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Abstract

We report a laboratory experiment that enables us to study system-
atically the substantive and procedural rationality of decision making
under uncertainty. By using novel graphical representations of bud-
get sets over bundles of state-contingent commodities, we generate a
very rich data set well-suited to studying behavior at the level of the
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individual subject. We test the data for consistency with the maxi-
mization hypothesis, and we recover underlying preferences using both
nonparametric and parametric methods. We find that individual be-
haviors are complex and highly heterogeneous. In spite of this hetero-
geneity, we identify ‘prototypical’ heuristics that inform subjects’ deci-
sion rules. To account for these heuristics, we propose a type-mixture
model based on Expected Utility Theory employing only combinations
of three heuristics which correspond to the behavior of individuals who
are infinitely risk averse, risk neutral, and expected utility maximizers
with intermediate risk aversion. The decision rules of the type-mixture
model accord well with the large-scale features of the data at the level
of the individual subject.
JEL Classification Numbers: D81, C91.
KeyWords: uncertainty, revealed preference, heuristics, type-mixture

model, Expected Utility Theory, experiment.

1 Introduction

Because uncertainty is endemic in every aspect of human activity, models
of decision making under uncertainty play a key role in every field of eco-
nomics. The standard model of decisions under uncertainty is based on von
Neumann and Morgenstern Expected Utility Theory (EUT), so it is nat-
ural that experimentalists should want to test the empirical validity of the
Savage axioms on which EUT is based. Empirical violations of EUT raise
intriguing questions about the rationality of individual behavior and, at the
same time, raise criticisms about the status of the Savage axioms as the
touchstone of rationality. These criticisms have generated the development
of various theoretical alternatives to EUT, and the investigation of these
theories has led to new empirical regularities.

For the most part, these laboratory experiments use several pairwise
choices, à la Allais, to test EUT and its various generalizations, such as
weighted utility (Chew (1983)), implicit expected utility (Dekel (1986)), and
prospect theory (Kahneman and Tversky (1979)), among others.1 Each of
these theories gives rise to indifference curves with distinctive shapes in some
part of the Marschak (1950) and Machina (1982, 1987) probability triangle,
so each theory can be tested against the others by choosing alternatives
that the various theories rank differently. In these studies, the criterion

1Camerer (1995) provides a comprehensive discussion of the experimental and theoret-
ical work, and Starmer (2000) provides a more recent review that focuses on evaluating
non-EUT theories. Kahneman and Tversky (2000) collect many theoretical and empirical
papers that emerged from their pioneering work on prospect theory.
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used to evaluate a theory is the fraction of choices it predicts correctly.2 A
few studies have also estimated parametric utility functions for individual
subjects.3 In general, existing experimental work has, on the one hand,
collected only a few decisions from each subject and, on the other, presented
subjects with an extreme binary choice designed to discover violations of
specific theories.

Although this practice is understandable given the purposes for which
the experiments were designed, it limits the usefulness of the data for other
purposes. Most importantly, designing choices to reveal violations does not
necessarily tell us very much about how choices are made in economic set-
tings that are more often encountered in practice. Hence, while these exper-
iments reveal that violations exist, they give us little sense of how important
they are or how frequently they occur. Finally, the small data sets generated
for each subject force experimenters to pool data, thus ignoring individual
heterogeneity and precluding the possibility of statistical modeling at the
level of the individual subject.

In this paper, we study individual choice under uncertainty in economi-
cally important settings. The study is motivated by five types of questions
(Varian 1982): (i) Consistency. Is behavior under conditions of uncertainty
consistent with a model of utility maximization? (ii) Structure. Is the ob-
served data consistent with a utility function with some special structural
properties? (iii) Recoverability. Can underlying preferences be recovered
from observed choices? (iv) Heterogeneity. To what degree do preferences
over risky alternatives differ across subjects? (v) Heuristics. Can heuristic
procedures be identified when they occur?

Our objective of producing a general account of choice under uncertainty
has led us to develop an experimental design that is innovative in a couple of
ways. First, we present subjects with a standard economic decision problem
that can be interpreted either as a portfolio choice problem (the allocation
of wealth between two risky assets) or a consumer decision problem (the se-
lection of a bundle of contingent commodities from a standard budget set).4

Secondly, the decision problems are presented on a user-friendly graphical
interface that allows for the collection of a rich individual-level data set.5

2Camerer (1992) and Harless and Camerer (1994) summarize the experimental evidence
of testing the various utility theories.

3See, for example, Currim and Sarin (1989, 1990), Daniels and Keller (1990), and
Lattimore, Baker and Witte (1992), among others.

4 In Loomes (1991) subjects also allocate wealth in a portfolio of risky assets. The focus
of this paper is on providing tests of several choice theories, so the results are not directly
comparable to those presented here.

5Fisman, Kariv, and Markovits (2005) employ a similar experimental methodology to
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Our data set has several advantages over data sets from earlier experiments.
First, the choice of a portfolio subject to a budget constraint provides more
information than a binary choice. Second, because of the user-friendly in-
terface, each subject faces a large number of decisions with widely varying
budget sets. The large amount of data generated by this design allows us
to apply statistical models to individual data, rather than pooling data or
assuming homogeneity across subjects. This allows us to generate better
individual-level estimates of risk aversion than has heretofore been possible.
Third, these decision problems are representative, both in the statistical
sense and in the economic sense, rather than being narrowly tailored to test
specific axioms. Finally, the graphical representation does not emphasize
any particular portfolio; in particular, it does not offer subjects discrete
choices that might suggest prototypical preference types.

We begin our analysis of the experimental data by using revealed prefer-
ence theory to determine whether the observed choices are consistent with
utility maximization. The theory of revealed preference tells us that if the
data generated by our experiment satisfy the Generalized Axiom of Re-
vealed Preference (GARP), the observed choices can be rationalized by a
well-behaved utility function (see Varian (1982) for a description of these
techniques). Although individual behaviors are complex and heterogeneous,
we find that most subjects’ choices come close to satisfying GARP according
to a number of standard measures. We conclude that, for most subjects, the
violations are sufficiently minor that we can ignore them for the purposes
of recovering preferences or constructing appropriate utility functions. We
emphasize that while GARP implies rationality in the sense of a complete,
transitive preference ordering, it does not imply the Savage axioms. There is
no need to assume EUT to investigate rational behavior under uncertainty.

Whereas the analysis of consistency provides support for substantive ra-
tionality, it has nothing to say about procedural rationality, that is, how
subjects come to make decisions that are consistent with an underlying
preference ordering. Another advantage of our data set is that it allows us
to distinguish systematic behavior from what appear to be mistakes and
identify heuristics when they occur. We find that most subjects use one or
more underlying ‘prototypical’ heuristics, which we call types. These heuris-
tics correspond to the behavior of individuals who are infinitely risk averse,
risk neutral, and expected utility maximizers with intermediate (constant)

study social preferences. While the papers share a similar experimental methodology that
allows for the collection of a rich individual-level data set, they address very different
questions and produce very different behaviors.
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relative risk aversion. Where several of these prototypical heuristics are
used, consistent behavior requires subjects to choose among heuristics in
a consistent manner as well as behaving consistently in applying a given
heuristic.

Motivated by these patterns, we propose and estimate a type-mixture
model (TMM) in which boundedly rational individuals use heuristics in their
attempt to maximize an underlying preference ordering. In implementing
this framework, we assume their preferences have an expected utility rep-
resentation. Individuals are assumed to choose the heuristic that offers the
highest payoff in a given decision, taking into account the possibility of
making mistakes. Thus, the probability of choosing a particular heuristic
is a function of the parameters of the budget set. We find that a TMM,
employing only the three heuristics mentioned above, helps to explain the
choice of heuristics and allows us to estimate measures of risk aversion that
agree with estimates from other studies. Although the TMM allows for the
possibility of errors and the use of heuristics, there remains an important
role for EUT in analyzing choice under uncertainty, because the choice of
heuristics is motivated by the underlying expected utility representation.

The rest of the paper is organized as follows. The next section describes
the experimental design and procedures. Section 3 evaluates the consistency
of the data with the maximization a preference ordering. Section 4 summa-
rizes some important features of the individual-level data. Section 5 reports
individual-level estimates of a constant relative risk aversion (CRRA) util-
ity function. Section 6 describes the TMM analysis and Section 7 contains
some concluding remarks. The experimental instructions are reproduced in
Section 8.

2 Experimental design and procedures

2.1 Design

In the experimental task we study, individuals make decisions under con-
ditions of uncertainty about the objective parameters of the environment.
In our preferred interpretation, there are two states of nature denoted by
s = 1, 2 and two associated Arrow securities, each of which promises a dollar
payoff in one state and nothing in the other. We consider the problem of
allocating an individual’s wealth between the two Arrow securities. Let xs
denote the demand for the security that pays off in state s and let ps de-
note its price. Without essential loss of generality, assume the individual’s
wealth is normalized to 1. The budget set is then p1x1 + p2x2 = 1 and the
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individual can choose any portfolio (x1, x2) ≥ 0 that satisfies this constraint.
This simple state-of-nature representation of uncertainty provides a test of
rational decision making under uncertainty.

An example of a budget set defined in this way is the straight line AB
drawn in Figure 1. The axes measure the future value of a possible portfolio
in each of the two states. The point C, which lies on the 45 degree line,
corresponds to a portfolio with a certain outcome. By contrast, point A
(point B) represents a portfolio in which all wealth is invested in the security
that pays off in state 1 (state 2). Notice that given the objective probabilities
of each state, positions on AB do not represent fair bets (i.e. outcomes with
the same expected value as point C). For example, if π is the probability of
state 1 and the slope of the budget line −p1/p2 is steeper than −π/(1− π),
positions along AC have a higher payoff in state 1, a lower payoff in state
2, and a lower expected portfolio return than point C.

[Figure 1 here]

If individuals only care about the distribution of monetary payoffs and if
their preferences over probability distributions of monetary payoffs (lotter-
ies) satisfy the Savage axioms, then the preference ordering over portfolios
(x1, x2) can be represented by a function of the form

πu(x1) + (1− π)u(x2),

where u(·) is the Bernoulli utility function defined on amounts of money.
Such an individual will choose a portfolio (x∗1, x

∗
2) to maximize the expected

value of utility subject to the budget constraint. Under standard conditions,
the solution to this problem will satisfy the first-order condition

π

1− π

u0(x∗1)

u0(x∗2)
=

p1
p2

and the budget constraint p1x∗1 + p2x
∗
2 = 1. Of course, there is no need

to assume the Savage axioms in order to investigate rational behavior in
general under uncertainty. Any consistent preference ordering over lotteries
is admissible.

2.2 Procedures

The experiment was conducted at the Experimental Social Science Labo-
ratory (X-Lab) at UC Berkeley under the X-Lab Master Human Subjects
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Protocol. The 93 subjects in the experiment were recruited from all un-
dergraduate classes and staff at UC Berkeley. After subjects read the in-
structions (reproduced in Section 8), the instructions were read aloud by an
experimenter. At the end of the instructional period subjects were asked
if they had any questions or difficulties understanding the experiment. No
subject reported difficulty understanding the procedures or using the com-
puter interface. Each experimental session lasted about one and a half hours.
A $5 participation fee and subsequent earnings, which averaged about $19,
were paid in private at the end of the session.

Each session consisted of 50 independent decision problems. In each de-
cision problem, a subject was asked to allocate tokens between two accounts,
labeled x and y. The x account corresponds to the x-axis and the y account
corresponds to the y-axis in a two-dimensional graph. Each choice involved
choosing a point on a budget line of possible token allocations. Each decision
problem started by having the computer select a budget line randomly from
the set of lines that intersect at least one axis at or above the 50 token level
and intersect both axes at or below the 100 token level. The budget lines
selected for each subject in his decision problems were independent of each
other and of the budget lines selected for other subjects in their decision
problems.

The x-axis and y-axis were scaled from 0 to 100 tokens. The resolution
compatibility of the budget lines was 0.2 tokens. At the beginning of each
decision round, the experimental program dialog window went blank and
the entire setup reappeared. The appearance and behavior of the pointer
were set to the Windows mouse default and the pointer was automatically
repositioned randomly on the budget line at the beginning of each round. To
choose an allocation, subjects used the mouse or the arrows on the keyboard
to move the pointer on the computer screen to the desired allocation. Sub-
jects could either left-click or press the Enter key to record their allocation.
The computer program dialog window is shown in Section 8.

The payoff at each decision round was determined by the number of
tokens in the x account and the number of tokens in the y account. At the
end of the round, the computer randomly selected one of the accounts, x
or y. Each subject received the number of tokens allocated to the account
that was chosen. We studied a symmetric treatment (subjects ID 201-219
and 301-328), in which the two accounts were equally likely (π = 1/2) and
two asymmetric treatments (subjects ID 401-417, 501-520 and 601-609) in
which one of the accounts was always selected with probability 1/3 and the
other account was selected with probability 2/3 (π = 1/3 or π = 2/3). The
treatment was held constant throughout a given experimental session.
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This procedure was repeated until all 50 rounds were completed. Sub-
jects were not informed of the account that was actually selected at the end
of each round. At the end of the experiment, the computer selected one
decision round for each participant, where each round had an equal proba-
bility of being chosen, and the subject was paid the amount he had earned
in that round. Payoffs were calculated in terms of tokens and then converted
into dollars. Each token was worth $0.5. Subjects received their payment
privately as they left the experiment.

The experiments provide us with a data set consisting of 93× 50 = 4650
individual decisions over a wide range of budget sets. This variation in
budget sets (prices and incomes) is essential for a non-trivial test of consis-
tency and also gives us an opportunity to recover preferences for individual
subjects.

3 Testing Rationality

We first test whether choices can be utility-generated. Let
©
(pi, xi)

ª50
i=1

be
the data generated by some individual’s choices, where pi denotes the i-th
observation of the price vector and xi denotes the associated portfolio. A
portfolio xi is directly revealed preferred to a portfolio xj , denoted xiRDxj ,
if pi · xi ≥ pi · xj . A portfolio xi is revealed preferred to a portfolio xj ,
denoted xiRxj , if there exists a sequence of portfolios

©
xk
ªK
k=1

with x1 = xi

and xK = xj , such that xkRDxk+1 for every k = 1, ...,K − 1.
We wish to examine whether the data observed in our experiment could

have been generated by an individual maximizing a well-defined utility func-
tion. The crucial test for this is provided by the Generalized Axiom of Re-
vealed Preference (GARP). In the notation introduced above, GARP (which
is a generalization of various other revealed preference tests) requires that
if xiRxj then pj · xj ≤ pj · xi (i.e. if xi is revealed preferred to xj , then xi

must cost at least as much as xj at the prices prevailing when xj is chosen).
It is clear that if the data are generated by a non-satiated utility function,
then they must satisfy GARP. Conversely, the following result due to Afriat
(1967) tells us that if a finite data set generated by an individual’s choices
satisfies GARP, then the data can be rationalized by a well-behaved utility
function.

Afriat’s Theorem If the data set
©
(pi, xi)

ª
satisfies GARP, then there ex-

ists a piecewise linear, continuous, increasing, concave utility function
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u(x) such that for each observation (pi, xi)

u(x) ≤ u(xi) for any x such that pi · x ≤ pi · xi.

Hence, in order to show that the data are consistent with utility-maximizing
behavior we must check whether it satisfies GARP. While verifying GARP
is conceptually straightforward, it can be difficult in practice. Even moder-
ately large data sets require an efficient algorithm to compute the transitive
closure R of the direct revealed preference relation RD and check that GARP
is satisfied for every pair of portfolios xi and xj satisfying xiRxj . In addi-
tion, since GARP offers an exact test (either the data satisfy GARP or they
do not) and choice data almost always contain at least some violations, it is
desirable to measure the extent of GARP violations.

The various indices that have been proposed for this purpose are all
computationally intensive.6 We report measures of GARP violations based
on three indices: Afriat (1972), Varian (1991), and Houtman and Maks
(1985). Afriat’s (1972) critical cost efficiency index (CCEI) measures the
amount by which each budget constraint must be adjusted in order to remove
all violations of GARP. Figure 2 illustrates one such adjustment for a simple
violation of GARP involving two portfolios, x1 and x2. It is clear that x1

is revealed preferred to x2 because p1 · x1 > p1 · x2, yet x1 is cheaper than
x2 at the prices at which x2 is purchased, p2 · x1 < p2 · x2. If we shifted the
budget constraint through x2 as shown (A/B < C/D), the violation would
be removed.7

[Figure 2 here]

This suggests the following approach. For any number 0 ≤ e ≤ 1, define
the direct revealed preference relation RD(e) as xiRD(e)xj if epi ·xi ≥ pi ·xj ,
and define R(e) to be the transitive closure of RD(e). Let e∗ be the largest
value of e such that the relation R(e) satisfies GARP. Afriat’s CCEI is the
value of e∗ associated with the data set

©¡
pi, xi

¢ª
. It is bounded between

zero and one and can be interpreted as saying that the consumer is ‘wasting’
as much as 1 − e∗ of his income by making inefficient choices. The closer
the CCEI is to one, the smaller the perturbation of the budget constraints
required to remove all violations and thus the closer the data are to satisfying
GARP.

6The computer program and details of the algorithm are available from the authors
upon request.

7Here we have a violation of the Weak Axiom of Revealed Preference (WARP) since
x1RDx2 and x2RDx1.
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Although the CCEI provides a summary statistic of the overall consis-
tency of the data with GARP, it does not give any information about which
of the observations

¡
pi, xi

¢
are causing the most severe violations. A single

large violation may lead to a small value of the index while a large number of
small violations may result in a much larger efficiency index. Varian (1991)
refined Afriat’s CCEI to provide a measure that reflects the minimum ad-
justment required to eliminate the violations of GARP associated with each
observation (pi, xi). In particular, fix an observation (pi, xi) and let ei be
the largest value of e such that R(e) has no violations of GARP within the
set of portfolios xj such that xiR(e)xj . The value ei measures the efficiency
of the choices when compared to the portfolio xi.

Knowing the efficiencies
©
ei
ª
for the entire set of observations

©¡
pi, xi

¢ª
allows us to say where the inefficiency is greatest or least. These numbers
may still overstate the extent of inefficiency, however, because there may be
several places in a cycle of observations where an adjustment of the budget
constraint would remove a violation of GARP and the above procedure
may not choose the ‘least costly’ adjustment. Varian (1991) provides an
algorithm that will select the least costly method of removing all violations
by changing each budget set by a different amount. When a single number
is desired, as here, one can use e∗ = min

©
ei
ª
. Thus, Varian’s (1991) index

is a lower bound on the Afriat’s CCEI.
The third test, proposed by Houtman and Maks (1985) (HM), finds the

largest subset of choices that is consistent with GARP. This method has
a couple of drawbacks. First, some observations may be discarded even if
the associated GARP violations could be removed by small perturbations of
the budget constraint. Further, since the algorithm is computationally very
intensive, we were unable to compute the HM index for a small number of
subjects (ID 211, 324, 325, 406, 504 and 608) with a large number of GARP
violations. In those few cases we report upper bounds on the consistent set.

Table 1 lists, by subject, the number of violations of the Weak Axiom of
Revealed Preference (WARP) and GARP, and also reports the values of the
three indices. Subjects are ranked according to (descending) CCEI scores.
We allow for small mistakes resulting from the imprecision of a subject’s
handling of the mouse. The results presented in Table 1 allow for a narrow
confidence interval of one token (i.e. for any i and j 6= i, if d(xi, xj) ≤ 1
then xi and xj are treated as the same portfolio). Turning now to GARP
violations, out of the 93 subjects, 80 subjects (86.0 percent) had CCEI scores
above 0.90 and of those, 75 subjects (80.6 percent) were above 0.95.

[Table 1 here]
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While these scores look satisfactory, there is no natural threshold for deter-
mining whether subjects are close enough to satisfying GARP that they can
considered utility maximizers. Varian (1991) suggests a threshold of 0.95
for the CCEI, but this is purely subjective. A more scientific approach was
proposed by Bronars (1987). His method calibrates the various indices using
the choices of a hypothetical subject whose choices are uniformly distributed
on the budget line. We generated a random sample of 25,000 subjects and
found that their scores on the Afriat and Varian efficiency indices averaged
0.60 and 0.25 respectively.8 Furthermore, all 25,000 random subjects vio-
lated GARP at least once. If we choose the 0.9 efficiency level as our critical
value, we find that only 12 of the random subjects’ CCEI scores were above
the threshold and none of the random subjects’ Varian efficiency scores were
above this threshold.

Figure 3A compares the distributions of the CCEI scores generated by
the sample of hypothetical subjects and the distributions of the scores for
the actual subjects. The horizontal axis shows the value of the index and
the vertical axis measures the percentage of subjects corresponding to each
interval. Similarly, Figure 3B compares the distributions of the Varian ef-
ficiency index. The histograms show that actual subject behavior has high
consistency measures compared to the behavior of the hypothetical random
subjects. The graph clearly shows that a significant majority of the subjects
did much better than the randomly generated subjects and only a bit worse
than an ideal (substantively rational) subject. Finally, Figure 3C shows the
distribution of the HM index. Note that we cannot generate a distribution
of this index for random subjects because of the computational load.

[Figure 3 here]

The power of Bronars’ (1987) test is defined to be the probability that
a random subject violates GARP. It has been applied to experimental data
by Cox (1997), Sippel (1997), Mattei (2000) and Harbaugh, Krause and
Berry (2001). Here all the random subjects had violations, implying the
Bronar criterion attains its maximum value. Our experiment is sufficiently
powerful to exclude the possibility that consistency is the accidental result
of random behavior. Therefore, the consistency of our subjects’ behavior
under these conditions is not accidental. The power of the Bronars test in
this case depends on two factors. The first is that the range of choice sets is
generated so that budget lines cross frequently (see Andreoni and Harbaugh,

8Each of the 25,000 random subjects makes 50 choices from randomly generated budget
sets, in the same way as the human subjects do.
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2005). The second is that the number of decisions made by each subject is
large. This is a crucial point, because in most experimental studies, the
number of individual decisions is too small to provide a powerful test.

To illustrate this point, we simulated the choices of random subjects
in two experiments which used the design of this paper except that in one
subjects made 10 choices and in the other they made 25 choices. In each
case, the simulation was based on 25,000 random subjects. In the simulated
experiment with 25 choices, 4.3 percent of random subjects were perfectly
consistent, 14.3 percent had CCEI scores above Varian’s 0.95 threshold, and
28.9 percent had values above 0.90. In the simulated experiment with only
10 choices, the corresponding percentages were 20.2, 37.3, and 50.6. In
other words, there is a very high probability that random behavior will pass
the GARP test if the number of individual decisions is as low as it usually
is in experiments. As a practical note, the consistency results presented
above suggest that subjects did not have any difficulties in understanding
the procedures or using the computer program.

4 Data Description

We next provide an overview of some basic features of the individual-level
data. Naturally, subjects bring to any decision task a number of rules of
thumb, or heuristics, that they have acquired previously and that help them
solve the problem at hand.9 Moreover, a subject’s “success” or “failure”
in the experiment results from the appropriateness of the heuristics he uses
as much as the inherent difficulty of the decision-making. It is plausible, of
course, that subjects following a heuristic might behave “as if” they were ra-
tional maximizing individuals, even though it would be quite implausible to
expect them to be able to “solve” for the optimal choice. To the extent that
a subject’s behavior in an experiment approximates that of a rational maxi-
mizing individual, it is probably because the task is sufficiently transparent
to allow him to apply heuristics that approximate the optimal decision rule.

The fact that choices are sufficiently consistent to be considered utility-
generated is a striking result in its own right, but consistency is endogenous:
in a complex decision problem subjects may be forced to adopt heuristics;
and the decision-making problem may be simplified as a result. Neverthe-

9Heuristics have been proposed to explain how individuals choose when facing complex
decison problems. These rules work well under most circumstances, but in certain cases
lead to systematic cognitive biases.
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less, beyond satisfying consistency, the individual-level data yield a number
of surprising features which provide important insights into the heuristic
procedures followed by our subjects and the structure of preferences. In our
experimental design, the symmetric treatment, in which the two states have
equal probabilities (π = 1/2), is particularly transparent so it is possible
readily to identify, simply from the scatterplots of their choices, subjects
whose choices correspond to prototypical heuristics or types. We will focus
on examples that reveal some of the unexpected features of the data and
illustrate the role of heuristics. This also helps us get a sense of the chal-
lenges of substantive rationality. One must remember, however, that for
most subjects the data is much less regular.

4.1 Heuristics

We next describe particular allocations chosen by individual subjects. As
a preview, Figure 4 shows the choices made by subjects who follow easily
identifiable heuristics in making their decisions.10 In each case, the heuristic
may easily be related to some notion of risk aversion, but we defer this
discussion to the next section, and focus here on procedural rationality via
the identification of heuristics.

For each subject, the left panel of Figure 4 depicts the portfolio choices
(x1, x2) as points in a scatterplot. This panel provides information about the
particular portfolios chosen by an individual subject. The middle and right
panels show, respectively, the relationship between log(p1/p2), on the one
hand, and x1/(x1+ x2) and p1x1/(p1x1+ p2x2), on the other. These panels
examine the sensitivity of portfolio decisions to changes in relative prices in
terms of token shares and expenditure shares, respectively. The scatterplots
reveal striking regularities within and marked heterogeneity across subjects.

[Figure 4 here]

Figure 4A depicts the choices of a subject (ID 304) who always chose
nearly equal portfolios x1 = x2. We refer to this heuristic as the diagonal
heuristic (D). Additionally, we find many cases of subjects whose choices
demonstrate “smooth” responsiveness of portfolio allocations to the prices,
which we refer to below as the smooth price responsiveness heuristic (S).
Among these subjects, we find considerable heterogeneity in price sensitiv-
ity. Figure 4B depicts the choices of a subject (ID 309) who decreases the

10The scatterplots for the full set of subjects are available for downloading at http://ist-
socrates.berkeley.edu/~kariv/CFGK_A1.pdf.
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fraction of his portfolio invested in asset x1 (middle panel) and the frac-
tion of expenditure on x1 (right panel) as log(p1/p2) increases (i.e. positive
price responsiveness). This subject is therefore concerned with increasing
expected payoffs rather than reducing differences in payoffs. In contrast,
Figure 4C depicts the choices of a subject (ID 306) who decreases the frac-
tion of his portfolio invested in asset x1 (middle panel) but increases the
fraction of expenditure on x1 (right panel) as log(p1/p2) increases (i.e. neg-
ative price responsiveness). This subject is thus concerned with reducing
differences in payoffs rather than increasing expected payoffs.

Perhaps a more interesting kind of regularity is illustrated in Figure 4D,
which depicts the decisions of subject (ID 205) who chooses some minimum
level of consumption in each state, and allocates the residual to the less
expensive security. We denote the minimum level of consumption in each
state by ω ≥ 0, where ω = 0 if the subject chose the boundary allocation
and ω > 0 if he demands a positive minimum payoff in each state. We
refer to this guaranteed minimum payoff as a secure level heuristic (B(ω)).
Most interestingly, in the symmetric treatment, no subject followed heuristic
B(0), corresponding to boundary allocations, which is the natural limit of
the secure level heuristic B(ω). Nevertheless, heuristic B(0) was used in
combination with one or both of the prototypical heuristics, D and S, by
many subjects, as we will see below.

Most interestingly, many subjects combine two or more of the prototypi-
cal heuristics D, S and B(ω). Figure 4E depicts the decisions of the subject
(ID 307) who combines heuristic D, for values of log(p1/p2) in a neighbor-
hood of zero, with heuristic B(0) for values of log(p1/p2) that give a steep
or flat budget line. There is obviously something distinctly discontinuous in
the behavior and it thus seems natural to think of this subject as switching
between two distinct heuristics, D and B(0), rather than following a single
complicated heuristic. Further, some subjects combine heuristic S in their
mixture of heuristics. For example, the subject (ID 216) whose choices are
depicted in Figure 4F combines a heuristic B(0) with heuristic S, and the
subject (ID 318) whose choices are depicted in Figure 4G combines all three
distinct prototypical heuristics, D, S and B(ω). Finally, note that there
are yet more complex cases, such as the subject (ID 213) whose choices are
depicted in Figure 4H.

We have obviously shown just a small subset of our full set of subjects,
and have chosen them to illustrate the role of heuristics. These are of course
special cases, where the regularities in the data are very clear. There are
many subjects for whom the behavioral rule is much less clear and there
is no taxonomy that allows us to classify all subjects unambiguously. But
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even in cases that are harder to classify, we can distinguish elements of the
prototypical heuristics, D, S and B(ω), described above. Overall, a review
of the full data set confirms the heterogeneity of individual behavior and the
prevalence of identifiable heuristics that inform subjects’ decision rules.

4.2 Preferences

The particular portfolios chosen by individual subjects tell us a lot about
how subjects come to make decisions that are almost consistent with GARP.
Now we turn to the problem of recovering underlying preferences using the
revealed preference techniques developed by Varian (1982, 1983). This ap-
proach is purely non-parametric and uses only information about the re-
vealed preference relations. In particular, it makes no assumptions about
the form, parametric or otherwise, of the underlying utility function. Since
we observe many choices over a wide range of budget sets, we can in many
cases describe preferences with some precision.

Varian’s algorithm provides the tightest possible bounds on indifference
curves through a portfolio x0, which has not been observed in the previ-
ous data (pi, xi) for i = 1, ..., 50. First, we consider the set of prices at
which x0 could be chosen, consistently with the observed data and the im-
plied revealed preference relations. This set of prices is the solution to a
system of linear inequalities constructed from the data and revealed prefer-
ence relations. Call this set S(x0). Second, we use S(x0) to generate the
set of portfolios, RP (x0), revealed preferred to x0 and the set of portfolios,
RW (x0), revealed worse than x0. It is not difficult to show that RP (x0) is
simply the convex monotonic hull of all observations revealed preferred to
x0. To understand the construction of RW (x0), note that if x0RDxi for all
prices p0 ∈ S(x0), then x0Rxj for any portfolio xj such that xiRDxj , and
so on. Hence, the two sets RP (x0) and the complement of RW (x0) form
the tightest inner and outer bounds on the set of allocations preferred to x0.
Similarly, RW (x0) and the complement of RP (x0) form the tightest inner
and outer bounds on the set of allocations worse than x0.

Figure 5 depicts the construction of the bounds described above through
some portfolio x0 for the same group of subjects that we examine in Figure 4.
Since the data are clustered in very different areas of the graphs for different
subjects, we look at indifference curves through the “average” choices of
each subject. In addition to the RW (x0) and RP (x0) sets, Figure 5 also
shows the subjects’ choices (x1, ..., x50) as well as the budget sets used to
construct RW (x0). Most importantly, note the tightness of some of the sets
and the differences among subjects. Finally, we note that our computational
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experience with this technique reveals that if the data are not very close to
satisfying GARP then RP (x0) and RW (x0) often overlap.

[Figure 5 here]

Interestingly, for the subject (ID 304) whose choices were governed by
heuristic D and the subject (ID 306) whose choices were governed by heuris-
tic S with negative price responsiveness, the bounds on the indifference curve
suggest a near right angled indifference curve, implying a very high degree of
risk aversion. Another interesting case is the subject (ID 205) whose choices
were governed by heuristic B(ω) with positive minimum level of consump-
tion in each state. In this case, the indifference curve bounds suggest a
kink at the secure level. For the subject (ID 307) who combines heuristic
D with heuristic B(0), the bounds on the indifference curve imply a linear
indifference curve with slope close to −1. The bounds in Figure 5 show a
particularly close fit, but experience suggests that we can generally provide
reasonably precise bounds for subjects with a high consistency index, as long
as x0 is chosen within the convex hull of the data

©
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ª
.

4.3 Theoretical and empirical implications

How can we explain the very distinct types of individual behavior revealed
by the data? Since subjects’ choices are close to being consistent, Afriat’s
theorem tells us that there exists a well-behaved utility function that ratio-
nalizes most of the data. So one approach would be to posit the “kinky”
preference ordering implied by Afriat’s theorem and go no further in at-
tempting to rationalize the data. This approach has its attractions, but
the “switching” behavior that is evident in the data leads us to prefer an
alternative approach, one that emphasizes procedural rationality.

Suppose a subject does have an underlying preference ordering over port-
folios that represents his true preferences, but that it is difficult for him to
be sure he is making the correct choice in a particular decision problem. If
his cognitive ability is low and the cost of computing an optimal decision
is high, he may find it better to adopt a heuristic that only roughly ap-
proximates his optimal decision in some cases. For example, if the security
prices are very different and the true optimum is likely to be close to the
boundary, it is not worth calculating the true optimum. Instead, he chooses
the boundary portfolio with the larger expected payoff. On the other hand,
if the security prices are very similar and the true optimum is likely to be
near the diagonal, it is not worth thinking hard about the true optimum.
Instead, he chooses the diagonal portfolio.
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For intermediate prices ratios, neither of these “short cuts” will be at-
tractive. In this case, the subject may attempt to find the optimal tradeoff
between risk and return. Note that mistakes are more likely to occur when
a subject attempts to maximize than when he chooses the diagonal or the
boundary portfolios and this is another “cost” of adopting more complex
decision rules. This also suggests that consistency is endogenous: in a com-
plex situation subjects may be forced by bounded rationality to adopt simple
decision rules. As a result of this “simplification,” their decision making is
more likely to be consistent.

Finally, guaranteeing a minimum payoff as a secure level can be ra-
tionalized in a similar way. It is a crude approximation to maximizing
behavior when the subject is too risk averse to choose the boundary, but
not sufficiently risk averse to choose the diagonal, and finds an attempt at
maximizing the risk-return tradeoff too costly.

The procedural rationality approach outlined above has several advan-
tages compared to what we might call the substantive rationality approach
based on Afriat’s theorem. It is more informative, in the sense that it at-
tempts to derive a general account of behavior from simple and familiar
elements - constant relative risk aversion and discrete choice among heuris-
tics - that can be applied in other contexts, whereas a non-parametric utility
function of the kind guaranteed by Afriat’s theorem is hard to interpret and
impossible to apply to other settings. Further, since our approach assumes
an underlying preference ordering, it provides a unified account of both pro-
cedural and substantive rationality, which is interesting in its own right.
Finally, by allowing expected utility maximization to play the role of the
underlying preference ordering, we can link our approach to the classical
theory of decision making under uncertainty.

To implement our approach, we need to estimate a structural model
that will simultaneously account for subjects’ underlying preferences and
their choice of decision rules. In the next section, we will describe a type-
mixture model (TMM) in which a subject chooses among the fixed set of
types or prototypical heuristics, D, S and B(ω), in order to approximate
the behavior that is optimal for his true underlying preferences. Obviously,
with a sufficient number of heuristics, any choice data may be explained.
However, the description of individual-level data in this section suggests
that we may be able to effectively characterize behaviors with a minimal
number of heuristics.
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5 Risk aversion

Before undertaking the structural estimation route, we first use the “low-
tech” approach of estimating an individual-level parametric constant relative
risk aversion (CRRA) utility function directly from the data. In addition
to providing individual-level estimates of a simple expected-utility model,
this exercise will also provide standard measures of risk aversion which we
can compare to the estimates of risk aversion that come out of the TMM.
We emphasize again that the graphical representation enables us to collect
many more observations per subject than has heretofore been possible and
therefore to generate better individual-level estimates.

A particular functional form commonly employed in the analysis of choice
under uncertainty is the power utility function

u(x) =
x1−ρ

(1− ρ)
,

where ρ is the Arrow-Pratt measure of relative risk aversion. The power util-
ity function approaches pure risk neutrality as ρ→ 0 and pure risk aversion
as ρ→∞ (the aversion to risk increases as ρ increases). As ρ approaches 1,
the power utility function approaches ln(x). Logarithmic preferences imply
that the fraction of the portfolio invested in each security is independent
of the price ratio. Further, if ρ > 1 (resp. 0 < ρ < 1) a fall in the price
of a security lowers (resp. raises) the fraction of the portfolio invested in
that security. Thus, a risk parameter ρ > 1 indicates a preference weighted
towards reducing differences in payoffs, whereas a risk aversion parameter
0 ≤ ρ < 1 indicates preferences weighted towards increasing total expected
payoffs.

By straightforward calculation, the solution to the maximization prob-
lem (x∗1, x

∗
2) satisfies the first-order condition

π

1− π

µ
x∗2
x∗1

¶ρ

=
p1
p2

and the budget constraint p·x∗ = 1. This generates the following individual-
level econometric specification for each subject n:

log

µ
xi2n
xi1n

¶
= αn + βn log

µ
pi1n
pi2n

¶
+ �in

where �in is assumed to be distributed normally with mean zero and variance
σ2n. We generate estimates of α̂n and β̂n using ordinary least squares (OLS),
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and use this to infer the values of the underlying parameter ρ̂n = 1/β̂n
and the implied subjective probability π̂n = 1/(1 + eα̂n/β̂n). By contrast
with studies that pool data from different subjects, our data set is large
enough to allow the estimation of the parameters ρ̂n and π̂n for each subject
n separately. In particular, it allows us to test for heterogeneity of risk
preferences.

Before proceeding to the estimations, we omit the nine subjects with
CCEI scores below 0.80 (ID 201, 211, 310, 321, 325, 328, 406, 504 and
603) as their choices are not sufficiently consistent to be considered utility-
generated, three subjects (ID 205, 218 and 320) who almost always follow
the secure level heuristic B(10), and a single subject (ID 508) who almost
always chose a boundary portfolio.11 This leaves a total of 80 subjects
(86.0 percent) for whom we need to recover the attitudes towards risk by
estimating the power model. For these subjects, we discard the boundary
observations using a narrow confidence interval of one token (i.e. if xi1 ≤ 1
or xi2 ≤ 1 then xi is treated as a boundary portfolio), for which the power
function is not well defined. The boundary observations will be directly
incorporated into our TMM estimation below. Our taxonomy of heuristics
suggests that the risk aversion parameter is best estimated using choices
that correspond to the smooth price responsiveness heuristic S. We include
diagonal observations as well, though their inclusion does not substantially
affect the estimated coefficients.

Table 2 presents the results of the estimations α̂n, β̂n, ρ̂n and π̂n sorted
according to ascending values of ρ̂n for the symmetric (π = 1/2) and asym-
metric (π = 1/3 and π = 2/3) treatments separately, as well as the number of
observations per subject. Notice again that we screen the data for boundary
observations, which results in many fewer observations for a small number
of subjects. Nevertheless, out of the 80 subjects listed in Table 3, 33 sub-
jects (41.3 percent) have no boundary observations and this increases to a
total of 60 subjects (75.0 percent) if we consider less than five boundary
observations.

[Table 2 here]

Figure 6 presents the distribution of the estimated individual Arrow-
Pratt measures ρ̂n for all subjects listed in Table 2, split by symmetric
(black) and asymmetric (gray) treatments (subjects ID 304, 307, 311 and

11This subject (ID 508) almost always chose x1 = 0 if p1 > p2 and x2 = 0 otherwise.
However, he participated in the asymmetric treatment π1 = 2/3 and thus his choices do
not correspond to pure risk neutrality.
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324 are excluded because they have extreme ρ̂-values). One notable feature
of the distributions in Figure 6, is that both the symmetric and asymmetric
subsamples exhibit considerable heterogeneity in preferences, though the
two distributions are quite similar. Most interestingly, a significant fraction
of our subjects in both treatments exhibit moderate to high levels of risk
preferences around ρ̂ = 0.8. For 41 of the 80 subjects listed in Table 2 (51.3
percent), ρ̂n is in the 0.6−1.0 range. This increases to a total of 51 subjects
(63.8 percent) if we consider the bounds 0.4− 1.2.

[Figure 6 here]

There have been many attempts to recover risk preferences from subjects’
decisions in a variety of laboratory experiments. Our levels of ρ are slightly
higher than some recent estimates. For comparison, Chan and Plott (1998)
and Goeree, Holt and Palfrey (2002) report, respectively, ρ = 0.48 and
0.52 for private-value auctions. Goeree, Holt and Palfrey (2003) estimate
ρ = 0.44 for asymmetric matching pennies games, and Goeree and Holt
(2004) report ρ = 0.45 for a variety of one-shot games. Holt and Laury
(2002) estimate individual degrees of risk aversion from ten paired lottery-
choices under both low- and high-money payoffs. Most of their subjects in
both treatments exhibit risk preferences around the 0.3 − 0.5 range. Note,
however, that our estimates are possibly biased upward because we omitted
boundary observations.

Finally, notice that, on average, the estimated subjective probabilities
π̂n are close to the true probabilities (averaging 0.49 in the symmetric treat-
ment, and 0.38 and 0.62 in the asymmetric treatments π = 1/3 and π = 2/3,
respectively), though in the asymmetric treatments, the averages are biased
towards 1/2.

In summary, we find that a simple OLS regression based on the CRRA
utility function gives plausible estimates of individual risk aversion in the
laboratory. The distinct patterns observed in individual data, however, sug-
gest that a more complex formulation, incorporating the use of one or more
heuristics, is necessary to fully interpret the data. Introducing heuristics
will also provide an explicit linkage between substantive and procedural ra-
tionality, as we see in the next section.

6 Type-Mixture Model (TMM)

The patterns observed in the individual-level data suggest very distinct pat-
terns of individual behavior, typically governed by mixtures of a small num-
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ber of heuristics. A coherent account of individual behavior requires us to
explain the choice of heuristics as well as the behavior of the individual who
is following one of these heuristics. For this purpose, the natural economet-
ric specification is a TMM and in what follows we will estimate a TMM for
each subject n using the data

©¡
pin, x

i
n

¢ªn
i=1
.

Other things being equal, the more heuristics are included in the model
the easier it is to fit the data and the less we learn from the exercise. For this
reason we have chosen a very parsimonious specification in which we attempt
to explain subjects’ behavior using the three heuristics, D, S and B(ω), that
are easily identified in the data. Before we can estimate a structural model
of the choice of heuristics, we need a theoretical model of choice. Again,
we have tried to do this in the simplest possible way in order to avoid
introducing unnecessary parameters. The basic problem is to explain why
heuristics D and B(ω) are not dominated by S. We could introduce ad hoc
“psychic costs” of using the S heuristic, but since we do not observe such
costs we prefer to take another route. By comparison with heuristics D and
B(ω), which are very simple to implement, making smooth tradeoffs between
risk and return by using heuristic S is difficult. Whereas most subjects can
find the diagonal and the boundary without difficulty, it seems unlikely
that an individual whose “true” underlying preferences are represented by a
power utility function chooses the optimal point without error. This provides
us with an intuitive and observable cost of using the S heuristic: subjects
are likely to make mistakes, and this randomness together with risk aversion
will lower expected utility below that achieved by a substantively rational
individual. As a result, a subject may prefer under certain circumstances to
choose heuristic B(ω) or D instead of the noisy version of heuristic S.

Another advantage of this approach, apart from its simplicity, is that we
can estimate the probability of mistakes at the same time as we estimate
the other parameters of the model. For any budget set defined by the price
vector p = (p1, p2) we can represent the optimal choice ϕ(p) by the share of
expenditure invested in x1 and represent the errors by a disturbance term ε
with zero mean and variance σ2. For any value of the risk aversion parameter
ρ and secure level ω, the optimal share is a function of p = (p1, p2). The
error ε is the difference between the predicted share and the observed share.
It is the distribution of these errors that allows us to estimate the value of
σ.

A subject with a secure level ω faced with a budget set defined by the
price vector p will have three choices. He can choose heuristic B(ω) and
receive a payoff (expected utility) that we denote by UB (p); he can choose
heuristic S and receive a random payoff of US(p); or he can choose heuristic
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D and receive a payoff UD(p). The exact expressions for these payoffs are
given below; the important point is that the individual is assumed to know
the payoff associated with each heuristic and that the payoff specification
for heuristic S incorporates the possibility of mistakes. Because individuals
make mistakes, we allow for the possibility that subjects do not necessarily
choose the highest payoff. Instead we assume that the probability of choosing
a particular heuristic is a function of the relative payoff to that heuristic.

Specifically, we implement this by using a standard logistic discrete
choice model, in which the probability of choosing heuristic k = D,S,B
is given by

Pr(heuristic τ |p, β, ρ, σ ) = eβUτP
k=D,S,B

eβUk
.

The coefficient β ∈ [0,∞) reflects the sensitivity to differences in payoffs,
where the choice of heuristic becomes purely random as β → 0, whereas
the heuristic with the highest payoff is chosen with certainty as β → ∞.
Further, the probability of choosing heuristic k is an increasing function of
the payoff Uk for any β > 0.

Before proceeding to the estimation, we note the effect of ρ and σ on
choice probabilities via the logistic function given above. For moderate
values of σ and moderate to high levels of ρ > 0, heuristic D yields the
highest payoff when the prices are quite similar. For any σ, increasing
ρ increases the range of intermediate prices around the diagonal p1 = p2
on which heuristic D yields the highest payoff. On the other hand, for
any ρ > 0, increasing σ decreases the payoff for heuristic S. Hence, the
concavity of the power utility function (positive risk aversion) has a crucial
role in determining the choice probabilities.

Our model of boundedly rational choice thus depends on three para-
meters: the logistic parameter β, the risk aversion parameter ρ, and the
standard deviation σ. The secure level ω is directly observed by the econo-
metrician, and is thus not estimated. In the remainder of this section we
explain the estimation procedure and discuss the empirical results. The
reader who is not interested in technicalities may wish to skip to the discus-
sion of the results in Table 3 below.

6.1 Specification

A subject’s type is determined both by his underlying preferences, which
represent his (substantive) rationality, and by the limits of his cognitive
ability. Specifically, the underlying preferences of each subject n are assumed

22



to be represented by a power utility function

un (x) =
x1−ρn

(1− ρn)

as long as his consumption in each state meets the secure level ωn.12, 13

Let ϕ(p) be the portfolio which gives the subject the maximum (expected)
utility achievable at given prices p.

The subject might not have the cognitive ability necessary to discover
his optimal portfolio ϕ(p). Clearly, his ability to calculate is limited and
he is thus likely to make “mistakes” if the decision problem is not simpli-
fied under some circumstances. This is the behavioral interpretation of the
TMM specification. In order to account for subjects’ propensity to choose
a portfolio different from the one predicted by the basic model ϕ(p), we as-
sume that subjects anticipate making mistakes in their attempt to maximize
expected utility. The possibility of mistakes results in a random portfolio
ϕ̃(p) such that p · ϕ̃(p) = 1 for every p.

This generates a simple payoff specification for each heuristic D, S and
B that we note, respectively, by UD(p), US(p) and UB(p). More precisely,
the ex ante expected payoff from attempting to maximize expected utility
by employing the smooth price responsiveness heuristic S is given by

US(p) = E[πu (ϕ̃1(p)) + (1− π)u (ϕ̃2(p))].

For parametric tractability, the optimal fraction of total expenditure going
to asset 1 is implicitly defined by

p1ϕ1(p) =
1

1 +
¡
1−π
π

¢1/ρ ³p1
p2

´(1−ρ)/ρ .
The difference between the actual share of expenditure p1ϕ̃1(p) and the
optimal share of expenditure p1ϕ1(p) is denoted by the random variable
ε, whose density function φ (·;σ), is normal with mean zero and standard
12 In practice, the individual secure level ωn can be inferred from the observed choices.

Only three subjects (ID 205, 218 and 320) choose strictly positive secure levels, ω = 10.
For these three subjects, we assume utility is a function of the net demand, i.e., the utility
of x tokens is un (x− ω).
13The utility function u(x) is not well defined when x = 0 and ρ > 1. For computational

purposes we substitute the perturbed function u(0.1+x), where x is the number of tokens
observed.
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deviation σ. We therefore rewrite the ex ante expected payoff from heuristic
S as

US (p; ρ, σ) =

∞Z
−∞

∙
πu

µ
g (p1ϕ1 (p) + ε)

p1

¶
+ (1− π)u

µ
(1− g (p1ϕ1 (p) + ε))

p2

¶¸
φ (ε, σ) dε,

where the function g : R→ [0, 1] is defined by

g (ξ) =

⎧⎨⎩
0 if ξ < 0
ξ if 0 ≤ ξ ≤ 1
1 if ξ > 1.

While it would be quite implausible to expect subjects to be able to
solve for the optimal portfolio ϕ(p), because of the problem’s complexity, it
is plausible to assume that when following heuristic D or B subjects’ hands
do not tremble. By direct calculation, we therefore write

UD (p) = u

µ
1

p1 + p2

¶
and

UB (p) =

(
πu(0) + (1− π)u( 1p2 ) if πp1 ≤ (1− π) p2

πu
³
1
p1

´
+ (1− π)u(0) if πp1 > (1− π) p2

.

14

6.2 Estimation

Let {(pin, xin)}50i=1 be the observed individual data of subject n. Then the
probability of an observation (pin, x

i
n) is given by the likelihood function

Ln

¡
(pin, x

i
n)
¢
=

P
k=D,S,B

Pr
¡
τ = k; pin, βn, ρn, σn

¢
Pr
¡
xin|τ = k, pin

¢
where the probability that (pin, x

i
n) is the result of choosing heuristic B is

given by

Pr
¡
xin|τ = B, pin

¢
=

⎧⎨⎩
1 if xi1n ∈ [0, 1) and πpi1n ≤ (1− π)pi2n
1 if xi2n ∈ [0, 1) and πpi1n > (1− π)pi2n
0 otherwise;

14Note the indifference assumption that x1 = 0 when πp1 = (1− π)p2. Since these are
probability zero events, this does not affect the estimation.
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the probability that (pin, x
i
n) is the result of choosing heuristic D is given by

Pr
¡
xin|τ = D, pin

¢
=

½
1 xi1n ∈

¡
xi2n − 1, xi2n + 1

¢
0 otherwise;

and the probability that (pin, x
i
n) is the result of choosing heuristic S is given

by the two-sided Tobit model

Pr
¡
xin|τ = S, pin

¢
= Φ

µ
−pi1nϕ1(pin)

σn

¶1{xi1n∈[0,1)} ∙
1− Φ

µ
1−pi1nϕ1(pin)

σn

¶¸1{xi2n∈[0,1)}
×
∙
( 1
σn
√
2π
) exp(−(p

i
1nx

i
1n−pi1nϕ1(pin))

2

σ2n
)

¸1{xi1n/∈[0,1),xi2n/∈[0,1)}
,

where 1xi1n is an indicator function which allows for a narrow confidence
interval of one token and Φ (·) is the cumulative standard normal distribu-
tion. Note again that we identify the boundary observations using a narrow
confidence interval of one token (i.e. if xi1 ≤ 1 or xi2 ≤ 1 then xi is treated
as a boundary portfolio). Finally, the extended likelihood function has the
form:

L
¡
βn, ρn, σn; {(pin, xin)}50i=1

¢
=

50Q
i=1

( P
k=D,S,B

Pr
¡
τ = k; pin, βn, ρn, σn

¢
Pr
¡
xin|τ = k, pin

¢)
.

We again omit the nine subjects with CCEI scores below 0.80 (ID 201,
211, 310, 321, 325, 328, 406, 504 and 603) as well the subject (ID 508) for
whom the TMM is not well defined. This leaves the group of 80 subjects for
whom we estimated parameters for the simple power formulation above, as
well as the three subjects (ID 205, 218 and 320) who almost always follow
the secure level heuristic B(10). We impose the restriction 0 ≤ ρ ≤ 5 on the
estimation in order to avoid two identifications problems. We require ρ ≥ 0
because it is impossible to distinguish pure risk neutrality (ρ = 0) from risk
loving behavior (ρ < 0). We require ρ ≤ 5 because very high degrees of risk
aversion imply portfolio choices close to the diagonal, making it impossible
to distinguish D from S. Table 3 presents parameter estimates, β̂n, ρ̂n and
σ̂n sorted according to ascending values of ρ̂n. For comparative purposes,
the additional columns list the values of ρ̂n derived from the simple OLS
estimation based on CRRA and the CCEI scores.

[Table 3 here]

Although there are some differences in the β̂n estimates across subjects,
for most of them these estimates are significantly positive, implying that

25



the TMM has predictive power in interpreting the behavior of selecting
heuristics at the level of the individual subject. For a few subjects who
use only one heuristic, the values of β̂n are insignificant because the likeli-
hood function becomes flat in the neighborhood of β̂n. For the underlying
risk parameter, ρ, there are many subjects with intermediate values of ρ̂n,
as was the case in the OLS estimation: 29 subjects (34.9 percent) have
0.6 ≤ ρ̂n ≤ 1.0 and this increases to a total of 55 subjects (66.3 percent)
who have 0.4 ≤ ρ̂n ≤ 1.2. More interestingly, there is a strong correla-
tion between the estimated ρ̂n parameters from the individual OLS and the
TMM estimations. The advantage of the TMM estimation over the OLS es-
timation is that it appears to effectively capture subjects’ attitudes towards
risk while also explaining the selection of heuristics. Figure 7 presents the
distribution of ρ̂n for the TMM estimation, with the sample split by symmet-
ric (black) and asymmetric (gray) treatments. Notice that the distribution
shifts slightly to the left when calculated using the TMM estimation as
compared to the distribution calculated using the analogous OLS estimator
presented in Figure 6. The reason may be the downward bias in the OLS
estimates due to the omission of boundary observations. Notice that we ob-
tain once more very similar distributions for the symmetric and asymmetric
subsamples.

[Figure 7 here]

6.3 Goodness-of-fit

The results of the TMM estimation show some power in predicting the highly
heterogeneous individual behaviors observed in the laboratory. It is instruc-
tive to follow the subjects we have considered in the previous section to
examine the ability of the parametric TMM to capture the choice of heuris-
tics. To this end, we perform a series of graphical comparisons between the
individual choice probabilities predicted by the TMM and empirical choice
probabilities. The predicted TMM choice probabilities are calculated using
the individual-level (β̂n, ρ̂n, σ̂n) estimates, and the empirical choice prob-
abilities are estimated using nonparametric regressions over the observed
choices of the heuristics D and S. Additionally, we calculate the relation-
ship between log(p1/p2) and the fraction of x1/ (x1 + x2) for each subject,
as predicted by the TMM, and compare this with the analogous relationship
derived from the nonparametric estimates.

To generate the nonparametric estimates, we employ the Nadaraya-
Watson estimator with a Gaussian kernel function. The optimal bandwidth
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in the nonparametric kernel regression with a single independent variable is
proportional to (#obs)−1/5. For most of the subjects listed in Table 3, the
bandwidths selected by trial and error provided properly smoothed kernel
regression estimates.15 To illustrate, Figure 8 shows this set of comparisons
for the same group of subjects as in Figure 4 and Figure 5.16 Notice that
the logistic function is not homogeneous of degree zero in prices, whereas
the rest of the theory is. In order to remove any “income effects” in the
estimation of the TMM, we normalized prices so that p1 + p2 = 1 when
calculating the payoffs from the three heuristics.

[Figure 8 here]

In each of the graphs in Figure 8, a solid blue line represents the nonpara-
metric estimation and a dotted red line represents the analogous parametric
TMM estimation. The selected bandwidth is reported in the legend of each
panel. For each subject, the left and middle panels compare the nonpara-
metric and parametric probabilities of D∗ and B∗(ω) respectively. We define
D∗ to be the event that the subject’s choice belongs to the diagonal. Given
σ > 0, the probability that this is chosen by heuristic S is approximately
zero and thus the event D∗ is considered to be chosen by heuristic D. Sim-
ilarly, the event B∗(ω) is defined as the event that the portfolio conforms
to the secure level ω allocation. Note that the event B∗(ω) is either cho-
sen by heuristic B (ω) or S. The non-parametric regression is based on
a manual assignment of observations to one of the following three events:
D∗, B∗ (ω), and the joint complement of them. Hence, in order to make a
meaningful comparison, we contrast the non-parametric regression with the
probabilities of D∗ and B∗(ω) generated by the TMM. The right panel com-
pares the nonparametric and parametric relationships between log(p1/p2)
and x̂1/(x̂1 + x̂2).

These graphical comparisons provide some indication of goodness-of-fit
for the several subjects we used for illustrative purposes throughout the pa-
per. The fit is generally very good except when we compare the probabilities
of choosing heuristic D (left panel) for subjects who often chose portfolios
near the diagonal. The identification problem in these cases is caused by
the difficulty in distinguishing between heuristic D and heuristic S when
15The literature on bandwidth selection in nonparametric regression indicates that au-

tomatic bandwidth-selection such as such as Generalized Cross Validation is not always
preferable to graphical methods with a trial and error approach. See Pagan and Ullah
(1999, p.120).
16The scatterplots for the full set of subjects are available for downloading at http://ist-

socrates.berkeley.edu/~kariv/CFGK_A2.pdf.
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the degree of risk aversion is high. This does not reduce the ability of the
TMM to describing the relationship between prices and the associated port-
folios (right panel). Overall, the empirical data are supportive of the TMM
model. We note, however, that the model appears to fit the data best in the
symmetric treatment (π = 1/2). In the asymmetric treatments (π = 1/3
and π = 2/3), where decision-making is more complex than in the symmet-
ric treatment, the predictions of the TMM are not as close to relationships
revealed in the data.

In conclusion, the TMM combines the distinctive types of behavior ob-
served in the raw data in a coherent theory based on underlying prefer-
ences. It produces reasonable estimates of risk aversion, exhibits significant
explanatory power in the choice of heuristics, and matches the behavior of
subjects as represented by the relationships between the log-price ratio and
expenditure shares and between the log-price ratio and token shares. The
expected utility maximization underlying the TMM effectively unifies the
substantive rationality of the classical theory with the procedural rational-
ity approach.

7 Conclusion

In this paper, we attempt to provide a more general account of choice un-
der uncertainty. Our experimental design contains a couple of fundamental
innovations over existing work. We employ graphical representations of the
portfolio choice problem, rather than extreme (binary) choices designed to
reveal violations of specific axioms. This allows for the collection of a rich
individual-level data set. We do not pool data or assume that subjects are
homogeneous. Most importantly, our experiment employs a broad range of
budget sets that provide a serious test of the ability of EUT and a struc-
tural TMM to interpret the data. In this way, we present a systematic
experimental study of individual choice under uncertainty.

The basic regularities from our experiment may be summarized as fol-
lows: First, a significant majority of our subjects exhibit behavior that
appears to be “almost optimizing” in the sense that their choices are close
to satisfying GARP. Thus, choices satisfy the standard notion of rationality.
Second, individual behaviors are complex and highly heterogeneous, despite
the prevalence of a few heuristics that inform their decision rules. Third, a
TMM based on EUT employing only few intuitive heuristics - infinite risk
aversion, risk neutrality, and intermediate (constant) relative risk aversion -
provides reasonable fit at the level of the individual subject and can account
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for the highly heterogeneous behaviors observed in the laboratory.
Many open questions remain about choice under uncertainty. The ex-

perimental techniques that we have developed provide some promising tools
for future work, and our results also suggest a number of potential direc-
tions. One particularly promising possibility would be to employ a simi-
lar methodology incorporating three states and three associated securities,
which be utilized to systematically examine the axioms of EUT using both
nonparametric and parametric methods. This complexities presented by
such a study may demand further methodological and theoretical innova-
tions, which will hopefully spur yet more interesting answers and further
questions about choice under uncertainty.

8 Experimental Instructions (π = 2/3)

Introduction

This is an experiment in decision-making. Research foundations have
provided funds for conducting this research. Your payoffs will depend partly
only on your decisions and partly on chance. It will not depend on the
decisions of the other participants in the experiments. Please pay careful
attention to the instructions as a considerable amount of money is at stake.

The entire experiment should be complete within an hour and a half. At
the end of the experiment you will be paid privately. At this time, you will
receive $5 as a participation fee (simply for showing up on time). Details of
how you will make decisions and receive payments will be provided below.

During the experiment we will speak in terms of experimental tokens
instead of dollars. Your payoffs will be calculated in terms of tokens and
then translated at the end of the experiment into dollars at the following
rate:

2 Tokens = 1 Dollar
A decision problem

In this experiment, you will participate in 50 independent decision prob-
lems that share a common form. This section describes in detail the process
that will be repeated in all decision problems and the computer program
that you will use to make your decisions.

In each decision problem you will be asked to allocate tokens between
two accounts, labeled x and y. The x account corresponds to the x-axis and
the y account corresponds to the y-axis in a two-dimensional graph. Each
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choice will involve choosing a point on a line representing possible token
allocations. Examples of lines that you might face appear in Attachment 1.

[Attachment 1 here]

In each choice, you may choose any x and y pair that is on the line. For
example, as illustrated in Attachment 2, choice A represents a decision to
allocate q tokens in the x account and r tokens in the y account. Another
possible allocation is B, in which you allocate w tokens in the x account and
z tokens in the y account.

[Attachment 2 here]

Each decision problem will start by having the computer select such a
line randomly from the set of lines that intersect with at least one of the
axes at 50 or more tokens but with no intercept exceeding 100 tokens. The
lines selected for you in different decision problems are independent of each
other and independent of the lines selected for any of the other participants
in their decision problems.

To choose an allocation, use the mouse to move the pointer on the com-
puter screen to the allocation that you desire. When you are ready to make
your decision, left-click to enter your chosen allocation. After that, confirm
your decision by clicking on the Submit button. Note that you can choose
only x and y combinations that are on the line. To move on to the next
round, press the OK button. The computer program dialog window is shown
in Attachment 3.

[Attachment 3 here]

Your payoff at each decision round is determined by the number of tokens
in your x account and the number of tokens in your y account. At the end of
the round, the computer will randomly select one of the accounts, x or y. For
each participant, account y will be selected with 1/3 chance and account x
will be selected with 2/3 chance. You will only receive the number of tokens
you allocated to the account that was chosen.

Next, you will be asked to make an allocation in another independent
decision. This process will be repeated until all 50 rounds are completed. At
the end of the last round, you will be informed the experiment has ended.

Earnings
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Your earnings in the experiment are determined as follows. At the end
of the experiment, the computer will randomly select one decision round
from each participant to carry out (that is, 1 out of 50). The round selected
depends solely upon chance. For each participant, it is equally likely that
any round will be chosen.

The round selected, your choice and your payment will be shown in the
large window that appears at the center of the program dialog window. At
the end of the experiment, the tokens will be converted into money. Each
token will be worth 0.5 Dollars. Your final earnings in the experiment will
be your earnings in the round selected plus the $5 show-up fee. You will
receive your payment as you leave the experiment.

Rules

Your participation in the experiment and any information about your
payoffs will be kept strictly confidential. Your payment-receipt and partici-
pant form are the only places in which your name and social security number
are recorded.

You will never be asked to reveal your identity to anyone during the
course of the experiment. Neither the experimenters nor the other partici-
pants will be able to link you to any of your decisions. In order to keep your
decisions private, please do not reveal your choices to any other participant.

Please do not talk with anyone during the experiment. We ask everyone
to remain silent until the end of the last round. If there are no further
questions, you are ready to start. An instructor will approach your desk
and activate your program.
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Table 1: WARP and GARP violations and the three indices by subject 
(treatment by treatment sorted according to descending CCEI) 

 
Symmetric treatment (π=1/2) 

 
ID WARP GARP Afriat Varian HM

205 0 0 1.000 1.000 50
213 0 0 1.000 1.000 50
215 0 0 1.000 1.000 50
216 0 0 1.000 1.000 50
219 0 0 1.000 1.000 50
303 0 0 1.000 1.000 50
304 0 0 1.000 1.000 50
306 0 0 1.000 1.000 50
314 0 0 1.000 1.000 50
316 0 0 1.000 1.000 50
317 0 0 1.000 1.000 50
320 0 0 1.000 1.000 50
326 0 0 1.000 1.000 50
301 3 11 0.997 0.951 48
323 3 3 0.991 0.978 47
302 2 7 0.990 0.943 48
210 1 1 0.988 0.967 49
311 3 3 0.986 0.804 48
313 2 2 0.986 0.970 48
217 7 14 0.986 0.935 46
207 3 15 0.981 0.941 47
204 4 10 0.973 0.970 47
318 4 6 0.972 0.809 48
202 6 12 0.968 0.944 46
203 4 14 0.966 0.946 48
319 3 20 0.966 0.727 48
327 2 5 0.965 0.915 49
315 10 33 0.959 0.795 45
312 4 13 0.957 0.952 47
309 4 17 0.952 0.890 48
218 5 10 0.951 0.907 48
214 8 21 0.949 0.916 45
206 9 147 0.948 0.855 47
208 8 14 0.942 0.912 45
308 2 6 0.938 0.930 49
209 15 94 0.929 0.825 46
307 5 12 0.916 0.914 46
322 8 96 0.905 0.768 47
212 5 111 0.866 0.697 47
305 17 182 0.852 0.695 45
324 18 453 0.840 0.657 29
201 16 147 0.797 0.526 42
321 27 375 0.757 0.356 44
325 27 702 0.739 0.398 32
328 21 559 0.705 0.401 33
310 22 241 0.690 0.366 43
211 83 669 0.611 0.361 34  



Table 1 cont. 
 
 

Asymmetric treatments (π=1/3 and π=2/3) 
 

ID WARP GARP Afriat Varian HM
508 0 0 1.000 1.000 50
509 0 0 1.000 1.000 50
604 0 0 1.000 1.000 50
411 2 4 0.999 0.978 48
416 1 1 0.999 0.979 49
405 2 2 0.999 0.933 48
417 1 1 0.998 0.996 49
505 1 1 0.996 0.995 49
501 2 2 0.995 0.985 48
605 5 5 0.992 0.982 45
414 1 1 0.990 0.951 49
413 5 7 0.989 0.979 47
408 1 1 0.987 0.986 49
415 4 5 0.987 0.934 47
402 5 7 0.987 0.834 47
410 4 4 0.984 0.954 47
515 5 6 0.984 0.973 46
407 3 3 0.984 0.972 48
503 2 5 0.982 0.961 49
512 8 8 0.982 0.960 43
601 1 1 0.981 0.981 49
516 4 4 0.981 0.975 46
520 8 9 0.979 0.907 46
412 7 12 0.976 0.928 46
514 2 3 0.975 0.952 49
502 5 17 0.971 0.880 47
609 3 5 0.969 0.880 47
519 4 5 0.963 0.944 47
513 10 37 0.957 0.822 45
602 6 11 0.947 0.861 45
510 8 13 0.946 0.914 45
409 6 15 0.943 0.935 46
511 16 231 0.936 0.472 42
507 16 39 0.929 0.843 44
403 8 27 0.916 0.724 46
404 26 117 0.915 0.729 42
517 13 32 0.911 0.845 43
506 5 294 0.892 0.568 48
401 3 3 0.874 0.838 49
607 37 179 0.870 0.712 37
608 23 549 0.847 0.570 29
606 18 241 0.839 0.470 44
518 26 121 0.816 0.732 43
504 29 794 0.697 0.355 33
603 12 322 0.686 0.229 47
406 39 881 0.653 0.225 30  



Table 2: Results of individual-level power utility function estimation 
(sorted according to ascending order of the Arrow-Pratt measure of relative risk aversion) 

 
Symmetric treatment (π=1/2) 

 
ID α Std(α ) β Std(β ) ρ π # obs.
311 -0.002 0.002 -0.005 0.008 -214.124 0.384 24
324 0.002 0.003 -0.008 0.009 -123.286 0.557 19
307 -0.011 0.011 -0.019 0.052 -52.248 0.361 18
302 0.081 0.086 2.701 0.243 0.370 0.492 40
207 0.091 0.118 2.492 0.246 0.401 0.491 38
216 0.005 0.058 2.045 0.101 0.489 0.499 40
318 -0.112 0.093 2.034 0.177 0.492 0.514 31
305 0.082 0.122 1.779 0.151 0.562 0.489 50
209 -0.019 0.110 1.523 0.192 0.656 0.503 49
309 -0.112 0.060 1.483 0.099 0.674 0.519 50
217 -0.018 0.088 1.429 0.110 0.700 0.503 49
208 0.035 0.084 1.398 0.131 0.715 0.494 48
319 0.089 0.108 1.348 0.170 0.742 0.483 34
322 0.121 0.146 1.322 0.167 0.756 0.477 50
315 0.004 0.121 1.258 0.153 0.795 0.499 50
313 -0.040 0.050 1.210 0.070 0.827 0.508 49
326 -0.050 0.061 1.118 0.127 0.895 0.511 48
301 0.036 0.057 1.107 0.094 0.904 0.492 49
327 0.178 0.097 1.083 0.126 0.924 0.459 50
312 0.111 0.098 1.065 0.178 0.939 0.474 45
303 0.004 0.003 0.989 0.005 1.011 0.499 46
215 -0.208 0.130 0.982 0.227 1.019 0.553 37
202 0.071 0.075 0.963 0.091 1.038 0.482 50
219 0.065 0.030 0.890 0.063 1.124 0.482 41
212 0.122 0.075 0.883 0.105 1.132 0.465 48
308 -0.087 0.061 0.812 0.083 1.231 0.527 49
317 -0.050 0.025 0.801 0.040 1.249 0.515 50
316 0.063 0.050 0.779 0.075 1.284 0.480 50
214 0.035 0.054 0.769 0.088 1.301 0.489 50
213 -0.058 0.099 0.653 0.184 1.533 0.522 45
323 0.066 0.059 0.630 0.074 1.588 0.474 50
306 0.076 0.035 0.301 0.046 3.318 0.437 50
206 0.062 0.040 0.278 0.064 3.596 0.444 50
203 -0.019 0.044 0.208 0.088 4.799 0.523 46
210 0.053 0.029 0.199 0.042 5.034 0.433 50
204 0.011 0.052 0.187 0.090 5.348 0.486 47
314 0.004 0.021 0.184 0.103 5.448 0.495 25
304 -0.001 0.001 0.008 0.002 132.742 0.525 50  



Table 2 cont. 
 
 

Asymmetric treatments (π=1/3 and π=2/3) 
 

ID α Std(α ) β Std(β ) ρ π # obs.
517 -0.149 0.246 2.897 0.401 0.345 0.513 47
609 -0.162 0.132 2.383 0.281 0.420 0.517 45
412 0.199 0.109 2.277 0.182 0.439 0.478 41
415 0.638 0.212 2.181 0.749 0.458 0.427 22
520 -0.611 0.113 2.098 0.171 0.477 0.572 35
506 0.042 0.149 2.043 0.206 0.489 0.495 41
417 0.191 0.061 2.029 0.101 0.493 0.477 49
505 -0.772 0.083 1.884 0.122 0.531 0.601 44
601 -0.877 0.111 1.846 0.482 0.542 0.617 17
403 0.362 0.076 1.726 0.130 0.579 0.448 40
605 -0.328 0.115 1.674 0.129 0.597 0.549 50
405 0.289 0.093 1.661 0.109 0.602 0.457 50
503 -0.411 0.068 1.614 0.231 0.620 0.563 35
411 1.193 0.042 1.579 0.134 0.633 0.320 32
510 -0.363 0.099 1.544 0.106 0.648 0.558 50
402 0.290 0.056 1.515 0.079 0.660 0.452 45
507 -0.121 0.097 1.465 0.156 0.683 0.521 46
401 0.180 0.113 1.417 0.158 0.706 0.468 50
414 0.331 0.077 1.365 0.113 0.732 0.440 49
514 -0.900 0.069 1.308 0.092 0.764 0.666 50
602 -0.010 0.091 1.227 0.118 0.815 0.502 49
501 -0.189 0.060 1.216 0.103 0.822 0.539 49
518 -0.504 0.113 1.207 0.172 0.829 0.603 48
409 0.682 0.079 1.143 0.099 0.875 0.355 50
512 -0.329 0.068 1.059 0.097 0.944 0.577 48
604 -0.730 0.025 1.009 0.034 0.991 0.673 50
416 0.600 0.040 0.983 0.057 1.018 0.352 50
513 -0.200 0.069 0.919 0.087 1.088 0.554 50
509 -0.084 0.047 0.918 0.068 1.089 0.523 50
511 -0.255 0.084 0.832 0.093 1.202 0.576 49
410 0.431 0.058 0.773 0.071 1.294 0.364 50
608 -0.473 0.148 0.701 0.202 1.426 0.662 46
519 -0.923 0.077 0.580 0.133 1.724 0.831 45
502 -0.060 0.059 0.528 0.072 1.896 0.528 50
407 0.461 0.042 0.403 0.053 2.479 0.242 50
408 0.634 0.054 0.393 0.060 2.544 0.166 50
404 0.059 0.093 0.384 0.145 2.601 0.461 50
606 -0.020 0.083 0.289 0.128 3.455 0.517 50
413 0.464 0.031 0.270 0.049 3.707 0.152 45
516 -0.391 0.022 0.214 0.031 4.672 0.861 50
515 -0.478 0.032 0.194 0.036 5.158 0.922 50
607 -0.394 0.100 0.180 0.128 5.569 0.900 50  



Table 3: Results of individual-level type-mixture model (TMM) estimation 
(sorted according to ascending order of the measure of relative risk aversion) 

 
Symmetric treatment (π=1/2) 

 
ID β Std(β ) ρ Std(ρ ) σ Std(σ ) F -value OLS CCEI
205 7229.917 599800 0.000 0.002 0.358 64.719 0.617 0.651 1.000
320 12.371 5.021 0.000 0.091 0.003 1.503 8.296 0.797 1.000
218 21.752 25.382 0.000 0.086 0.340 0.323 30.249 0.807 0.951
307 34.228 19.536 0.201 0.030 0.299 0.137 13.700 -52.248 0.916
324 5.454 4.407 0.205 0.197 0.545 0.841 28.229 -123.286 0.840
311 27.869 12.874 0.209 0.041 0.303 0.252 16.450 -214.124 0.986
314 11.777 5.775 0.302 0.037 0.133 0.049 14.976 5.448 1.000
302 70.274 36.924 0.311 0.014 0.105 0.015 -7.364 0.370 0.990
207 135.414 120.450 0.351 0.017 0.137 0.015 -6.498 0.401 0.981
318 22.547 8.948 0.357 0.023 0.136 0.025 11.694 0.492 0.972
216 115.920 56.802 0.423 0.009 0.077 0.009 -28.309 0.489 1.000
319 17.924 8.269 0.514 0.026 0.149 0.024 15.482 0.742 0.966
215 6.986 2.553 0.562 0.040 0.191 0.030 32.729 1.019 1.000
209 24.317 17.275 0.587 0.038 0.136 0.020 -2.676 0.656 0.929
305 44.890 29.671 0.588 0.036 0.132 0.013 -3.822 0.562 0.852
208 23.111 21.586 0.637 0.038 0.124 0.018 0.311 0.715 0.942
309 36.117 35.387 0.664 0.043 0.091 0.013 -20.954 0.674 0.952
217 11.357 3.219 0.673 0.034 0.105 0.029 -10.864 0.700 0.986
312 5.780 2.833 0.746 0.059 0.129 0.028 7.504 0.939 0.957
315 11.823 8.478 0.762 0.055 0.156 0.023 13.717 0.795 0.959
301 36.349 34.354 0.763 0.024 0.093 0.010 -19.405 0.904 0.997
322 14.135 10.476 0.771 0.056 0.155 0.019 10.068 0.756 0.905
313 12.233 3.324 0.798 0.027 0.078 0.015 -25.245 0.827 0.986
326 6.581 2.184 0.805 0.043 0.089 0.022 -14.736 0.895 1.000
327 11.435 7.483 0.849 0.073 0.137 0.023 2.990 0.924 0.965
202 2.456 17.367 1.000 0.082 0.111 0.018 -35.601 1.038 0.968
212 2.205 0.494 1.000 0.027 0.118 0.026 -23.491 1.132 0.866
308 2.788 0.809 1.000 0.056 0.103 0.047 -34.390 1.231 0.938
213 2.399 0.476 1.000 0.034 0.132 0.023 -2.571 1.533 1.000
316 5.081 4.269 1.000 0.084 0.087 0.065 -49.878 1.284 1.000
303 2.983 0.361 1.000 0.004 0.006 0.008 -147.839 1.011 1.000
214 14.368 39919 1.000 0.060 0.097 0.037 -45.492 1.301 0.949
219 1.193 0.503 1.117 0.045 0.047 0.013 -17.563 1.124 1.000
317 302.411 263.760 1.171 0.025 0.038 0.002 -69.654 1.249 1.000
323 36.860 26.641 1.303 0.086 0.085 0.007 -20.181 1.588 0.991
306 31.994 30.742 2.479 0.183 0.050 0.003 -43.842 3.318 1.000
206 0.397 26.849 2.879 0.812 0.065 0.015 -33.704 3.596 0.948
203 0.023 0.030 3.598 0.634 0.067 0.020 -16.765 4.799 0.966
210 0.056 49.545 4.080 0.914 0.049 0.026 -52.152 5.034 0.988
204 0.006 0.029 4.336 1.049 0.086 0.042 -9.822 5.348 0.973
304 87.862 274.020 5.000 0.922 0.020 0.011 -92.380 132.742 1.000  



Table 3 cont. 
 
 

Asymmetric treatments (π=1/3 and π=2/3) 
 
 

ID β Std(β ) ρ Std(ρ ) σ Std(σ ) F -value OLS CCEI
601 8.955 9.588 0.050 0.121 0.300 0.150 30.327 0.542 0.981
415 3.283 2.765 0.378 0.110 0.277 0.077 61.804 0.458 0.987
520 2.300 1.550 0.552 0.081 0.191 0.040 42.503 0.477 0.979
411 4.464 1.458 0.582 0.026 0.042 0.021 -7.010 0.633 0.999
505 55.529 26.907 0.646 0.022 0.109 0.007 15.455 0.531 0.996
517 2.614 5.844 0.743 0.263 0.327 0.055 74.247 0.345 0.911
514 122.118 106.630 0.749 0.042 0.082 0.007 -38.897 0.764 0.975
412 4.680 1.932 0.783 0.122 0.239 0.034 69.475 0.439 0.976
403 5.239 1.391 0.838 0.083 0.174 0.021 54.382 0.579 0.916
506 2.600 1.537 0.855 0.151 0.253 0.048 70.771 0.489 0.892
604 811.519 53.457 0.991 0.005 0.037 0.002 -93.441 0.991 1.000
416 1348.199 17.717 0.997 0.001 0.066 0.002 -65.221 1.018 0.999
405 30.630 7.122 0.997 0.054 0.146 0.015 30.024 0.602 0.999
518 19.895 3.228 0.998 0.028 0.129 0.020 5.575 0.829 0.816
512 10.810 3.107 0.998 0.032 0.124 0.031 -3.148 0.944 0.982
510 9.788 3.195 0.999 0.063 0.170 0.029 26.120 0.648 0.946
401 13.457 55.267 1.001 0.109 0.168 0.022 28.774 0.706 0.874
402 4.628 0.916 1.001 0.056 0.146 0.033 24.270 0.660 0.987
609 9.018 1.764 1.002 0.050 0.173 0.019 44.424 0.420 0.969
414 55.914 218.010 1.003 0.048 0.120 0.017 -2.416 0.732 0.990
605 17.708 12.264 1.004 0.048 0.174 0.024 27.322 0.597 0.992
417 37.801 50.045 1.004 0.029 0.146 0.014 19.222 0.493 0.998
409 5452.187 N/A 1.006 N/A 0.084 N/A -26.818 0.875 0.943
519 6.469 1.483 1.007 0.069 0.116 0.029 7.134 1.724 0.963
602 9.960 5.926 1.010 0.086 0.167 0.019 26.972 0.815 0.947
513 18.426 10.952 1.225 0.123 0.117 0.012 3.026 1.088 0.957
507 2.178 0.876 1.261 0.179 0.176 0.030 37.243 0.683 0.929
511 6.533 2.479 1.270 0.088 0.132 0.018 7.527 1.202 0.936
608 2.662 1.298 1.322 0.191 0.154 0.024 19.322 1.426 0.847
410 46.358 28.869 1.344 0.079 0.082 0.005 -28.973 1.294 0.984
501 3.183 1.319 1.390 0.224 0.133 0.024 12.136 0.822 0.995
408 47.652 29.347 1.518 0.063 0.077 0.004 -22.736 2.544 0.987
503 0.145 0.280 1.550 0.352 0.112 0.029 27.538 0.620 0.982
509 16.057 11.093 1.566 0.119 0.102 0.008 -4.083 1.089 1.000
407 99.665 57.894 1.735 0.098 0.055 0.002 -46.833 2.479 0.984
413 0.655 0.299 1.921 0.162 0.061 0.023 -15.354 3.707 0.989
516 149.692 91.172 2.226 0.119 0.042 0.001 -58.699 4.672 0.981
515 31.951 25.258 2.250 0.143 0.061 0.003 -34.884 5.158 0.984
502 0.817 4.718 2.539 0.359 0.102 0.019 -12.215 1.896 0.971
607 0.423 2.261 2.709 0.647 0.143 0.031 12.592 5.569 0.870
404 0.016 0.060 4.429 1.707 0.140 0.025 9.701 2.601 0.915
606 0.006 0.031 5.000 3.012 0.128 0.021 -9.416 3.455 0.839  



Figure 1: An example of a budget set with two states and two assets 
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Figure 2: The construction of the CCEI for a simple violation of GARP 
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Figure 3A: The distributions of GARP violations
Afriat's (1972) efficiency index (CCEI)
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Figure 3B: The distributions of GARP violations
Varian (1991)
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Figure 3C: The distributions of GARP violations
Houtman and Maks (1985)
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Figure 4: Individual-level data 
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Figure 5: Illustration of recoverability for selected subjects 
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Figure 6: the distribution of the Arrow-Pratt measure of relative risk aversion 
OLS estimation, treatment by treatment
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Figure 7: the distribution of the Arrow-Pratt measure of relative risk aversion 
TMM estimation, treatment by treatment
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Figure 8: Individual-level comparisons of nonparametric and parametric (TMM) estimation 
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