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A bstract 

The evolution of the vertebrate beta globin  gene fam ily

Elizabeth Gabriela Aguileta Estrada D. Phil. Thesis

University College London University o f London

This thesis covers different aspects of the evolution of the vertebrate p globin gene 

family. A wealth of data on globins has been accumulated over decades of work in 

diverse areas, this information, together with the use of new methods, allowed a 

comprehensive analysis o f p globins. First, a review on the current knowledge of gene 

family evolution is made and the general objectives of the thesis are stated. This 

introductory chapter is followed by the careful analysis of the p globin phylogeny 

comparing different reconstruction methods and discussing the differences between 

species and gene tree topologies. The molecular evolution of this gene family is 

investigated using codon models of sequence evolution. Particular emphasis is put on 

the role of gene conversion and positive selection acting at sites in the genes and 

along branches in the phylogeny. Also, several models of evolution by gene 

duplication are tested and results are analysed in the light of the different hypotheses 

on gene family evolution. The third chapter is devoted to the evolution of the globin 

protein structure from the analysis o f sequence data. The ancestral state reconstruction 

of structurally relevant amino acids in different globins is conducted and the 

substitution pathway leading to the observed data is examined. The impact of amino 

acid changes in the hemoglobin protein is evaluated in terms of structural and 

functional constraints and the role of positive selection on the protein products of 

these genes is explored. Also, a possible case of coevolution between residues in the 

a  and p subunits of hemoglobin is proposed. Finally, using new and more 

sophisticated methods, I estimate dates for gene duplication and gene divergence 

events in the P globin family. Two different methods of date estimation based on 

molecular data are compared and evolutionary rate variation in this gene family is 

tested.
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Introduction

The concept of biological evolution has itself evolved from an uncertain beginning 

marked by heated debates, to the present state of generalised acceptance (albeit, with 

some heated debate every now and then). From the days of ancient Greece, and even 

before, in the uncharted history of East and West, people have tried to find an 

explanation for the variety and change observed in the surrounding world. To some, 

variation appeared to reflect a constant and fixed organization of the world. There had 

always been plenty of life forms, each distinct and performing a specific role, and 

there was no reason to believe they could change. This is a sort of static variety, 

where once created, organisms went on and on, unchanged and isolated in their 

uniqueness. Plato’s fixed essences come to mind. To others, however, the world was 

an ever changing scenario full of transformations. Everywhere you looked you could 

see movement, change, births and deaths, renewal and decay. Some people saw 

change as the force that brings about multiplicity, which is a more dynamic 

explanation for variety. Heraclitus is perhaps the most renowned of those who saw 

change as the great force behind variety.

A long time has passed since the two opposing views of stasis and change 

were first built as philosophical constructs or explanations of the world. Since then, 

not only the problem of the origin of multiple life forms has plagued some minds, but 

also questions about the relation between those life forms, the characteristics they 

share and those which make them different. The classic example of the 18th century 

naturalist is Linnaeus, whose “Systema Naturae” (1756) followed well defined rules 

for classifying and naming living beings. That thorough book already points to an 

underlying order, an attempt to make sense of variety. However, Linnaeus did not 

offer an explanation other than God’s might and wisdom as sources
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Fig. 0.1. A painting of Carl Linnaeus (1707- 

1778) who published his work in his “Systema 

Naturae” (1756).

of the order observed in nature. Labelled and stashed into different boxes, species 

continued to exist, as it were, by somebody’s sheer act of will.

As it so often happens, the big conceptual step forward did not occur within 

biology. While Linnaeus was amazed with the order seen in God’s creation, 

astronomers and geologists were telling a different story of the change and variety 

they observed in the sky and the Earth. Laplace and Hutton, to name two remarkable 

examples, started to discuss celestial bodies engaged in transformation, the old age of 

the Earth and the spectacular forces involved in shaping our planet. The picture they 

envisioned was far from static. Things were starting to get dynamic.

Evolutionary ideas were, however, rather distrusted by the public. Even in 

academic circles, some disliked evolutionists. It was in this atmosphere that the most 

famous biologist of all time, Charles Darwin, champion of evolutionary biology, 

made his first appearance in the public scene. Natural history was his passion, so we 

are told, and a trip around the world changed his life, and the way we see life, for 

ever. If some say that philosophy can be read as a footnote to the works of Plato and 

Aristotle, others would say that biology is a footnote to Darwin’s work.
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Fig. 0.2. Charles Darwin (1809-1882) in his late 

years. He published ‘The Origin of Species” in 

1859.

Overstatements like this are, as usual, big oversimplifications but they reflect the 

impact some body of work has had on human history. With Darwin, and Wallace, 

came the quantum leap for the concept of evolution. Ernst Mayr summarized 

Darwin’s contribution in five points: (1) evolution as such, (2) common descent, (3) 

gradualness, (4) speciation, and (5) natural selection. Perhaps natural selection was 

the most important departure from the conventional thought of species as fixed 

entities. With these concepts in the pocket, biology took off.

For a long time, the study of evolution has meant the evolution of organisms, 

of species. It was not until the Evolutionary Synthesis arrived, that genetics, and 

therefore, molecules, appeared as objects of evolutionary enquiry. Democritus is 

believed to be the first to think that matter is made of tiny indivisible components, 

atoms. However, from Democritus to Mendel and his particles of heredity (or genes), 

there is a long and winding road. Gregor Mendel would have remained an obscure 

Austrian monk with an inclination for horticulture and peas were it not for his 

rediscoverers, de Vries, Correns and von Tschermak who resurrected his writings in 

1900. Without Mendel’s work, Darwin’s concept of natural selection would have

15



Fig. 0.3. Gregor Mendel (1822-1884) in his 

Augustinian attire. Mendel's work became the 

foundation for modem genetics

faltered, lacking a mechanistic explanation for the hereditary variations transmitted 

from parents to progeny.

The next big concept to appear was mutation, one of the sources of variation, 

developed after 1900. All the pieces of the puzzle started to fit together, although the 

genetic aspect of mutation (i.e. how do mutations change genes) was elucidated much 

later, only after the nature of genes themselves was established.

The first generation to bring together genetics and evolutionary biology 

included personalities like Mayr, Fisher, Wright, Haldane, Dobzhansky, Stebbins, 

Gaylord Simpson and Huxley. Geneticists, systematists and palaeontologists worked 

together to achieve a coherent theory that constitutes the foundation of modem 

biology. All of those pioneers introduced fundamental concepts that are still in use 

today: phenotype and genotype, mutation, recombination, and random genetic drift. 

Although much has been revised and extended since then, the synthetic theory 

established the field of evolutionary genetics and paved the way for the study of 

population genetics and molecular evolution (Futuyma 1998).

Perhaps the second major revolution in evolutionary biology, after Darwin, 

came with the discovery of the DNA structure by Watson and Crick in 1953, as well
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as the confirmation of its role as the heritable genetic material by Avery. These two 

breakthroughs accelerated the work in the field to an astonishing extent and provided 

the physicochemical foundation of evolutionary studies that allowed a very detailed 

comprehension of the digital nature of information that makes up a living organism 

and the many sources of mutation, as well as its effects in genes and genomes.

Fig. 0.4. The celebrated 

Watson and Crick 

published their work on 

the structure of DNA in 

1953

Molecular evolution as a distinct discipline in biology takes advantage of the 

work from systematists, geneticists, molecular biologists, and ecologists, as well as 

chemists, physicists, statisticians, and computer scientists. Those who work in the 

field are themselves academic mongrels, so to speak. In any case, molecular evolution 

is a rather young discipline but a vigorously growing one. The first works truly 

concerned with the natural history of biomolecules were those of the early researchers 

who analysed proteins electrophoretically to compare information from different 

organisms. In 1904 Nutall realized that serological cross-reactions were stronger for 

more closely related species than for more distantly related ones. This precedent 

gained full acknowledgement about half a century later, when in the 1950s 

sequencing techniques became available for proteins and then nucleic acids. History

17



has it that the first protein to be sequenced was insulin and that it was Sanger who 

patiently developed the method. It soon became apparent that changes among proteins 

did not occur randomly. Also, it was observed that the majority of changes were 

tolerated (i.e. the protein still worked) but that a few replacements seemed to have a 

very important and dramatic effect, as illustrated by the sickle-cell anaemia caused by 

one change in hemoglobin.

As in every scientific field, progress comes from explosive and often hotly 

debated new ideas. One of these ideas which has fuelled a good deal of the research 

done recently in molecular evolution is the suggestion that molecules evolve, 

accumulate changes, with a constant rate through time. Zuckerkandl and Pauling 

(1965) were the first to propose the so-called molecular clock hypothesis, which 

immediately gained advocates and opponents. The mere idea of constancy seemed to 

defy the most basic principles of evolution, based on change and variation. 

Palaeontologists were among the first to complain, mostly after the estimation of the 

divergence dates between apes and humans by Sarich and Wilson in 1967 because 

this date turned out to be much younger than the fossils suggested. Morris Goodman, 

a renowned primatologist, was one of the early detractors of the molecular clock 

hypothesis.

Another landmark in evolutionary studies came from a significant advance in 

population genetics with the advent of multispecies comparisons of DNA and protein 

sequences. Kimura (1968) found, through a survey of various protein sequences from 

the mammalian genome, that the substitution rate observed is too high to be explained 

by Haldane’s “cost of natural selection”. He then proposed that most mutations must 

come at no cost at all and be selectively neutral. A later elaboration of this theory, 

proposed by Ohta, added the possibility of having slightly deleterious mutations.

18



According to this “nearly neutral” theory, the effect of selection on the change of 

allele frequencies is similar to, or weaker than, that of random drift. King and Jukes 

proposed a similar theory in 1969.

Fig. 0.5. Motoo Kimura (1924-1994) proposed the 

neutral theory of molecular evolution

Also important was the discovery of a large extent of polymorphism within 

populations. New hypotheses tried to explain how such variation could be maintained 

by natural selection. In the opposite extreme, Kimura, King and Jukes, claimed that 

such polymorphisms were due to most substitutions being neutral and that they were 

not static but a transient stage in evolution. Kimura’s theory is now known as the 

neutral theory of molecular evolution, which has come to be useful as a null 

hypothesis, as it allows tests to be easily formulated. The selectionist-neutralist divide 

had just begun, with each side claiming the predominance of selection or drift in 

evolutionary processes. Traditionally, systematists and taxonomists side with the 

selectionists and molecular biologists and biochemists with the neutralists.

With the availability of DNA and protein sequences from different organisms, 

phylogenetic trees for molecules and organisms began to be used to establish long­

term evolutionary histories. Interestingly, these two kinds of trees often do not tell the

M O T O O  KlM UftA
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same story. The phylogenetic framework in molecular evolution studies has prompted 

many new questions and the development of new methods to infer trees and analyse 

the substitution process. Also, with molecular phylogenetics, evolutionary hypotheses 

can be related to change through time.

The most challenging questions are still related to the old inquiries such as, 

when did two genes or species diverged, is the evolutionary rate constant or not, 

which tree-making method is the most accurate, which method is best to determine 

genetic distance, what substitution model fits the data better, etc. Particularly relevant 

for this thesis is the study of gene families and specially the theories proposed 

regarding their origins and evolution, but that is more thoroughly discussed in the 

following chapters.

Chapter I is an overview of gene families as an object of study in molecular

evolution. I focus on what is known about their evolution with a 

special emphasis on p globins, the case study in this thesis.

Chapter II presents the phylogeny of p globin genes in vertebrates. I discuss

speciation, gene duplications and recombination in a phylogenetic 

framework. I test different models of gene family evolution using a 

maximum likelihood approach.

Chapter El covers various aspects of the evolution of the globin protein structure. I

analyse the relevance of amino acid substitutions in the evolution of 

hemoglobin interfaces between subunits and the origin of oligomer 

globins from monomeric structures.
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Chapter IV deals with the estimation of dates for gene duplication and gene 

conversion events in the vertebrate P globin gene family. I use and 

compare maximum likelihood and Bayesian methods.
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Chapter I

Gene families: origin, evolution and

perspectives
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1.1 The organization of the genome in gene families

1.1.1 Gene families and genomes

Given the amount of sequencing projects under way, and the avalanche of sequences 

already available in databases, we currently have the necessary information to provide 

us with a panoramic view, not only of genes, but genome organization in general.

With all the available information we are beginning to realize that most of the genes 

we know are part of gene families (Page and Holmes 1998). Today genomes can be 

seen as an organized ensemble of gene families and regulatory elements working in 

concert. For a long time, though, genetics was an isolated discipline that studied genes 

in an equally isolated fashion. A gene performed a given function and was 

investigated as a unit, a single unconnected entity. With more and more complex inter 

relationships being discovered among genes, these are now studied in a larger, cellular 

and genomic context. The elucidation of metabolic pathways and sophisticated gene 

expression circuitry has also contributed to the present understanding of genes as part 

of a larger level of organization. Actually, with all the sequencing projects and 

comparative analysis of genomes, it looks as if the number of genes that are known to 

be part of a gene family will continue to grow. Also, it has been suggested that gene 

family copy numbers are underestimated when non-genomic approaches are taken 

(Charlesworth et al. 2001). From the phylogenetic point of view, studying gene 

evolution in the context of gene families has represented a step forward in the 

understanding of complex processes affecting general trends such as evolutionary 

rates and substitution patterns. This context also provides more robust results, as a 

larger scope is taken. The study of genes and genomes is a two-way avenue of 

feedback, as understanding one contributes to understand the other (Charlesworth et 

al. 2001).
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1.1.2 The definition o f  gene family

In her book “Evolution and variation of multigene families”, Tomoko Ohta (1980a) 

defines multigene families as “a group of genes or nucleotide sequences with the 

following characteristics: multiplicity, close linkage, sequence homology, and related 

or overlapping functions”. Hood et al. (1975) established three different categories for 

multigene families, loosely based on the function of the genes: (1) simple-sequence, 

(2) multiplicational, and (3) informational. This early definition has been updated 

through the years: for instance, pseudogenes have been included as members of gene 

families even though in strict terms they do not share function with the rest of the 

group (Li et al. 1981). Another interesting feature of gene families is the resurrection 

of dead genes by gene conversion (Martin et al. 1983). Also relevant to the 

organization of multigene families is that genes can be closely located in the same 

region o f a single chromosome, in which case they are usually regulated in concert, or 

be located in altogether different chromosomes (Page and Holmes 1998). Even though 

in principle it is easy to determine if a given gene belongs to a family, some of the 

basic criteria to determine membership sometimes are not straightforward to establish, 

for instance, distinguishing between paralogous and orthologous genes can be 

difficult (Henikoff et al. 1997). It would seem that there is a threshold o f sequence 

divergence beyond which it becomes increasingly more difficult to establish family 

relationships among genes. In any case, regardless o f the definition, gene families are 

now seen as a prominent feature of genomic organization evolving in multiple and 

complex ways. Because they are dynamic evolutionary units, gene families vary in 

size and complexity. Gene number seems to depend to a great extent on the function 

or functions performed by the family (e.g. ribosomal RNA genes are ubiquitously
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required in large amounts in the cells there are thousands o f them, whereas some 

structural genes, such as globins, come only in a dozen or so).

1.1.3 Different classifications o f  gene families

The organization of genes into gene families has been exploited to construct 

nucleotide or protein databases, in other words, most databases are built with 

nucleotide or protein families as a unit on top of which more inclusive categories are 

added. Examples o f family-based databases are SCOP (Murzin et al. 1995), CATH 

(Orengo et al. 1997), or DALI (Holm and Sanders 1995). Again, just what constitutes 

a family will vary from database to database. Some of them classify genes into 

functional categories (i.e. including those genes that perform a similar function); or by 

the expression groups they are part o f (e.g. those genes that are part o f operons), or 

even by homology (i.e. those genes with a common ancestor). Typically, there is a 

marked difference in what biologists and biochemists consider a family. Criteria for 

family membership qualification differ according to the interests of the researcher.

For a biologist homology is the key requisite to establish membership to a family 

(Ohta 1980), whereas for biochemists, interested in structure and function more than 

in origin, structural similarity is enough to determine familiar status (Chothia 1992). 

Similarity can be seen among sequences and among structures and biochemists are 

satisfied with 20-35% similarity at the sequence level in order to group different 

proteins into a family (Orengo et al. 1999). In contrast, for a biologist 30% sequence 

similarity is no guarantee of common gene origin. This means that even if protein 

databases are loosely based on homology, their classifications are sometimes too lax 

to be useful for certain biological inquiries.
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1.1.4 Gene families as a unit o f  evolution

It is not accidental that genes in a genome are organized in gene families. Not only 

does this organization allow organisms to increase the number of available gene 

functions and the amount o f genes expressed but it also makes feasible a more 

sophisticated regulation o f expression and the fine tuning o f complex cellular tasks. In 

terms of generation of novelty, it appears to be enormously advantageous to innovate 

from pre-existing material rather than generate genes de novo (Ohno 1970). In fact, 

gene families provide evolution with ample material in the form of redundant gene 

copies on which to try new possibilities (Walsh 1995). From a given gene, several 

related but individually diverse functions can be created (Tatusov et al. 1997). The 

fact that new genes can perform a similar but diverse function presents the organism 

with a big opportunity to fine tune complex cellular tasks, as each gene in the family 

can perform a different role in the orchestration of function (Hughes and Nei 1989). 

Another advantage of gene families is given by the possibility of regulating gene 

expression according to different needs or in response to different cues, as in the case 

o f genes expressed at different stages of development (Hardison 1998). It has also 

been pointed out that one o f the reasons why gene families are a widespread feature of 

genomes is that multiple copies of the same gene act as buffers against gene decay by 

the accumulation o f deleterious mutations (Gu et al. 2003). The original gene that 

undergoes duplication must be a functional gene that has been positively selected, in 

other words, the structure or function of its products is guaranteed. Also, having 

multiple genes working in concert may accelerate evolution, as more possibilities are 

explored simultaneously (Zhang 2003). Gene families constitute themselves a unit o f 

evolution, as suggested by Hood et al. (1975), as evolution acts on them as a whole, 

not only on the individual genes. All the genes in a gene family can act and evolve in
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concert, which again brings new possibilities into play and makes regulation more 

efficient. One characteristic o f gene families is that gene innovation is driven by 

amplification of weak, ancillary functions rather than strong, established functions 

(Hooper and Berg 2003).

1.2 The origin of gene families by gene duplication

That most genes are members o f gene families also suggests that one o f the most 

important mechanisms in the generation of new genes is gene duplication, as copies of 

pre-existing genes are made available for evolutionary exploration. Ever since Ohno 

published his seminal work on gene duplication (1970), this mechanism has been seen 

as the main source of new genetic material.

1.2.1 Early discoveries

Haldane (1932) and Muller (1935) were perhaps the first to refer to gene duplication 

as a source o f new genes. They recognized the potential o f redundant gene duplicates 

to acquire new functions after accumulating divergent mutations. They reasoned that 

having more than one copy of a gene would allow the system to retain the original 

function in one o f the genes while the other could explore other alternative functions. 

This idea would be confirmed later with experimental data, when Bridges (1936) 

reported the first observation o f a gene duplication in the Bar locus in Drosophila.

This locus was the product o f the doubling of a chromosomal band that occurred in a 

mutant that had a considerable reduction in eye size.

After this experimental observation, theories spawned trying to predict the 

relevance of such a mechanism in the evolution of genomes. In 1951, Stephens 

published a paper entitled "Possible significance of duplication in evolution". This
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was a first attempt to formulate all imaginable evolutionary avenues gene duplication 

could bring. More than a decade later, in 1967, Ohno recapitulated this line of 

investigation in his book “Sex Chromosomes and Sex-Linked Genes”. This renewed 

interest proved fruitful and brought much attention to the field. Only two years later, 

in 1969, Nei published in Nature what is perhaps the first paper whose main subject 

was gene duplication, called "Gene duplication and nucleotide substitution in 

evolution". This led to the publication in 1970 of what is considered by many the 

seminal work of Ohno, "Evolution by Gene Duplication". In this book he proposed 

that gene duplication is the only way new genes can arise. Even though we now know 

this is not correct, the conclusions raised by Ohno remain largely valid. This 

publication immediately caught the attention of biologists and popularised the 

relevance of gene duplication as the most important source of new genes and 

functions. All these publications triggered new research on the mechanisms of gene 

duplication itself and its consequences. However, it was only until the main 

sequencing projects started that we gained a full realization o f the extent of 

duplication and its role in genome evolution.

1.2.2 The extent o f  gene duplication in different genomes

There is a considerable variation in the number o f gene duplication events reported in 

different organisms to date (Zhang 2003). Organisms in all three domains of life, 

Eukarya, Archaea and Bacteria, show extensive gene duplication among genomes 

(Himmelreich et al. 1996, Klenk at al. 1997, Rubin et al. 2000). One trend that 

becomes clear is that bacteria show fewer gene duplications (298 duplicate genes in 

Mycoplasma pneumoniae) than either archaebacteria (2436 duplicate genes in 

Archaeoglobus fulgidus) or eukaryotes (40 580 duplicate genes in human), with the
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latter having considerably more than the organisms in other life domains (Zhang 

2003). One easy interpretation would suggest that the more complex the organism the 

more likely to show extensive gene duplications. Even though this might be true to 

some extent, we still don't know exactly why this trend occurs. It could also be that 

traces of duplications in bacteria and archaebacteria have been erased by evolution. In 

any case we can realize that a large number of the genes in these organisms originated 

by gene duplication (Gu et al. 2002). However, the true extent o f duplication cannot 

be known, as gene divergence creates large dissimilarities among old gene duplicates 

(Ohta 1990). It is likely that estimates of gene duplication are indeed underestimates 

(Charlesworth et al. 2001).

1.2.3 Different types o f  gene duplication

There are many types of gene duplication. These differ in the molecular mechanism 

involved and in the extent of the duplicated material. According to the extent of the 

duplication there are the following types: (i) partial or internal gene duplication, (ii) 

complete gene duplication, (iii) partial chromosomal duplication, (iv) complete 

chromosomal duplication, and (v) polyploidy or genome duplication (Graur and Li

1999). Together, the first four types o f duplication are known as regional duplications 

because they do not involve the entire set o f chromosomes.

Gene duplication generates two identical copies; if  the two remain identical 

they are referred to as repeated genes, which can be classified as variant or invariant 

repeats (Lewin 2000). Invariant repeats usually arise because their protein products 

are required in large amounts, thus, identical gene copies performing the same 

function confer an advantage in terms of protein dosage (Page and Holmes 1998). 

rRNAs and tRNAs are a typical example of genes originated this way (Patthy 1999).
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However, not all invariant repeats can be explained by dosage reasons, as in 

vertebrate genomes some invariant families have been found that have no function 

(Kondrashov et al. 2002). On the other hand, variant repeats are genes that maintain 

sequence similarity to a greater or lesser extent but perform different functions (Lewin

2000). Examples abound, as they relate to most members in gene families (Henikoff 

et al. 1997).

Genome duplication or polyploidy occurs when the cell nucleus contains 

multiple sets of chromosomes, either because the first meiotic division fails to occur 

or because chromosome number changes by smaller steps (Griffiths et al. 1999). The 

usual cause for this to happen is a lack of disjunction between all the daughter 

chromosomes after DNA replication. Polyploidy occurs far more often in plant 

genomes than in animal ones, or at least vertebrate genomes (Brown 2002).

The molecular mechanisms actually responsible for duplicating the material 

also vary. The main mechanism is unequal crossing-over (Ohta 1980) but there are 

also transpositions (including retropositions), segmental duplications (involving from 

1000 to more than 200 000 nucleotides), and gene elongations (Lewin 2000). Also at 

a different level, duplication of protein-coding genes can involve exons that 

correspond to protein domains, so they are duplicated as units. This is known as exon 

or domain duplication (Patthy 1999). Unequal crossing-over occurs during mitosis 

between the two sister chromatids of a chromosome in a germline cell or during 

meiosis, between two homologous chromosomes (Griffiths et al. 1999). It is part of 

what are known as reciprocal recombinations because what happens in one 

chromosome is reflected on the other one as well. In the particular case of unequal 

crossing-over this process creates a sequence duplication in one chromatid or 

chromosome and a corresponding deletion in the other. Fig. 1.1 shows how unequal
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crossing-over can generate gene family expansions and how the same process can 

create deletions or contractions. Genes that are part of gene families and therefore 

have a high sequence similarity are prone to experience unequal crossing-over, as 

with highly similar sequences it is difficult to align true homologs during meiosis or 

mitosis. The process may actually occur repeatedly and result in a homogenisation of 

gene family members (Ohta 1980).
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Fig. 1.1 Unequal crossing-over can create gene family expansions and contractions. 

Image reproduced from Ohta 1980.

1.3 The contribution of gene conversion in the evolution of gene families

Gene conversion is a kind o f non-reciprocal recombination that occurs when two 

sequences interact such that one converts the other (Li 1997). Conversion occurs in 

different ways: intrachromatid conversion happens between two paralogous sequences 

on the same chromatid; sister chromatid conversion involves two paralogous 

sequences from complementary chromatids. Classical conversion occurs when two
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alleles at the same locus exchange DNA. Semi classical conversion is an exchange 

between two paralogous genes from two homologous chromosomes. Non-allelic 

conversion, that is, exchanges between genes located at different loci, is thought to be 

the most important type in terms of evolutionary consequences (Page and Holmes

1998). Gene conversion may be biased or unbiased, in other words, it may or may not 

have a direction. In the case o f biased conversion one gene preferentially converts the 

other (Graur and Li 1999). When this is the case, some authors refer to the converted 

copy as the slave and the converter as the master.

Gene conversion is a frequent phenomenon with complex and varied 

consequences. It can bring homogenisation (Jeffreys 1979, Slightom et al. 1980) or 

generate polymorphisms (Ohta 1998). The extent of the sequences involved in the 

exchange is variable, it can go from a few base pairs to a few thousand base pairs. The 

probability of occurrence o f gene conversion depends on gene location and similarity 

among sequences, the more similar the more likely they are to experience conversion 

(Ohta 1980 a).

Unequal crossing-over and gene conversion transfer DNA sequences between 

genes, which results in those genes evolving together, that is, in concert (Graur and Li

1999). The process of concerted evolution is particularly relevant in the case of gene 

families because usually the members of a family have high sequence similarity and 

are therefore prone to experience unequal crossing-over and gene conversion. 

Concerted evolution also means that mutations can extend to all genes in a family, 

even if they are located in different chromosomes. As a result o f concerted evolution, 

there exists the possibility of spreading advantageous mutations to all members in the 

family (Ohta 1980); also, since there is constant homogenisation of genetic material in 

the family, the evolution o f new genes by divergent mutations is retarded
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(Kondrashov et al. 2002), or it may prevent redundant copies from becoming non­

functional (Krakauer and Nowak 1999), or even, to resurrect pseudogenes (Martin et 

al. 1983). It is also important that concerted evolution considerably complicates the 

study of phylogenetic relationships among genes, as it becomes very difficult to 

distinguish orthologous from paralogous genes (Henikoff et al. 1997). The 

evolutionary history of genes that have experienced unequal crossing-over and gene 

conversion is not described by a single phylogeny, but rather show a mixed history.

1.4 Models of Gene Family Evolution by Gene Duplication

1.4.1 The evolutionary fa te  o f  duplicated genes

All the models developed so far to explain gene family evolution by gene duplication 

are concerned with the fate of genes following gene duplication. The most important 

issue under discussion seems to be whether the redundancy in terms of function 

created by duplication can be stably maintained or not in the genome and what 

alternatives exist for a newly duplicated gene.

Nonfunctionalization.- In the framework of the neutral theory of molecular evolution, 

the most likely fate for a newly duplicated gene is to lose its original function, in other 

words, to become a pseudogene (Ohno 1970). This evolutionary fate is referred to as 

nonfunctionalization in the literature and it occurs as the redundant gene duplicate 

accumulates deleterious mutations, thus becoming either unexpressed or functionless. 

This is possible because the other duplicate is available to perform the original 

function. As we know from Walsh (1995) and Lynch and Conery (2000), 

pseudogenes usually arise in the following few million years after a duplication 

provided that the gene is not under selective constraint. They will persist in the
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genome until they are deleted or diverge to the point where it is impossible to 

establish any relationship with the genes in the family they descended from. 

Pseudogenes are rather frequent in eukaryotic genomes, as an example, in C. elegans 

there have been identified 2168 pseudogenes, which is roughly one pseudogene for 

every eight functional genes (Harrison et al. 2001). This again reflects the prediction 

of the neutral theory of molecular evolution. Non-functional genes have been 

neglected as uninteresting elements in the genome, however, they are involved in 

many important and attractive phenomena. For instance, pseudogenes can serve as 

reservoir of genetic material for gene conversion, as it has been demonstrated in the 

chicken VH1 gene, which encodes the heavy chain variable region o f the 

immunoglobulins (Ota and Nei 1995). In this way, pseudogenes contribute to the 

diversity of the immunoglobulins, which is directly reflected in the effectiveness of 

their function. Another interesting example of the dynamic nature of pseudogenes is 

the possibility of regaining their function, in other words, o f being brought back to 

life. One example is provided by the seminal ribonuclease in cows, this gene has a 

paralogous gene, the pancreatic ribonuclease, which is expressed in all ruminants. 

That only in the cow the seminal ribonuclease is functional and in all other ruminants, 

that share the paralogous pair, this gene is ridden with deleterious mutations or is not 

expressed, suggests that it was a pseudogene that was resurrected in the cow lineage 

(Trabesinger-Ruef 1996).

Function retention.- Another alternative fate for newly duplicated genes is to retain 

their original function (Li 1997). Even if this would seem the most unlikely of fates 

given the cost to stably maintain two identical copies o f the same gene, sometimes, 

high dosage requirements for a gene product make redundancy advantageous, as more
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product is expressed from multiple copies of the same gene. This case is particularly 

easy to find among strongly expressed genes like rRNAs. Concerted evolution 

facilitates the retention of function among duplicated genes in a gene family or simply 

strong purifying selection ensures that genes remain unchanged. Nei et al. (2000) and 

Piontikivska et al. (2002) have shown that purifying selection plays a more important 

role in the maintenance of duplicated genes than previously thought. In their analysis 

they distinguished the effects of gene conversion in the maintenance o f gene function 

from the effects of purifying selection by looking at synonymous (or silent) 

substitutions. While synonymous differences are not affected by purifying selection, 

they can be removed by gene conversion, as it operates on stretches of DNA whether 

these are synonymous or nonsynonymous (amino acid changing).

Subfunctionalization.- Gene functions need not only be lost or maintained, they can 

also be shared. In population genetic theory it is suggested that two duplicate genes 

can be maintained if they differ, even minimally, in some aspects o f their function 

(Nowak et al. 1997). The sharing of gene functions can occur when genes descended 

from the duplication of a gene, whose function is divided among different subunits, 

each sets to perform one of the functions of the original gene. It thus becomes 

necessary to maintain the two copies in order to have the complete function of the 

parental gene. This process has come to be known as subfunctionalization. One of the 

most interesting ways to achieve this is through the differential expression of 

duplicate genes. This has been exemplified in numerous occasions for different gene 

families and is known to be important in the evolution of development (Jensen 1976, 

Orgel 1977, Hughes 1994, Force et al. 1999). Even though most examples of 

subfunctionalization come from regulatory sequences and involve partitioning of
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function in terms of gene expression, it is possible to find function sharing among 

coding genes. In this case, the original gene codes for a protein with different 

functional or structural domains and the duplicate genes each performs the function of 

one of this domains separately. Though less abundant than the case of 

subfunctionalization by expression differences, a few cases have been reported to 

support this type of subfunctionalization (Dermitzakis and Clark 2001, Aguileta et al. 

submitted). It is also possible to find subfunctionalization at the protein level and it 

happens when one o f the duplicate gene products better performs one of the functions 

of the original parental protein, thus leading to functional specialization (Hughes

1999).

Neofunctionalization.- The final alternative for newly duplicated genes, and by far the 

most attractive for biologists, is that of neofunctionalization or the acquisition of new 

gene functions (Li 1997). Under the neutral theory of molecular evolution, following 

duplication one of the two copies will retain the original function and the other copy 

will be selectively free to accumulate mutations, and even though these are mostly 

deleterious, occasionally advantageous mutations occur and a new function can arise. 

It is clear that in order to gain a new function, one of the duplicate genes must diverge 

through mutation, what is less clear is how this is possible in the first place. The first 

possibility is that the selective constraints that act on one o f the copies are relaxed, as 

there is no need to maintain two identical copies. The alternative is that there is an 

increased ratio o f nonsynonymous changes due to positive selection, which brings 

changes in the amino acid composition of the protein. In any case, the result is an 

open window for substitutions, some of which are beneficial and are thus selected for. 

Support for these two opposing mechanisms comes from examples in different gene
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families. Ohta has cited the growth hormone-prolactin gene family case as a paradigm 

of evolution by gene duplication (1994), favouring relaxed selective constraints, while 

Goodman is a strong defender of positive selection as the cause of increased 

nonsynonymous rates of evolution (1981). The debate on the models of gene family 

evolution by gene duplication centres on how are gene copies maintained and what 

are the forces driving gene divergence.

1.4.2 Models fo r  the evolution o f gene families by gene duplication 

I will now discuss the way each model describes the events that occur following 

duplication, paying special attention to the evolutionary forces they invoke, the 

predictions they make and the implications assumed.

a) The classical model.- From his studies in cytogenetics and biochemistry Susumu 

Ohno was among the first authors to recognize the significance of gene duplication as 

the source of new genes (1970). In his view, a newly duplicated gene had to be 

selectively neutral or advantageous for otherwise it would be deleted from the 

population. He viewed the outcome of gene duplications as dependent on a race 

between neoftinctionalization and nonfunctionalization, where the most likely fate for 

a duplicate gene was to lose its function due to the accumulation of deleterious 

mutations. This first model assumed the tenets of the neutral theory of molecular 

evolution. According to Ohno’s model, the rounds of mutations had to be recurrent in 

order for the genes to be either fixed or lost in the population. This view also required 

an immediate relaxation of selective constraints in one of the copies followed by 

bursts, as it were, of evolutionary change subsequent to a duplication event.
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Tomoko Ohta’s work since the late 1970s and all through the 1980s and 1990s 

was largely devoted to the study of gene family evolution. She introduced the concept 

of nearly-neutral evolution and the mathematical studies of the process of unequal 

crossing-over and concerted evolution in gene families. Her studies at the population 

level added significantly to Haldane’s and Ohno’s first models of gene family 

evolution by gene duplication. She formulated what is now called the classical model 

of gene family evolution by gene duplication, although she referred to Haldane’s 

model as the classical one. In Ohta’s formulation, newly duplicated genes did not 

necessarily have to be either neutral or advantageous in order to escape 

nonfunctionalization and becoming pseudogenes, as Ohno suggested. She proposed 

that following duplication, new genes could also be slightly deleterious or slightly 

advantageous, or to use her phraseology, nearly neutral (Ohta 1992). This new aspect 

of the model allowed selection to play an important role. After genes duplicated, one 

of the copies was maintained through purifying selection while the other copy was 

subject to rounds o f accumulated mutation which could either be deleterious (the gene 

became a pseudogene) or advantageous. If the latter was the case, purifying selection 

stably retained it. Here it is important to note that initially Ohta proposed that 

duplications are fixed by drift and then advantageous mutations are maintained 

through purifying selection but later on she recognized the role o f positive selection in 

the generation o f diversity by claiming there is an increase in the rate of 

nonsynonymous substitution immediately following a duplication event. Once a new 

gene has thus been generated, positive selection is no longer required. However, the 

issue o f whether duplications can spread entirely by the action of drift or need the 

agency of selection is not entirely settled yet.
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b) The DDC model.- Recently, a new model called DDC, for duplication- 

degeneration-divergence, has challenged the classical model. This model was 

proposed by Allan Force and his associates (1999). Even though other authors had 

rebuked certain aspects o f the classical model before the DDC, I believe the latter is 

the most radically different view on the evolution of gene families by duplication, and 

it proposes a whole new mechanism for the generation of new genetic systems from 

pre existing ones. The observation that contrary to the predictions o f the classical 

model, a large fraction of duplicated genes were maintained in the genome for long 

periods of evolutionary time, led to the investigation o f alternative mechanisms of 

gene redundancy retention. In the DDC model, subfunctionalization is the fate of 

those duplicated genes that are retained in the genome and it explains how new 

functions can arise from the partition of pre existing functions among the new copies. 

The DDC model focuses on degenerative mutations affecting regulatory regions. It is 

proposed that following a gene duplication degenerative mutations can accumulate in 

different regulatory regions of the new duplicates. Since each copy will have a 

different deleterious mutation, the function they can now perform is partially affected 

and in order to recover the complete function of the original gene, the two copies must 

be expressed together. This sharing of functions would explain why nearly identical 

genes can be maintained in genomes for a long time and it is an explanation consistent 

with the theory o f population genetics. This model differs radically from the classical 

one in that advantageous mutations are not a requisite to evolve new gene functions. 

Alternatively, it is expected that subfunctionalization will persist until one gene 

specializes in a different function or the two copies each diverge to perform two 

different and perhaps complementary functions. The DDC thus, opens the door for 

gene specialization and for a complex regulatory rearrangement o f gene expression.
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As I have mentioned already, the DDC is mainly concerned with complementary 

regulatory mutations among gene duplicates, however, it is possible to envisage a case 

where it is the original coding gene that encodes different functional or structural 

subunits in the protein, and the function of each domain is partitioned among the 

duplicate genes (Dermitzakis and Clark 2001). I have also suggested that a further 

form of subfunctionalization is possible (Aguileta et al. submitted; see Chapter II), 

one where the duplicated paralogs will perform a similar function as the original gene 

but they will be expressed at different developmental stages. Even though some 

divergence must occur following duplication, there need not be a burst of 

nonsynonymous substitutions because the paralogs can evolve under long-term 

differences in selective constraints. Here it is important to note that the DDC model 

does not exclude the possibility of neofunctionalization, that is, the DDC and the 

classical models are not mutually exclusive explanations o f the same process. 

Actually, both neofunctionalization and subfunctionalization can occur at different 

stages in the evolution o f gene families.

One of the critiques o f the DDC model lies in the more or less explicit 

requirement that the original gene is itself partitioned in different modules or 

regulatory regions. Not only that but each “individual function” should contribute 

significantly to the general function, this means that it is important to determine the 

significance of multiple regions in order to test for subfunctionalization. Dermitzakis 

and Clark developed such a test called the paralog heterogeneity test (2001) and even 

though relatively effective and simple, it is based on the comparison of two orthologs 

to determine the pattern o f substitution of each paralog. There is a limit to the power 

of their test method. Gu (1999, Wang and Gu 2001) approached this problem by 

incorporating phylogenetic information and the different substitution rates among
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amino acids in order to detect functional divergence between paralogous genes. This 

allows the user to incorporate the information contained in multiple genes and is thus 

more powerful. It may be that adding information from the different codon positions, 

as would be possible with a codon-based model, would make it even more powerful 

to distinguish selective pressure between paralogs, yet again making the picture more 

detailed.

c) Other important contributions.- Since the classical model was proposed it has been 

challenged, criticized or expanded by different authors. Here I will talk about the 

major contributions to the discussion of gene family evolution by gene duplication by 

different researchers. Ohta made the first big challenge to the standing model when 

she added the concept of near neutrality to Ohno’s model. That helped to build a more 

comprehensive model that incorporated selection in the dynamics of generation of 

new genes. It was Andrew Clark (1994) who made an investigation on the process of 

invasion and maintenance of a gene duplication. In this work he analysed the 

possibilities available for a newly duplicated gene following duplication and he 

concluded that even though fixation of a duplication could be reached entirely by 

drift, other forces must influence the fate of paralogs. He suggested that extra gene 

copies provided a buffer against deleterious mutations in the original gene and that 

recurrent duplication probably help to maintain chromosomal composition (i.e. 

prevents gene loss). His main conclusion was that a duplication can invade the 

population only if  it provides an advantage to the organism. Later, Bruce Walsh 

(1995) published his work on the theoretical test of the probabilities that gene 

duplicates will become pseudogenes or will be fixed in the population. He assumed 

that null alleles were neutral and ignored the effects of linkage and gene conversion,
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all o f which made his results underestimates for the probability that an advantageous 

allele is fixed first. He found that for sufficiently large populations, gene fixation was 

the most likely fate for a newly duplicated gene. The contribution o f Krakauer and 

Nowak (1999) was to propose different possible mechanisms by which redundant 

genes can be preserved. They cite asymmetric mutation, asymmetric efficacy, 

pleiotropy, developmental buffering, allelic competition and regulatory asymmetries. 

It is clear that they were simultaneously thinking on the same lines as Force et al. but 

although Krakauer and Nowak clearly stated that some form of asymmetry was 

necessary to maintain functional redundancy indefinitely, they did not formulated this 

as a single coherent model. Nevertheless their contribution to the debate was o f great 

importance. Finally, I want to add the recent work by Kondrashov et al. (2002), who 

focused on the role of selection in the evolution of gene duplicates. These authors 

looked for evidence of increased evolution following duplication by analysing large 

datasets from different genomes and then measured the dn/ds rate ratio to establish 

selective pressures after gene duplication events. They found that paralogs evolve 

faster than orthologs with the same level of divergence and similar functions, but, 

they emphasize, these genes do not experience a phase of neutral evolution. So they 

claim that from their very time of origin, duplicate genes are advantageous and are 

thus retained. These genes can later develop new functions just as the classical model 

proposes, when a greater level of divergence has been reached.

1.5 The globin family of genes

Globins are perhaps the most thoroughly studied of all proteins and constitute the case 

study in this thesis. Since they were first identified, we have accumulated a huge
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amount of information regarding their origin, evolution, function, regulation and 

structure. They have also been studied as models of gene family evolution by gene 

duplication, as globins have undergone all possible evolutionary routes available to 

newly duplicated genes. Here, I will provide a brief summary o f the most important 

characteristics o f globins, in general, and of p globins in particular.

1.5.1 The origin and taxonomic distribution o f  globins

Globins are part o f a large group of proteins whose function is to bind oxygen non- 

covalently. Heme-binding proteins have been found in all kingdoms of living 

organisms, in prokaryotes, fungi, plants and animals (Hardison 1998). This 

widespread distribution indicates that the ancestral gene for globins must be ancient. 

In animals the most abundant globin protein is hemoglobin, which is found in 

erythrocytes in large concentrations and transports oxygen in the blood, from the 

lungs to tissues. In plants, hemoglobins were first found in the root nodules of 

legumes and were thus named leghemoglobins. In fungi, hemoglobins are also 

involved in oxygen transport and other functions. In Saccharomyces there has been a 

report o f a fusion of a heme-binding domain and an FAD-binding domain. This fused 

flavohemoglobin shows no introns and is induced by high oxygen concentrations 

(Zhu and Riggs 1992). Intron positions in hemoglobins from different organisms offer 

clues as to the evolutionary history of globins that gave rise to the variety we know 

today. All plant hemoglobin genes are separated into four exons by three introns 

(Anderson et al. 1996). The first and third introns are in positions homologous to 

those of the two introns found in vertebrate hemoglobin and myoglobin genes. It was 

suggested that the ancestor to plant and animals had a hemoglobin gene with three 

introns, an arrangement that has been retained in plants and certain nematodes (Fig.
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1.2). The central intron was lost before the divergence of annelids and arthropods, and 

is therefore absent in all vertebrate hemoglobin and myoglobin genes. Intron loss has 

varied in different organisms and there is an extreme example of total intron loss in 

the arthropod Chironomus. All models indicate that there was an ancestral 

hemoglobin gene around 1500 million years ago (MYA), before plants and animals 

diverged.
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1.5.2 Major gene duplications in the globin superfamily o f  genes 

In vertebrates, globins diverged from an ancestral gene and duplicated in successive 

occasions to give rise to the globin families we know today. Apart from hemoglobin 

(encoded by a  and P globins), and myoglobin, there have been at least other two 

families reported in mammals, neuroglobin (Buimester 2000) and cytoglobin 

(Burmester et al. 2002). A different family, which conforms a separate clade in the 

globin superfamly tree, is that of truncated hemoglobins, with 20-40 fewer residues 

than vertebrate hemoglobins (Wittenberg et al. 2002). All these globin families are in 

most cases located in different chromosomes, as it occurs in humans with a  

hemoglobin in chromosome 16, P hemoglobin in chromosome 11 and myoglobin in 

chromosome 22 (Graur and Li 2000).

Myoglobin diverged from hemoglobin more than 800 MYA, preceding the 

emergence of annelid worms (Goodman 1976, for a review on myoglobin evolution 

see Romero-Herrera et al. 1978). In the great majority of vertebrates hemoglobin is 

composed of two types of protein chains whose encoding genes, a  and p globin, 

diverged around 400 to 500 MYA probably by a tandem duplication (Goodman

1981). Initially, the tandem duplication generated two linked genes in the same 

chromosome, an arrangement that is retained in fish and amphibians. Chromosomal 

separation probably occurred around 300-350 MYA after the divergence of 

amphibians from amniotes but prior to the duplications that gave rise to the specific 

members of this family. The a  globin cluster is composed of four functional genes: 

the embryonic gene £,, two adult genes a i  and (X2 , 0 i. It also contains three 

unprocessed pseudogenes: i|/e, \|/a  1, and \|/a2. The p globin family has five functional 

genes: the embryonic 8 globin; two fetal genes Ay and Gy; and two adult genes p and 8 

globins. There is also one unprocessed pseudogene, \|/r| (\j/p). Members of these gene



families vary in oxygen affinity. Fig. 1.3 shows the estimated dates of divergence 

among the members of these two hemoglobin gene families. In the case of a  globin 

the most divergent is the ^ gene, which split more than 300 MYA, followed by the 0i 

gene, which branched off more than 260 MYA. Finally, the adult globin a  genes and 

the \j/a 1 pseudogene diverged between 40-50 MYA. Among the p globins, proto e 

diverged from proto p around 150-200 MYA (Efstratiadis et al. 1980, Czelusniak et 

al. 1982). Proto 8 gave rise to e and y between 100 to 140 MYA, which in turn 

duplicated around 35 MYA in the simian primate lineage to give rise to Ay and Gy 

(Hayasaka et al. 1992). Also, proto P duplicated more than 80 MYA and originated p 

and 5, the adult globins (Hardison and Margot 1984, Goodman et al 1984).

1.5.3 The structure/function relationship in hemoglobin 

Tetrameric vertebrate hemoglobin is composed of two identical a  subunits and two 

identical p subunits. Each subunit contains a heme group. Oxygen binding is 

cooperative and is associated with a large shift in the quaternary structure of the 

heterotetramer: there are three known conformations, one is the relaxed or R 

conformation, which is adopted when hemoglobin is able to load oxygen; the opposite 

state is the tense or T conformation, which occurs when hemoglobin is ready to 

release oxygen to the tissues (Perutz 1970); and an intermediate conformation R2 has 

also been found and crystallized (Silva et al. 1992, Smith and Simmons 1994). Two 

types of interfaces participate in conformational transitions, namely a  1 p 1 and a  1 p2. 

Perutz (1970) referred to the a  1 p 1 interface as the packing surface and to the a  1 p2 

interface as the sliding surface. During the transition form the T to R conformation, 

the a  1 p2 interface undergoes a large sliding movement, while the a  1P 1 interface is
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Fig. 1.3 Divergence date estimations for the major gene duplications in vertebrate 

globins. Taken from Li 1997.

practically unchanged. Hemoglobin properties such as oxygen affinity and 

cooperativity depend to a large extent on the intra-subunit and inter-subunit interfaces 

(Shionyu et al. 2001). There are monomeric and oligomeric hemoglobins; exactly 

what determines conformation into one or more monomeric units is not yet clear. 

From the physicochemical point o f view, what determines the conformation of a 

protein into monomers or oligomers is the stability o f the structure. It is known that 

the globin fold is a very stable and flexible structure, which has explored different 

structural and functional possibilities.
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In terms of function, monomeric globins are not as sophisticated as oligomeric 

ones. Typically, monomers lack cooperative behavior whereas dimers and tetramers 

exhibit that property. Whereas myoglobin stores and delivers oxygen in tissue 

following a hyperbolic curve, hemoglobin oxygen intake and release is regulated in an 

allosteric way. The four hemes, one in each monomer of the hemoglobin, cooperate 

with one another and the affinity for oxygen is concentration dependent. At high 

oxygen concentrations, such as found in the lungs, hemoglobin has an increased 

oxygen affinity thus taking all the available oxygen. At low oxygen concentrations, 

such as found in metabolizing tissues, it has low oxygen affinity thus releasing all 

available oxygen to the tissues. Uptake and release of oxygen are also mediated by the 

conformation hemoglobin takes. The oxygen affinity is increased or lowered by as 

many as twenty six times between conformations, as part of the allosteric regulation 

of oxygen transport in hemoglobin. Chemical modulators such as 

bisphosphoglycerate, chloride ions, acids and carbon dioxide in turn regulate the 

transition rate between conformations. In metabolizing tissues, the acidic environment 

stabilizes the T conformation, whereas in the lungs, where blood is much less acidic it 

is the R conformation that is more stable.

1.5.4 Phylogenetic and physicochemical studies o f amino acid sequence evolution in 

vertebrate globins

As Golding and Dean summarized it (1998), the field of molecular adaptation is 

divided between phylogenetics and physiological genetics or biochemistry. The 

former tend to look at pattern, while the latter see the process. The divide between 

history and mechanism is well exemplified here with this two opposing views on the 

evolution of the same molecule. Whereas Morris Goodman is more concerned with
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the mode and tempo of evolution in globins and how molecular evolution is related to 

the evolution of species, Max Perutz is interested in how evolution adapts the globin 

fold to perform different functions in response to different environmental challenges.

In the tradition of phylogenetic studies, Goodman and his associates (1975) 

were the first to claim that early evolution of globins was much faster than later 

evolution (i.e. they rejected the molecular clock). They attributed the fast evolution to 

positive selection and related it to the improvement of function. Also, they proposed 

that the slow evolution was associated with stabilizing selection, which acted once 

improvements were fixed (Goodman et al. 1976). Based on the data provided by the 

crystallization of hemoglobin (achieved by Max Perutz), Goodman et al. showed that 

most o f the mutations in globins occurred during the evolutionary transition from 

monomeric myoglobin to the allosteric tetramer at the sites involved in 

multimerization (1976). It made perfect sense to Goodman and his associates that our 

pre Cambrian ancestors took advantage of a monomeric hemoglobin with strong 

affinity for oxygen (i.e. showing a hyperbolic equilibrium curve), since they were 

worm sized creepy animals (Tiplady and Goodman 1977). As later organisms 

evolved, which were larger and more mobile, a new hemoglobin was needed, one that 

responded to the new demands like a better regulation of oxygen uptake and release 

(i.e. an allosteric hemoglobin with a sigmoid curve and Bohr effect), that could only 

be attained by a multimeric protein. Goodman thinks that such a change is more likely 

to be brought about by positive natural selection, which would also explain the 

acceleration of early evolution when there was considerable room for improvement. 

Opposite to this trend, once a stable structure had evolved, most mutations would be 

detrimental, thus slowing down the rate of amino acid changes.
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In terms of the relationship between function and structure, Goodman showed 

there was a clear pattern in the amino acids that were more likely to be replaced 

(Goodman 1976). He and his colleagues found that amino acids forming part of the 

contact between subunits, either inter or intra subunits, were those that tended to have 

high rates of amino acid replacement in early evolution. Not by coincidence, these 

positions are related to the multimerization process. Also, the residues associated with 

heme contacts were stable and rarely changed, being established as far back as 600 to 

700 MYA. However, the heme associated amino acids exhibit evolution seven times 

higher in the pre amniotes compared to the amniotes, which suggests that heme-heme 

cooperative interactions were perfected only around 300 MYA (Czelusniak et al.

1982). On the other hand, a  and p hemoglobins evolved independently after their 

origin by gene duplication, and a similar pattern was observed as early evolution 

proved to be faster than at later stages (Goodman 1981).

From his studies on the stereochemical basis o f variation in the allosteric 

properties of vertebrate hemoglobins, Max Perutz (1983, 1998) found that tertiary and 

quaternary structures o f deoxy (i.e. unliganded hemoglobin) and oxyhemoglobin (i.e. 

ligand bound hemoglobin) have remained almost invariant among vertebrates and that 

most amino acid replacements are functionally neutral. He found evidence that 

adaptations responding to environmental stimuli have arisen by only a few (one to 

five) amino acid substitutions in key positions. His interest in the physicochemical 

basis o f these adaptations led him to compare the amino acid changes that occurred 

among species and relate those with adaptive changes (Perutz 1983). One of the most 

spectacular examples he found was that o f oxygen transport and storage regulation in 

crocodilians. These animals are able to stay underwater for as long as an hour without 

coming up to breathe. To do this, they reduce oxygen consumption by shutting off the
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circulation to their muscles, so that oxygen supply is concentrated in the brain and 

viscera. They use as much as possible of the oxygen stored in their lungs and blood. 

This is accomplished because their hemoglobin has unusual allosteric properties. In 

most vertebrates, hemoglobin is regulated by chemical effectors that compete with 

oxygen for binding the heme in hemoglobin. These chemical effectors regulate the 

affinity of hemoglobin for oxygen and make possible interesting effects such as the 

Bohr effect (i.e. hemoglobin releases oxygen from the heme atoms more readily at 

reduced pH). Effector molecules typically include organic phosphates, H+, Cf, and 

CO2 . Temperature also affects oxygen affinity of the heme. In crocodilians, 

hemoglobin does not respond to the typical effector molecules, in contrast it responds 

strongly only to bicarbonate ion. Bicarbonate ion forms when carbon dioxide 

dissolves in water, it accumulates in the crocodile’s blood when it is underwater and 

binds to the regulatory site which lowers the hemoglobin affinity for oxygen. So, 

instead of being retained by the heme, oxygen is delivered to the brain and viscera. 

This remarkable property, Perutz emphasized, is brought about by only three amino 

acid replacements, Val N A lp  to Ser, His NA2p to Pro, and Lys H C ip  to Glu. These 

replacements involve only four nucleotide base changes. Furthermore, all other 

substitutions are neutral (Perutz et al. 1981). The fact that globins have been used as 

examples by both selectionists and neutralists attest to the complexity o f their 

evolution.
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Chapter II

Gene conversion and functional 

divergence in the (3 globin gene family
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2.1 Motivation

The globin gene family is a textbook example of evolution by gene duplication, as the 

paralogs that arose by this process have undergone all the evolutionary routes 

available to newly duplicated genes (Li 1997), for example: a  and p genes retained 

their original function (i.e., encode the adult hemoglobin chains) (Bunn 1981), 

i|/ globins, T| and 8 became nonfunctional in some lineages (Lacy and Maniatis 1980; 

Cleary et al. 1981; Li, Gojobori and Nei 1981; Martin et al. 1983; Goodman et al. 

1984) and yet others like y and e changed their function and time of expression 

(Farace et al. 1984; Hutchinson et al. 1984; Fitch et al. 1991; Meireles et al. 1995; 

Johnson et al. 1996). The eutherian mammal 13 globin family comprises 5 functional 

genes (13, 8, 8, Gy and Ay globin) and one pseudogene (\j/13) typically arranged in a 

specific linkage order (Fig. 2.1). Even though globins are one of the best studied 

proteins, I believe it is necessary to update and complement the information generated 

mostly during the 1980s regarding the evolution of this gene family by gene 

duplication and to reanalyse data using new and more powerful methods.

In this chapter I want to emphasize the complex ways in which different 

evolutionary forces (indicated by selective pressure) have operated to give rise to die 

functional divergence observed in the p globin gene paralogs, which have experienced 

frequent unequal crossing-over (gene conversion), episodes of positive selection, 

purifying selection, long-term differences in selective pressure among genes, and 

recurrent birth and death of some members in the cluster.

Traditionally, this gene family was considered an example in support of 

Ohta’s classical model of evolution by gene duplication (Goodman 1981, Czelusniak 

et al. 1982, Ohta 1990). I am very interested in testing this model using new methods,
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Fig. 2.1. B globin gene linkage in different vertebrates (Cooper et al. 1996; Gamer 

and Lingrel 1989; Konkel et al. 1979; Lacy et al. 1979; Kretschmer et al. 1981; 

Lingrel et al. 1983; Satoh et al. 1999; Schon et al. 1981; Shapiro et al. 1983; Townes 

et al. 1984; Schimenti and Duncan 1985b). Orientation is variable in fish and 

amphibian clusters (Gillemans et al. 2002; Hosbach et al. 1983).
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and in particular, in comparing the predictions of the classical model with a very 

different alternative model, the DDC (Force et al. 1999). In a way, these two models 

represent extreme scenarios of evolution by gene duplication.

I assembled a dataset of 72 DNA sequences that include mammals, 

amphibians, fish, and birds. I inferred a phylogeny for the 13 globin family and 

identified duplication events and gene conversions, some of which are reported for the 

first time. Specifically I tested for (/) a significant increase in the rate of 

nonsynonymous substitution following gene duplication events, a consequence of 

neofunctionalization predicted by Ohta (1988); and (ii) significant differences in 

selective constraints among paralogs. Even though the DDC model is concerned with 

the evolution of regulatory regions I hypothesize that, if subfunctionalization occurs 

in the protein coding sequences, as well as in the regulatory sequences, selective 

pressure should differ between paralogs. I measured selective pressure by using the 

nonsynonymous/synonymous substitution rate ratio (co), as implemented in codon 

models of sequence evolution (Nielsen and Yang 1998, Yang et al 2000). An co < 1 

indicates purifying selection, co = 1 is consistent with neutral evolution, and co > 1 

indicates positive Darwinian selection (Yang and Bielawski 2000).

2.2 Theory and Methods

2.2.1 Phylogeny inference

A phylogenetic approach is assumed in this thesis to study the molecular evolution of 

the P globin gene family. One of the advantages of using this kind of approach is that 

questions can be put in a specific temporal and taxonomic context. For the 

phylogenetic study of the 13 globin gene family, 72 sequences from various vertebrates 

including fish, amphibians, birds and mammals were obtained from GenBank. The
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nomenclature of 13 globin genes is rather chaotic. To avoid confusion, I have included 

species names and GenBank accession numbers next to each sequence in Figure 2.2.1 

used the bony fish clade as outgroup. The sampled sequences were aligned using 

Clustal X (Thompson et al. 1997), followed by manual adjustments. Alignment gaps 

were removed.

Using different methods I constructed a number of phylogenies for the 13 

globin genes to understand the relative order of duplication and speciation events, and 

to identify gene conversions. Trees were estimated from the nucleotide sequences 

using maximum parsimony, maximum likelihood and Bayesian analysis. Once 

phylogenies were estimated, I assessed their robustness by using different methods. 

Relative support for internal branches was measured by using Bootstrap analysis with 

PAUP* (Swofford 1998). I performed the SH (Shimodaira & Hasegawa 1999), KH 

(Kishino & Hasegawa 1989) and RELL (Kishino & Hasegawa 1989) tests to compare 

the inferred gene tree with an alternative topology derived from the expected species 

relationships. I compared two trees each time, the tree in Figure 2.2 and a tree 

modified by relocating the misplaced taxa according to the species phylogeny.

2.2.2 Tests of Gene Conversion

In general, gene conversion is inferred to have occurred when two genes, or regions in 

two genes, have synonymous sites that are more similar for these genes than for other 

genes (Drouin et al. 1999). I used the programs: (z) PLATO (Grassly and Holmes 

1997) that detects anomalies that arise when phylogenies of different parts of the 

genome result in discordant topologies ; (ii) Pist (Worobey 2001) that examines 

whether the nucleotide substitutions observed between a set of genes are randomly 

distributed along these sequences or n o t; (iii) GENECONV (Sawyer 1999) that looks
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Fig. 2.2. Maximum likelihood tree of the 6 globin gene family. GenBank accession 

numbers are provided after species names. Support values for nodes are bootstrap 

proportions. Duplication events are marked with circles. Asterisks show species used 

in the eutherian mammal dataset (see Fig. 2.3). Double-line branches indicate taxa 

misplacement relative to the expected species topology. LS = Low support (<40%).

for a significant clustering of substitutions among a set of sequences ; (iv) Reticulate 

(Jakobsen and Eastel 1996) and Partimatrix (Jakobsen et al. 1997), these two methods 

look for compatible sites those whose evolutionary history is congruent with the same 

tree; and (v) I estimated the Homoplasy Index (Maynard Smith and Smith 1998) to 

test for non-reciprocal recombination between paralogous genes. Conflict between 

the estimated gene tree and the species tree determined which sequences were tested 

for gene conversion.

2.2.3 Analysis of selective pressure

To examine the selective pressure acting on genes from the 13 globin family (i.e., 13, 8, 

e, and y globins), I used sequences from eutherian mammals only. I analyzed a 

dataset comprised of 13, 8 ,8 , and y globin genes from eutherian mammals. The 

sequences are identified in the tree of Figure 2.3. The dataset included the 20 

sequences marked with an asterisk in Figure 2.2 plus the following: brown lemur 13 

globin gene (M l5734), e globin gene (M l5735), y globin gene (M l55757), 

chimpanzee 8 globin gene (AF339363), and Aotus y globin gene (AF016985). 

Primates possess two copies of y globin; I chose to sample the Gy copy because it is 

less likely to be affected by gene conversion, as gene conversion is almost exclusively
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unidirectional with Gy converting Ay (Fitch et al. 1990). p globin genes converted 

8 globin genes in some lineages (Koop et al. 1989); therefore I excluded the converted 

5 copies. Also excluded were some of the internally duplicated genes in the ruminant 

13 globin cluster (goat elll, elV, eV, and 8VI, and the cow el and elll) (Fig. 2.1). 

These sequences are very divergent due to inserted sequences (Saban and King 1994). 

From the mouse 13 globin cluster (Fig. 2.1), I sampled one of the three copies of fetal 

globin (13hl) and one of the two adult globin genes (131). Separate datasets also were 

constructed for 13, 8, and y  globin genes. There were too few sequences available for a 

separate analysis of the 8 globin gene, where indicated these sequences were analyzed 

together with p globin genes.

Site-based analyses— A statistical approach was taken to study the selective 

pressure on the 13 globin gene family in eutherian mammals. I used several codon 

models of molecular evolution that allow for heterogeneous d^/ds ratios at sites 

(Nielsen and Yang 1998; Yang et al. 2000). In the simplest model (MO or one-ratio 

model), the (0 ratio is an average over all the sites. The “neutral” model (Ml) allows 

for conserved sites where co = 0 and completely neutral sites where co = 1. The 

“selection” model (M2) adds a third class to Ml at which co can take values > 1. The 

discrete model (M3) uses an unconstrained discrete distribution with different co ratios 

for K  different classes of sites. Model M7 (beta) assumes a beta distribution of co over 

sites. Model M8 (beta&co) adds an extra class of sites to M7, thereby allowing co 

values >1. Likelihood ratio tests (LRTs) were conducted to test MO (one-ratio) against 

M3, Ml (neutral) against M2 (selection), and M7 (beta) against M8 (beta & co). All 

analyses were based on the unrooted gene-tree topologies, and used the codeml 

program in the PAML package (Yang 1997).
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Branch-based analyses— To study changes in selective pressure in the context 

of gene duplication I implemented several models that allow for variable co ratios 

among branches in the tree (Yang 1998; Bielawski and Yang 2003). The null model 

assumed the same co for all lineages in the tree. The “PD-PS” model assigns different 

co ratios for post-speciation and post-duplication branches in the tree (e.g. Fig. 2.3). 

This is based on the hypothesis that duplicated genes avoid nonfiinctionalization 

because positive Darwinian selection promoted fixation of amino acid mutations that 

led to a new or modified gene function (Ohta 1988a). The hypothesis predicts a burst 

of amino acid replacements in the branches post-dating duplication events (Ohta 

1983). After a new function evolves, however, amino acid evolution is expected to 

be dominated by purifying selection and the rate of nonsynonymous substitution 

should decrease (Ohta 1993). Hence there should be a higher rate of amino acid 

substitution along branches that immediately postdate duplication events (PD 

branches) as compared with those branches that immediately postdate speciation 

events (PS branches). An LRT can be conducted to compare the one-ratio model 

(copd = cops) with the two-ratio model PD-PS (copd * (Ops).

Another alternative model was based on the hypothesis that duplicated genes 

avoid nonfiinctionalization because expression patterns and/or functions are 

partitioned among paralogs following gene duplication (Force et al. 1999). If 

subfimctionalization had indeed occurred in the protein-coding sequences, sites 

associated with such partitioning are expected to exhibit long-term differences in 

selection pressure. If the difference between paralogs is large, we might be able to 

detect paralog-specific differences in average selective constraint. I formalized this in 

a model called “Paralog”, where an independent co ratio is specified for each 

paralogous clade (e.g., cob ^  o>y ^  coe). To test for a significant difference in selective
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pressure among paralogs I conducted an LRT comparing the one-ratio model (e.g., cob 

= C0y = coe) with the three-ratio Paralog model.

Branch-Site Analysis-The above approaches might not detect a short episode 

of positive Darwinian selection, such as immediately following a gene duplication 

event, if it occurs at just a fraction of amino acid sites. The “branch-site” models 

(models A and B) recently developed allow the co ratio to vary both among lineages 

and among sites, and permits detection of lineage-specific changes in selective 

pressure at specific amino acid sites (Yang and Nielsen 2002). Branch-site models A 

and B have four co site classes. The first two site classes, with coo and coi, are uniform 

across the phylogeny, whereas the other two site classes are allowed to change from 

coo CO2 and from coi -» (02 in a pre-specified branch of interest (the “foreground” 

branch). Note that CO2 can take values > 1, thus allowing for positive selection. In 

branch-site model A, coo is fixed to 0 and coi is fixed to 1; hence positive selection is 

permitted at only the foreground branch. Model A is compared with model Ml 

(neutral) with degrees of freedom (d.f.) = 2. In model B, coo and coi are free 

parameters; therefore some sites can evolve under positive selection across all the 

branches in the phylogeny, whereas other sites are permitted to take co values > 1 in 

the foreground branch. An LRT compares model B with model M3 (discrete) with K  

= 2 site classes and d.f. = 2. We used branch-site models A and B to test for possible 

adaptive evolution along lineages following gene duplications.
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2.3 Results

2.3.1 Phylogenetic Analysis

The 7213 globin family genes collected were used for phylogenetic reconstruction.

The ML tree is shown in Figure 2.2. Both ML and Bayesian methods resulted in 

similar topologies, with support values for the internal nodes shown in Figure 2.2. The 

only case of disagreement between the two methods was in the placement of 

marsupial and monotreme sequences. In the Bayesian tree the echidna 13 globin gene 

was sister to a marsupial clade (opossum and dunnart 13 globins) and in turn this clade 

was placed sister to the eutherian 13 globin clade. In the ML tree (Fig. 2.2), the 

echidna 13- globin gene was sister to the eutherian 13 globin clade. Clearly, placement 

of the monotreme and marsupial 13 globins is problematic and will probably require 

additional sampling to resolve. Interestingly, the marsupial co globin genes were 

placed outside the mammalian 13 globin clade, consistent with the earlier study of 

Wheeler et al. (2001).

Assuming no gene conversion, I expected (i) monophyly for each set of 

paralogs (i.e., 13,8, 8, and y globins), and (ii) to recover the expected species tree 

within each paralogous clade (Rowe 1999; O’Brien et al. 2001; Springer et al. 2003). 

However, I found some notable misplacements (double lines in Fig. 2.2): (/) the rabbit 

e and y sequences were sister to the primate e and y genes, respectively, rather than 

sister to rodent 8 and y globins; (ii) the cow 8 II and e IV genes and goat e II 

comprised a monophyletic clade sister to the y globins, instead of being within the e 

clade; (iii) the mouse e gene (a single-copy gene traditionally called y), did not appear 

within the e clade but was sister to a clade including the cow 8 II and 8 IV and the 

goat e II genes; (iv) tarsier and bushbaby 5 globin genes were sister to tarsier and
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bushbaby 13 globin genes, respectively; (v) the genes traditionally labeled as y globins 

in sheep, cow and goat were placed within the 13 globin clade; (vz) chicken e was sister 

to chicken p instead of being more closely related to duck 8 globin; (vii) Cebus Gy 

and Ay were more closely related to each other than to their respective human and 

chimpanzee orthologs.

All misplacements were supported by high bootstrap proportions (> 70%) with 

the exception of the Cebus Ay and Gy, the rabbit e, and the mouse y branches where 

there was low bootstrap support. I used the SH test to compare the expected 

placements with the estimated topology (Fig. 2.2). SH tests indicated significantly 

greater support for five misplacements (bushbaby 8: P  < 0.0001; tarsier 8: P  = 0.002; 

cow, sheep and goat y:P = 0.000; echidna 13: P = 0.053 and Cebus Ay and Gy:P = 

0.000). The remaining misplacements did not fit these data significantly better than 

the expected phylogenetic placements (mouse e: P  = 0.095; rabbit y: P  = 0.217; rabbit 

13: P = 0.59; cow 8: P  = 0.193; rabbit 8: P = 0.289 and mouse y, goat ell and cow 811 

and elV: P  = 0.225, chicken p: P = 0.397). Results under KH and RELL tests were 

the same as with SH tests (data not shown).

2.3.2 Extent of Gene Conversion

A potential source of conflict between the gene tree and species tree could be 

gene conversion (Ohta 1980, 1990). Hence, I used the misplacements to guide my 

tests of gene conversion. Tests were conducted on alignments of third codon 

positions only, by using different software programs (Grassly and Holmes 1997; 

Worobey 2001; Sawyer 1999; Jakobsen and Eastel 1996; Jakobsen et al. 1997; 

Maynard Smith and Smith 1998). I found evidence for two gene conversion events
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that are not reported previously: (i) among the duplicates in the goat 13 globin cluster 

between nucleotides 12 and 75 (site numbering refers to the human J3-globin gene, 

PDB file 2hhb) (PLATO z-score = 4.85); and (ii) among the mouse 13 globin cluster 

genes between nucleotides 210 and 235 (PLATO z-score = 3.87). The analysis 

corroborated gene conversions previously suggested for tarsier and bushbaby 5 globin 

genes (Koop et al. 1989; Grassly and Holmes 1997) between nucleotides 45-63 and 

357-375, and in cow ell and cow £IV between nucleotides 12-30, in agreement with 

Schimenti and Duncan (1985a). However, I found no evidence for gene conversions 

between mouse 13 genes 13h0 and 13hl or between mouse 13h0 and mouse y, (see Figs.

2.1 and 2.2) reported by Hill et al. (1984), nor between Cebus Gy and Ay.

2.3.3 Analysis of selective pressure

Variable Selective Pressure Among Sites. - In order to minimize the effect of gene 

conversion, I excluded the converted genes. Given that gene conversion tends to have 

a direction in globins, it is known for instance that 8 globins are generally converted 

by p globins and not vice versa. This prior knowledge allowed me to minimize gene 

conversion effects to some extent, although eliminating conversion altogether is 

impossible, as numerous events have characterized the evolution of P globin genes. I 

also compared tests of variable selective pressure using different datasets, both with 

and without misplaced sequences. Similar results were obtained for the different 

datasets, confirming that gene conversion, although probably present, did not greatly 

affect my results.

I expected selective pressure to vary among sites and among the genes of the 13 

globin family. I used codon models to detect among-site variability in selective 

pressure in the 13, s and y globin genes. From the one-ratio model (MO) I found that
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the co ratio averaged over all sites is 0.27, 0.26, and 0.17 for 13, y  and 8 globin genes, 

respectively, when the three genes were analyzed as separate data sets (Table 2.1). 

The estimates suggested that, on average, the e globin is more constrained than the y 

and 13. However, an co ratio averaged over sites is a cmde measure of selective 

pressure. Therefore I used models that allow selective pressure to vary among sites. 

The discrete model (M3), with 3 site classes, revealed considerable variation in 

selective pressure among sites (Table 2.1). For example, 13 globin had 65% of sites 

under strong purifying selection (co = 0.02), 26% of sites were less constrained (co = 

0.57), and 9 % of sites were under positive selection (co = 2.02) (Table 2.1). 

Interestingly, neither y  nor 8 showed evidence of sites evolving under positive 

selection (Table 2.1). Evolution of the majority of sites in all three paralogs was 

dominated by strong purifying selection, with 65% of sites in 13, 52 % of sites in y, and 

66% of sites in e evolving with co < 0.05.

I tested for variable selective pressure among sites by conducting an LRT 

comparing the one-ratio model (M0) with the discrete model (M3); results were 

highly significant for all three genes (Table 2.2). In general, 13 globin was the most 

variable gene in the family, having an additional class of sites evolving under positive 

Darwinian selection.

I was interested in identifying regions that are conserved in all three genes in 

the cluster, which presumably indicate functionally important residues in the protein 

product. For 13-, y- and e-globin genes separately, I plotted the approximate posterior 

mean of the co ratio at each site (Fig. 2.4). Four regions are highly conserved in all 

three genes: (i) residues 28 to 38, located in helices B and C; (ii) residues 57 to 63, 

located in helix E; (iii) residues 79 to 81, located in helix F; and (iv) residues 87 to
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Table 2.1. Parameter estimates and likelihood scores in separate analyses of the 13, y, and e

globin genes under site-specific models

Model Parameter Estimates t

MO (one-ratio)

13 co =0.27 -1676.08

T co = 0.26 -1609.76

8 co= 0.17 -2137.83

M l (neutral)

13 (cflb=0),/0=0.60, (co, = 1), (/, = 0.40) -1621.00

y (cob = 0), /o =  0.57, (CO, = 1), (/, = 0.43) -1598.06

8 (CO) =  0), /o =  0.54, (CO, = 1 ) , ( / ,  = 0.46) -2145.53

M2 selection

13 (co, = 0), / 0 = 0.60, (co, = 1), /, = 0.36, co, = 3.58, (f 2 = 0.04) -1617.42

y (co, = 0), / 0 = 0.52, (co, = 1), /, = 0.006, co> = 0.57, (f2 = 0.47) -1592.80

8 (CO) = 0), / 0 = 0.33, (co, = 1), / ,  = 0.11, coz = 0.16, (f2 = 0.56) -2100.22

M3 discrete

13 co, = 0.02 , /o =  0.65 co, = 0.57, / ,  = 0.26, co, = 2.02, (f2 = 0.09) -1608.57

y CO) = 0.001, /o = 0.52 co, = 0.42, / ,  = 0.18, cĉ = 0.66, (f 2 = 0.31) -1592.78

8 CO) = 0.04, / 0 = 0.66 co, = 0.27, /, = 0.24, co, = 0.89, (f2 = 0.11) -2099.60

M7 beta

13 p  =0.11, ? = 0.29 -1612.60

y p  = 0.23, 0 = 0.55 -1593.31

8 p  = 0.34, 0 =  1.50 -2101.40

M8 beta&co

13 p  =  0.16, 0 = 0.061, /o =  0.93 co, = 2.19, (/, = 0.07) -1608.76

y p  = 0.03, 0 = 0.64, /o = 0.57 co, = 0.60, (/, = 0.43) -1592.79

8 p  = 0.95, 0 = 7.81, /o = 0.88 co, = 0.85, (/, = 0.12) -2099.67
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Table 2.2. Likelihood ratio test statistics for comparing site-specific models for the B, y,
and £ globin genes______________________________________________________________
Model 28 df P-value

MO (one-ratio) vs. M3 (discrete)
B 135.02 2 <0.0001

y 33.97 2 <0.0001
8 76.47 2 <0.0001

M7 (beta) vs. M8 (beta&co)
B 7.68 2 0.020

y 1.03 2 0.600
8 3.46 2 0.177
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101, located in helices F and G. When mapped onto the three-dimensional structure 

of the 6 chain in hemoglobin (Fig 2.5), I found that sites within these four constrained 

regions were located mostly on the inner hydrophobic core of the subunit, the area 

around the heme pocket and the aiBi interface. In all cases the human 13 globin chain 

structure (PDB: 2hhb) was used as reference to map sites into the three-dimensional 

structure. Residues 28 to 38, are distributed among the hydrophobic core, the a  1131 

interface between monomers, and part of the heme pocket.

The site-specific codon models were also used to identify positive selection at 

sites, indicated by co > 1. The selection model (M2), the discrete model (M3), and the 

beta&oo model (M8) allow co > 1 at a fraction of sites (Yang et al. 2000). All three 

models were generally consistent in suggesting a small fraction of sites (4 to 9 %) 

evolving under positive Darwinian selection (co between 2.02 and 3.58) in the 13 

globin gene (Table 1). I tested significance of sites evolving under positive selection 

by an LRT comparing M7, which does not allow for such sites, with M8, which has 

an additional parameter that can accommodate sites with co > 1. The test is highly 

significant for the 13 globin gene (Table 2.2).

Variable Selective Pressures Among Branches. - A burst of nonsynonymous evolution 

is often observed following gene duplication, and positive Darwinian selection is 

frequently invoked to explain this pattern. An LRT was used to test whether selective 

pressure is significantly different between postduplication (PD) and postspeciation 

(PS) branches in the 13 globin gene phylogeny; i.e., (cob(Pd) = co^pd) = C0y(PD)) * (cob(ps) 

= C0e(Ps) = coy(ps)). The LRT was not significant (Table 2.3), suggesting no difference
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Fig. 2.4. Approximate posterior mean of the co ratio for each site calculated under 

model M3 (discrete) for the a) 13 globin; b) £ globin and c) y  globin genes.
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between PD branches and PS branches. Furthermore, estimates of co suggested strong 

purifying selection in both the PD and PS branches ((0(pd) = 0.34, C0(ps) = 0.23). I also 

fitted a more general four-ratios model in which the branches postdating the three 

duplication events in the phylogeny were assigned independent co ratios (cob(pd),

(Oe(PD), C0y(PD), C0(ps)) and compared it with the one ratio model Again, the LRT was 

not significant (Table 2.3), and none of the parameter estimates suggested positive 

Darwinian selection: cdb(pd) = 0.41, cô pd) = 0.22, cOy(PD) = 0.08, C0(ps) = 0.24. Note that 

in both PD-PS models tested, dN values averaged 0.024 and ds values averaged 0.101.

The above analysis averages rates over all sites in the gene and may lack 

power in detecting positive selection. Thus I also used branch-site models A and B 

(Yang and Nielsen 2002) to detect positive selection at a subset of sites along specific 

lineages. I tested each postduplication branch in the 13 globin phylogeny as defined in 

Fig. 2.3.1 found no evidence for positive selection at branches immediately following 

the duplication event that gave rise to proto-13 and proto-e, nor after the duplication 

that created e and y (data not shown). The duplication event that resulted in Ay and 

Gy globins is hypothesized to have occurred along the branch leading to the simian 

primates (Slightom et al. 1985), but cannot be resolved on a gene tree because of 

frequent gene conversion events. However, when I used a specific dataset comprising 

8 and y globins (Fig. 2.6), and tested the branch where the duplication is thought to 

have occurred I found an increase in nonsynonymous substitutions (Ml vs MA: 28 = 

37.16, d f= 2, P <0.0001; M3 vs MB: 28 = 18.66, df = 2, P < 0.0001). The dN value 

was 0.021 and the ds value was 0.039, as measured as an average over all branches of 

the e and y globin tree. Parameter estimates under models A and B suggested
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Table 2.3. Maximum likelihood estimates of co ratios under branch-specific models and 
likelihood ratio test statistics when the model is compared with the null model MO (one- 
ratio)_________________________________________________________________

Alternative model Parameter estimates 25 df P-value

Post-duplication and post-speciation (PD-PS) models

2-ratios C 0 (p d ) =0.34, C0(ps) = 0.23 1.10 1 0.29

4-ratios COfi(PD) =0.41, C0e(pD) = 0.22, C0y(PD)) =0.08, 1.10 3 0.78

C0(ps) = 0.24

Paralog models

3-ratios c o b  = 0.29, coy = 0.23, coe = 0.16 11.66 2 0.003

2-ratios (O b  = 0.28, coe=coy = 0.19 7.89 1 0.005

2-ratios coe= 0.16, C0 y = C0B = 0.27 9.88 1 0.002

2-ratios (Oy = 0.23, c o b  = coe = 0.23 0.045 1 0.832
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positive selection at a few sites along the branch leading to simian primates (0)2(ma) = 

10.0, Cl>2(m b ) = 4.58 in Table 2.4). Interestingly, this branch is also thought to coincide 

with the recruitment of y globins for fetal expression (double line in Fig. 2.6).

Globin genes are expressed at different developmental stages, so each gene 

might be subject to different selective pressures. To test for paralog-specific 

differences in selective pressure, I fitted the “Paralog” model, where 13, y and 8 globins 

have independent selective pressures (i.e., c o b  *  coe ^  t o y ) .  This model fits the data 

significantly better than the one-ratio model, with parameter estimates cob = 0.29, coe 

=0.16, toy =0.23 (Table 2.3). Average dN value was 0.024 and average ds value was 

0.103. Those estimates are consistent with the to estimates from the separate analysis 

of the paralogs, with e globin to be more constrained than y and 13 globins (Table 2.1). 

Fitting additional models with two of the three ratios ( c o b ,  t o e ,  t o y )  forced to be 

identical suggests that t o y  is different ffom cob and coe, while cob and t o y  are not 

significantly different (Table 2.3).

2.4 Discussion

2.4.1 Phylogeny and Gene Conversion

Gene conversion plays an important role in the evolution of multigene families, as it 

brings about the exchange of genetic material between related sequences (Schimenti 

1994; Posada et al. 2002). It is a frequent mechanism of evolutionary change in 

globins and can act both to homogenize genes through concerted evolution (e.g., Ay 

and Gy in simian primates) or to introduce novelty among homologous genes
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Table 2.4. Parameter estimates and log-likelihood scores for the y  globin gene under
different sites and branch-site models.______________________________________

Model p  Parameter estimates Positive I

Selection

(co0 = 0.00), f o  = 0.47

Site-specific models 

Ml (neutral) 1

M3 (discrete) (K = 2)

Branch-site models 

Model A

Model B 5

(co, = 1.00), ( f  i = 0.53) 

3 co0 = 0.06, f 0 = 0.74 

coi = 0.63, ( /i = 0.26)

3 (co0 = 0), / o =  0.45 

(coi = 1), / i=  0.44 

(0 2 = 10, (J2+3 -  0.1) 

coo = 0.05, f o  = 0.60 

coi = 0.63, f 1 = 0.22

No -3170.38

No -3094.02

Yes -3151.80

Yes -3084.69

©2 = 4.58, (/2+3 = 0.18)

Note, p  is the number of parameters in the co ratio distribution. The foreground 

branch in the branch-site models is the branch leading to simian primates.
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(e.g., cow eII and elV). Gene conversion is known to affect gene phylogenies, as no 

single topology can relate the genes that have experienced conversion (Slatkin and 

Maddison 1989; Hudson et al. 1992; Maddison 2000). Given the general importance 

of the mechanism, its pervasiveness and its effects on phylogeny reconstruction, it is 

essential to test for gene conversion when topological discrepancies arise in a gene 

family tree (Drouin 2002). By using statistical methods, I found evidence of two 

unreported gene conversion events in B globins, (/) among duplicates in the goat B 

globin cluster, (ii) among duplicates in the mouse B globin cluster, and confirmed 

many previously suggested cases. Furthermore, I suggest that the majority of 

misplacements in my p globin gene tree are the result of gene conversion events.

2.4.2 Different models of evolution by gene duplication 

The traditional model of evolution by gene duplication predicts an increase in 

nonsynonymous substitution rate immediately after genes duplicate. It is a matter of 

debate whether this rate increase is due to a relaxation of selective pressure or to the 

action of positive selection for advantageous mutations (Massingham et al. 2001, 

Mazet and Shimeld 2002). Previous studies of the B globin family supported the 

positive selection model, with this mode of evolution being suggested following the 

split of myoglobin and hemoglobin (Goodman 1981) and following the divergence of 

a  and B hemoglobins (Czelusniak et al. 1982). Accelerated amino acid evolution also 

occurred after the en bloc duplications within the ruminant artiodactyl lineage (Li and 

Gojobori 1983). In contrast to these examples, I found no significant evidence for a 

burst of nonsynonymous evolution in the branches postdating the initial duplications
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Fig 2.5. 3D structure of the 6 globin chain of hemoglobin. The green part of the 

molecule corresponds to the residues conserved in all three genes that encode the 

subunit (6, e and y globin genes). The ligand is depicted in white and using a different 

display mode for better appreciation. PDB 2hhb.
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of the proto-13 and proto-8 genes, nor after the duplication giving rise to the 13 and 8 or 

to 8 and y clades, which correspond to the major duplication events within the gene 

family. I also tested for an increase in nonsynonymous substitutions at particular sites 

along the postduplication branches using branch-site models but failed to detect an 

evolutionary burst. These results appear consistent with a model suggesting a short­

term advantage for preserving duplicate genes, where both paralogs initially evolve 

under equal constraints (Kondrashov et al. 2002).

There was one exception to the general pattern described above. In the lineage 

of stem-simians which represents the transition from embryonic to fetal expression of 

y globins (Tagle et al. 1988, Fitch et al. 1991), I detected an acceleration in 

nonsynonymous substitution rates and identified positively selected sites. Whereas 

previously used methods employed raw counts of synonymous and nonsynonymous 

substitutions, and were thus unable to determine the source of amino acid evolution 

acceleration, the branch-site models indicated that nonsynonymous rate acceleration 

in the lineage of stem-simian y globins was caused by positive Darwinian selection.

It is possible that undetected gene conversion makes my tests for variable diVds rate 

ratios among branches more conservative, as sequences are more similar than they 

would be without its effects. It may also be that greater similarity among sequences 

reduced the power of the tests to detect an increase in dN/ds rate ratios following gene 

duplication. However, I make the observation that the tests were powerful enough in 

the case of the simian y globin amino acid replacement acceleration. Furthermore, if 

adaptive evolution occurs by a single or a small number of substitutions it may not be 

detected by methods based on d^ld$ ratios (Bielawski and Yang 2003). It is known 

that large phenotypic changes in globins can be achieved by only one or a few amino 

acid changes (Perutz 1983). A good example of the latter is provided by the deletion
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of the NA1 valine residue from the protein chain encoded by y-globin in some 

artiodactyls, which increases the oxygen affinity of the hemoglobin monomer (Poyart 

et al. 1992). Hence, in cases where I did not detect positive selection or even an 

increase in amino acid replacement rates, my findings do not exclude the possibility 

of neofimctionalization in 13 globin genes by a few adaptive substitutions with large 

phenotypic effects.

The DDC model of gene copy preservation does not require a burst of 

nonsynonymous substitutions, and assumes purifying selection continues to act on 

both gene copies following duplication (Force et al. 1999; Zhang 2003). Nonetheless, 

if subfunctions are partitioned among the functional domains of the encoded protein, a 

potential outcome of the DDC model is heterogeneity in purifying selection among 

the gene copies. Dermitzakis and Clark (2001) proposed that identification of 

heterogeneity in patterns of amino acid substitution between different domains of die 

proteins encoded by paralogous genes could lead to the discovery of genes under 

subfunctionalization. While the DDC model has traditionally centred on regulatory 

sequences, I extend the possibility of finding subfunctionalization to protein-coding 

sequences by identifying heterogeneous selection pressure among paralogs. In the 

case of mammalian 13 globins, genes are linked in a specific arrangement which, in 

most species, is known to be related to the order of expression of the genes (Hardison 

1998). If the arrangement of 13 globin genes in the cluster corresponds to a domain­

like partition of function, each domain of expression could be subject to different 

selective pressures. Hence, my results are in agreement with a subfunctionalization 

model, as I found that each paralogous clade (i.e., domain of expression) is subject to 

significantly different selective constraints. My findings suggest a long-term process 

of divergence during which each paralog has been subject to different constraints by
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Fig. 2.6. Maximum likelihood tree of the £, and y  globin genes from eutherian 

mammals. The double line corresponds to the branch where the G y and Ay split is 

hypothesized to have occurred, in the ancestor of simian primates.
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purifying selection, presumably related to differences in expression regulation. As 

described earlier, these findings do not exclude the possibility of brief episodes of 

increased amino acid replacement, in which case, other models (e.g., Ohta 1988b) 

may still be relevant to the evolution of p globins.

2.4.3 Selective pressure at sites in the vertebrate p globin genes 

The 13 globin gene is the only gene with sites predicted to be under positive selection 

in placental mammals. I identified twelve sites under Darwinian selection, consistent 

with the earlier study of Yang et al. (2000). These sites are located mostly at the 

exterior of the protein chain, with two sites located at the a  1131 interface between the a  

and 13 subunits of hemoglobin (p 116H, a  111A and a  115 A). I tested for positive 

selection in the a  globin genes currently available in GenBank, and found at least one 

positively selected site (115a) located at the a  1131 interface. My results raise the 

interesting possibility of long-term coevolution of some alpha and beta protein chain 

residues located in the a  1131 interface. I cover this topic more extensively in Chapter 

III.

Much is now known about what makes the globin fold a robust structure 

(Perutz et al. 1960; Bashford et al. 1987; Murzin and Finkelstein 1988; Brenner et al.

1997). Proteins whose secondary structures are mainly alpha helices, such as 13 globin 

chains, are flexible and can easily accommodate many residues or prosthetic groups 

without disrupting tertiary or quaternary structural arrangements (Chothia et al. 1977; 

Efimov 1979). 13 globins share the canonical features of the globin fold and have 

maintained a robust structure despite 200 million years of evolutionary divergence 

(Efstratiadis et al. 1980; Czelusniak et al. 1982). Arguably, the most important feature 

that explains the preservation of the globin fold is the clear conservation of
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hydrophobic residues at buried positions in globin proteins (Lesk and Chothia 1980). 

In this study I identified regions conserved in all three 13 globin genes, located in the 

interior or hydrophobic part of the subunit. Presumably, these conserved sites are 

involved in the maintenance of the secondary structures which in turn stabilize the 

tertiary and quaternary structures of hemoglobin. Furthermore, I found that some of 

the conserved sites are also part of empty concavities of the protein surface accessible 

to solvent (Liang et al. 1998). Concavities are particularly important as they are often 

associated with binding and catalytic activity (Liang and Dill 2001). For example, 

from the 23 sites which participate in interactions with the heme group, 15 correspond 

to the conserved sites in my study, with three involved in hydrogen bonding. With the 

exception of site 38Thr, all sites that participate in interactions with the heme ligand 

have hydrophobic-hydrophobic contacts, which stabilize the structure. Hence, during 

the long evolutionary history of the genes encoding the 13 globin chain of hemoglobin, 

these functionally and structurally important sites have been preserved while at the 

same time a fraction of residues have been the targets of divergent fine tuning of the 

protein function.

2.4.4 The evolution of the p globin gene family

Gene family evolution reflects a balance between homogenization by unequal 

crossing over and gene conversion, and diversification by mutation (Ohta 2000).

Both drift and selection play an important role in the evolutionaiy fate of duplicated 

genes, but only positive selection can account for the evolution of new functions 

(Ohta 1987). The dynamics of these forces are complicated (Ohta 2000), and my 

analysis of the 13 globin family of genes illustrates this complexity. Gene conversion 

is clearly a frequent force for homogenization of some closely related members of this
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family (e.g., Ay and Gy globins). As expected, gene conversion is less important to 

the evolution of the more divergent members, as it is prohibited when sequence 

divergence is too high (Ohta 2000). In addition to the partitioning of [3 globin 

paralogs into domains of expression, this gene family exhibits divergence both by 

positive Darwinian selection (p and y globins), and by differential patterns of 

purifying selection pressure (y and £ globins). While more tests are clearly necessary 

to fully discriminate between the DDC and Ohta models, I suggest that comparison 

between synonymous and nonsynonymous substitution rates provides a useful tool in 

studying relative roles of different evolutionary forces during the evolution of a gene 

family.
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Chapter III

The evolution of the hemoglobin structure
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3.1 Motivation

Tetrameric vertebrate hemoglobin is composed of two identical a  subunits 141 

residues long and two identical p subunits 146 residues long. Each subunit contains a 

heme group. Oxygen binding is cooperative and is associated with a large shift in the 

quaternary structure of the heterotetramer, the transition being from the deoxy (T) 

conformation to the oxy (R) form. There is at least another conformation available to 

hemoglobin known as R2, which is close to R  Two types of interfaces participate in 

conformational transitions, namely a  1P1 (or the equivalent a2p2) and a  1 p2 (or the 

equivalent a2p  1). Perutz (1970) referred to the a  1P 1 interface as the packing surface 

and to the a  1 p2 interface as the sliding surface. During the transition from the T to R 

conformation, the a  1 p2 interface undergoes a large sliding movement, while the 

a  1 p 1 interface is practically unchanged. Hemoglobin properties such as oxygen 

affinity and cooperativity depend to a large extent on the intra-subunit and inter­

subunit interfaces (Shionyu et al. 2001).

This chapter is about the evolution of hemoglobin structure and its relation to 

function. More specifically, it is about the way selective constraints have shaped the 

globin protein by preserving the functionally important residues while allowing 

changes in less compromising sites. Changes in structure may or may not be relevant 

to function. Are the changes we observe in globin proteins functionally relevant? I 

have tried to address this question in two important cases that involve not only 

P globins but other two related proteins, the monomeric myoglobin and the a  chain of 

hemoglobin. This scope necessarily means going deeper in the globin phylogeny.

First, I analysed how the different sites in the a  and p hemoglobin coding 

genes are constrained by varying selective pressure. My interest was to establish 

whether similar constraints act on both genes as they interact in hemoglobin to form
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the two heterodimers in the molecule. Special emphasis was put on the sites, which in 

both genes, are part of the interfaces between the a  and p hemoglobin chains. I 

hypothesize whether in order to maintain the crucial site-site interactions between the 

different chains in hemoglobin, sites at the a  p interfaces have coevolved.

Second, I was also interested in comparing hemoglobin genes with myoglobin 

because in this case there is a clear change in structural terms which has had a 

profound effect in function. The change here is the evolution of an oligomeric form in 

hemoglobin from a presumably monomeric ancestor. Myoglobin and hemoglobin also 

differ dramatically in their function. Whereas the latter is capable of allosteric 

regulation of oxygen trafficking, the former follows a hyperbolic equilibrium curve in 

response to oxygen concentration (Voet and Voet 1995). It is not clear whether 

oligomerization was brought about by selection or by chance but in either case we 

might be able to find traces of this evolutionary change by looking at the amino acid 

replacements between myoglobin and hemoglobin.

In order to investigate these questions I have aligned a number of sequences 

from myoglobin and a  and p hemoglobins. I have estimated their gene trees and have 

measured selective pressure across their sites and among the different globin lineages. 

Also, I have inferred the ancestral states of those protein coding genes and looked at 

the direction and importance of the amino acid replacements in terms of structure and 

function.

3.2 Theory and Methods

4.2.1 Data and Phylogenetic Analysis

Three different datasets were constructed: (i) an alignment of myoglobin and p 

hemoglobin sequences that I will call the “myoglobin-hemoglobin” dataset; (ii) an
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alignment of a  and (3 globin sequences that I will refer to as the ”a-(3 dataset”; and 

(iii) an alignment of a  globin sequences for the individual analysis of this gene.

Species names and GenBank accession numbers included in the three datasets are 

listed in Table 3.1. A total of 36 nucleotide sequences were retrieved from GenBank 

for the myoglobin-hemoglobin dataset, of which, 16 were p hemoglobin genes 

(column “p Globin” in Table 3.1) and 20 were myoglobin genes (column 

“Myoglobin” in Table 3.1); For the a -p  hemoglobin dataset I used the 13 a  globin 

sequences (column “a  Globin” in Table 3.1) and 10 p globin sequences (marked with 

an asterisk in column “p Globin” in Table 3.1). The individual analysis of the a  

globin was done using the 13 nucleotide sequences listed in Table 3.1 (column “a  

Globin”). The individual analysis of the p globin gene was done previously in Chapter 

II (Table 2.1). All sequences were aligned using ClustalX (Thompson et al. 1997). 

Manual adjustments were done and gaps were removed.

Trees were estimated from the nucleotide sequences using maximum 

parsimony and maximum likelihood methods. The model of nucleotide substitution 

was HKY85 in all cases. All codon positions were analyzed together. In the case of 

ML trees I used a minimum evolution phylogeny as a starting topology from which 

model parameters were optimized. Both MP and ML methods resulted in similar 

topologies for each gene. Bootstrap analysis was performed using PAUP* (Swofford

1998) to assess relative support for internal branches.

3.2.2 Detection of positive selection across sites

I was interested in detecting positively selected sites, as these may be associated with 

important changes in globin structure and function. A statistical approach was taken
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Table 3.1. List of the species comprised in the myoglobin-hemoglobin, the a~P 
globin, and the a  globin datasets including their GenBank accession numbers
Myoglobin GenBank P Globin GenBank a  Globin GenBank

Accession Accession Accession
Number Number Number

Homo sapiens NM_005368 P Human* U01317 Mouse V00714
Mus musculus BC025172 P Bushbaby* U60902 Rat U62315
Rattus norvegicus AF197916 p Brown 

Lemur*
Ml 5734 Cow AJ242797

Sus scrofa M14433 P Mouse* J00413 Buffalo AJ242731
Bos Taurus NM_173881 p Sheep* X I4727 Sheep X70213
Thunnus obesus AB104433 p Rabbit* V00882 Goat J0044
Cannichthys AY341058 P Pig* X86791 Horse U70191
rhinoceratus
Makaira AF291833 P Tarsier* J04429 Rabbit Ml 1113
nigricans
Thunnus AF291838 p Hare* Y00347 Bushbaby M29648
albacares
Euthynnus AF291837 p Rat* X15009 Rhesus J04495
pelamis monkey
Thunnus AF291836 P Duck X15739 Orangutan M12158
orientalis
Scomber AF291835 P Chicken V00409 Gibbon M94634
japanicus
Sarda chiliensis AF291834 P Xenopus X03142 Human J00153
Thunnus alalunga AF291832 P Xtropicalis Y00501
Thunnus thynnus AF291831 p

Tachyglossus
L23800

Nothothenia U71058 P Didelphis J03643
coriceps
Gobionotothen U71057
gibberifrons
Cryodraco U71056
antarticus
Pseudochaenyctys U71055
georgianus
Chionodraco U71059
ratrospinosus
Note: The “myoglobin-hemoglobin” dataset comprises species in columns

“Myoglobin” and “P globin”; the “a - p  dataset” includes sequences in column “a  

Globin” and sequences marked with an asterisk in the column “p Globin”. The “a  

Globin dataset” comprises the 13 sequences in column “a  Globin”.
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to detect positive selection acting on sites in the myoglobin-hemoglobin, the a - (3 

hemoglobin dataset and the a  globin gene. I used the same method that was used in 

Chapter II to analyze variable selective pressure and detect positive selection in (3 

globin cluster genes. Here too, I used several codon models that allow for 

heterogeneous dN/ds (co) ratios at sites in the alignments, and in three models, for co >

1, that is, the detection of positive selection (Nielsen and Yang 1998, Yang et al.

2000). In the simplest model (MO or one-ratio model), the co ratio is an average over 

all the sites. The “neutral” model (Ml) allows for conserved sites where co = 0 and 

completely neutral sites where co = 1. The “selection” model (M2) adds a third class to 

Ml at which co can take values > 1. The discrete model (M3) uses an unconstrained 

discrete distribution with different (D ratios for K  different classes of sites. Model M7 

(beta) assumes a beta distribution of co over sites. Model M8 (beta&co) adds an extra 

class of sites to M7, thereby allowing co values >1. Likelihood ratio tests (LRTs) were 

conducted to test MO (one-ratio) against M3, and M7 (beta) against M8 (beta & co). 

All analyses were based on the unrooted gene-tree topologies, and used the codeml 

program in the PAML package (Yang 1997). Sites found to be under positive 

selection were studied by ancestral reconstruction analysis in order to evaluate their 

importance in terms of structure and function.

3.2.3 Analysis of selective pressure among lineages 

I analysed the variable selective pressure acting on the different lineages of: (i) 

myoglobin and hemoglobin, and (ii) the a  and (3 globin genes. I used the myoglobin- 

hemoglobin and the a -p  globin datasets and constructed two likelihood ratio tests to 

determine whether positive selection was involved in the functional divergence 

between myoglobin and hemoglobin and between a  and P globin following their split.



For each dataset I implemented two LRTs that allow for variable co ratios among 

branches in the tree (Yang 1998; Bielawski and Yang 2003). The null model assumed 

the same co for all lineages in the tree. In the first test, I assigned different co ratios for 

the branches in each paralogous clade, so that branches in one clade had coo, and 

branches in the other clade had coi. This model (i.e. coo * ©i) was compared with the 

null model (i.e. coo = coi) by means of an LRT. In the second test, using a rooted tree,

I assigned an co ratio for the ancestral branch of the two paralogous lineages (i.e. the 

ancestral branch to myoglobin and hemoglobin in one test, and the ancestral branch to 

a  and p globin gene clades in the other); and different co ratios were assigned for the 

branches in each paralogous clade, so that the ancestral branch had coo; branches in 

one clade had coi, and branches in the other clade had CO2 . Again, the alternative model 

(i.e. coo * coi* CO2) was compared with the null model (i.e. coo = coi = CO2) by an LRT.

3.2.4 Ancestral state reconstruction

It is important to investigate the substitutions that have occurred at sites in the protein 

coding genes with reference to the ancestral state of those sites because this kind of 

analysis provides us with an idea of the “direction” (change from ancestral to derived 

state) of the codon substitutions along evolutionary lineages. This is relevant when we 

are interested in finding the adaptive importance of substitutions. First, I was 

interested in inferring the ancestral states and the direction of the amino acid changes 

associated with the transition from a monomeric to an oligomeric globin structure. To 

do this I conducted an ancestral state reconstruction using the myoglobin-hemoglobin 

dataset in order to compare the amino acid states at the two ancestral nodes of 

myoglobin and hemoglobin. Specifically, I looked at the sites in the a  p interfaces 

(Chien and Lukin 2001). Second, I reconstructed the ancestral states of the amino
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acids that in both the a  and the p globin chains correspond to a  (3 interfaces. This 

analysis allowed me to determine whether, in order to maintain the cmcial site-site 

interactions at the interfaces, coordinated changes had occurred in the two 

hemoglobin chains. This required a similar sampling of the two datasets in order to 

compare the changes mapped in the two phylogenies. Since sites at the a  (3 interfaces 

are different in the a  and p globin chains, I conducted the ancestral state 

reconstructions separately using the two individual datasets for each gene. Relevant 

replacements are mapped in Figures 3.3 and 3.4. Finally, it was also important to infer 

the ancestral states of the positively selected sites in a  and P globins and in the 

myoglobin-hemoglobin dataset in order to establish whether the changes brought 

about by positive selection have a special relevance in terms of structure and function. 

Relevant replacements in a  and p globins are mapped in Figures 3.3 and 3.4.

Ancestral state reconstructions were based on the maximum likelihood method 

described by Yang et al. (1995). Yang and collaborators developed a statistical 

method for reconstructing the nucleotide and amino acid sequences of extinct 

ancestors, given the phylogeny and sequences of extant species. The authors proposed 

a model-based likelihood approach to reconstructing ancestral sequences, which given 

the data at the site, the conditional probabilities of different reconstructions are 

compared and the reconstruction with the highest conditional probability is the best 

estimate at the site. Also, a measure of the accuracy of the reconstruction is possible 

since the method allows the calculation of the probability that the reconstruction is 

correct. Estimates of parameters in the models such as branch lengths of the tree are 

used to evaluate the possible reconstructions. In the approach of Yang et al. (1995), 

the ancestral amino acids are discrete random variables in the model and are estimated 

by maximizing the posterior probabilities. The assignment of a character state to a
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node is obtained by summing the contribution to the probability of observing the data 

at a given site over all reconstructions at the site that assign the same amino acid to 

the node. Consequently, the best assignment at a node will be the amino acid that has 

the highest posterior probability. Once the ancestral nodes were inferred, I mapped the 

positively selected substitutions onto the respective rooted phylogeny in order to 

establish the direction of the changes.

3.2.5 Looking for correlated mutations in the evolution of a and (3 globins 

In the case of a  and P globin genes I was interested in identifying correlated 

substitutions in the two genes. Correlated changes are suspected when one identifies 

that a change at a given site occurred in the same branch in the two genes under 

comparison. It is thus necessary to have a similar sampling for both paralogs. In order 

to look for such correlated changes between a and p globin I used the program 

Plotcorr developed by Pazos et al. (1997) to investigate the pattern of correlated 

mutations at the interface sites. This program allows the user to compare amino acid 

replacements between two proteins and determine whether the changes occurred in a 

correlated fashion. According to the authors, correlated mutations are those that 

indicate a tendency of positions in proteins to mutate coordinately. Such coordinated 

mutations frequently occur between proteins that interact, such as monomers in a 

dimer. Correlated mutations are calculated according to Gobel et al. (1994). Each 

position in a multiple protein alignment is coded by a distance matrix. This position- 

specific matrix contains the distances between all pairs of sequences at that position. 

The distances are defined according to the scoring matrix of McLachlan (1971). Pazos 

et al. calculate a correlation coefficient for each pair of positions. They propose that it 

is possible to detect the signal for correlated mutations by studying compensatory
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mutations between interacting proteins. Furthermore, the signal detected by their 

method corresponds mainly to networks of positions that have undergone 

compensating mutations during evolution.

3.2.6 Determining the structural and functional relevance of amino acid replacements 

I was interested in testing the structural and functional relevance of residue 

substitutions between the proteins encoded by the a  and (3 globin genes and between 

myoglobin and hemoglobin. Positively selected sites and sites at to the two a  [3 

interfaces were mapped in the ancestral reconstruction analysis, and analyzed for the 

impact of the replacements they underwent across taxa. I classified replacements as 

conservative or adaptive according to the extent of the difference in terms of the 

physicochemical properties of ancestral and derived states. The physicochemical 

properties considered were volume, charge, and reactivity as described by Creighton 

(1993) and according to the classification by polarity and volume proposed by Zhang 

(2000).

3.3 Results

3.3.1 Phylogenetic Analysis

Myoglobin-hemoglobin.- The 35 myoglobin and hemoglobin sequences (Table 3.1) 

analyzed in a single dataset were used for phylogenetic reconstruction. Fig. 3.1 shows 

the rooted ML tree with bootstrap support proportions. Analysis using the correct 

species tree gave similar results. The myoglobin and hemoglobin clades are both 

monophyletic. Within the myoglobin clade, the fish, the rodent, and the artiodactyl 

clades are also monophyletic and agree well with their expected species tree. The 

human sequence appears more closely related with the
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Figure 3.1. ML tree for the myoglobin-hemoglobin dataset, here rooted for clarity. 

Bootstrap support proportions are shown next to nodes. The clade on top right 

corresponds to hemoglobin sequences; the clade at bottom left corresponds to 

myoglobin sequences. The ancestral myoglobin node has 99 % bootstrap support and 

the ancestral hemoglobin node has 100 % bootstrap support.
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Fig. 3.2. ML tree for the a  and p hemoglobin dataset, here rooted for clarity. 

Bootstrap support proportions are shown next to nodes. The clade on top right 

represents a  globin sequences; the clade at bottom left corresponds to p globin 

sequences; the ancestral node to the a  clade has 100% bootstrap support and the 

ancestral 13 clade has 99 % bootstrap support.
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artiodactyls than the rodents, I speculate whether this unusual placement might be due 

to sampling bias as there is only one primate sequence in the dataset. Within the 

hemoglobin dataset, eutherian mammals are monophyletic and the expected species 

tree was recovered. Frogs are monophyletic and are at the base of the hemoglobin 

clade. The placement of the birds is unexpected, as it appears as a sister taxon with the 

monotreme gene. Sampling bias may have caused this result. The kangaroo 

(Didelphis) is placed as sister to the eutherians.

a -p  globins.-1 used the 13 a globin and the 10 p globin sequences listed in Table 3.1 

to estimate the gene tree. I obtained a similar topology with both MP and ML 

phylogenetic reconstruction methods. Fig. 3.2 shows the rooted ML tree for the a -p  

gene tree. Both a and p globin clades are monophyletic. Within the a clade all the 

different vertebrate orders represented are also monophyletic. In the p clade I 

recovered monophyletic vertebrate orders. Some taxa have very short branch lengths 

(e.g., p tarsier). The monophyletic groups within the a clade were highly supported 

by bootstrap analysis with proportions > 90%. In contrast, lower bootstrap proportions 

(> 60%) were obtained for the monophyletic groups in the p clade.

a  globin.- The 13 a globin genes in Table 3.1 were used to infer the phylogenetic 

tree. Both MP and ML methods produced similar topologies. Fig. 3.3 shows the 

rooted ML tree for a  globin. In the inferred gene tree, the different mammalian orders 

are monophyletic. Also, I recovered the expected species tree within monophyletic 

clades except in the primate clade, where the orangutan and gibbon appear as sister 

taxa. The Rhesus monkey has a very short branch length. Bootstrap support of 

monophyletic clades have confidence levels > 60%.
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Fig. 3.3. ML tree for the a  globin sequences. Numbers in black indicate bootstrap support. 

Relevant ancestral state reconstructions in blue are mapped onto branches indicating 

substitutions that occurred in those lineages. The number refers to the site in the protein 

involved; the letter at left is the original amino acid (at the root) for that site and the letter at 

right is the derived amino acid. Sites 111 and 115 are part of the a  1 p 1 interface.
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3.3.2 Analysis of selective pressure across sites

The analysis of selective pressure across sites in the studied genes (i.e. myoglobin, a  

and (3 globin) was conducted using the codeml program (Yang 1997). I implemented 

various codon models and performed LRTs to check for variability of selective 

pressure among sites and, more interestingly, positive selection acting at some sites.

Myoglobin-hemoglobin.- Table 3.2 presents the results of the analysis of selective 

pressure across sites in the myoglobin-hemoglobin alignment. The simplest model MO 

gave an overall estimate of the co ratio of 0.20. The selection model M2 indicated that 

4% of sites are evolving under strong purifying selection (co fixed at 0); that 92% of 

sites are evolving neutrally (co fixed at 1.00); and that 4% of sites are positively 

selected (co = 3.11). Positively selected sites include sites 8, 16, 17,45, 62, 80, and 

126, of which only sites 8 and 126 have a posterior probability > 95%. Also, model 

M3 resulted in 23% of sites to be evolving under strong purifying selection (co =

0.03); 63% of sites are somewhat less conserved (co = 0.17); and 12% of sites are 

evolving under relaxed pressure (co = 0.74) although it did not detect positive 

selection. Model M8 indicated that 7% of sites are evolving under relaxed constraints 

(co = 0.9) again without positive selection. The LRT M0 vs. M3 was significant (28 = 

177.39; df=  2; P-value < 0.0001) indicating there is variable selective pressure among 

sites in the genes; also the LRT M7 vs. M8 was significant (25 = 9.21; df = 2; P-value 

= 0.01) although positive selection was not detected.
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Table 3.2. Parameter estimates and likelihood scores for the myoglobin-hemoglobin dataset
under site-specific models______________________________________________________
Model Parameter Estimates t
MO (one-ratio) 0) = 0.20 -5908.60

Ml (neutral) (cob = 0), / 0 = 0.04, (co, = 1), (/, = 0.96) -6126.87

M2 (selection) (Cflb = 0), /o = 0.04, (CD, = 1), /, = 0.92, Cflfe = 3.11, (f2 = 0.04) -6117.18

M3 (discrete) O b = 0.03 , /o = 0.23 co, = 0.17, /, = 0.63, coj = 0.74, (f2 = 0.12) -5819.91

M7 (beta) p  = 0.95, q = 3.23 -5825.87

M8 beta&co p = 1.39, q = 6.45, /0= 0.93 co, = 0.9, (/, = 0.07) -5821.27

Likelihood ratio test statistics for comparing site-specific models for the myoglobin- 
hemoglobin dataset
LRT 28 df P-value
MO (one-ratio) vs. M3 (discrete) 177.39 2 <0.0001

M7 (beta) vs. M8 (beta&co) 9.21 2 0.010
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Table 3.3. Parameter estimates and likelihood scores for the a -p  dataset under site-specific
models
Model Parameter Estimates I
MO (one-ratio) co = 0.23 -3905.9769

Ml (neutral) (ccb= 0), /o =  0.17, (co, = 1), (/, = 0.83) -3988.2276

M2 selection (co,= 0), /<>= 0.08, (co, = 1), /, = 0.25, 0)2= 0.1, (/2= 0.66) -3797.1442

M3 discrete 0Gb = 0.07 , /o = 0.68 co, = 0.54, /, = 0.24, CQz = 1.22, (f2 = 0.08) -3792.7767

M7 beta p=  0.45, ? = 1.29 -3805.0356

M8 beta&co p  = 2.03, q = 21.03, /<> = 0.75 co, = 0.81, (/, = 0.25) -3793.8039

Likelihood ratio test statistics for comparing site-specific models for the a -p  dataset
LRT 25 df P-value
M0 (one-ratio) vs. M3 (discrete) 226.40 2 <0.0001

M7 (beta) vs. M8 (beta&co) 22.46 2 <0.0001
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a -p  globin dataset.- Table 3.3 presents the results for the detection of positive 

selection in the a - p  globin dataset. Results show that substitutions at most sites are 

very constrained and only a small fraction of sites is subject to positive selection.

Model MO gave an overall estimate of the co ratio of 0.23. The selection model M2 

indicated that 8% of sites are evolving under strong purifying selection (co fixed at 0); 

25% of sites are evolving neutrally (co fixed at 1.00); and 66% of sites are slightly less 

constrained with co = 0.1. Model M3 resulted in 68% of sites to be evolving under 

strong purifying selection (co = 0.07); 24% of sites are less constrained (co = 0.54); and 

8% of sites are under positive selection (co = 1.22). Model M3 found 7 positively 

selected sites but only one with a high posterior probability of >99% (site 7). Model 

M8 identified 25% of sites evolving under weaker selective pressure (co = 0.81). The 

LRT M0 vs. M3 was significant (25 = 226.40; df = 2; P-value < 0.0001); and the LRT 

M7 vs. M8 was also significant (25 = 22.46; df = 2; P-value < 0.0001). These results 

indicate that there is among-site variation in selective constraints and the evidence for 

positive Darwinian selection is weak.

a  globin.- Results for the analysis of selective pressure across sites in the a  globin 

gene are listed in Table 3.4. In the case of the a  globin gene, I observed that the 

majority of sites are evolving under strong purifying selection. The simplest model 

M0, which assigns a single co ratio over all sites in the gene, resulted in a ratio of 0.18. 

Model M2, which has a site class that allows co to take values > 1, showed that 39% of 

sites are evolving neutrally (co fixed at 1.00); 58% of sites are highly conserved (co 

fixed at 0); and 3.4% of sites are positively selected (co = 4.02). Sites 16, 69, 112, 116 

and 132 were found to be under positive selection, however, none had a posterior
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Table 3.4. Parameter estimates and likelihood scores for the a  globin gene under
different site-specific models.___________________________________________
Model Estimates of Parameters I
One-ratio 
Model (MO) coo=0.18 -2102.8461

Site specific
Neutral (Ml) coo=0.00, /o=0.58(coi=1.00), (/i=0.42) -2045.4314

Selection
(M2) (co0=0.00), /o=0.58 (Oi=1.00, /i=0.39 0)2=4.02, ( f 2=0.034) -2043.1761

Discrete 
(M3), k=3 o)0=0.001, / 0=0.48 o)i=0.17, (/i=0.35) 0)2=1-13, ( /2=0.17) -2010.8425

Beta (M7) 
Beta& co 
(M8)

p=0.16, q=0.54

p=0.30 , q=2.96 , / 0=0.85 0)i=1.19, (/i=0.15)

-2013.9719

-2011.5269
Note: sites in bold have posterior probabilities >95%.

Likelihood ratio test statistics for a  globin gene.
LRT 28 df P-value

M0 vs M3 184.007 2 <0.0001

M7 vs M8 4.89 2 0.087
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probability higher than 95% so they may represent type I errors. Model M3 detected 

that 48% of sites are under strong purifying selection (co = 0.001), 35% of sites are 

fairly conserved (co = 0.17) and only 17% of sites are under positive selection (co = 

1.13), albeit only roughly above 1. In this case, I recovered 24 sites under positive 

selection but only 6 have posterior probabilities higher than 95% (sites 22, 68, 78,

111, 115 and 131). Finally, model M8, which can also detect sites under positive 

selection, found that 15% of sites have co values > 1 (21 sites were detected but only 

sites 68, 111 and 115 have high posterior probabilities). The LRT MO vs. M3, which 

is a test of variable selective pressure among sites, was significant (28 = 184.007; d f= 

2; P-value < 0.0001). The LRT M7 vs. M8, which is a test of positive selection, was 

also significant (25 = 4.89; df = 2; P-value = 0.027).

3.3.3 Analysis of selective pressure among lineages

Myoglobin-hemoglobin.- The results of the LRTs constructed to test the action of 

positive selection following the duplication of myoglobin and hemoglobin are listed in 

Table 3.5. In the first case, I tested whether the average selective pressure on the 

myoglobin and hemoglobin lineages was significantly different to their ancestral 

branch. To do so, I constructed a two-ratio test by assigning a different co ratio to the 

ancestral branch and one co ratio to the rest of the branches in the tree. I compared that 

model with the null model where all branches in the tree have a single co ratio. The 

LRT was not significant (28 = 2.40; df = 1; P-value = 0.12). The branches in the 

myoglobin and hemoglobin lineages had an average co = 0.20, indicating that 

purifying selection acted on these genes to maintain their respective function. On the 

other hand, the ancestral branch had co = 2.44, indicating that positive selection was 

driving the functional divergence of myoglobin and hemoglobin immediately
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following the duplication event. This LRT was perhaps too stringent, as the average of 

all but one branch in the tree may have led to an underestimation of the likelihood of 

the alternative model. In order to alleviate this lack of power, I decided to add one 

parameter by adding a third class of sites to the alternative model just described. The 

second LRT constructed compared the null hypothesis (i.e., one co ratio across all the 

branches in the tree) with an alternative hypothesis which assigned a different ratio to 

each paralogous clade and one ratio to the branch separating the myoglobin and 

hemoglobin clades in Fig. 3.1. Note that analysis was done using the unrooted tree. 

The LRT was also not significant although there was a slight improvement in the 

likelihood score (25 = 3.03; df = 2; P-value = 0.22). In this case, the disj/ds ratios 

obtained for the myoglobin and hemoglobin lineages were C0myo = 0.22 and cOhemo = 

0.19, respectively; and the dN/ds ratio for the ancestral branch was GWestrai = 2.40. 

The lack of significance in the two LRTs described above, suggests that immediately 

following the duplication which gave rise to myoglobin and hemoglobin there was not 

an episode of intense positive selection.

a~P globin dataset- The results of the LRTs constructed to test the action of positive 

selection following the duplication of a  and p globin are listed in Table 3.6. In the 

first case, I tested whether the selective pressure acting on the two paralogous lineages 

was significantly different from that of the ancestral branch (before their divergence). 

To do so, I constructed a two-ratio test by assigning each lineage a different co ratio. I 

compared that model with the null model where all branches in the tree have a single 

co ratio. The LRT was significant (25 = 4.53; df = 1; P-value = 0.03). The ancestral
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Table 3.5. Maximum likelihood estimates for the myoglobin-hemoglobin dataset of co 
ratios under branch-specific models and likelihood ratio test statistics when the model is 
compared with the null model MO (one-ratio)_________________________________

Alternative model Parameter estimates 25 df P-value
2-ratios COmyo-hem _0.20, © an cestra l — 2.44 2.40 1 0.12

3-ratios COmyo — 0.22, COhem ~ 0.19, © an c e stra l — 2.40 3.03 2 0.22

Table 3.6. Maximum likelihood estimates for the a - p  globin dataset of co ratios under 
branch-specific models and likelihood ratio test statistics when the model is compared 
with the null model MO (one-ratio)_________________________________________

Alternative model Parameter estimates 25 df P-value
2-ratios ©a-P —0.22 , ©ancestral =  0 .52 4 .53 1 0.03

3-ratios ©oc 0 .18 , ©p 0 .27 , ©ancestral 0 .53 9 .59 2 0.008
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branch had an co = 0.52, indicating that after duplication, a slightly increase in 

nonsynonymous substitutions occurred although purifying selection continued to act 

on the genes. On the other hand, the a  and (3 lineages evolved with an average co = 

0.22, indicating higher constraints once the two genes had diverged in function. The 

second LRT constructed compared the null hypothesis (i.e., one co ratio across all the 

branches in the tree) with an alternative hypothesis which assigned a different ratio to 

each paralogous lineage and one ratio to the branch that occurs between the a  and p 

clades in Fig. 3.2. Note that the analysis was done using the unrooted tree. The LRT 

was significant (26 = 9.59; df = 2; P-value = 0.008). The dN/ds ratios obtained for the 

a  globin and p globin lineages were co« = 0.18 and cop = 0.27, respectively; and the 

d^ds ratio for the ancestral branch was coancestra] = 0.53. The results suggest that 

immediately following the duplication which gave rise to a  and p globin there was a 

slight increase in nonsynonymous substitutions followed by purifying selection in the 

two differentiated hemoglobin lineages.

3.3.4 Ancestral state reconstruction

I conducted an ancestral state reconstruction for myoglobin-hemoglobin and the 

individual a  and p globin datasets in order to establish the direction of the amino acid 

replacements at the interfaces. This was done in order to determine whether changes 

at those sites had any relevance in terms of their dimerization potential (i.e., changes 

that create appropriate surfaces for interfaces such as exposed hydrophilic residues 

that promote H-bonding and salt bridges) and to investigate the possibility of 

correlated changes at aP  interfaces between the two hemoglobin subunits. I also 

reconstructed the ancestral states at the positively selected sites in each chain, as these 

replacements could be related with important changes in terms of structure and
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function in the evolution of the different globin chains. The method developed by 

Yang et al. (1995) reconstructs the pathways of amino acid substitutions for each site 

in the sequences. The branch lengths of the species trees were estimated by using the 

JTT model of amino acid substitutions (Jones et al. 1992). All the generated 

reconstructions were evaluated by assigning all observed amino acids at a given site to 

each interior node. Only the reconstructions with posterior probabilities within the 

range of 0.05 to 1.0 are shown in tables.

Myoglobin-hemoglobin.-1 wanted to infer the amino acid state at each of the two 

ancestral nodes of myoglobin and hemoglobin in order to compare the 

physicochemical characteristics of the amino acids present at the a  p interfaces. There 

are two interfaces in hemoglobin, theal p 1 interface occurs between intradimeric 

monomers, and the a l  p2 interface occurs between interdimeric monomers (Chien and 

Lukin 2001). Table 3.7 shows the amino acid state at the ancestral node of myoglobin 

and hemoglobin (human sequence used as reference) and the changes that have 

occurred at the a  1 p 1 and a  1 p2 interfaces. In the case of the former interface, of the 

24 sites that are part of that interface, 16 sites differ between the ancestral node of 

hemoglobin and the ancestral node of myoglobin. Some of those replacements 

occurred only once in the phylogeny and that is exactly along the branch that 

separates the two ancestral nodes. Roughly 50% of the changes are radical (i.e. imply 

an important change in physicochemical properties). At the a l  p2 interface, out of the 

17 sites that conform it, 13 sites had changed between the myoglobin and the 

hemoglobin ancestral nodes. Again most of the replacements were radical as is shown 

in the next section.
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Table 3.7. Replacements at Interface Sites in the Myoglobin-Hemoglobin Dataset
Interface Site Myoglobin Hemoglobin Replacements across the 

phylogeny
a l p l

26 G E GEED
30 L R LR
33 L V LV
34 F V FY
35 K Y KTKY
51 E P AG AG AP VS EA AG AP AP 

AV
55 K M SA KG KM ML MS

101 Y E EQYNYE
108 V N AC VIVA VIV ID G  AV VN ND 

ND
109 I V VIILIV VM VI
111 Q V QE Q H K H Q K Q V V I
112 V I i v v i r v  v c i v
115 s A SAAG SK SE SA AS AG
116 K R HE RE KR KR RH RA RA
119 G G GS LM ST GL GS
120 D K K N K H K N ST DKKS
125 A Q AQ
128 A A AD AV AG
131 G Q G A TK TQ G TG Q  QE

a lp 2
34 F V FV
35 K Y K T K T T K K Y
37 E W EDEDEW
39 L Q QT LQ QL
40 E R ED EK ER
43 D E ED ED EG DP DE ED EA ES
93 H K K Q D EH K K D
98 P V PA PV
99 V D VIVD

100 K P K N K IK P
101 Y E EQYNYE
102 L N LFLN
105 I L LR LM IL LR

Note: the amino acid changes shown in the column “Replacements” were obtained 
from the ancestral state reconstruction (Yang et al. 1995). Each pair of letters
represents a change at the different sites in the two a p  interfaces, from one amino acid 
to the other. Changes occurred in different lineages across the myoglobin-hemoglobin 
phylogeny. Columns “Myoglobin” and “Hemoglobin” show the amino acids present 
in their respective ancestral nodes using human sequences as reference. In bold are the 
replacements classified as radical according to Zhang (2000). Normal fonts 
correspond to conservative replacements.
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a  cindp globin genes.-1 looked at the sites that are part of the a  (3 interfaces and 

mapped the changes that had occurred between the ancestral nodes of a  and p globin 

genes in order to detect coordinated changes at those sites in the two chains. Table 3.8 

shows the replacements that have occurred at the interface sites. There are remarkably 

different patterns of replacement between the two interfaces. Interface a l  p 1 has 

experienced many more substitutions than interface a  1 p2, which has changes at only 

two sites. Also, at the a l  p 1 interface replacements are mainly radical while the 

opposite is true for the a l  p2 interface. This result would indicate that residues at the 

a  1 p2 interface are considerably more constrained than at the a  1 p 1 interface, which is 

in agreement with the structural requirements in the a  1 p2 interface for sliding 

properly. Presumably, the role played by the sliding surface is more sensitive to amino 

acid changes than the packing surface a  1 p 1.

The program Plotcorr was used to determine correlated mutations between 

sites at the a  p interfaces in the a  and p globin genes. The program did not find 

correlated mutations between sites at the interfaces but it did find a few possible 

coevolving pairs in the exterior part of the protein (data not shown).

Positively selected sites in a  globin.- The positively selected sites found in a  globin 

with models M2, M3 and M8 are: 22, 68,78, 111,115 and 131.1 obtained the 

marginal and joint likelihood reconstructions of ancestral amino acids. Table 3.9 

shows the observed and inferred data for each of the positively selected sites. The 

results in the column labeled “Data” correspond to the observed amino acids at a 

given site in each taxon comprised in the dataset. The column labeled
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Table 3.8. Replacements at aft Interface Sites in the (3 and the a  Globin Genes
Dataset Site State at root Replacements across the phylogeny
13- a l p l
globin

26 E EQ
51 A AP PA AP AS AP AS PA AP
55 M ML

101 E EQ
109 V VMVMVE
111 V VL
112 I VI CV VI IT
115 A AG AS
116 H HETS TSIV H T TK K IH R H R
120 K KN KH RG KN SG KR KN NS
123 T TSTNTS
124 P PA
125 E QP EN EV ED DE QA AE ED EQ AE
128 A AS

a- a l p l
globin

20 A AGGA
34 A Al AL

103 H HG
104 C ST SA CS
111 A SV SN AC SC SA
113 L LH L H L H H L
115 A AG NS NS AS AN

13- a l  P2
globin

43 E ED ED
101 E EQ

( X - a i p 2
globin

39 T TS
101 L LFLV

Note: amino acid replacements were obtained from the ancestral state reconstruction 
(Yang et al. 1995) for the sites that are part of the a  p interfaces in the a  and p globin 
genes. In relevant cases, replacements were mapped to the branches in the trees where 
changes occurred (see Figures 3.3 and 3.4). The columns “a ” and “p ” show the amino 
acids present at their respective ancestral node using human sequences as reference. In 
bold are the replacements classified as radical and normal fonts correspond to 
conservative replacements following the classification by Zhang (2000).
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Table 3. 9. Reconstruction of the ancestral states of the positively selected amino acids in a  and ft globins by the likelihood method
Site Data Reconstructions and their posterior probabilities 

(in parenthesis)

# changes

a  globin

2 2 EEEDAAEEDEDDE EEEEEEEAEEED ( 0 . 9 9 5 0 ) 4

6 8 SNKKKKLKNLNNN S S KKKKKKNNNN (0  . 3 9 8 6 ) 5

7 8 GGGGGGGGSHNNN GGGGGGGGHHNN ( 0 . 5 3 1 0 ) 3

1 1 1 SSSSC C V N C A A A A S S S S S S S C A A A A (0  . 9 8 4 7 ) 5

1 1 5 AG SNNSNSAAAAA AAAANNNNAAAA (0  . 9 6 9 2 ) 5

1 3 1 S S N S N N T N S S S S S S S S S S S S N S S S S ( 0 . 4 9 8 1 ) 4

(3 globin

5 PPAAADSPPPAAAAAAPAAAAEAAA PPPPAAAAAAAAAAAAAAAAAAPP (0  . 9 8 2 8 ) 5

9 SNAEAASATTASAASACTAAAAAAA SSSSAAAAAAAAAAAAAAAAAAST (0  . 2 6 1 6 ) 9

1 2 TCTLTSTANNMLTTTTSNTTTTTTL TTTTTTTTTTTLM TTTTTTTTTTN ( 0 . 0 9 0 7 ) 1 0

1 3 AASGGCAAAASSSSGG KGSSGSSSS AAAAS S S S S S S S S S G S S S S S S  SAA ( 0 . 5 3 1 4 ) 8
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5 2 D S S D D S N A D D S S S S S S S S S S S S S D D D D S S S S S S S S S S S S S S S S S D D D D D ( 0 . 9 8 4 6 ) 4

6 9 GS SQDTAGGGTTTTTTTTSTTTTDD GGSS S S TTTTTTTTTTTTTDDDGG (0  . 4 8 8 5 ) 6

7 6 ANHKKN SAAAKKKKKKKKKKKKKKK AAKKKKKKKKKKKKKKKKKKKKAA ( 0 . 2 6 0 4 ) 5

8 7 TKQKQS KQQQKKKKKKKKHHQQHS S TTKKKKKKKKKKKKKHHHQKKSQQ ( 0 . 1 2 8 7 ) 8

1 1 6 HHHRHHHNNNHHHHHHHHHYLHYRR HHHHHHHTTTTTTTTKKKIRRRRR ( 0 . 0 8 1 4 ) 9

Note: this table shows the results obtained for the joint ancestral reconstruction of the individual a  and P globin clusters. The results in the 
column labeled “Data” correspond to the observed amino acids at a given site in each taxon comprised in the respective alignment. The column 
labeled “Reconstruction” presents the inferred ancestral amino acid at that site in each of the taxa. The posterior probability of the reconstructed 
data is in parenthesis. The number of changes refers to the substitutions that occurred along the different lineages in the tree that underwent an 
amino acid replacement.
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“Reconstruction” presents the inferred ancestral amino acid at each internal node of 

the phylogeny, with the posterior probability of the reconstructed data in parenthesis. 

The number of changes refers to the substitutions that occurred along the different 

lineages in the tree that underwent an amino acid replacement. All the reconstructions 

have their posterior probability in parenthesis. The highest posterior probability was 

assigned to the reconstruction of site 22 and the lowest occurred for site 68. The 

number of changes indicates the total number of amino acid replacements that 

occurred along different lineages in the tree. Some sites underwent more changes than 

others. In the case of a  globin the highest number of replacements was five at site 68 

and the lowest number was three at site 78.1 mapped the replacements in the rooted 

phylogenetic tree for the a  globin gene in order to determine the direction of the 

changes. Fig 3.3 shows the relevant replacements mapped onto the tree.

Positively selected sites in p  globin.- For this analysis I used the p globin dataset 

included in Chapter II (Fig. 2.3). The positively selected sites identified in the p 

globin dataset with models M2, M3 and M8 are: 5, 9, 12, 13, 52, 69, 76, 87 and 116, 

These sites were reconstructed by marginal and joint likelihood reconstructions. Table 

3.9 shows the results obtained for the joint ancestral reconstruction of p globin. The 

number of replacements varies from 10 in site 12 to 4 in site 52. The direction of the 

changes was established by mapping the replacements in the rooted phylogenetic tree 

for the p globin gene. Fig 3.4 shows the relevant replacements mapped onto the tree.
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Fig. 3. 4. ML tree for the p globin cluster. Black numbers indicate bootstrap proportions. Relevant ancestral 

state reconstructions in blue are mapped onto branches indicating substitutions that occurred in those lineages. 

The number refers to the site in the protein involved; the letter at left is the ancestral amino acid at that site and 

the letter at right is the derived amino acid. Site 67 is located in the vicinity of the heme pocket and site 116 is 

part of the a  1 p 1 interface.
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In both the a  and (3 globin genes one interesting case was noted, that of sites 

a l l l , a l l 5  and (3116. These sites appear in the respective reconstructions for a  and (3 

globins to have changed at the same branch in the artiodactyl lineage. Moreover, these 

sites all interact at the a  1 (31 interface in all three conformations of hemoglobin (Fermi 

et al. 1984, Shaanan 1983, Silva et al. 1992). This result may indicate a case of 

coevolution of interacting residues in different monomers.

Since all the positively selected sites in myoglobin-hemoglobin are located at 

the exterior of the protein chains and thus may not be very relevant in terms of the 

oligomerization potential or coordinated activity between monomers, I did not map 

the reconstructions in the phylogeny and only analyzed the physicochemical aspect of 

the replacements in the following section.

3.3.5 The structural and functional relevance of amino acid replacements

Myoglobin-hemoglobin.- In Table 3.10 we can see the comparison of the residues at 

the interface sites in the ancestral node of the myoglobin and hemoglobin clades. It 

can be seen that most amino acid replacements between the two ancestral nodes are 

radical. At the a  1 (31 interface, the replacements involved changes in physicochemical 

properties, such that in myoglobin most amino acids are either nonpolar or neutral and 

in hemoglobin they are polar, thus contributing to the formation of polar patches for 

building interfaces. Most replacements at the a  1 p 1 interface imply a change in 

polarity. In the case of the a  1 p2 interface, most changes imply differences in the size 

of residues and to a lesser degree in their polarity or charge. From table 3.7 it is clear 

that sites at the different interfaces differ also in the number of radical replacements
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they have undergone. At the a l  P 1 interface, 40 replacements out of 87 are radical, as 

they change important physicochemical properties such as volume and polarity. On 

the other hand, at the a l  p2 interface, 28 out of 42 replacements are radical. Note that 

not all sites changed with a similar pattern. For instance, sites 35 and 100 experienced 

only radical replacements, whereas site 43 had more conservative changes. At both 

interfaces some sites experienced few radical changes relative to the total number of 

changes they underwent (Table 3.7). For example, site 109 had replacements that are 

mostly conservative, that is, it retained essentially unchanged physicochemical 

properties. On the other hand some sites have experienced replacements that are, in 

most cases if not always, radical as in the case of sites 120 or 35. The latter sites 

probably correspond to the 7% of sites identified by model M8 to be under relaxed 

selective pressure. A rough measure like the previous count fails to capture two 

important features of substitutions, which are when and where did changes occur. 

Mapping the replacements onto the estimated tree shows that in most cases 

replacements are evenly distributed across the phylogeny. This suggests no episodes 

of increased substitution, the only exception being at the ancestral branch of both 

myoglobin and hemoglobin. There, the number of changes is considerably elevated 

with respect to the rest of the branches in the tree. For the two a p  interfaces, the 

ancestral branch registered the highest number of replacements anywhere in the tree. 

This indicates that following their divergence a large number of amino acid changing 

substitutions occurred at the sites that compose the interfaces.
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Table 3.10. Comparison of amino acid changes at the a(3 interfaces in Hemoglobin 
and Myoglobin_____________________________________________________
Site Myoglobin Hemoglobin Relevance
a l  (31
26 G (1.00) E (0.99) radical
30 L (1.00 R (1.00) radical
33 L (1.00) V ( 1 .0 0 ) conservative
34 F (1.00) V(1.00) radical
35 K (1 00) Y (1.00) radical
51 E (1.00) P(1.00) radical
55 K (1.00) M (0.99) radical
1 0 1 Y (1.00) E (1.00) radical
108 C (0.48) N (0.74) radical
109 1 ( 1 .0 0 ) V (0.98) conservative
1 1 1 Q (l.oo) V(1.00) radical
1 1 2 V(1.00) I (0.97) conservative
115 S (0.99) A (1.00) conservative
116 K (1.00) R (0.78) conservative
119 G (1.00) G (1.00) conservative
1 2 0 D (1.00) K (1.00) radical
125 A (1.00) Q (1 .0 0 ) radical
128 A (1.00) A (1.00) conservative
131 G (1.00) Q (0.99) radical

a l  (32
34 F (1.00) V(1.00) radical
35 K (LOO) Y (1.00) radical
37 E (1.00) W(1.00) radical
39 L (1.00) Q (0.98) radical
40 • E (1.00) R(1.00) radical
43 D (1.00) E (0.84) conservative
93 H (1.00) K (0.99) conservative
98 P(1.00) V(1.00) radical
99 V ( 1 .0 0 ) D (1.00) radical
1 0 0 K (1.00) P(1.00) radical
1 0 1 Y (1.00) E (1.00) radical
1 0 2 L (1.00) N (1.00) radical
105 1 (1 .0 0 ) L (0.70) conservative
Note: this table shows the differences in the amino acids at sites in the a  (3 interfaces 
between myoglobin and hemoglobin. Columns “Myoglobin” and “Hemoglobin” show 
the different amino acids present in the ancestral nodes of myoglobin and hemoglobin 
clades using human sequences as reference. Posterior probabilities are shown in 
parenthesis. Classification of differences as radical or conservative was done 
following Zhang (2000).
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Interface sites in a  and P globins.- comparing the amino acids at the two a p  

interfaces in both a  and p globin genes, I found that there have been more 

replacements at the a  1 p 1 interface than at the a  1 p2  interface, which presumably 

indicates that sites at the latter are more constrained than at the former. Also, 

replacements at the a l  P2  interface were almost exclusively conservative, whereas 

both radical and conservative changes occurred at the a  1P 1 interface. Table 3.8 

shows the comparison of replacements at a  1 P 1 interface and at the a  1 p2  interface. 

Replacements of sites at the a  1 p 1 in the p globin chain were conservative in the 

majority of cases (35/53). For example, site 51 underwent 8  changes, all of them 

conservative. Site 120 is exceptional in that most of the changes there were radical.

On the contrary, replacements of sites at the a  1 p 1 interface in the a  chain were 

radical in the majority of cases (15/22). Sites 34, 103, and 113 experienced only 

radical changes. At the a l  P2 interface, there were very few changes in both a  and P 

chains and they were, with only one exception, conservative.

Positively selected sites in myoglobin and a  and p  hemoglobins.- Table 3.11 shows 

the results for the replacement analysis of the positively selected sites in all three 

globin genes. Replacements of the positively selected sites in p globin were in most 

cases conservative (38/70). In contrast, most replacements were radical in both a  

globin (24/30) and between myoglobin and hemoglobin (51/83) although the latter 

occurred in places that presumably do not greatly affect structure and function. As a 

final note, t h e a l l l , a l l 5  and p i 16 residues that I hypothesize to have coevolved in 

the artiodactyl lineage evolved under positive selection and experienced radical 

changes, albeit in the case of P116, only 4 out of 9 changes were radical.
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Table 3.11. Replacement Analysis of Positively Selected Sites in the p and a  Globin 
Genes and in the Myoglobin-Hemoglobin Datasets___________________________
Dataset Site State at root Replacements across the phylogeny
B-globin

3 P PD PS PA PA PA AP AE AV
7 A AS SA AT AN AT AS AC AS

1 0 T TC TLTSTN
11 A AE AN AS AS AS AS AS AC AT
50 S SA SD SN AD
67 N ND NQ NT NS SG SN SA
74 N NK NH NA NS KN
85 K KQ KN KQ KT NS NH

1 1 2 T TN TL LM MS TS TCTATNTLLT
116 H HT HE HR TS HR TS TK K IIV

a-globin
2 2 E ED ED ED DA EADE
6 8 N NK N KKL NS NL
78 G GN GS NH NG

1 1 1 C CS CS CN CV CA AC
115 A AN AN AG NS NS
131 S SN SN NS NT

myoglobin-
hemoglobin

8 V VIVA CH AS AN AE AT AN VC CF FC VA
AS AQ mostly radical

16 Y VIYF YH EK ED ED QHVL VYYHYQQE
17 A AP TN TD AT VL VT AT AV VC VD
45 D DA SD SA SN DG SA DE DS DT DS
62 A SG SN TQ TD TN AK AT TS SA TS SG
80 L LM LM LM KT KQ KQ HS GQ LKKH KQ 

KG
126 L VT VA VI NT NT ST AD LV V IV ILH  HN 

NS HA
Note: amino acid replacements were obtained from the ancestral state reconstruction 
for the positively selected sites in each dataset. In bold are the replacements classified 
as radical according to Zhang (2000). Normal fonts correspond to conservative 
replacements.
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4.4 Discussion

Amino acid changes drive the evolution of proteins. Replacements in amino acid 

chains can be brought about by drift or by the action of positive selection; therefore, 

testing the evolutionary forces behind protein evolution is essential in order to 

distinguish between plausible scenarios. I investigated the role of positive selection in 

the evolution of myoglobin and the a  and (3 globin genes and asked whether 

positively selected sites were associated with important changes in terms of structure 

and function. Results show that changes between myoglobin and hemoglobin are 

mostly neutral, with a small fraction of sites being slightly less constrained than the 

average. The positively selected sites detected by model M2 are mostly located at the 

exterior of the protein and even though the changes are radical in terms of their 

physicochemical characteristics, these are not expected to introduce important 

differences in terms of structure and function, as they are not associated with crucial 

sites at interfaces or heme pocket. Furthermore, the evidence for positive selection 

was not strong, as only model M2 found a few positively selected sites. One 

possibility is that the signal for positive selection driving die changes between 

myoglobin and hemoglobin is diluted when averaging across all the branches in the 

phylogeny. If this were the case one would expect to find greater co ratios at a few 

lineages rather than across the whole tree. In the case of the a  and p globin genes, 

results show that following their divergence, each gene was subject to different 

selective constraints, a  globin being in general more constrained than p globin. Also, 

while most of the changes brought about by positive selection in P globin are 

conservative in terms of structure and function, the opposite is true for a  globin,
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where changes in sites at the interfaces may have contributed to the evolution of the 

interaction between hemoglobin chains.

To find out whether positive selection acted at a specific time during the 

divergence of myoglobin from hemoglobin and of a  globin from p globin, I tested for 

positive selection among branches in the phylogeny. This analysis was necessary as 

results of positive selection across sites indicated that averaging across branches could 

result in the lack of power of the tests. It was interesting to find different results for 

the myoglobin-hemoglobin and the a - p  globin datasets. In the first case, I found an 

increase in nonsynonymous substitutions along the ancestral branch of both 

myoglobin and hemoglobin although the LRTs performed were not significant. Also, 

the myoglobin lineage was on average evolving under less constraint than the 

hemoglobin lineage. Positive selection appears to have driven some of the changes 

between myoglobin and hemoglobin at the early stages of their divergence. Once the 

two genes diverged, though, the role of positive selection seems to have been less 

important in the further evolution of these two lineages, as we know from the analysis 

of the evolution of the vertebrate p globin gene cluster (Chapter II). In contrast, the 

analysis of the a -P  globin dataset yielded no evidence for positive selection acting in 

the ancestral branch of a  and p globin genes. Prior to their divergence, the ancestor of 

both a  and p globins had only a slightly higher rate of nonsynonymous substitutions 

which may account for the functional differences between the two genes and once the 

a  and P globin genes had diverged, purifying selection acted to maintain their 

respective function. The contrast with the divergence of myoglobin and hemoglobin is 

interesting. It is not surprising to find evidence for positive selection in the divergence 

of myoglobin and hemoglobin, as the changes involved are more dramatic, both in 

terms of structure and function, than those involved between a  and P globin. In the
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latter case, fewer changes mediate the differences in structure and function and these 

could appear without the episodic action of positive selection. I do not rule out the 

possibility that positive selection was involved in the divergence of a  and p globin, 

what I am suggesting is that it could have acted at only a few sites at particular time 

points during this process. Analysis with site-branch models may help to find out 

whether this was indeed the case. On the other hand, for myoglobin and hemoglobin, 

it appears that prior to their divergence important changes occurred in a relatively 

short period of time that promoted the differences in structure and function between 

these duplicated genes and may explain the oligomerization potential realized in 

hemoglobin. This is consistent with previous findings by Goodman (1981).

The possibility that oligomeric proteins, such as hemoglobin, arose from a 

monomeric ancestor is intriguing and deserves more attention than it has been given. 

To investigate this hypothesis, it is necessary to compare sets of sequences that 

represent at least one monomer and one oligomer that are closely related A difficulty 

immediately arises because we can compare and analyze only present-day sequences, 

whereas the ancestral monomer and the first oligomers veiy likely evolved long 

before any of the data available came to being. Since there are few or no alternatives 

at all, we have to take the risk of comparing extant sequences and try to infer past 

events. I thus decided to investigate the oligomerization process in globins by 

comparing monomeric myoglobin and oligomeric hemoglobin. Sites involved in the 

creation of interfaces are of special interest when testing the oligomerization of 

proteins (D’Alessio 1999). Intersubunit interfaces are characterized by a significant 

presence of polar and charged residues, which are fundamental in establishing 

hydrogen bonds and salt bridges among protein subunits (Creighton 1993). In order to 

determine whether amino acid replacements between myoglobin and hemoglobin
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evidence a tendency to change from non-polar or neutral residues at sites 

corresponding to interfaces, I reconstructed the ancestral states of such residues and 

established the direction and relevance of changes. Results show that most of the 

amino acid changes between myoglobin and hemoglobin at the interfaces are radical, 

according to Zhang’s classification by polarity and volume, which he found to be the 

most informative criteria to classify replacements (2000). Moreover, when comparing 

the states of ancestral myoglobin and hemoglobin nodes, it is evident that residues in 

myoglobin at the sites corresponding to would-be interfaces are more often non-polar 

and neutral, whereas interface sites in hemoglobin show a marked tendency to be 

polar or charged. These changes likely contributed to the creation of the necessary 

patches in the globin monomer that later served as interfaces. Interestingly, 

oligomerization was a requisite for the sophistication in function that we observe in 

hemoglobin relative to myoglobin.

Once interfaces evolved in oligomeric globins it is expected that in order to 

maintain the crucial site-site interactions occurring between subunits, amino acid 

replacements in one monomer would be followed by compensatory mutations in the 

other. This coevolution hypothesis can be tested by analyzing amino acid 

replacements at sites in the a  P interfaces. In this case also I reconstructed the 

ancestral states in the two protein chains and determined the direction and relevance 

of replacements. Results indicate that most of the replacements at the interfaces are 

conservative, as expected given the importance of those residues in establishing the 

contact between subunits. There are, however, a few sites at the interfaces that were 

detected to be under positive selection. One remarkable example is given by sites 111 

and 115 in a  globin, and site 116 in p globin which are positively selected and 

interact in all three hemoglobin conformations (R, T, and T2). In order to establish
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whether replacements at those sites have compensated each other I used the program 

Plotcorr, which detects compensatory mutations between pairs of residues in an 

alignment. Plotcorr did not find evidence for such correlated mutations between 

interface residues in a  and p globins; however, in a previous paper, Pazos et al.

(1997) did find support for correlated mutations at the a l  p2 interface so it might be 

that the signal for correlated replacements for these sites is not strong enough to be 

detected or because even though sites 1 1 1 a , 115a, and site 116p are part of the a l  p 1 

interface they do not make actual physical contact and therefore no compensatory 

mutations would be needed. Crystallographic data is needed to clarify this possibility.

At any rate, amino acid replacements between the a  and P subunits seem to be 

restricted to conservative changes in physicochemical properties, particularly at 

interface a l p 2 .

The problems of investigating protein structure evolution from sequence data 

have to do with the fact that while three dimensional structure is highly conserved, 

sequences can diverge widely. This is true for globins, specially in the comparison of 

long diverged molecules, such as myoglobin and hemoglobin. Although the level of 

divergence observed among sequences was relatively high (around 40%), it was still 

possible to analyze their sequences using codon models. Alignments were relatively 

easy to obtain although several gaps had to be added in order to have a good match.

The level of sequence divergence among the different globin genes studied in this 

chapter probably affected the results by obscuring the evidence for positive selection, 

which may have acted for short intervals of time at particular lineages. Also, given the 

long divergence times between a  and p globin genes, I expect it will be rather 

difficult to find evidence for correlated mutations at a particular set of sites. Interface 

sites differ in a  and p globins, therefore, ancestral state reconstruction had to be
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obtained on their individual datasets, thus complicating the analysis of convergent 

evolution in artiodactyls, as sampling was not strictly identical. In the case of 

myoglobin, the reconstruction of ancestral sites and replacement analysis were done 

under the assumption that interface sites corresponded to those in hemoglobin, an 

assumption that may be unwarranted. Furthermore, the quality of the alignment 

greatly influences the results. In this case I consider the alignment is not a problem 

(Fig. 3.5). However contentious, I think the methodological approach exposed in this 

chapter is useful in detecting general patterns of selective pressure variation among 

sites and lineages and how these are related to relevant changes in the function and 

structure of proteins.
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Chapter IV

Dating gene duplications and species 

divergences in the vertebrate p globin gene

family
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4.1 Motivation

Since Zuckerkandl and Pauling proposed the concept of a molecular clock (1962, 

1965), globins have been cited as examples of genes evolving with an approximately 

constant rate through time (Li 1997). Estimations of gene divergence dates based on 

molecular data often assume the molecular clock. Under this hypothesis, it is expected 

that substitutions accumulate at uniform rates along the branches in a phylogeny 

(Kimura 1983). However, this expectation is often violated. Also, divergence time 

estimation is known to be highly sensitive to assumptions about the evolutionary rate 

(Takezaki, Rzhetsky and Nei 1995, Rambaut and Bromham 1998, Yoder and Yang 

2000, Aris-Brosou and Yang 2003).

New approaches based on maximum likelihood and Bayesian methods have 

been developed which allow the evolutionary rate to change among lineages when 

divergence times are estimated (Sanderson 1997; Rambaut & Bromham 1998,

Thome, Kishino and Painter 1998; Huelsenbeck, Larget and Swofford 2000; Yoder 

and Yang 2000; Thome and Kishino 2002). Other interesting features include the 

possibility of using multiple calibration constraints based on fossil data (Rambaut & 

Bromham 1998, Thome, Kishino and Painter 1998; Thome and Kishino 2002), and 

using multiple genes or gene partitions. These approaches make a more efficient use 

of the information contained in sequences and account for differences in evolutionary 

processes among lineages.

In this chapter, I used recently developed methods based on maximum 

likelihood (ML) and Bayesian analysis to estimate dates for gene duplication and gene 

conversion events in the vertebrate p globin gene family. I compared dates inferred
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assuming the molecular clock with dates obtained without this constraint. Also, I 

tested different models that allow variable rates among phylogenetic branches to 

investigate evolutionary rate variation among genes and vertebrate species.

4.2 Theory and Methods

4.2.1 Sequence data and phylogenetic analysis

62 vertebrate p globin nucleotide sequences were retrieved from GenBank. Genes 

from amphibians, birds and mammals were included, with fish used as outgroups. The 

species names and GenBank accession numbers for the ingroup are identified in the 

tree o f Figure 4.1. The outgroup fish sequences include: Zebrafish pA l (U50382), 

pA2 (U50379) and pEl (AF082662); carp p globin (AB004740); salmon p globin 

(Y08923) and Oryzias e globin (AB080118). Alignment was conducted using Clustal 

X (Thompson et al. 1994), followed by minor manual adjustments. Gaps were 

removed.

Maximum likelihood and Bayesian methods were used to estimate a 

phylogeny for the vertebrate p globin sequences. PAUP* (Swofford 2000) was used 

to conduct the ML analysis, with the model of nucleotide substitution being HKY85. 

A minimum evolution tree was used as a starting topology from which model 

parameters were optimised. Support for the branches was assessed with a bootstrap 

analysis with 100 pseudoreplicates. For the Bayesian analysis I used MrBayes 

(Huelsenbeck and Ronquist 2001). Substitution rates were assumed to be gamma 

distributed and base frequencies were estimated from the data. The Markov Chain 

Mote Carlo (MCMC) algorithm was run with three chains for ten million generations 

and sampled every 100 generations. I repeated this process three times to check
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Fig. 4.1. Maximum likelihood phylogeny of the rooted ingroup tree for the p globin 

gene family. Species names and GenBank accession numbers are listed next to each 

sequence. Circles represent calibration nodes. Nodes of interest are numbered 

according to Jeff Thome’s multidivtime node assignment. The grey bar indicates the 

proposed time for the eutherian mammal radiation.

128



for convergence. Stationarity was reached after sampling 2000 trees; trees sampled 

before stationarity were excluded from the analysis.

4.2.2 Divergence date estimation

Divergence date estimation based on molecular analysis relies on fossil data used as 

calibration points. In this study, calibration points are available for 15 ancestral nodes 

distributed across the phylogeny (Fig. 4.1) and are listed in Table 4.1. The calibration 

dates used in this chapter come from fossil data of the relevant species divergences: 

human and gorilla (Shoshani et al. 1996), monkeys and apes (Shoshani et al. 1996), 

mice and rats (Jacobs and Downs 1994), birds and mammals (Benton 1990, 1999), 

chickens and ducks (Cracraft 2001), bony fishes and amphibians (Bromham et al. 

1998); the oldest monotremes and marsupials (Luo et al. 2001; Cifelli 2000), the 

eutherian radiation (Goodman et al. 1987b), the basal radiation of primates (Gingerich 

and Uhren 1994; Martin 1993; Tavare et al. 2002), and the Cetartiodactyla radiation 

(Bowen et al. 2002).

Likelihood Models o f  Global and Local Clocks-1 analysed the three codon positions 

separately, and all codon positions simultaneously either with or without accounting 

for their differences in the substitution process (Yang and Yoder 2003). I used the ML 

tree for date estimation and estimated divergence dates under both the global-clock 

(i.e. enforcing a uniform rate across the phylogeny) and the local-clock (i.e. allowing 

for rate variation among sets of branches in the tree) models. Recently developed 

methods permit the use of multiple calibration points allowing the use o f different 

fossil dates distributed across the phylogeny (Yang and Yoder 2003). The likelihood
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implementation allows only fixed node ages, whereas the Bayesian approach allows a 

range to be used. In order to have comparable calibration points, in the likelihood 

analysis I used the mid-value of the range used with the Bayesian method. Parameters 

in the models include the substitution rate (p) and the ages o f nodes which are not 

calibration points. The nucleotide substitution models were JC (Jukes and Cantor 

1969) and F84G (Felsenstein 2000; Yang 1994). The baseml program in the PAML 

package was used (Yang 1997; Yoder and Yang 2000; Yang and Yoder 2003).

Likelihood date estimation assuming different rate classes

The local-clock model allows rate variation among different sets o f branches. I tested 

whether the paralogous genes in the p globin family were evolving under significantly 

different rates, to do so, four rates were specified for each gene clade in the phylogeny 

(i.e., p, y, £, and all other branches). I conducted a likelihood ratio test (LRT) to 

compare the local clock model (i.e., each gene clade was allowed to have a different 

rate) with the global clock model (i.e., all gene clades had the same rate) (Felsenstein 

1981, Yoder and Yang 2000).

Bayes Method fo r  Divergence Date Estimation-1 used a Bayes MCMC approach as 

implemented in a new version o f the program package written by Jeff Thome (Thome 

and Kishino 2002; see ftp://abacus.gene.ucl.ac.uk/pub/T3/). The program estbranches 

was used to produce the ML estimates of branch lengths for the rooted ingroup tree
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Table 4.1. Calibration dates for ancestral nodes in Figure 4.1 (in millions of years) 
Node Range Mid-Value

Ci birds/mammals 

C2 primate basal radiation 

C3 monkeys/apes 

C4 gorilla/human 

C5 artiodactyl radiation 

C6 rat/mouse 

C7 primate basal radiation 

Cg artiodactyl radiation 

C9 eutherian radiation 

C 10 primate basal radiation 

Ci 1 monkey/ape 

C 12 duck/chicken 

C ] 3 stem marsupial

288-310 299

63-90 77

32-38 35

8 - 1 2 1 0

55-65 60

11-13 1 2

63-90 77

55-65 60

51-120 85

63-90 77

32-38 35

80-100 90

90-130 1 1 0
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and the variance-covariance matrix. Fish sequences were used as outgroups, which 

are required by the program to locate the root in the ingroup tree. In this case, the 

model of nucleotide evolution assumed was F84G. The transition/transversion rate 

ratio and the shape parameter of the gamma distribution were obtained using PAML 

(Yang 1997). The output o f estbranches was used in the program multidivtime in 

order to estimate divergence dates. In this analysis I used all codon positions 

accounting for the differences in rate among them. Also, this method does not require 

the use of fixed calibration points so I specified lower and upper bounds for the 

ancestral nodes. The MCMC chain was run at least twice for 100,000 generations 

after a burn-in of 10,000 generations. I sampled the chain every 10 generations. 

Multidivtime requires the specification o f some priors. I assigned: (/) a gamma prior 

for the time of the root with mean 400 MY; and standard deviation 200 MY; (ii) a 

gamma prior for the rate at the root with mean 0.23; and standard deviation 0.12. Also 

specified were a gamma prior and the correspondent standard deviation for the 

parameter v, which controls how variable rates are over time. The chosen value was 

0.4 for both the v parameter and the standard deviation.

4.2.3 Test of evolutionary rate variation

Local-clock models provide a good approach to test for evolutionary rate correlation 

between gene duplicates. I constructed several tests to examine whether, following 

duplication, different p globin gene duplicates evolved with similar rates. In this 

chapter I refer to sister genes that arose via a gene duplication event as a “pair”. I 

compared the rate of a pair of genes that originated through gene duplication with the 

rate of the rest of the genes in the tree. I assigned one rate class to the tested pair of
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duplicate genes and one rate class to the rest of the genes (two-ratios test). I conducted 

these tests for the following pairs of duplicate genes: ( 1 ) p and 8  globin from tarsier; 

(2) p and 8  globin from bushbaby; (3) phO-phl from mouse; (4) p i-p2  from mouse; 

(5) Gy-Ay from Cebus; (6 ) Gy-Ay from chimpanzee; (7) Gy-Ay from human; and (8 ) 

PAl-pA2 from zebrafish. I compared each case with the global clock model using 

LRTs.

It is expected that through time, duplicated genes in a family will diverge in 

function and selective pressure. These changes would be reflected in the rate of 

evolution, with each gene evolving at a different rate. I used the same eight pairs of 

genes as described above and tested whether the two sequences in the duplicate pair 

evolved under a different rate from each other and from the average in the phylogeny. 

I assigned one rate class to each of the duplicate genes in the tested pair and one rate 

class to the rest o f the genes in the tree (three-ratios model). I constructed the LRTs to 

compare the null (two-ratios) model with the alternative (three-ratios) model.

Lineage-specific effects, such as generation time, metabolic rate, population 

size, speciation rate, etc, are often invoked to account for the differences in rates 

among evolutionary lineages (Kimura 1983; Muse and Gaut 1997). I was interested 

in investigating the possible influence of lineage-specific effects in the variation of 

evolutionary rates among the sampled genes. I constructed several LRTs to compare 

the global clock model with a local clock alternative that assigns a particular rate class 

to each o f the tested lineages. In each test I compared two lineages, assigning a 

specified rate class to each of the two and compared those models with the general 

clock model. I f  lineage-specific effects apply to my dataset the rejection of the null 

model is expected. I was particularly interested in testing lineage-specific effects on
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the rates along the primate and rodent lineages. I used different sets of the sequences 

shown in Figure 4.1 to test each case. The sets of sequences used were: (1) primate 

and non-primate p globin genes; (2) primate and non-primate y globin genes; and (3) 

rodent and non-rodent p globin genes.

4.3 Results

4.3.1 Phylogenetic Analysis

Maximum likelihood and Bayesian analyses resulted in similar topologies (Fig. 4.1). 

Most branches were supported by high bootstrap proportions (> 90%) and posterior 

probabilities (> 90%) (data not shown). In general, the gene tree is in agreement with 

the expected species tree except where gene conversion has affected the topology 

(e.g., tarsier p and 5 globins appear as sister sequences) and where there has been 

gene duplication within some clusters (e.g., in the mouse and artiodactyl p globin 

clades). Besides dating gene duplications I was interested in dating gene conversion 

events, therefore, the conflicts in topology between gene and the expected species 

trees caused by gene conversion events are not a problem here. Most paralogous 

genes are grouped in different clades, the exceptions being genes affected by gene 

conversion and genes that are the result of within-cluster duplications. Gene 

conversion events and within-cluster duplications have been previously identified for 

the vertebrate p globin gene family (see Chapter II). Sequences affected by gene 

conversion include: tarsier p and 5 globins; bushbaby p and 8  globins; goat pa and Pc 

globins; artiodactyl p and y globins; mouse p i and p2  globins; human and chimpanzee 

Ay and Gy globins; and mouse phO and phi globins. All these sequences appear as
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sister taxa instead of clustering with their true sister genes (i.e., 6  tarsier appears sister 

to p tarsier instead of being located with the 8  globins). In the case of sequences 

duplicated within clusters (e.g., y cow, y sheep, y goat, and mouse phO and phi), 

functionally different paralogous genes may still group with the gene from which they 

originated, as in the case of artiodactyl y globins which originated from artiodactyl p 

globins and appear in the same clade. In the phylogeny, the most basal taxa are frog 

globins, followed by marsupial go globins and bird globins. Marsupial co globin is 

thought to be a relic gene that was lost in the eutherian lineage (Wheeler et al. 2001); 

thus, in accord with that hypothesis, it appears more closely related to bird sequences 

that to other mammalian globin genes. The eutherian mammal sequences are 

monophyletic, with the first duplication in that group being that o f proto-P and proto- 

e. Following this duplication, a duplication in the proto-p clade generated the P and 5 

lineages (node 98 in Fig. 4.1). In turn, the proto-s lineage was divided by a 

duplication event, which yielded the ancestors of the e and y clades (node 84 in Fig.

4.1).

4.3.2 Estimation o f Dates for Species Divergences and Gene Duplications 

The dates obtained under the ML global clock model are listed in Table 4.2 in 

columns a)-d). The mid-values used for fixed calibration points are listed in Table 

4.1. Dates for nodes other than those fixed as calibration points were estimated by 

ML, as were other parameters in the model. I either ignored the differences among the 

ccdon positions or accounted for them following Yang and Yoder (2003). When the 

three codon positions were analysed separately, date estimations did not differ greatly 

among codon positions (data not shown). I therefore decided to work exclusively on
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the dataset with all codon positions with and without accounting for differences in the 

substitution process. The estimates listed in Table 4.2 under the label “all codon 

positions” are estimates averaged over the three codon positions, whereas the 

estimates under the label “combined” account for the differences in rate among them. 

Date estimates for the ancestral nodes of interest show the variation between the JC 

and F84G models, with the largest difference being about 17 MY at nodes 106 (99.5 - 

117.7) and 107 (147.5 - 167.7) (Table 4.2). All dates are within the range of 

previously reported dates for gene duplication events although some speciation times 

seem somewhat young; for instance, my estimate for the GY/AY duplication is between 

72 and 106 MY, when a previously proposed date places this duplication at around 35 

MYA (Hardison and Margot 1984; Goodman et al. 1984).

The LRTs for the clock assumption under both the JC and the F84G models 

rejected uniform rates across the phylogeny. I estimated divergence dates assuming 

different rate classes for each of the three-lineages corresponding to the p, 8 , and 

y globin genes, and the rest of the phylogeny (i.e., rj for p, r2 for y, r3 for £ globin, and 

U for the remaining branches). ML estimates of duplication dates under the local 

clock model with four rate classes are listed in Table 4.2. Results in columns (e) and

(f) correspond to the combined analysis of all codon positions accounting for their 

differences and assuming different rates for the specified rate classes. Lists in 

columns (g) and (h) in Table 4.2 correspond to the analysis of all codon positions 

assuming different rates for the indicated rate classes but without accounting for the 

differences in substitution among codon positions. Results are remarkably similar 

among the different local-clock models used, being within 3MY. Date estimates are 

more variable between the global- and local-clock models.
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Table 4.2. ML and Bayes estimates o f  duplication dates with and without assuming the clock and comparing different models
Maximum likelihood analysis Bayesian analysis

global clock local clock

all cod. pos. combined combined no clock clock

Node (a)

JC

(b)

F84G

(c)

JC

(d)

F84G

(e)

JC

(f)

F84G

(g)

JC*

(h)

F84G*

(0

F84G

G)

F84G

58 chicken s/ p 50.5 49.4 50.8 49.4 56.4 55.1 56.4 55.1 59.3 (32.1,87.8) 59.6 (33.5, 8 6 .6 )

62 mouse phO/ phi 26.7 25.0 26,4 23.9 23.2 21.5 23.2 2 2 . 2 29.0 (12.0, 50.3) 29.0 (11.5,49.8)

6 6  CebusAy/Gy 1 . 1 0.9 1 . 0 0.9 0 . 8 0.7 0 . 8 0.7 3.4 (0.1, 9.8) 3.0 (0.0, 9.4)

74 y clade 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0 105.6 (84.7, 119.2) 105.7 (85.3, 119.3)

83 s clade 95.4 91.8 94.9 89.4 93.6 92.0 93.8 94.2 96.9 (78.4, 116.7) 96.7 (78.6, 116.0)

84 eutherian mammal 

e/ y

115.8 113.7 114.9 114.7 107.6 111.7 107.7 109.8 125.7 (103.9, 148.8) 125.9 (104.1, 149.0)

85 mouse p i/  p2 5.8 5.8 5.8 6 . 0 5.6 5.8 5.6 5.6 6 . 0 (0 .6 , 1 1 .6 ) 6 . 0 (0.5, 11.6)

90 goat PA/ pC 32.9 31.6 32.6 31.3 28.9 27.8 28.9 28.2 2 0 . 6 (7.8, 35.2) 20.9 (7.8, 35.9)
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92 artiodactyl p/ y 51.4 51.7 51.3 51.8 48.2 48.8 48.1 48.9 41.4 (26.6, 57.0) 41.9 (26.4, 57.3)

95 bushbaby p- 8 8.7 7.5 8.4 7.4 6 . 8 6 . 0 6 . 8 6 . 1 14.8 (2.7, 29.1) 14.8 (2.6,29.0)

96 tarsier p- 8 30.2 28.5 29.7 27.8 25.1 23.6 25.1 24.1 26.7 (12.5,42.5) 26.81 (12.1,42.6)

98 8  clade 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 34.8 (32.1,37.8) 34.8 (32.1,37.8)

106 pelade 117.7 112.5 115.8 113.5 100.5 100.4 100.4 99.5 102.4 (81.0, 129.6) 1 0 2 . 6 (81.4, 130.1)

107 eutherian p- 167.7 162.7 166.1 163.9 147.5 149.7 147.7 148.9 151.5 (123.9, 182.3) 151.7 (124.2, 182.9)

globins

Note: The estimates in columns (a) and (b) are averaged over the three codon positions. The estimates in columns (c) to (f) are obtained 
from the three codon positions combined and accounting for the differences in rate among them. The estimates marked with * in columns
(g) and (h) are obtained from the three codon positions combined but without accounting for their differences in rate. ML estimates are 
presented i columns (a) to (h) and Bayes estimates are in columns (i) and (j).
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For instance, the estimate obtained for the e and p divergence was 50.5 MYA under 

the global clock, whereas the local clock model resulted in 56.4 MYA (compare 

columns (a) and (e) in Table 4.2). The global clock estimate for the split between s 

and y was 115.8 MYA and the local clock model estimate was 107.6 (compare 

columns (a) and (e) in Table 4.2). However, all estimates are within the expected 

range according to previous reports and fossil data of the relevant species. The most 

important improvement in the likelihood scores is obtained by using the F84G 

substitution model with the combined analysis, column (f) in Table 4.2. The 

likelihood score for that column is -7431.1178 compared to -8073.5133 for column 

(a). The rates for each partition are listed in Table 4.3. Higher rates occur in the 

branches that follow gene duplication events. The p and y globin genes evolve with a 

similar rate, with the P gene rate being slightly higher than that o f y globin in most 

cases, e globin gene evolves with the slowest rate.

The Bayes method (Thome, Kishino and Painter 1998) was applied to the 

p globin gene family data to estimate divergence dates. Posterior means of divergence 

times for ancestral nodes are listed in Table 4.2 columns (i) and (j). I analysed the 

data using all codon positions, accounting for differences in their substitution 

parameters, both with and without the clock assumption. The substitution model 

assumed was F84G, and the bounds listed in Table 4.1 are used for fossil calibration. 

First I estimated branch lengths and the variance-covariance matrices for the data at 

each codon position and treated these as gene partitions. The outputs for the three 

codon positions were used in multidivtime to estimate divergence dates. The prior 

mean rate at the root is the ML estimate under the global clock for all codon positions 

(Table 4.3). The dates obtained with and without the clock assumption do not vary
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greatly (Table 4.2). Differences are higher between the ML and Bayes methods than 

between models using the same method. Apart from the inherent differences between 

the ML and Bayes approach, dates vary among methods as a result o f using fixed and 

bounded calibration points. Bayesian date estimates for the major duplication nodes 

are largely in agreement with ML estimates (Table 4.2). The largest differences occur 

at four nodes: (i) node 6 6  is younger in the ML estimates by approximately 3 MY; (ii) 

node 95 is younger in ML dates by nearly 9 MY; (iii) node 90 is older in ML results 

by around 12 MY; and (iv) node 92 is older in ML estimates by around 10 MY (Table

4.2).

3.3.3Test for Rate Variation among Taxa

To test whether pairs of newly duplicated p globin genes are subject to different 

constraints, and therefore evolve with different rates from the rest o f the phylogeny, I 

assigned a single rate to different pairs of newly duplicated genes (two-ratios model) 

and compared that model with the global clock model (one-ratio model). The 

duplicate pairs tested comprised genes which form part of a tandemly duplicated gene 

cluster or have been involved in gene conversion events. Bonferroni corrections were 

calculated to account for multiple tests. O f the eight duplicate gene pairs tested only 

two pairs of genes show a significant P-value: mouse phO and phi (25 = 21.44, d f = 1, 

P-value < 0.0008); and mouse p i and p2 (25 = 42.25, d f = 1, P-value < 0.0008). Other 

results were: bushbaby p and 5 globins (25 = 7.39, df = 1, P-value = 0.08); tarsier p 

and 5 globin (25 = 0.60, df = 1, P-value = 3.52); Cebus Gy-Ay (25 = 0.13, df = 1, P- 

value = 5.76); chimpanzee
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Table 4.3. ML Estimates of substitution rates for the four branch classes (x 10 

substitutions per site per year)

Model all codon positions combined

JC F84G JC F84G

Global clock 1.656 1 . 6 6 6 1.649 1.705 1st

0.047 0.055 2nd

0.171 0.186 3rd

Local clock 2 . 0 0 0 1.953 1.987 1.874 BG

0.128 0.140 0.107 0.118 p

0.083 0.086 0.057 0.059 e

0.137 0.144 0.093 0.098 y

0.034 0.039 BG

0.071 0.077 p

0 . 0 2 1 0 . 0 2 1  s

0.081 0.087 y

0.124 0.162 BG

0.213 0.247 p

0.176 0.189 8

0.242 0.254 y
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Table 4.3 *a Letters at the far right column indicate the rate for each corresponding 
codon position (*) or gene (BG, p, 8 , y). BG corresponds to background, used to 
designate the rate in the rest of the phylogeny. 1st, 2nd, and 3rd correspond to the three 
codon positions, respectively.

Gy-Ay (25 = 0.01, d f = 1, P-value = 7.36); human Gy-Ay (25 = 2.99, d f = 1, P-value = 

0.64); and zebrafish pAl-pA2 (25 = 0.54, df = 1, P-value = 3.68). This suggests that 

rate differences among paralogs may not occur at all stages o f the p globin gene 

family evolution.

To investigate whether the newly duplicated gene pairs in the p globin family 

differ in rate from one another as they begin to diverge in function, I assigned one rate 

class to each of the duplicate genes in the tested pair and one rate class to the rest of 

the genes in the tree (three-ratios model). I constructed the LRTs to compare the null 

(two-ratios) model with the alternative (three-ratios) model. Bonferroni corrections 

were calculated. In this case, only one LRT was significant: mouse p i and p2 (25 = 

17.66, df = 1, P-value = 0.008). Other results are: bushbaby p and 5 globin (25 = 6.63, 

df = 1, P-value = 0.08); tarsier p and 5 globin (25 = 0.01, df = 1, P-value = 7.36); 

mouse phO and phi (25 = 0.00, df = 1, P-value = 8 ); chimpanzee Gy-Ay (25 = 4.80, df 

= 1 , P-value = 1.92); Cebus Gy-Ay (25 = 0.61, df = 1, P-value = 3.44); human GY-Ay 

(25 = 3.53, df = 1, P-value = 0.48); and zebrafish pAl-pA2 (25 = 0.29, df = 1, P-value 

= 4.72). From these results it can be said that sequences in most duplicate gene pairs 

seem to evolve with similar rates between them.

To test whether lineage specific effects had influenced the rates of the genes in 

the phylogeny, I assigned each lineage of interest a different rate class from that of the 

rest (two-ratios model) and compared that with the global clock model (one-ratio 

model). The lineages tested included primate and rodent globin genes. Bonferroni
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corrections were included. In all three tests genes in different lineages appeared to be 

evolving with a different rate from the rest of the branches in the tree and all LRTs are 

significant: primate (3 globins vs. non-primate (3 globins (28 = 14.02, df = 1, P-value = 

0.0006); primate y globins vs. non-primate y globins (25 = 21.44, d f = 1, P-value < 

0.0003); rodent p globins vs. non-rodent p globins (25 = 27.06, df = 1, P-value < 

0.0003). Rodents showed higher rates than mammals and other orders. There appears 

to be a lineage-specific effect on evolutionary rates acting on the primate and rodent 

lineages.

4.4 Discussion

Most dates estimated in this chapter for p globin genes are in fairly good agreement 

with previously reported dates, which were estimated assuming the clock: for the 

divergence between proto-p and proto-s, I found dates around 150 MYA (node 107 in 

Table 4.2, see Efstratiadis et al. 1980; Czelusniak et al. 1982); the date I estimated for 

the p and 5 globin divergence is between 100 and 118 MYA (node 106 in Table 4.2, 

see Goodman et al. 1984; Hardison and Margot 1984); for the ancestral node 

corresponding to the e and y globin divergence, I found values around 120 MYA 

(node 84 in Table 4.2, see Li 1997). The only discrepancy between my estimates and 

a previously published one occurred in the case of the duplication giving rise to Ay 

and Gy globins. Hayasaka et al. (1992), based on the fossil evidence from the 

divergence of the simian lineage (Anthropoidea) from the prosimians, proposed that 

the approximate date for the Ay and Gy globin divergence must be around 35 MYA. In 

contrast, my results give a much younger estimate for the Cebus Ay and Gy ancestral 

node o f 3.4 MYA (node 66 in Table 4.2). I believe this result is likely affected by
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gene conversion making my estimate younger than expected. As far as I know, this is 

the first time that dates for the e and p globin split (49.4 -  59.6 MYA) are reported. 

This date is in agreement with bird speciation dates obtained with fossil and 

molecular data (Benton 1999). I dated two within-cluster duplications in the mouse: 

for the phO-phlgene divergence I found a range between 2 1 - 2 9  MYA; and for the 

mouse P1-P2 split a date around 6.0 MYA. These two dates would imply that the 

embryonic y genes diverged well before the adult P globin genes, which is in 

agreement with studies of the evolution of the mammalian globin cluster (Hardies et 

al. 1984). I found that the goat pA-pC globin duplication occurred between 21 and 33 

MYA; and that the artiodactyl p and y globin divergence took place within 41-52 

MYA, these dates agree with fossil data for the artiodactyl origin and expansion 

(Bowen et al. 2002). Also, I provide an approximate date for the gene conversion 

events between p and 6 globins in bushbaby, between 6 and 15 MYA, and tarsier, 

around 24 to 30 MYA. It is well known that these genes have experienced recurrent 

gene conversion (Drouin et al. 1999), even though this fact may have made the 

estimates younger, they agree with fossil and molecular speciation dates for tarsiers 

and bushbabies (Tavare et al. 2002; Martin 2003). Another problem caused by gene 

conversion, and recombination in general, is that it may lead to the false rejection of 

the clock (Posada et al. 2002). To avoid falsely rejecting the clock I also used the 

clock test proposed by Muse and Weir (1992) that is independent o f tree topology to 

check for rate constancy among lineages in the tree. The clock was not rejected when 

using this method, however, as it can only test three sequences at a time this approach 

lacks power (Bromham et al. 2000).
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When estimating gene divergence dates, gene conversion obscures the results 

by making estimates younger, as sequences appear to be more similar than they 

actually are. In my date estimation analysis, I found that genes which were known, or 

suspected to be, affected by gene conversion usually gave younger estimates than 

expected from previous studies. Specifically, I believe that estimated dates for 

divergences o f primate Ay and Gy globins and the mouse phO and phi and p i and P2 

globins are younger that the actual dates due to gene conversion. As methods are 

developed that allow estimation of dates from multiple datasets (Thome and Kishino

2002), and also from non-clock like genes (Yoder and Yang 2000, Yang and Yoder

2003), gene families will become more attractive as data from which to estimate 

divergence dates. Gene families will be particularly useful because a single 

calibration, derived from a speciation event, can be used in multiple times in different 

paralogs. As such datasets will also have been prone to recombination, caution must 

be exercised when estimated dates are more shallow than the fossil record.

In most cases, dates estimated using ML were comparable to those obtained 

with the Bayes method. There are no apparent tendencies between the two methods 

because neither method necessarily produces younger or older estimates than the 

other. The dates for some ancestral nodes are particularly difficult to determine, like 

those that predate the duplication of two sequences with very short branches or those 

for very deep nodes. That is where I found the largest discrepancies between methods. 

One difference between the implementations of the Bayes and ML approaches is that 

the former accounts for uncertainties in the fossil record and the ML approach does 

not. From the results I can say that the way of assigning constraints on calibration 

nodes has a big impact in date estimation. Perhaps depending on the quality of the
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fossil record a broader or narrower calibration range should be considered. 

Interestingly, other factors such as the priors required by the Bayes approach do not 

have as large an impact on date estimation as do calibration point bounds. This notion 

is in agreement with a previous report by Yang and Yoder (2003).

My investigation of evolutionary rate variation between pairs of newly 

duplicated gene sequences in the vertebrate p globin family produced two related 

results indicating a clocklike effect on rates. First, I found that following gene 

duplication most o f the tested gene pairs were evolving with rates not significantly 

different from the rest o f the phylogeny (one ratio-model vs two-ratios model). The 

two exceptions to this pattern were mouse phO-phl and mouse pl-P2, which are 

affected by gene conversion. This result suggested that recently duplicated genes do 

not necessarily evolve with a different rate after duplication, or at least the change in 

rate does not occur immediately afterwards. Second, I found that following gene 

duplication, only in the mouse pl-P2 globin gene pair the two sequences were 

evolving at a significantly different rate from each other. The results indicate that 

most sequences in the dataset differ little in rate of evolution, whether they are the 

product of a recent duplication or not. In spite of observing local changes in rates in 

different parts of the p globin tree (e.g., changes in selection pressure, rejection of the 

global clock), I found very similar estimates for divergence dates when taken as an 

average over the entire tree. This would suggest that there are local changes in rates, 

but the average is rather clocklike.

Other factors that may influence rates of evolution in the p globin gene family 

are lineage-specific effects. I found that in all cases different vertebrate lineages were 

evolving with significantly different evolutionary rates. It would seem that lineage-
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specific effects are very important in determining rates of p globin genes. This is in 

agreement with a previous observation regarding myoglobin suggesting that perhaps 

overall rates for separate lineages may be more informative than the average rate 

across the phylogeny (Romero-Herrera et al. 1973). Alternatively, this trend could 

reflect a large scale difference in selective pressure between p and y globin rates, as 

suggested in a previous study on the evolution of vertebrate globin genes (Aguileta et 

al. submitted, see Chapter II).
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Conclusions

The vertebrate p globin gene family is a perfect case study for the evolution of 

paralogous genes. Not only is this gene family well sampled in current gene and protein 

databases, but the wealth of knowledge about it is huge, providing the possibility of 

formulating and testing concrete hypothesis regarding the many aspects of its evolution 

with a solid background. In this thesis, I wanted to emphasize the complex ways in which 

different evolutionary forces have operated to give rise to the functional divergence 

observed in the P globin gene paralogs. What makes this gene family particularly 

interesting is that it has experienced frequent unequal crossing-over (gene conversion), 

episodes of positive selection, purifying selection, long-term differences in selective 

pressure among genes, and recurrent birth and death of some members in the cluster. In 

Chapter I it was shown how the evolution of the p globin gene family reflects a balance 

between homogenization by unequal crossing over and gene conversion, and 

diversification by mutation. I also showed how p globin paralogs are partitioned into 

domains of expression, thus facilitating their functional divergence, which is brought 

about both by positive Darwinian selection (as in the case of p and y globins) and by 

differential patterns of purifying selection pressure (as seen in y and e globins). In order 

to fully discriminate between the competing DDC and Ohta models of gene family 

evolution, more tests are clearly necessary than those presented in Chapter I. However, I 

think that comparison between synonymous and nonsynonymous substitution rates 

provides a useful tool in studying relative roles of different evolutionary forces during the 

evolution of a gene family.
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In Chapter III I investigated the evolution of globin structure and its relation to 

function, specifically, I was interested in the way selective constraints have shaped the 

globin protein. I compared hemoglobin and myoglobin looking for the evolutionary path 

through which an oligomeric form in hemoglobin evolved from a presumably monomeric 

ancestor, such as myoglobin. This evolutionary innovation in structure had a profound 

effect in function, allowing the allosteric regulation of oxygen transport in hemoglobin. 

As expected, the changes in hemoglobin interfaces are characterized by a significant 

presence of polar and charged residues, which are fundamental in establishing hydrogen 

bonds and salt bridges among protein subunits. Presumably, similar changes contributed 

to the creation of the necessary patches in the ancestral globin monomer that later served 

as interfaces. In contrast, the sites corresponding to interfaces in myoglobin show the 

inverse tendency and are mainly nonpolar. Once interfaces had evolved in oligomeric 

globins it became necessary to maintain the crucial site-site interactions between 

subunits. One hypothesis is that amino acid replacements in one monomer would be 

followed by compensatory mutations in the other. The results I obtained when I analysed 

a  and (3 globins indicated that most of the replacements at the a,p interfaces are 

conservative, as expected. However, the few sites at the interfaces detected to be under 

positive selection, did not appear to have undergone correlated mutations in a  and p 

globins. This negative result might be caused by a weak signal for correlated 

replacements at these sites or because they do not make actual physical contact and 

therefore no compensatory mutations are needed. Crystallographic data will provide the 

last words on this matter.



In Chapter IV I put to the test the use of globin genes as examples of the 

molecular clock. I estimated dates for gene duplication and gene conversion events in the 

vertebrate p globin gene family and compared the dates inferred assuming the molecular 

clock with dates obtained without this constraint. Most dates estimated in this thesis for 

P globin genes are in fairly good agreement with previously reported dates, which were 

estimated assuming the clock. Furthermore, the dates obtained using new approaches 

based on maximum likelihood and Bayesian methods that allow the evolutionary rate to 

change among lineages when divergence times are estimated, provided similar results. 

One difference between the implementations of the Bayes and ML approaches is that the 

former accounts for uncertainties in the fossil record and the ML approach does not. One 

cautionary remark is that the way of assigning constraints on calibration nodes has a big 

impact in date estimation, especially when using the Bayes method. I also found that 

when estimating gene divergence dates, gene conversion obscures the results by making 

estimates younger, as sequences appear to be more similar than they would be without its 

effects. It is therefore advisable to test for recombination before estimating dates from 

molecular data. In general, dates estimated in this chapter for p globin genes produced 

results indicating a clocklike behaviour of rates. The evolutionary rates of the p globin 

genes I sampled might be influenced by lineage-specific effects, partly explaining their 

clocklike behaviour. Alternatively, this trend could reflect a large scale difference in 

selective pressure between p and y globin rates.

Gene families have become very important objects of study in the field of 

molecular evolution, as they provide a natural framework for investigating the 

evolutionary dynamics of genes within the larger scope of the cell and genome. Future
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work naturally points in that direction. Also, the work done using well known data, as in 

the case of globins, will help to encourage and guide investigation of new gene families. 

More genes will be sequenced for years to come and it is likely that most of them will be 

members of gene families, some perhaps not yet described. Understanding the dynamics 

of gene family evolution is of great importance to understand gene interactions at all 

levels.
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