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M ulti-organ System  R heum atological Disease: Statistical A nalysis 

of O utcom e M easures and Their Interrelationships.

Idiopathic inflammatory myopathies are usually regarded as a heterogeneous 

group of autoimmune rheumatic diseases. Dermatomyositis and polymyositis 

may affect children and adults and, although rare, are a m ajor cause of 

disability. In order to assess the value of conventional and newer therapies, 

a core set of measures for assessing myositis outcomes are being developed.

This thesis reports on the design and analysis of two real patient exercises 

carried out to study proposed measures. An approach to the study of relia­

bility and agreement is presented. Inference procedures for ratios of standard 

errors are developed.

The myostitis measures are based on previous work in systemic lupus 

erythem atosus (lupus), a m ajor autoimmune rheum atic disease. Interna­

tional a ttem pts to define validated disease activity and damage indices to 

assess patients with lupus have provided a consistent way to assess the dis­

ease. However, its multiple clinical manifestations prove a great challenge 

to rheumatologists managing patients with lupus. There is a need to better 

understand predictors of disease activity in order to improve and standardize 

therapy and to  prevent the development of chronic damage.

This thesis presents an analysis of a clinical database for patients with 

lupus. The aim is to develop approaches to  examine the interrelationships 

between disease activity in the different organ systems. The database avail­

able for analysis consists of da ta  collected on 440 patients over a period of 

10 years.

The analysis is based on logistic regression methodology with outcomes 

defined at the times of clinic visits. The usefulness of separate logistic re­

gressions with dynamic covariates for the analysis of multinomial panel da ta
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is illustrated. The efficiency of the approach relative to  modelling disease 

activity in continuous time is investigated.
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Chapter 1

Introduction

The immune system is a complex network of cells and organs th a t has evolved 

to defend the body against attacks by ’’foreign” invaders. One of the remark­

able things about the immune system is its ability to recognize many millions 

of distinctive non-self molecules, and to respond by producing molecules th a t 

can m atch and counteract each one of the non-self molecules. At the heart 

of the immune response is the ability to distinguish between self and non­

self, however, sometimes the immune system’s recognition apparatus breaks 

down, and the body begins to manufacture antibodies and T  cells directed 

against the body’s own cells and organs. W hen this happens inflammation 

and autoim m unity may result.

Since the identification of autoimmune rheumatic disease, the underlying 

immune processes have been the subjects of intense clinical and laboratory 

research.

Idiopathic inflammatory myopathies constitute a heterogeneous group of 

diseases of unknown aetiology th a t are characterized by chronic inflammation 

of muscle tissue, skin, and other organs, leading to weakness, paralysis and if 

untreated, long term  disability. Dermatomyositis, polymyositis and inclusion
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body myositis (myositis) may affect children and adults and, although rare, 

are now widely recognized as a m ajor cause of disability.

The most commonly prescribed drugs used to control disease progression 

are steroids and other anti-inflammatory or immunosuppressive agents, all of 

which have potentially serious side effects. It seems certain th a t these drugs 

have improved the outcome of patients with inflammatory muscle disease; 

nevertheless no combination has the capacity to induce a full remission in 

every case. The many side effects of the drugs remind the physician of the 

problems involved in treating the disease, with under-treatm ent leading to 

increased muscle weakness and over-treatment often resulting in increased 

morbidity. In order to assess more accurately the potential advantages and 

disadvantages of conventional and newer therapies as they are introduced, 

there is an urgent need to have available validated and reliable tools th a t as­

sess disease activity and damage in myositis. Two real patient exercises took 

place, where newly developed tools were used to assess disease activity and 

damage in 7 patients. We attem pt here to measure not only how well these 

tools differentiate between patients, but also to assess the level of agreement 

between physicians rating the same patient using these tools.

Systemic lupus erythematosus is a m ajor autoimmune rheum atic disease 

and patients with this condition are cared for by virtually all rheum atolo­

gists. Its multiple clinical manifestations do however prove a great challenge 

to rheumatologists managing these patients and there is a continuing need to 

b etter understand predictors of disease activity in order to  improve and stan ­

dardize therapy and to prevent the development of chronic damage. Systemic 

lupus erythematosus causes significant morbidity and increased m ortality, 

particularly for women at the prime of life.

In the past fifteen years there have been several international a ttem pts to
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define validated disease activity and damage indices to assess patients with 

systemic lupus erythematosus. These attem pts have brought considerable 

order to what had become a disorganized situation.

We attem pt in this thesis to develop approaches to data  analysis th a t en­

able questions regarding interrelationships between disease activity in differ­

ent systems and predictors and correlates of disease activity to be answered.

The database available for analysis consists of da ta  collected on 440 pa­

tients with systemic lupus erythematosus over a period of 10 years. It incor­

porates considerable demographic information, measures of disease activity 

and damage and detailed information on therapy and laboratory data.

In this thesis we begin, in the second chapter, by giving a description of 

the clinical features of both idiopathic inflammatory myopathies and systemic 

lupus erythematosus with a brief description of their management. Validated 

activity and damage scores for the assessment of systemic lupus erythem ato­

sus are also described. The third chapter reports on the design and analysis 

of two real patient exercises carried out to study newly developed measures 

for the assessment of disease activity and damage in idiopathic inflammatory 

myopathies. An approach to the study of reliability and agreement is pre­

sented and inference procedures for ratios of standard errors are developed. 

The fourth chapter outlines methodologies used in the analysis of repeated 

categorical outcomes and describes the approach taken to the analysis of the 

systemic lupus erythematosus database. The usefulness of separate logistic 

regressions with dynamic covariates for the analysis of multinomial panel 

d a ta  is illustrated. The fifth chapter presents, with discussion, the results 

of all analyses. Chapter 6 investigates the efficiency of the approach taken 

relative to modelling disease activity in continuous time. The final chapter 

is a discussion of the work done.
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Chapter 2

System ic Lupus Erythem atosus 

and M yositis

2.1 System ic Lupus Erythematosus

Systemic lupus erythematosus (lupus) is a multi-system disease found world­

wide th a t affects men, women and children of all ages (Belmont ). Lupus 

can affect any part of the body, however skin involvement, joint pain and 

kidney involvement are among the more common problems. The course of 

the disease can vary from mild episodic illness to a severe and possibly fatal 

disease. A patien t’s symptoms can also vary widely over time and are usu­

ally characterized by periods of remission and exacerbation. At the onset of 

lupus, only one organ and or system may be involved. However additional 

organs invariably become involved later.

Lupus is characterized by the presence in the blood of particular autoan­

tibodies to DNA, RNA and a number of other nuclear, cytoplasmic or cell- 

surface antigens. During periods of disease activity, the autoantibodies react 

with the ‘self’ antigens and immune complexes s tart to form, often building
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up, causing inflammation, injury to tissues, and pain in various parts of the 

body.

Given the diversity of the symptoms of lupus and because the symptoms 

overlap with those of many other conditions, lupus can be difficult to diagnose 

and can be overlooked. To help distinguish lupus from other diseases, in 

1971 the American Rheumatism Association (now the American College of 

Rheumatology) published a list of abnormalities (revised (Tan et al. 1982))) 

which point to  lupus. The nature of the disease means th a t patients may visit 

a number of different specialists, and physicians should therefore consider 

lupus when assessing a number of conditions.

Studies have shown th a t women are about 10 to 20 times more likely to 

have, or develop, lupus than men, and th a t the disease is most commonly 

diagnosed in women between the ages of 20 and 40. However it is reported 

th a t about 20% of lupus cases develop before the age of 18, and th a t about 

10 to 15% of cases develop after the age of 50. Lupus occurs more often 

in boys than men with boys representing 20 to 40% of children w ith lupus 

(Morrow et al. 1999). Lupus is usually more severe in younger patients and 

milder in older.

It is widely recognized th a t people from different racial and ethnic back­

grounds are at different risk of developing lupus. A study from Birmingham 

(Johnson et al. 1995) recorded UK prevalence rates of 36.2, 90.6, and 206 

per 100 000 among women of Caucasian, Asian, and Afro-Caribbean origin 

respectively. O ther studies have shown th a t people of Chinese and Polyne­

sian backgrounds also have an increased risk of developing lupus compared 

to Caucasians (Sam anta et al. 1991).

Until 25 years ago, lupus was considered to be an acute and often fatal 

disease. However advances in diagnosis and treatm ent have greatly improved
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prognosis with current expected ten year survival rates being greater than  

80% (Boumpas et al. (1995) and Barlow et al. (1987)). While the use of cor­

ticosteroids and immunosuppressives has helped increase this survival rate, 

these drugs are still a cause of morbidity in lupus and there is still a need 

for further clarification of the pathogenesis of the disease for the treatm ent 

to become more targeted leading to a reduction in morbidity (Rasaratnam  

and Ryan 1995).

2.1.1 Clinical Features 

N on-Specific Features

Fatigue, one of the most common features of lupus, is experienced by approx­

im ately 90% of patients and frequently described as unnatural. Lupus pa­

tients may also suffer from weight loss, anorexia, and frequently present with 

swollen glands (lymphadenopathy). However, infections and malignancies 

may also enlarge lymph glands, and before lupus is treated these possibilities 

should be ruled out. Fever is associated with lupus and is most commonly 

a feature of a flare of the disease. These non-specific features contribute to 

the difficulty in diagnosing lupus.

M usculoskeletal Involvem ent

The musculoskeletal system is commonly affected. Surveys have suggested 

th a t 80 to 90 % of patients with lupus suffer from pain in the joints (arthral­

gias) with arthritis (visible inflammation in a joint) being present in less than 

half these cases (Morrow et al. 1999). The joints most commonly involved 

are the proximal, interphalangeal, metacarpophalangeal, wrist, and knees. In 

contrast to rheum atoid arthritis, however, deforming joint abnormalities are
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observed in only about 5% of lupus patients. The most common symptoms 

of arthritis in lupus patients are stiffness and aching.

Approximately 50% of lupus patients complain of muscle aches (myal­

gias), generally thought to be related to arthritis in nearby joints (Morrow 

et al. 1999). Another less common cause of muscle pain in lupus is myosi­

tis th a t occurs occasionally during the course of lupus («  3 — 5%). Steroid 

induced myopathy is a potential source of confusion. However, with inflam­

m atory muscle disease, there is usually an elevation of the muscle enzymes.

D erm atological Involvem ent

Approximately 80% of patients with lupus have dermatological m anifesta­

tions during the course of their illness. Practically any type of rash can 

occur many of which are exacerbated by photosensitivity. Only about 35% 

of patients however report the classic butterfly rash, a red rash occurring 

across the bridge of the nose and on the cheeks. Approximately 25% of lu­

pus patients have discoid skin lesions. These lesions are often on the face 

or the inner pinna of the ear. Inflammation of the superficial blood vessels, 

known as cutaneous vasculitis, is seen in up to 70% of lupus patients and, if 

untreated, can result in ulceration or breakdown of the skin.

Alopecia occurs in about 50% of patients. Typically this manifests as 

reversible hair thinning during periods of disease activity. Discoid lesions 

involving the scalp can sometimes however lead to scarring alopecia. Mucosal 

ulcers occur in approximately 30% of lupus patients; the sores may be solitary 

or appear as crops of lesions. Approximately 30% of lupus patients suffer 

from Raynaud’s phenomenon and 20 to  30% of all lupus patients have a red 

m ottling under the skin, livedo reticularis.

Unusual cutaneous manifestations of lupus include urticaria, angioedema,
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bullae and panniculitis (lupus profundus).

Cardiovascular and Pulm onary Involvem ent

The commonest manifestations of lupus in the heart or lungs involve the 

linings of these organs; the pleura and the pericardium. Symptoms of heart 

and /o r lung involvement include chest pain, shortness of breath and a cough.

Inflammation of the pleura (pleurisy) is a common though usually not 

serious side effect of lupus. The symptom is pain although more severe 

forms of inflammation cause pleural effusions (fluid) leading to shortness of 

breath. Interstitial lung disease th a t involves the supporting structures of 

the lungs and pulmonary emboli are two other more frequent lung compli­

cations. Acute lupus pneumonitis, pulmonary haemorrhage and pulmonary 

hypertension are serious conditions th a t are sometimes observed and are dif­

ficult to treat. In a small number of patients a scarring (fibrosis) occurs on 

the lungs (Haupt et a l 1981).

Lupus patients frequently complain of chest pain th a t may or may not be 

related to heart disease. The true sources of cardiac pain are generally due 

to the most common cardiac manifestation pericarditis (inflammation of the 

pericardium) which manifests itself both with and w ithout effusions.

Approximately 10% of lupus patients present with myocardial disease th a t 

is often serious, and may include inflammation in the form of myocarditis or 

heart muscle dysfunction th a t sometimes leads to congestive heart failure. 

It is of interest to note th a t autopsies reveal th a t in fact 40% of patients 

with lupus show evidence of prior myocardial involvement. Chest X-rays 

frequently show an enlarged heart, and signs of congestive heart failure are 

sometimes evident.

The classic Libman-Sachs non-bacterial endocarditis produces vegetation
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on the m itral and aortic valves. Although clinically manifested as a heart 

murmur, the vegetations are usually so small th a t they are detectable by 

an echocardiogram only 30% of the time and are frequently asymptomatic 

and an incidental pathologic finding at autopsy. Although the vegetation 

produced alters the dynamics of the heart only 1 to  2% of the time, there 

are serious complications th a t can arise. They are prone to infection th a t 

can lead to subacute bacterial endocarditis where the vegetation become a 

growth site for bacteria, and occasionally parts of the vegetation may flake 

off causing a cerebral clot or stroke.

There is an increased incidence of prem ature coronary artery disease in 

lupus patients (now one of the most common causes of death) and high blood 

pressure, both aggravated by chronic steroid therapy (Wallance (1995), Bruce 

et al. (2000)).

G astrointestinal Involvem ent

Around 45% of lupus patients suffer from gastrointestinal problems includ­

ing nausea, mild abdominal pain, and diarrhoea. Severe inflammation of the 

intestinal trac t occurs in less than  5% of patients and rarely, intestinal per­

foration occurs and can be life threatening. Fluid retention and swelling can 

cause intestinal obstruction.

The liver can be affected as a result of the lupus itself, or by the med­

ications used to trea t inflammation in lupus. Jaundice is found in 1 to 4% 

of lupus patients and hepatomegaly (enlargement of the liver) is found in up 

to 10% of lupus patients. Liver function abnormalities in lupus, however are 

most commonly explained by idiosyncratic reactions to drug therapy. Pro­

gression to cirrhosis as a consequence of inflammatory liver disease in lupus 

is rare. Mackay et al (1959), first identified a form of lupoid hepatitis or
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autoimmune hepatitis.

Inflammation of the pancreas is rare but does occasionally occur (W atts 

and Isenberg 1989).

H aem atological Abnorm alities

Anaemia is a common feature of lupus with about 80% of lupus patients 

being anaemic during the course of their disease. In lupus patients, anaemia 

may be caused by a number of different factors; chronic inflammation, iron 

deficiency and /or chronic renal disease. About 10% of lupus patients de­

velop haemolytic anaemia a condition where red blood cells are prem aturely 

destroyed.

Around half of lupus patients develop a low white blood cell count during 

the course of their disease (lymphopaenia). If a patien t’s white blood cell 

count falls below 3000, they are thought to have leukopaenia and it may 

suggest th a t they are about to  have a flare.

Idiopathic thrombocytopaenic purpura, a decreased platelet count along 

with the presence of platelet antibodies, may affect lupus patients. A rare 

but serious complication of lupus however is throm botic throm bocytopaenia 

purpura th a t can lead to multiple organ failure (Wallance 1995).

Lupus patients can also have qualitative platelet defects. Functional 

blood clotting can be affected by aspirin, chronic renal failure and platelet 

antibodies. This is however a benign condition requiring no treatm ent if 

platelet counts are in the normal range.

Nervous System  Involvem ent

The m ajority of patients with lupus will suffer from some form of central ner­

vous system disease. The most common symptom being cognitive dysfunc­
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tion characterized by confusion, memory impairment and difficulty in articu­

lating thoughts. Headaches are another common feature of lupus, with lupus 

patients being perhaps twice as likely to suffer from migraine like headaches 

than  the general population.

Depression is an im portant manifestation of lupus, being in some patients 

an integral part of the disease with no one specific cause (Shortall et al 

1995). The most common cause is generally thought to be difficulty in dealing 

with the continuous series of stresses and strains associated with coping with 

chronic illness. However the disease itself may cause the depression and may 

then be helped by the management of the lupus itself.

Lupus patients can experience a variety of psychiatric disorders with some 

being wrongly diagnosed as schizophrenic. However it appears th a t trea t­

ment of the lupus generally results in a to tal improvement in the psychiatric 

features.

Some lupus patients may suffer from seizures or a series of epileptic fits 

and occasionally patients develop chorea. It is thought th a t 10% of patients 

with lupus develop inflammation of the peripheral nervous system at some 

point (Morrow et al 1999).

A rare but serious effect of lupus is lupus myelitis th a t can include paral­

ysis or weakness.

R enal Involvem ent

The kidneys are potentially the organs whose involvement is the most serious 

in lupus. As in most kidney diseases there are few obvious symptoms with 

little  pain and most often the only indication is an abnormal urine or blood 

test. The most common m ajor kidney problem is the leakage of protein 

into the urine. This can be mild and detected only on testing, or severe
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gradually leading to a lowering of the protein level in the blood. If the kidneys 

become inflamed, the patien t’s blood pressure frequently rises and blood 

pressure measurement is im portant in the examination of lupus patients. If 

the kidneys become severely damaged their normal filtering process will be 

impaired, leading to the build up of toxic elements such as urea and creatinine 

in the blood, which may in turn  lead to weight loss and nausea.

More complicated cases of renal involvement, particularly where trea t­

ment is needed, usually require a biopsy to make the diagnosis, and may 

require further biopsies to determine how the disease is progressing. A World 

Health Organisation or a National Institutes of Health classification system 

can be used to categorize the pathology of the kidney. This helps physicians 

judge the chance of response to treatm ent from the results of the biopsy.

Because the kidneys are so im portant to overall health, lupus affecting 

the kidneys generally requires intensive drug treatm ent to prevent perm anent 

damage. If the kidney damage reaches a stage where toxic chemicals build 

up then dialysis is vital. In the most severe cases renal transplantation is 

considered. It is of interest to note th a t it has generally been found th a t 

lupus does not return to the transplanted kidney and in general patients 

with lupus who have renal transplantation do very well.

2.1.2 M anagement of System ic Lupus Erythem atosus

There is no cure for lupus. The objective in managing a disease like lupus is 

to control the severity of the symptoms, and to avoid a flare. General advice 

given to the lupus patient includes avoiding the sun, exercising, adherence 

to medications, and regular health care visits.

Several types of drugs are used to trea t lupus. The treatm ent the doctor 

chooses is based on the patien t’s individual symptoms and needs.
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For patients with joint or chest pain or fever, nonsteroidal anti-inflamm atory 

drugs (NSAIDs) are often used. The main drawback of these drugs is th a t 

they have a number of side effects including stomach upset, heartburn, di­

arrhoea, and fluid retention. Some lupus patients also develop more serious 

side effects while taking NSAIDs including liver and kidney inflammation.

Antimalarials are another type of drug commonly used to trea t lupus. 

They may be used alone or in combination with other drugs and are generally 

used to trea t fatigue, joint pain, skin rashes, and inflammation of the lungs. 

Side effects of antimalarials can include stomach upset and, extremely rarely, 

damage to  the retina of the eye.

The mainstay of lupus treatm ent involves the use of corticosteroids. These 

are life saving in acute lupus and can be given by mouth, in creams applied to 

the skin, or by injection. Modern treatm ent is geared to seek the lowest dose 

with the greatest benefit. The side effects of corticosteroids include swelling, 

increased appetite, weight gain, muscle weakness and over a period of time 

osteoporosis.

For patients whose kidneys or central nervous systems are affected by lu­

pus, immunosuppressives may be used. Immunosuppressives block the pro­

duction of some immune cells and curb the action of others. Side effects may 

include nausea, vomiting, hair loss, bladder problems, decreased fertility, and 

increased risk of cancer and infection. The risk for side effects increases with 

the length of treatm ent.

Both dialysis and renal transplants have proved effective in patients with 

renal disease.
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2.1.3 Overall Clinical Assessm ent of System ic Lupus 

Erythem atosus

Lupus is an extremely clinically diverse disease th a t presents a substantial 

challenge to both the physician and the clinical researcher. In order to thor­

oughly assess the effects of lupus it is necessary to distinguish between dis­

ease activity (reversible clinical features) and disease damage (non-reversible 

change not related to active inflammation) and to consider the patien t’s own 

perception of their health.

There are a number of systems th a t have been devised for the assessment 

of disease activity in lupus. Global score systems include the Systemic Lu­

pus Activity Measure (SLAM) (Liang et al. 1988) and the Systemic Lupus 

Erythem atosus Disease Activity Index (SLEDAI) (Bombardier et al. 1992). 

In contrast the British Isles Lupus Assessment Group system (BILAG) (Hay 

et al  1994) rates lupus activity in eight organs and /or systems. These indices 

have been shown to be valid and reliable (Liang et al. 1989).

The BILAG Index is a comprehensive index based developed according 

to the principle of the ‘physicians intention to  tre a t’. The index allocates 

separate alphabetic scores to each of eight organs and /o r systems using the 

following ratings: A is the most active disease state requiring m ajor im­

munosuppressive drugs, B the patient is known to have active disease but 

is already on immunosuppressive therapy, C the patient has relatively mild 

disease controlled by little specific therapy if any, D there is no activity in 

this system now and E no evidence of activity now or previously (Hay et al. 

1993). Thus it can be easily discerned not only th a t a lupus patient is flaring 

but also in which particular system. For the purposes of comparison the 

BILAG index can be converted into a global score (A grade =  9 points, B 

=  3, C =  1, D and E =0) (Morrow et al  1999). Strong correlations have
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been shown between a BILAG global score and other commonly used global 

measures notably the SLAM and SLEDAI (Gladman et al. 1992).

The SLICC/ACR damage index was developed by the Systemic Lupus 

International Collaborating Clinics and accepted by the ACR (American Col­

lege of Rheumatology) as a valid measure of damage in lupus (Gladman et al. 

1997). The index includes descriptors in 12 organs and or systems and dam ­

age is only considered if present for at least 6 months.

The SF36 health assessment questionnaire is used in the study of lupus 

patients. The SF36 was designed for use in clinical practice and research, 

health policy evaluations, and general population surveys. It includes m ulti­

item  scales th a t assess eight health concepts and a health rating item  where 

patients indicate a change in their health over a one year period.

It has been shown (Stoll et al. 1997) th a t in order to capture the to tal 

effect of lupus on patients all three types of indices are needed.

2.2 M yositis

There are three m ajor forms of myositis

•  Polymyositis, a condition involving the muscles th a t usually responds 

to immunosuppressive therapy.

•  Dermatomyositis, a condition affecting the skin and the muscles th a t 

also usually responds to immunosuppressive therapy.

•  Inclusion body myositis, a condition affecting the muscles with inclu­

sion (abnormal protein deposits) and vacuoles (holes) in the muscle cells 

and fibres. Inclusion body myositis responds poorly to  immunosuppressive 

therapy.

It is estim ated th a t annually five to  seven people per million will develop
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a form of myositis. The incidence of polymyositis/dermatomyositis has been 

reported as 0.5 cases per 100 000 (Medsger et al 1970) with a prevalence of 

8 per 100 000 (DeVere and Bradley 1975).

Although myositis can affect people of any age, most children who get the 

disease tend to be between 5 and 15 years of age with most adults being over 

the age of 30. Dermatomyositis is much more common than  polymyositis in 

children and both polymyositis and dermatomyositis are more common in 

women than  men. However inclusion body myositis affects more men than 

women. Medsger et al (1970) noted th a t black females were more likely to 

develop both polymyositis and dermatomyositis than  any other group.

Myositis affects the muscles and connective tissues of the body, with the 

main symptom being muscular weakness th a t is usually progressive and can 

be severely disabling. It generally affects the muscles closest to the trunk such 

as those in the hips, thighs, shoulders, upper arms and neck. Patients may 

have difficulty in performing daily activities such as standing up, getting out 

of a car, climbing stairs, working overhead or combing their hair. About 70% 

of patients with dermatomyositis suffer from a characteristic rash th a t covers 

the knuckles, elbows or knees. It consists of small purplish red areas th a t 

are either flat and smooth or slightly raised (papules of Gottron). In more 

than  half the patients with dermatomyositis the eyelids and skin around the 

eyes can become puffy and develop a heliotrope (lilac) rash. Patients with 

dermatomyositis may suffer from itchy and flaky scalps and any skin th a t is 

exposed to sun can become red and blotchy. Occasionally the skin directly 

around the fingernails may show enlarged blood vessels (hyperaem ia).
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2.2.1 Clinical Features

Joint M anifestations

A rthralgias/A rthritis are frequently present in myositis. They often occur 

concurrently with, or precede, the onset of muscle weakness and usually 

occur early in the disease course. The symptoms are more often than  not, 

mild.

Cardiac M anifestations

Recent studies have found signs of cardiac involvement in more than  of 70% of 

patients with polymyositis/dermatomyositis (Taylor et al  1993). The m ajor 

manifestations include conduction disturbances, arrhythm ias and myocardi­

tis. Pericardial effusions are seen in 5 to 25% of polymyositis/dermatomyositis 

patients but are usually asymptomatic (Tami and Bhasin 1993).

Pulm onary M anifestations

Pulm onary involvement resulting from muscle weakness, treatm ent or the 

underlying disease occurs in 40 to 50% of patients (Dickey and Myer 1974). 

Short rapid breathing (dyspnoea) and a non-productive cough are common 

pulmonary symptoms. The respiratory muscles are not generally affected 

until late in the course of the disease, however weakness will then occur. 

This weakness when manifested concurrently with pharyngeal weakness may 

predispose the patient to interstitial pneumonia and pulmonary fibrosis.

Other System ic M anifestations

If the muscles in the oesophagus are affected patients may suffer from dys­

phagia (difficulty in swallowing). This in turn  may cause weight loss and
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m alnutrition. Fatigue is also common.

M yositis and Cancer

There appears to be an association between both polymyositis and der­

matomyositis and cancer. It is generally assumed th a t dermatomyositis 

ra ther than  polymyositis represents an increased risk of malignancy (Sig- 

urgeirsson et al 1992) however recent population-based cohort studies show 

a stronger association between polymyositis and malignancy than  previously 

thought. It appears th a t ovarian and lung cancers are associated with der­

matomyositis while lung cancer and non-Hodgkin’s lymphoma are associated 

with polymyositis. An association between malignant disease and inclusion 

body myositis has also been established for the first time (Buchbinder and 

Hill 2002).

Polym yositis and D erm atom yositis in children

Juvenile idiopathic inflammatory myopathy or juvenile myositis most often 

presents itself as dermatomyositis with its typical rashes and muscle weak­

ness. In juvenile myositis the skin rashes are particularly prominent preceding 

muscle weakness more than 50% of the time. Muscle weakness usually de­

velops, and as in adults, generally affects the proximal muscles (those closest 

to and within the trunk of the body). The neck, hip, trunk and shoulder 

muscles are primarily involved, but the distal muscles may also be affected. 

Dysphagia (difficulty swallowing), dysphonia (hoarseness), abdominal pain 

and arthritis can also occur in children with myositis and muscle pain is 

found in approximately 50% of children.

Calcinosis can affect children who have had the disease for a long time. 

Calcium crystals are deposited in large amounts throughout the body and
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can lead to skin ulcers th a t are difficult to  heal.

2.2.2 M anagement of M yositis

Corticosteroids are usually the first choice in the treatm ent of myositis (Oddis 

and Medsger 1989). If however the disease does not respond adequately to 

corticosteroids, immunosuppressants, notably azathioprine and m ethotrex­

ate may also be considered (Joffe et al. 1993). W hen in combination, im­

munosuppressants can be used to lessen the dose and potential side effects 

of the corticosteroids. Because of the side-effects of these drugs, new ideas 

on treatm ent are being actively pursued. These new therapies include TNF 

a  blockade and B cell depletion. To date however no adequate trials have 

been undertaken.

In the case of a persistent rash (dermatomyositis) antim alarials may be 

prescribed.

Calcinosis is difficult to treat, however it is believed th a t early and inten­

sive treatm ent may decrease the risk of serious complications.

Physical therapy can help m aintain and improve muscle strength and 

flexibility.

2.2.3 M otivation for the Developm ent of Tools for the  

Assessm ent of Disease A ctivity and Dam age in 

M yositis

As with lupus (Stoll et al. 1997), indeed as with many diseases, it seems 

generally agreed th a t to capture the effects of myositis on a patient it is nec­

essary to assess disease activity, disease damage and the patien t’s perception 

of the disease (F.W.Miller et al. 2001).
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It is generally felt th a t (F.W.Miller et al. 2001), despite the absence of 

double blind controlled trials, corticosteroids, immunosuppressive and other 

drugs have a beneficial effect on the outcome of patients with inflammatory 

disease. However there are many side effects associated with these drugs 

which can result in serious morbidity. In order to assess the advantages 

and disadvantages of current therapies, and of new therapies as they are 

introduced, there is a need to have available validated and reliable tools th a t 

assess disease activity and damage in myositis. Furthermore it is recognized 

th a t although the skeletal muscles ‘bear the b run t’ of the disease, other organs 

and systems (e.g. the skin, lungs, heart and gastrointestinal tract) may also 

be involved. Thus rather analogous to lupus, it is evident th a t assessment 

tools need to record activity in a multiplicity of organs and or systems.

Myositis is a rare disease and, in order to make any reasonable sense of it, 

it is crucial th a t all patients are assessed in the same way. It would therefore 

clearly be an advantage if all clinical research groups were using the same 

indices. This would be beneficial both for long term  observational studies 

and for clinical trials.

There are no previously available measures for the assessment of disease 

activity or damage in myositis. The organisation of a m ajor international 

consensus for the development of disease activity and damage indices for the 

assessment of myositis is described in chapter 3.
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Chapter 3

M yositis

3.1 The Development of Tools for the A ssess­

ment of Disease A ctivity and Damage in 

M yositis

In June 1999, a t the European Union League Against Rheum atism (EULAR) 

meeting, an international dialogue about the assessment of disease activity 

and damage in patients with Myositis took place. Subsequent to this discus­

sion a group of adult and paediatric specialists, with expertise in myopathies, 

m et in March 2000 to develop a core set of measures for the assessment 

of myositis outcomes. Further development and consensus on these mea­

sures was then achieved via Delphi m ethods1 by a multi-disciplinary group 

of over 70 rheumatologists, neurologists, rehabilitation specialists and others 

who constitute the International Myositis Outcome Assessment Collabora­

1A method of forecasting events by analysing the results of questionnaire sent to a 

panel of experts, who are therefore not subject to the inhibiting factors of a round table 

discussion.
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tive Study Group (IMACS). Not surprisingly there was considerable debate 

on the best way to proceed. In order to achieve maximal international col­

laboration the physicians involved developed different tools for activity and 

damage.

Once these measures had been developed a need for them  to be tested 

and validated was identified. Consequently in collaboration with Professor 

D. Isenberg and IMACS the real patient exercises, described subsequently, 

were planned. The prim ary goal of the exercise was to assess the performance 

of the newly developed measures. However it became evident th a t an added 

goal should be to establish whether these measures would provide physicians 

with a relatively quick evaluation of myositis patients.

3.1.1 The Assessm ent of Disease A ctivity

Two tools were developed for the assessment of disease activity. The Myositis 

Intention to Treat Activity Index (MITAX) and the Myositis Activity Score 

(MYOACT).

The MITAX is essentially a modification of the BILAG index used for 

the assessment of disease activity in patients with lupus. It is based on the 

physician’s intent to trea t principle and disease activity is graded from the 

most active grade A (requiring m ajor immunosuppression) to  grade E (no ev­

idence of disease activity currently or previously in an organ or system ). Each 

of the items included in this index were carefully considered by the group. 

Individual clinical features or combinations of features th a t the group antic­

ipated would lead to the prescription of large doses of corticosteroids and /o r 

immunosuppressives define a grade A, the most active score in each organ 

or system. For those patients with known disease activity th a t is ongoing 

and th a t continues to require somewhat lower doses of immunosuppressives
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and /o r other drugs, sets of criteria were used to define a B grade. The C 

grade in each organ or system defines patients with mild persistent activity. 

The D grade implies th a t the organ or system was once active but is no 

longer and the E grade implies th a t the organ or system is not active now, 

and has never been in the past. As with the BILAG index, the MITAX can 

be converted into a score with an A grade =  9 points, a B grade =  3 points, 

a C grade =  1 point, a D grade =  0 points and an E grade=0 points.

The MYOACT (Myositis activity score) consists of a series of 100mm 

visual analogue scales (the higher the number the more active the disease) 

which are completed by the physician assessing the patients.

3.1.2 The Assessm ent of Disease Damage

Two tools were developed for the assessment of disease damage, the Myositis 

Damage Index (MDI) and the Myositis Damage score (MYODAM). Damage 

implies persistent/perm anent change in anatomy, physiology, pathology or 

function th a t is considered if it occurs after the diagnosis of the disease. No 

attem pt is made in these tools, as with the SLICC Damage Index for patients 

with lupus, to ascribe the particular cause of the damage. The utility of a 

relatively simple damage index has been dem onstrated in recent studies of 

patients with lupus in whom the early acquisition of damage in the first 

couple of years following diagnosis is a very powerful diagnostic marker for 

prognosis (Nived et al 2000).

The Myositis Damage Index (MDI) is an assessment of damage developing 

in different organs and /or systems th a t is essentially a modification of the 

SLICC/ACR damage index. Each item assessed is given a score of either 0 

(no damage) or 1 (damage).

The MYODAM (Myositis damage score) consists of a series of 100mm
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visual analogue scales which are completed by the physicians and used to 

assess damage in the same organs and /or systems as the MDI.

3.2 Two Real Patient Exercises

In March 2001 in collaboration with Professor Isenberg an exercise to assess 

the performance of the newly developed tools was set up. In order to ensure 

th a t the measures provided physicians with a relatively quick assessment of 

the patients the exercise was run in one day. Seven patients with Myositis (4 

female, 3 male, 4 with polymyositis, 3 with dermatomyositis) were assessed 

by 7 different physicians (6 rheumatologists, 1 neurologist). The physicians 

were provided with a one page synopsis of each patien t’s history and were 

asked to complete both of the activity and both of the damage scores. The 

physicians were also asked to complete a formal assessment of muscle strength 

using manual muscle tests. In particular they were asked to record strength 

in the neck flexors, deltoid, biceps, wrist extensors, gluteus maximus, gluteus 

medius, quadriceps and ankle dorsiflexors. Each consultation took one hour.

All forms of assessment were dem onstrated prior to the exercise on pa­

tients with active disease. (The patients used in the teaching exercises were 

not those used in the exercise itself.)

The order of assessment was randomized according to a 7x7 Latin square 

design.

In this exercise the MITAX assessed muscle disease, mucocutaneous dis­

ease, skeletal disease, gastrointestinal disease and cardiovascular/respiratory 

disease. Visual analogue scales (MYOACT) were used to assess the same 

organs and /o r systems, with the exception th a t the cardiovascular and pul­

monary systems were assessed separately. In addition the physicians were
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asked to score ‘any other disease activity’ using the visual analogue scale.

The MDI was used to assess damage in the ocular, pulmonary, cardiovas­

cular, peripheral vascular, gastrointestinal, musculoskeletal, cutaneous and 

endocrine organs and /or systems. The physicians were also asked to score 

‘any other’ damage they found. A to ta l damage score was calculated by sum­

ming the individual scores. Visual analogue scales (MYODAM) were used 

to assess damage in the same systems, with the exception th a t the muscular 

and skeletal organs and /or systems were assessed separately. The physicians 

were also asked to give a global score using the visual analogue scale.

Following this exercise detailed discussions took place. Dissatisfaction 

with some aspects were expressed, in particular, it was felt th a t it was neces­

sary to add a constitutional element to the MITAX to capture some aspects 

of disease activity tha t, although uncommon, were felt to be im portant by 

many. The m ajority of the participating physicians were also unhappy us­

ing a combined pulmonary and cardiovascular measurement in the MITAX. 

Further discussions then took place by e-mail and the following changes were 

agreed.

A constitutional element was added to the MITAX and the MITAX car­

diovascular/respiratory disease category was split into two separate cate­

gories, the cardiac and the pulmonary. This re-categorization also included a 

certain amount of revision of the areas physicians were asked to consider. In 

particular a number of areas were split into smaller subcategories. For exam­

ple, dyspnoea was initially considered only a t rest; subsequently physicians 

were asked to consider it at rest and on exertion. In addition the following 

minor changes were made to the MITAX. In the muscle disease category, the 

first version simply required physicians to classify loss of function into m ajor 

or moderate. In the second version they were asked to classify loss of function
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into major, moderate or mild. Similarly in the skeletal disease category, in 

the first version, physicians were asked to classify arthritis into either severe 

polyarthritis with major loss of function or arthritis with m oderate loss of 

function. In the second version a third category was added allowing arthritis 

also to be classified as m ild/no loss of function. In the mucocutaneous cat­

egory, the first version of the MITAX asked physicians to consider ‘vascular 

changes resulting in necrosis’; this is om itted from the second version. In 

the gastrointestinal category, the first version required the physician to con­

sider m ild/m oderate abdominal pain. In the second version the physician is 

asked to consider severe abdominal pain, moderate abdominal pain and mild 

abdominal pain separately.

In addition the MDI musculoskeletal category was split into a muscular 

and a skeletal category. No other changes were made.

Subsequently in May 2002, a second real patient exercise took place. The 

order of assessment was again randomized according to a 7x7 latin  square, 

and again the consultations lasted for up to one hour. Prior to  attending the 

second exercise the physician-assessors reviewed training materials, as well as 

scoring MITAX, MYOACT, MDI and MYODAM and viewing a cutaneous 

slide collection covering example ratings for each instrum ent and manual 

muscle strength testing procedure.

For pragm atic reasons three of the patients and six of the physicians 

were the same for both exercises. The three patients th a t took part in both 

exercises all had active disease, and, to provide a variety in the symptoms 

being assessed, were chosen for the second exercise as well as the first. It was 

unfortunate th a t it was not possible to find a different set of physicians for 

the second exercise, but the research is only of interest to  a lim ited number 

of physicians as the disease is rare, and it is also difficult to get attendance
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for a whole weekend.

The implications of this, for the analysis of the real patient exercises 

and the interpretation of the results, are relatively minor, with respect to 

the characterization of the use of the instruments across physicians. The 

assessments took place about 10 months apart, rendering it most unlikely 

th a t the physicians would recall the patien t’s previous activity/dam age in 

any detail.

The need for precise and accurate m easurem ent

Accurate or precise measurement is an im portant component of any study 

design, and there is a need here to assess the extent to which the measure­

ments are subject to error and the degree to which clinical scores might 

meaningfully represent patient status.

In medical research it is of interest to examine the extent to which the 

results of a classification procedure concur in successive applications. In 

this situation, as with many in medical practice and research, the measure­

ments are based on observations made by clinicians and are clearly prone to 

individual variation in observation practice. Here, as in any measurement 

situation, besides intra-observer and inter-observer disagreements variability 

among patients may arise for many reasons.

A generalizability study (Cronbach et al 1972) collects da ta  from which 

estimates can be made of the components of variance for measurements made 

by a certain procedure. In a generalizability study one obtains two or more 

scores for a person, and examines the consistency of the scores.

An im portant goal of generalizability studies is to identify and measure 

variance components th a t contribute errors to a measurement. They provide 

information on observer reliability and agreement, identifying sources of error
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and determining the relative importance of each component. This prelimi­

nary testing of the myositis tools can be viewed as a generalizability study, 

and should be regarded as an integral part of the instrum ent development.

The design of the real patient exercises, and an approach specifically de­

veloped for the study of the reliability of the tools and the level of agreement 

amongst the physicians, are described in sections 3.2 and 3.3. The results 

from both real patient exercises are presented with an overview in section 

3.4.

The main purpose of the statistical analysis of the experiments is to assess 

the reliability of the tools and the agreement among the physicians. Since it 

is not possible to have a valid measure unless the measure has some degree 

of reliability, demonstration of reliability is generally viewed as a necessary 

first step to establishing the quality of a measure (Shrout (1998), Carey 

and Gottesm an (1978)). It is to be hoped th a t the results of the statistical 

analyses are of use in indicating those areas th a t require further discussion. 

The analysis of the first exercise was an interim analysis. Both exercises 

provide information on the behaviour of the tools.

3.2.1 Experimental Design

The Latin square design eliminates two extraneous sources of variation by 

using two-way or double blocking on the experimental units. A J x J  Latin 

square, is a square m atrix with J  rows and J  columns. Each of the resulting 

J 2 cells contains one of J  letters.

In this experiment each letter corresponds to one of the patients and 

each letter occurs once and only once in each row and column. Each column 

represents one of the physicians and each row represents the time at which 

the patient was seen.
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The model used is

Uijk  ~  M +  f i j  +  Tfc +  6 i jk  (3-1)

for i , j ,  k =  1 ,2 ,..., J . Here denotes the ith  rating (i = 1 ...J) on the 

the j t h  patient (j = 1....J) a t the kth time; — oo < /i <  oo is the overall 

population mean of the ratings, a* is the difference from fi of the mean of the 

i th  physician’s rating (ie the mean across measurements made on all targets), 

/3j is the difference from /i of the j t h  patients so-called true score (i. e the 

mean across many repeated ratings on the jth  target), r* is the effect of the 

k th  time slot and is the random error.

The model is additive, any interaction between time, physicians or pa­

tients is identified with error. Furthermore, since there is only one observa­

tion in each cell, only two of the subscripts i , j ,  and k are needed to denote 

a particular observation. Assuming th a t the patients are randomly selected 

from a larger population, equation (3.1) is appropriate in two different situ­

ations. The first is one where a random sample of J  physicians are selected 

from a larger population, and each physician rates each patient (random ef­

fects), and the second is where each patient is rated by each of the same J  

physicians who are the only physicians of interest (mixed effects).

For a J x J  Latin Square the analysis of variance consists of partitioning the 

to ta l sum of squares of the N  = J 2 observations into appropriate components, 

here, time, physicians, patients and error by using the identity

Vijk -  y... =  (m .. -  y . . )  +  (y.j. -  y...) +  (y..k -  y . . )

+ {y i jk  -  m.. -  y.j. -  y..k +  2£...).

Squaring each side and summing over i, j, k and noting th a t (i,j,k) take on 

only J 2 values leads to

S S T =  S S R +  S S C +  S S fi +  S S E,
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where

s s t  = J 2 J 2  J 2 ( y m  -  y f
i=1 j —1k=l

S S R = J ' t ( y i. . - y . J 2
i—1

ssc = j ' t ( .U-y-f
3 = 1

ss0 = JY,(y..k-y...)2
k= 1

and
j  j  j

S S E = T.iVijk -  Vz.. -  y.j. -  y..k +  2y...)2. 
i=1 j = 1 fc=l

(S'/St is the to ta l sum of squares, S S r is the sum of squares due to the rows 

(tha t is time), S S c  is the sum of squares due to the columns (tha t is the 

physicians), SSp  is the sum of squares due to the patients and S S e  is sum of 

squares due to error.) The corresponding degrees of freedom are partitioned 

as

Treatments
Total Rows Columns (patients) Error

J 2 - l  =  ( J - l )  +  ( J - l )  +  ( J - l )  +  (J  — 1)(J — 2).

The tijk s and the time component r^’s are normal random variables with 

means zero and variances of and of respectively. Assuming th a t the patients 

are randomly chosen from a larger population the patient component is 

also a normal random variable with mean zero and variance, of.

If the J  physicians are assumed to be a random sample selected from a 

larger population then cti is a random variable th a t is assumed to be normally
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distributed with a mean zero and variance erf. If however the J  physicians are 

assumed to be the only physicians of interest is a fixed effect subject to the 

constraint oti =  0. The expected mean square component corresponding 

t0 is el  = £ /= i a f / ( J  — 1). The complete analysis of variance for both 

cases is shown in table 3.1.

Table 3.1: The Complete Analysis of Variance for model 3.1

Source of 

Variation

Degrees of 

Freedom

Sums of 

Squares

Mean

Square

Expected 

Mean square 

(random effects)

Expected 

Mean square 

(mixed effects)

Physician J - l SSphys M Sphyg ° 2e + J ° l + j «i

Patient J - l SSpat M S Pat a\ +  Ja^ of + Ja^

Time J - l SSpime M  Spirne of 4- Jof of + Jof

Error ( J - l ) ( J - 2 ) SSE M S e

Total J %-  1 SSt
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3.3 Agreement and Observer Reliability

The terms ‘observer reliability’ and ‘agreement’ are often used interchange­

ably, but in theory they are different concepts.

Reliability coefficients express the ability to differentiate among subjects. 

They are ratios of variances: in general, the variance a ttributed  to the dif­

ference among subjects divided by the to tal variance. If for example a test 

were applied a t two time points and the data  from successive applications 

were available, ideally the results would be the same. However variation in 

the m ethod and location of sampling as well as variation in other (labora­

tory) procedures may lead to different outcomes. In this context it might be 

said th a t there is empirical evidence th a t the test is reliable if the m ajority 

of the subjects are classified in the same way for both applications of the 

test. Empirical evidence of an unreliable test may lead to refinements of the 

testing procedure.

Agreement refers to conformity. Agreement param eters determine whether 

the same value is achieved if a measurement is performed more than  once, 

either by the same observer or by different observers. Observers would typi­

cally be said to exhibit a high degree of agreement if a high percentage of their 

measurements concurred, and poor agreement if they often made different 

measurements. In general the la tter outcome could arise if the categories were 

ill-defined, if the criteria for assessment were different for the observers or if 

the ability of the observers to examine the criteria differed sufficiently, possi­

bly as a result of different training or experience. Poor empirical agreement 

might therefore lead to a review of the category definitions and diagnostic 

criteria, or possibly retraining with a view to improving agreement and hence 

consistency of diagnoses and treatm ent.

In a more heterogeneous population (with larger ranges) the value of a
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reliability coefficient will be higher reflecting the fact th a t in heterogeneous 

populations subjects are easier to distinguish than  in homogeneous popula­

tions. It might be imagined th a t in a heterogeneous population reliability 

and agreement measures will correspond well. In homogeneous populations 

however generally reliability is low as it is difficult to distinguish between 

patients, but agreement may well be high (Stratford 1989). Caution should 

be exercised in comparing agreement parameters between populations and 

in extrapolating results on these parameters to populations th a t differ in 

respect to heterogeneity (Stratford 1989).

For the experiment in question it is of interest not only to  measure how 

well the newly developed tools differentiate between patients but also to 

a ttem pt to assess the level of agreement between physicians rating the same 

patient using these tools.

A large number of outcomes are to be examined, and although a number 

of measures could be used to assess agreement and reliability it was decided 

th a t a commonality in analysis would be useful. The MYOACT and MY- 

ODAM scores are on a continuous scale from 0-100, but the manual muscle 

scores, the MITAX scores and the to tal MDI are all discrete. However the 

integer responses could be treated as if they came from a Gaussian general 

linear model, and as a result of this, as a first approach to the assessment 

of agreement and reliability of the Myositis tools, an In tra  Class Correlation 

Coefficient was used.

3.3.1 The Intraclass Correlation Coefficient

The In tra  Class Correlation Coefficient (ICC) is prim arily a measure of reli­

ability designed for continuous variables, although ordinal d a ta  is sometimes 

treated  as continuous for the purpose of the calculation of an ICC. It is de­
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fined as the correlation between one measurement (either a single rating or 

a mean of several ratings) on a target and another measurement obtained 

on th a t target. The intraclass correlation, originally developed by Pearson, 

was made a part of the analysis of the variance components by Fisher. He 

states in ‘Statistical Methods for Research Workers’ (Fisher 1925) th a t a very 

great simplification is introduced into questions involving intraclass correla­

tion when it is recognized th a t in such cases the correlation merely measures 

the relative importance of two groups of factors causing variation.

The ICC is a bona fide correlation coefficient th a t is often but not nec­

essarily identical to the component of variance due to targets divided by the 

sum of it and other variance components. If the group means are assumed to 

be distributed with a variance component of and the within-group deviations 

with a component erf then the usual definition of pi the population value for 

the ICC is given by

where pi ranges from 0 to +1.

The ICC is, like any other correlation coefficient, dependent on the range 

of the variables measured. W ith larger ranges, th a t is, a more heterogeneous 

population the value of the ICC is higher. This reflects the fact tha t, as 

previously mentioned, in heterogeneous populations subjects are easier to 

distinguish than  in homogenous populations.

However although the ICC is designed to  measure how well patients can 

be distinguished from each other despite measurement errors, it is also used as 

a measure of agreement. It can be seen from equation (3.2) th a t a high value 

for the ICC is naturally associated with a small within subjects variance. For 

example if a set of judges agree perfectly about a set of subjects, making for 

a within subjects variance of zero (perfect agreement) ICC =  1 which also
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indicates to tal reliability.

The results of an analysis of variance of experimental da ta  can, if required, 

be used (and will in this experiment) to estim ate the variance components 

attributable to different classes of effect. A description of the estim ation of 

the components of variance from an ANOVA in its general form is as follows. 

Let a 2 be the vector of variance components to be estim ated in some model 

and let s  be a vector of sums of squares. Then, when each sum of squares 

has an expected value th a t is a linear function of the variance components, 

E (s)  is a vector of such linear functions th a t we can represent as C cr2, so 

th a t

E (s)  = Ccr2. (3.3)

Hence for non-singular C  the ANOVA estim ator of <x2 is based on (3.3) and 

is the solution for a 2 to

s  = C & 2, (3.4)

namely

&2 =  C -1s. (3.5)

It is clear from (3.5) th a t each element of & , i.e. each estim ated variance 

component, is a linear component of the sums of squares in s. It is im portant 

to note however th a t there is nothing inherent in (3.5) to  ensure th a t every 

element of <r2 is always non-zero. Thus it is th a t ANOVA estim ates for 

param eters th a t are by definition positive can be negative.

Generally it is accepted th a t a negative estim ate either may be indica­

tive of a wrong model or an indication th a t the true value of the variance 

component is zero (Searle et al. 1992). However Nelder (1954) states th a t 

there is no justification for the common practice of pu tting  equal to zero
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a variance component whose estimate from an analysis is negative. Nelder 

states th a t the appropriate formulae should be applied as though the com­

ponent were negative and special distinction should be made. In line with 

this Fleiss (1985) states th a t it would be a mistake to “correct” the estim ate 

by changing it to zero, because the effect on the estim ation of pi would be 

systematically to bias the intraclass correlation coefficient. Sitgreaves (1960) 

points out th a t it is also possible, even with positive variance estimates, when 

each target is rated by each of the same k judges who are the only judges 

of interest, for the population value of the ICC to be negative. (A negative 

ICC is usually taken to be zero reliability).

There are numerous versions of the ICC th a t can give quite different 

results when applied to the same data. The choice of the appropriate form 

of the ICC depends on the choice of the appropriate statistical model and 

to the potential use of its results. Shrout and Fleiss (1979) state th a t the 

choice of the appropriate form of the ICC calls for three decisions; a) is a 

one-way analysis of variance appropriate for the analysis of the reliability 

study or should judge leniency or severity be treated as a source of error? b) 

Are differences between the judges’ mean rating relevant to the reliability of 

interest, c) Is the unit of analysis an individual rating or the mean of several 

ratings? The first and second pertain to the appropriate statistical model for 

the study, and the second and third to the potential use of its results.

Given th a t in this experiment each physician rates each patient, a one way 

analysis of variance would not have been appropriate, and, given our desire 

to  assess the agreement between the physicians, it is certainly of interest to 

partition the within-target sum of squares into a between-physicians sum of 

squares and a residual sum of squares.
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3.3.2 An Intraclass Correlation Coefficient for the M yosi­

tis Real Patient Exercises

The model used in both real patient exercises is

Ui jk  ~  H  +  & i  +  ft' +  Tk +  Eijk]

the covariance between two ratings on a patient is cr| and the to tal variance 

is cr2 +  crg +  +  . Given the fact th a t the usual definition of the population

value for the ICC is

» -  ^  p « )

a possible formula for estimating pi for this experiment might therefore be

a 2
Pl —2 i rrt2, i /t-2 (3-7)<ri +  0B +  (*i +

However there are two problems with this definition of pi. Firstly it is not 

clear th a t equation (3.7) is in fact a correlation coefficient and, secondly, al­

though time has been adjusted for in the analysis it can clearly be regarded 

as an artefact of the design of the experiment and it would be preferable to 

assume th a t all the patients were seen at the same time. If this assumption 

were made, then no unbiased estim ator of cr| would be available if there was 

any interaction between time and patients. However if there was some inter­

action between time and patients then <r| would no longer be the covariance

between ratings on a target because of correlated interaction terms, and the
2

actual covariance would be equal to <jp — where a]nt is the variance of 

the interaction. The to tal variance would then be cr2 -I- cr| -1- cr2 giving pi the 

population value for the ICC as



However in using a Latin Square for the design of the experiment it was 

assumed th a t there was no interaction between patients, physicians and tim e 

and therefore in this case ajnt =  0 and cr| is the covariance between the 

ratings on a patient. This gives, for this experiment, pi the population value 

for the ICC as

r2cr
Pi = a l  + crj + a l

This can then be estim ated consistently but with bias by estim ating the 

variances from the ANOVA as follows;

M S p at -  M S e 
J

2 _  MSphys — M S p
° a ~  j

of =  M S e ■

Consequently when the physicians are assumed to be selected a t random 

from a larger population pi is estim ated by

r r r i r I = ________ MSpat -  M S e________  f„
1 MSpat + MSphys + ( j -  2)M S e  ' ( ’

In the case where the physicians are assumed to  be the only physicians 

of interest pi is estim ated (consistently but with bias) by

^ = M s T : \ j Mm s E (3-9)

As in this instance we would hope th a t the new tools can be effectively 

used by many physicians, and consequently wish to generalize the results to 

other physicians within some population, the physicians should be considered 

to be a sample from a larger population and we should use IC C (l).
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It should be noted th a t both IC C (l) and ICC(2) give the expected reli­

ability of a single judges rating, which is appropriate in the experiment. If 

the unit of reliability was the mean of a number of ratings, the IC C ’s would 

need to be altered to allow for this (Shrout and Fleiss 1979).

3.3.3 The Construction of a Confidence Interval for 

IC C (l)

The hypothesis th a t pi =  0 is equivalent to the hypothesis th a t <r| =  0. 

This hypothesis is rejected if the ratio exceeds the critical value of

the F distribution with (in this experiment) ( J - l)  and (J - l) (J -2 )  degrees 

of freedom. A confidence interval for pi however must be a function not 

only of MSpat and M S e b a t of M S phys as well. If pi were known but the 

individual components of variance not, following Fleiss and Shrout (1978) 

the expectation of M S pat could be expressed as

E ( M S pat) =  — 1 _ ( Jpra l  +  [1 +  (J  -  l ) Pj]of) (3.10)
i -  pi

with J  being the number of physicians (and in this experiment patients) in 

the study. Consider

V = (T=-^) (PiMSph* +  K1 + (J -  l )Pi) -  PiW S e)

th a t is distributed independently of M S pat • The expectation of V can be 

expressed as

E (V )  = - L - ( J p , a l  +  [1 +  (J  -  i ) Piy ( )
1 -  pi

th a t is, equal to E ( M S pat). Satterthw aite (1946) gives the following for­

mula for estim ating the degrees of freedom of M S  =  J2i=i aiMSi. If M S  is
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approximately distributed as a  X ///>  then

/  =  M   (3 n )

Following Satterthw aite (1946), w ith Fpuys =  Ajfg‘a*, V can be shown to be 

approximately distributed as ^  where x^ denotes a variable distributed as 

chi square with v  degrees of freedom, c = E ( M S pat), and

_  (J  — 1)(J -  tyjPlFphys +  1 +  Pi{J  ~  2) ) 2 . .
(J-l)Jp?F^s + (l + p7(^-2))2 ’ j

Thus the random variable —-| f— has approximately an F distribution with 

(J - l)  and v degrees of freedom. Let v  be estim ated from (3.12) with pi 

defined in (3.8), replacing pj, then the approximate probability statem ent

, MSpat jp*\1 — a  & p r (— < F  ),

where F* is the upper 100(1 — a)  percentile of the F distribution with (J - l)

and v  degrees of freedom, may be converted into the approximate 100(1  — a)

percent confidence interval,

(M S pat ~  F * M S e )
Pi  F ‘ {MSphys + ( J - 2 ) M S E) + F , M S rat P,L' ;

An approximate confidence interval bounded above is of the form

________(F*MSpat -  M S e ) _________   ("n T i
Pl M S phys + ( J - 2 ) M S E + F , M S pat~ P,u’ 1

where F * is the upper 100(1 — 0 ;) percentile of the F distribution with v and

(J - l)  degrees of freedom. Approximate two-sided intervals may be derived

from equations (3.13) and (3.14) by using the upper 100(1 — | )  percentiles.

The accuracy of Satterthw aite’s approximation to the distribution of a

linear combination of independent mean squares has been studied by Gaylor

and Hopper (1969) and Fleiss (1971) and when the coefficients of the mean

squares are all positive the approximation has been found to be good.
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3.3.4 Disadvantages of the Intraclass Correlation Co­

efficient

There are two m ajor difficulties with the interpretation of an ICC. Firstly it 

is a ratio  of variances and therefore difficult to interpret clinically. Secondly 

although sometimes used as a measure of agreement there are difficulties 

associated with i t ’s interpretation as such. Once the ICC has been calculated 

it is not evident how much of the within subjects variance is a ttributable 

to  cr̂  (that is to  the physicians themselves). Although it is clear th a t a 

high value of an ICC is naturally associated with a small within subjects 

variance (a£ +  of), and therefore indicates good agreement, and th a t a small 

w ithin subjects variance should yield a high intraclass correlation coefficient, 

indicating a high degree of reliability, it is true as previously stated, th a t in a 

homogeneous population reliability might be low while agreement is high. It 

is not possible to  ascertain from the value alone whether a low ICC indicates 

low reliability and poor agreement or whether agreement might in fact be 

high with most of the within-subject variance due to random error. It is also 

possible to obtain a relatively high ICC indicating reasonably high reliability 

with most of the w ithin-patient variance being due to the physicians not 

random error, indicating poor agreement.

In this experiment, with a particular area of interest being the amount 

of the within subject variance attributable to the physicians themselves, it is 

clear th a t IC C (l) alone does not provide adequate information on agreement 

amongst the physicians.

A possible measure of interest might therefore be the ratio of the standard 

error of measurement attributable to the physicians and the standard error
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of measurement attributable to the patients themselves. T hat is

(3.15)

Here a small value is associated both with a small value of aa th a t is, a 

high level of agreement between the physicians and a high value of a p. This 

measure would enable us to comment on the level of physician agreement 

irrespective of the amount of variation due to  random error. It is clear 

th a t r is primarily a measure of agreement, and thus the combination of r  

and IC C (l), would enable us to assess not only the ability of the tools to 

differentiate between subjects, but how much the physicians agreed.

In the case where the physicians are assumed to be selected at random 

from a larger population r can be estimated by

3.3.5 A Confidence Interval for r  =  £aop

The hypothesis th a t r = 0 is equivalent to the hypothesis th a t a 2 = 0. This

with (J - l)  and (J - l) (J -2 )  degrees of freedom. However r itself, is not a ratio 

of mean squares and therefore none of the standard ANOVA distributional 

results can be applied. As a result of this the subsequent development of a 

confidence interval for r follows the methodology used by Fleiss and Shrout 

(1978) as presented in section 3.3.3.

A confidence interval for ^  needs to be a function of not only M S piiys 

and M S e but of M S pat as well.

If r were known, but the individual components of variance were not, the 

expectation of M S Phys could be expressed as

(3.16)

hypothesis is rejected if exceeds the critical value of the F distribution

E ( M S phys) = J r 2a 2p +  a 2, 
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where J  is, as previously, the number of patients and the number of physicians 

in the study. Consider

V  = r 2M S pat + ( l - r 2) M S E (3.18)

th a t is distributed independently of M S phys• The expectation of V * can also 

be expressed as

E{V*) = J r 2aI  +  a2

th a t is, equal to E(MSphys)- V * is distributed independently of M S phys but 

not exactly as a constant times a chi-square variable. However following 

Satterthw aite (1946) V* can be shown to be approximately distributed as

V  «  & p . (3.19)

where

f  =  (J -  1 )(J -  2)(r2MSpat + (1 ~ r 2) M S Ef  
1 ( J  -  2)r4M S yat +  (1 — r2)MS% ' 1

Thus the random variable has approximately an F distribution with

(J - l )  and /  degrees of freedom. Let /  be estim ated from equation (3.20) 

with f 2, defined in equation (3.16), replacing r 2. Then the approximate 

probability statem ent

1 -  a  «  pr{M ^ ys < F*)

where F* is the upper 100(1 — a)  percentile of the F distribution with ( J - l )  

and /  degrees of freedom, may be converted into the approximate 100(1  — a) 

percent confidence interval



An approximate confidence interval bounded above is of the form

9 F * M S VhyS — M S e  o , x
r  <  \ , e  =  rl ,  3.22M S ^ - M S e

where F* is the upper 100(1 — a ) percentile of the F distribution with f and 

( J - l)  degrees of freedom. It follows th a t

MSphys -  F*MSe
r > i F*{MSpa t - M S E ) = r‘’ ^

and

'F* MSphys — M S e

r < t l ^ ^ M s f —  ^
Approximate two-sided intervals may be derived from equations (3.23) 

and (3.24) by using the upper 100(1 — | )  percentiles.

3.4 Results

The residuals from the analysis of each tool were examined and a selection 

of the results are presented in appendix B. Any apparent departures from 

normality did not seem sufficient to impact on the qualitative conclusions 

drawn.

Although generally, following the approach of Nelder (1954) and Fleiss 

(1985), in the calculations negative estimates of variance components have 

not been changed to 0 , when the estimate of the physicians variance is nega­

tive it has been changed to 0 in equation (3.20) in order to  obtain an upper 

bound for the confidence interval for r. In these cases the upper bound of 

the confidence interval is approximate. (The value taken for f  in these cases 

is zero). In some instances however, the estim ate of the upper bound of 

the confidence interval for r 2 remains negative despite the adjustm ent, and 

consequently no confidence interval is given.
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The values of r and IC C (l) are well defined for all outcomes, but it should 

be noted th a t the distributional properties are best understood for the truly 

measures. Although the numerical values should therefore be interpreted 

with some caution, they should provide qualitative guidance for the compar­

ison of the behaviour of the different tools.

Both measures have been used to classify the results from both real pa­

tient exercises into three categories. For the purpose of this classification an 

ICC(1)> 0.65 has been taken as high, indicating th a t a tool differentiates 

well between patients, and physician agreement has been considered to be 

high if r < 0.40. (These boundaries are arbitrary and have been based on an 

evaluation of the results of the experiments. They have been defined to ease 

classification of the results.)

The first category consists of those tools where both the value of IC C (l) 

is high and r  is low indicating th a t the tool is differentiating well between 

patients with a high level of physician agreement. These results have been 

categorized as GOOD.

The second category consists of those tools th a t dem onstrate a good per­

formance in only one of the two measures. These results have been cate­

gorized as GOOD*. Among these when r is low indicating a high level of 

agreement among the physicians, it appears th a t the low value of IC C (l) is 

generally due to little or no variation among the patients, and these tools can 

be considered to be performing reasonably well. However, in this category, 

when IC C (l) is high, indicating an ability to  differentiate between patients, 

the high value of f  indicates th a t there remained some variability among the 

physicians.

The third category consists of those tools where both IC C (l)is low and f  

is high, indicating th a t the tool is not differentiating well between patients

64



and there is a poor level of physician agreement. These tools have been 

classified as POOR.

In the first exercise there is little evidence of any patients having any 

‘gastrointestinal’, ‘cardiovascular’ or ‘o ther’ activity or ‘cardiovascular’, ‘pe­

ripheral vascular’ or ‘other’ damage. The groups of patients did not differ 

enough in these areas to assess how effectively the tools detected any dif­

ferences, or to  draw any generalizable conclusions on the level of physician 

agreement. The results for these areas will not be presented.

In the first real patient exercise following a training session (using a sepa­

rate  patient) the manual muscle tests exhibited in general reasonable reliabil­

ity and reasonable levels of physician agreement. The main areas of concern 

were the neck and wrist elements where, in particular, physician agreement 

seemed poor. However it was felt th a t the results for the manual muscle 

tests were generally satisfactory and the assessments were not repeated in 

the second exercise.

In the second exercise there is little evidence of any ‘gastrointestinal’ 

or ‘cardiovascular’ activity, or ‘peripheral’ vascular or ‘o ther’ damage. The 

groups of patients did not differ enough in these areas to assess how effectively 

the tools detected any differences, or to  draw any generalizable conclusions 

on the level of physician agreement.

One patient failed to turn  up for the second real patient exercise intro­

ducing some correlation between order and physician. However given th a t 

in both  the first and second exercise variation due to  order was very small it 

was felt th a t this correlation had a minimal impact on the results.

An overview of the findings is presented in section 3.4.1 with illustrative 

observations from both experiments found in appendix C. All computing 

was done in S-plus. Details of the routines used are given in appendix A.
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Table 3.2: Estimates and 95% confidence intervals ([,]) based on results from

the first real patient exercise.

GOOD GOOD* POOR 
ICC f  ICC r ICC f

MANUAL
MUSCLE
Deltoid
Biceps

Quadriceps
Gluteus
Medius
Gluteus

Maximus
Ankle
Neck

0.72(0.45,0.93] 0.22(0,0.67]
0.82(0.61,0.96] 0.12(0,0.43]
0.85(0.67,0.97] 0.04(0,0.33]

0.72(0.44,0.93] 0.38(0.07,0.98]

0.56(0.27,0.87] 0.28(0,0.91]
0.28(0.04,0.72] 0

0.062(0.31,0.90] 0.57(0.18,1.43]
MITAX 

CV Respiratory 
Mucocutaneous 

Skeletal 
Gastrointestinal 

Total 
Muscle

0.92(0.80,0.98] 0.07(0,0.27]
0.57(0.27,0.88] 0 
0.52(0.24,0.86] 0.38(0,1.12]
0.45(0.16,0.83] 0 
0.65(0.37,0.91] 0.41(0,1.07]

0.48(0.20,0.84] 0.62(0.05,1.62]
MYOACT
Pulmonary

Mucocutaneous
Global
Skeletal

0.73(0.46,0.93] 0.22(0,0.66]
0.38(0.11,0.78] 0.15(0,1.03]

0.42(0.16,0.80] 0.70(0.03,1.83] 
0.21(0.04,0.63] 1.16(0,3.11]

MDI
Total 0.49(0.20,0.84] 0.77(0.24,1.92]

MYODAM
Mucocutaneous

Pulmonary
Ocular

Endocrine
Gastrointestinal

Skeletal
Global
Muscle

0.84(0.65,0.97] 0.14(0,0.44]
0.74(0.48,0.94] 0.28(0,0.77]
0.90(0.77,0.98] 0.06(0,0.28]

0.59(0.30,0.89] 0.16(0,0.72]
0.31(0.09,0.73] 0.87(0,2.30] 

0.15(0,0.59] 0.67(0,2.36] 
0.44(0.16,0.18] 0.86(0.26,2.15] 
0.57(0.27,0.88] 0.60(0.17,1.52]

OTHER 
Physician’s 

Global 
Activity Score 

Physician’s 
Global 

Damage Score

0.40(0.14,0.79] 0.48(0,1.41] 

0.51(0.21,0.85] 0.70(0.19,1.76]



Table 3.3: Estimates and 95% confidence intervals ([,]) based on results from

the second real patient exercise.

GOOD GOOD* POOR 
ICC f  ICC f  ICC f

MITAX 
Pulmonary 

Mucocutaneous 
Skeletal 

Gastroi ntestinal 
Total 

Muscle 
Constitutional

0.33[0.07,0.79] 0.22[0,1.10]
0.23(0,0.73] 0

0.74[0.46,0.95] 0.20(0,0.61]
0.35[0.08,0.80] 0.15[0,1.02]

0.34[0.09,0.79] 0.62(0,1.74]
0.33(0.06,0.80] 0

0.43(0.15,0.84] 0.58(0,1.57]
MYOACT
Pulmonary

Mucocutaneous
Skeletal
Muscle

Constitutional
Gastrointestinal

0.45(0.16,0.85] 0.40(0,1.18] 
0.32(0.04,0.79] 0

0.65(0.35,0.93] 0.23(0,0.72]
0.74(0.46,0.95] 0 
0.71(0.41,0.94] 0.15(0,0.56]

0.38(0.10,0.82] 0.17(0,0.96]
MDI

Mucocutaneous
Pulmonary

Ocular
Endocrine

Gastrointestinal
Skeletal
Global
Muscle

Cardiovascular
Infection

0.60(0.29,0.91] 0.13(0,0.63]
0.41(0.13,0.83] 0.49(0,1.41]

0.78(0.52,0.96] 0.12(0,0.45]
0.54(0.23,0.89] 0.17(0,0.74]
0.55(0.24,0.89] 0.34(1,1.00]

0.36(0.09,0.80] 0.45(0,1.38]
0.70(0.41,0.94] 0.20(0,0.64]
0.76(0.49,0.95] 0 
0.86(0.65,0.97] 0

0.25(0.02,0.74] 0.24(0,1.32]
MYODAM

Mucocutaneous
Pulmonary

Ocular
Endocrine

Gastrointestinal
Skeletal
Global
Muscle

Cardiovascular
Infection

0.70(0,0.94] 0 
0.78(0.51,0.96] 0.10(0,0.43]
0.75(0.46,0.95] 0

0.50(0.18,0.87] 0 
0.52(0.21,0.88] 0.28(0,0.91]

0.28(0.04,0.76] 0.43(0,1.48]
0.67(0.37,0.93] 0.28(0,0.80]

0.64(0.33,0.92] 0.35(0,0.96]
0.82(0.59,0.97] 0

0.22(0.00,0.72] 0.23(0.1.40]
OTHER 

Physician’s Global 
Activity Score 

Physician’s Extra 
Muscular Score

0.68(0.38,0.93] 0.29(0,0.80]

0.54(0.23,0.89] 0.29(0,0.91]



3.4.1 An Overview of The Findings

A ssessm ent of D isease A ctiv ity

In the first exercise, with respect to assessment of disease activity, the MITAX 

seemed to work well with, perhaps paradoxically, only the assessment of 

disease activity in the muscle system exhibiting poor reliability and a low level 

of agreement among the physicians. The MYOACT assessments exhibited 

both poor reliability and a low level of agreement among the physicians in 

the global and skeletal assessments.

In the second real patient exercise the MITAX appeared in the main to 

lead to a high level of agreement between the physicians. However both 

agreement and reliability were poor with respect to the constitutional ele­

ment. The MYOACT assessments all appeared to exhibit a high level of 

agreement among the physicians.

In summary, the analysis of the results from both exercises suggest th a t 

both  the MITAX and MYOACT perform well, with lower intraclass corre­

lation coefficients generally being associated with a lack of variation in the 

patien ts’ disease. Only the constitutional element of the MITAX (only as­

sessed in the second exercise), the TOTAL MITAX (average ICC =  0.50, 

average f  =  0.70) and the skeletal element of the MYOACT (average ICC =

0.43, average r =  0.52) performed poorly on average.

A ssessm ent of D isease Dam age

In the first real patient exercise the to tal MDI performed poorly with respect 

to both reliability and agreement. The MYODAM performed poorly with 

respect to reliability and agreement in the gastrointestinal, skeletal, muscle 

and global elements.
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In the second real patient exercise there was generally a high level of agree­

ment among the physicians for the different components of the MDI. Only 

the skeletal and pulmonary MDI elements performed poorly with respect to 

both  reliability and agreement. Skeletal assessment in the MYODAM also 

performed poorly with respect to both reliability and agreement.

In summary the results from both exercises suggest th a t the MDI per­

forms well. As the individual elements of the MDI were only assessed in 

the second exercise, the assessment of agreement and reliability can only be 

based on the results from th a t exercise. As previously mentioned only the 

skeletal and pulmonary elements perform poorly. However the MYODAM 

generally appears to perform less well than the MDI. The gastrointestinal 

(average ICC =  0.42, average f  =  0.58), skeletal (average ICC =  0 .2 2 , av­

erage r =  0.55), global (average ICC =  0.55, average f  =  0.57) and muscle 

(average ICC =  0.61, average r =  0.48) elements, on average, all perform 

poorly with respect to  both reliability and agreement.

There is no doubt th a t methods of assessing disease activity and damage 

in myositis are urgently required. Professor D. Isenberg and IMACs now 

propose th a t those interested in assessing myositis patients either as part of 

long term  outcome studies or in a drug trial should use one or both  of the 

activity or damage measure, albeit th a t formal validation studies in larger 

patient populations are being planned.
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Chapter 4

A nalysis of the  

Interrelationships between  

D isease A ctivity  in the  

Different Organs and/or  

System s in System ic Lupus 

Erythem atosus.

The definition of the internationally recognized disease activity and damage 

measures for the assessment of lupus (as described in section 2.1.3) have 

brought considerable order to what had become an increasingly chaotic situ­

ation, and have provided a consistent way to assess the disease. However the 

clinical manifestations of lupus prove a great challenge to rheumatologists 

managing the condition and it would clearly be of use to  clinicians to  be able 

to identify those patients a t risk of developing active disease. There is a need
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to better understand predictors of disease activity in order to improve and 

standardize therapy and to prevent the development of chronic damage.

Observation of patients with lupus suggests, to some physicians (personal 

communication with Professor D. Isenberg and Dr C. Gordon), th a t subsets 

exist within the disease, and it has been suggested th a t the different sub­

sets may benefit from different approaches to treatm ent. It is of interest to 

a ttem pt to assess the validity of this clinical impression.

The aim and purpose of the subsequent analysis is to help develop mod­

els for disease activity in lupus based on the BILAG system. As well as 

attem pting to assess the validity of the hypothesized existence of subsets of 

the disease, a particular focus of the analysis will be on whether there exists a 

reliable method of identifying those patients with lupus who are most a t risk 

of experiencing an increase in disease activity. Since it appears th a t some 

patients follow a more benign course it could be hypothesized th a t there may 

be identifiable prognostic indicators for disease severity and activity. For ex­

ample, an increase in disease activity in one system might affect the rate of 

increased activity in the same system and may also alter the rate of activity 

in other systems.

The development of these models will help with the understanding of the 

apparent correlation between activity in different organs and /o r systems and 

will examine the prognostic importance of activity levels. Approaches to data  

analysis will be developed so th a t these questions can be answered.

In general, for causal inferences, biological plausibility is a m ajor crite­

rion. However, the search for relationships in medical da ta  may or may not 

have substantial biological motivation. For example, in a routine analysis of 

da ta  from a marrow transplant programme, Storb et al. (1977) established a 

relationship between graft rejection and the amount of donor marrow used
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in the transplant procedure. While this finding was unexpected, it neverthe­

less led to a proposal for the modification of the existing clinical procedures, 

suggesting th a t when the number of available marrow cells fell below a cer­

tain  threshold, the use of buffy-coat cells from the marrow donor might be a 

reasonable approach.

The database under consideration comprises information on patients from 

lupus clinics a t two hospitals in Birmingham, The Queen Elizabeth Hospital 

and the City Hospital. It incorporates considerable demographic information, 

the BILAG activity index, the SLICC damage index and detailed information 

on therapy and laboratory data. The data  has been collected on 440 patients, 

29 men and 411 women over a period of ten years. 277 of the patients are 

Caucasian, 72 Afro-Carribean, 67 Asian and 24 of other ethnic origins.

4.1 An Introduction to the Analysis of Re­

peated Categorical Outcomes

Longitudinal da ta  sets, comprised of an outcome variable, yu, and a px.1 

vector of covariates X u , observed at times t  = 1,..., rii for subject i = 1,..., K ,  

occur frequently. Typically the interest is in either the pattern  of change over 

tim e or more simply the dependence of the outcome on the covariates.

W ith a single outcome for each subject (rii =  1), a generalized linear 

model (McCullagh and Nelder 1989) can be applied to obtain such a descrip­

tion for a variety of continuous or discrete outcome variables. W ith repeated 

observations, however, the correlation among values for a given subject must 

be taken into account. Ignoring correlation where it exists can lead to  incon­

sistent estimates of precision and incorrect inferences concerning regression 

coefficients.
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There are therefore two main objectives for statistical models of longitu­

dinal data; firstly, for convenience to adopt the conventional regression tools 

th a t relate the response variable to the explanatory variables, and secondly, 

as much as possible to  account for the within subject correlation. Generally 

the regression objective is of prim ary interest, as while it is essential to ac­

count for the within-subject correlation, the nature of the correlation is often 

of secondary interest (Zeger and Liang 1992).

In (section 4.2) two approaches to the analysis of longitudinal da ta  are 

considered in the development of methods for the analysis of the lupus data. 

Section 4.1.1 outlines details of these approaches.

To introduce these approaches let yi = (yn, . . . ,yu: •••,2/mi)/ be a rii vec­

tor of repeated responses for the ith subject (i= l,...,K ), with yn and Xu  as 

previously defined.

4.1.1 Marginal and Transition M odels

The distinction between marginal models and models for transitions is im­

portant. For many families of non-linear models the sets of marginal and 

transition models are disjoint except in trivial cases.

In a marginal model the target of estimation is the population averaged 

or cross-sectional mean response. Marginal models give representations for 

the marginal distributions of the response at each occasion, and the depen­

dence of those distributions on personal characteristics and other independent 

variables; they do not model individual changes over time or the effects of 

covariates on individual change. Marginal models inform us about the aver­

age state  of a population and tell us nothing about the relationships among 

the responses for individual members of the population. For example two 

responses may have identical marginal distributions without there being a
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similar dependence between the responses for many or indeed any individual 

subjects.

In a transition model the target of estimation is the conditional mean a t a 

fixed tim e given the history of responses to th a t point. Models for transition 

describe the distribution of individual changes over tim e and the effects of 

individual characteristics or risk factors on those changes. Models for transi­

tions can be represented as probability distributions for the future state  given 

the individual’s history. In a transition model, the distribution of each vari­

able is considered conditionally on previous outcomes in the sequence. They 

give representations for the transition probabilities between outcome states 

a t successive occasions. The model represents the behaviour of changes from 

a previously established position.

Marginal models are sometimes called population averaged models, whereas 

transition models are termed subject specific.

The choice between the two types of model will depend on the questions 

being asked and the inferences th a t are required from the analysis. Ques­

tions addressed by marginal models include questions regarding changes in 

the overall prevalence of the disease and changes in the role of risk factors. 

Changes in marginal distributions are sometimes called ‘net changes’; they 

are longitudinal in one sense in th a t they involve comparisons over time, how­

ever they could be studied with cross-sectional data, provided th a t the co­

hort effects were sufficiently small. Marginal models do not address questions 

concerning heterogeneity between subjects, nor in the longitudinal sense do 

they address questions concerning the possible effect of a subject’s previous 

responses on their current response.

Questions addressed by transition models concern changes in an individ­

ual’s state  over time. Given this they can only be investigated with longitu­
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dinal data. Unlike the marginal model the transition model has no represen­

ta tion  in terms of cross-sectional data.

If one is interested in analysing conditional probabilities for a certain state 

or transitions to a state  given the individual’s history and the effect of co- 

variates on these probabilities, then conditional models are needed. However 

if the main objective is the effect of covariates on the outcome variable then 

marginal models are often more appropriate.

As stated marginal and transition models differ in their target estima­

tion; this has implications for the correct interpretation of the regression 

parameters. Marginal regression coefficients have the same interpretation as 

coefficients from a cross-sectional analysis. They have ‘population averaged’ 

interpretations because they contrast odds of disease in the populations with 

or without the risk factor. Because the coefficients describe the effect of 

covariates on the marginal expectation of the y ’s they have the same inter­

pretation regardless of the number of repeated observations n^, which may 

vary among subjects. If ^  is a regression coefficient in a marginal model with 

/3* a regression coefficient from an analogous transition model, then is the 

ratio  of population prevalences, whereas because of the adjustm ent for past 

responses, e@* is approximately the ratio of incidences from two groups.

M arginal M odels

In this approach the regression and within subject correlation are modelled 

separately. It is assumed1:

1 . the marginal expectation of ya, E (ya ) =  fin, is related to Xit by

g(f i i t )  =  x 'u P

where g is a known link function;

xAs presented in the literature (for example in Diggle et al. (2002))
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2 . the marginal variance is a function of the marginal mean, th a t is,

var(yit) = i / fat)  (/>

where v is a known function and </> is the over-dispersion param eter th a t 

accounts for the variation of ya not explained by

3. the covariance between yis and ya, s < t = l , . . . ,n j  is a function of the 

m arginal means and additional parameters a , th a t is,

cov(yis, yit) = c(/j,is, a),

where c is a known function.

It should be noted th a t only the first two moments of the joint distri­

bution of yi are specified by 1-3. Likelihood inference requires additional 

assumptions, as suggested for binary data  by Prentice and Zhao (1991) or 

Liang and Zeger (1992). As a consequence of this the likelihood is often 

intractable as it will involve many nuisance parameters.

Liang and Zeger (1986) developed a method for estim ation based on an 

extension of generalized linear models to the longitudinal setting. They intro­

duced a class of estim ating equations th a t take the correlation into account. 

The resulting estimates of the regression param eters remain consistent, and 

in addition, consistent variance estimates are available under the weak as­

sum ption th a t the weighted average of the estim ated correlation matrices 

converges to a fixed matrix. . Their methods are semi-parametric in th a t 

the estim ating equations are derived without fully specifying the joint dis­

tribution of a subject’s observations. Instead they specify the likelihood for 

the (univariate) marginal distributions and a ‘working’ covariance m atrix  for 

the observation vectors.

Let yu have the exponential family density

f ( y it) = exp([yit0it -  a(0it) +  b(yit)]/(f))
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th a t corresponds to a generalized linear model (McCullagh and Nelder 1989), 

when 6it is defined via a link function On = h(r)it), and 77̂  =  g(fiit) = x'itP- 

Liang and Zeger (1986) consider score like estim ating equations of the form
m

E ^ w 1^  (4 .1)
i=l

where Si  is the T x l vector of deviations ya — E(yit), for the ith  individual 

where (E (yu ) =  da(0it) / dOa) , and Vi is the TxT ‘working’ covariance m atrix 

for yi  and D i  = dE(yi)/d(3. Vi is represented as

Vi = A \ /2C o rr (y i )A ] /2

where A i ( =  diag(var(yit)) is specified by the marginal distributions. The 

estimates of the regression parameters are obtained by specifying a model 

for Corr(yi)  and solving for /3 iteratively. The authors show th a t, under 

mild regularity conditions, $  is asymptotically unbiased and normal for any 

choice of Corr(y i), with asymptotic variance depending on both assumed 

and true covariance pattern. In addition, as stated, a consistent variance 

estim ate is also available under equally weak conditions. The m ethod allows 

for tim e dependent covariates.

Transition M odels

In this approach the correlation is directly incorporated into a regression 

model. Param eters for the dependence on Xu  and for correlation are intro­

duced in a common equation. Transition models assume2:

1'. the conditional expectation of yu , /x# =  E(yu \ y u - i , y n ) ,  depends on 

Xu  and past responses as follows:

9( t i t )  =  x itP* +  ' £ , a j f j ( y i t - u - , y a ) ,  (4 .2)
3 = 1

2 As presented in the literature (for example in Diggle et al (2002))
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where f j , j  = 1 , . . . , 7 7  are known functions.

2 '. the conditional variance of yit given the past is a function of th a t is

var(yit \ yit_u  = v(ficit)(f),

where v  is a known function.

Due to the conditional form of the transition model, the associated likeli­

hood is typically easy to construct using the chain rule for probabilities. As 

a consequence the models are often comparatively straightforward to use in 

practice.

4.2 Possible Approaches to The Analysis of 

the Lupus Data

This section presents the rationale behind the choice of modelling approach 

used for the analysis of the lupus data.

The prim ary goal of the analysis being undertaken is to develop regres­

sion models th a t enable questions regarding interrelationships between dis­

ease activity in the different organs and /or systems3 and correlates of disease 

activity to be answered. The approach th a t will be taken to a ttem pt to do 

this will involve the definition of dynamic covariates (Aalen et al. 2003), th a t 

is, covariates depending on the past of the process. Dynamic covariates are 

continuously updated as time goes by and should sum up im portant aspects 

of the previous development of the process th a t may contain prognostic in­

formation. Dynamic covariates will be used here to represent disease history

3In all subsequent text organs and/or systems will be written as organs/systems and 

organ and/or system and organs and/or system, as organ/system. No attempt will be 

made to distinguish between the two.
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in each of the individual organs/systems and will be included in the models 

for disease activity for all of the organs/systems.

The BILAG index assigns one of five possible scores to disease activity 

in eight organs/systems, and can be regarded as a multivariate m ulti-state 

process where the five scores correspond to states within eight correlated 

univariate processes. Over time patients will move between the various states, 

sometimes with activity increasing, other times decreasing.

Given the nature of the data, a reasonable first a ttem pt to the modelling 

of the lupus data  can be based on conditional (transition) models th a t exam­

ine the dynamic nature of the disease process by modelling the rates a t which 

patients make transitions among the states (as represented by the BILAG 

index). As for many of the stochastic processes investigated in longitudinal 

studies, transitions between these states occur in continuous time rather than 

at discrete time points.

W hen complete records of the transitions and their times of occurrence 

are available, methods for the analysis of continuous-time stochastic processes 

are directly applicable. However, as in many longitudinal studies, because the 

monitoring of the lupus patients is not continuous, information is unavailable 

between follow up times, and the exact times of transition from one state to 

another are not known. The analysis must therefore be appropriate for such 

panel data.

A number of approaches for the analysis of panel da ta  have been proposed. 

In particular Singer and Spilerman (1976) have w ritten extensively on the 

problem of estim ating transition probabilities for continuous-time stationary 

processes from discrete time data. Singer (1981) extends these methods 

to include some types of non-stationary processes. One of the first unified 

methods for entering covariates into a continuous-time model for discrete time
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data  is given by Kalbfleisch and Lawless (1985) who developed an efficient 

algorithm for obtaining maximum likelihood estimates of the transition rates 

from panel da ta  under a time homogeneous Markov assumption. Satten 

(1996) and Goggins et al  (1998) proposed methods for applying the Cox 

proportional Hazard Model for the analysis of panel data. Turnbull (1976) 

first described interval censored data  and provided a m ethod for estim ating 

the empirical survival function and Finkelstein (1986) proposed the use of the 

full likelihood proportional hazards model for regression analysis of interval- 

censored data. Goggins et al (1999) solved the problem of interval censored 

covariates by using a Monte Carlo EM algorithm (Wei and Tanner 1990) to 

multiply impute exact times for each covariate observation.

However the approach previously discussed for the analysis of the inter­

relationships between disease activity in the different organs/system s involv­

ing the definition of dynamic covariates would lead to the inclusion in the 

models of a number of interval censored internal time dependent covariates. 

None of methodologies mentioned can be easily extended to allow for time- 

dependent covariates th a t are interval censored when the response itself is 

interval censored. So although these methodologies could be used to explore 

the relationships between disease activity in any of the organs/system s and 

non-time dependent covariates, they could only be used for an analysis of 

the interrelationships between the organs/systems by making a number of 

simplifying assumptions th a t might not be appropriate.

A number of preliminary analyses were undertaken, making simplifying 

assumptions about the actual times of the events. These analyses indi­

cated th a t there are relationships between disease activity in the various 

organs/system s and the results motivated the further detailed study dis­

cussed here. However, given the nature of the assumptions, the numerical
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results of these analyses are not informative and have consequently not been 

presented.

Given the difficulties mentioned with the analysis of the disease process 

in continuous time, th a t clinic visits are well defined, and the obvious interest 

of any doctor in the state of a patient at a clinic visit, it was decided to take 

a very pragm atic approach to the problem and to focus on the analysis of a 

pa tien t’s disease state at a clinic visit.

A lthough it has been decided to take this pragm atic approach to the 

analysis of the data, and not to consider the disease process in continuous 

time, further discussion of the relative efficiency of this approach in relation 

to the use of models of the underlying process in continuous time, will be 

made in chapter 6 .

4.2.1 The Lupus D ata and M odelling a P atien t’s State  

at a Clinic Visit

A patien t’s state a t a clinic visit is defined only a t discrete tim e points, 

and in this setting the objective can be regarded as the modelling of the 

transition probabilities between pairs of states. In a transition generalized 

linear model (section 4.1) the target of estimation is the conditional mean 

a t a fixed time point given the history of the responses to th a t point. In the 

first order transition model r] = 1 (equation 4.2) and operationally, this can 

be achieved by including the previous state in the probability model as an 

independent variable. Notationally it is now convenient to regard t simply 

as an index for visit number. Thus given responses yu and covariates x a  at 

times t= l,...,T j we can model the probability functions,

I Vi,t—I? *Cit] t  =  2 ,..., T{.
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It is possible to classify disease activity in lupus as an approximate two 

state  process where disease is considered to be active if the patient has BI­

LAG scores A or B, and not active if the patient has BILAG scores C,D or E. 

Logistic regression (generalized linear model (McCullagh and Nelder 1989)) 

is a modelling approach th a t can be used to describe the relationship of sev­

eral predictor variables to a dichotomous dependent variable. Consequently 

simple first order transition models, with t'ip being the actual time of the ith 

pa tien t’s pth  visit.

logit P r {yit =  1 | yit- i )  =  a 0 +  a iy it- i  +  (3xit +  5(t'ip -  ( ^ .O )  (4.3)

(where logit P r (yit =  1 | yit_ i) =  log — -----------  J
1 -  P r {yit =  1 I yit_i)

were used for all initial analyses, yu = 1 if the patient scores a BILAG A or

B (active disease) a t a visit and yu = 0 if a patient scores a BILAG C,D or

E (not active disease) a t a visit. The vector of regression coefficients Xit will

include among other things the patien t’s disease history.

Although the use of the logistic models (if they are correct), enables us 

to model the transition probabilities between states, it is possible th a t there 

may be additional heterogeneity in the transition rates over and above th a t 

captured by the model.

Transition models can be fit using generalized estim ating equations (Ware 

et al. (1988) and Korn and W hitmore (1979)), to adjust for any dependence 

not captured by conditioning on the patien t’s previous state. In this case fit­

ting the models using the generalized estim ating equation approach of Liang 

and Zeger (1986) will lead to population averaged estimates of the regression 

param eters after conditioning on the dynamic covariates.

It is also worth noting th a t W hite (1982) shows th a t the m ethod of Liang 

and Zeger (1986) leads to  consistent estimates of the variances of first order
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conditional distributions and thus the estimates can provide a useful and 

intuitively reasonable summary of the probability distribution of individual 

changes even when there is some evidence for dependency on the more d istant 

past.

One issue th a t might cause problems with this approach to the analysis 

of the lupus data  is th a t the patients are not all seen at the same time or 

a t regular time intervals and it will therefore be necessary to  establish how 

much dependence there is on the time between the visits. It is clear th a t to  a 

physician the state  a patient presents in a t a clinic visit is relevant whenever 

the visit may be. Nevertheless if it transpires th a t the time between visits has 

a m ajor impact on a patien t’s chance of presenting with active disease and /o r 

if this dependence is possibly not linear then it may not be appropriate to use 

the methodology described without investigating different functional forms 

for the time between visits. If however we discover th a t the tim e between 

visits has little or no impact on a patien t’s chance of presenting with active 

disease then it might be possible to use the approach described to model 

clinic visits, w ithout being too concerned by the differing times between 

visits, adjusting the models by including value of t'ip — (t'ip_ i) as shown in 

equation (4.3).

It should be noted th a t no interpretation can be made of the param eter 

in equation (4.3) when the times between visits differ between patients and 

are included in the models. However given further restrictions th a t will be 

placed on the models th a t are discussed in section 4.3 this is of no relevance 

in this analysis.
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4.3 Analysis of The Lupus Data Using Logis­

tic Regression Models

As previously discussed, observation of patients with lupus suggests th a t 

subsets exist within the disease. This analysis can therefore be regarded 

as an examination of the hypothesis ‘All lupus patients present with similar 

patterns of disease’. Common subgroups of lupus appear to be, patients with 

renal disease and little else, patients with mucocutaneous and musculoskeletal 

disease and little else, and patients with more complicated disease. For this 

reason analysis has been restricted to the mucocutaneous, musculoskeletal 

and renal organs/systems. The mucocutaneous and musculoskeletal systems 

are also the most commonly affected, and the severity of renal disease leads 

to a particular interest in renal involvement. The methodology developed 

could subsequently be used to answer more complex questions about the 

interrelationships between disease activity in other organs/systems.

Factors th a t might influence the state  of a patient a t any visit th a t were 

included in the models as explanatory variables were; history of disease ac­

tivity in the organ/system  under consideration, history of disease activity in 

all other organs/sy stems, time since the last visit, time since the pa tien t’s 

first recorded visit, tim e since disease onset, where appropriate the tim e since 

the last visit a t which the patient presented with disease activity in the or­

gan/system  under consideration and time since the last visit a t which the 

patient presented with disease activity in any organ/system . Damage in 

the organs/system s under consideration, to tal damage (as measured by the 

SLICC index), age, sex, and age a t onset of disease were also included.

Explanatory variables reflecting treatm ents a patient is receiving will be 

added into all final models in order to establish whether any relationships
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found are modified by these additions.

Initial analyses showed th a t the most significant factor in predicting the 

current level of disease activity in any of the three organs/system s chosen 

for detailed analysis was the level of disease activity in th a t organ/system  at 

the previous visit. Patients have a significantly increased chance of a BILAG

Table 4.1: % of visits with active disease (A or B score) with details of disease 

activity a t the previous visit.

Mucocutaneous Organ/System

Previous Visit %

C,D or E 

A or B
^  = 9.81% 

| f |  = 33.45%

Musculoskeletal Organ/System

Previous Visit %

C,D or E 

A or B
m s  = 12-60%

= 37.89%

Renal Organ/System

Previous Visit %

C,D or E 

A or B

31.i. — 4  7 9 % 6491 ‘±-iv/o
Iff = 63.83%

score of A or B in an organ/system  if they have scored either an A or B in th a t 

organ/system  at the previous visit. The % of visits with active disease and 

the BILAG score at the previous visit for the three organs/system s chosen 

for analysis are given in table 4.1. Given this, and, th a t the prim ary medical 

focus is to identify those factors th a t affect a patients chance of developing 

active disease, the models were initially based on a subset of the visits where
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the patient was known not to have any disease activity in any of the three 

organs/system s at the previous visit.

Table 4.2: Number of weeks since a patien t’s previous clinic visit with the % 

of patients with active disease a t the previous visit.

Number of weeks since previous visit 1 2 3 4 5
% of patients who had active disease 

in any organ/system at the previous visit 47.6 67.9 65.6 50 50

Number of weeks since previous visit 6 7 8 9 1 0

% of patients who had active disease 
in any organ/system at the previous visit 36.1 43.2 38.7 36.3 34.9

Number of weeks since previous visit 11 1 2 13 14 > 15
% of patients who had active disease 

in any organ/system at the previous visit 29.1 26.4 29.2 29.0 «  25.0

However, table 4.2 shows the relationship between the time since the last 

visit and the % of patients who were observed to have active disease in any 

organ/system  at the previous visit and it is clear th a t patients are more likely 

to return to the clinic quickly if they had active disease (in any organ/system ) 

at the previous visit. Consequently all models were based on a subset of the 

visits where the patient had not only had no disease activity a t their previous 

visit in any of the three organs/systems under consideration but also no 

disease activity a t the previous visit in any of the other organs/systems.

In starting  from a situation where the patient is known to have presented 

with inactive disease in all organs/systems at the previous visit there are a 

number of possible states the patient might present w ith a t the next clinic 

visit. For the purpose of this analysis five categories are defined. They are 

active disease in one of the three organs/systems only, simultaneous active
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disease in the mucocutaneous and musculoskeletal systems with inactive re­

nal disease, and finally active renal disease with either active mucocutaneous 

disease or active musculoskeletal disease or both. The number of visits in­

volved are given in table 4.3.

Table 4.3: Number of visits where the patient presented with active disease 

in one or more organs/systems having had inactive disease in all systems at 

their previous visit.

Inactive renal mucocutaneous and musculoskeletal disease

Active mucocutaneous disease only

Active musculoskeletal disease only

Active renal disease only

Active mucocutaneous and musculoskeletal disease 
Active renal disease with either 

active mucocutaneous, musculoskeletal or both

i f f  = 71.60%
233   o OQO/2831 —

H r = 12-54% 

■St =4-38% 

5551 = 2-26%

2831 — 0-99%

This number of categories would generally lead to the use of a polychoto- 

mous logistic regression model. However the available computer packages 

for polychotomous logistic regression do not perm it selective inclusion of a 

variable in some but not all the regressions. For this reason as well as for 

general analytic simplicity and flexibility, especially regarding variable selec­

tion, each category was individually compared to the baseline category (of 

inactive renal, mucocutaneous and musculoskeletal disease) using simple lo­

gistic models. The param eters thus estimated were then combined as if they 

had been estim ated using the full logistic model. The use of individualized 

logistic regression analyses as a replacement for polychotomous regression 

has been studied and the asymptotic relative efficiencies of the individual 

param eter estimates are observed to be generally high as are the efficiencies 

of the predicted probability estimates (Begg and Grey 1984). This approach
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was also used by Allen and Farewell (2002 ) in the analysis of the choice of 

conjunction in M atthew ’s gospel.

No restrictions were placed on the occurrence of active disease in the five 

organs/system s not chosen for analysis other than the initial restriction th a t 

there was no active disease at the previous visit.

Given the particular interest in the interrelationships between disease ac­

tivity in the various organs/systems, history of disease activity was included 

in the models in a variety of ways. Preliminary analyses indicated th a t the 

effect of a history of A scores appears to be different from the effect of a 

history of B scores, so separate variables were used for these for the three 

organs/system s chosen for detailed analysis. Binary variables were used to 

indicate simply whether the patient was known to have previously had the 

score of interest in each of the organs/systems under consideration. Dynamic 

covariates indicating the number of times th a t the patient has been observed 

with th a t score in each of the organs/systems were used to a ttem pt to model 

the severity of past disease activity. (A patient is only considered to have 

scored an A if they had been observed to score a B,C,D or E at the previous 

visit, and is only considered to have scored a B if they had been observed to 

score a C,D or E a t the previous visit.) Area under the curve measures were 

tried  in order to attem pt to reflect the effect of disease over time and the level 

of disease activity, and finally the number of previous visits was used as it 

was felt th a t this might reflect not only time, but the severity of the disease 

activity. (However it should be remembered th a t the number of visits would 

reflect disease activity in all organ systems not just the one being analysed.)

Although it has been decided to focus on the relationships between dis­

ease activity in the three organs/systems chosen for detailed analysis it is 

clearly necessary to include some history of disease activity in the other or­



gans/system s in any models. A single binary variable was created reflecting 

whether or not a patient was known to have had active disease in any of the 

other organs/systems. No variable was created to reflect the severity of past 

disease in these organs/systems; it would be meaningless to  a ttem pt to count 

up the number of times a patient had scored either an A or a B in five differ­

ent organs/systems. Damage in each of the mucocutaneous, musculoskeletal 

and renal organs/system s was represented by binary variables simply indi­

cating whether the patient is known to have damage in th a t organ/system . 

No attem pt was made to represent severity of damage by using dynamic co­

variates to represent increases in damage (as measured by the SLICC index), 

as damage is only measured intermittently. Total damage was represented by 

a binary variable indicating whether the patient was known to have damage 

in any of the organs/systems. (Dynamic covariates were used for the time 

since the last visit at which the patient presented with disease activity in the 

organ/system  under consideration, and the binary variables used for damage 

and activity can be viewed as dichotomised dynamic covariates).

As with the choice of modelling approach the choices made with regard 

to the variables defined are all essentially pragmatic.

W hen considering the effects of having histories of mucocutaneous A, 

mucocutaneous B, renal A, renal B, musculoskeletal A and musculoskeletal B 

scores it was observed th a t the results were being affected by a few abnormal 

observations. The number of visits involved are given in table 4.4.

Consequently when creating the dynamic variables for use in all the analy­

ses counts of 4 or more mucocutaneous A ’s were grouped together, and coded 

as 4, and counts of 8 or more mucocutaneous B ’s were grouped together, and 

coded as 8 . Counts of 3 or more renal A ’s were grouped together, and coded 

as 3 and counts of 6 or more renal B’s were grouped together and coded as
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Table 4.4: Number of visits with active disease.

muco A muco B renal A renal B muscularA musculoskeletal B

0 3242 2156 3340 2905 3166 1663

1 267 684 205 417 388 872

2 60 325 49 99 56 450

3 2 1 198 29 109 59 272

4 35 1 1 1 0 25 16 139

5 2 60 1 2 51 98

6 6 39 15 47

7 2 25 7 15

8 16 5 21

9 2 1 2 2

1 0 6 0 9

11 5 1 5

1 2 8 14

13 1

14 7

6 . Counts 10 or more musculoskeletal B ’s were grouped together and coded 

as 10 .

Prelim inary analyses indicated th a t time since disease onset, time since 

the patient presented with disease activity in any organ/system , age, sex, 

age a t disease onset and to tal damage did not significantly affect a patien t’s 

chance of presenting a t a clinic visit with active disease in any of the three 

organs/system s chosen for detailed analysis. No details of analyses involving 

these variables will be given. It also appears th a t for the mucocutaneous, 

musculoskeletal and renal organs/systems a combination of the binary vari­

able indicating whether a patient has previously scored an A, the binary 

variable representing whether the patient has previously scored a B and the
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dynamic variables indicating the number of A’s or B’s the patient has scored 

adequately represents history of disease activity. Consequently results are 

not given for area under the curve measures, and the variable representing 

the number of visits.

The validity of the linear assumption for all variables used was assessed by 

fitting generalized additive models (Hastie and Tibshirani 1986). Generalized 

additive models provide a m ethod for identifying non-linear covariate effects 

in exponential family models.

In the linear logistic models proposed for the analysis of the lupus data  

it is assumed th a t the covariates act in a linear fashion and th a t

logit P r (yit = 1 | yit- i )  = (30 +  p xX x +  ... +  /3pX p.

The generalized additive logistic model assumes instead th a t

p
logit P r (yit =  1 | yit- i )  = s0 +  ^  Si(Xi)

i

where S i ( . ) , sp(.) are unspecified nonparametric functions. These functions 

are estim ated in a flexible manner and can reveal possible non linearities in 

the effects of the covariates.

Consider a scatterplot of points (X{,yi), where y is the response variable 

and x is a prognostic factor. It is desirable to fit a smooth curve to s(x)  th a t 

summarizes the dependence of y on x. However the curve s(x ) th a t minimizes 

— f ( x i))2 is generally an interpolating curve th a t is not smooth a t all. 

To overcome this the estimation of the functions si (.),..., sp(.) was done using 

a cubic spline smoother. The cubic spline smooter imposes smoothness on 

s(x). It minimizes

J2[Vi ~  s f e ) ]2 +  A J  s"(x)2d x ,
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where A is a non negative smoothing parameter tha t governs the trade off 

between the ‘goodness of fit’ to the data and the shape of s(x). Larger values 

of A force s(x) to be smoother. For the analysis undertaken A =  3.

Plots from generalized additive models were used to identify covariates 

tha t might not act in a linear fashion. Once the covariates had been identi­

fied, quadratic and higher order terms were added to the linear logistic models 

and fitted using maximum likelihood techniques. All final model selection 

was based on this fully parametric fitting. Where appropriate quadratic 

and/or higher order factors have been included in the models. An example 

of the plot for the number of musculoskeletal scores, in the model for active 

musculoskeletal disease, is given in figure 4.1.

For each final model, disease history was represented by a combination of 

those variables tha t significantly affected the fit of the model. A 5% signifi­

cance level was used as a guideline in all analyses. Initial variable selection 

was done using generalized linear models. Only the final models in each 

section were fit using generalized estimating equations with an exchangeable 

correlation structure.

Figure 4.1: Plot of generalized additive model used to assess the linearity of 

the components

8 -

■F _1UL

The goodness of fit of the final models is assessed using a method proposed
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by Horton et al. (1999), and the final models were validated using a second 

data  set.

4.3.1 Assessing the Goodness of Fit of the M odels.

Following the suggestion of Hosmer and Lemeshow (1989) for ordinary lo­

gistic regression Horton et al (1999) propose forming G (usually 10) groups 

based on combinations of the covariates x u 1 s in the logistic regression model, 

and testing to see if additional regression coefficients from G -l indicator vari­

ables (representing the groups formed) differ significantly from 0 .

It is however necessary to have a rule for forming the groups based on 

combinations of the covariates xu. If all the covariates are discrete, dif­

ferent groups can be formed for each level in the cross-classification of co­

variates, but with many discrete covariates there are too many groups. W ith 

many discrete and /or continuous covariates Horton et al (1999) suggest form­

ing groups based on deciles of risk, as suggested by Hosmer and Lemeshow 

(1989). T hat is the groups are formed based on

Pit =  — ------------— •

Each subject has T* separate estimates of risk (pit s), and there are ]C£=i Ti 

observations in total. Horton et al (1999) suggest forming 10 groups of 

approximately equal size in the following manner:

1. The first group contains the ^ iL i  Ti/10, (yu , # it) ’s with the smallest values

of Pa-

2 . The second group contains the T i /10, (yu , XuYs  with the next small­

est values of pit.
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and so on.

10. The last group contains the T i /10, (y^, a?it) ’s with the largest values 

of Pit •

Because some subjects may have identical covariate values, there can be 

ties in predicted risk, and so the number of subjects in each decile of risk 

may differ slightly.

In general G groups could be formed with approximately Y^= \T i/G  ob­

servations in each group. Since subject i can have different p ^ ’s for each of 

the Ti observations, a subject’s group membership, y, can change for differ­

ent £, g = 1 ,...,G  — 1. T hat is a group variable can be considered to be 

a time-varying covariate. Observations in the same group have similar pit:s 

and thus similar predicted risks.

Suppose we define the (G — 1) group indicators

I itg =  1 if pu is in group g, 0 otherwise,

g — 1, ...,G  — 1, where the groups are based on percentiles of risk. Then to

test the goodness-of-fit of the model

logit fe t)  =  a  + (3xit

the alternative model

logit (pn) = a  +  (3xn  +  j i l i t i  + . . .  +  iG-iht^G-i-

is considered. Effectively an ‘alternative’ model is being used to test the fit

of the given model. Moore and Spruill (1975) showed tha t, asymptotically, 

the partition can be treated as though based on the true p^. Thus I itg can 

be treated  as a ‘fixed’ covariate. Results of simulations suggest th a t this 

assumption holds for moderately sized samples.
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In general if the model

logit (Pit) =  a  +  f a n

is appropriate then 71 , 7 g - i  =  0 . A test of the fit of the model is equivalent 

to the test of:

# 0 : 7 1  =  ••• =  7g—1 =  0 

which will be implemented using global Wald statistics.
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Chapter 5

R esults

A number of analyses have been undertaken. Table 5.1 sets out the order of 

the analyses.

Table 5.1: Order of Analyses

Models Results Goodness of fit
Simple logistic regression 

models, for the five outcomes, detailed on p8 6 , 
used to estimate 

parameters of the full 
polychotomous logistic model Sections 5.1.1-5.1.5 Section 5.1.6

Simple logistic regression 
models, for the three outcomes 

active mucocutaneous, 
active renal, 

and active musculoskeletal disease Section 5.2.1 Section 5.2.2
Simple logistic regression 

models, for the three outcomes 
active mucocutaneous, 

active renal, 
and active musculoskeletal disease 

with medication included Section 5.2.4 NA
The final models 

are validated on a second data set Section 5.3.1 NA

Details on the number of patients with different combinations of disease
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activity are given in table 5.2.

In this chapter only the main findings of the analyses are presented. The 

final models in each section have been fitted using the generalized estim ating 

equation approach of Liang and Zeger (1986) as discussed in section 4.2.1. 

The results from the full analyses are given in appendix D. This includes 

the analysis of each outcome by individual organ/system  and the selection 

of the variables th a t best represents history of activity in th a t organ/system . 

A discussion of how the final multivariate models were selected is also given, 

with details of combinations of variables th a t were considered, discussion of 

why some effects found in the univariate analyses disappear, and the full 

process of variable selection.

All odds ratios given for the number of times a patient has been observed 

to score BILAG A ’s or B ’s are the odds ratios associated with each additional 

observation of a BILAG A or B.

5.1 Results from the Simple Logistic Regres­

sion M odels Used to Estim ate the Param­

eters of the Full Logistic M odel.

5.1.1 The M ucocutaneous O rgan/System

U nivariate Analyses

Initial univariate analyses were carried out in order to assess the relationships 

between history of disease activity in the organs/systems chosen for detailed 

analysis and a patien t’s chance of presenting at a clinic visit with active 

mucocutaneous disease. The results are given, with unadjusted odds ratios
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Table 5.2: Numbers of patients with histories of disease activity

Mucocut 
aneous B

Mucocut 
aneous A

Musculo 
skeletal B

Musculo 
skeletal A Renal B Renal A

Other
involvement

No other 
involvement

19 24

X 1

X 2 4

X 2

X X X 1

X 35 2 2

X X 1

X X 1 0 2

X X X 3
X X 4 3

X X X 1 1

X 18 1 2

X X 1

X X 4 2

X X X 3

X X X X 1

X X 51 14

X X X 1

X X X 2 0 1

X X X X 1 0

X X X 14 2

X X X X 8

X X X X X 4

X X 8 2

X X X 2 1

X X X X 2

X X X X 1

X X X 18 6

X X X X 11 1

X X X X 4 1

98X X X X X 4

X X X X X X 5



Table 5.3: Coefficients with unadjusted odds ratios and p  values from the

univariate analyses of active mucocutaneous disease vs. inactive mucocuta­

neous, musculoskeletal and renal disease.

coefficient odds ratio p value

A previous occurrence of a mucocutaneous B 1 . 1 0 2 3.010 «  0

Number of mucocutaneous B scores 0.547

(Number of mucocutaneous B scores) 2 -0. 048 g0 .499—0.096m6* «  0

A previous occurrence of a mucocutaneous A 1.225 3.404 m 0

Number of mucocutaneous A scores 1.109

(Number of mucocutaneous A scores) 2 -0.173 g0.936—0.346m a* « 0

A previous occurrence of a renal B -0 . 1 2 2 0.885 0.499
Number of renal B scores -0.086 0.917 0.291

A previous occurrence of a renal A -0.828 0.437 0.024

Number of renal A scores -1.891

(Number of renal A scores) 2 0.672 e - l .  219+ 1 .344ra* 0.006

A previous occurrence of a musculoskeletal B -0 . 0 2 0 0.980 0.884
Number of musculoskeletal B scores 0.048 1.050 0.171

A previous occurrence of a musculoskeletal A -0.296 0.743 0 . 2 0 2

Number of musculoskeletal A scores -0.130 0.878 0.369
Mucocutaneous damage 1.195 3.304 «  0

Renal damage -0.778 0.459 0.255

Musculoskeletal damage -0.519 0.595 0.052
History of disease activity

in all other organs/systems 0.123 1.131 0.426
Time (years) since first clinic visit 0.024 1.025 0.331

Time (years) since previous clinic visit -0.368 0.692 0.289
Time (years) since last visit

with active mucocutaneous disease -0.028 0.973 0.492

* Where mb, ma, and ra are the number of mucocutaneous Bs, mucocutaneous As and re­

nal As respectively that the comparison patient had been observed to score at the previous 

visit.
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and p  values in table 5.3.

A history of either mucocutaneous A scores or mucocutaneous B scores 

has the most noticeable effect on a patien t’s chance of presenting w ith active 

mucocutaneous disease; in both cases the patien t’s chance is significantly 

increased.

A history of renal A scores generally appears to significantly decrease a 

pa tien t’s chance of presenting with active mucocutaneous disease, as indi­

cated by the negative coefficient of a previous occurrence of a renal A, and 

the negative coefficient of the number of renal A scores. There is however 

some evidence of non linearity in this univariate analysis.

A history of any of renal B, musculoskeletal A or musculoskeletal B scores 

does not significantly affect a patien t’s chance of presenting with active mu­

cocutaneous disease.

Mucocutaneous damage significantly increases a patien t’s chance of pre­

senting with active disease. Neither renal nor musculoskeletal damage has a 

significant effect.

A history of disease activity in the organs/systems not chosen for detailed 

analysis does not significantly affect a patien t’s chance of presenting with 

active mucocutaneous disease.

Time since the fist clinic visit, time since the previous visit and the time 

since the patient was last observed with active mucocutaneous disease all 

have no significant effect on a patien t’s chance of presenting with active 

mucocutaneous disease.

M ultivariate Analysis

All variables were now included in a single model with only main effects. 

Variables th a t in this analysis did not significantly affect a pa tien t’s chance
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of presenting with active mucocutaneous disease were removed, giving the 

results shown with adjusted odds ratios and p values in table 5.4.

Table 5.4: Coefficients with adjusted odds ratios and p  values from the mul­

tivariate analysis (with only main effects) of active mucocutaneous disease 

vs. inactive mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio p value

A previous occurrence of a mucocutaneous B 0.894 2.446 «  0

Number of mucocutaneous B scores 0.187 1.206 0 . 0 0 1

A previous occurrence of a mucocutaneous A 1.106 3.021 w 0

A previous occurrence of a renal A -1.098 0.334 0.003
A previous occurrence of a musculoskeletal A -0.599 0.549 0 . 0 2 0

Time (years) since first clinic visit -0.140 0.869 0.00003

As was indicated by the univariate analyses a history of mucocutaneous 

B scores and a history of mucocutaneous A scores increase a pa tien t’s chance 

of presenting with active mucocutaneous disease; the chance of presenting 

with active mucocutaneous disease increasing further with each additional 

observation of a mucocutaneous B.

A history of either renal A or musculoskeletal A scores decreases a pa­

tien t’s chance of presenting with active mucocutaneous disease.

A patien t’s chance of presenting with active mucocutaneous disease de­

creases with the time th a t they have been registered at the clinic.

Interactions

An investigation into interactions was then undertaken. Significant interac­

tions were found between a previous occurrence of a mucocutaneous A and 

a previous occurrence of a musculoskeletal A, between a previous occurrence
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of a mucocutaneous A and a previous occurrence of a musculoskeletal B and 

between a previous occurrence of a musculoskeletal B and a previous occur­

rence of a renal B. All other variables th a t were significant in the previous 

m ultivariate analysis have remained significant and those th a t were not have 

remained so. The results of this analysis (fitted using generalized estim ating 

equations) with adjusted odds ratios and 95% confidence intervals are given 

in table 5.5.

Table 5.5: Coefficients with adjusted odds ratios (with 95% Cl) from the 

final m ultivariate analysis of active mucocutaneous disease vs. inactive mu­

cocutaneous, musculoskeletal and renal disease.

coefficient odds ratio

A previous occurrence of a mucocutaneous B 0.774 2.169 [1.426,3.300]

Number of mucocutaneous B scores 0.191 1.211 [1.087,1.348]

A previous occurrence of a renal A -0.858 0.424 [0.198,0.910]

Time (years) since first clinic visit -0.137 0.872 [0.816,0.932]

A previous occurrence of a mucocutaneous A 2.080 -
A previous occurrence of a musculoskeletal B -0.056 -

A previous occurrence of a musculoskeletal A -0.206 -

A previous occurrence of a renal B -1 . 1 0 0 -

A previous occurrence of a mucocutaneous A*

A previous occurrence of a musculoskeletal B -1.296 -
A previous occurrence of a mucocutaneous A*

A previous occurrence of a musculoskeletal A -1.296 -

A previous occurrence of a renal B*

A previous occurrence of a musculoskeletal B 1.230 -

A history of mucocutaneous A scores significantly increases a pa tien t’s 

chance of presenting with active mucocutaneous disease. However the inter­

actions between a previous occurrence of a musculoskeletal A and a previous
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occurrence of a mucocutaneous A, and between a previous occurrence of a 

musculoskeletal B and a previous occurrence of a mucocutaneous A indicate 

th a t for those patients with a history of either musculoskeletal A or B scores 

the effect of a history of mucocutaneous A scores is reduced.

Although the analysis presented in section 5.1.1, suggests th a t a history 

of musculoskeletal A scores decreases a patien t’s chance of presenting with 

active mucocutaneous disease it now appears th a t this effect is only significant 

for those patients with a history of mucocutaneous A scores. Neither a history 

of musculoskeletal A scores nor a history of musculoskeletal B scores has a 

significant effect on the chance of a patient with no history of mucocutaneous 

A scores presenting with active mucocutaneous disease.

Table 5.6: Odds ratios* for combinations of a history of mucocutaneous A 

scores, a history of musculoskeletal A scores, a history of musculoskeletal B 

scores and a history of renal B scores.

No previous occurrence of 

a mucocutaneous A

Previous occurrence of 

a mucocutaneous A
No history ot musculoskeletal A, 

musculoskeletal B or renal B scores 1 . 0 0 0 * 8 . 003 [4.100,15.024]
A history of 

musculoskeletal A scores 0.814 [0.488,1.359] 1.782 [0.545,5.824]
A history of 

musculoskeletal B scores 0.945 [0.644,1.388] 2.071 [1.101,3.896]
A history of 

renal B scores 0.333 [0.140,0.792] 2.663 [1.236,5.738]
A history of musculoskeletal B 

and renal B scores 1.076 [0.595,1.946] 2.357 [1.094,5.078]
A history of musculoskeletal A 
and musculoskeletal B scores 0.770 [0.426,1.392] 0. 461 [0.164,1.299]

* All odds rations are compared to a common default category

A history of renal B scores decreases a patien t’s chance of presenting with
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active mucocutaneous disease. However the significant interaction between 

a history of musculoskeletal B scores and a history of renal B scores suggests 

th a t a history of renal B scores only affects those patients with no history of 

musculoskeletal B scores.

All odds ratios involving the interactions are given in table 5.6. The con­

fidence intervals for the odds ratios were calculated using the correlation of 

the coefficients from the generalized linear model and the robust variance- 

covariance m atrix from the model fitted using generalized estim ating equa­

tions.

5.1.2 The Renal O rgan/System  

U nivariate Analyses

Initial univariate analyses were carried out in order to assess the relationships 

between history of disease activity in the organs/system s chosen for detailed 

analysis and a patien t’s chance of presenting with active renal disease a t a 

clinic visit. The results are given with unadjusted odds ratios and p  values 

in table 5.7.

A history of either renal A scores or renal B scores has the most noticeable 

effect on a patien t’s chance of presenting with active renal disease; in both 

cases the patien t’s chance is significantly increased.

A history of either mucocutaneous A or mucocutaneous B scores signifi­

cantly increases a patien t’s chance of presenting with active renal disease.

Neither a history of musculoskeletal A nor musculoskeletal B scores sig­

nificantly affects a patien t’s chance of presenting with active renal disease.

Both renal and mucocutaneous damage significantly increase a pa tien t’s 

chance of presenting with active renal disease. Musculoskeletal damage does
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Table 5.7: Coefficients with unadjusted odds ratios and p  values from the

univariate analyses of active renal disease vs. inactive mucocutaneous, mus­

culoskeletal and renal disease.

coefficient odds ratio p value

A previous occurrence of a renal B 2.456 11.654 « 0

Number of renal B scores 0.543
(Number of renal B scores) 2 -0.162 el. 290-0.324r6* »  0

A previous occurrence of a renal A 2.216 9.173 «  0

Number of renal A scores 2.149

(Number of renal A scores) 2 -0.389 gl.759—0.778ro* w 0

A previous occurrence of a musculoskeletal B -0.209 0.811 0.255

Number of musculoskeletal B scores -0.096 0.908 0.128

A previous occurrence of a musculoskeletal A 0.175 1.192 0.511

Number of musculoskeletal A scores 0.071 1.074 0.664

A previous occurrence of a mucocutaneous B 0.381 1.464 0.038

Number of mucocutaneous B scores 0.116 1.123 0.025

A previous occurrence of a mucocutaneous A 0.613 1.847 0.015

Number of mucocutaneous A scores 0.295 1.343 0.015

Renal damage 2.745 15.565 « 0

Musculoskeletal damage -0.070 0.932 0.822

Mucocutaneous damage 0.990 2.460 0.0004
History of disease activity

in all other organs/systems 0.274 1.315 0.209

Time (years) since first clinic visit 0.064 1.066 0.049

Time (years) since previous clinic visit -0.290 0.748 0.516
Time (years) since last visit

with active renal disease 0 . 2 2 1 1.247 0.00004

* Where rb and ra are the number of renal B’s and renal A’s respectively that the com­

parison patient had been observed to score at the previous visit.

not have a significant effect.

History of disease activity in the organs/systems not chosen for detailed
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analysis does not significantly affect a patien t’s chance of presenting with 

active renal disease.

Time since the first clinic visit and time since the last clinic visit where the 

patient was observed to have active renal disease both significantly increase 

a pa tien t’s chance of presenting with active renal disease. The time since 

the previous clinic visit has no significant effect on a pa tien t’s chance of 

presenting with active renal disease.

M ultivariate A nalysis

All variables were now included in a single model with only main effects. 

Variables th a t in this analysis did not significantly affect a pa tien t’s chance 

of presenting with active renal disease were removed, giving the results shown 

with adjusted odds ratios and p  values in table 5.8.

Table 5.8: Coefficients with adjusted odds ratios and p  values from the mul­

tivariate analysis (with only main effects) of active renal disease vs. inactive 

mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio p value

Previous occurrence of a renal B 

Number of renal B scores 

Previous occurrence of a renal A 

Number of musculoskeletal B scores 

Renal damage

1.578 4.846 «  0

0.272 1.312 0.002
0.732 2.032 0.004

-0.244 0.709 0.001
1.247 3.478 0.00004

As was indicated by the univariate analyses a history of renal B scores 

increases a patien t’s chance of presenting with active renal disease, the chance 

increasing further with each additional observation of a renal B.
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A history of renal A scores increases a patien t’s chance of presenting with 

active renal disease.

A history of musculoskeletal B scores decreases a patien t’s chance of pre­

senting with active renal disease, the chance decreasing further with each 

additional observation of a musculoskeletal B.

Renal damage increases a patien t’s chance of presenting with active renal 

disease.

Interactions

An investigation into interactions was subsequently undertaken. A significant 

interaction was found between a previous occurrence of a renal B and a pre­

vious occurrence of a renal A. All variables th a t were found to be significant 

in the previous multivariate analysis have remained significant, and those 

th a t were not have remained so. The results of this analysis with adjusted 

odds ratios are shown in table 5.9.

Table 5.9: Coefficients with adjusted odds ratios and p  values from the mul­

tivariate analysis of active renal disease vs. inactive mucocutaneous, muscu­

loskeletal and renal disease.

Coefficient odds ratio p value

Number of renal B scores 0.303 1.353 0.0004

Number of musculoskeletal B scores -0.249 0.779 0.0009

Renal damage 1.287 3 624 0 . 0 0 0 0 2

A previous occurrence of a renal B 1.873 - «  0

A previous occurrence of a renal A 2.918 - w 0

A previous occurrence of a renal B* 

A previous occurrence of a renal A -2.526 «  0

107



The interaction between a previous occurrence of a renal B and a previous 

occurrence of a renal A indicates th a t they are not additive in effect. If a 

patient has a history of both renal A and renal B scores then the effect of a 

history of renal A scores is almost negated. The numbers of patients involved 

are given in table 5.10 and the odds ratios are given in table 5.11.

Table 5.10: Numbers of patients with histories of renal A and B scores.

No history of History of 

renal A scores renal A scores

No history of renal B scores 

History of renal B scores

259 4 

73 31

Table 5.11: Odds ratios for combinations of a previous occurrence of a renal 

B and a previous occurrence of a mucocutaneous A.

No previous occurrence of 

a renal B score

previous occurrence of 

a renal B score
No previous occurrence of 

a renal A score 1 . 0 0 0 6.508
Previous occurrence of 

a renal A score 18.508 9.632

Given this, a new variable was created representing a history of renal A 

scores only (that is a history of renal A scores, but no history of renal B 

scores).

Final M odel

Replacing a previous occurrence of a renal A, and the interaction between 

a previous occurrence of a renal A and a previous occurrence of a renal B

108



with a single binary variable representing a history of renal A scores only, 

led to a change in residual deviance of 2.253 which is not significant on x j  

(p=  0.133). The results of this analysis (fitted using generalized estim ating 

equations) are given with adjusted odds ratios and 95% confidence intervals 

in table 5.12.

Table 5.12: Coefficients with adjusted odds ratios from the final m ultivariate 

analysis of active renal disease vs. inactive mucocutaneous, musculoskeletal 

and renal disease.

coefficient odds ratio

A previous occurrence of a renal B 

A previous occurrence of a renal A only 

Number of renal B scores 

Number of musculoskeletal B scores 

Renal damage

1.852 6.371 [3.155,12.867] 

2.909 18.335 [6.042,55.643] 

0.339 1.404 [1.175,1.677] 

-0.237 0.789 [0.676,0.921] 

1.324 3.759 [2.277,6.204]

A history of renal B scores increases a patien t’s chance of presenting 

with active renal disease, the chance increasing further with each additional 

observation of a renal B. This effect is the same for those patients who also 

have a history of renal A scores.

Patients with a history of renal A scores only also have an increased 

chance of presenting with active renal disease. Their chance however does 

not increase further with an additional observation of a renal A.

Each additional observation of a musculoskeletal B decreases a pa tien t’s 

chance of presenting with active renal disease.

Renal damage increases a patien t’s chance of presenting with active renal 

disease.
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5.1.3 The M usculoskeletal O rgan/System  

U nivariate Analyses

Initial univariate analyses were carried out in order to assess the relationships 

between history of disease activity in the organs/system s chosen for detailed 

analysis and a patien t’s chance of presenting at a clinic visit with active 

musculoskeletal disease. The results are given with unadjusted odds ratios 

and p  values in table 5.13.

A history of either musculoskeletal A scores or musculoskeletal B scores 

has the most noticeable effect on a patien t’s chance of presenting with active 

musculoskeletal disease; in both cases the patien t’s chance is significantly 

increased.

A history of renal B scores significantly decreases a pa tien t’s chance of 

presenting with active musculoskeletal disease.

A history of mucocutaneous B scores significantly increases a pa tien t’s 

chance of presenting with active musculoskeletal disease. Neither a history 

of renal A scores nor a history of mucocutaneous A scores significantly affects 

a pa tien t’s chance of presenting with active musculoskeletal disease.

Musculoskeletal damage significantly increases a patien t’s chance of pre­

senting with active musculoskeletal disease. Neither renal nor mucocutaneous 

damage have any significant effect.

A history of disease activity in the organs/systems not chosen for detailed 

analysis does not significantly affect a patien t’s chance of presenting with 

active musculoskeletal disease.

A patien t’s chance of presenting with active musculoskeletal disease de­

creases with the time since the last clinic visit a t which the patient was 

observed to have active musculoskeletal disease.
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Table 5.13: Coefficients with unadjusted odds ratios and p  values from the

univariate analyses of active musculoskeletal disease vs. inactive mucocuta­

neous, musculoskeletal and renal disease.

coefficient odds ratio p value

A previous occurrence of a musculoskeletal B 0.912 2.420 «  0

Number of musculoskeletal B scores 0.492

(Number of musculoskeletal B scores) 2 -0.033 g 0 .4 5 9 —0 .0 6 6 * m u 6* «  0

A previous occurrence of a musculoskeletal A 0.844 2.325 «  0

Number of musculoskeletal A scores 0.501 1.650 «  0

A previous occurrence of a renal B -0.280 0.756 0.075

Number of renal B scores -0.472

(Number of renal B scores) 2 0.108 e - 0 . 3 6 4 + 0 .216*r6* 0.007

A previous occurrence of a renal A -0.481 0.618 0.061

Number of renal A scores -0.245 0.783 0.150

A previous occurrence of a mucocutaneous B 0.255 1.291 0.025

Number of mucocutaneous B scores 0.065 1.608 0.060

A previous occurrence of a mucocutaneous A -0.085 0.919 0.670

Number of mucocutaneous A scores 0.090 1.094 0.342

Musculoskeletal damage 0.786 2.195 «  0

Renal damage 0.418 1.518 0.232

Mucocutaneous damage -0.091 0.913 0.727
History of disease activity

in all other organs/systems -0.104 0.901 0.399
Time (years) since first clinic visit 0.034 1.035 0.097

Time (years) since previous clinic visit 0.148 1.160 0.362
Time (years) since last visit

with active musculoskeletal disease -0.106 0.899 0.008

* Where m ub, and rb are the number of musculoskeletal Bs, and renal Bs respectively that 

the comparison patient had been observed to score at the previous visit.
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Time since the first clinic visit and the time since the previous clinic 

visit do not significantly affect a patien t’s chance of presenting with active 

musculoskeletal disease.

M ultivariate Analysis

All variables were now included in a single model with only main effects. 

Variables th a t in this analysis did not significantly affect a patien t’s chance 

of presenting with active musculoskeletal disease were removed, giving the 

results shown with adjusted odds ratios and p  values in table 5.14.

Table 5.14: Coefficients with adjusted odds ratios and p  values from the mul­

tivariate analysis (with only main effects) of active musculoskeletal disease 

vs. inactive mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio p value

Number of musculoskeletal B scores 0.695
(Number of musculoskeletal B scores) 2 -0.050 g0.645—0.100m„6 « 0

A previous occurrence of a musculoskeletal A . 0.341 1.406 0.032

A previous occurrence of a renal B -0.523 0.593 0 .002
History of disease activity

in all other organs/systems -0.419 0.658 0.003

Time (years) since first clinic visit -0.066 0.936 0.032

Time (years) since previous clinic visit 0.403 1.497 0 .010
Time (years) since last visit

with active musculoskeletal disease -0.172 0.842 0 .002

* Where m ub is the number of musculoskeletal Bs, that the comparison patient had been 

observed to score at the previous visit.

As was indicated by the univariate analyses, a history of musculoskeletal B 

scores increases a patien t’s chance of presenting with active musculoskeletal 

disease, the chance increasing further with each additional observation of
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a musculoskeletal B. However a quadratic factor is needed to  adequately 

represent the number of musculoskeletal B scores. The effect of an additional 

musculoskeletal B decreases with the number of musculoskeletal Bs a patient 

has been observed to score.

A history of musculoskeletal A scores also increases a patien t’s chance of 

presenting with active musculoskeletal disease.

A history of renal B scores and a history of disease activity in the five 

organs/system s not chosen for detailed analysis both decrease a pa tien t’s 

chance of presenting with active musculoskeletal disease.

A patien t’s chance of presenting with active musculoskeletal disease de­

creases with the time they have been registered a t the clinic, and decreases 

with the time since they last presented with a musculoskeletal A or B. How­

ever a pa tien t’s chance of presenting with active musculoskeletal disease in­

creases with the time since the previous clinic visit.

Interactions

An investigation into interactions was then undertaken. Significant interac­

tions were found between a previous occurrence of a musculoskeletal B and 

a previous occurrence of a musculoskeletal A and between a previous occur­

rence of a musculoskeletal A and a previous occurrence of a mucocutaneous 

A. All variables th a t were found to be significant in the previous m ultivariate 

analysis have remained significant, apart from tim e since the first clinic visit, 

and those th a t were not significant have remained so. The results of this 

analysis with adjusted odds ratios and p  values are given in table 5.15.

The interaction between a previous occurrence of a musculoskeletal B and 

a previous occurrence of a musculoskeletal A indicates th a t the effect of the 

two is less than  additive. If a patient has a history of both musculoskeletal A
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Table 5.15: Coefficients with adjusted odds ratios and p  values from the

multivariate analysis of active musculoskeletal disease vs. inactive mucocu­

taneous, musculoskeletal and renal disease.

Coefficient odds ratio p value

Number of musculoskeletal B scores 0.572

(Number of musculoskeletal B scores) 2 -0.042 g0.530—0.084m„6* «  0

A previous occurrence of a renal B -0.501 0.606 0.005
History of disease scores

in all other organs/systems -0.464 0.629 0 . 0 0 1

Time (years) since previous clinic visit 0.353 1.423 0.025
Time (years) since last visit

with active musculoskeletal disease -0.233 0.792 0.00003

A previous occurrence of a musculoskeletal B 0.418 - 0.075
A previous occurrence of a musculoskeletal A 1.592 - 0.00009

A previous occurrence of a mucocutaneous A -1 .0 2 1 - 0.004

A previous occurrence of a musculoskeletal B*

A previous occurrence of a musculoskeletal A -1.598 - 0.0003

A previous occurrence of a musculoskeletal A*

A previous occurrence of a mucocutaneous A 1.352 - 0.003

* Where m ub is the number of musculoskeletal Bs, that the comparison patient had been 

observed to score at the previous visit.

Table 5.16: Odds ratios for combinations of a previous occurrence of a mus­

culoskeletal B and a previous occurrence of a musculoskeletal A.

No previous occurrence of 

a musculoskeletal B score

previous occurrence of 

a musculoskeletal B score
No previous occurrence of 
a musculoskeletal A score 1 . 0 0 0 1.519

Previous occurrence of 
a musculoskeletal A score 4.192 1.509
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and musculoskeletal B scores then the effect of a history of musculoskeletal 

A scores is effectively negated. The odds ratios are given in table 5.16 and 

numbers of patients involved are given in table 5.17.

Table 5.17: Numbers of patients with histories of musculoskeletal A and B 

scores.

No history of History of 

musculoskeletal A scores musculoskeletal A scores
No history of 

musculoskeletal B scores 
History of 

musculoskeletal B scores

105 5 

206 51

Given this a new variable was created representing a history of muscu­

loskeletal A scores only (that is a history of musculoskeletal A scores, but no 

history of musculoskeletal B scores).

Final M odel

Replacing the interaction between a previous occurrence of a musculoskeletal 

B and a previous occurrence of a musculoskeletal A (and a previous occur­

rence of a musculoskeletal B) with the variable representing a history of 

musculoskeletal A scores only, led to a change in deviance of 3.135 which is 

not significant on Xi (p— 0.077). The results of this final analysis (fitted 

using generalized estim ating equations) are given with adjusted odds ratios 

and 95% confidence intervals in table 5.18.

As indicated by previous analyses a history of active musculoskeletal dis­

ease increases a patien t’s chance of presenting with active musculoskeletal 

disease. This is represented in the model by the number of times a patient 

has scored a musculoskeletal B (odds ratios are given in table 5.19), and by
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Table 5.18: Coefficients with adjusted odds ratios from the final multivari­

ate analysis of active musculoskeletal disease vs. inactive mucocutaneous,

musculoskeletal and renal disease.

coefficient odds ratio

Number of musculoskeletal B scores 0.554

(Number of musculoskeletal B scores) 2 -0.045 g0.509—0.089mu b*

A previous occurrence of a musculoskeletal A only 1.264 3.541 [1.751,7.161]

A previous occurrence of a renal B -0.482 0.618 [0.429,0.890]

History of disease activity in all other organs/systems -0.396 0.673 [0.478,0.950]
Time (years) since previous musculoskeletal A or B -0.141 0.868 [0.787,0.958]

A previous occurrence of a musculoskeletal A 0.059 -
A previous occurrence of a mucocutaneous A -1.089 -

A previous occurrence of a musculoskeletal A* 

A previous occurrence of a mucocutaneous A 1.531

* Where mub is the number of musculoskeletal Bs, that the comparison patient had been 

observed to score at the previous visit.

a previous occurrence of a musculoskeletal A for those patients who have 

scored only musculoskeletal A’s not B ’s.

A history of renal B scores and a history of disease activity in all or­

gans/system s not chosen for detailed analysis decrease a patien t’s chance of 

presenting with active musculoskeletal disease.

The significant interaction between a previous occurrence of a muscu­

loskeletal A and a previous occurrence of a mucocutaneous A indicates tha t, 

a history of mucocutaneous A scores increases the chance of patients with 

a history of musculoskeletal A scores presenting with active musculoskele­

ta l disease. However for those patients with no history of musculoskeletal 

A scores the chance of presenting with active musculoskeletal disease is de-
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Table 5.19: Adjusted odds ratios for each additional musculoskeletal B score.

Number of musculoskeletal B’s scored 

by the previous visit

Odds ratios 

for a musculoskeletal B score

0 1.664

1 1.592

2 1.523

3 1.456
4 1.393
5 1.332

6 1.274

7 1.219

8 1.165

9 1.115

creased by a history of mucocutaneous A scores.

A patien t’s chance of presenting with active musculoskeletal disease de­

creases with the tim e since they last scored a musculoskeletal A or B. (The 

tim e since the previous visit loses significance when the model is fitted using 

generalized estim ating equations.)

Odds ratios for combinations of musculoskeletal and mucocutaneous A 

scores are given in table 5.20.

5.1.4 Simultaneous M ucocutaneous and M usculoskele­

tal Disease A ctivity

U nivariate Analyses

Initial univariate analyses were carried out in order to  assess the relationships 

between history of disease activity in the organs/systems chosen for detailed
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Table 5.20: Odds ratios for combinations of a previous occurrence of a mus­

culoskeletal A and a previous occurrence of a mucocutaneous A.

No Previous occurrence of 

a musculoskeletal A score

Previous occurrence of 

a musculoskeletal A score
No previous occurrence of 
a mucocutaneous A score 

Previous occurrence of 
a mucocutaneous A score

1

0.337 [0.152,0.744]

1.061* [0.649,1.732] 

1.651 [1.039,2.263]

*this odds ratio should be interpreted with caution as the effects of musculoskeletal A and 

B scores have already been adjusted for

analysis and a patien t’s chance of presenting at a clinic visit with active 

disease in both the mucocutaneous and musculoskeletal organs/systems. The 

results are given with unadjusted odds ratios and p  values in table 5.21.

A history of musculoskeletal B or mucocutaneous B scores significantly 

increases a patien t’s chance of presenting with both active mucocutaneous 

and musculoskeletal disease.

Neither a history of mucocutaneous A scores nor a history of muscu­

loskeletal A scores significantly affect a patien t’s chance of presenting with 

both  active mucocutaneous and musculoskeletal disease.

A history of renal B scores does not significantly affect a pa tien t’s chance 

of presenting with both active mucocutaneous and musculoskeletal disease.

No patients with a history of renal A scores have ever presented a t a clinic 

visit (with inactive disease in all organs/systems at the previous visit) with 

simultaneous mucocutaneous and musculoskeletal disease. As a consequence 

of this no further mention of a history of renal A scores will be made in this 

section.

Musculoskeletal damage significantly affects a patien t’s chance of present­

ing with both active mucocutaneous and musculoskeletal disease. Neither
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Table 5.21: Coefficients with unadjusted odds ratios and p  values from the

univariate analyses of active musculoskeletal and mucocutaneous disease vs.

inactive mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio p value

A previous occurrence of a musculoskeletal B 0.696 2.006 0.011
Number of musculoskeletal B scores 0.153 1.165 0.002

A previous occurrence of a musculoskeletal A 0.108 1.114 0.767

Number of musculoskeletal A scores 0.122 131 0.523

A previous occurrence of a mucocutaneous B 0.721 2.057 0.005

Number of mucocutaneous B scores 0.161 1.175 0.009

A previous occurrence of a mucocutaneous A 0.197 1.218 0.606

Number of mucocutaneous A scores 0.013 1.013 0.951
A previous occurrence of a renal B -0.429 0.651 0.258

Number of renal B scores -0.226 0.798 0.231

A previous occurrence of a renal A -6.297 NA NA

Number of renal A scores -5.446 NA NA

Musculoskeletal damage 0.728 2.070 0.022
Mucocutaneous damage 0.059 1.061 0.910

Renal damage 0.504 1.656 0.489
History of disease activity

in all other organs/systems -0.238 0.788 0.375

Time (years) since first clinic visit -0.108 0.897 0.040

Time (years) since previous clinic visit -1.082 0.339 0.206
Time (years) since last visit

with active musculoskeletal disease -0.265 0.767 0.021
Time (years) since last visit

with active mucocutaneous disease -0.099 0.905 0.244

mucocutaneous nor renal damage have a significant effect.

A history of disease activity in the five organs/systems not chosen for 

detailed analysis does not significantly affect a patien t’s chance of presenting 

with both active mucocutaneous and musculoskeletal disease.
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A patien t’s chance of presenting with active mucocutaneous and muscu­

loskeletal disease decreases with the tim e since their first clinic visit and with 

the tim e since they were last observed to score a musculoskeletal A or B.

The time since the previous visit and the time since they were last ob­

served to  score a mucocutaneous A or B have no significant effect on a pa­

tien t’s chance of presenting with active mucocutaneous and musculoskeletal 

disease.

M ultivariate Analysis

All variables were now included in a single model with only main effects. 

Variables th a t in this analysis, did not significantly affect a pa tien t’s chance of 

presenting with both active mucocutaneous and musculoskeletal disease were 

removed, giving the results (fitted using generalized estim ating equations) 

shown with adjusted odds ratios and 95% confidence intervals in table 5.22.

Table 5.22: Coefficients with adjusted odds ratios from the final m ultivariate 

analysis of active musculoskeletal and mucocutaneous disease vs. inactive 

mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio

A previous occurrence of a mucocutaneous B 

Number of musculoskeletal B scores 

Time (years) since first clinic visit

0.932 2.539 [1.424,4.526] 

0.294 1.341 [1.195,1.505] 

-0.345 0.708 [0.605,0.829]

As was indicated by previous analyses a history of either mucocutaneous 

B scores or musculoskeletal B scores increases a patien t’s chance of presenting 

with active disease in both the mucocutaneous and musculoskeletal systems. 

The patien t’s chance increases with each additional musculoskeletal B score.
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The chance of a patient presenting with active disease in both the muco­

cutaneous and musculoskeletal organs/systems decreases with the tim e th a t 

a patient has been registered at the clinic.

Interactions

An investigation into interactions was then undertaken. No significant inter­

actions were found.

5.1.5 Active Renal Disease with A ctive Disease in One 

or B oth of the M usculoskeletal and M ucocuta­

neous O rgans/System s.

In this analysis a patient presenting with renal disease should be understood 

as a patient presenting at a clinic visit with both active renal disease and ac­

tive mucocutaneous disease, or both active renal disease and active muscular 

disease or active disease in all three organs/systems.

U nivariate Analyses

Initial univariate analyses were carried out in order to  assess the relationships 

between history of disease activity in the organs/systems chosen for detailed 

analysis and a patien t’s chance of presenting a t a clinic visit with active renal 

disease. The results are given with unadjusted odds ratios and p values in 

table 5.23.

A history of either renal B or renal A scores significantly increases a 

pa tien t’s chance of presenting with active renal disease.

A history of either mucocutaneous A or B scores significantly increases a 

pa tien t’s chance of presenting with active renal disease.
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Table 5.23: Coefficients with unadjusted odds ratios and p  values from the

univariate analyses of active renal disease vs. inactive mucocutaneous, mus­

culoskeletal and renal disease.

coefficient odds ratio p  value
A previous occurrence of a renal B 1.612 5.013 0.00003

Number of renal B scores 1.063
(Number of renal B scores)2 -0.127 e 0 .9 3 6 —0.254r6* fa 0

A previous occurrence of a renal B 1.836 6.271 «  0
Number of renal B scores 1.453

(Number of renal B scores)2 -0.218 e l .  2 3 5 - 0 .436rb fa 0
A previous occurrence of a renal A 0.641 1.899 0.238

Number of renal A scores 0.561 1.759 0.021
A previous occurrence of a musculoskeletal B 420 1.523 0.287

Number of musculoskeletal B scores 0.109 1.115 0.117
A previous occurrence of a musculoskeletal A 0.387 1.473 0.435

Number of musculoskeletal A scores 0.387 1.473 0.071
A previous occurrence of a mucocutaneous B 0.819 2.267 0.035

Number of mucocutaneous B scores 0.232 1.261 0.005
A previous occurrence of a mucocutaneous A 0.819 2.269 0.077

Number of mucocutaneous A scores 0.465 1.592 0.007
Renal damage 1.033 2.809 0.163

Musculoskeletal damage -0.524 0.592 0.475
Mucocutaneous damage 0.585 1.797 0.475

History of disease activity
in all other organs/systems -0.043 0.958 0.918

Time (years) since first clinic visit 0.009 1.009 0.893
Time (years) since previous clinic visit 0.472 1.603 0.085

Time (years) since last visit with active renal disease 0.028 1.028 0.860
Time (years) since last visit

with active mucocutaneous disease 0.030 1.031 0.769
Time (years) since last visit

with active musculoskeletal disease -0.049 0.952 0.697

* Where rb is the number of renal Bs, that the comparison patient had been observed to score at the 

previous visit.

A history of disease activity in the musculoskeletal organ/system  does not 

significantly affect a patien t’s chance of presenting with active renal disease. 

A history of disease activity in the organs/systems not chosen for detailed
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analysis does not significantly affect a patien t’s chance of presenting with 

active renal disease.

None of renal, mucocutaneous or musculoskeletal damage have a signifi­

cant effect on a pa tien t’s chance of presenting with active renal disease.

The times since the fist clinic visit, the previous visit, the last observation 

of a renal A or B, a mucocutaneous A or B, or a musculoskeletal A or B have 

no significant effect on a patien t’s chance of presenting with active renal 

disease.

M ultivariate Analysis

Table 5.24: Coefficients with adjusted odds ratios and p  values from the final 

m ultivariate analysis of active renal disease vs. inactive mucocutaneous, 

musculoskeletal and renal disease.

coefficient odds ratio

A previous occurrence of a renal B 

Time (years) since previous clinic visit

1.730 5.643 [2.220,14.341] 

0.597 1.817 [1.081,3.052]

All variables were now included in a single model with only main effects. 

Variables th a t in this analysis do not significantly affect a pa tien t’s chance of 

presenting with active renal disease were removed giving the results (fitted 

using generalized estim ating equations) shown with adjusted odds ratios and 

95% confidence intervals in table 5.24.

A history of renal B scores increases a patien t’s chance of presenting with 

active renal disease. A patien t’s chance of presenting with active renal disease 

increases with the tim e since the previous clinic visit.
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Interactions

No significant interactions were found.

5.1.6 Goodness of fit of the Polychotom ous M odel.

The param eters from the simple logistic models (eqn 4.3) were then combined 

to give a final polychotomous logistic model

gQk+fik&it
P(Vit =  k | Jfa_i =  k0) =  — ------ a , (5.1)

e a m + P r n x i t

where k takes six distinct values corresponding to the six distinct states; in­

active disease in all organs/systems (&o), active disease in one of the three 

organs/system s only, simultaneous mucocutaneous and musculoskeletal dis­

ease, and active renal disease with either active mucocutaneous disease or 

active musculoskeletal disease or both. (To identify the model f3k0 and 

are set to 0 ).

The goodness of fit of equation (5.1) was then assessed using the method 

described in section 4.3.1. Problems occurred when in one of the 10 groups 

(based on the deciles of risk) the observed number of both A and B scores 

was 0. W hen this happened the indicator variable representing th a t group 

was om itted from the equation and an assessment of the goodness of fit of 

the model was then based on the 9 remaining groups. The results for all five 

organs/system s are given in table 5.25. The results indicate th a t the model 

appears to fit the data  well.

5.2 Final M odels and General Conclusions

It is of interest to note th a t only in the analysis of active renal disease with ac­

tive disease in one or both of the muscular or mucocutaneous organs/system s
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Table 5.25: Goodness of fit test for the polychotomous model.

Active mucocutaneous disease only 10.522 (9df) (p=0.310)

Active renal disease only 2.308 (8df) (p=0.940)

Active musculoskeletal disease only 14.377 (9df) (p=0.110)

Active mucocutaneous and musculoskeletal disease 6.377 (8df) (p=0.605)

Active renal and other disease 6.532 (8df) (p=0.588)

was the tim e since the previous visit significant, and only in the analysis of 

active muscular disease was the time since the patient was last observed with 

active disease significant. This supports the use of the strategy employed.

The analyses presented in sections 5.1.1 to 5.1.5 do not suggest th a t there 

are any particular features in a patien t’s disease history th a t would predis­

pose a patient to present with active disease in more than one of the three 

organs/systems. As a consequence of this, and, as it is of greater practical 

use for a doctor to have predictors of active disease in an organ/system  th a t 

do not depend on the presence or absence of active disease in any other or­

gan/system  at the current visit, the analysis was repeated with only three 

states in which the patient might present being considered. These states 

being simply; active mucocutaneous disease, active musculoskeletal disease 

and active renal disease. No a ttem pt was made to create a polychotomous 

logistic model as the outcome states are not mutually exclusive.

5.2.1 Results From Fitting the Final M odels

All models have been fitted using the generalized estim ating equation ap­

proach of Liang and Zeger (1986).

The confidence intervals for the odds ratios in table 5.27 were calculated 

using the correlation of the coefficients from the generalized linear model and
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Table 5.26: Coefficients with adjusted odds ratios (with 95% Cl) from the

multivariate analysis of active vs. not active mucocutaneous disease.

coefficient odds ratio

A previous occurrence of a mucocutaneous B 0.682 1.977 [1.347,2.903]

Number of mucocutaneous B scores 0.188 1.207 [1.083,1.345]

A previous occurrence of a renal A -0.978 0.376 [0.190,0.746]

Time (years) since first clinic visit -0.151 0.859 [0.809,0.914]

A previous occurrence of a mucocutaneous A 1.997 -
A previous occurrence of a musculoskeletal B 0.084 -
A previous occurrence of a musculoskeletal A -0.367 -

A previous occurrence of a renal B -1.038 -

A previous occurrence of a mucocutaneous A*

A previous occurrence of a musculoskeletal B -1.365 -

A previous occurrence of a mucocutaneous A*

A previous occurrence of a musculoskeletal A -0.947 -
A previous occurrence of a renal B*

A previous occurrence of a musculoskeletal B 1.212 -

Table 5.27: Odds ratios for combinations of variables affected by the inter­

actions
No previous occurrence of 

a mucocutaneous A

Previous occurrence of 

a mucocutaneous A
No history of musculoskeletal A, 

musculoskeletal B or renal B scores 1. 000* 7.368 [4.127,13.154]
A history of 

musculoskeletal A scores 0.693 [0.460,1.043] 1.981 [0.769,5.102]
A history of 

musculoskeletal B scores 1.088 [0.785,1.507] 2.047 [1.163,3.601]
A history of 

renal B scores 0.354 [0.166,0.756] 2.610 [1.348,5.055]
A history of musculoskeletal B 

and renal B scores 1.295 [0.789,2.125] 2.435 [1.128,4.717]
A history of musculoskeletal A 
and musculoskeletal B scores 0.754 [0.459,1.237] 0.550 [0.247,1.226]

* All odds rations are compared to a common default category
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Table 5.28: Coefficients with adjusted odds ratios (with 95% Cl) from the

multivariate analysis of active vs. not active musculoskeletal disease.

Coefficient odds ratio

Number of musculoskeletal B scores 0.564

(Number of musculoskeletal B scores)2 -0.040 e 0.524—0.080m u6*

A previous occurrence of a musculoskeletal A only 1.188 3.282 [1.600,6.733]

A previous occurrence of a renal B -0.433 0.649 [0.471,0.894]

History of disease scores in all other organs/systems -0.332 0.717 [0.534,0.965]
Time (years) since first clinic visit -0.080 0.923 [0.865,0.985]

Time (years) since
previous clinic visit 0.392 1.479 [1.084,2.018]

Time (years) since last
visit with active musculoskeletal disease -0.126 0.882 [0.794,0.980]

A previous occurrence of a mucocutaneous B -0.074 -
Musculoskeletal damage 0.138 -

A previous occurrence of a musculoskeletal A 0.003 -
A previous occurrence of a mucocutaneous A -0.672 -
A previous occurrence of a mucocutaneous B*

Musculoskeletal damage 0.605 -
A previous occurrence of a musculoskeletal A*

A previous occurrence of a mucocutaneous A 1.157 -
* Where m ub is the number of musculoskeletal Bs, that the comparison patient had been

observed to score at the previous visit.

No musculoskeletal damage Musculoskeletal damage
No previous occurrence of 
a mucocutaneous B score 

Previous occurrence of 
a mucocutaneous B score

1

0.929 [0.674,1.280]

1.148 [0.706,1.866] 

1.951 [1.174,3.243]

No Previous occurrence of 

a musculoskeletal A score

Previous occurrence of 

a musculoskeletal A score
No previous occurrence of 
a mucocutaneous A score 

Previous occurrence of 
a mucocutaneous A score

1

0.511 [0.289,0.901]

1.003* [0.633,1.590] 

1.630 [1.050,2.528]

*this odds ratio should be interpreted with^^tion as the effects of musculoskeletal A and 

B scores have already been adjusted for



the robust variance-covariance m atrix from the model fitted using generalized 

estim ating equations.

Table 5.29: Coefficients with adjusted odds ratios (with 95% Cl) from the 

final m ultivariate analysis of active vs. not active renal disease.

coefficient odds ratio

A previous occurrence of a renal B

A previous occurrence of a renal A only

Number of renal B scores

Renal damage

A previous occurrence of a musculoskeletal B 
Time (years) since 
previous clinic visit 

Time (years) since last 
visit with active renal disease

2.243 9.426 [4.274,20.789] 

3.110 22.420 [8.342,60.253] 

0.254 1.289 [1.100,1.512] 

1.222 3.393 [2.117,5.438] 

-0.541 0.582 [0.392,0.865]

0.496 1.642 [1.085,2.485]

-0.315 0.730 [0.569,0.936]

5.2.2 Goodness of Fit of the Final M odels

Table 5.30: Goodness of fit tests for individual logistic models.

Active mucocutaneous disease 

Active renal disease 

Active musculoskeletal disease

6.920 (9df) (p=0.645) 

7.388 (9df) (p=0.597) 

8.514 (9df) (p=0.483)

All three final models appear to fit the data  well. There are only minor 

differences between the results from these individual logistic regression anal­

yses and the results from the polychotomous model. These were th a t, in the 

simple logistic model for active renal disease, tim e since the last visit and 

tim e since the previous renal A or B score are significant and were not in
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the polychotomous model. Also in the simple logistic model for active renal 

disease a history of musculoskeletal B scores is adequately represented by 

a previous occurrence of a musculoskeletal B as opposed to the number of 

musculoskeletal B’s. In the simple logistic model for active musculoskeletal 

disease tim e since the first clinic visit and time since the last visit are signifi­

cant and were not in the polychotomous model. In the simple logistic model 

for active mucocutaneous disease there is a significant interaction between 

musculoskeletal damage and a previous occurrence of a mucocutaneous B 

th a t was not present in the polychotomous model.

There does appear to be greater evidence of dependence on the time 

between visits in the simple logistic models. However the effects are not 

large and the time between visits has been adjusted for by the inclusion 

of t'ip — (t'ip_i) as discussed in section 4.2.1. There does also appear to be 

evidence in the simple logistic models of dependence on the time since the 

patients were last observed with active disease. However again the effects 

are small.

5.2.3 Assessing the Assum ption of Independence of 

A ctivity in the Three O rgan/System s

If, a t any point in time, the development of activity in any one of the three 

organs/system s were to be regarded as independent (conditional on past ac­

tivity) of the development of disease activity in any of the others, then a 

6 category polychotomous model could be calculated from the three simple 

logistic models. In order to assess the validity of this assumption, the esti­

m ates of risk for each observation were calculated using the simple logistic 

models. Estim ates of risk were then calculated from these (based on the 

assumption of independence), for active mucocutaneous disease only, active
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musculoskeletal disease only, active renal disease only, active mucocutaneous 

and active musculoskeletal disease and finally active renal disease with active 

disease in one or both of the other organs/systems. The goodness of fit of the 

polychotomous model was then tested using the method described in section 

4.3.1 where a subject’s group membership was based on these estimates of 

risk. The results are given in table 5.31.

Table 5.31: Goodness of fit test for polychotomous logistic model calculated 

form the three simple logistic models.

Active mucocutaneous disease only 9.409 (9df) (p=0.400)

Active renal disease only 14.654 (9df) (p=0.101)

Active musculoskeletal disease only 14.946 (9df) (p=0.092)

Active mucocutaneous and musculoskeletal disease 15.010 (9df) (p=0.091)

Active renal and other disease 13.653 (6df) (p=0.034)

The results given in table 5.31 generally support the assumption th a t 

disease activity in any of the three organs/systems is independent (condi­

tional on past activity) of disease activity in any of the others. However it 

should perhaps be noted th a t although activity in the mucocutaneous or­

gan/system  and activity in the musculoskeletal organ/system  do appear to 

be independent (conditional on past activity) there is perhaps some evidence 

th a t activity in the renal organ/system  is not independent (conditional on 

past activity) of activity in either the mucocutaneous or musculoskeletal or­

gans/system s. The to ta l number of observations in this category is however 

small (table 4.3).
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5.2.4 M edication

As discussed in section 4.3, as a final stage in the variable selection, medi­

cation was added to the models, to assess whether any of the results found 

changed once the treatm ent a patient was receiving had been accounted for. 

Variables were created th a t indicated what medication a patient was receiv­

ing a t the previous clinic visit. For this purpose four groups of treatm ents 

were considered. NSAIDs, steroids, immunosuppressants and other drugs.

As this is not a randomized controlled trial no discussion will be made 

of any apparent effects of the medication, and this final stage in the model 

selection is, as stated, simply to assess whether any of the observed effects 

are influenced by treatm ents patients receive.

Tables 5.32, 5.33 and 5.34 show the coefficients and significance levels for 

the three final models with the medication a patient was receiving at the 

previous visit having been included.

The results presented in tables 5.32, 5.33 and 5.34 indicated th a t the 

inclusion of a patien t’s treatm ent in the models did not affect the results 

from 5.2.1.

It should be remembered th a t all the models are based on a subset of visits 

where the patient was known to have inactive disease a t the previous visit 

and th a t consequently the effects of the medications should be interpreted 

as the effect of the medication on preventing active disease.

The apparent lack of effect of the treatm ent may indicate th a t the physi­

cians have made the correct decision about the treatm ent received.

It is of interest to note th a t a similar study in psoriatic arthritis (Gladman 

et al. 1995) also found th a t the inclusion of medication in models for severe 

disease did not alter the apparent effects of other variables.
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Table 5.32: Coefficients with significance levels from the final m ultivariate 

analysis of active vs. not active renal disease with medication at the previous 

visit.

coefficient significance level

A previous occurrence of a renal B 2.063 « 0
A previous occurrence of a renal A only 2.899 « 0

Number of renal B scores 0.240 0.003

Renal damage 1.177 « 0
A previous occurrence of a musculoskeletal B -0.465 0.025

Time (years) since
previous clinic visit 0.537 0.015

Time (years) since last
visit with active renal disease -0.308 0.017

NSAIDS -0.263 0.268

Steroids 0.124 0.661

Immunosuppressants 0.404 0.045

Other medication -3.00 «  0

5.3 Validating the M odels

A second data  set was used to validate the three final logistic models. This 

da ta  set is from the Departm ent of Rheumatology at the Middlesex Hospital 

and consists of demographic information, the BILAG activity index, the 

SLICC damage index and information on therapy and laboratory data.

The data  has been collected on 295 patients, 265 women and 30 men over 

a period of five years. 190 of the patients are Caucasian, 52 Afro-Caribbean, 

32 Asian and 21 of other ethnic origins.

The number of visits involved are given in table 5.35.
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Table 5.33: Coefficients with significance levels from the multivariate anal­

ysis of active vs. not active mucocutaneous disease with medication at the

previous visit.

coefficient significance level

A previous occurrence of a mucocutaneous B 0.699 0.0003

Number of mucocutaneous B scores 0.196 0.0004

A previous occurrence of a renal A -0.963 0.006

Time (years) since first clinic visit -0.158 « 0
A previous occurrence of a mucocutaneous A 2.032 « 0
A previous occurrence of a musculoskeletal B 0.104 0.535

A previous occurrence of a musculoskeletal A -0.330 0.132

A previous occurrence of a renal B -1.003 0.013

A previous occurrence of a mucocutaneous A*

A previous occurrence of a musculoskeletal B -1.397 0.001
A previous occurrence of a mucocutaneous A*

A previous occurrence of a musculoskeletal A -0.897 0.034

A previous occurrence of a renal B*

A previous occurrence of a musculoskeletal B 1.190 0.007

NSAIDS 0.100 0.480

Steroids -0.219 0.142

Immunosuppressants 0.062 0.683

Other medication -5.133 » 0
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Table 5.34: Coefficients with significance levels from the multivariate anal­

ysis of active vs. not active musculoskeletal disease with medication at the

previous visit.

Coefficient significance level

Number of musculoskeletal B scores 0.576

(Number of musculoskeletal B scores)2 -0.041 «  0

A previous occurrence of a musculoskeletal A only 1.208 0.0008
A previous occurrence of a renal B -0.447 0.008

History of disease scores in all other organs/systems -0.305 0.051
Time (years) since first clinic visit -0.084 0.0001

Time (years) since
previous clinic visit 0.379 0.021

Time (years) since last
visit with active musculoskeletal disease -0.124 0.022

A previous occurrence of a mucocutaneous B -0.071 0.661
Musculoskeletal damage 0.134 0.589

A previous occurrence of a musculoskeletal A 0.011 0.961
A previous occurrence of a mucocutaneous A -0.686 0.018

A previous occurrence of a mucocutaneous B*

Musculoskeletal damage 0.583 0.047

A previous occurrence of a musculoskeletal A*

A previous occurrence of a mucocutaneous A 1.173 0.002
NSAIDS 0.041 0.754

Steroids -0.269 0.087

Immunosuppressants 0.204 0.151
Other medication*

* No patients with inactive disease in all systems receiving ‘other’ medication were observed 

at the next clinic visit with active muscular disease.
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Table 5.35: Number of visits (in the second data  set) where the patient 

presented with active disease in one or more organs/system s having had 

inactive disease in all systems at their previous visit.

Inactive renal mucocutaneous and musculoskeletal disease

Active mucocutaneous disease only

Active musculoskeletal disease only

Active renal disease only

Active mucocutaneous and musculoskeletal disease 
Active renal disease with either 

active mucocutaneous, musculoskeletal or both

| |f f  = 80.82% 

^ = 6 .7 5 %
££= 6 .32%  
2§|j- = 4.38% 

2551 = 2-26%
-21_ = 0 
2341 u ‘

5.3.1 The three final models fit using the second data 

set

The models were fit using the second data  set; the results are given in tables 

5.37, 5.38 and 5.39. Only the coefficients are presented as these results are 

included in the text simply for the purpose of comparison.

It was not possible to include the interaction between a previous occur­

rence of a mucocutaneous A and a previous occurrence of a musculoskeletal 

A in the analysis of active vs. not active mucocutaneous disease as no pa­

tients in this da ta  set were observed with both a history of mucocutaneous 

A scores and a history of musculoskeletal A scores.

Table 5.36: Goodness of fit tests for individual logistic models fit using the 

second da ta  set.

Active mucocutaneous disease 

Active renal disease 

Active musculoskeletal disease

16.600 (9df) (p=0.103) 

11.478 (9df) (p=0.244) 

14.194 (9df) (p=0.116)
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Table 5.37: Coefficients from the multivariate analysis of active vs. not active

mucocutaneous disease using the second dataset.

coefficient standard error

A previous occurrence of a mucocutaneous B 0.239 0.267

Number of mucocutaneous B scores 0.468 0.130

A previous occurrence of a renal A 0.383 0.679

Time (years) since first clinic visit 0.0002 0.00009

A previous occurrence of a mucocutaneous A 2.569 0.593

A previous occurrence of a musculoskeletal B 0.063 0.223

A previous occurrence of a renal B -0.463 0.259

A previous occurrence of a mucocutaneous A*

A previous occurrence of a musculoskeletal B -2.335 0.691

A previous occurrence of a renal B*

A previous occurrence of a musculoskeletal B -0.268 0.403

Table 5.38: Coefficients from the multivariate analysis of active vs. not active 

renal disease using the second data  set.__________________________
coefficient standard error

A previous occurrence of a renal B 1.411 0.478

Number of renal B scores 0.038 0.160

Renal damage 0.695 0.317

History of musculoskeletal B scores -0.221 0.149

Time (years) since previous clinic visit 0.384 0.200
Time (years) since last visit

with active renal disease -0.720 0.253
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It was also not possible to include a variable for renal A scores only in 

the analysis of active vs. not active renal disease as no patients in this data  

set scored a renal A and not a renal B.

Table 5.39: Coefficients from the multivariate analysis of active vs. not active 

musculoskeletal disease using the second dataset.

Coefficient standard error

Number of musculoskeletal B scores 0.989 0.264

(Number of musculoskeletal B scores)2 -0.171 0.061

A previous occurrence of a musculoskeletal A only 1.209 0.562

A previous occurrence of a renal B -0.449 0.249

History of disease scores in all other organs/systems 0.162 0.221
Time (years) since first clinic visit -0.224 0.079

Time (years) since previous clinic visit 0.505 0.188
Time (years) since last visit

with active musculoskeletal disease 0.189 0.146

A previous occurrence of a mucocutaneous B 0.296 0.244

Musculoskeletal damage 0.625 0.272

A previous occurrence of a musculoskeletal A 1.117 0.315

A previous occurrence of a mucocutaneous A -0.154 0.383

A previous occurrence of a mucocutaneous B*

Musculoskeletal damage -0.348 0.461

A previous occurrence of a musculoskeletal A*

A previous occurrence of a mucocutaneous A 0.361 0.553

* Where mub is the number of musculoskeletal Bs, that the comparison patient had been 

observed to score at the previous visit.

The results of the goodness of fit test applied to  the models fit using this 

second data  set are given in table 5.36.

In order to assess whether there were significant differences between the 

two da ta  sets, the models were fit using a combined data  set and the inter­
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actions between hospital and all the covariates were examined. The results 

of global tests of the interactions are given in table 5.40.

In the mucocutaneous model the significant differences are th a t, the num­

ber of mucocutaneous B’s the patient has scored has a larger effect on a pa­

tien t’s chance of presenting with active mucocutaneous disease if the patient 

is from the Departm ent of Rheumatology at the Middlesex Hospital, and, 

patients from this departm ent do not have an increased chance of presenting 

with active mucocutaneous disease if they have a history of both active renal 

and musculoskeletal disease.

In the musculoskeletal model the significant differences are th a t time, 

tim e since the previous visit and time since the patient last presented with 

active musculoskeletal disease have different effects on the patients from the 

D epartm ent of Rheumatology at the Middlesex Hospital. The effect of the 

interaction between a previous occurrence of a musculoskeletal A and pre­

vious occurrence of a mucocutaneous A is also different. Patients from the 

Birmingham hospitals have an decreased chance of of presenting with active 

musculoskeletal disease if they have a history of mucocutaneous A scores, un­

less they also have a history of musculoskeletal A scores in which case their 

chance of presenting with active disease increases. Patients from the D epart­

m ent of Rheumatology at the Middlesex Hospital have an increased chance 

of presenting with musculoskeletal disease if they have a history of m ucocuta­

neous A scores irrespective of whether they have a history of musculoskeletal 

A scores.

In the renal model all the effects seem to be smaller if the patient is 

from the Departm ent of Rheumatology at the Middlesex Hospital, with the 

number of renal B scores having no effect on a patien t’s chance of presenting 

with active renal disease.
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Table 5.40: Tests of interaction between hospital and all covariates in the 

models.

Active mucocutaneous disease 

Active renal disease 

Active musculoskeletal disease

32.028 (9df) (p=0.0002) 

19.176 (6df) (p=0.004) 

48.273 (14df) (p=0.00001)

Nevertheless the m ajority of the findings from the first d a ta  set are qual­

itatively supported by the analysis of this second data  set. Some of the 

differences th a t do exist may simply reflect differences in patient manage­

ment.

5.4 Summary of the results found

In interpreting the results of the analyses, it is im portant to  remember th a t 

all patients with a history of mucocutaneous A scores also have a history of 

mucocutaneous B scores, and very few patients have only histories of renal 

A and musculoskeletal A scores (tables 5.10, 5.17). Consequently when a 

history of B scores is represented in a model, and a history of A scores is 

not, this simply means th a t the size of the effect does not increase with 

severity of disease, not, th a t a history of A scores does not have an effect. 

W here patients have only a history of A scores (not B scores) the numbers 

are generally too small for any significance to be achieved when included in 

a model with a history of B scores. Recall th a t further details of variable 

selection, and discussion of why some effects disappear, can be found in 

appendix D.

As a consequence of this, for the purpose of the subsequent discussion, a 

history of B scores has been interpreted as a history of active disease. Where
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a history of A scores has a specific effect, not evident in those patients with 

only a history of B scores, this should be interpreted as only severe disease 

activity having the effect.

This analysis shows th a t patients with a history of disease activity in any 

of the mucocutaneous, musculoskeletal or renal organs/system s are more 

likely to continue to have active disease in th a t organ/system  than  patients 

with no previous evidence of disease activity (in th a t organ/system ). In 

addition patients with a greater number of clinic visits with active disease 

are generally more likely to develop active disease than  those with less.

This analysis also supports the hypothesis th a t a possible subset of lupus 

is represented by patients with renal disease and little else. A history of 

renal activity appears to decrease patients’ chances of developing both  active 

mucocutaneous and musculoskeletal disease. This analysis also suggests th a t 

a patient is less likely to present with renal activity if they have a history of 

active musculoskeletal disease. A patien t’s chance of presenting with renal 

activity is also increased if the patient has renal damage. This particular 

finding is possibly due to  the fact th a t renal activity is often ‘clinically silent’. 

T ha t is to say th a t evidence for renal activity is, in the early phases, only 

indicated by the presence of protein or small amounts of blood in the urine 

which are only detectable on dipstick testing. Likewise an increase in blood 

pressure does not cause symptoms in the early stages. The patient may 

therefore enter the stage of permanent damage before clinical features become 

evident. From this analysis, it is therefore apparent th a t renal disease is most 

likely to occur on its own, with no evidence th a t disease activity or damage 

in any other system increases the chance of active renal disease.

There also appear to be a number of associations between activity in the 

musculoskeletal and mucocutaneous systems, supporting the suggestion th a t
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a possible subset of lupus is represented by patients with musculoskeletal 

and mucocutaneous disease alone. The analysis suggests th a t if a patient 

has a history of mucocutaneous activity and musculoskeletal damage their 

chance of presenting with active musculoskeletal disease is increased, and th a t 

patients with a history of severe mucocutaneous and musculoskeletal disease 

have an increased chance of developing active musculoskeletal disease.

Further associations between activity in these two systems were also iden­

tified. It appears th a t patients with a history of severe (BILAG A scores) 

mucocutaneous activity are less likely to develop subsequent active muco­

cutaneous disease if they have a history of musculoskeletal activity. It also 

appears th a t patients who have previously scored a BILAG A in the muco­

cutaneous system are less likely to develop active musculoskeletal disease as 

long as they have not previously scored a BILAG A in the musculoskeletal 

system.

The length of time th a t a patient has been registered a t a clinic is associ­

ated with a reduction in both mucocutaneous and musculoskeletal activity. 

However a patien t’s chance of developing active musculoskeletal or renal dis­

ease increases with the time since the last visit but decreases with time since 

the patient was last observed to score an A or B in the respective system.
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Chapter 6 

Efficiency

The lack of available information on the times of failure, and the need to 

investigate interrelationships between different systems led to the use of lo­

gistic models for the analysis of the lupus data. Dynamic covariates were 

used w ithout any appeal to an underlying model in continuous time. As dis­

cussed in section 4.2 the use of these discrete models as opposed to the ‘tru e ’ 

model, will undoubtedly have led to  some loss of information. In this chapter, 

consideration is given to the possible extent of this loss of information.

The approach taken is to assume a model for the underlying disease pro­

cess in continuous time. If this model was, in fact, known then it would 

typically be used for inference and would make full use of the information 

available in the data. Given this model, assumed to be the ‘tru e ’ model, 

the efficiency of the use of an incorrect model for the testing of specific hy­

potheses can be examined. A relatively simple form for the correct model is 

assumed in order to perm it analytical results to be derived but the qualitative 

conclusions should be more widely applicable.

Assume therefore th a t the times between active disease in each individual 

organ/system  are exponentially distributed and th a t all patients begin follow-
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up with no active disease. Further assume th a t there are two groups of 

patients, the first of size ni  and the second of size n 2 (ni and n 2 are fixed 

w ith ni + n 2 = n). Let the patients in the second group have a characteristic 

th a t distinguishes them  from those in the first. X i,..., Tn can then be defined 

as independent random variables representing the time until the occurrence 

of active disease (in one organ/system ) for each of the n patients. The 

‘tru e ’ model for active disease in an organ/system  is characterised by the 

probability density functions for the T ’s which, in this situation, take the 

form

= Xie~Xit t > 0 (6 .1)

for i =  1 , 2 , and where Ai =  A is the rate param eter for the patients in 

the first group and X2 = Ae7 is the rate param eter for the patients in the 

second group. The data  available for analysis will therefore relate to two 

independent samples, with possibly different means, of exponential random 

variables. These times will, however, not be observed directly and the infor­

m ation available on the times will depend on the pattern  of observation of 

the panel data.

In chapter 5 the logistic models used were of the form

logit Pr(ypt> =  1) =  a  +  (3xpt>,

where logit P r (ypt> = 1) =  log \-pr(y^=i) > anc  ̂ ^he response (active

disease or not) a t time t' of the pth of K subjects. (In some models the 

vector x pt' contained the actual gap time between visits. T hat situation will 

not be considered in any detail in this chapter). When, as in the situation 

considered here, the patients fall into two distinct groups, and the effect of
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only group membership is being considered, the equivalent logistic model 

would take the form

is the probability of a patient in group i presenting with active disease at 

their next clinic visit, or equivalently, developing active disease between two 

clinic visits. In equation (6.2) Xi is a binary variable indicating whether the 

patient has the characteristic th a t distinguishes the patients in the second 

group, or not. T hat is Xi = 0 for patients in the first group and Xi =  1 for 

patients in the second group.

It is natural to focus attention on the test of the null hypothesis of no 

group differences, th a t is represented by the null hypotheses 7  =  0 and 

p  =  0 in the exponential and logistic models respectively. Since, in general, 

the param eters 7  and ft do not estim ate the same quantity, an asymptotic 

comparison of the tests of the null hypothesis of no group differences in the 

two models is most naturally done through calculation of P itm an efficiency. 

The use of efficiency in this context is recommended by Cox (1957). P it­

m an efficiency for example, has been used by Farewell (1982) to study the 

effect of ignoring variability in the misclassification of an ordinal response, by 

M atthews (1984) to study the use of an incorrect model for competing risks, 

by Lagakos et al. (1978) to study the effect of mismodelling an explanatory 

variable in regression models and by Farewell et al. (2004) to study interaction 

tests in generalized linear models. While P itm an efficiency is an asymptotic 

measure, it should provide a qualitative indication of the relative behaviour 

of the two models.

(6 .2)

for i =  1,2 where
e',(a+Pxi)

I _|_ e(a+Pxi)
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Pitm an  Efficiency

Consider two consistent asymptotically normal statistics Si and 5 2 with lim­

iting variances n { la 2s 1(70) and n ^ 1 0 s2(7 o)• and S 2 have asymptotically 

the same power for the same local values of 7  if the sample sizes ni  and n 2 

are related by

n A i^ T o )  = « 21< 4 (7 o)-

Thus if efficiency is measured by relative sample sizes, the asymptotic relative 

efficiency of Si  to S 2, with respect to the test of the null hypothesis 7  =  70 , 

is

, Q . c  , _  °Si (70) e(Si . S 2) 2 / \
°sA 7o)

However it is unnecessary to restrict Si and S2 to be consistent esti­

mates of 7 . More generally it might be assumed th a t Si (i =  1 , 2 ) are 

consistent for some function [iSii7 o) which is a monotone function of 70 , at 

least near to 7  =  70 . In this situation, P itm an efficiency provides the corre­

sponding general definition of asymptotic relative efficiency (Cox and Hinkley 

1974). P itm an efficiency can be used for statistics Si th a t are asymptotically 

NifASiil),  The asymptotic relative efficiency of two such statistics

Si  and S 2 is given by

e(Sr : S2) =  (6.3)
^ 52(7 o) (7sl Uo) 

with fjLls .(70) denoting the derivative of the function HSiilo)-

In the situation considered here, use of the exponential model will pro­

vide a consistent estim ate of 7 . It is then possible to calculate the relative 

efficiency of the logistic model to the exponential from equation (6.3) based
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on a statistic from the logistic model analysis, Si, th a t is asymptotically dis­

tribu ted  as N (P (7 ), ) and a statistic from the exponential model, S2,

th a t is asymptotically distributed as N ( 7 , ^ ^ ) .

Recall tha t, in general, the interpretation of 7  is not the same as the 

interpretation of /? and it would not be reasonable to a ttem pt to  conclude 

anything from equation (6.3) for any values of 7  and f} other than  zero. While 

there is a formal link between (3 and 7  for all values of 7 , knowledge of the 

link requires knowledge of the ‘tru e ’ model and th a t is what, in practice, is 

unknown.

The relative efficiency of the logistic model will be affected by the number 

of different times at which patients are observed. A number of different 

situations are looked at in sections 6.1 to 6.4.

6.1 One Time Point

If all the patients from each group are observed a t the same tim e then no 

efficiency should be lost by the use of a logistic model as opposed to an expo­

nential model. As the number of time points th a t the patients are assessed 

a t increases, the relative efficiency of the logistic models to the exponential 

models would be expected to decrease. In order to set up the structure of the 

approach the simplest case was initially examined where it was assumed th a t 

all patients in both groups were observed at a single fixed time point t. Let 

zi represent the number observed to have failed (tha t is to have developed 

active disease) in the first group and Z2 in the second.
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6.1.1 The Exponential M odel

The log-likelihood I* for the exponential model (equation (6.1)) is

l* =  ~  +  z i l°g(! “  e~Xi%  (6-4)
i = i

for i= l ,2  and with Ai =  A. This gives the variances of X and A2 as

1 -  e~'xt
V(X) =  

V(A2) =

n i t2e~^

1 -  e~X2t 
ri2t2e~^2t

V(y)  =  V(log(f))

V ( lo g ( f ) )  =  V  (log(A) -  log(A2))

F(log(A) -  log(A2)) =  V(log(A)) +  F(log(A2)).

Given th a t we can approximate the variance of a function <?(X) by

Var*ff(X) «  £*([s(X) -  sW ]2)

{=1

=  j 2 W s W } 2V°-reXs + 2 ' £ d ( 0 ) g l'(0)Cov<, ( X i , X €)
<5=1 6>e

we get

Giving

^ ( 7 ) ~  j p V { \ )  + ± V ( X *). (6.5)

J _  » ,( !  -  e - ^ ) e ~ xt +  »2(1 ~  e - xt) e - x«eV  
\ 22t2[ n ^ e - ^ e - ^ *  J '
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6.1.2 The Logistic M odel

As previously discussed the characteristic of interest th a t distinguishes the 

patients in the second group from those in the first, is represented in the 

logistic model (equation (6 .2 )) by a binary indicator variable Xi, with corre­

sponding param eter x\ — 0 for those patients in group 1 , and X2 — 1 for 

those patients in group 2 .

The log-likelihood is

I =  J2[zi{a +  /3xi) -  ni log(l +  e(a+/5xi))] (6.7)
i= 1

(where Zi is the number of patients in group i observed to  fail (that is to say 

have active disease) a t time t.) The likelihood equations for estim ating

n  =

are (for j = 1 ,2)

T h a t is

and

dl ( Cl )

d£li

d l { Cl )

d a

dl { Cl )

dp

' a '

\ P /

=  0 , (6 .8)

=  0,

Assume th a t for a given

=  0.
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converges in probability as n —>• oo to a limit,

(
CL & =

a A

Pa

and let for notational convenience (for j ,k = l ,2)

r  _  « ( O a )
j ~  d n j  ’

and

at(nA)
lk dQjdQk

From (Cox 1961) expanding equation (6 .8 ) asymptotically we have th a t 

1 2
~ G j  +  [^A(Gjk)(Clk — =  0 , (6-9)
n k=i

where E \  denotes the expectation under the underlying distribution (the 

exponential). Since Cl converges to f l \  it follows th a t

E \ ( G j )  =  0 . (6 .10 )

It follows from equation (6.9) th a t

£lk -  ,* =  ~ ~  'Z(EA(G- ) y kGj , (6 .11)
n j=1

where (EA{G")Yk is the j , k th element of the m atrix inverse to E A(Gjk). 

Using the standard result th a t

E A ( G j G k )  +  E A ( G j k )  —  0

it follows from equation (6 .11) th a t

C o v i S l j  17 a  f^A  ,k)

= -  E  E  (EAiG W ' E ^ G i G J i E ^ G - ) ) ^ .  (6.12)
n  I- 1 771=1
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For the logistic model under consideration, from equation (6.10), letting j  = 

1 , we get

and, letting j  — 2 ,

where,

and

This gives

and

E \ ( Y , ( zi -  n ^ i ) )  =
i=l

2

E A ( Y l Xi(Zi ~  n*7r*)) =  0’ 
*=1

E a M  = n i ( l  -  e xt)

Ea{z2) = n 2{ 1 - e  X2t).

a A =  log[eAt -  1]

Va 0 )  =  +  r v ,  ■ W  (6-14)

From equation (6.12) we get

n i ( l  — e_At)e_A* ' n2(l — e~X2t)e~X2t

6.1.3 The Relative Efficiency of the Logistic M odel

From equations (6 .6 ), (6.13) and (6.14), and substitution into equation (6.3) 

with Si  asymptotically N((3A, —̂ ) and S 2 asymptotically N ( 7 , ^ -^ )  the 

P itm an relative efficiency of the two models (the logistic and the exponential) 

is

(o  o \ =  (1 _ e  A<) [ ^ i ( l ~ e  X2t)e xt +  n 2e27(l -  e A*)e X2t]
6 ‘ 2) (1 -  e - X2 t)[rn{ 1  -  e - xt)e~xt +  n 2(l -  e~X2 t)e~X2t} ‘ [ }
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Equation (6.15) is only of interest when 7  =  0 , in which case e(Si  : S 2) =  1. 

This shows tha t, as expected, when the patients are all observed at the same 

tim e the logistic model is as efficient as the exponential in testing the null 

hypothesis of no effect.

6.2 Two Time Points

As previously discussed the relative efficiency of the logistic model to the 

exponential will depend on the number of different tim e points a t which the 

patients in each group are assessed. To initially examine this, it was assumed 

th a t half the patients in each group were observed at time t\  and half a t time 

t 2 (note th a t the notation here is different from the notation used in 4.2.1). 

To simplify the calculations each group was taken to have the same number of 

patients n' (n' =  f ). In this situation the logistic model would commonly be 

stratified by time, and the model used in section 6.2.2 is naive. However this 

model is used to illustrate the effect of an increasing number of tim e points 

on the relative efficiency of the models used in chapter 5 when initially the 

logistic models do not incorporate time.

6.2.1 The Exponential M odel

Note th a t while we assume th a t the exact failure times derive from an expo­

nential model we still only have panel data. Thus the likelihood incorporates 

expressions for the probability of a patient in group i failing before time t j , 

which for the exponential model are

J J Aie~Xitdt =  1 -  e~Xitj 

i =  1 ,2
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.7 =  1, 2.

W ith Zij the number of patients observed to fail in group i before time tj, 

the log-likelihood I* is

r  =  Y ,  -  zu ) ( - ^ i )  +  za M 1 -  e-Ai‘0 ].
j = 1 i= 1 Z

W ith Ai =  A this gives

2{l -  e~ktl)(l -  e~Xt2)
= —

v ( \ 2) =

n '[^ ( l  — e~xt2 )e~xtl +  t ^ l  — e~xtl)e~xt2] 

2(1  -  e_A2<1)( l _  e~X2t2)
n'\t\(  1 — e~X2 t2 )e~X2tl + 1 \{ 1 — e~X2 t l)e~X2t2] ’ 

which, using equation (6.5), leads to

VM  =  — ---------------^ ------- =— —----------------------s—  +
A2 n '[tf (1 — e_At2)e_Atl) -f ^ ( 1  — e~xtl)e~xt2]

l r 2 ( 1  -  e~X2tl)(l  -  e~X2t2)
(6.16)

A2 — e_A2t2)e_A2tl +  ^ ( 1  — e~A2<1)e_A2t2]

6.2.2 The Logistic M odel

We now consider the use of a logistic model for panel data. From the logistic 

model the probability of a patient in group i failing before tim e tj would be 

w ritten as

e(a+(ixi)

'K% 1 -}- e(a+fixi) ’

W ith again Z{j being the number of patients observed to fail in group i before 

tim e tj, the log-likelihood is

l = Y ,  J 2 l zn ( a  + Px i) -  T  I°g (1 +  e(“+ te ))]- (6-17)
j = 1 »=1 Z

As previously the characteristic of interest is represented in the logistic model 

by a binary indicator variable Xi, with corresponding param eter /?; x\  =  0 for
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those patients in group 1, and x 2 — 1 for those patients in group 2. (Equation

(6.17) is equivalent to equation (6.7) and, as stated previously, this analysis 

could possibly be considered naive). In this case, equation (6.10) with

Ex{z  i) =  y ( l - e - A(‘) +  y ( l - e - ^ )

and

(where z x = z n  +  z \ 2 and z 2 = z2i +  z22) gives,

9  _  p—M 1 _  p~M2

*A =  lost e- A (l+ e - , t2 ]

and
( 9    f> ^2^1   f> *̂ 2̂ 2 \ (p Ati I f> Â 2 ^

/?A = l o d je^ l + f ^ , ) ( 2 l U - ^ ) ]- ( 6 ' 1 8 )

From equation (6.12) we get

2
KaW  =  „/[(! _  e -x t^e -xh  +  (! _  e-At2)e-Ab] +

2
(6.19)

n'[(l — e~X2t l)e~X2tl +  (1 — e~X2 t2 )e~X2t2]

6.2.3 The Relative Efficiency of the Logistic M odel

From equations (6.16), (6.18) and (6.19) and substitution into equation (6.3), 

where Si  is asymptotically N(i3a, Vâ  ) and S 2 is asymptotically N (7 , ^ ^ ) ,  

the relative efficiency of the two models in detecting the null hypothesis of 

no effect is, if 7  =  0

4(ti e~x t l + t 2 e~ x t * ) 2

e(S i : S2) ^  _  e_Xh _  e_Atâ e_Atl +  e_At̂ 2 -

(1 — e_A<1)(l — e_A*2)((l — e~A<1)e-Atl +  (1 — e-A*2)e-At2)
t\{ 1 — e~xt2 )e~xtl +  t2(l ~  e~xtl)e~ x t 2  

Equation (6.20) was evaluated for values of Xti and At 2 chosen so th a t 

the probability of a patient developing active disease (in the organ/system
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Table 6 .1 : The relative efficiency of the logistic model when patients are 

observed at two distinct time points.

Probability of 

failing before t\ 10% 20%

Probability of failing before £2 

30% 40% 50% 60% 70% 80% 90%

10% 1 0.960 0.876 0.769 0.647 0.514 0.375 0.237 0.110
20% 1 0.973 0.903 0.803 0.680 0.536 0.379 0.216

30% 1 0.977 0.913 0.814 0.683 0.522 0.339

40% 1 0.978 0.914 0.809 0.660 0.468

50% 1 0.978 0.908 0.785 0.600

60% 1 0.975 0.890 0.727

70% 1 0.968 0.847

80% 1 0.948

under consideration) before t\  ranges from 10% to 80%, and the probability 

of a patient developing active disease before ti  ranges from 10% to 90%. The 

results are given in table 6 .1 .

It can be seen from table 6.1 th a t when the two tim e points are reasonably 

close to each other then the relative efficiency of the logistic model to the 

exponential remains quite high. It is only as the probability of a patient 

failing between the two observation times is greater than  50% th a t the relative 

efficiency of the logistic model to  the exponential falls below 50%.

6.3 Three Time Points

In order to verify th a t the relative efficiency of the logistic models (when not 

stratified by time) will decrease with the addition of extra times of observa­

tion, both  groups of patients (n ' in each group) were assumed to  have been 

observed at three distinct time points. (A third of each group were observed
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a t time £1, a th ird  at time t2 and a third a t time £3.) In this situation, 

equation (6.5) leads to

3(1 -  e“*‘i)(l -  e_Ata)(l -  e-At3)Vl'y) —-------------------------- :------------------ X---------- :------------------------- ;------------------ :---------- :------------------------- :-------------------:---------- :----- *
A 2n'[tf(l — e- t̂2)(l — e-At3)e- 'Xti + t2(l — e~Ati)(l — e~xt3)e~xtz +<3(1 — e~xt  ̂)(1 — e~Xi2)e~>'t3] 

 3(1 -  e-*a«i)(i -  e - ^ ) ( l  -  e~^*3)_________________________  2
X̂ n'lt2 (1 — e_ 2̂*2)(i — e_ 2̂*3)e_ 2̂*i + t|(l — e~*2*i )(1 — e- *2t3)e- *2*2 + t|(l — e_*2*i )(i — e- 2̂*2)e- 2̂t3]

Equation (6.10) gives

(3  _  e-A2ti _  e-\2t2 _  e-A2t,) (e-At, +  e- \ h  +  e-A.3)
PA g l(e-* 2ti -f e-A2t2 +  e-A2l3)(3 _  e-Ati _  e -A(2 _  e-A2i3)J' ' -1

Equation (6.12) gives the relative efficiency of the two models in detecting 

the null hypothesis of no effect as

3
n '[(l — e-Ati)e -A*i +  (1 — e~xt2)e~xt2 +  (1 — e~xt3)e~xt3] ~*~

n'[( 1 — e-A2tl)e-A2tl 4- (1 — e~X2t2)e~X2t2 +  (1 — e-A2t3)e_A2t3] ’

Substitution of equations (6.22), (6.23) and (6.21) into equation (6.3), with, 

as previously, 5 i asymptotically N((3a , Vâ ) and S 2 asymptotically N ( 7 , ^ p - )  

and, with 7  =  0 , gives

, , ,  9(tie~Ati + t2e~xt2 +f3e~At3)2____
(3 — — e- **2 — g—At3 Ati _|_ g—xt2 _|_ g—><3̂ 2

(1 — e_ t̂l)(l — e->Kt2){\ _ e- *̂3)((l — e- *̂1)e- t̂l + (1 — e~xt2)e~*t2 + (1 — e- *t3)e- *t3) 
t2 (1 — e_ *̂2)(l — e- t̂3)e- t̂i + t^(l — e- **i )(1 — e~*t3)e~̂ tz + fg(l — e- *4* )(1 — e~^t3)e~xt3

Equation (6.24) was then evaluated for different values of Ati, Xt2 and A£3.

The results are given in appendix E. It can be seen th a t the addition of 

an extra time point does, as expected, reduce the relative efficiency of the 

logistic model to  the exponential.
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6.4 n ' Time Points

One generalization of the results from the previous sections, derives from the 

assumption th a t the n! patients in each group are observed at n 1 different 

times ti ,  t 2 ....tn>. The relative efficiency of S\  (asymptotically N(f3&, Vâ ))

It should be noted th a t this is only valid for the slightly artificial situation 

where the n f patients from one group are seen a t the same n' d istinct tim e 

points as the n' patients from the other group.

addition of each additional time of observation, it is of interest to ascertain 

whether the stratification of the model by time increases the relative efficiency 

of the logistic models to the exponential. Consider the situation described in 

section 6 .2 , and stratify the logistic model by the times ti  and t%. This gives 

a logistic model of the form

and S 2  (asymptotically N ( 7 , ^ -^ ))  is then

6.5 Stratification of the Logistic M odel

Given th a t as expected the efficiency of the logistic model is reduced w ith the

for i — 1 ,2  and j  — 1 ,2  where

ev 3
,(at j +Pxi)

^  I  +  e (<xtj+Pxi)
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is the probability of failing before time tj  for those patients in group i. This 

gives a likelihood of the form

where Zij is the number observed to fail in group i a t time tj. As previously 

the characteristic of interest is represented in the logistic model by a binary 

indicator variable X{, with corresponding param eter /?; X\ =  0 for those 

patients in group 1, and X2 = 1 for those patients in group 2. From equation 

(6 .10) we know th a t

This gives

j= l i=l

* jy
E a  ^ j { zij 2_7r*J’) =  ^

with
nr-I?

E A(Zlj) = - ( I  -  e ~ ^ )  

EA(z2j) =  ^ (  1 - e " * * ) .

This leads to

2 — e~xtj +  e~X2tj = ----
e<2A tj

(6.25)
1 -)- e^Ah’ j  gi&Mj+PA)

Letting

gives
 ̂ 77.

^ a ( E  Xi{Zij ~  ^
j=l ^

which leads to

_  g  —̂2̂ 1 _  g ~ A2<2 _ g(aAl+/3A) g(aA2+^A)

1 _|_ e(aAl+/3A) 1 -}- g(QA2+/3A)
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Unfortunately no closed form solution of equations (6.25) and (6.26) could be 

found for /?. Consequently it is not possible to calculate the P itm an relative 

efficiency of this model to the exponential.

6.6 The Relative Behaviour of the Stratified  

Logistic Model: Assessment Through Com­

puter Simulations

In order to compare the relative behaviour of the stratified logistic model, 

to the exponential model, and to compare i t ’s performance to th a t of the 

non-stratified logistic, computer simulations were used. An example of the 

computing used can be found in appendix A.

Two groups of 50 patients were considered, with as previously, the second 

group consisting of those patients with a characteristic th a t distinguishes 

them  from the patients in the first group. Ti,...,Tioo were then defined as 

independent random variables representing the tim e until the occurrence of 

active disease in one organ/system  in each of the 100 patients. It was again 

assumed th a t Ti, ...,T i0o were exponentially distributed with

f(t\Xi) =  Aie~Xit t >  0

for i = 1 , 2 , and where Ai =  A is the rate param eter for those patients in 

group 1 and A2 =  Ae7 is the rate param eter for those patients in group 2 . 

Two random samples were then generated from exponential distributions to 

represent the times a t which the patients in each group developed active 

disease. However as it is only of interest to examine the relative efficiency 

of the logistic model to the exponential when 7  =  0 , both random samples 

were generated from the same exponential distribution with param eter A.
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For each patient it was noted whether they had developed active dis­

ease before specified times. Two binary vectors were then created indicating 

whether the patients in each group had ‘failed’ by the time of observation. 

Three different models, the exponential, the logistic and the stratified logis­

tic were then used to investigate whether there appeared to be a significant 

difference between the two groups. Firstly the true model ‘the exponential’ 

was used. It was assumed th a t (as previously stated) the times to failure of 

the first group of patients were exponentially distributed with param eter A 

and the times to failure of the second group of patients were exponentially 

distributed with param eter A2. Values of 7  and V{y)  were calculated from 

the appropriate log-likelihoods /*, with the s-plus function ‘nlm in’ used to 

maximise the likelihood 1* setting =  0 and =  0 and equation (6.5) 

to calculate V  (7 ) . The null hypothesis of of no effect (7 = 0 ) was then tested 

using the test statistic  7^ ,  which was assumed to have a N(0,1) distribution 

if 7  =  0 .

The characteristic of interest th a t distinguishes the second group of pa­

tients from the first was represented in all logistic and stratified logistic mod­

els by a binary indicator variable with corresponding param eter p. The pre­

programmed generalized linear models function in S-plus was used to fit a 

logistic model and a stratified logistic model in order to estim ate p  and V  (P). 

In each case the null hypothesis of no effect (p =0) was tested using the test 

statistic  which was assumed to have a N(0,1) distribution if p  =  0.

A 5% level of significance was used and the simulations were run 1000 

times.

The times of observation were chosen so the probability of a patient de­

veloping active disease before being observed ranged from 10% to 90%. The 

value of A chosen was 0.02 as this corresponds roughly to the observed fail­
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ure rate for developing active mucocutaneous disease. The times therefore 

ranged from 5 to  155 days.

6.6.1 One tim e point

In order to establish the usefulness of running the simulation study, initial 

simulations were run where all patients were observed a t one time point t. 

The results of theses simulations are given w ith the type 1 error rates for 

each of the models.

Table 6.2: Type 1 error rates for the exponential and logistic models when 

the simulations were run with all patients being observed a t the same tim e

1 -  e~xt

Type 1 error rate 

Exponential model Logistic model

10% 0.023 0.034

20% 0.049 0.049

30% 0.044 0.044

40% 0.062 0.062

50% 0.058 0.058

60% 0.054 0.054

70% 0.057 0.054

80% 0.059 0.047

Table 6.2 shows th a t for one time point the behaviour of the two ap­

proaches is comparable, with some finite sample variation from the 5% type 1 

error rate a t either end. For all the simulations where 20% <  1 — e~xt <  60%, 

the type 1 error rates are equal.
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6.6.2 Two tim e points

It was then assumed th a t half the patients in each group were observed at 

time t i  the others being observed at time t2• Simulations were run for values 

of ti and t 2 such th a t 20% <  1 — e~xtl <  60% and 30% <  1 — e-A<2 <  70%.

Table 6.3: Type 1 error rates for the exponential, logistic and stratified 

logistic models when the simulations were run with half the patients in each 

group being observed at t\ and the other half a t tim e t 2

1 -  e~xtl 1 -  e~xt2 Exponential model

Type 1 error rate 

Logistic model Stratified Logistic Model

20% 70% 0.063 0.033 0.062

20% 60% 0.048 0.031 0.045

20% 50% 0.064 0.051 0.064

20% 40% 0.055 0.044 0.060

20% 30% 0.040 0.038 0.041

30% 70% 0.056 0.045 0.055

30% 60% 0.053 0.047 0.058

30% 50% 0.045 0.045 0.046

30% 40% 0.051 0.048 0.050

40% 70% 0.042 0.034 0.041

40% 60% 0.050 0.048 0.050

40% 50% 0.062 0.067 0.067

50% 70% 0.054 0.052 0.053

50% 60% 0.069 0.070 0.070

60% 70% 0.053 0.049 0.050

It is clear from table 6.3 th a t generally the type 1 error rate  of the s tra ti­

fied logistic model is closer to the type 1 error rate of the exponential model 

than  is the type 1 error rate of the simple logistic model. This shows com­
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parable behaviour for the stratified logistic model and the exponential, and 

dem onstrates th a t there is a problem if the time factor is not adequately 

modelled (the simple logistic model). The difference between the results gets 

less as the time points get closer, as would be expected.

6.6.3 M ultiple Time Points

In an attem pt to assess the relative behaviour of simple logistic models and 

the models used in chapter 5 (logit P r (yu =  1 | ya- i  =  0) =  cvo +  f i x a  +  

~  (^p-i))) to  toe exponential, simulations were run where the times were 

allowed to vary normally around two tim e points with a standard deviation 

corresponding to Xt = 0.2 (this corresponds roughly to a standard deviation 

of about 10 days). The first mean time point was fixed so th a t 1 —e~xtl =  40% 

and the simulations were run for mean values of ^  so th a t 50% <  1 — e~Xt2 < 

70%.

Table 6.4: Type 1 error rates for the exponential, logistic and logistic models 

adjusted for tim e between visits when the simulations were run w ith the 

times of observation for the patients in each group varying normally around 

two time points

1 -  e~xtl 1 — e xt2 Exponential model

Type 1 error rate 

Logistic model Stratified Logistic Model

40% 70% 0.060 0.045 0.059

40% 60% 0.050 0.058 0.051

40% 50% 0.054 0.055 0.056

Table 6.4 indicates th a t when there are a large number of time points, 

the type 1 error rate of the logistic model adjusted for time between visits is
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generally closer to  the type 1 error rate of the exponential model than  is the 

type 1 error rate of simple logistic model (as was the case for two distinct 

tim e points). These results dem onstrate th a t ‘empirical modelling of the 

tim e effect’ is reasonably effective in getting the size of the test comparable 

to the exponential

6.6.4 Conclusions

The models used in chapter 5 are particularly appropriate if the tim e between 

the visits does not affect a patien t’s chance of presenting with active disease. 

Dynamic covariates were used without any appeal to an underlying model in 

continuous time. However the results of this chapter indicate th a t not only 

is little efficiency lost relative to an underlying model if the times between 

the visits are relatively similar, but in addition th a t if there is an underlying 

model the logistic models used are still useful if they are either stratified by 

tim e or adjustm ent is made for the time since the previous visit.
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Chapter 7

D iscussion

Chapters 3 and 4 describe new statistical methodologies th a t were developed 

for studies in two areas of current research in rheumatology: myositis and 

lupus. The development of measures for the assessment of disease activity 

and damage in myositis, based on previous work in lupus, led to the identi­

fication of a need for an approach to the assessment of the reliability of the 

tools. The existence of a unique 10 year da ta  set of measurements of disease 

activity and damage in lupus patients led to the development of an approach 

based on the analysis of multinomial panel data.

The statistical work presented in this thesis extends available statistical 

techniques and their range of application. In addition, w ithout the work on 

agreement and reliability it would not have been possible to  comment on 

the performance of the newly developed myositis measures and the progress 

towards the current validation exercises would have been compromised. It 

is also hoped th a t the results of the analysis of the lupus da ta  will enable 

physicians to better understand the pattern  of disease presentation in lupus.
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7.1 M yositis

A number of issues became apparent as the work on the development of the 

myositis tools proceeded. In particular the large number of measures, with 

different measurement scales, highlighted the need for simple statistics th a t 

could summarize the performance of all the tools.

As an initial approach to the analysis of the performance of the tools 

in the first real patient exercise, the analysis of variance for each tool was 

examined and the percentages of variance attributable to each source of error 

were calculated and presented to the participating physicians. However, for 

the physicians, the large number of outcomes and the different measurement 

scales led to some confusion with the interpretation of these results.

Further examination of available literature (Shoukri 2004) highlighted a 

lack of clarity on the issues of reliability and agreement, and no recognition 

of the need to address both issues when evaluating the performance of tools, 

such as those developed for myositis. It became clear th a t no single measure 

existed th a t would adequately sum up both the reliability of a measure, and 

the level of physician agreement in a test-retest exercise.

As an initial step in addressing the need for a suitable measure, an in­

traclass correlation coefficient, suitable for the Latin square experimental 

design, was devised. As discussed, despite the distributional properties be­

ing best understood for fully continuous measures, an intraclass correlation 

coefficient can reasonably be used for all the outcomes being examined. It 

became apparent, through examination of the results, th a t the intraclass 

correlation coefficient is a measure of reliability despite frequently being de­

scribed (Shrout and Fleiss 1979) as a measure of agreement. The myositis 

patients participating in the exercises were chosen for their clinical diversity, 

and yet given the number of areas being assessed, it was inevitable th a t there
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was little activity and /o r damage in some organs/systems. This lack of vari­

ation led to low intraclass correlation coefficients for some organs/systems. 

It is well established th a t it is difficult to achieve high reliability of any mea­

sure in very homogeneous populations because it is difficult to distinguish 

between patients in a population where the differences are either rare or very 

fine. The low intraclass correlation coefficients for the organs/system s where 

the patients were very homogeneous emphasised th a t, in order to  adequately 

assess the performance of the tools, it would be necessary to also measure 

the level of physician agreement.

A number of statistics have been suggested as measures of agreement. 

Generally kappa and weighted kappa are described as measures of agreement 

for nominal and ordinal data  respectively (Kraemer et al  2002) and a con­

cordance correlation coefficient (Lin 1989) is described as a measure of agree­

ment for continuous outcomes. However weighted kappa has been shown to 

be equivalent to the intraclass correlation coefficient when quadratic weights 

are used (Fleiss and Cohen 1973) and the concordance correlation coefficient 

has been shown to be equivalent to an intraclass correlation coefficient from 

a two way analysis of variance (Nickerson 1997).

The lack of a suitable existing measure of agreement led to the develop­

ment of the new measure r. Then, in order to facilitate the interpretation of 

the combination of the measures of reliability and agreement, and to provide 

a single measure th a t adequately describes the performance of the tools, the 

classification suggested in chapter 3 was devised.

C hapter 3 thus presents an new approach to the assessment of reliabil­

ity and agreement. The results presented provide a clear summary of the 

performance of a large number of newly developed tools. The participating 

physicians found the results easy to interpret and these new measures have
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since been used in assessing the performance of a new version of the BILAG 

index.

7.2 Lupus

The existence of a unique data  set, with data  from a large number of patients 

over a time period of 10 years, led to the opportunity to undertake the 

analysis described in chapters 4 and 5. The work done represents the first 

development of models for disease activity in lupus th a t can reflect the m ulti­

faceted nature of the disease.

The motivation for the analyses was an attem pt to validate the existing 

clinical impression th a t subsets of lupus exist within the disease, and an a t­

tem pt to provide physicians with reliable indicators of future disease activity. 

The focus of the analysis was the investigation of interrelationships between 

disease activity in the different organs/systems.

The complex nature of the data  and the lack of the exact tim ing of events, 

led to difficulties with the analysis of the data  in continuous time.

The approach taken was to model a patien t’s state a t a clinic visit. The 

use of simple logistic regression models to estim ate the param eters of the 

polychotomous logistic model enabled the fitting of complex models th a t 

would otherwise have been hindered by the lack of flexibility of the current 

com puter packages. The approach taken also allowed for the models to  be 

fitted using generalized estimating equations with an exchangeable correla­

tion structure, to  adjust for any dependence not captured by conditioning 

on a patien t’s previous state. The use of dynamic covariates perm itted the 

modelling of a pa tien t’s disease history without recourse to models in con­

tinuous time which are particularly problematic with panel da ta  and tim e
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dependent explanatory variables.

An area of particular concern, in the development of the approach, was the 

irregular time intervals between visits. It is possible th a t a pa tien t’s chance of 

presenting at a visit could be highly dependent on the tim e since the previous 

visit. If true this would throw doubt on the suitability of the approach taken 

and require further investigation into the effect of the tim e between visits. 

However, it was shown th a t this was not the case and, therefore, the use of 

separate logistic regressions with dynamic covariates for the analysis of these 

m ultinom ial panel d a ta  is supported.

In addition to this empirical investigation of the appropriateness of the 

modelling approach, more general consideration of the efficiency of the ap­

proach relative to the use of models in continuous time may provide an in­

dication of its wider applicability. Chapter 6 describes an investigation into 

the relative efficiency of the logistic models when the underlying distribution 

of the tim e to disease activity is exponential. P itm an efficiency was used to 

measure the relative efficiency of logistic models to an exponential model in 

testing the null hypothesis of no regression effect. This is a simple situation 

and the results are asymptotic, however the results should give qualitative 

guidance of the relative behaviour of the two models.

The m ethod confirmed, as expected, th a t if all patients were seen at 

the same time intervals a logistic model is as efficient as the exponential in 

testing the null hypothesis. Naive logistic models (not stratified by time) 

were then compared to the exponential model when the patients were seen 

at different time intervals. As the number of tim e intervals increased the 

relative efficiency of the logistic models decreased. It was interesting to  note 

however, th a t relatively little efficiency was lost if the tim e intervals did not 

differ too greatly.
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Computer simulations were used to attem pt to assess the relative effi­

ciency of logistic models, stratified by time, to the exponential model. The 

results of the simulations indicated th a t if there is an underlying continuous 

distribution the logistic models used are still appropriate if stratified by tim e 

or if adjustm ent is made for the time between visits.

The conclusions on the relative efficiency of the logistic models are based 

on the assumption th a t the true model is known. They thus provide a con­

servative evaluation of the performance of the logistic models in general.

From a medical perspective the results do suggest th a t subsets of lupus 

exist. It was hypothesized th a t this knowledge might benefit physicians when 

deciding on appropriate treatm ent but this remains an open question.
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A ppendix A

Com puter programs

A .l  Analysis of the M yositis Exercises

blooms2_scan("a:blooms22.txt",list(Bphysician=0,Btime=0,Bpatient=0)) 
attach(blooms2)
exp<-cbind(Bphysician,Bpatient) 
mat<-matrix(0,6,7) 
mspatients<-c(rep(0,43)) 
msphysicians<-c(rep(0,43)) 
mstime<-c(rep(0,43)) 
msresiduals<-c(rep(0,43))
options(contrasts=c("contr.sum","contr.sum"))
act<-scan("a:dat2.txt",list(MITAXConstitutional=0,MITAXMucocutaneous=0, 
MITAXSkeletal=0,MITAXGastrointestinal=0,MITAXPulmonary=0,
MITAXCardiac=0,MITAXMuscle=0,MyoactConstitutional=0, 
MyoactMucocutaneous=0,MyoactSkeletal=0,MyoactGastrointestinal=0,
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MyoactPulmonary=0,MyoactCardiac=0,MyoactMuscle=0,
PhysiciansGlobal=0,Physiciansextramusciilar=0,MDIMuscle=0, MDISkeletal=0, 
MDICutaneous=0,MDIGastrointestinal=0,MDIpulmonary=0,MDICV=0,MDIPV=0, 
MDIendocrine=0,MDIocular=0,MDIinfection=0,MDImalignancy=0,MDIother=0, 
MDIglobal=0,myodamMuscle=0,
myodamSkeletal=0,myodamCutaneous=0,myodamGastrointestinal=0, 
myodampulmonary=0,myodamCV=0,myodamPV=0,myodamendo crine=0, 
myodamocular=0 ,myodaminf ection=0 ,myodammalignancy=0 ,myodamother=0, 
myodamglobal=0)) 
attach(act) 
code_c(0,0,1,3,9)
Bcodeactl_code[MITAXConstitutional]
Bcodeact2_code[MITAXMucocutaneous]
Bcodeact3_code[MITAXSkeletal]
Bcodeact4_code[MITAXGastrointestinal]
Bcodeact5_code[MITAXPulmonary]
Bcodeact6_code[MITAXCardiac]
Bcodeact7_code[MITAXMuscle]
N<-6
I<-7
errordf<-24 
patientdf<-5 
physdf<-6 
s<-I/N
rat<-errordf/patientdf
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Bcodeacttotal_Bcodeactl+Bcodeact2+Bcodeact3+Bcodeact4+Bcodeact5+Bcodeact6+
Bcodeact7
Bactivity_as .matrix (rbind(Bcodeactl,Bcodeact2,Bcodeact3,Bcodeact4,Bcodeact 
Bcodeact6,Bcodeact7,Bcodeacttotal,MyoactConstitutional ,MyoactMucocutaneous 
MyoactSkeletal,MyoactGastrointestinal,MyoactPulmonary,MyoactCardiac, 
MyoactMuscle ,PhysiciansGlobal,Physiciansextramuscular ,MDIMuscle ,MDISkeleta 
MDICutaneous ,MDIGastrointestinal,MDIpulmonary ,HDICV,MDIPV ,MDIendocrine, 
MDIocular,MDIinfection,MDImalignancy,MDIother,
MDIglobal,myodamMuscle,myodamSkeletal,myodamCutaneous,
myodamGastro intestinal, myodampulmonary ,myodamCV, myodamPV, myodamendocrine,
myodamocular,myodaminfection,
myodammalignancy,myodamother,myodamglobal))
attach(act)
code_c(0,0,1,3,9)
FBphysician_as.factor(Bphysician)
FBpatient_as.factor(Bpatient)
FBtime_as.factor(Btime) 
patient<-c(rep(0,43)) 
physician<-c(rep(0,43)) 
time<-c(rep(0,43))
measureC-cO'MITAX Constitutional","MITAX Mucocutaneous","MITAX Skeletal", 
"MITAX Gastrointestinal","MITAX Pulmonary","MITAX Cardiac","MITAX Muscle", 
"total MITAX","Myoact Constitutional","Myoact Mucocutaneous",
"Myoact Skeletal","Myoact Gastrointestinal","Myoact Pulmonary",
"Myoact Cardiac","Myoact Muscle","Physicians Global",
"Physicians extra muscular","MDI Muscle","MDI Skeletal","MDI Cutaneous", 
"MDI Gastrointestinal","MDI pulmonary","MDI CV","MDI PV","MDI endocrine",
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"MDI ocular","MDI infection","MDI malignancy","MDI other","MDI global", 
"Myodam Muscle","Myodam Skeletal","Myodam Cutaneous",
"Myodam Gastrointestinal","Myodam Pulmonary","Myodam CV","Myodam PV" , 
"Myodam Endocrine","Myodam Ocular","Myodam Infection","Myodam Malignancy" 
"Myodam Other","Myodam Global")

for (i in l:43){lml_lm(Bactivity[i,]~FBpatient+FBphysician+FBtime)
a<-anova(lml)
b<-a$"Mean Sq"
patient[i]<-round((b[1]/(b[1]+b[2]+b[3]+b[4]))*100,2) 
physician[i]<-round((b[2]/(b[1]+b[2]+b[3]+b[4]))*100,2) 
t ime[i]<-round((b[3]/(b[1]+b[2]+b[3]+b[4]))*100,2) 
mspatients<-round(b[l],2) 
msphysicians<-round(b[2],2) 
mstime<-round(b[3],2) 
msresiduals<-round(b[4],2) 
print(anova(lml))
for (j in 1:42){d_as.vector(exp[j,1])
e<-as.vector(exp [ j,2])
mat[e,d]_Bactivity[i,j]}
print(measure[i])
print(mat)

par(mfrow=c(2,1))
hist(resid(lml),xlab="residual")
qqnorm(resid(lml),xlab="theoretical",ylab="empirical") 
sigmapatient<-sqrt((mspatients-msresiduals)/N)
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sigmaphysician<-sqrt((msphysicians-msresiduals)/I) 
r<-sigmaphysician/sigmapatient

rho<-N*(mspatients-msresiduals)/ 
(N*mspatients+I*msphysicians+(N*I-I-N)*msresiduals)

Fphys<-msphysicians/msresiduals

top<-errordf*(I*rho*Fphys+N+(N*I-N-I)*rho)"2
bottom<- (errordf/physdf) *I''2*rho~2*Fphys''2+ (N+ (N*I-N-I) *rho) ~2
nu<-top/bottom
Fstar<-qf(0.975,patientdf,nu)
Fstar2<-qf(0.975,nu,patientdf) 
lowertop<-N*(mspatients-Fstar*msresiduals)
lowerbottom<-Fstar*(I*msphysicians+(N*I-N-I)*msresiduals)+N*mspatients
lower<-lowertop/lowerbottom
uppertop<-N*(Fstar2*mspatients-msresiduals)
upperbottom<-Fstar2*N*mspatients+(N*I-N-I)*insresiduals+I*msphysicians
upper<-uppertop/upperbottom

top2<-errordf *(r''2*mspatients+(l-s*r~2) *msresiduals) "2 
bottom2<-rat*s*r''4*mspatients''2+(l-s*r~2) ~2*msresiduals~2 
nu2<-top2/bottom2

newf<-qf(0.975,physdf,nu2)
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newf2<-qf(0.975,nu2,physdf)

rlower<-sqrt(N*(msphysicians-newf*msresiduals)/
(I*newf*(mspatients-msresiduals))) 
rupper<-sqrt(N*(newf2*msphysicians-msresiduals)/
(I*(mspatients-msresiduals)))
print("ICC")
print(round(rho,3))
CI<-cbind(round(lower,3).round(upper,3)) 
print(Cl)
print("se patient")
print(round(sigmapatient,3))
print("se physician")
print(round(sigmaphysician,3))
print("se patient/se physician")
print(round(r,3))

CI2<-cbind(round(rlower,3),round(rupper,3)) 

print(CI2)}

A .2 Efficiency simulation: multiple tim e points

sig2<-c(rep(0,1000)) 
sig3<-c(rep(0 ,1000))
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sig4<-c(rep(0,1000)) 
library(gee) 
id<-c(l:100) 
coef<-c(rep(0,1000)) 
coefexp<-c(rep(0,1000)) 
betastrat<-c(rep(0,1000)) 
varx<-c(rep(0,1000)) 
varxexp<-c(rep(0,1000)) 
varstrat<-c(rep(0,1000)) 
lambdac-0.02 
ttl_-log(0.4)/lambda 
tt2_-log(0.2)/lambda

for (j in 1:1000){ 
vecl<-rexp(50,lambda) 
vec2<-rexp(50,lambda) 
logisticl<-c(rep(0,50)) 
logistic2<-c(rep(0,50)) 
x<-c(rep(0,50),rep(l,50))
tl<-round(c(rnorm(25,ttl,10),rnorm(25,tt2,10)),0) 
t2<-round(c(rnorm(25,ttl,10),rnorm(25,tt2,10)),0) 
t<-as.vector(cbind(tl,t2)) 
for (i in 1:50){
if(vecl [i]<=tl [i]) {logisticl[i]<—1> else {logisticl[i]<-0> 
if (vec2[i]<=t2[i]) {logistic2[i]<-l> else {logistic2[i]<-0» 
tlK-numeric(O)
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for(i in 1:50) 
if(logisticl[i]==1) 
tll<-c(tll,tl[i]) 
til

tl2<-mimeric(0) 
forCi in 1:50) 
if(logisticl[i]==0) 
tl2<-c(tl2,tl[i]) 
tl2

t21<-numeric(0) 
ford in 1:50) 
if(logistic2[i]==l) 
t21<-c(t21,t2 [i]) 
t21

t22<-numeric(0) 
for(i in 1:50) 
if(logistic2[i]==0) 
t22<-c(t22,t2[i]) 
t22

a<-length(tll)
b<-length(tl2)
c<-length(t21)
d<-length(t22)
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funcK-function(x)

{

xl <- - (til * x)
x2 <- 1 - exp(xl) 
v <- log(x2) 
v2<-tl2*x 
-sum(v) +sum(v2)

}
func2<-function(x)

{

xl <- - (t21 * x)
x2 <- 1 - exp(xl) 
v <- log(x2) 
v2<-t22*x 
-sum(v) +sum(v2)
>

logistic<-as.vector(cbind(logisticl,logistic2))

lambdal<-nlmin(funcl,1) 
lambda2<-nlmin(func2,1)

beta<-log(lambda2$x/lambdal$x)
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model<-glm(logistic~x,family=binomial) 
modelx<-glm(logistic~x+t,family=binomial)

modell<-gee(logistic~x,id,family=binomial) 
model2<-gee(logistic~x+t,id,family=binomial)

varstrat[j]<-model2$robust.variance[2,2] 
betastrat[j]<-modelx$coef[2] 
sig5<-betastrat[j]/(sqrt(varstrat[j])) 
sig55<-abs(sig5) 
if(sig55>l.96) 
sig4[j]<-l else sig4[j]<-0

coef[j]<-model$coef [2] 
coefexp [j]<-beta
varx[j]<-modell$robust.variance[2,2] 
sig<-coef[j]/sqrt(varx[j]) 
modsig<-abs(sig) 
if(modsig >1.96) 
sig2[j]<-l else sig2[j]<-0

x<-lambdal$x
y<-lambda2$x

varl<-c(rep(0,a)) 
for (i in l:a){
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xl <- - (til [i] * x)
x2 <- 1 - exp(xl)
x3<-x2*x2
x4<-tll[i]*tll[i]
x5<-x4*exp(xl)
x6<-x5/x3
varl[i]<-x6}

part1<-sum(var1)

var2<-c(rep(0,c))
for (i in l:c){
xl <- - (t21[i] * y)
x2 <- 1 - exp(xl)
x3<-x2*x2
x4<-t21[i]*t21[i]
x5<-x4*exp(xl)
x6<-x5/x3
var2[i]<-x6}

part2<-sum(var2)

part3<-l/(x~2*partl) 
part4<-l/(y~2*part2)

varxexp[j]<-part3+part4
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sigl<-beta/(sqrt(varxexp[j])) 
sigll<-abs(sigl) 
if(sigll>l.96) 
sig3[j]<-l else sig3[j]<-0

print (j)}
betahat<-sum(coef)/1000 
betahatexp<-sum(coefexp)/1000 
betahatstrat<-sum(betastrat)/1000 
siglog<-sum(sig2) 
sigexp<-sum(sig3) 
sigstrat<-sum(sig4) 
varmle<-var(coef) 
varmlexp<-var(coefexp) 
varstratxx<-var(betastrat) 
varxx<-sum(varx)/1000 
varxxexp<-sum(varxexp)/1000 
varxstrat<-sum(varstrat)/1000

emselog<-sum(coef*coef)/1000 
emseexp<-sum(coefexp*coefexp)/1000 
emsestrat<-sum(betastrat*betastrat)/1000 
testlog<-coef/(sqrt(varx)) 
meantestlogc-mean(testlog)
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vartestlog<-var(testlog) 
testexp<-coefexp/(sqrt(varxexp)) 
meantestexp<-mean(testexp) 
vartestexp<-var(testexp) 
teststrat<-betastrat/(sqrt(varstrat)) 
meanteststrat<-mean(teststrat) 
varteststrat<-var(teststrat)

d<-c(rep(0,1000)) 
e<-c(rep(0,1000)) 
f<-c(rep(0,1000)) 
g<-c(rep(0,1000)) 
for(j in 1:1000){
if(sig2 [ j]==0&&sig3[j]==0){d[j]<-l}else{d[j]<-0} 
if(sig2[j]==0&&sig3[j]==1){e[j]<-l}else{e[j] <-0> 
if(sig2[j]==l&&sig3[j]==0){f[j]<-l>else{f[j] <-0> 
if(sig2[j]==l&&sig3[j]==1){g[j]<-l}else{g[j]<-0> 

>

dd<-sum(d) 
ee<-snm(e) 
ff<-sum(f) 
gg<-sum(g) 
k<-cbind(dd,ee) 
l<-cbind(ff,gg) 
tab<-rbind(k,1)
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h<-c(rep(0,1000)) 
k<-c(rep(0,1000)) 
m<-c(rep(0,1000)) 
n<-c(rep(0,1000))

for(j in 1:1000){
if(sig4[j]==0&&sig3[j]==0){h[j]<-l}else{h[j]<-0} 
if(sig4[j]==0&&sig3[j]==1){k[j]<-l}else{k[j]<-0> 
if(sig4[j]==l&&sig3[j]==0){m[j]<-l}else{m[j]<-0> 
if(sig4[j]==l&&sig3[j]==1){n[j]<-l>else{n[j]<-0> 
>

hh<-sum(h) 
kk<-sum(k) 
mm<-sum(m) 
nn<-sum(n) 
o<-cbind(hh,kk) 
p<-cbind(mm,nn) 
tab2<-rbind(o,p) 
print(ttl) 
print(tt2) 
print(tab)

print(tab2)

print(emseexp)
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print(emselog) 
print(emsestrat) 
print(meantestexp) 
print(meantestlog) 
print(meanteststrat) 
print(vartestexp) 
print(vartestlog) 
print(varteststrat)



A p p e n d ix  B

Exam ples of graphs used to  

assess the norm ality o f the  

residuals in the m yositis 

experim ents

Figure B .l: Histogram and qq plot of residuals from the analysis of variance 

of the observations of the constitutional element of the MITAX from the 

second patient exercise

residual

- 2 - 1 0  1 2

theoretical



Figure B.2 : Histogram and qq plot of residuals from the analysis of variance 

of the observations of the constitutional element of the MYOACT from the 

second patient exercise

Figure B.3: Histogram and qq plot of residuals from the analysis of variance 

of the observations of the cutaneous element of the MDI from the second 

patient exercise
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th e o re tic a l
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Figure B.4: Histogram and qq plot of residuals from the analysis of variance 

of the observations of the skeletal element of the MYODAM from the second 

patient exercise
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|  -
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A ppendix C

Illustrative Observations from  

the First M yositis Real Patient 

Exercise

The observations for a tool th a t differentiates well between patients and 

where the level of physician agreement was high.

Manual Muscle QUADRICEPS

patient 1 2

physician 

3 4 5 6 7

1 6 7 5 2 6 3 5

2 9 7 9 8 9 8 8

3 9 1 0 1 0 1 0 1 0 1 0 1 0

4 10 9 1 0 1 0 1 0 1 0 1 0

5 1 0 1 0 1 0 1 0 9 8 1 0

6 7 7 6 6 6 6 6

7 1 0 1 0 10 1 0 1 0 1 0 1 0
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The observations for a tool th a t appears not to differentiate well between 

patients and where the level of physician agreement was poor.

MITAX Muscle Disease

patient 1 2

physician 

3 4 5 6 7

1 3 3 3 9 3 0 3

2 3 9 9 9 9 9 9

3 3 1 0 9 3 0 3

4 3 1 3 9 3 0 3

5 9 9 9 9 9 3 3

6 3 3 3 3 3 0 3

7 0 1 3 3 3 1 3

The observations for a tool th a t appears to differentiate well between patients 

but where the level of physician agreement is low.

Manual Muscle W RIST

patient 1 2

physician 

3 4 5 6 7

1 9 9 8 6 9 9 1 0

2 1 0 9 1 0 7 9 9 1 0

3 1 0 1 0 1 0 8 1 0 1 0 1 0

4 1 0 1 0 1 0 7 1 0 9 1 0

5 7 6 6 5 7 5 7

6 9 1 0 9 8 1 0 8 1 0

7 1 0 9 1 0 9 9 1 0 1 0
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The observations for a tool where a homogeneous population means a poor 

ability in differentiating between patients but the level of physician agreement 

is high.

MITAX Skeletal Disease

physician

patient 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 3 1 1 3 1 3 1

3 0 0 0 0 0 0 0

4 0 1 1 3 3 0 0

5 3 3 0 9 3 9 3

6 0 0 0 0 0 0 0

7 0 1 3 3 3 3 1
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A ppendix D

D etails of the Analysis of the  

Lupus D ata
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D .l  The M ucocutaneous O rgan/System  

D.1.1 Univariate Analyses

Initial univariate analyses were carried out, the results of which are given 

with unadjusted odds ratios in table 5.3.

Table D .l: Unadjusted odds ratios for each additional mucocutaneous B 

score.

Number of mucocutaneous B’s scored 

by the previous visit

Odds ratios 

for a mucocutaneous B score

0 1.647

1 1.496

2 1.359

3 1.235

4 1 . 1 2 2

5 1.019

6 0.926

7 0.841

From table 5.3 it can be seen th a t a history of either mucocutaneous A 

scores or mucocutaneous B scores increases a patien t’s chance of presenting 

with active mucocutaneous disease. For both A and B scores both variables 

are significant.

The effects of both the number of mucocutaneous A scores and the num ­

ber of mucocutaneous B scores appear not to be linear and consequently 

quadratic factors have been included for both. This shows th a t although the 

chance of presenting with active mucocutaneous disease increases w ith each 

additional observation of either a mucocutaneous A or B, the effect of each 

additional observation decreases for each subsequent observation. To demon­



stra te  this the odds ratios for each additional observation of a mucocutaneous 

B are given in table D .l.

A history of renal A scores significantly affects a patien t’s chance of pre­

senting with active mucocutaneous disease, with both variables giving signif­

icant results. The coefficient of a previous occurrence of a renal A indicates 

th a t having a history of renal A scores decreases a patien t’s chance of pre­

senting with active mucocutaneous disease. However the number of renal A 

scores appears not to be linear, and a quadratic factor has been included, 

showing th a t the effect changes with each additional observation of a renal 

A, as shown in table D.2 .

Table D.2: Unadjusted odds ratios for each additional renal A score.

Number of renal A’s scored Odds ratios

by the previous visit for a renal A score

0 0.296

1 1.133

2 4.345

A history of renal B scores does not significantly affect a pa tien t’s chance 

of presenting with active mucocutaneous disease, with neither variable being 

significant.

Neither a history of musculoskeletal A scores nor a history of muscu­

loskeletal B scores significantly affects a patien t’s chance of presenting with 

active mucocutaneous disease. In both cases neither variable is significant.

Time since the fist clinic visit, time since the previous visit and the time 

since the patient was last observed with active mucocutaneous disease all 

have no significant effect on a patien t’s chance of presenting with active 

mucocutaneous disease.
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History of disease activity in the organs/systems not chosen for detailed 

analysis does not significantly affect a patien t’s chance of presenting w ith 

active mucocutaneous disease.

Mucocutaneous damage significantly increases a pa tien t’s chance of pre­

senting with active disease. Neither renal nor musculoskeletal damage has a 

significant effect.

D .l .2 Analysis by individual organs/system s

The six variables representing history of disease activity in the m ucocuta­

neous organ/system , together lead to a change in deviance of 96.774 th a t is 

significant on x l  {p ~  0 ).

The number of mucocutaneous a scores and the number of mucocutaneous 

B scores have both lost significance on being included in the model w ith a 

previous occurrence of a mucocutaneous A and a previous occurrence of a 

mucocutaneous B respectively. The 4 variables lead to  a change in deviance 

of 3.68 th a t is not significant on x l (P =  0.451). It appears therefore th a t in 

this analysis a history of mucocutaneous activity is adequately represented 

by a previous occurrence of a mucocutaneous B and a previous occurrence 

of a mucocutaneous A as shown on table D.3. Both variables together lead 

to a change in deviance of 93.094 th a t is significant on x l  (P ~  0).

The five variables representing a history of renal activity as shown in 

table D.4, together lead to a change in deviance of 12.736 th a t is significant 

on x! (p = 0.026). However in this analysis as in the univariate analyses a 

history of renal B scores does not significantly affect a  patien t’s chance of 

presenting with active mucocutaneous disease, both  variables together lead 

to a change in deviance of 0.199 th a t is not significant on x l  (p  = 0.905). A 

previous occurrence of a renal A has also lost significance it leads to a change
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Table D.3: Coefficients with adjusted odds ratios from the analysis by in­

dividual organ/system (mucocutaneous) of active vs. not active mucocuta­

neous disease.

coefficient odds ratio

A previous occurrence of a mucocutaneous B 

A previous occurrence of a mucocutaneous A

0.956 2.602 

0.965 2.626

Table D.4: Coefficients with adjusted odds ratios from the analysis by in­

dividual organ/system  (renal) of active mucocutaneous disease vs. inactive 

mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio

A previous occurrence of a renal B 

Number of renal B scores 

A previous occurrence of a renal A 

Number of renal A scores 

(Number of renal A scores) 2

0.115 1.122 

-0.019 0.981 

11.640 NA 

-17.160

4.478 NA

in deviance of 2.101 th a t is not significant on x l  (P = 0.147), and leaves in 

this analysis, the number of renal A ’s adequately representing all history of 

renal activity.

The four variables shown in table D.5 representing a history of muscu­

loskeletal disease activity together lead to a change in deviance of 7.350 th a t 

is not significant on x l  (P = 0.119). None of the variables significantly affect 

a pa tien t’s chance of presenting with active mucocutaneous disease.

D .l .3 M ultivariate Analysis

All variables were now included in a single model with only main effects.
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Table D.5: Coefficients with adjusted odds ratios from the analysis by indi­

vidual organ/system (musculoskeletal) of active mucocutaneous disease vs.

inactive mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio

A previous occurrence of a musculoskeletal B 

Number of musculoskeletal B scores 

A previous occurrence of a musculoskeletal A 

Number of musculoskeletal A scores

-0.219 0.804 

0.117 1.125 

-0.505 0.603 

0.005 1.005

A history of disease activity in the five organs/system s not chosen for 

detailed analysis continues not to significantly affect a pa tien t’s chance of 

presenting with active mucocutaneous disease. It leads to  a change in de­

viance of 0.171 th a t is not significant on x i  (P =  0.679).

A history of musculoskeletal B scores continues to have no significant 

effect on a patien t’s chance of presenting with active mucocutaneous disease. 

It leads to  a change in deviance of 0.807 th a t is not significant on x i  (P = 

0 .668).

A history of musculoskeletal A scores has become significant on being 

included in the model with a history of mucocutaneous B scores. Both vari­

ables together lead to a change in deviance of 7.779 th a t is significant on x i  

(p =  0.020). Table D .6 shows th a t the effect of a history of musculoskeletal A 

scores is clearer once a history of mucocutaneous B scores has been adjusted 

for. However a previous occurrence of a musculoskeletal A leads to a change 

in deviance of 0.079 th a t is not significant on x i  (P =  0.779), and the number 

of musculoskeletal A scores leads to a change in deviance of 2.775 th a t is not 

significant on x i  (P = 0.096). This indicates th a t in this analysis a history 

of musculoskeletal A scores is adequately represented by either variable. For
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simplicity a previous occurrence of a musculoskeletal A score will be used.

Table D.6 : The % of visits with details of patients’ histories of musculoskele­

ta l A scores and mucocutaneous B scores.

No history of musculoskeletal A scores History of musculoskeletal A scores

M  =  7-82% § i = 5-93%

No history of History of 
musculoskeletal A scores musculoskeletal A scores

No history of mucocutaneous B 
scores

History of mucocutaneous B 
scores

^ = 4 .7 9 %  1I2 = 1-23% 

Jgi = 12.84% 2A = 9.90%

A history of renal B scores leads to a change in deviance of 1.994 th a t is 

not significant on x l  (P = 0-369).

A history of renal A scores leads to a change in deviance of 15.878 th a t 

is significant on X3 (P — 0.001). However the number of renal A scores leads 

to a change in deviance of 4.110 th a t is not significant on x l  (P = 0.128), 

indicating th a t in this analysis a history of renal A scores is adequately 

represented by a previous occurrence of a renal A.

The number of mucocutaneous A scores continues to  have no significant 

effect on a patien t’s chance of presenting with active mucocutaneous disease; 

it leads to a change in deviance of 1.295 th a t is not significant on x l  (P — 

0.523). The number of mucocutaneous B scores is significant when included 

in the model with time. However a quadratic factor is not necessary.

Time since a patien t’s first visit to the clinic has become significant on 

being included in the model with the number of mucocutaneous B scores; 

It leads to a change in deviance of 18.664 th a t is significant on on x l  (P — 

0.00002). Both the time since the previous visit and the time since the 

patient was last observed to have scored a mucocutaneous A or B continue
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to have no significant effect on a patient’s chance of presenting with active 

mucocutaneous disease. Both together lead to a change in deviance of 0.100 

th a t is not significant on x l  (p  = 0-951).

Mucocutaneous damage, musculoskeletal damage and renal damage lead 

to  changes in deviance of respectively 3.303 (p = 0.069), 1.350 (p = 0.245) 

and 0.184 (p =  0.668).

Variables th a t in this analysis did not significantly affect a patien t’s 

chance of presenting with active mucocutaneous disease were removed giving 

the results shown in table D.7.

Table D.7: Coefficients with adjusted odds ratios from the m ultivariate anal­

ysis (with only main effects) of active mucocutaneous disease vs. inactive 

mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio

A previous occurrence of a mucocutaneous B 

Number of mucocutaneous B scores 

A previous occurrence of a mucocutaneous A 

A previous occurrence of a renal A 

A previous occurrence of a musculoskeletal A 

Time (years) since first clinic visit

0.894 2.446 

0.187 1.206 

1.106 3.021 

-1.098 0.334 

-0.599 0.549 

-0.140 0.869

D .l .4 Interactions

See chapter 5.
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D.2 The Renal O rgan/System

D.2.1 Univariate analyses

Initial univariate analyses were carried out. The results are given with un­

adjusted odds ratios in table 5.7.

From table 5.7 it can be seen th a t a history of either renal A scores or renal 

B scores increases a patien t’s chance of presenting with active disease in the 

renal organ/system . In both cases both variables are significant indicating 

th a t the chance of presenting with active renal disease increases further with 

each additional observation of either a renal A or B.

Neither a history of musculoskeletal A scores nor a history of muscu­

loskeletal B scores significantly affects a patien t’s chance of presenting with 

active renal disease. In both cases neither variable is significant.

A history of either mucocutaneous A scores or a history of mucocutaneous 

B scores significantly increases a patien t’s chance of presenting with active 

renal disease. Both variables are significant indicating th a t for both A and B 

scores the chance of presenting with active renal disease increases with each 

additional observation.

Time since the first clinic visit and time since the last clinic visit where the 

patient was observed to have active renal disease both  significantly increase 

a pa tien t’s chance of presenting with active renal disease. The tim e since 

the previous clinic visit has no significant effect on a pa tien t’s chance of 

presenting with active renal disease.

Both renal and mucocutaneous damage significantly increase a patien t’s 

chance of presenting with active renal disease. Musculoskeletal damage does 

not have a significant effect.

History of disease activity in the organs/systems not chosen for detailed
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analysis does not significantly affect a patien t’s chance of presenting at a 

clinic visit with active renal disease.

D .2 .2 Analysis by individual O rgan/System

Table D.8: Coefficients with adjusted odds ratios from the analysis by indi­

vidual organ/system  (renal) of active renal disease vs. inactive m ucocuta­

neous, musculoskeletal and renal disease.

coefficient odds ratio

A previous occurrence of a renal B 

Number of renal B scores 

A previous occurrence of a renal A 

Number of renal A scores 

(Number of renal A scores) 2

1.535 4.643 

0.270 1.309 

3.931 50.980 
-4.244
1 122 g —3 .123+2.244ra*

* Where ra is the number of renal A’s that the comparison patient had been observed to 

score at the previous visit.

The five variables representing a history of renal activity (the quadratic 

factor for the number of renal B ’s was found to be no longer necessary) as 

shown in table D.8 together lead to a change in deviance of 198.662 th a t is 

significant on x l  (p ~  0). All variables significantly affect a pa tien t’s chance 

of presenting with active renal disease.

The four variables representing a history of musculoskeletal activity as 

shown in table D.9, together lead to a change in deviance of 4.655 th a t is 

not significant on x l (P =  0.325). In this analysis neither a history of mus­

culoskeletal A scores nor a history of musculoskeletal B scores significantly 

affects a patien t’s chance of presenting with active renal disease.

The four variables representing a history of mucocutaneous activity as
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Table D.9: Coefficients with adjusted odds ratios from the analysis by in­

dividual organ/system (musculoskeletal) of active renal disease vs. inactive

mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio

A previous occurrence of a musculoskeletal B 

Number of musculoskeletal B scores 

A previous occurrence of a musculoskeletal A 

Number of musculoskeletal A scores

-0.027 0.974 

-0.131 0.877 

0.338 1.402 

0.076 1.079

Table D.10: Coefficients with adjusted odds ratios from the analysis by in­

dividual organ/system  (mucocutaneous) of active renal disease vs. inactive 

mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio

A previous occurrence of a mucocutaneous B 

Number of mucocutaneous B scores 

A previous occurrence of a mucocutaneous A 

Number of mucocutaneous A scores

0.209 1.232 

0.045 1.046 

0.381 1.464 

0.075 1.078

shown in table D.10 together lead to a change in deviance of 8.501 th a t is 

not significant on x l  (P = 0.075). A history of mucocutaneous A scores has 

lost significance. Both variables together lead to a change in deviance of 3.373 

th a t is not significant on x l  (P — 0.185). This is possibly because all patients 

with a history of mucocutaneous A scores have a history of mucocutaneous 

B scores as shown in table D .ll .

The number of mucocutaneous B scores has also lost significance; it leads 

to a change in deviance of 0.907 th a t is not significant on x l  (P — 0.341).
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Table D .ll:  Numbers of patients with histories of mucocutaneous A and B 

scores.

No history of History of 

mucocutaneous A scores mucocutaneous A scores
No history of 

mucocutaneous B scores 
History of 

a mucocutaneous B

133 0 

165 65

This indicates th a t in this analysis a previous occurrence of a mucocutaneous 

B adequately represents a history of mucocutaneous activity.

D .2 .3 M ultivariate Analysis

All variables were now included in a single model with only main effects. A 

history of disease activity in the five organs/systems not chosen for detailed 

analysis continues not to significantly affect a patien t’s chance of presenting 

w ith active renal disease. It leads to a change in deviance of 0.836 th a t is 

not significant on x? (P = 0.361).

Time since the first clinic visit and time since the patient was last observed 

to score a renal A or B, both lose significance when included in the model 

with the number of times a patient has scored a renal B or the number of 

times a patient has scored a renal A. This indicates th a t in the univariate 

analysis these variables were picking up the effect of the number of renal B ’s 

or A ’s scored. All three time variables together lead to a change in deviance 

of 3.168 th a t is not significant on x i  (P =  0.366).

A history of mucocutaneous disease activity loses all significance once a 

history of renal B scores has been adjusted for. All 4 variables representing 

a history of mucocutaneous disease activity together lead to a change in
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Table D.12: The % of visits with details of patients’ histories of mucocuta­

neous A, mucocutaneous B and renal B scores.

No history of 
mucocutaneous B scores 

History of 
mucocutaneous B scores

jffs = 3.60% 

l f f o  =  5 1 8 %

No history of renal B scores History of renal B scores
No history of 

mucocutaneous B scores 
History of 

mucocutaneous B scores

1535 = !-68% 355 = 13-79% 

= 1.00% ^  = 15.43%

No history of 
mucocutaneous A scores 

History of 
mucocutaneous A scores

s m  = 3-90%

$  = 6.97%

No history of renal B scores History of renal B scores
No history of 

mucocutaneous A scores 
History of 

mucocutaneous A scores

s ir  = i-04% m  = 15-27% 

^3=0.72% &  = 12.75%

deviance of 1.033 th a t is not significant on x l  (P =  0.905).

The % of visits where a patient presents with active renal disease are 

given with details of mucocutaneous A and B and renal B scores in table 

D.12.

A history of musculoskeletal A scores continues in this analysis to have 

no significant effect on a patien t’s chance of presenting with active renal 

disease. Both variables together lead to a change in deviance of 0.672 th a t 

is not significant on x l  (P = 0-715).

A previous occurrence of a musculoskeletal B continues not to  significantly 

affect a pa tien t’s chance of presenting with active renal disease. It leads to a

203



Table D.13: The % of visits with details of patients’ histories of musculoskele­

tal B and renal B scores.

Number of musculoskeletal B scores 

0 1 2 3 4 > 5

^ = 4 . 6 3 %  ^ = 4 . 4 8 %  JL = 2.50% ^ = 4 .2 4 %  & = 5.21% ^  = 2.08%

Number of musculoskeletal B scores 

0  1 2

No history of renal B scores 

History of renal B scores
life = 2-13% 555 = 0-71% 3§„ = 1 .0 0 % 
f t  = 16.21% ^  = 18.67% A = 10.00%

Number of musculoskeletal B scores 

3 4 > 5

No history of renal B scores 

History of renal B scores

= 0% ^  = 3.03% A = 0% 

A = 14.52% ^  = 10.00% i  = 5.36%

change in deviance of 1.363 th a t is not significant on x j  (P = 0.243). However 

the number of times a patient has been observed to  score a musculoskeletal B 

has become significant when included in the model with a  previous occurrence 

of a renal B; it decreases a patien t’s chance of presenting with active renal 

disease. It is clear from table D.13 th a t gives the % of visits where a patient 

presents with active renal disease, th a t the effect of the number of times the 

patient has scored a musculoskeletal B becomes more evident once a history 

of renal B scores has been adjusted for.

The number of renal A ’s lost significance once the number of muscu­

loskeletal B ’s was adjusted for. It leads to a change in deviance of 2.798 th a t 

is not significant on x l  (p =  0-247).

Renal damage, mucocutaneous damage and musculoskeletal damage lead
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Table D.14: Coefficients with adjusted odds ratios from the multivariate

analysis (with only main effects) of active renal disease vs. inactive mucocu­

taneous, musculoskeletal and renal disease.

coefficient odds ratio p value

Previous occurrence of a renal B 

Number of renal B scores 

Previous occurrence of a renal A 

Number of musculoskeletal B scores 

Renal damage

1.578 4.846 »  0

0.272 1.312 0.002
0.732 2.032 0.004

-0.244 0.709 0.001
1.247 3.478 0.00004

to changes in deviance of respectively 19.867 (p =  0.001), 1.992 (p = 0.158) 

and 0.064 (p =  0.800).

Variables th a t did not significantly affect a patien t’s chance of presenting 

with active renal disease were removed giving the results shown with adjusted 

odds ratios in table D.14.

D .2 .4 Interactions

See C hapter 5.

D.3 The M usculoskeletal O rgan/System  

D.3.1 Univariate analysis

Initial univariate analyses were carried out. The results with unadjusted 

odds ratios are given in table 5.13.

A history of either musculoskeletal A or musculoskeletal B scores increases 

a pa tien t’s chance of presenting with active disease in the musculoskeletal
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organ/system . For both A and B scores both variables are significant. The 

effect of the number of times a patient has scored a musculoskeletal B is 

not linear and a quadratic factor has been included, indicating in this case 

th a t the effect of each additional observation decreases as the number of 

observations increases as shown in table D.15.

Table D.15: Unadjusted odds ratios for each additional musculoskeletal B 

score.

Number of musculoskeletal B’s scored 

by the previous visit

Odds ratios 

for a musculoskeletal B score

0 1.582

1 1.481

2 1.387

3 1.298

4 1.215

5 1.138

6 1.065

7 0.997

8 0.933

9 0.874

A history of renal A scores does not significantly affect a pa tien t’s chance 

of presenting with active musculoskeletal disease, neither variable is signifi­

cant.

A history of renal B scores however significantly decreases a pa tien t’s 

chance of presenting with active musculoskeletal disease. A previous occur­

rence of a renal B is not significant, and the number of times a patient has 

scored a renal B is not linear and a quadratic factor was included. This 

indicates th a t the effect of each observation changes with each additional
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observation.

A history of mucocutaneous A scores does not significantly affect a pa­

tien t’s chance of presenting with active musculoskeletal disease. A history 

of mucocutaneous B scores increases a patien t’s chance of presenting with 

active musculoskeletal disease. A previous occurrence of a mucocutaneous B 

is significant whereas the number of mucocutaneous B ’s is not.

A patien t’s chance of presenting with active musculoskeletal disease de­

creases with the time since the last clinic visit a t th a t the patient was observed 

to have active musculoskeletal disease.

Time since the previous clinic visit and the time since the first clinic 

visit do not significantly affect a patien t’s chance of presenting with active 

musculoskeletal disease.

Musculoskeletal damage significantly increases a pa tien t’s chance of pre­

senting with active musculoskeletal disease. Neither mucocutaneous damage 

nor renal damage have any significant effect.

History of disease activity in the organs/systems not chosen for detailed 

analysis does not affect a patien t’s chance of presenting a t a clinic visit with 

active musculoskeletal disease.

D .3.2 Analysis by individual organ/system

The five variables representing a history of musculoskeletal activity shown in 

table D.16, together lead to  a change in deviance of 112.264 th a t is signifi­

cant on x l  (P 0). However a history of musculoskeletal A scores has lost 

significance. It leads to a change in deviance of 4.827 th a t is not significant 

on x l  (P = 0-090)- This is possibly due to the fact th a t most patients with a 

history of musculoskeletal A scores have a history of musculoskeletal B scores 

as shown in table D.17.
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Table D.16: Coefficients with adjusted odds ratios from the analysis by indi­

vidual organ/system (musculoskeletal) of active musculoskeletal disease vs.

inactive mucocutaneous, musculoskeletal and renal disease

coefficient odds ratio

A previous occurrence of a musculoskeletal B 

Number of musculoskeletal B scores 

(Number of musculoskeletal B scores) 2 

A previous occurrence of a musculoskeletal A 

Number of musculoskeletal A scores

-0.033 0.963 

0.478
-0 034 g0.444—0.068m u6 

-0.047 0.954 

0.204 1.226

Table D.17: Coefficients with adjusted odds ratios from the analysis by indi­

vidual organ/system  (musculoskeletal) of active musculoskeletal disease vs. 

inactive mucocutaneous, musculoskeletal and renal disease

No history of History of 
musculoskeletal A scores musculoskeletal A scores

No history of 
musculoskeletal B scores 

History of 
musculoskeletal B scores

105 5 

206 51

A previous occurrence of a musculoskeletal B has lost significance on 

being included in a model with the number of times a patient has scored 

a musculoskeletal B. It leads to a change in deviance of 0.089 th a t is not 

significant on x \  (P — 0.765). A history of musculoskeletal disease activity is 

therefore in this analysis, adequately represented by the number of times a 

patient has scored a musculoskeletal B.

The five variables representing a history of renal activity as shown in 

table D.18, together lead to a change in deviance of 14.411 th a t is significant
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on x l (P =  0.013).

Table D.18: Coefficients with adjusted odds ratios from the analysis by in­

dividual organ/system (renal) of active musculoskeletal disease vs. inactive

mucocutaneous, musculoskeletal and renal disease

coefficient odds ratio

A previous occurrence of a renal B 

Number of renal B scores 

(Number of renal B scores) 2 

A previous occurrence of a renal A 

Number of renal A scores

-0.369 0.691 

-0.059
0.056 g —0 .0 0 3 + 0 .112r 6 

-0.467 0.608 

-0.071 0.931

A history of renal A scores leads to a change in deviance of 4.072 th a t 

is not significant on xl (P = 0.131), and the quadratic factor appears no 

longer to be necessary to describe the number of renal B scores. The number 

of times the patient has scored a renal B, and a previous occurrence of a 

renal B together lead to a change in deviance of 9.365 th a t is significant on 

X2 (P =  0.001). Both variables shown in table D.19 significantly add to the 

model.

Table D.19: Coefficients with adjusted odds ratios from the analysis by in­

dividual organ/system  (renal) of active musculoskeletal disease vs. inactive 

mucocutaneous, musculoskeletal and renal disease

coefficient odds ratio

A previous occurrence of a renal B 

Number of renal B scores

-0.764 0.466 

0.226 1.254
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Table D.20: Coefficients with adjusted odds ratios from the analysis by indi­

vidual organ/system (mucocutaneous) of active musculoskeletal disease vs.

inactive mucocutaneous, musculoskeletal and renal disease

coefficient odds ratio

A previous occurrence of a mucocutaneous B 

Number of mucocutaneous B scores 

A previous occurrence of a mucocutaneous A 

Number of mucocutaneous A scores 

(Number of mucocutaneous A scores) 2

0.240 1.272 

0.006 1.006 

0 .0 2 1  1 .0 2 2  

-0.574
0 191 g —0.384+ 0 .382ma

The five variables shown in table D.20 together lead to a change in de­

viance of 10.775 th a t is not significant on xl  (P = 0.056).

D .3.3 M ultivariate Analysis

All variables were now included in a single model with only main effects.

A history of renal A scores continues to have no significant effect on a 

pa tien t’s chance of presenting with active musculoskeletal disease. It leads 

to a change in deviance of 1.895 th a t is not significant on x l  (P =  0-388).

A history of mucocutaneous activity is not significant It leads to  a change 

in deviance of 9.264 th a t is not significant on xl (P =  0.099). (A previous 

occurrence of a mucocutaneous B leads to a change in deviance of 0.879 th a t 

is not significant on xj (P =  0.348), and the number of mucocutaneous A 

scores leads to  a change in deviance of 3.262 th a t is not significant on x l  

(p =  0.196).) This is possibly because as has been previously noted, most 

patients who have a history of mucocutaneous B scores also have a history 

of musculoskeletal B scores, as is shown in table D.21.

A history of renal B scores continues as was indicated by the previous
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Table D.21: The number of patients with histories of mucocutaneous B and

musculoskeletal B scores

No history of History of 

mucocutaneous B scores mucocutaneous B scores
No history of 

musculoskeletal B scores 
History of 

musculoskeletal B scores

51 53 

82 175

analyses to significantly decrease a patient’s chance of presenting with active 

musculoskeletal disease. In this analysis however it appears th a t having 

adjusted for a history of musculoskeletal B scores a history of renal B scores 

is adequately represented by a previous occurrence of a renal B. The number 

renal B scores leads to a change in deviance of 1.003 th a t is not significant 

on X2 (P =  0.606).

A history of musculoskeletal A scores has remained significant in this 

analysis. Both variables together lead to a change in deviance of 7.595 th a t 

is significant on x l  (p = 0-022). However a previous occurrence of a mus­

culoskeletal A leads to a change in deviance of 0.012 th a t is not significant 

on Xi (P =  0.913) and the number of times a patient has scored a muscu­

loskeletal A leads to a change in deviance of 3.098 th a t is not significant on 

Xi (P =  0.078). For simplicity a previous occurrence of a musculoskeletal A 

will be used in this analysis.

A previous occurrence of a musculoskeletal B has again lost significance 

on being included in a model with the number of musculoskeletal B ’s; it leads 

to a change in deviance of 0.058 th a t is not significant on x i  (P — 0.810).

Time since the first clinic visit has become significant on being included 

in the model with a history of musculoskeletal B scores; it leads to a change
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in deviance of 4.825 th a t is significant on x i  (P = 0.028).

Time since the previous clinic visit has become significant on being in­

cluded in the model with a history of musculoskeletal B scores; it leads to  a 

change in deviance of 5.480 th a t is significant on x i  (P =  0.019).

Time since the patient was last observed to score a musculoskeletal A or 

B continues to significantly affect a patien t’s chance of presenting w ith active 

musculoskeletal disease. It leads to a change in deviance of 10.671 th a t is 

significant on x i  {p =  0.001).

Musculoskeletal damage, mucocutaneous damage and renal damage, lead 

to changes in deviance of respectively 5.160 (p =  0.023), 0.091 (p =  0.764) 

and 3.341 (p = 0.068). Although musculoskeletal damage has a significant 

effect on a patien t’s chance of presenting with active musculoskeletal disease, 

including it in the model causes a previous occurrence of a musculoskeletal 

A to  lose significance. This indicates th a t either could be included in the 

model, bu t th a t there is no advantage in including both. It has been decided 

to  use a previous occurrence of a musculoskeletal A.

All other variables th a t were significant in the univariate analyses con­

tinue to  significantly affect a patien t’s chance of presenting with active mus­

culoskeletal disease.

Variables th a t did not significantly affect a patien t’s chance of presenting 

w ith active musculoskeletal disease were removed giving the results given in 

table D.22.

D .3.4 Interactions

See C hapter 5.
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Table D.22: Coefficients with adjusted odds ratios from the multivariate

analysis (with only main effects) of active musculoskeletal disease vs. inactive

mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio p value

Number of musculoskeletal B scores 0.695

(Number of musculoskeletal B scores) 2 -0.050 e 0.645—0.100m u6 » 0

A previous occurrence of a musculoskeletal A 0.341 1.406 0.032

A previous occurrence of a renal B -0.523 0.593 0 .0 0 2

History of disease activity
in all other organs/systems -0.419 0.658 0.003

Time (years) since first clinic visit -0.066 0.936 0.032

Time (years) since previous clinic visit 0.403 1.497 0 .0 1 0

Time (years) since last visit
with active musculoskeletal disease -0.172 0.842 0 .0 0 2

D .4 Simultaneous M ucocutaneous and M us­

culoskeletal disease

D.4.1 Univariate analyses

Initial univariate analyses were carried out. The results are given in table 

5.21.

A history of mucocutaneous B scores significantly increases a pa tien t’s 

chance of presenting with active disease in both the mucocutaneous and 

musculoskeletal systems. Both variables are significant. A history of muco­

cutaneous A scores does not significantly affect a patien t’s presenting with 

active disease in both the mucocutaneous and musculoskeletal systems.

A history of musculoskeletal B scores significantly increases a pa tien t’s 

chance of presenting with active disease in both the mucocutaneous and
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musculoskeletal systems. Both variables are significant. A history of mus­

culoskeletal A scores does not significantly affect a patien t’s presenting with 

active disease in both the mucocutaneous and musculoskeletal systems.

A history of renal B scores does not significantly affect a pa tien t’s chance 

of presenting with active disease in the mucocutaneous and musculoskeletal 

systems.

No patients with a history of renal A scores have presented a t a clinic 

visit w ith active mucocutaneous and musculoskeletal disease. The numbers 

of patients are given in table D.23. As a result of this no further mention of 

a history of renal A scores will be made in this section.

Table D.23: The numbers of patients with a history of simultaneous active 

mucocutaneous and musculoskeletal disease and details of their history of 

renal A scores.

No history of mucocutaneous History of mucocutaneous 

and musculoskeletal disease and musculoskeletal disease
JNo history of 
renal A scores 

History of 
renal A scores

300 12 

2 2  0

A patien t’s chance of presenting with active mucocutaneous and muscu­

loskeletal disease decreases with the time since their first clinic visit and with 

the tim e since they were last observed to score a musculoskeletal A or B.

The tim e since the previous visit and the time since they were last ob­

served to score a mucocutaneous A or B have no significant effect on a pa­

tien t’s chance of presenting with active mucocutaneous and musculoskeletal 

disease.

Musculoskeletal damage significantly affects a pa tien t’s chance of present­
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ing w ith both active mucocutaneous and musculoskeletal disease. Neither 

mucocutaneous nor renal damage have a significant effect.

A history of disease activity in the five organs/systems not chosen for 

detailed analysis does not significantly affect a pa tien t’s chance of present­

ing w ith active disease in both the mucocutaneous and musculoskeletal or­

gans/system s.

D .4.2 Analysis by individual O rgan/System

Table D.24: Coefficients with adjusted odds ratios from the analysis by in­

dividual organ/system  (musculoskeletal) of active musculoskeletal and mu­

cocutaneous disease vs. inactive mucocutaneous, musculoskeletal and renal 

disease.

coefficient odds ratio

A previous occurrence of a musculoskeletal B 

Number of musculoskeletal B scores 

A previous occurrence of a musculoskeletal A 

Number of musculoskeletal A scores

0.419 1.521 

0.134 1.143 

-0.568 0.567 

0.098 1.103

The four variables representing a history of active musculoskeletal disease, 

as shown in table D.24, together lead to a change in deviance of 10.8068 th a t is 

significant on x l  (p =  0.031). A history of musculoskeletal A scores continues 

to have no significant effect on a patien t’s chance of presenting with active 

mucocutaneous and musculoskeletal disease; it leads to a change in deviance 

of 1.2066 th a t is not significant on x l  (P = 0.547). A previous occurrence of a 

musculoskeletal B loses significance on being included in the model with the 

number of times a patient has scored a musculoskeletal B; it leads to a change
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in deviance of 1.5562 th a t is not significant on x l  (P = 0.212). This indicates 

th a t in this analysis a history of active musculoskeletal disease is adequately 

represented by the number of times a patient has scored a musculoskeletal

B.

Table D.25: Coefficients with adjusted odds ratios from the analysis by in­

dividual organ/system  (mucocutaneous) of active musculoskeletal and mu­

cocutaneous disease vs. inactive mucocutaneous, musculoskeletal and renal 

disease.

coefficient odds ratio

A previous occurrence of a mucocutaneous B 

Number of times observed to score a mucocutaneous B 

History of mucocutaneous A activity 

Number of times observed to score a mucocutaneous A

0.557 1.746 

0.079 1.082 

0.481 1.618 

-0.375 0.687

The four variables representing a history of mucocutaneous activity as 

shown in table D.25, together lead to a change in deviance of 9.4332 th a t 

is not significant on x l  (p — 0.051). A history of mucocutaneous A scores 

continues to have no significant effect on a patien t’s chance of presenting 

with active mucocutaneous and musculoskeletal disease; it leads to a change 

in deviance of 0.8876 th a t is not significant on x l  (P = 0.642).

Neither a previous occurrence of a mucocutaneous B score nor the number 

of mucocutaneous B scores now adds significantly to  the model. This indi­

cates th a t either variable adequately represents a history of mucocutaneous 

B scores.

The two variables representing a history of renal activity as shown in table 

D.26, together lead to a change in deviance of 1.8068 th a t is not significant 

on x l  (p  =  0-405).
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Table D.26: Coefficients with adjusted odds ratios from the analysis by in­

dividual organ/system (renal) of active vs. not active musculoskeletal and

mucocutaneous disease.

coefficient odds ratio

A previous occurrence of a renal B 

Number of renal B scores

-0.104 0.901 

-0.184 0.832

D .4.3 M ultivariate Analysis

All variables were now included in a single model with only main effects.

A history of disease activity in the five organs/system s not chosen for 

detailed analysis continues to appear not to significantly affect a pa tien t’s 

chance of presenting with both active mucocutaneous and musculoskeletal 

disease; it leads to a change in deviance of 2.842 th a t is not significant on x l  

{p =  0.093).

As in the previous analysis a history of active musculoskeletal disease 

is adequately represented by the number of times the patient has scored a 

musculoskeletal B. The three other variables representing a history of active 

musculoskeletal disease together lead to  a change in deviance of 1.9989 th a t 

is not significant on x l (P = 0.573).

A history of mucocutaneous A scores continues not to significantly affect 

a pa tien t’s chance of presenting with both active mucocutaneous and mus­

culoskeletal disease; it leads to a change in deviance of 0.2893 th a t is not 

significant on x l (P = 0.865). As in the previous analysis it appears th a t 

either the binary variable representing a history of mucocutaneous B scores 

or the number of mucocutaneous B scores adequately describes a history of 

mucocutaneous B scores. For simplicity the binary variable will be used.

217



The number of times the patient has scored a mucocutaneous B leads to a 

change in deviance of 0.9053 tha t is not significant on x? (P — 0.341).

A history of renal B scores does not significantly affect a pa tien t’s chance 

of presenting with both active mucocutaneous and musculoskeletal disease; 

it leads to a change in deviance of 0.0978 th a t is not significant on x l  (p =  

0.952).

Time since the first clinic visit has become significant on being included in 

the model with the number of musculoskeletal B scores; it leads to a change 

in deviance of 25.339 th a t is significant on x i  ( p ~  0).

Time since the last visit with active musculoskeletal disease has lost sig­

nificance on being included in the model with the tim e since the first clinic 

visit; it leads to a change in deviance of 2.209 th a t is not significant on x i  

{p =  0.137).

Both tim e since the patient was last observed to score a mucocutaneous 

A or B, and the time since the previous visit, continue to have no significant 

effect on a patien t’s chance of presenting with active mucocutaneous and 

musculoskeletal disease. Both variables together lead to a change in deviance 

of 0.512 th a t is not significant on x l  (P — 0-474).

Musculoskeletal damage, mucocutaneous damage and renal damage, lead 

to changes in deviance of respectively 5.433 (p =  0.020), 0.412 (p =  0.521) 

and 0.371 (p =  0.543).

The variables th a t did not have a significant effect on a pa tien t’s chance 

of presenting with active mucocutaneous and musculoskeletal disease were 

removed, giving the results shown in table D.27

(Musculoskeletal damage loses significance when the model is fitted using 

generalized estim ating equations).
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Table D.27: Coefficients with adjusted odds ratios from the m ultivariate 

analysis of active musculoskeletal and mucocutaneous disease vs. inactive 

mucocutaneous, musculoskeletal and renal disease. (Not fitted using gener­

alized estim ating equations).

coefficient odds ratio

A previous occurrence of a mucocutaneous B 

Number of musculoskeletal B scores 

Musculoskeletal damage 

time (years) since the first clinic visit

1.003 2.725 

0.271 1.311 

0.806 2.238 

-0.369 0.691

D .4.4 Interactions

No significant interactions were found.

D.5 Active renal disease with active disease 

in one or both of the musculoskeletal and 

mucocutaneous organs/system s.

In this analysis a patient presenting with renal disease should be understood 

as a patient presenting with both active renal disease and active m ucocuta­

neous disease, or both active renal disease and active musculoskeletal disease 

or active disease in all three organs/systems.

D.5.1 Univariate analyses

Initial univariate analyses were carried out. The results are given with un­

adjusted odds ratios in table 5.23.
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A history of renal B scores significantly increases a pa tien t’s chance of 

presenting with active renal disease Both variables are significant. The num­

ber of renal B ’s is not linear and a quadratic factor has been added. This 

indicates th a t the effect decreases with each subsequent renal B score.

A history of renal A scores increases a patien t’s chance of presenting with 

active renal disease. The number of renal A scores is significant indicating 

th a t a pa tien t’s chance of presenting with active renal disease increases with 

each subsequent observation of a renal A. (A previous occurrence of a renal 

A is not significant).

A history of mucocutaneous B scores significantly increases a pa tien t’s 

chance of presenting with active renal disease. Both variables are significant 

indicating th a t a patien t’s chance of presenting with active renal disease 

increases with each subsequent observation of a mucocutaneous B. A history 

of mucocutaneous A scores also significantly affects a pa tien t’s chance of 

presenting with active renal disease. The number of mucocutaneous A scores 

is significant, again indicating th a t the patien t’s chance of presenting with 

active disease increases with each subsequent observation of a mucocutaneous 

A.

A history of disease activity in the musculoskeletal organ/system  does not 

significantly affect a patien t’s chance of presenting with active renal disease.

None of renal, mucocutaneous or musculoskeletal damage affect a pa­

tien t’s chance of presenting with active renal disease.

A history of disease activity in the organs/systems not chosen for detailed 

analysis does not significantly affect a patien t’s chance of presenting with 

active renal disease.

The times since the fist clinic visit, the previous visit, the last observation 

of a renal A or B, a mucocutaneous A or B, or a musculoskeletal A or B have
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no significant effect on a patien t’s chance of presenting with active renal 

disease.

D .5.2 Analysis by individual O rgan/System

The five variables representing a history of renal activity as shown in table 

D.28 together lead to a change in deviance of 28.6489 th a t is significant on 

Xl (P = 0.00003).

A history of renal A scores leads to a change in deviance of 4.7684 th a t 

is not significant on x l  (P = 0.092).

Table D.28: Coefficients with adjusted odds ratios from the analysis by in­

dividual organ/system  (renal) of active renal disease vs. inactive m ucocuta­

neous, musculoskeletal and renal disease.

coefficient odds ratio

A previous occurrence of a renal B 

Number of renal B scores 

(Number of renal B scores) 2 

History of renal A activity 

Number of times observed to score a renal A

0.832 2.299 

1.037
-0 151 g0.886—0.3027-6 

-2.622 0.073 

986 2.680

The number of times a patient has scored a renal B leads to a change 

in deviance of 1.6638 th a t is not significant on x l  (p =  0.435). This in­

dicates th a t in this analysis a history of active renal disease is adequately 

represented by the binary variable indicating whether a patient has had a 

previous occurrence of a renal B.

The four variables representing a history of active musculoskeletal dis­

ease, as shown in table D.29 together lead to a change in deviance of 4.1636
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Table D.29: Coefficients with adjusted odds ratios from the analysis by in­

dividual organ/system (musculoskeletal) of active renal disease vs. inactive

mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio

A previous occurrence of a musculoskeletal B 

Number of musculoskeletal B scores 

A previous occurrence of a musculoskeletal A 

Number of musculoskeletal A scores

0.292 1.339 

0.027 1.027 

-1.022 0.360 

0.674 1.962

th a t is not significant on x l  (P =  0.384). This indicates th a t in this analy­

sis a history of active musculoskeletal disease does not significantly affect a 

pa tien t’s chance of presenting with active renal disease.

The four variables representing a history of mucocutaneous activity as 

shown in table D.30 8.896 tha t is not significant on x l  (P — 0.064). However

Table D.30: Coefficients with adjusted odds ratios from the analysis by in­

dividual organ/system  (mucocutaneous) of active renal disease vs. inactive 

mucocutaneous, musculoskeletal and renal disease.

coefficient odds ratio

A previous occurrence of a mucocutaneous B 

Number of times observed to score a mucocutaneous B 

History of mucocutaneous A activity 

Number of times observed to score a mucocutaneous A

0.398 1.489 

0.119 1.126 

-0.273 0.761 

0.390 1.478

a history of mucocutaneous A scores has lost significance, it leads to a change 

in deviance of 2.1603 th a t is not significant on X2 (P =  0.340). Neither the 

number of mucocutaneous B scores nor a previous occurrence of a m ucocuta­

neous B adds significantly to the model once the other is included, indicating
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th a t in this analysis either variable adequately represents a history of muco­

cutaneous activity.

D .5.3 M ultivariate Analysis

All variables were now included in a single model with only main effects.

A history of disease activity in the five organs/system s not chosen for 

detailed analysis continues to  appear not to significantly affect a patien t’s 

chance of presenting with active renal disease. It leads to a change in deviance 

of 0.9639 th a t is not significant on x l  (P =  0.326).

A history of musculoskeletal disease activity continues to have no signif­

icant effect on a patien t’s chance of presenting with active renal disease. 

It leads to a change in deviance of 2.2563 th a t is not significant on x l  

(p =  0.669).

A history of mucocutaneous B scores has lost significance on being in­

cluded in the model with a previous occurrence of a renal B. A history of 

mucocutaneous disease activity leads to  a change in deviance of 6.645 th a t 

is not significant on xl  (P — 0.156).

A history of renal A scores continues not to significantly affect a pa tien t’s 

chance of presenting with active renal disease; it leads to  a change in deviance 

of 4.7451 th a t is not significant on x l  (p — 0.093).

The tim e since the first clinic visit continues to have no significant effect 

on a pa tien t’s chance of presenting with active renal disease; It leads to a 

change in deviance of 0.006 th a t is not significant on x l  (p — 0.938).

The times since the patient was last observed to score a mucocutaneous 

or musculoskeletal A or B continue to have no significant effect on a pa tien t’s 

chance of presenting with active renal disease. Both variables together lead 

to a change in deviance of 0. 081 th a t is not significant on xl (p — 0.960).
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Table D.31: Coefficients with adjusted odds ratios from the multivariate

analysis of active renal disease vs. inactive mucocutaneous, musculoskeletal

and renal disease.

coefficient odds ratio

A previous occurrence of a renal B 

Time (years) since previous clinic visit 

Time (years) since last scored a renal A or B

2.955 19.206 

0.704 2.021 

-0.963 0.382

However the tim e since the patient was last observed to  score a renal A 

or B and the tim e since the previous visit have become significant on being 

included in the model with a previous occurrence of a renal B. The tim e since 

the previous visit leads to a change in deviance of 4.221 th a t is significant 

on x i  (P — 0.040). The time since the last observed renal A or B leads to a 

change in deviance of 10.181 th a t is significant on xj (p — 0.001).

Finally The number of renal B scores leads to  a change in deviance of 

0.7318 th a t is not significant on xj  (P = 0.392).

Renal damage, mucocutaneous damage and musculoskeletal damage, lead 

to changes in deviance of respectively 0.058 (p =  0.809), 0.396 (p =  0.521) 

and 0.236 (p =  0.627).

Variables th a t did not significantly affect a patien t’s chance of presenting 

w ith active disease were removed giving the result given in table D.31.

(Time since the patient was last observed to score a renal A or B loses 

significance when the model was fit using generalized estim ating equations).

D .5.4 Interactions

No significant interactions were found.
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A ppendix E

The relative efficiency of the  

logistic m odel to the  

exponential when observations 

are made at three distinct tim e  

points

225



Probability of failing before £ 1  =  10%

Probability of 

failing before £2 1 0 % 2 0 %

Probability of failing before £3 

30% 40% 50% 60% 70% 80% 90%

1 0 % 1 0.961 0.873 0.759 0.631 0.497 0.363 0.236 0.124

2 0 % 0.968 0.916 0.828 0.716 0.589 0.453 0.316 0.187

30% 0.901 0.843 0.754 0.642 0.514 0.377 0.241

40% 0.815 0.751 0.659 0.544 0.415 0.278

50% 0.712 0.641 0.543 0.426 0.295

60% 0.590 0.512 0.409 0.289

70% 0.451 0.365 0.258

80% 0.295 0.205

90% 0.134

Probability of failing before t\ = 20%

Probability of 

failing before £2 1 0 % 2 0 %

Probability of failing before £ 3  

30% 40% 50% 60% 70% 80% 90%

1 0 % 0.961 0.968 0.916 0.828 0.716 0.589 0.483 0.316 0.187

2 0 % 1 0.974 0.907 0.809 0.669 0.552 0.408 0.264

30% 0.977 0.935 0.858 0.752 0.624 0.480 0.330

40% 0.919 0.865 0.778 0.664 0.528 0.378

50% 0.834 0.768 0.672 0.548 0.403

60% 0.723 0.645 0.537 0.403

70% 0.586 0.494 0.373

80% 0.419 0.314

90% 0.227
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Probability of failing before t \  =  30%

Probability of 

failing before £2 1 0 % 2 0 %

Probability of failing before £3 

30% 40% 50% 60% 70% 80% 90%

1 0 % 0.873 0.916 0.901 0.844 0.754 0.642 0.514 0.377 0.240

2 0 % 0.974 0.977 0.935 0.858 0.752 0.624 0.480 0.330

30% 1 0.979 0.920 0.828 0.708 0.565 0.408

40% 0.980 0.942 0.867 0.761 0.626 0.469

50% 0.925 0.870 0.781 0.658 0.507

60% 0.836 0.765 0.658 0.516

70% 0.713 0.622 0.493

80% 0.548 0.434

90% 0.336

Probability of failing before £1 = 40%

Probability of 

failing before £2 1 0 % 2 0 %

Probability of failing before £ 3  

30% 40% 50% 60% 70% 80% 90%

1 0 % 0.759 0.828 0.844 0.815 0.751 0.659 0.544 0.415 0.278

2 0 % 0.907 0.935 0.919 0.865 0.778 0.664 0.528 0.378

30% 0.979 0.980 0.942 0.867 0.761 0.626 0.469

40% 1 0.980 0.923 0.829 0.701 0.544

50% 0.981 0.942 0.865 0.749 0.598

60% 0.924 0.865 0.764 0.622

70% 0.825 0.741 0.612

80% 0.675 0.559

90% 0.457
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Probability of failing before £ 1  =  50%

Probability of 

failing before £2 1 0 % 2 0 %

Probability of failing before £3 

30% 40% 50% 60% 70% 80% 90%

1 0 % 0.631 0.716 0.754 0.751 0.712 0.641 0.543 0.426 0.295

2 0 % 0.809 0.858 0.865 0.834 0.768 0.672 0.548 0.403

30% 0.920 0.942 0.925 0.870 0.781 0.658 0.507

40% 0.980 0.981 0.942 0.865 0.749 0.598

50% 1 0.980 0.919 0.816 0.669

60% 0.980 0.938 0.850 0.713

70% 0.916 0.845 0.721

80% 0.793 0.683

90% 0.586

Probability of failing before £1 = 60%

Probability of 

failing before £2 1 0 % 2 0 %

Probability of failing before £ 3  

30% 40% 50% 60% 70% 80% 90%

1 0 % 0.497 0.589 0.642 0.659 0.641 0.590 0.512 0.409 0.289

2 0 % 0.689 0.752 0.778 0.768 0.723 0.645 0.537 0.403

30% 0.828 0.867 0.870 0.836 0.765 0.658 0.516

40% 0.923 0.942 0.924 0.865 0.764 0.622

50% 0.980 0.980 0.938 0.850 0.713

60% 1 0.978 0.907 0.780

70% 0.977 0.926 0.813

80% 0.895 0.799

90% 0.717
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Probability of failing before t \  =  70%

Probability of 

failing before £2 1 0 % 2 0 %

Probability of failing before £3 

30% 40% 50% 60% 70% 80% 90%

1 0 % 0.363 0.453 0.514 0.544 0.543 0.512 0.451 0.365 0.258

2 0 % 0.552 0.624 0.664 0.672 0.645 0.586 0.494 0.373

30% 0.708 0.761 0.781 0.765 0.713 0.622 0.493

40% 0.829 0.865 0.865 0.825 0.741 0.612

50% 0.919 0.938 0.916 0.845 0.721

60% 0.978 0.977 0.926 0.813

70% 1 0.972 0.877

80% 0.970 0.896

90% 0.843

Probability of failing before £1 = 80%

Probability of 

failing before £2 1 0 % 2 0 %

Probability of failing before £3 

30% 40% 50% 60% 70% 80% 90%

1 0 % 0.236 0.316 0.377 0.415 0.426 0.409 0.365 0.295 0.205

2 0 % 0.408 0.480 0.528 0.548 0.537 0.494 0.419 0.314

30% 0.565 0.626 0.658 0.658 0.622 0.548 0.434

40% 0.701 0.749 0.764 0.741 0.675 0.559

50% 0.816 0.850 0.845 0.793 0.683

60% 0.907 0.926 0.895 0.799

70% 0.972 0.970 0.896

80% 1 0.957

90% 0.949
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Probability of failing before t \  =  90%

Probability of 

failing before £2 1 0 % 2 0 %

Probability of failing before £3 

30% 40% 50% 60% 70% 80% 90%

1 0 % 0.124 0.187 0.241 0.278 0.295 0.289 0.258 0.205 0.134

2 0 % 0.264 0.330 0.378 0.403 0.403 0.373 0.314 0.227

30% 0.408 0.469 0.507 0.516 0.493 0.434 0.336

40% 0.544 0.598 0.622 0.612 0.559 0.457

50% 0.669 0.713 0.721 0.683 0.586

60% 0.780 0.813 0.799 0.717

70% 0.877 0.896 0.843

80% 0.957 0.949

90% 1
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