t f | < l A r e a ( t f )  +
10u
d

20u

(1.19)

The second and third sums in (1.17) are at most c——. Therefore, if we com­
et

bine (1.17), (1.18) and (1.19) we get,

13 /  h  f ^ dx
T 2  n i l /  a  J x ^ Kwel?c\\K

where we applied change of variables and the homogeneity of / .  This completes 

the proof of the Claim. □
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Combining Claim 1.7.1 with (1.16) we get,

/  /<*)*
p e F n K  d =  l  « /xeK

LWJ

d =  l

[wj

d = l

which yields,

LWJ / n  /. M  ME /(^“E -̂ - / ^Areaf^J^ + fc + V)20®̂ -,
p eP n K  d =  l  d = i  d = i

( 1.20)

where we used the fact that \f^(d)\ < 1. Now using the inequalities

M ^

X  -  < 1  +  log [wj < 1  +  log w,
d =  1

and
LwJ

E fi{d) 6

d2 7r2
d = l

we get from (1 .2 0 )

E
d =  LwJ+1

H(d)
d2

OO~  M d ) |
d2 . ' d2 " [wj ^ w ’

1 1 2

d = |w j + l rf=[wj+i

X ]  f(p) -  j K f ( X)dx ^  ^  j K f ^ dX+ ^ 2 V  Aie ̂ K )
pePn/f

Prom this, using (1.15) we get

E /(p)-^//(*)<*
pePnK

+ 2 0 u(c +  1 / ) ( 1  H- log w)

< — Area(if) +  ^ r V  Area (K)
W  7T

+ 2 0 u(c +  1 ^ ) ( 1  H- log w).

< Area(A')— +  -^V' Area(A')

+  Area(A')

Now using the fact that w > 3 we get (finally!)

W  7T

40(c +  V){1 +  log w)
w

pePnA'
which is what we were supposed to prove.

< Area(i^) ( \ v  + 42(c+^)l0gW

□
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Remark 1.7.2.

It would be interesting to see whether the result of this chapter holds when B  

is not the unit ball of a norm. Suppose B  C I 2 is a convex body, with centre of 

gravity at the origin, but not necessarily O-symmetric. Is there a limit shape for 

the convex lattice polygons with minimal perimeter with respect to their vertices, 

when the perimeter is taken with respect to B1



Chapter 2 

On M aximal Convex Lattice 

Polygons Inscribed in a Plane 

Convex Set

2.1 Introduction and results

Assume K  C R 2 is a fixed convex body, that is, a compact, convex set with 

non-empty interior. Let Z2 denote the (usual) lattice of integer points and write 

Zt = |Z 2: a shrunken copy of Z2, when t is large. A convex Z* lattice n-gon is, by 

definition, a convex polygon with exactly n vertices each belonging to the lattice 

Zf. Define

m ( K , Z*) =  max{n : there is a convex Z* lattice n-gon contained in K}.

In this chapter, we determine the asymptotic behaviour of m(K,  Zt), as t —> oo. 

Let A(K) denote the supremum of the affine perimeters of all convex sets S  C K.  

(Section 2.2 is devoted to the affine perimeter and its properties.) We now state 

the main result of this chapter.

38
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Theorem  2.1.1. Under the above conditions

Let AP(5) denote the affine perimeter of a convex set 5  C R2. It is shown 

in [Ba97] (see also Theorem 2.3.4 below) that there is a unique K q C K  with 

A F(K 0) =  A(A). This unique K q has the interesting “limit shape” property 

(see [Ba97]) that the overwhelming majority of the convex Zt lattice polygons 

contained in K  are very close to K q, in the Hausdorff metric. This property 

applies to the case of maximal convex lattice polygons as well. Let dist (•, •) 

denote the Hausdorff distance.

Theorem 2.1.2. For any maximiser Qt in the definition of m ( K ,Z t),

lim dist(Q*, K q) = 0.
t —> oo

The problem of estimating m(K, Z t) has a long history. Jarnfk proved in [Ja25] 

that a strictly convex curve of length t  in the plane contains at most

- k - ^ + ° (i))

lattice points and that this estimate is best possible. When the strictly convex 

curve is the circle of radius r, Jarmk’s estimate gives that a convex polygon 

contained in this circle has at most 3 v ^ 7rr2/3(l +  o(l)) vertices. The same bound 

follows from Theorem 2.1.1 as well.

Andrews [An63] showed that a convex lattice polygon P  has at most 

c(A reaP ) 1 / 3  vertices where c > 0  is a universal constant. The smallest known 

value of c is (8 7 T2 ) 1 / 3  < 5 which follows from an inequality of Renyi and Su- 

lanke [RS63] (see [Ra93]), but we will not be needing this fact. We will use 

Andrews’ estimate when dealing with degenerate triangles T. In the AT, Z* set­

ting, this implies that

m(AT, Z t) < 20t2/3(AreaT ) 1/3. (2 .1 )
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Remark 2.1.3.

The lattice points on the curve giving the extremum, form a convex lattice 

polygon, which is called Jarnfk’s polygon. It is clear that its edges are “short” 

primitive vectors. This phenomenon will reappear in the proofs of Theorems 2 .1 . 1  

and 2 .2 .1 .

Remark 2.1.4.

Actually, Andrews [An63] proved much more: namely, that a convex lattice 

polytope P  C R d with non-empty interior can have at most c(volP)(d-1^ d+1) 

vertices where the constant c > 0  depends on dimension only.

2.2 Affine perim eter

In this section we collect some facts concerning the affine perimeter that will be 

used in the proofs.

Let C denote the set of convex bodies in M2, that is, compact convex sets with 

non-empty interior. Given S  € C, choose a subdivision x i , . . .  , x n,x n+i =  x\ of 

the boundary dS  and lines i =  1 , . . . ,  n supporting S  at X{. Denote by i/i the 

intersection of ii and £i+\ and by 7* the triangle conv{xi, 2/i, £j+i} (and also its 

area). The affine perimeter AP(S') of S  G C is defined as

n

AP(S) =  2 lim \/T\,
1 = 1

where the limit is taken over a sequence of subdivisions with maxi...)n \xi+i —Xi\ —> 

0. The existence of the limit and its independence of the sequence chosen, follow 

from the fact, implied by the inequality in (2.4) below, that y/Ti decreases 

as the subdivision is refined. Therefore, the affine perimeter is the infimum,

n

AP(5) =  2  inf ̂  \ f f i .
1 = 1
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It is easy to see that (see also the property in (2.2.1) below) the affine perimeter 

is invariant under area preserving affine transformations. Note also that, by the 

definition, AP(P) =  0, when P  is a polygon.

The same definition applies for a compact convex curve T: a subdivision 

x i , . . . ,  xn+i on T, together with the supporting lines at defines the triangles 

Xi , . . . ,  Tn, and A P(r) is the infimum of 2 XT=i v ^ -

Alternatively, given unit vectors d i , . . .  ,dn+1 (in clockwise order on the unit 

circle), there is a subdivision x \ , . . .  , £n+i on T with tangent line ti at X{ which 

is orthogonal to d*. The subdivision defines triangles T i , . . . ,  Tn, and
n

A P(r) =  2 i n f £ ^
1 = 1

where now the infimum is taken over all n and all choices of unit vectors 

d i , . . . ,  dn+1 . Note that the triangles Ti are determined by T and d i , . . . ,  dn+1

uniquely (unless di is orthogonal to a segment contained in T in which case we

can take the midpoint of this segment for Xi). We will call them the triangles 

induced by directions d i , . . . ,  dn+1 on I\

2.2.1 P roperties o f the map AP : C —> R

We mention here some properties of the map AP : C —► R that will be used 

throughout the chapter.

(2 .2 .1 ) A P(LS) = (detL ) 1 / 3 AP(5), for L:  R 2  M2 linear.

(2.2.2) If the boundary of S  is twice differentiable, then

A P ( 5 ) =  f  K1/Sd s=  f  r2/*d(t>,
Jas Jo

where k is the curvature and r  the radius of curvature at the boundary

point with outer normal vector u((f>) = (cos</>, sin 0 ).

(2.2.3) Given a triangle T  = conv{po>Pi,P2 }, let D = D (T ) be the unique parabola 

which is tangent to poPi and P1P2 at po and P2 respectively. Among all
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convex curves connecting po and P2 within the triangle T, the arc of the 

parabola D is the unique one with maximal affine length, and AP(D) =  

2 \/T.  We call D the special parabola in T.

(2.2.4) Let T  be the triangle as in (2.2.3) and let qi, be points on the sides poPi 

and p\P2 respectively. Let p3 be a point on q\q^ and write T\ and T2 for the 

triangles conv{po, <7i>P3 } and conv{p3, ^2 ,^ 2 } respectively. Then we have, 

(see Figure 2.1)

s / T > S f T \  + V t 2.

Moreover, equality holds if, and only if, q\q<i is tangent to the parabola D 

at the point p3  (see [B123]).

Pi

Figure 2.1: i / f  >

It is clear from the definition of the affine perimeter that, for a polygon K , 

A P(if) =  0. This shows further that the map AP : C —> R  is not continuous 

(iC is equipped with the Hausdorff metric). It is known however, that it is upper 

semi-continuous (see for instance [Lu91]).

The following theorem will be used for the proof of the main theorems. It is 

similar, in spirit, to a result of Vershik [Ve94]. Assume T is a compact convex 

curve in the plane. For e > 0 we denote by U£(T) the ^-neighbourhood of T.
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Let m (r, e, Z t) denote the maximum number of vertices that a convex Zt lattice 

curve lying in C/e(r) can have.

T heorem  2.2.1. Under the above conditions

r2 /3m (r -e-z ‘) =  A p(r )-

For the proof of Theorem 2.2.1 we will need the following fact which is a 

consequence of the upper semi-continuity of the affine perimeter.

P ro p o sitio n  2 .2 .2 . For every compact convex curve T and for every rj > 0 

there exist e > 0 , an integer n, and unit vectors d i , . . . ,  dn+1 such that for every 

compact convex curve T* C Ue(T) the triangles T i , . . . ,  Tn induced by d i , . . . ,  dn+1 

on V  satisfy
n

2 j 2 V T i < A P ( r )  + n .

2 = 1

Proof Let T be a compact, convex curve and 77 > 0. Suppose the assertion is 

false. Then for every e > 0, there is V  C U£(T), such that 2 > AP(r).
As this is true for any choice of unit vectors d i , . . . ,  dn + 1 and any n, we have that 

AP(r') > AP(r) +  77, for any 77 > 0. This contradicts the upper semicontinuity 

of the functional AP. □

2.3 M axim al affine perim eter

In this section, we shall be interested in the subset of a convex body K , with 

maximal affine perimeter. Given K  6  C, let C(K) denote the set of all convex 

bodies contained in A, that is, C(K) = {S' € C : S  C K}.  Define the map 

A : C —> R by

A(K) = sup{AP(S'), S  € C(K)}.

The following result comes from [Ba97].

T h eo rem  2.3.1. For every K  G C there exists a unique K q € C(K) such that 

AP(Ao) =  A(K).
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Proposition 2.3.2. The function A : C —* R is continuous.

We omit the simple proof.

Theorem 2.3.1 shows that there is a mapping F  : C —► C, given by

F(K) = K 0.

The map F  is affinely equivariant, that is, for a nondegenerate affine map L : 

R 2  -> R2, we have that F {L K ) = LF(K).

Proposition 2.3.3. The mapping F  : C —> C is continuous.

Proof Let K n, K  £ C, such that K n —► K.  Choose a convergent subsequence 

of (F (K n)) and let us denote by K* its limit. Prom the uniqueness of Ko, since 

K* is contained in K , it suffices to show that AP(K*) =  A(K). For this, by the 

definitions of F  and A, it is enough to show that AP(AT*) > AP(F(K)).  Using 

the facts that AP is upper semi-continuous and A is continuous we get,

A P (K m) > limsup AP(F(Kn)) =  limA(ATn) =  A P{F(K)).

□

2.3.1 Properties o f Ko

The unique F ( K ) = K 0 has interesting properties. Clearly, d K 0 D d K  ^  0 , as 

otherwise a slightly enlarged copy of Ko would be contained in K  and have larger 

affine perimeter. Since 8Kq fl d K  is closed, 8K o\dK  is the union of countably 

many arcs, called free arcs.

(2.3.1) Each free arc is an arc of a parabola whose tangents at the end points are 

tangent to K  as well.

(2.3.2) The boundary of K q contains no line segment.
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The last statement is made quantitative in [Ba99]. Assume that Area(AT) =  1 . 

Assume further that the ellipsoid of maximal area, E0, inscribed in Ko is a circle. 

This can be arranged by using a suitable area preserving affine transformation.

(2.3.3) Under these conditions the radius of curvature at each point on the bound­

ary of Ko is at most 240.

From the proofs of our main Theorems 2 .1 . 1  and 2.1.2 we get a characterisation 

of K 0. For C G C, the barycentre (or centre of gravity) of C  is defined by

b{C) = A ^ c L xdx-
Define Co as the collection of all C  G C with b(C) = 0. Fix C  G Co and let u G S 1 

be a unit vector. The radial function, p(u) =  pc{u) is, as usual, defined as

Pc{u) =  max{t  > 0 : tu G C }.

The condition f c  xdx = 0 can be rewritten

p(u)3du =  0 .

(Here du denotes vector integration on S 1.) By Minkowski’s classical theorem 

(see [Sch93]), there is a unique (up to translation) convex body C* = G(C) 

whose radius of curvature at the boundary point with outer normal vector u , is 

exactly R(u) =  |p 3 (u). The following characterisation theorem describes the sets 

F(K )  when K  6  C.

Theorem  2.3.4. For each K  € C, there is a unique C € Co, such that Ko is a 

translated copy ofG(C)  =  C *. Moreover, for every C  € Co the set G(C) = C* EC 

satisfies F(C*) = C*.

This theorem immediately implies the following result.

Corollary 2.3.5. Assume K  € C. Then F(K) = K  holds if, and only if, K  

has well-defined and continuous radius of curvature R(u) (for each u G S l) and 

y/3R(u) is the radial function of a convex set C G Co.
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We say that two sets K\, K 2 € C are equivalent, if they are translates of each 

other. Write JC for the set of equivalence classes in {F(K)  : K  € C}. The two 

theorems above show that the map G : Cq —* /C is one-to-one. It can be shown 

that the map G : Cq —> K  is continuous in both directions but we will not need 

this fact here.

Theorem 2.3.4 implies the following strengthening of (2.3.3).

C orollary  2.3.6. For any K  G C there is a non-degenerate linear transformation 

L : M2 —> R 2 such that the radius of curvature R(u) of F(L(K))  = (L(K))0 at 

any point of its boundary satisfies

! < j* o<| .

R em ark  2.3.7.

Theorem 2.3.4 and Corollary 2.3.5 may extend to higher dimensions. Unfor­

tunately, the uniqueness of the maximal affine surface area convex set contained 

in a fixed convex body in Rd for d > 2  is not known.

2.4 “Large” and “small” triangles

The key step in the proof of our theorems is a result about large triangles. Though 

the proofs may appear to be rather technical, the idea behind them is simple. 

Let us give here an informal description.

We are interested in the maximal convex Zt lattice polygons inscribed in a 

convex body K , when t is large. This is the same as considering the maximal 

Z 2 lattice polygons inscribed in the blown up copy t K  of K. Theorems 2.1.1 

and 2 .1 . 2  show that any such maximiser is very close to the subset K q of K  with 

maximal affine perimeter. As we saw earlier, the boundary of this body Kq is the 

union of countably many parabolic arcs, whose tangents at the end points are 

tangent to K  as well. These tangent lines to K  (and K q) will define our “large”
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triangles. We will be interested in finding the set of vectors that will build up the 

arc of Qt within each such triangle T. We shall prove that each large triangle, 

naturally gives rise to a “small” triangle, A, so that the edges of the arc of a 

maximiser Qt within T  are the primitive vectors in A. These connections will 

become clearer in the next two subsections.

2.4.1 Large triangles

We start with a definition which is slightly more general than necessary. 

D efinition 2.4.1.

Let T  — conv{p0 >Pi,P2 } be a (non-degenerate) triangle in R2. A convex lattice 

chain within T  (from the side [po,Pi] to the side [pi,P2 ]) is a sequence of points 

x o , . . . , x n such that

(i) the points po, xq, . . . ,  xn,p 2 are in convex position

(ii) Zi =  Xi — x ^ i € Z2, for each i = 1 , . . . ,  n.

The length of this convex lattice chain is n. Define m(T)  as the maximal length 

that a convex lattice chain within T  can have. For simplicity we denote the area 

of T  by the same letter T.

Assume now that a, b € R 2 are two non-parallel vectors and £1 , ^ 2  are almost 

equal and large. Settingp\ — po = t\a an d P2 —P1 = £2  ̂gives the “large” triangle 

T  = conv{p0 ,Pi,P2 }-

T heorem  2.4.2. Assume £1 , ^ 2  —5" 0 0  with t \ j t 2 —> 1. Then

l i m m ( r ) ' r ' 1/3 = (2 ^ '

Clearly it suffices to show this when t\ =  £ 2  =  £ and £ —> 0 0 . This will be 

done in Section 2.5.
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We shall need this result in the Z* setting as well. So, given a triangle T  in 

the plane, we define ra*(T, Z*) as the length of a maximal Z* lattice chain from 

vertex po to vertex P2 within T. The previous theorem states that

Urn t - 2 /3 m*(T,Z() =

Now let Qt be a maximal Zt lattice chain in T  (from po to P2 ). The next theorem 

relates Qt to the special parabola D(T)  defined in (2.2.3).

T heorem  2.4.3. Under the above conditions

lim dist(Qt, D(T)) = 0
t—>oo

The proof of this result which is given in Section 2.6 shows the close connection 

between maximal convex lattice chains and the inequality discussed in (2.2.4).

Prom the proof of Theorem 2.4.2 we will be able to give a simple construction 

of a convex Z* lattice curve in the triangle T  which is almost maximal and is 

very close to the parabolic arc D(T). This construction will be used in the 

characterisation Theorem 2.3.4.

R em ark  2.4.4.

It would be interesting to understand the behaviour of m(T), for general 

triangles T, whose areas tend to 0 0 . Write w(T) for the lattice width of the 

triangle T. If w € Z 2 is the direction in which the lattice width of T  is attained, 

then the lattice points belonging to any translated copy of T  are contained in 

\w(T)] consecutive lattice lines. Each such line contains at most two vertices 

from a convex lattice chain. Thus,

m{T) < 2{w(T)~\ < 2w(T)  +  2.

Hence, if w(T ) is much smaller than T 1/3, the asymptotic estimate

m(T) *  ( 2  

of Theorem 2.4.2 does not hold.
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2.4.2 Small triangles

Assume now that u, v G R 2 are non-parallel vectors. Define the triangle A as

A =  conv{0 , w, t>}.

P for the set of primitive vectors in Z2.

We will need the size of P D A which, as estimated in Lemma 1.2.1 (or 

Lemma 1.2.2) is

Let T  be the “large” triangle of the previous subsection. In our application,

the triangle A is “small” compared to T.

Any given a; € A can be written uniquely as x = a(x)u  +  (3{x)v. Clearly, 

a(rr) =  x  • vL/u  • ir1, and f A a(x)dx  =  A/3. We state the following result, which 

can be derived from Lemma 1.2.1.

T heo rem  2.4.5. Assume w(A) is large enough (w(A) > 6 /. Then

Notice that the estimate is invariant under lattice preserving affine transforma­

tions.

We are now in the position to begin the proofs of the main results.

Its area will also be denoted by A and its lattice width by w(A). Again we write

(2 .2 )

u =  A a, and v =  Xb with A «  t 1//3. Thus w( A) is of order t 1 / 3  which is large and

and

~ f â d[
pePnA n

2.5 P roof o f Theorem  2.4.2

We assume t = ti = t2 and set U = ta, V  = tb. We shall find an upper and a 

lower bound for the maximal length m(T)  of a chain in T. For x  G M2, there is
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a unique representation x = a(x)U +  0(x)V.  We start with the upper bound.

V = tb

Po U = ta

Figure 2.2: The unique representation of Zi = a{zi)U + 0(zi)V.

Let xq, . . . ,  xn be the sequence of vertices of a maximal lattice chain in T. So 

m ( T ) = n. The vectors Zi = x* — Xi-\ all lie in Z 2 and all belong to the cone 

pos{a,6 }. Clearly, since a( U)  =  0{V) =  1, the edges Zi must satisfy

n n

^O L{z i )<  1 and < 1, (2.3)
i=1 i=l

as otherwise the lattice chain would extend beyond P2 . Define the norm (essen­

tially an l\  norm) || • || as follows,

||x|| =  |a(x)| +  \j3(x)\. (2.4)

Since the Zi are non-parallel vectors from Z 2  n  pos{a, 6 }, we have

£ l W I > £ l b l l ,  (2-5)
z=l

where the second sum is taken over the shortest (in || • || norm) n primitive vectors 

in pos{a, 6 }. The set of these shortest n vectors from Pflposja, b} is exactly PDA, 

where A =  conv{0, A a, A b}, for some suitable A > 0.

The proof of the upper bound is based on identifying which A > 0 will make 

the sum X]pnA ||p|| almost equal to, but slightly larger than 2. Then, if it were



Section 2.5. P roof of Theorem 2.4.2 51

such that |P fl A| < n, according to (2.5) we would have

n n n

Y a(z*) + ̂ 20(zi) > J^IWI -  Y M > 2-
i —1 i = 1 i = 1 p e P n A

contradicting (2 .3 ). So, for the A which we shall identify, |P fl A| > m(T)  =  n. 

Using this and the estimate (2 .2 ) for |P D A|, we will derive the upper bound on 

m(T).

The computation is as follows. Setting u — A a, v = A 6 ,

. V 1 • x  A vL • x  A . N
a(x) =  ——— = ---- :------=  —aix).

v ' V ^ - U  t v ' u t y J

Write Ao for the triangle conv{0, a, b} (and its area). We have A =  A2 A0, w(A) =

Xw(A0) and

f  a(x)dx  =  f  f3(x)dx =  -^A =  ^A2 Ao.
J a J A 3 3

By Theorem 2.4.5

Y  = 7 Y  “W ^ 7
pePnA pePnA

6  A2A° on\2 A logw(A) _ _ _ 3° A A° _ _ r

7T t \  w(A) J

Now set

A = ( / g W

where 8 > 0 will be specified. Now A > y j so, for large enough t ,

logw(A) _  logA^(Ao) *—i/3 j. 
w(A) Aw(A0) ”  1 g

with a constant Ci > 0 depending only on Ao- Choose 5 =  307r2cit-1/3 logt. With 

this choice

a(p) >  (l +  307T2Cit 1 / 3  logt) (l — 157T2Cit 1 / 3  logt) > 1
pGPnA
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if t is large enough. Similarly X^pnA P(p) > 1 and so ^ pe]PnA ||p|| > 2 . Conse­

quently,

m ( T ) < |P n  A| < -^ A  +  30AloS^ i f  ̂
7Tz W {  A )

-
C\ /  2j. \  2/3

-  ^ ( i z V  M l  + S ) ^ ( l  + 5 ^ Clt - ^ l o g t)

=  (2t̂ W T1/3 ^  +  1/3 log *)) • (2 -6 )

Note that the implied constant depends on A0  only.

For the lower bound we work in a similar manner. We now want to find 

which A > 0 makes the sums ]CPePnA ®(p) an(  ̂SpePnA P(p) almost equal to, but 

slightly smaller than one. Then the primitive vectors in A can serve as edges of 

a convex lattice chain in T, so m(T) > |Pfl A|. For later reference we denote this 

convex lattice chain by C(A). The computation is similar to the previous one. 

We set

A =  ~ an(l ^ =  mm l ^ r ^ l o g f )  .

Thus A > y j ^  is of order Consequently < c2£-1/3logt for some c2

(depending only on A0) for all large enough t. Then (5 < 1 / 2 , if t is large enough 

and so

8 = 157r2c2£-1/3 logt.

We check that these choices give the desired inequalities &(p)i J 2 P(p ) ^  1-

a ( p )  =  j  a ( P )  ^  J
pePnA pePnA

_6 _A togty(A)
7r2  3 w(A)

2 A3 A 0  f l  + 1^ 2logw(A)
7T2t \  w( A) )

=  ( 1  — 8) (l +  157t2c2£-1/3 logt) < 1 ,
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and similarly for SpePnA^O9) < 1- Hence,

m(T) > | P n A | > A A _ 3 0 A ^ ^
v ’ ~  1 1 “  7r2 w(A)

-  (^ 2 7 3 T l/3 (1 - ° ( t ' 1/ 3 l°S t ))- ^

Finally, combining (2.6) and (2.7) we get

(1 -  0{t-'>3\ogt)) < m(T)  < (1 +  0 ( r ‘ / 3  log i)) ,

which completes the proof. □

Remark 2.5.1.

The preceding proof contains the construction of an almost maximal lattice 

chain in T, namely C(A). The edges of this chain are the vectors in P fl A. Its 

length is

|P n  A| =  (2 ^ A r V 3  ( 1  +  OC*-1/ s logt)) .

The chain C(A) =  (xq, x \ , . . . ,  xn) almost connects the two special vertices, p0 an 

p2, of T:

22 p = ( 2 2  “(p)) ( 2 2  v■
p€PnA VpePnA /  VpePnA /

Here the coefficients of U and V  are between 1  — 0 ( t ~ logt) and 1 . So setting

r 0 -  po ~  £*oa and P2  — xn «  fob we have ao, fo =  0 (t2 / 3  log t).

2.6 P roof o f Theorem  2.4.3

In this section we shall prove Theorem 2.4.3, namely that as t —> oo, a maximal 

convex Z* lattice chain Qt converges, in the Hausdorff metric, to the special 

parabolic arc D (T ) within T. From the proof of Theorem 2.4.2, we obtained 

a construction of an almost maximal lattice chain C(A). Let us call this chain 

C(A, Z*), when we refer to it in the Zf setting. We show in Claim 2 .6 . 1  at the end 

of this section, that this chain also converges to the special parabolic arc D(T).
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Proof. Now T  =  conv{p0 ,Pi,P2 } is fixed and Qt is a maximal Zf lattice chain 

within T. Recall that D = D{T) is the unique parabola within T  that is tangent 

to poPi and pip 2  at the points po and p\ respectively and that D  has maximal 

affine length among all convex curves in T.

Let £ be a line, with fixed direction d, supporting Qt at a vertex p$. Let 

q G D (T ) be the point where the tangent to D(T)  goes in direction d. We shall 

prove that p3  tends to q.

Assume £ intersects p0Pi at q\ and pip 2 at g2. Let T\ and T2  be the triangles 

with vertices Po,9 i?P3  and P3 , 9 2 ,^ 2 ? respectively (see Figure 2 .1 ). (Of course 

9 i> 9 2 ? T\, T2 all depend on t.) Clearly, since pz is on a maximal chain Qt

m*(T, Zt) = m*(Tu Zt) + m*{T2, Z t). (2 .8 )

Choose convergent subsequences of 9 1 ,^ 3 , 9 2  as t —► 0 0 . Assuming on the one 

hand that none of the Pi and qj coincide in the limit, we may apply the Zt version 

of Theorem 2.4.2. This yields,

m*(7\,Zt)+m*(T 2 ,Z() =  ^ 3  ( v ^ +  ^ )  ( l  +  °  ( ^ ) )

which, combined with (2 .8 ) gives,

V r = \ / T i  + y/%.

(Note that T\ and T2 denote the limiting triangles.) In view of the property of 

the affine perimeter discussed in (2.2.4), this equality is possible, if and only if, £ 

(in the limit) is tangent to the parabola D (T ) at the point q. Thus p$ tends to q.

On the other hand, if one of the triangles, say Ti, becomes degenerate, then 

we may use Andrews’ estimate (2 .1 ). This gives, for the limiting triangles T\ and

r 2,

6  \ / T < 2 0 < / f 1 + — ^ - 7r V f 2.
(2?r)2/3 -  1 (27r)2/:
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Since T\ is degenerate, it has area 0, so the inequality is impossible since T2 < T.

Claim  2.6.1. lim ^x, dist(C'(A, Zt), D(T)) = 0

Proof. For this proof we work in the Z 2 setting and divide by t in the end. Recall 

that A is the triangle conv{0 , A a, Xb}.

Fix a vector d on the segment (a, 6 ), that is, d = (1 — s)a +  sb with s € (0,1) 

fixed, and let A(s) =  pos(a, d) D A. The tangent line to C(A) in direction d goes 

through the point q € C(A) (see Figure 2.3.). Now

Here xq — p0 is 0 ( 0 3 logt)a from Remark 2.5.1. Clearly, the sum of the vectors 

in P fl A(s) can be estimated in the same way as for P fl A in Remark 2.5.1 and 

we get that

This completes the proof. □

In the lut setting, the chain C(A) corresponds to the Zt lattice chain which we 

shall denote by C ( A ,Z t) which is almost maximal and almost connects po to P2  

within T. We show next that this chain, too, is very close to the parabola D(T).

pGPnA(s)

y :  p =  st(a +  d) (l +  0 ( t  1 / 3  log t)) .
P n A (s)

a0

F igure  2.3: The definition of the region A(s).
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The point st(a + d) is on the parabola D(T) and the tangent at that point has 

direction d as one can readily check. Thus q — st(a +  d) is at most 0 ( t2/3logt). 

Dividing by t we get the claim. □

Remark 2.6.2.

Since the primitive points are distributed evenly in a small triangle, instead 

of summing them, we could take the integral of the vector x  in A. In this case 

the triangle does not have to be small. With the previous notation we get,

f  1 1z(s) = / xdx  =  -A (s)(a  +  d) =  -A s((2  — s)a +  sb).
J a (s) 3 3

This is a curve, parametrised by s. It is very easy to see that this curve is exactly

the special parabola inscribed in the triangle |Aconv{0, a, a +  b}. The tangent

to this parabola at z(s) is parallel to d.

Remark 2.6.3.

The moral is that the maximal Zf lattice chain in T , the special chain C(A, Z*) 

and D(T) are all very close to one another. Furthermore, the chain C(A, Z*) is

almost explicitly described and the curve z(s) can be computed from A. This is

the main idea behind the proof of Theorem 2.3.4.

2.7 P roof o f Theorem 2.2.1

In this section, we prove Theorem 2.2.1 which will be used for the proof of the 

main theorems given in Section 2.8. Recall that U£(T) is the e-neighbourhood of 

T and m (r, £, Zt) is the maximal number of vertices of a convex Z* lattice curve 

contained in U£(T).

Proof. The proof consists of two parts. First we show that the limsup of 

t~2/31 vert Qt\, over a sequence of convex Z* lattice curves Qt C U£(T), can only be 

slightly larger than 3(27r)-2/3 AP(r). Then we construct a sequence, Pt , of convex
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Zt lattice polygons lying in Ue(T) with almost as many as 3(27r)~2/3£2/3 AP(r) 
vertices.

Let 77 be a (small) positive number, and choose e > 0 and unit vectors 

d \ , , dk+i for T and 77 according to Proposition 2.2.2. Let Q t (with t —► 0 0 ) be 

a sequence of convex Z t lattice curves in Ue(F). We will show that this sequence 

contains a subsequence, to be denoted by Q T, such that

This will prove our first goal.

For each t, the directions di  induce triangles Ti(t ) ,  i = 1 , . . . ,  k on Qt , with 

vertices Zi(t).  Now we choose a convergent subsequence QT such that limT Zi(r)  =  

Xi for each i. Let Q C U£(T) be the limit of the subsequence QT. The triangle 

Ti(t) tends to a triangle Ti on Q, for each i = 1 , . . . ,  k (we include the possibility 

that some limiting triangle Ti is degenerate). From Proposition 2.2.2 we know 

that the triangles Ti, i =  1, . . .  k on Q satisfy,
k

AP(Q) <2'^2</Ti < AP(r) + v- (2.9)
1 = 1

Next we estimate | vert Qr \. We do this by using the estimate for m*(Ti(r), Zr ) of 

(the Z* version of) Theorem 2.4.2, for ali i  =  1 , . . . ,  k. When the limiting triangle 

Ti  is non-degenerate, we get

for large enough r  and non-degenerate Ti. When a triangle Ti is degenerate, 

Andrews’ estimate works once more. In this case we get,

(AP(r) + 3V)lim sup t

rn*(Zj(r),ZT) < (2 ^ 2/ 3 t2/3(v/ t «(t ) +  ° ( r  1/3l°g r ))>

Since the constant implied by the ‘big oh’ term depends on the triangle T{ only, 

we may write this as

m (Ti(T),Zr) < 20t2/3</7KT) <  r 2/3 (< /5; +  ,
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again for large enough r. Here the triangle in question is degenerate so Ti = 0. 

Thus for all i and large r  we have

m W ) .  ZT) < ( ^  +  J )  ,

So we have, again for large enough r,

| vertQrl < E m * m ( r ) , Z T) < ^ - i 7J r 2/3 ( ^ + | )
i =  1 i = l  '

where for the last inequality we used (2.9).

Next comes the construction of the sequence Pt. Assume e > 0 is small. We 

will find a sequence of Zt lattice polygons Pt in U£(T) such that the number of 

vertices of Pt is at least

| vert Pt | > 3(27r)-2/3t2/3(A P(r) -  2e),

provided that t is large enough. The construction is as follows: choose points 

Xi € T and lines ti tangent to T at Xi, i =  1 , . . . ,  k so that the induced triangles 

Ti all lie in Ue/2 (1 "). We assume (for convenience rather than necessity) that the 

slopes of the lines t i  are irrational. By the properties of the affine perimeter

k

2 ] r y ^ >  A P(r). (2 .1 0 )
i=1

For each i there is a Zt lattice square, of side length l / t ,  containing Xi. Move 

t i  to a parallel position t i ( t ) ,  that contains a vertex, Zj(£), of this square. Here 

Zi(t)  € Z t is chosen so that the whole square and T lie on the same side of t i ( t ) .  

Replace each Xi by Zi(t)  E Zt and each triangle Ti  by the corresponding Ti(t ) .  

Note that the Zi(t)  are in convex position.

Recall that the proof of the lower bound of Theorem 2.4.2 produced an almost 

maximal Z2 lattice chain C(A) in the triangle T, where the edges of C{A) are 

the vectors in P fl A. In the Zt setting, this gives an almost maximal Zt lattice
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chain C (A i(t) ,Z t) in !*(£). Now fix i and let Zi(t), y0, y i , . . . ,  yn, zi+i(t) be the 

vertices of C(Ai(t), Z t). Note that yj — yj-i  is in Zt but yj may not be.

We now show how this chain can be changed a little so that it is an almost 

maximal Zt lattice chain within T»(t) with all of its vertices in Z t. For this, note 

first that v — (yo — Zi(t)) +  (zi+i(t) — yn) is in Zt. Also, the slope of v is between 

the slopes of two consecutive edges of the chain C (A i(t) ,Z t), say the j- th  and 

the (j  +  l)-st. Then the vectors

yi  2 / o >  y2 yii • • • > Vj — ■ Vj—ii v, yj+i yji  • • • ? yn Vn—1 >

in this order, form the edges of a chain from Zi(t) to zi+i(t) within Ti(t) with all 

vertices in Zt. Let Ci(t) denote this chain. Then Ci(t) has at least as many edges 

as the chain C(Ai(t), Zt).

Since Ti C £4/2(H, both Ti(t) and Ci(t) lie in U£(T) if t is large enough. 

Thus the union of the Ci(t) form a convex Zt lattice curve Pt in U£(T). The 

construction of Pt is complete. We shall now find a lower bound on the number 

of vertices of Pt.

The number of edges in Ci(t) is at least as large as the number of edges in 

C (A i(t)JZ t) which is, by Theorem 2.4.2, at least

( i - 0 ( r l/3 logt)) ,

provided Ti is nondegenerate. Note that for such a

t / W )  (i -  0 ( r 1/3 logt)) >  ^ T i  -  |

if t is large enough. For degenerate we may use the trivial estimate saying 

that Ci(t) has at least t 2̂ y /T i = 0 edges. So we have

ivertP‘i  ̂ E ^ 2/3( ^ - | )

* ^ 2/3E 2( ^ - | )

^  (2^ /3(AP(r ) - 2£)’
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where the last inequality comes from (2.10). This completes the proof. □

Remark 2.7.1.

The chain Ci(t) is made up of primitive vectors in A i(t) plus possibly one 

more vector which we ignore as it is short. So the edges of Pt are essentially the 

primitive vectors in uf_1A<(t). In the proof of Theorem 2.3.4 we will need to 

show that the set ujLjA^t) has nice properties.

2.8 P roof o f Theorem s 2.1.1 and 2.1.2

Using Theorem 2.2.1, we can now give a simple proof of both Theorems 2.1.1 and 

2 . 1. 2 .

Proof. Let Qt be any maximiser in the definition of m(K, Zt) and choose a sub­

sequence Q't. We show that Q't contains a further subsequence, to be denoted by 

Qti with t  —► oo such that

lim t -2/3| vert Qr \ =  704 2/3 A (K )»
T-+oo (27T)z /'5

and

lim dist(Qr , K 0) — 0.
T —► OO

This will prove both theorems.

The proof is based on Theorem 2.2.1. Choose a convergent subsequence Qr 

from Q't, and let S  be the limit of QT. Clearly S  C K  and S  € C. By Theo­

rem 2.2.1,

lim r -2/31 vert QT\ = ^  A P(5).
r—-oo (27r)^/'3

By the definition of A(K), we have that AP(S) < A(K).  Assume that AP(5) < 

A (K). Then AP(5) +  rj < A(K), for some positive 77. A slightly shrunken 

homothetic copy of Kq, say K'0, can be placed in K  so that U£(dK'Q) C K  for
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some positive e, and AP(5) + r] /2 < AP(Kq). N ow Theorem 2.2.1 implies the 

existence of a convex TLt lattice polygon PT in U£(dK'0) C K  with

This contradicts the maximality of QT. Hence AP(5) =  A (K) and S = K q

In this section we give the proof of Theorem 2.3.4, which characterises the body

Proof. We assume first that A  is a convex polygon. Then K 0 is tangent to the 

edges E i , . . . ,  Ek of K  at points P i,. - - ,Pk- We may assume that the boundary of 

K  is exactly UjLxE* (since we can delete the edges not touched by Ao). Denote 

by Vi the common vertex of the edges Ei and Ei+\ and the outer angle at Vi by 

(f>i > 0. Set Ti =  conv{pi, Vi,pi+i}. Then A(K) = 2 j] jL 1 y/T\ is the solution of 

the maximisation problem

where =  ||Ei|| and Xi = \\pi — Vj||. (See Figure 2.4.)

The solution is unique (according to Theorem 2.3.1). So, taking derivatives, 

we get the necessary conditions for the extremum. As a simple computation 

shows, they are

vertPrl > jrfpp^ r 2 / 3 (AP(S') +  r//4).

follows from the uniqueness of K q . □

2.9 P roof o f Theorem  2.3.4

K 0.

m ax

for i =  1 , . . . ,  k. These can be written as
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Pi - i

i—1

Vi-1

Figure 2.4: The triangles 

Now, for each z, define the triangle

Aj =  ~^= conv{0, Vi -  Pi,pi + 1 -  Vi}.
V i

So Ti  determines A*. Conversely, A i determines Ti  uniquely (up to translation) 

in the following way. If A* =  conv{0, aiybi} then

conv{0, Aifli, A i(ai +  6*)}

is a translated copy of Ti.

Each A i has 0 as a vertex. Note that A i and A;_i share an edge; namely, the 

edge going in direction Vi — Vi-\. This edge has length Xi/\/T\ if considered as 

an edge of the triangle A* and length (e* — X i ) /  y / T i - 1  if considered e ls  an edge of 

Ai_i. That they are equal follows from the necessary conditions (2 .1 1 ) for the 

extremum.

C laim  2.9.1. UjLiA* is a convex set.

Proof. Our aim is two show that for two consecutive triangles Aj_i, A*, the union 

A»_i U A i forms a convex set. To simplify the notation we assume that z =  2 and 

Ai =  conv{0, ai, 6 i}, A 2 =  conv{0, a2, b2}. Here, as we have seen, b\ = a2. We 

have to show that the angle, ip say, at the common vertex 6 1  =  a2 of Ai U A 2 is 

less than 7r (see Figure 2.5).
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If +  0 2  > 7r, then 0  < 7T follows immediately. So assume 0i +  0 2  < 7r. Then 

0  < 7r, if and only if, Ai +  A 2 > A where A =  conv{0, a\ 1 6 2 }.

As both the convexity of UA* and the affine perimeter are invariant under 

linear transformations we may assume that ai =  (1 , 0 ) and 6 2  =  (0 , 1 ), and write 

b\ = CL2 = (r cos a, r sin a) with a  G (0,7r / 2 ) and r > 0. With this notation 

Ai =  \  sin a, A 2  =  \  cos a  so our aim is to show that

Now Ti and T2 are determined by Ai and A 2 (see Figure 2.6 for notations). 

In particular, the lengths of the edges of the triangles Ti and T2 are,

The special parabolic arc within the triangle T  = conv{pi,po,ps} connecting p\ 

and pz must intersect the segment [ 1̂ ,^ 2 ] as otherwise, replacing 7\ and T2 by T

r(s in a  +  cos a) > 1 . (2 .12)

Then,

A = | | ^ 2  — ui|| cos a  =  (r2 / 6 )(sina +  cos a) cos a, 

B  = \\v2 ~ v \  || sin a = (r2 / 6 ) (sin a  +  cos a) sin a.

b2 =  (0 , 1)
b\ = a,2 = (r cos a, r sin a)

(0, 0) ai =  (1,0)

F igure 2.5: The triangles Ai, A 2 .
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h cos a

V cos a

As sin aPi

Figure  2.6: The corresponding triangles Xi,T2 .

would increase the affine perimeter of K q . This happens, if and only if,

A B
A+Wpi-VxW B  + \\p3 - v 2\\'

2
This is equivalent to the statement A B  > ~  sin a  cos a , or

r 2
(r4/ 36) (sin a  +  cos a ) 2  sin a  cos a > — sin a  cos a.

This in turn states that r 2 (sino: +  cos a ) 2 > 1, which implies (2.12). This com­

pletes the proof of Claim 2.9.1 □

We now show that the convex set uf= 1  A* has its barycentre at 0. Remark 2.6.2 

shows that

[  xdx = i  Ai(cii +  bi) = p i + 1 -  Pi.
J Ai 4

This immediately implies that

/  xdx = y ^ (p i+i -  Pi) = 0.
M UAi j=1

We are almost finished with the proof for the case when K  is a polygon. Define 

C  to be a copy of ujLjA^, rotated clockwise around the origin by 7r / 2 . Let u
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be a unit vector, and let z(u) be the unique point with outer normal u on the

boundary of K q. The radius of curvature, R(u) of K q at z(u) is by definition, the 

limit, as v —► u, of the length of the arc of dK0 between z(u) and z(u), divided

and so R(u) = \pc(u)z. This proves the first half of Theorem 2.3.4 in the case 

when K  is a polygon.

Now assume that i f  C M2 is arbitrary, and let Pn be a sequence of convex 

polygons tending to F(K ) = Kq  with Kq  C Pn• Then F{Pn) —► K 0 as well. 

Also, by the previous argument, F(Pn) =  G(Cn) with a unique Cn E Cq and 

R F(Pn)(u ) =  Pcn(u)/3' By the property (2.3.3) RF(pn)(u)  is bounded. Then one 

can choose a convergent subsequence from Cn tending to C E Cq. It is easy to see 

that not only the subsequence but the whole sequence (Cn) tends to C  implying, 

in turn, that pcn —■► pc and so limi2p(pn)(u) =  P c ( u ) / 3 for each u. It follows now 

that R Ko(u) =  P c ( u ) / 3 .

The second half of the theorem is easy: G(C) = C* E C clearly. Choose a suf­

ficiently dense set of directions cfi,. . . ,  dn+\ and consider the induced triangles, 

on C*. The corresponding “small triangles” Ai are very close to C J-npos{di, di+1 } 

where CL is a copy of C  rotated by 7r/2 (anticlockwise) since Rc*(u) =  p%(u)/3. 

Then the rotated copy of UAi is very close to C. □

Proof. Let L : M2 —► R2 be a nondegenerate linear map. For K  E C we have 

F (LK ) = LF(K). Assume now that C E Cq is the unique convex set whose 

existence is guaranteed by Theorem 2.3.4. We claim that LC  is the convex set 

corresponding to LK. It suffices to check this when K  is a convex polygon. The

by the angle between u, v E S 1. We may assume both directions u and v lie in 

the triangle A^~. Define A(u, v) to be A(u, v) = pos{u, v} fl A-1. Then

xdx  «  ^pc (u)3\\u -  v\\u,

2.10 P roof of Corollary 2.3.6
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proof of Theorem 2.3.4 shows that u£=1Ai is a convex polygon with each Ai a 

well defined triangle. Since the integral f A.^ x d x ,  for s £ (0,1) describes the 

special parabola in 7*, the integral f i A. ^ ^ d x  describes the special parabola in 

LTi. As C  is a rotated copy of ujLjAj, LC  is also a rotated copy of ujLjLAj. 

This proves the claim.

Given K  £ C and the corresponding C  £ Co, choose a linear transformation 

LR2 —> M2 that carries C into isotropic position. This means (see [KLS95]) that 

b(C) =  0 and the matrix of inertia about 0, Are1aC J  c  xx Tdx is the identity ma­

trix. Kannan, Lovasz, and Simonovits [KLS95] prove that, with this positioning, 

C contains a circle B(r) and is contained in a circle B(R), both centred at the 

origin, with R /r  <2. So, we may take r =  1 and then R  < 2. In this position, 

the radial function Plc{u) clearly satisfies

1 < Pl c (u ) < 2.

Since the radius of curvature of F(LK)  is R(u) = \p \c ( u )i ^  follows that



Chapter 3 

A Combinatorial Property of 

Points and Balls, A Coloured 

Version

3.1 Introduction and results

Any finite set A  of points in the plane in general position contains two points such 

that any disc that contains them necessarily contains a positive fraction of the 

points of X .  This statement was introduced and proved by Neumann-Lara and 

Urrutia in [NU88]. They showed that any such set contains two points such that 

any disc that contains them, will contain at least \(n — 2)/60] points of A, where 

n is the number of points in X .  Hayward, Rappaport and Wenger in [HRW89] 

showed that if II(n) is the largest number, such that for every n-point set X  on 

the plane, there exist two points x, y £ X  with the property that any disc that 

contains them, contains n(n) of the points of A, then [n/27\ + 2  < II(n) < 

\n /4] +  1. This lower bound was significantly improved by Hayward in [Ha89] 

where he obtained the expression \-^(n — 2)].

The planar case was later generalised by Barany, Schmerl, Sidney and Urrutia

67
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in [BSSU89] to the case of X  C R d. They proved that any n-point set X  C 

in general position contains a subset A  with \A\ = [\(d  +  3)J such that any ball 

that contains it contains c(d)\X\ points, where the constant c(d) > 0 is at least 

(k\(d — k — 1 )\)/d\ and k = \_\(d +  3)J. They also showed that the bound on the 

number of points of A  is best possible.

Barany and Larman in [BL90] generalised this result from the case of Eu­

clidean balls, to the case of ellipsoids and more generally, quadrics in R d. They 

show that there is a constant c(d) > 0 such that any n-point set X  C R d contains 

a subset Y, with |T | =  \\d(d  +  3)J, with the property that any quadric that 

contains Y  contains c(d)\X\ points of X .  In this case c(d) > k~12~^k+1\  where 

k = (d +  l)(d +  2)/2. Again it is shown that the bound on the number of points 

in Y  is best possible.

Here we consider the coloured case. Before stating our results, let us introduce 

some notation. Throughout the chapter, k will equal |_ ^ J . The system of sets 

Ci ,C2, . . . ,C*  C R d will be k non-empty, disjoint, finite sets (also called colour 

classes, or colours) with \C{\ = s, s > 3 for all z =  1 , . . . ,  k. Their union U*=1Ci 

will be denoted by X  and n will be the cardinality of X .  We will call X  a coloured 

set, or equivalently, a set partitioned into m colour classes C*. A set Y  C X  is 

a transversal for the system C i , . . . ,  C*, if |Y  fl Ci\ = 1, for all i — 1 , . . . ,  k. Let 

B C V (R d) denote the set of Euclidean balls in Rd. Note that for the coloured 

case, the assumption that the points are in general position is not necessary. Our 

main result is the following.

T heorem  3.1.1. For any d > 1, there is a constant c(d) > 0 such that for any

system Ci, C2 , . . . ,  Ck C Rd, there is a transversal Y  C X ,  such that for any

B  G B with Y  C B, we have that \B D X \ > c(d)|X |.

The constant here is c(d) — If the sets C i , . . .  ,C*. are thought of as

colours, then Theorem 3.1.1 says that there is a rainbow set Y  C X  such that

any ball that contains it, contains a positive fraction of the points of X .
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The main tool for proving Theorem 3.1.1 is Lemma 3.1.2 below, the proof of 

which uses the following beautiful result of Zivaljevic and Vrecica from [ZV92].

T heorem  3.1 (Vrecica and  Zivaljevic). Let C\, C2 , . . . ,  Ck C M.d be disjoint 

finite sets, with \Ci\ =  2 p — 1, p{d — k +  1 ) < d where p is a prime. Then there 

are A \ , . . . ,  Ap C UjLjCj with Ai fl Aj = 0 ,  for i ^  j ,  |Ai O C j | =  1, for all i , j
p

and p jc o n v ^  ^  0 . 
i= 1

We will apply the p = 2 case of this result in the proof of Lemma 3.1.2. Then 

k can be taken to be

L em m a 3.1.2. Let X  C R d be a finite set, X  =  C\ U C2 U • • • U Ck, with 

Ci fl Cj =  0 , for all i ^  j ,  where k =  and \C%\ — 3. Then there is Y  C X  

with |yj =  k, \Y n C i \  = I, for all i = 1 , . . . ,  k, such that for any B  £ B with

Y  C B, we have B  fl (V \F ) ^  0 .

In the next two Theorems, the sets Ci, i = 1, ,k  can be finite or infinite. 

The following Theorem shows that the number of colour classes in Theorem 3.1.1 

is best possible.

T heorem  3.1.3. For any d > 1 there is a system C\, C2 , . . . ,  Ck- 1 C Rd, such 

that for any transversal Y  C X , there is B  € B with Y  C B  and B  fl X  = Y .

Though we know from Theorem 3.1.1 that we can always find a rainbow subset

Y  C X  such that any B  € B that contains it, will contain a positive fraction of 

the points of X ,  we cannot hope that this fraction will come from many of the 

colour classes. In fact, all points (except for the points of Y)  might come from a 

single colour class.

T heo rem  3.1.4. For any d > 1  there is a system C\, C2 , . . . ,  Ck, such that for 

any transversal Y  C X , there is a ball B  € B such that Y  C B, \B fl Ci\ =  1, for 

all i € {1, . . . ,  &}\{^o} and \B fl Ci01 > c(d)\X\, for some io € {1, . . . ,  k}.
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In Section 3.5, we show that the result of Theorem 3.1.1 also holds if instead 

of the family of Euclidean balls we consider more general families T  C V (R d), 

where F  € T  is given by

F  = | x  G R

for fi : Rd —> R, i = 1 , . . . ,  m  and a* € R not all zero.

Remark 3.1.5.

For the proof of our main Theorem, B. von Stengel (private communication) 

suggested that another possible approach could be along the lines of the proof of 

Lemma 1  of [BSSU89]. An attempt towards this direction showed that it might 

be possible to do so, for the case when d = 2m.

We have Ci, . . . ,C*. C Rd, where k =  |_^pj, X  = uf=1Ci, and each Ci, 

i =  1, . . . ,  k has cardinality \Ci\ = 3 .  If d = 2m even, then k = m  +  1 and 

n =  \X\ = 3(m +  1). If we apply the Gale transform to the points of X , then 

we have n = 3(m +  1) points in Rm+2. By the Centre Transversal Theorem 

(see [Ma]), there is a hyperplane ((k — l)-flat) such that both halfspaces contain 

at least P0ints fr°m each colour. Thus, for the case when d =  2m,

both halfspaces contain at least one point of each colour class.

Unfortunately, this method fails if d =  2m +  1, since in this case we can only 

get that both halfspaces contain at least -(m^)-k+ 2 \Ci\ = 4 3 points from each Ci.

3.2 P roof o f Lemma 3.1.2 and Theorem  3.1.1

In this section, we prove Lemma 3.1.2 and Theorem 3.1.1. We start with the 

proof of Lemma 3.1.2. In the proof we use the notation x 2  and xy  for the squared 

norm of x  and the scalar product of x, y respectively. The proofs are similar to 

the ones given in [BSSU89].

i=l
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Proof. By the result of Vrecica and Zivaljevic, for the case p = 2 we have Ai, C 

X , with A\ f l  A 2 = 0 , \Ai 0  C j | =  1, for all i , j  and convex f l  conv^42 i 1 &■ 

Suppose there is no subset Y  of X  that satisfies the statement of the Lemma. In 

particular, the subsets A \ ,A 2 do not satisfy it. Then, there are B\, B 2 G B such 

that Ai C B\, A 2 C B 2 and B\ f l  X \A i  = 0  and B 2 f l  X \ A 2 =  0 . In particular, 

Bi f l  A 2 — 0  and B 2 f l  A\ = 0 . Write Bi = {x e  R d : (x — Ci)2 < r 2} and 

B 2 = {x £ Rd : (x — C2 ) 2 < r^}, for some ci, c2 G Rd, ri, r 2 > 0. Then, all of the 

following hold:

x 2 — 2c\x +  c2 < r\ and x 2 — 2c2x +  c% > r2, Vx G j4i,

2/2 -  2 c2?/ +  ĉ  < and y2 -  2cxy + c \>  rj, Vy G A2.

Hence,

2 (c 2 -  a) x  <  {r\ -  7'D +  (c2 -  cf), Vx G ^1  (3.1)

and

2(c2 -  c i)y >  (r\ -  r\) +  -  cj), V?/ G A 2. (3.2)

Let 2  G conv Ai fl conv A2. Then

« =  Y  X^ x  = Y  p (v)v>
x&A\ y£A2

for some 0 <  A(z), n(y) < 1, with £ xey4l A(x) =  E ve^2 Mv) =

Multiply (3.1) by A(x) > 0, x  G A\ and sum over all x  G A\ and (3.2) by 

p(y) > 0, y G A 2 and sum over all y G A2. Then,

(r? - r|) + (cl - c?) < 2(cj - c,)* < (r? - r*) + (eg - c»).
This means that if the assertion is false for both Ai ,A2, then a point in the 

intersection of their convex hulls, will lie in both open half spaces of the hy­

perplane defined by the intersection of the boundaries of B\ and i?2, which is 

impossible. □
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Using Lemma 3.1.2 and a standard counting argument which was also used 

in [BSSU89], [Ha89] and [BL90], we can now prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Since for every Z  C X  with \Z fl Ci\ = 3 there is a

Y  C Z  which satisfies the properties of Lemma 3.1.2, there is Z  C V {X)  and

Y  C X ,  with |Y  D Ci\ =  1, for i = 1 , . . . ,  k , such that Y  is a subset of every 

Z  € Z  and

s

1*1 ^  (3,,
s

1

where \Ci\ =  s, for al i i  =  1, . . . ,  k, 2?=i 1̂ *1 — sk = \X\ and k =  L ^ J -

Let B  e 13 be such that Y  C B  and write \B D X \ = m. From Lemma 3.1.2, 

each Z  € Z  contains a point of B \Y .  So, the number of ways to extend Y  to Z, 

provided that B  fl (Z \ Y ) ^  0  is at most

v)(rf(r)
The first term is the number of ways to choose a point of Z  from the remaining 

m  — k points in B. The colour class to which this point belongs, will be extended 

by one point, which is the third term. The second term is the number of ways to 

extend the remaining k — 1 colour classes by two points. The expression of (3.4) 

can be re written as

(m _  k) (* ~  2)t~ ^  ~  1 ) 1 5 - 1  (S -  2) (3.5)

This is an upper bound on \Z\. From (3.3) and (3.5) we get

1

2 •  3k
(s — 1) < m — k,

or
sk — k
2k3k

< m — k.
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Since sk = \X\ and m = \B D X\  we get \B fl X\  > =  c{d)\X\. O

3.3 P roof o f Theorem  3.1.3

In this section, we prove Theorem 3.1.3: namely, that the number of colour classes 

in Theorem 3.1.1 is best possible.

Proof. This is very similar to Theorem 6  in [BSSU89]. Consider the moment 

curve 7 (t) =  (t, t2, . . . ,  td). We first deal with the case when d is odd, d =  2m — 1. 

Let

be positive real numbers and e > 0 to be specified later. We shall find constants 

c0, . . . ,  c2d so that the polynomials

are identically equal. This implies that when t takes the values t \ , . . .  , tm the 

points 7 (U), i = 1 , . . . ,  m  belong to the surface of the ball centred at (ci , . . . ,  c*)

order c2d, • • ■, cq and are polynomial functions of . . . ,  tm with constant terms

e > ti > t2 > • • • > tm > 0 (3-6)

p(t) = ( t -  C l) 2 + (t2 -  c2)2 + -----1- ( td 1 -  c<i_i)2 +  (td -  Cd)2 (3.7)

and

q(t) = c0 + [(< -  fi)(t tm)]2r(t), (3.8)

where

r(t) = cd + 1 +  ci+2t H h c2dt2m 2 (3.9)

of radius ^Cq. It is not hard to see that the ĉ ’s can be uniquely determined in the

given by,
0  +  0 (e), i odd

Ci =  < 1 / 2  +  0 (e), i € {2 , . . . ,  d — 1 }, i even

1  +  0 (e), i € {rf - h i , . . . ,  2d}, i even

and finally
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It is also easy to see that for these values of Cd+1 , . . .  , C2d, the polynomial term 

r(t) is positive when t > 0. Choose e > 0  so small, so that Co is positive. Let 

Ci = = {7 (t), t G [si -  e',Si +  e']}, i = 1, . . .  , m to be sufficiently

small neighbourhoods of 7 (s*), where 7 (si) are points taken from the part of the 

moment curve with ( 7 (t), t G (0, e)} and choose 0 < e' < e so small, so that the 

Ci’s are disjoint. Set X  to be X  = Uj^Ci (or the union of finite subsets of Ci). 

Then, for any Y  C X  with | Y  fl Ci\ = 1, for al i i  =  1, . . .  m, there is a ball B  € B 

centred at (ci , . . . ,  Cd) of radius y/co, that contains Y, for which B O X  = Y.

The case when d is even, d = 2m can be dealt with similarly. In this case, the 

constants Cj, i =  1 , . . . ,  2d — 1 are not uniquely defined (q+ 1 G M). In this case,

we may choose q+ i =  0 + 0 (e ) . Then the ĉ ’s are given by

0 +  O(e), i odd, i G { 1 , . . . ,  d +  1}, or 

i even, i G {d +  2 , . . . , 2d — 2}

1 /2  +  0 (e ) , i even, i G { 2 , . . . , d}

1 +  0 (e ) , i odd, i G {d + 3 , . . . ,  2d — 1}

C i =  <

and finally
m

c0 =  — +  0(e).

□

3.4 P roof of Theorem 3.1.4

We now proceed with the proof of Theorem 3.1.4. We shall give a construction of 

a finite set X  = U?=1 the property that for any choice of a transversal Y,

there is a ball B  that contains Y  and such that all points in the intersection B O X, 

other than the points of Y, come from a single colour class. The construction 

involves the (m — l)-simplex, where d =  2m — 1. The proof for even dimensions 

is the same so we only prove the case when d is odd.
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Proof. Here d = 2m — 1 and so k = m  +  1. For the first m  colour classes, we take

Ci = {x E Rd, x  =  (it*, xei) E Rm_1 x Rm, |x| < e},

for i = 1 , . . . ,  m  and some € > 0. Here i = 1 , . . . ,  m  are the vertices of an 

(m — 1)-dimensional simplex, that is, the convex hull of m  affinely independent 

points in the m  — 1 dimensional space Rm_1. We choose these vertices to be the 

following unit vectors.

ui = (1,0,0, . . . , 0)

u2 = - u i  = ( -1 ,0 ,0 , . . . , 0)  

u3 = (0,1,0, . . . ,0)

Um =  (0,0,0, . . . ,  1)

The set {ei5 i = 1, . . .  ,m} is the usual basis of Rm. Therefore, for each i =

1 , . . . ,  m  the colour class Ci is defined as small segment in the direction of ei? one 

for each of the m remaining dimensions. The final colour class will be a small 

segment at the centre of gravity of the simplex, (0, . . . ,  0 , . . . ,  0).

We shall show that with this choice of the Ui s, for any Y  C U E i1 transver­

sal, Y  = {yi E Ci : i = 1, . . . ,  m  +  1}, there is a ball £ , centred at (uq, vq) E Rd 

of radius R  (both to be specified), such that B  fl Ci =  {2/i}, for i =  1 , . . . ,  m  and 

Cm+1 C B.

Write uo =  (uo(l)? • • •, uo(m — 1)) E Rm_1 and ^ 0  =  (^o(l), • • •, ̂ o(^)) £ Rm-

By definition of the colour classes, the points f/i, i =  1 , . . . ,  m, are of the form

Vi =  (ui,Xiei). The ball B  with the desired properties must satisfy,

((uo, ^0 ) -  (ui, Xiei)) • (0, e{) = 0 (3.10)

\\v>o -  Ui\\2 + \\v0 -  Xiei\\2 = R 2, (3.11)

for i = 1 , . . . ,m .  Equation (3.11) shows that each yi lies on the surface of the ball 

and equation (3.10), that each colour class is tangent to the ball at the point yi.
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Note that here we use the same notation || • || for the Euclidean norm in Mm_1, Rm 

and Rd. From the m  equations (3.10) we get vq( z )  —  Xi, for all z =  1 , . . . ,  m. Using 

this, the m  equations of (3.11) can be rewritten as,

(3.12)

or

(3.13)

The first two equations of (3.13) give

u0 -u  i =
~2 _  Jl 
■*'2 X 1 (3.14)

Since u\ =  (1,0, . . . ,  0), this yields u0(l) =  .

From the first and (z)-th equation in (3.13), for i =  3 , . . . ,  m  we get

U 0 - U i  =

zv.2 _  ~ 2X1 i
+  U q • U \ , (3.15)

where we also used the fact that ||wi|| =  1, for all z =  1 , . . . ,  m. From this, using 

(3.14) we get,
x\ + x \ -  2x1 ■ o /o 1 ^Uo ' Ui = --------  , z =  3, . . . ,m .  (3.16)

Since Uo-Ui — uo(i — 1), for z =  3 , . . . ,  rrt we obtain the remaining coordinates of 

u0,
-r? 4- 'r? — 9^r?

(3.17)/• z? +  x l - 2 x ?  .
u0(z — 1) = --------   , z =  3 , . . . ,  m.

To specify the radius R , we may use any one of the equations from (3.13). Using 

say the first, we get

R  = \ E {x\ + x \ -  2xf)2
16

™ (~2 _  ~2\2 /v.2 _  ~2
+ E ^ +  -i6" - ^ ^  +  1- (3.18)

i = 3  i= 2

Hence, for any choice of transversal Y  =  { z / i ,  z = 1 , . . . ,  m +1}, the ball B , centred
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of radius R , satisfies (3.10) and (3.11). That is, it is tangent to the intervals 

(colour classes) Ci at the points yi, for i = 1 , . . . , r a  and Cm+i C B. This 

completes the proof. □

3.5 General families

The result of Theorem 3.1.1 can be generalised from the family of Euclidean balls 

to families of subsets defined by a set of m  functions. Given {/* : Rd —*• R, i —

1, . . . ,  ra}, let T  C V (R d) be the family of sets of the form

F = j z  G R

for some a i , . . . ,  am G R not all zero. If T  : Rd —► Rm is the map defined by 

T(x) =  (f i ( x ) , . . . ,  f m(x)), then a typical set F  is given by T(x)  • a < 0, for some 

a = ( a i , . . . ,  am) G Mm, a ^ O .  Thus T  is induced by the halfspaces in Rm whose 

bounding hyperplane passes through the origin. We will see in Remark 3.5.4 an 

example of such a family of d +  2 functions which produce the Euclidean balls 

(and their complements).

In this case, Lemma 3.1.2 and Theorem 3.1.1 are formulated as follows.

L em m a 3.5.1. Let X  C Rd, be a finite set, X  =  X \  U X<i U • • • U Xk, with 

Xi D X j = 0 , for all i ^  j ,  where k = and \Xj\ =  3. Then there is a

transversal Y  C X  such that for any F  G T  with Y  C F, we have F D (X \Y )  ^  0 .

T heorem  3.5.2. Let T  be the family of sets in Rd generated by a family of m  

functions as in (3.19). Then there is a positive constant c(m) > 0 such that for 

any system X i, X 2 , . . . ,  Xk, in Rd with k = there is a transversal Y  C X ,

with the property that for any F  G T  with Y  C F, it follows \F D X\ > c(m)|X|.

We only prove Lemma 3.5.1 as the counting argument for Theorem 3.5.2 is 

the same as for Theorem 3.1.1.

m |
d : ^ o u M x )  < o L  (3.19)

i = l  J
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Proof. Consider the points T(x) G Rm, x G X .  These are in divided in k classes

Rm, with Ai fl A 2 = 0 , |Ai D C (X j)| =  1, for all i , j  and convex fl conv A2 ^  0- 

Write Ai =  {T(x  1 ) , . . . ,  T(xk)}, A 2 = (T(?/i),. . . ,  T(yk)}, where xj} yj G X jt 

j  = I , . . .  ,k. Let Yi = {xi , . . . , x k} C X  and Y2 = {y \ , . . . , yk} C X.  We claim 

that either Y\ or V2 is the set Y  in the statement of the Lemma. That is, either 

for any F  G T  that contains Yi, we have F  fl Y2 ^  0  (and therefore F  contains 

a point of X ), or, for any F  G T  that contains Y2, we have F  fl Yi ^  0 . Indeed, 

suppose both assertions are false. Then there are F\,F 2 G T ,

for some a i , . . . ,  am G R not all zero, f t , . . . ,  f3m £ R not all zero, such that 

Yi C f t ,  Y2 fl f t  =  0  and V2 C F2, Y\ fl F2 =  0 . This means that there are

w =  ^ 2  X(xj)T (xj) =  ^ 2 \ ( xj)T (xj) =  ^2n{yj )T{yj ) =

T ( x j ) e A i  X j € Y i  T ( y j ) e A 2  Vj ^Yi

for some 0 < A (Xj), < 1, j  =  1 , . . . ,  k, £ *  ,Gyi X(xj) =  T ,yjeY2 KVj)  =  L

C( X j ) , j  = 1 , . . . ,& inherited from Rd, with \C(Xj)\  =  \Xj\ = 3, j  =

with /c =  J. Prom the Theorem of Vrecica and Zivaljevic, there are A i ,A 2 C

a = ( a i , . . . ,  am) G Rm, b =  ( f t , . . . ,  /?m) G Rm, a, b ^  0, such that all of the 

following hold:

a • T(xj)  < 0, V x j  G Yi and a • T (^ )  > 0, V y j G Y2,

b • T(2/j) < 0, \/yj G Y2 and 6 • T(xj)  > 0, \/xj G Yi.

Combining these we get

(a — b) • T ( x j )  < 0, V x j  G Y i (3.20)

and

(b — a) ■ T(yj) < 0, Vy,- € y2. (3.21)

Let w G conv A\  fl conv .A2. Then
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Multiply (3.20) by A(xj) > 0, Xj G Y\ and sum over all Xj G Y\ and (3.21) by 

l^(Uj) > 05 Uj € Y2 and sum over all yj G Y2. Then we get

0 > (a -  b) ■ ^ 2  Kxj )T(xj )  = ( a - b )  -w = ( a - b )  ■ »(Vj)T(Vj)
x j E Y i  V j € Y 2

= ~ (b ~  a) ■ v(Pj)T (Pj) > 0.
V j e Y ?

This contradiction completes the proof. □

R em ark  3.5.3.

The number of colour classes in Theorem 3.5.2 can be improved under certain 

assumptions on the functions /j. We may assume that f m =  1, since the set 

{fm (x), x  G X }  takes positive, negative or 0 values for at least a third of the 

points of X.  If it is 0, then T  maps X  to a subspace of dimension m — 1. If it 

is positive (or negative) and we replace the functions fi by /*/ f m we can map X  

to an affine subspace of dimension m — 1. The same is true if we consider sets of 

the form

< ot | ,

i.e the sets induced by all halfspaces in Rm_1. In this case the number of colour 

classes required is J •

R em ark  3.5.4.

Let X  C be a finite set and T  C P(M.d) the family defined by the following 

(d +  2) functions fi : R d —► R.

fi  : (xi, . . . ,Xd) for i = 1, . . .  ,d,

fd+ 1 : (xu . . . , x d) ^ x \ - { -----+ x 2d

fd+ 2  : ( x i , . . . , x d) i-> 1.

Clearly T  contains the family of Euclidean balls and their complements, which we 

denote by Bc. According to Theorem 3.1.1, if X  is partitioned into |_ ^ J  colour
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classes, we can find Y  C  X  that intersects each colour class in a single point and 

so that if B  € B  contains Y,  then B  contains a positive fraction of the points of 

X.  Since B C  T,  according to Theorem 3.5.2 (and Remark 3.5.3) the number of 

colour classes required to partition X  is [ ^ J  (which, in the case where d is even, 

is one more than the best possible according to Theorems 3.1.1 and 3.1.3). It is 

easy to see that the proofs of Theorem 3.1.1 and Lemma 3.1.2 apply to the case of 

Bc as well. But if a family contains both the balls and their complements, 

colour classes do not suffice. What fails to be true in this case is Lemma 3.1.2. 

For example, in the case d =  2, any 6  point set X  with 3 points coloured red and 

3 blue, must have two rainbow subsets A\ =  {ri, bi} and A 2 = {r2 , 6 2 } such that 

the segments Si =  conv{ri,£>i}, S 2 =  conv{r2 ,&2 } intersect. Clearly the points 

r i ,r 2,b1,b2 form the vertices of a convex quadrilateral II with diagonals S i ,S 2. 

Then one of the diagonals Si, S2 has the property that any disc that contains it, 

contains at least another vertex of II. Assume that it is the longest one and let it 

be S2. Then Si has the same property, for the case of the complements of discs. 

Now choose two discs Bi C  # 2 , with Si C  B\ and S2 C  B%- Then, for the family 

T  there are F\ =  B\ € T  and F2 =  B% £ T  such that Ai C  Fi, A 2 C F2 and

Ai n  f 2 =  a 2 n  Fi =  0 .
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