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Summary

1. Activity level (the proportion of time that animals spend active) is a behavioural and ecological metric that

can provide an indicator of energetics, foraging effort and exposure to risk. However, activity level is poorly

known for free-living animals because it is difficult to quantify activity in the field in a consistent, cost-effective

and non-invasive way.

2. This article presents a newmethod to estimate activity level with time-of-detection data from camera traps (or

more generally any remote sensors), fitting a flexible circular distribution to these data to describe the underlying

activity schedule, and calculating overall proportion of time active from this.

3. Using simulations and a case study for a range of small- to medium-sized mammal species, we find that activ-

ity level can reliably be estimated using the newmethod.

4. The method depends on the key assumption that all individuals in the sampled population are active at the

peak of the daily activity cycle. We provide theoretical and empirical evidence suggesting that this assumption is

likely to bemet formany species, butmay be less likelymet in large predators, or in high-latitudewinters. Further

research is needed to establish stronger evidence on the validity of this assumption in specific cases; however, the

approach has the potential to provide an effective, non-invasive alternative to existing methods for quantifying

population activity levels.

Key-words: activity level, activity time, circular kernel, proportion active, remote sensors, Von

Mises distribution, weighted kernel

Introduction

Animals must divide their time between various behaviours,

among which there is a fundamental distinction between activ-

ity and rest (Halle & Stenseth 2000). Activity is essential to life,

but is more energetically costly than resting. In addition, activ-

ity often involves elevated exposure to predation risk (Susel-

beek et al. 2014) and thermal stress (Owen-smith 1998).

Animals must therefore optimize the amount of time allocated

to activity to meet basic needs while minimizing costs (Downes

2001).

The proportion of time spent active (hereafter activity level)

is a keymetric for understanding this fundamental behavioural

trade-off, and is the focus of several strands of behavioural and

ecological science. For example, there is a large and long-

standing literature on the physiological constraints andmecha-

nisms underpinning circadian rhythms, some of which touches

on the implications for activity level (Daan & Aschoff 1975).

There have also been efforts to understand the ecological

context, for example focusing on environmental determinants

of activity level (Owen-smith 1994; Pereira 2010), or using

activity levels to construct energy budgets, fromwhich ecologi-

cal constraints can be understood (Ashkenazie & Safriel 1979;

Houston, Prosser & Sans 2012). This area of research naturally

extends to consideration of the population-level consequences

of constraints on activity level, and the implications for popu-

lation persistence (Gorman et al. 1999; Dunbar, Korstjens &

Lehmann 2009).

Methods for measuring animal activity level have tradition-

ally depended either on direct observation (Belovsky & Slade

1986), or on the use of laboratory apparatus such as running

wheels (Sherwin 1998). Both methods are limited in the range

of cases to which they can be applied. Furthermore, while

activity measures in laboratory conditions have been a central

tool for understanding mechanisms governing chronobiology

and physiology, they are not helpful for understanding the

behavioural ecology of activity in the field. However, technol-

ogy has expanded the range of situations in which field mea-

sures of activity can be recorded, in particular through

attaching telemetry devices to animals. Radio tracking has*Correspondence author. E-mail: marcus.rowcliffe@ioz.ac.uk
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been used to infer activity from speed ofmovement (Palomares

& Delibes 1993), or from variance in signal strength (Kays

et al. 2011a; Suselbeek et al. 2014). Tilt switches connected

with telemetry devices have also been used to infer activity

(Knowlton, Martin & Haug 1968), and more recently, multi-

axial accelerometers have been used to provide detailed remote

records of behavioural patterns (Shepard et al. 2008; Nathan

et al. 2012).

An alternative to telemetry is to place remote sensors in the

environment, rather than on animals. In particular, camera

traps have a long history of use for providing information on

patterns of activity (see Pearson 1960 for an early example;

Bridges&Noss 2011 for a review), and new analytical methods

are emerging that enable scientists to quantify aspects of

behaviour from camera trap data (Ridout & Linkie 2009;

Oliveira-Santos, Zucco & Agostinelli 2013). However, the

potential for camera trap data to provide quantitative esti-

mates of activity level has not yet been developed.

Here, we describe a method to estimate activity level from

camera trap data collected at locations that are random with

respect to the diel activity schedule. Themethod involves fitting

a flexible circular distribution to time-of-detection data to

describe the underlying activity pattern, and then calculating

overall proportion of time active from this distribution. We

assess the reliability of the method, first through simulations,

second by applying the method to camera trap data from Pan-

ama and third by comparing the resulting activity-level esti-

mates for 13 species of mammal with published estimates

derived from other methods. Finally, we explore the precision

of activity-level estimates as a function of sample size to deter-

mine sampling effort requirements.

Themethod

CONCEPTUAL DEVELOPMENT

As typically deployed, camera traps record animals only when they

move outside refuges. For the purposes of this method, we therefore

define animals as active whenever they move out of refuges that can-

not be observed by cameras. Note that this definition may not map

onto the finer categories of behaviour typically used by ethologists

such as foraging, vigilant, sleeping or grooming, as any of these

could potentially take place either within or outside refuges. How-

ever, as animals must fundamentally move to be recorded, and will

be largely stationary within refuges, our definition captures the fun-

damental characteristic of activity as a more costly behavioural state

than rest.

Assuming that activity level is the only determinant of the rate at

which camera traps detect animals, the trap rate at a given time of

day will be proportional to the level of activity in the population at

that time, and the total amount of activity will be proportional to

the area under the trap rate curve. In principle, if we have a point of

reference linking trap rate to a known, nonzero amount of activity at

one time in the daily cycle, we can calibrate the entire period and

thereby estimate the overall absolute level of activity. Many popula-

tions of terrestrial mammals have highly predicable daily activity

routines with distinct peaks when all individuals in the population

are simultaneously active (Aschoff 1966). On this basis, we assume

that all animals in the population are active when camera trap rate

reaches its maximum in the daily cycle.

The assumption of 100% activity at the peak rests on three lines of

reasoning. First, we expect it to hold in many cases on theoretical

grounds, in part because sensory adaptations tend to be specialized

for particular light conditions (Peichl 2005), and also because the fun-

damental trade-off between the risks of starvation and predation are

expected to generate an optimal time for activity to begin (Gerkema

& Verhulst 1990; McNamara, Houston & Lima 1994). Second, empir-

ical studies of synchrony support the assumption in some cases. Spe-

cifically, Suselbeek et al. (2014) demonstrated synchrony for one of

the same species (agouti) at the same site as our study; Daan & Slop-

sema (1978) found synchrony of individual feeding times entrained by

sunrise within common vole (Microtus arvalis) groups; Flowerdew

(2000) showed that wood mice (Apodemus sylvaticus) are consistently

active around midnight during the summer, although this study also

showed that wood mice have no consistent activity scheduling during

the winter. This last finding highlights a need to apply the method

only in cases where synchrony can be demonstrated or reasonably

assumed, a point we return to in the Discussion. Our third line of rea-

soning is that if the synchrony assumption is violated, we would

expect this method to overestimate activity level relative to estimates

made using other methods. However, under Comparison with pub-

lished activity levels below, we show that camera trap activity-level

estimates for a range of tropical forest species are exactly as expected

on the basis of existing estimates made for similar species using other

methods.

To evaluate the reliability of the second assumption made above,

that the proportion of the population active is the only determinant of

diel variation in trap rate, we need to determine whether other factors

affecting trap rate vary in intensity over the daily cycle. In addition to

activity level, trap rate is a function of speed while active, camera detec-

tion zone size and animal density (Rowcliffe et al. 2008). If there is no

diel migration between observed and unobserved regions or habitats

within the study site (which can be achieved by randomized camera

placement), the surveyed population is closed over the daily cycle, and

constant density can reasonably be assumed. By contrast, diel variation

in animal travel speed and camera trap sensitivity is plausible. Using

circular kernel regression (Xu, Nichols & Schoenberg 2011) to test

whether animal travel speed while active varies significantly with time

of day, we find no evidence for significant diel variation in speed among

12 Panamanian forest species (Appendix S1). However, using the co-

variate model for camera sensitivity described in Rowcliffe et al.

(2011), we find that camera detection radius is 21% higher during the

day than during the night (Appendix S2). During the development of

the statistical model below, we therefore develop a method that allows

us to correct for bias due to factors other than activity influencing diel

variation in trap rate.

STATIST ICAL DEVELOPMENT

Given a circular probability density function f(x) fitted to a set of

radian time of day observations, the area under the tangent to themaxi-

mum of the probability density function (fmax) between 0 and 2p is pro-
portional to the maximum possible total activity level if the entire

populationwas continually active (Fig. 1). The area under f(x) (by defi-

nition 1) is proportional to total activity level, and the absolute overall

activity level is therefore given by:

p ¼ 1

2pfmax
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we find fmax by solving numerically. The standard error of p can be esti-

mated by nonparametric bootstrapping, sampling the data with

replacement and refitting the model to yield a large number of esti-

mates, the standard deviation of which provides an estimate of stan-

dard error. Bootstrap samples can also be used to estimate the

standard error of relative activity at any given time of day. The signifi-

cance of pairwise comparisons, either between relative activity levels at

different times of day or between overall activity levels, can be esti-

mated using aWald test:

W ¼ ðE1 � E2Þ2
s21 þ s22

where Ei are the estimates to be compared, si their standard errors and

the statisticW is v2 distributed on one degree of freedom.

The distribution of times of day at which animals are recorded is cir-

cular, and typically complex and multimodal, hence a flexible circular

probability density function is needed to capture these patterns. We

evaluated three such distributions for describing a sample of radian

time of day observations, x1, x2, . . ., xn. The first two of these are

detailed in Ridout & Linkie (2009) and described only briefly here.

First, given difference between radian time x and observation xi:

di ¼ minðjx� xij; 2p� jx� xijÞ
the Von Mises kernel probability density is derived as the Von Mises

probabilities (Mardia & Jupp 2000) of these differences with zero loca-

tion parameter averaged across observations:

fðxÞ ¼ 1

n

Xn

i¼1

ej cosðdiÞ

2pI0ðjÞ
where the Von Mises concentration parameter j defines the degree of

smoothing (also known as bandwidth) and I0() is the modified Bessel

function of order 0 (Bowman 1958). Second, the parametric non-nega-

tive trigonometric sums distribution proposed by Fern�andez-Dur�an

(2004) is described by:

fðxÞ ¼ 1þ 2
XP

p¼1

ap cosðxÞ þ bp sinðxÞ

where the number of constituent parts P is optimized and parameters

ap and bp estimated to fit the model. For both this and the kernel

model, we used the fitting procedures described in Ridout & Linkie

(2009).

The third distribution that we exploredwas aVonMisesmixture dis-

tribution. This is a parametric approach that, as far as we know, has

not been widely applied to complex circular distributions. In this case,

the probability density withP constituent distributions is given by

fðxÞ ¼
XP

p¼1

wp
ejp cosðx�lpÞ

2pI0ðjpÞ

where l, j and w are parameters defining the centre, concentration

and weight, respectively, of each constituent distribution, and the

weights have constraints 0 < wp ≤ 1 and Σwp = 1. We fitted this

model to data by maximizing the likelihood using package BBMLE

(Bolker 2010) in R version 3�0�2 (R Core Team 2013). As in the non-

negative trigonometric sums model, parameters were estimated for a

given P, and P was optimized by sequentially adding component dis-

tributions until there was no further decrease in model AIC (Burnham

& Anderson 2002).

Amodified approach is neededwhere factors other than activity level

are known to vary in intensity over the daily cycle. The random

encountermodel (REM,Rowcliffe et al. 2008) tells us that the key con-

founding factors considered above (animal speed and camera detection

radius) have a linear relationship with trap rate. Therefore, given a con-

founding factor or product of factors q, our goal is to weight the distri-

bution by the inverse of this value v = 1/q to tune out the confounding

effect, leaving only the activity signal in the distribution. In addition to

being the best performing option in simulations (see following section),

kernel distributions naturally lend themselves to weighting, as they are

derived as the mean of a set of probabilities, and we can easily derive

instead the weightedmean of these probabilities. The VonMises kernel

distribution weighted by v is a modification of the unweighted version

above:

fðxÞ ¼ 1
Pn

i¼1

vi

Xn

i¼1

vi
ej cosðdiÞ

2pI0ðjÞ :

Performance against simulations

To identify which of the three unweighted probability density

functions described above provides the most robust estimator

of activity level when activity alone determines the observed

pattern of records, we carried out simulations to quantify bias

for different underlying activity distributions and sample sizes.

Simulated data were generated by taking random draws from

complex VonMises mixture distributions. Two different types

of distribution were pre-defined, reflecting the two patterns

most often seen in camera trap data: a diurnal (or equivalently

nocturnal) pattern, with activity restricted to about half the

daily cycle, and rapid onset, cessation and peaking of activity

early and late; and a cathemeral pattern, with activity through-

out the daily cycle, but with peaks of activity within that

(Appendix S3a). For each of 500 datasets of varying sample

size randomly drawn from these distributions, each of the three

probability density functions was fitted to estimate activity

level. For each estimate p, proportional bias was calculated as

p/pTRUE � 1, where pTRUE is the true activity level defined by

the underlying distribution used to generate the data. For the

kernel model, the choice of bandwidth was initially made using

the optimization procedure described in Ridout & Linkie

00:00 06:00 12:00 18:00

0

fmax

Re
la

tiv
e 
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tiv
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 (f

)

Time of day
00:00

Fig. 1. The conceptual basis for estimating activity level from the diel

distribution of animal detection events. The curve represents the pat-

tern of relative activity over the day. The area under this curve (shaded)

is proportional to the total amount of time allocated to activity. The

area within the rectangle bounded by the maximum of the curve (fmax)

and zero is proportional to the maximum possible amount of activity if

the entire population remained 100% active throughout the day and

night. Activity level, the proportion of time active, can be estimated as

the ratio of these two areas.
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(2009), but this choice was additionally multiplied by a range

of factors between 0�5 and 2 to explore the effect of varying

function smoothness.

In most simulations, median bias was <20%. However, the

outcome varied substantially between probability functions,

sample sizes and underlying activity patterns. Increasing sam-

ple size reduced bias, and with a sample size of 500, bias was

<10% in all cases. The worst performing case was the trigono-

metric sums model applied to the diurnal pattern with small

sample size (Fig. 2, function TS). In this case, the best fit was

almost always a single trigonometric component (P = 1),

yielding an activity-level estimate of 0�5, which in this case is an
overestimation of almost 100%. Although the trigonometric

sums model performed better in other cases, it consistently

overestimated proportion active as a result of oversmoothing.

Ridout & Linkie (2009) point out that this model tends to have

a very flat likelihood surface, withmany local minima. Finding

the global minimum is therefore problematic, requiring search

from many different starting parameter values, and making

simulations slow. For practical reasons, the algorithm used to

generate these tests used a limited number of starting positions

for model fitting, which likely resulted in automatic selection

of models that were not globally optimal in many cases, and

which thus oversmoothed the distribution and overestimated

proportion active.

The performance of Von Mises mixture models depended

on the underlying activity pattern (Fig. 2, function VM). In

the diurnal case, sudden onset and decay in activity tended to

result in the selection of models with strongly spiked peaks

that overshot the peak of the underlying data distribution,

and so tended to underestimate proportion active, regardless

of sample size. In contrast, the Von Mises mixture model

was approximately unbiased for the smoother cathemeral

activity pattern with large sample size, but at lower sample

sizes tended to oversmooth, thus overestimating proportion

active.
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Fig. 2. Distributions of bias in estimated activity level p for alternativemodels fitted to data simulated with different underlying activity patterns and

sample sizes. Given true proportion active pTRUE, proportional bias is given by p/pTRUE � 1. Sample size varies by column as indicated. Underlying

activity patterns (Appendix S3a) vary by row: diurnal above, cathemeral below.Model codes areK, circular kernel, with following numbers indicat-

ing the multiplier used to adjust the bandwidth defining model flexibility; VM, VonMises mixture; and TS, non-negative trigonometric sums. Bars

aremedians, boxes are interquartile ranges, andwhiskers are ranges.
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Finally, the performance of the kernel distribution depended

primarily on the bandwidth adjustment used. The default

bandwidth chosen using the algorithm described by Ridout &

Linkie (2009) tended to oversmooth, giving activity-level esti-

mates that were biased slightly upwards in most cases (Fig. 2,

function K1). However, increasing the bandwidth by 50%

(functionK1�5) appeared to give an appropriate degree of flex-
ibility, resulting in minimally biased activity-level estimates in

all cases. These results indicate that a kernel distribution with

bandwidth multiplier of around 1�5 is the most robust option

for activity-level estimation.

To test the reliability of the weighted kernel function, we car-

ried out a second set of simulations that used an underlying

activity distribution with some degree of activity throughout

the day (Appendix S3b), but used a plausible distribution of

diel variation in other factors influencing trap rate to generate

a confounded trap rate distribution fromwhich to sample data

(Appendix S3c). Activity-level estimates were thenmade by fit-

ting the kernel model weighted by the inverse of the confound-

ing factor distribution to sampled data, and bias explored for a

range of sample sizes and kernel bandwidth adjustment multi-

pliers, as above.

We found that bias of the weighted kernel model was mini-

mal if bandwidth was adjusted upwards slightly, but that the

amount of adjustment needed depended on sample size

(Fig. 3). At very low sample size, bias was minimal without

adjustment, but by n = 500, an adjustment multiplier of 2 was

required to minimize bias. Overall, an adjustment multiplier of

around 1�5 was the best compromise option across all sample

sizes, consistent with the conclusion of the unweighted evalua-

tion above.

Application to data

We applied the method to camera trapping data from Barro

Colorado Island (BCI, 9°90 N, 79°510 W), Republic of Pan-

ama. Twenty camera traps were deployed at 764 random loca-

tions between February 2008 and February 2009, yielding

17 111 records of 25 species of mammal and bird. The study

site and camera trapping methods are detailed fully in Kays

et al. (2011b).

For the purpose of fitting activity functions to time-

of-day data, activity records were defined as the times of

day at which cameras were triggered by a given species. In

cases where animals repeatedly triggered cameras without

leaving the field of view, only the time of the initial trigger

was used. The study additionally yielded data on animal

travel speed and camera sensitivity used in the Appendi-

ces S1 and S2. We estimated activity levels for all mammal

species for which we had a reasonable number of records,

defined by inspecting the distribution of sample sizes. Sev-

eral species had eight or fewer records, while the next most

frequently captured had 42. We therefore considered the 13

species with at least this many records (Table 1). Because

time of sunrise and sunset at this latitude varies little

during the year, we fitted the models to clock time. Aver-

age body masses for BCI species were taken from BCI ani-

mal capture data (R. Kays unpublished data) where

possible, otherwise from Emmons & Feer (1990) or Reid

(1997).

Using fitted circular kernel distributions weighted to cor-

rect for shorter detection distances at night, estimated activ-

ity levels ranged from 0�21 to 0�56 (Table 1). The
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Fig. 3. Distributions of bias in activity level

estimated using weighted circular kernels, as a

function of sample size (n) and bandwidth.

Definitions of bias and kernel bandwidth

adjustment are as detailed in Fig. 2.
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coefficients of variation of these estimates lay between 2%

and 21%, and were negatively related to sample size

(Fig. 5). Confidence in the estimate was limited (CV = 21%)

at the lowest sample size (42), but coefficients of variation

declined rapidly to around 10% by the time sample size

reached 100.

COMPARISON WITH INDEPENDENT ESTIMATES

Ideally, we would validate our activity-level estimates for Pan-

amanian mammals against independent estimates for the same

populations, but no such estimates exist for the mammal spe-

cies on BCI. We therefore compared them with activity-level

estimates from the literature, obtained for a range of terrestrial

mammal species using other, well-established methods. The

rationale of this analysis was to test whether camera trap activ-

ity-level estimates differed consistently from estimates made

using other methods, controlling for other variables that

potentially influence activity. We were particularly interested

to discover whether the camera trap method tends to give esti-

mates higher than those from other methods, as we would

expect if the assumption that all individuals are active at the

peak of the cycle is violated.

Fourteen activity-level estimates were initially obtained

from Halle & Stenseth (2000). These data were augmented by

literature search, using the search terms ‘time budget*’ and

‘active’ in the subject and keyword field of the ISI Web of

Knowledge search engine to bring up potentially useful studies,

yielding a further 27 estimates. Preliminary examination of

these data indicated a few outlying points with extremely low

activity levels, and these were found to be estimates for small

species made in cold environments. Smaller mammals in cold

environments typically spend much of their time torpid, and

we might therefore expect activity levels for these cases to be

categorically different from those in warmer environments. Six

of the 41 activity-level estimates were excluded from the analy-

sis for this reason.

We then used linear regression with information theoretic

model selection to look for evidence that different methods

yield consistently different activity-level estimates, while con-

trolling for potentially confounding variables selected on the

basis of previous studies of the determinants of activity, day

range and home range. We took this broad view of metrics

related to energy and space use because there are currently few

substantial studies focusing specifically on activity level, and

we conjectured that determinants of these other metrics might

also be important for activity level. At a cross-species level,

body mass is a pervasive influence (Belovsky & Slade 1986;

Kelt & Vuren 2001; Carbone et al. 2005), while there is also

evidence that social group size, diet category and taxonomic

order can be important (Carbone et al. 2005). We therefore

considered all of these variables, with body mass and group

size log transformed, order categorized as carnivora, artiodac-

tyla, rodentia or other, and diet categorized as herbivore or

faunivore/omnivore. Activity might also be influenced by a

wide range of more local factors that vary within species,

including climate, photoperiod, habitat and the densities of

food or competitors (Gittleman & Harvey 1982; B€orger et al.

2006). We compared activity levels between rather than within

species, and were therefore unable to consider all of these pos-

sible processes comprehensively; however, we controlled for

local effects as far as possible by including latitude and average

annual precipitation in themodel. The activity-level estimation

methods included were camera trapping (this article), direct

observation, telemetry and telemetry with activity sensors. The

data for this analysis are provided inAppendix S4.

We found that when controlling for body mass and diet,

there was no evidence for consistent differences between activ-

ity-level estimates provided by different methods: the total

AIC weight for method as a predictor of activity level was only

0�06, and the best model including method had a DAIC of 5�34
(Appendix S5). Activity level was strongly related to body

mass, but there was no convincing evidence for any other con-

founding effects on activity level. Activity levels estimated from

Table 1. Estimates of percentage of time active (activity level) for 13 species ofmammal on Barro Colorado Island, Panama, estimated from the dis-

tribution of camera trapping photos over the daily cycle (Fig. 4)

Species n Mass (kg)

Activity level

Estimate SE 95%CI

Mouse unknown species (mouse) 96 0�1 0�298 0�040 0�263–0�415
Tome’s spiny rat (rat)Proechimys semispinosus 893 0�4 0�397 0�021 0�344–0�424
Red-tailed squirrel (squirrel) Sciurus granatensis 572 1�1 0�209 0�012 0�188–0�236
Common opossum (opossum)Didelphis marsupialis 120 3�5 0�373 0�033 0�326–0�454
Central American agouti (agouti)Dasyprocta punctate 10 292 3�6 0�286 0�006 0�274–0�298
White-nosed coati (coati)Nasua narica 459 4�0 0�409 0�022 0�345–0�431
Nine-banded armadillo (armadillo)Dasypus novemcinctus 121 4�2 0�366 0�027 0�311–0�417
Northern tamandua (tamandua)TamanduaMexicana 128 4�2 0�563 0�066 0�450–0�707
TayraEira Barbara 42 5�0 0�359 0�074 0�146–0�445
Lowland paca (paca)Cuniculus paca 999 8�0 0�342 0�017 0�300–0�366
OcelotLeopardus pardalis 317 11�9 0�353 0�038 0�283–0�427
Red brocket deer (brocket)Mazama temama 816 22�8 0�531 0�041 0�459–0�619
Collared peccary (peccary)Tayassu tajacu 2965 25�2 0�384 0�014 0�355–0�407

n, Number of camera trap records.Where given, the abbreviated common names in brackets are used in the text and Fig. 4.
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Fig. 4. Activity patterns of 13 species of mammal on Barro Colorado Island, Panama, as captured by distributions of camera trap records. Grey

steps are observed frequencies, and black curves are fitted circular kernel distributions. Sample sizes and estimates of active level derived from the fit-

ted distributions are given in Table 1.
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camera trap data were entirely within the range of estimates

previously made for equivalently sized species using other

methods, and the regression coefficients for the relationships

between body mass and activity were almost identical for cam-

era trapping and other methods (Fig. 6). This result indicates a

lack of consistent bias in the camera trapping method relative

to others.

Discussion

STRENGTHS

Activity level is a fundamental behavioural and ecological vari-

able that has received relatively little attention in field settings

due to the difficulty in measurement. In this paper, we have

shown that activity levels of terrestrial mammals can – under

certain conditions – be reliably estimated at the population

level from camera trap data, using an appropriately tuned

probability density function. Furthermore, we show how the

confounding effects of diel variation in animal movement

speed or camera sensitivity can be controlled for by appropri-

ately weighting the probability density function. Finally, we

have shown that the precision of activity level estimated using

thesemethods is reasonable for achievable sample sizes.

The key advantage of our method is the fact that camera

trapping is non-invasive, involves relatively low labour costs,

can be applied in a wide variety of field and captive settings,

and yields data on a wide range of terrestrial species, including

those that can neither be observed directly nor captured and

tagged. The camera trap method is cost-effective compared

with direct observations or tagging, which are generally extre-

mely labour intensive and/or invasive. Furthermore, activity

levels recorded by camera traps usually emerge from the

records of many individual animals and so offer population-

level measures that could readily be compared between differ-

ent places or times. In contrast, tag-based approaches are typi-

cally applied to only a small sample of animals, and thus may

not represent the wider population. Given these advantages,

and enormous current growth in the use of camera traps

(Rowcliffe & Carbone 2008), this new analytical method has

the potential to improve our understanding of pattern and

process in activity level. For example, we anticipate that new

research avenues may open up on the effects of local animal

density, human disturbance or seasonal food fluctuations on

activity levels in free-ranging populations.

L IMITATIONS

A key limitation of our method is the need to assume that all

individuals in the population are active at the peak of the activ-

ity cycle. This assumption could be dropped if it were possible

to measure the proportion of the population active at any

given point in the day; however, this is rarely likely to be practi-

cal. For our method to be widely useful, the assumption there-

fore needs to be predictably met in many situations. Under

Conceptual development above, we reviewed the few empirical

studies of synchrony in free-living animals that we were able to

find, showing mixed support. However, rather than represent-

ing random outcomes, we suggest that the presence or absence

of synchronized activity will be predictable on the basis of a

few readily observed variables. For example, the unsynchro-

nized example above was for wood mice in a northern winter

under very short day lengths (Flowerdew 2000), and it seems

generally likely that synchrony cannot be expected in these

conditions, particularly for smaller species that rely on stored

food reserves. We also expect that species such as large preda-

tors whose foraging cycles are longer than a day are unlikely to

show a synchronous daily activity peak. For example, pumas

(Puma concolor) go 2–5 days between largemammal kills, dur-

ing which they spend much of their time static, either feeding

or entirely inactive (Beier, Choate &Barrett 1995).While we do
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Fig. 5. Relationship between the percentage coefficient of variation of

activity level, estimated from camera trap data for 13 mammal species,

and sample size. The trend line is from a linear regression fitted to log–
log data.
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dictions for camera data [bold line, intercept: 0�347 (0�029 SE); slope:

0�026 (0�015 SE); Pearson correlation: 0�47] and other methods com-

bined [fine line, intercept: 0�342 (0�023 SE); slope: 0�025 (0�007 SE);

Pearson correlation: 0�56]. Method definitions are as follows: camera

trapping using the analytical method developed in this paper (camera);
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ity sensors, including tilt switches or accelerometers (sensor); telemetry:

inferring activity from telemetry-basedmovement patterns.
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not claim that this survey of activity synchrony is comprehen-

sive, the published literature unfortunately appears to have lit-

tle to say about the issue at present, highlighting a need for

greater focus on this question.

A second potential limitation of our method is that the cam-

era trap-based definition of activity underlying the approach

may differ from definitions underlying other approaches, mak-

ing estimates hard to compare across methods (see Conceptual

development). Nevertheless, our comparative analysis demon-

strated that different methods to estimate activity level give

very similar results, suggesting that definitions of activity are

reasonably consistent across methods. However, this conclu-

sion is based on a test in which only one method was used for

any given population, and it would be desirable to run a stron-

ger test by applying multiple methods simultaneously to single

populations. In the meantime, a degree of caution is warranted

in comparing activity-level estimates derived using different

methods.

Caution is also warranted when using datasets in which

the time of sunrise and sunset varies. This problem is negligi-

ble in the tropics and in short studies, but variation can be

dramatic over longer periods at higher latitudes. Peaks in

activity are usually tuned to sunrise or sunset, and progres-

sion of these times therefore flattens peaks and overestimates

activity level (Aschoff 1966). In these situations, probability

density functions should be fitted to solar time (the deviation

of clock time from sunrise and sunset). Nouvellet et al.

(2012) offer equations and code to translate local clock time

into solar time, based on latitude and date at which photo-

graphs were taken.

Finally, while we suggested under Strengths that achieving

population-level estimates of activity level can be an advan-

tage, for some purposes we may require individual-level activ-

ity estimates, which camera traps can provide only in

exceptional cases. In contrast, tag-based studies readily allow

for insight into individual strategies, for example comparing

animals of different sexes or ages (Suselbeek et al. 2014).

PRACTICAL IMPLICATIONS

Under Conceptual development, we touched on the point

that diel variation in animal density in the sampled area

can lead to bias. Avoiding this bias requires that cameras

are placed randomly with respect to diel patterns of move-

ment, which could theoretically allow for placement strate-

gies maximizing overall trap rate. For example, many

camera trap studies currently place cameras on trails to

maximize trap rate. This strategy is valid for activity-level

estimation so long as animals use trails to the same extent

across the daily cycle, which could be tested by comparing

trap rate patterns on and off trail. In contrast, using bait to

attract animals seems likely to introduce non-random diel

patterns of space use that would preclude accurate estima-

tion of activity level. In practice, it will probably be safer to

use random camera placements in most cases, although this

strategy may still not work in cases where some important

habitat is entirely inaccessible. For example, in the case of

semi-arboreal species, it is not feasible to camera trap repre-

sentatively in the canopy as well as on ground. In the

absence of data from the canopy, diel variation in the pro-

portion of the population using the ground will lead to bias

in activity-level estimation.

Given that the assumption of a synchronized activity peak is

central to the method but not always justifiable, the method

clearly needs to be applied cautiously with this in mind. On the

basis of the results and theoretical evidence discussed here, we

expect that many of the terrestrial mammal species commonly

captured by camera traps are likely to synchronize their activ-

ity peaks at some point in the daily cycle. However, a stronger

research focus on the issue of synchrony is required to demon-

strate this, given the paucity of evidence currently available.

Users should seek the best possible evidence justifying the syn-

chrony assumption on a case-by-case basis, and interpret

results with a degree of confidence equivalent to the degree of

confidence in this assumption beingmet.

Finally, we note that, although the method has been devel-

oped specifically for application to camera trap data, the idea

could in principle be applied to data gathered using any sen-

sor technology that records the temporal pattern of animal

activity in the environment. For example, acoustic monitors

might provide suitable records in some cases. We therefore

encourage exploration of the method’s application to other

existing and emerging technologies. A new R package

(activity) contains functions to fit and visualize circular kernel

distributions with the option of weighting, calculate associ-

ated activity levels and their standard errors, statistically

compare estimates, and perform circular kernel regression.

Acknowledgements

We thank Nadia Sitas, Anthony Turner, Daniel Rasmussen and Lennart Susel-

beek for assistance in the field, as well as the Smithsonian Tropical Research Insti-

tute, and especially Oris Acevedo, for logistical support. Required permits for the

work described in this article were obtained from the Smithsonian Tropical

Research Institute. The work was funded by the National Science Foundation

(NSF-DEB 0717071), the British Ecological Society, and the Netherlands Foun-

dation of ScientificResearch (NWO-ALW863-07-008).

Data accessibility

The data used in this paper have been archived on figshare. (Rowcliffe et al.

2014).

References

Aschoff, J. (1966) Circadian activity patterns with two peaks. Ecology, 47, 657–
662.

Ashkenazie, S. & Safriel, U.N. (1979) Time-energy budget of the semipalmated

sandpiperCalidris pusilla at Barrow,Alaska.Ecology, 60, 783–799.
Beier, P., Choate, D. & Barrett, R.H. (1995) Movement patterns of moun-

tain lions during different behaviours. Journal of Mammalogy, 76, 1056–
1070.

Belovsky, G.E. & Slade, J.B. (1986) Time budgets of grassland herbivores: body

size similarities.Oecologia, 70, 53–62.
Bolker, B.M. (2010) Tools for general maximum likelihood estimation. http://

CRAN.R-project.org/package=bbmle.

B€orger, L., Franconi, N., Ferretti, F., Meschi, F., De Michele, G., Gantz, A. &

Coulson, T. (2006) An integrated approach to identify spatiotemporal and

individual-level determinants of animal home range size. The American Natu-

ralist, 168, 471–485.

© 2014 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,

Methods in Ecology and Evolution, 5, 1170–1179

1178 J. M. Rowcliffe et al.



Bowman, F. (1958) Introduction to Bessel Functions. Dover, NewYork.

Bridges, A.S. & Noss, A.J. (2011) Behavior and activity patterns. Camera-Traps

in Animal Ecology (eds A.F. O’Connell, J.D. Nichols & K.U. Karanth), pp.

57–70. Springer, NewYork.

Burnham, K.P. & Anderson, D.R. (2002)Model Selection and Multimodel Infer-

ence: A Practical Information-Theoretic Approach, 2nd edn. Springer, New

York.

Carbone, C., Cowlishaw, G., Isaac, N.J.B. & Rowcliffe, J.M. (2005) How far do

animals go? Determinants of day range in mammals. The American Naturalist,

165, 290–297.
Daan, S. & Aschoff, J. (1975) Circadian rhythms of locomotor activity in captive

birds and mammals: their variations with season and latitude. Oecologia, 18,

269–316.
Daan, S. & Slopsema, S. (1978) Short-term rhythms in foraging behaviour of the

common vole,Microtus arvalis. Journal of Comparative Physiology, 127, 215–
227.

Downes, S. (2001) Trading heat and food for safety: costs of predator avoidance

in a lizard.Ecology, 82, 2870–2881.
Dunbar, R.I.M., Korstjens, A.H. & Lehmann, J. (2009) Time as an ecological

constraint.Biological Reviews, 84, 413–429.
Emmons, L.H.&Feer, F. (1990)Neotropical RainforestMammals: A Field Guide.

University ofChicago Press, Chicago, Illinois, USA.

Fern�andez-Dur�an, J.J. (2004) Circular distributions based on non-negative trigo-

nometric sums.Biometrics, 60, 499–503.
Flowerdew, J.R. (2000) Wood mice – small granivores/insectivores with

seasonally variable patterns. Activity Patterns in Small Mammals: An

Ecological Approach (eds S. Halle & N.C. Stenseth), pp. 177–190. Springer,
Berlin.

Gerkema, M.P. & Verhulst, S. (1990) Warning against an unseen predator: a

functional aspect of synchronous feeding in the common vole,Microtus arva-

lis.Animal Behaviour, 40, 1169–1178.
Gittleman, J.L. & Harvey, P.H. (1982) Carnivore home-range size, metabolic

needs and ecology.Behavioral Ecology and Sociobiology, 10, 57–63.
Gorman, M.L., Mills, M.G., Raath, J.P. & Speakman, J.R. (1999) High hunting

costs make African wild dogs vulnerable to kleptoparasitism by hyaenas.Nat-

ure, 391, 479–481.
Halle, S.& Stenseth,N.C. (2000)Activity Patterns in SmallMammals: AnEcolog-

ical Approach. Springer, Berlin.

Houston, A.I., Prosser, E. & Sans, E. (2012) The cost of disturbance: a waste of

time and energy?Oikos, 121, 597–604.
Kays, R., Tilak, S., Crofoot, M., Fountain, T., Obando, D., Ortega, A. et al.

(2011a) Tracking animal location and activity with an automated radio

telemetry system in a tropical rainforest. The Computer Journal, 54, 1931–
1948.

Kays, R., Tilak, S., Kranstauber, B., Jansen, P.A., Carbone, C., Rowcliffe, J.M.,

Fountain, T., Eggert, J. &He, Z. (2011b) Camera-traps as sensor networks for

monitoring animal communities. International Journal ofResearch andReviews

inWireless SensorNetworks, 1, 19–29.
Kelt, D.A. & Vuren, D.H.V. (2001) The ecology and macroecology of mamma-

lian home range area.TheAmericanNaturalist, 157, 637–645.
Knowlton, F.F., Martin, P.E. & Haug, J.C. (1968) A telemetric monitor for

determining animal activity. The Journal of Wildlife Management, 32,

943–948.
Mardia, K.V.& Jupp, P.E. (2000)Directional Statistics.Wiley, Chichester.

McNamara, J.M., Houston, A.I. & Lima, S.L. (1994) Foraging routines of small

birds in winter. Journal of Avian Biology, 25, 287–302.
Nathan, R., Spiegel, O., Fortmann-Roe, S., Harel, R., Wikelski, M. & Getz,

W.M. (2012) Using tri-axial acceleration data to identify behavioral modes of

free-ranging animals: general concepts and tools illustrated for griffonvultures.

Journal of Experimental Biology, 215, 986–996.
Nouvellet, P., Rasmussen, G.S.A., Macdonald, D.W. & Courchamp, F. (2012)

Noisy clocks and silent sunrises: measurement methods of daily activity pat-

tern. Journal of Zoology, 286, 179–184.
Oliveira-Santos, L.G.R., Zucco, C.A. & Agostinelli, C. (2013) Using conditional

circular kernel density functions to test hypotheses on animal circadian activ-

ity.Animal Behaviour, 85, 269–280.
Owen-smith, N. (1994) Foraging responses of kudus to seasonal changes in food

resources: elasticity in constraints.Ecology, 75, 1050–1062.

Owen-smith, N. (1998) How high ambient temperature affects the daily activity

and foraging time of a subtropical ungulate, the greater kudu (Tragelaphus

strepsiceros). Journal of Zoology, 246, 183–192.
Palomares, F. & Delibes, M. (1993) Determining activity types and budgets from

movement speed of radio-marked mongooses. Journal of Wildlife Manage-

ment, 57, 164–167.
Pearson, O.P. (1960) Habits ofMicrotus californicus revealed by automatic pho-

tographic recorders.EcologicalMonographs, 30, 231–250.
Peichl, L. (2005) Diversity of mammalian photoreceptor properties: adaptations

to habitat and lifestyle? The Anatomical Record Part A: Discoveries inMolecu-

lar, Cellular, and Evolutionary Biology, 287, 1001–1012.
Pereira, J.A. (2010) Activity pattern of Geoffroy’s cats (Leopardus geoffroyi) dur-

ing a period of food shortage. Journal of Arid Environments, 74, 1106–1109.
R Core Team (2013) R: A Language and Environment for Statistical Computing.

RFoundation for Statistical Computing, Vienna, Austria.

Reid, F. (1997) A Field Guide to the Mammals of Central America and Southeast

Mexico. OxfordUniversity Press, Oxford.

Ridout, M.S. & Linkie, M. (2009) Estimating overlap of daily activity patterns

from camera-trap data. Journal of Agricultural, Biological and Environmental

Statistics, 14, 322–337.
Rowcliffe, J.M.&Carbone,C. (2008) Surveys using camera-traps: are we looking

to a brighter future?Animal Conservation, 11, 185–186.
Rowcliffe, J.M., Field, J., Turvey, S.T. & Carbone, C. (2008) Estimating animal

density using camera-trapswithout the need for individual recognition. Journal

of Applied Ecology, 45, 1228–1236.
Rowcliffe, J.M., Carbone, C., Jansen, P.A., Kays, R. & Kranstauber, B. (2011)

Quantifying the sensitivity of camera-traps: an adapted distance sampling

approach.Methods in Ecology and Evolution, 2, 464–476.
Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. (2014)

Activity level estimation data. Figshare, http://dx.doi.org/10.6084/m9.figshare.

1160536.

Shepard, E.L.C.,Wilson, R.P., Quintana, F., Laich,A.G., Liebsch,N., Albareda,

D.A. et al. (2008) Identification of animal movement patterns using tri-axial

accelerometry.Endangered Species Research, 10, 47–60.
Sherwin, C.M. (1998) Voluntary wheel running: a review and novel interpreta-

tion.Animal Behaviour, 56, 11–27.
Suselbeek, L., Emsens, W.-J., Hirsch, B.T., Kays, R., Rowcliffe, J.M., Zamor-

a-Gutierrez, V. & Jansen, P.A. (2014) Food acqusition and predator avoidance

in aNeotropical rodent.Animal Behaviour, 88, 41–48.
Xu, H., Nichols, K. & Schoenberg, F.P. (2011) Directional kernel regression for

wind and fire data.Forest Science, 57, 343–352.

Received 3 June 2014; accepted 23August 2014

Handling Editor:Diana Fisher

Supporting Information

Additional Supporting Information may be found in the online version

of this article.

Appendix S1.Variation in speedwith time of day.

Appendix S2.Variation in camera sensitivity with time of day.

Appendix S3. Activity and confounding detectability patterns used to

generate simulated data for evaluating bias in the estimation of activity

level.

Appendix S4.Data used in comparative analysis of activity level across

multiple published sources.

Appendix S5.Model selection table for comparative analysis of activity

level acrossmultiple published sources.

© 2014 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,

Methods in Ecology and Evolution, 5, 1170–1179

Quantifying animal activity level 1179


