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Phagosome maturation during endosome interaction revealed by
partial rhodopsin processing in retinal pigment epithelium
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ABSTRACT

Defects in phagocytosis and degradation of photoreceptor outer

segments (POS) by the retinal pigment epithelium (RPE) are

associated with aging and retinal disease. The daily burst of rod

outer segment (ROS) phagocytosis by the RPE provides a unique

opportunity to analyse phagosome processing in vivo. In mouse

retinae, phagosomes containing stacked rhodopsin-rich discs

were identified by immuno-electron microscopy. Early apical

phagosomes stained with antibodies against both cytoplasmic and

intradiscal domains of rhodopsin. During phagosome maturation, a

remarkably synchronised loss of the cytoplasmic epitope coincided

with movement to the cell body and preceded phagosome–lysosome

fusion and disc degradation. Loss of the intradiscal rhodopsin epitope

and disc digestion occurred upon fusion with cathepsin-D-positive

lysosomes. The same sequential stages of phagosome maturation

were identified in cultured RPE and macrophages challenged with

isolated POS. Loss of the cytoplasmic rhodopsin epitope was

insensitive to pH but sensitive to protease inhibition and coincided

with the interaction of phagosomes with endosomes. Thus, during

pre-lysosomal maturation of ROS-containing phagosomes, limited

rhodopsin processing occurs upon interaction with endosomes. This

potentially provides a sensitive readout of phagosome–endosome

interactions that is applicable to multiple phagocytes.
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INTRODUCTION
The retinal pigment epithelium (RPE) is a monolayer of highly

polarised cells located between the photoreceptors and the

fenestrated endothelium of the choriocapillaris, which forms

part of the blood–retina barrier (Burke and Hjelmeland, 2005;

Strauss, 2005). The apical surface of the RPE extends long

processes that surround the tip of the photoreceptor outer

segments (POS). Melanosomes are localised near the apical

membrane and in the apical processes (Futter et al., 2004; Gibbs

et al., 2004). The RPE performs essential roles for photoreceptor

survival, which include absorption of light, protection against

photo-oxidation, transport of nutrients, ions and water, secretion
of various essential growth factors, and phagocytosis and
digestion of shed photoreceptors (Strauss, 2005), the latter

being the focus of this paper.

Every day, the distal 10% of the POS are shed as part of a
renewal process to maintain their excitability (Young and Bok,

1969; Strauss, 2005). RPE cells phagocytose and digest the POS,
and essential substances, such as retinal, are recycled back to the
photoreceptors (Thompson and Gal, 2003). The phagocytosis

of POS and subsequent phagosome processing by RPE cells
potentially provides an opportunity to obtain unique insights into
the phagocytic process in a system of great physiological and

clinical importance, but also presents considerable experimental
challenges. RPE cells are largely postmitotic and so the daily
ingestion of POS makes them the most phagocytic cells in the

body, each cell digesting in excess of a billion photoreceptor
discs in a 70-year human lifespan. This huge phagocytic load
eventually takes its toll, and lipofuscin-containing deposits
accumulate in all aging RPE and are particularly marked in

age-related macular disease (Kennedy et al., 1995). Defects in the
engulfment of POS or their subsequent degradation are also
associated with inherited retinal degenerative diseases (Gibbs

et al., 2003; Gordiyenko et al., 2010; Wavre-Shapton et al., 2013).

Although there are many cultured cell systems used for studies

of phagocytosis, the daily synchronised phagocytosis of POS by
RPE cells provides a rare opportunity to study phagocytosis
in the native environment. The phagocytosed POS have a highly

ordered structure of stacked discs that bear high concentrations
of visual pigment, allowing changes in morphology and
visual pigment processing to be monitored during phagosome
maturation. The highly polarised nature of the RPE allows

changes in phagosome content to be correlated with changes
in phagosome distribution. Limitations of RPE cells in culture
have, however, limited progress in understanding phagosome

processing in these cells. Most studies have focused on the
binding and engulfment of the POS and the machineries involved
in these steps. Engulfment of rod outer segments (ROS), which

are shed immediately after light onset, requires engagement
of avb5 integrin and subsequent activation of mer tyrosine
kinase (MerTK), annexin A2 and focal adhesion kinase (Feng

et al., 2002; Finnemann, 2003; Law et al., 2009; Nandrot et al.,
2004). In the Royal College of Surgeons rat, which lacks
functional MerTK, ROS fail to be engulfed, leading to rapid
retinal degeneration, demonstrating the importance of ROS

phagocytosis in protecting the neural retina (Chaitin and Hall,
1983; D’Cruz et al., 2000). Less is known about the subsequent
phagosome processing and degradation within the RPE.

Phagosomes, once formed, move from the apical to the basal
region in order to mature and acquire the capacity to fuse with
lysosomes and be degraded (Bosch et al., 1993; Herman and

Steinberg, 1982a; Herman and Steinberg, 1982b). A delay in
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phagosome movement from the apical region to the cell body has
been shown in cells that lack myosin VIIa in the shaker-1 mouse

model (Gibbs et al., 2003). This is a model for the human disease
Usher syndrome 1B, which causes gradual retinal degeneration and
hearing and vestibular defects (Petit, 2001). In professional
phagocytes, such as macrophages, phagosome maturation is

characterised by sequential interactions with the endocytic
pathway that involve the acquisition of endocytic markers and are
essential for subsequent lysosome fusion (Desjardins et al., 1994;

Duclos et al., 2000; Flannagan et al., 2012). Proteomic studies have
identified multiple Rab proteins recruited to maturing phagosomes
that are likely to regulate interactions not only with different

components of the endocytic pathway but also potentially with other
intracellular compartments, including the endoplasmic reticulum,
Golgi and the autophagic pathway (Gutierrez, 2013). Despite the

identification of these panels of Rab proteins that are recruited either
to all maturing phagosomes or to specific subtypes of phagosome,
the function of the majority of phagosomal Rab proteins, the
organellar interactions that they regulate and the functional

significance of those interactions remain poorly characterised.
In this study, we follow sequential stages in the processing of

phagocytosed ROS by analysing retinal sections from eyes

obtained at different times after light onset and by challenging
primary RPE cells with isolated POS. We show that the same
sequential stages of phagosome maturation occur in primary

cultured RPE cells as in vivo and that limited proteolysis of
rhodopsin occurs before lysosomal delivery and coincides with
interaction with the endocytic pathway. Interestingly, we also

show here that the same stages of phagosome maturation can be
seen in macrophages. Therefore, this powerful technique for
identifying sequential stages of phagosome maturation in vivo

and in vitro will impact not only on this clinically relevant ocular

system but also on phagosome processing in other cellular
systems where in vivo analysis is not possible.

RESULTS
Loss of the cytoplasmic rhodopsin epitope during
phagosome maturation
Phagocytosis of shed ROS by the RPE occurs during the first 1–2 h
after light onset. We have previously shown 2.5 h after light onset to
be a time-point at which both apical and basal phagosomes are
present and when phagosomes accumulate if phagosome

degradation is impaired (Wavre-Shapton et al., 2013). Thus, at
this time, all stages of phagosome processing are likely to be
present. It has previously been shown that antibodies against

specific rhodopsin epitopes might stain only a subset of ROS-
containing phagosomes (Esteve-Rudd et al., 2014; Law et al., 2009).
In order to determine whether antibodies against specific rhodopsin

epitopes can be used to identify sequential stages of phagosome
maturation, we monitored rhodopsin processing by cryo-immuno-
electron microscopy using two different rhodopsin antibodies. The

RET-P1 antibody binds to the N-terminal intradiscal domain of
rhodopsin, whereas 1D4 recognises the C-terminal cytoplasmic
domain of the protein. ROS and some phagosomes located in the
apical region very close to the ROS (early phagosomes) contained

both epitopes (insets, Fig. 1A,B, respectively). Outer segment discs
were clearly visible in these 1D4- and RET-P1-positive
phagosomes. Interestingly, these specimens also contained

phagosomes in the apical region and in the cell body that were
strongly positive for RET-P1 staining but contained very little 1D4
cytoplasmic epitope staining (maturing phagosomes) or, more

commonly, no 1D4 staining (late phagosomes), as illustrated in

Fig. 1C,D, respectively. Despite the scarcity of 1D4 staining, most

of these phagosomes contained clearly visible discs. To determine
whether phagosomes staining for both rhodopsin epitopes (early
and maturing phagosomes) and phagosomes that had lost the

cytoplasmic 1D4 epitope (late phagosomes) represented sequential
stages in phagosome maturation, the two types of phagosome were
quantified at 1 h and 2.5 h after light onset (8am and 9.30am,

respectively). As shown in Fig. 1E, at 8am, almost 80% of the

Fig. 1. Loss of the C-terminal cytoplasmic rhodopsin epitope during
phagosome maturation. Immunogold labelling of cryosections of mouse
retina collected at 2.5 h after light onset (9.30am). Double labelling of
rhodopsin with antibodies against the C-terminal cytoplasmic epitope [1D4;
Protein-A–gold (PAG), 10 nm] and N-terminal intradiscal epitope (RET-P1;
PAG, 15 nm). (A) Overview of the RPE and POS. The inset shows double
labelling in ROS. Higher magnification views of early, maturing and late
phagosomes (earlyP, matP or lateP, respectively) in A are shown in B, C and
D. N, nucleus; M, melanosomes; BrM, Bruch’s membrane. (B) Double-
labelled early phagosome. (C) Double-labelled phagosome with low density
of 1D4 staining, suggesting that it is a maturing phagosome. (D) Single-
labelled phagosome with no 1D4 staining, suggesting it is a mature late
phagosome. Scale bars: 1 mm (A), 200 nm (inset in A), 400 nm
(B–D). (E) Quantification shows the percentage of total phagosomes at 1 h
(8am) or 2.5 h (9.30am) after light onset that are positive for 1D4 and
RET-P1 or for RET-P1 only. At each time-point at least 25 phagosomes
were analysed in four eyes. Data show the mean6s.e.m.; *P,0.05.
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phagosomes were double-labelled with RET-P1 and 1D4,
compared with 55% at 9.30am. This indicates a progression over

time from double-labelled to single-labelled phagosomes during
the maturation process.

Loss of the C-terminal rhodopsin epitope correlates with
movement from the apical to the basal region of RPE
To determine whether the loss of the cytoplasmic rhodopsin
epitope correlated with phagosome movement from the apical to

the basal region of the cell, the position of phagosomes in the
RPE in relation to their labelling for both rhodopsin antibodies
was analysed. As shown in Fig. 2A, .90% of early phagosomes

(1D4 positive, RET-P1 positive) were apical (at or above the tight
junctions), whereas late phagosomes (1D4 negative, RET-P1
positive) could be both apical and basal (below the tight

junctions), although most (.75%) were basal. This suggests
that the loss of the cytoplasmic epitope of rhodopsin occurs early
in the maturation process and might precede movement to the
basal region.

Synchronised loss of the cytoplasmic rhodopsin epitope
during phagosome maturation
In order to further analyse the loss of the cytoplasmic epitope of
rhodopsin during phagosome maturation, the density of 1D4
staining on phagosomes was determined and normalised to that
on the ROS themselves at 1 h (8am) and 2.5 h (9.30am) after

light onset. As shown in Fig. 2B, the density of 1D4 staining was
very similar on ROS at both time-points; 95% of outer segments
had a density between 0.9 and 1.1. By contrast, two main

populations of phagosomes were present: the first with a density
similar to outer segments, the second with a density of zero. Over
time, a shift from the first to the second population was observed,

illustrating that these are sequential stages in the maturation
process. Very few phagosomes showed an intermediate density
(between 0.2 and 0.6), suggesting that the loss of the cytoplasmic

epitope of rhodopsin is a very rapid and remarkably synchronised
event.

Loss of the intradiscal rhodopsin epitope occurs on fusion
with the lysosome
In all phagocytes, phagosomes are eventually degraded upon
fusion with lysosomes. In RPE cells, the lysosomal enzyme

cathepsin D is very highly expressed (Rakoczy et al., 1999;
Yamada et al., 1990; Zhang et al., 2002; Zimmerman et al.,
1983), and RPE cells expressing a mutant inactive form of

cathepsin D accumulate undigested POS products (Rakoczy et al.,
2002), suggesting an important role for this enzyme in POS
degradation. We therefore co-stained ultrathin cryosections for

cathepsin D and rhodopsin, using 1D4 or RET-P1 (Fig. 3).
Interestingly, we found that early phagosomes positive for 1D4
never stained for cathepsin D (Fig. 3A). Cathepsin-D-positive
phagosomes or phagolysosomes were negative for 1D4 but could

be identified as phagolysosomes (rather than lysosomes) by the
presence of ROS discs. However, the discs in phagolysosomes
were often morphologically less well defined (Fig. 3B, black

asterisk), consistent with some degradation taking place.
Some RET-P1-positive phagosomes were positive for

cathepsin D (Fig. 3D); however, the labelling and the

morphology of the organelle varied. Phagolysosomes in which
outer segment discs were still clearly visible usually had only a
few cathepsin D gold particles and were strongly labelled with
RET-P1 (PL in upper-left corner in Fig. 3D, white arrows).

Phagolysosomes where discs were less visible were more strongly
labelled for cathepsin D, whereas RET-P1 staining was weaker
(PL in lower-right corner in Fig. 3D, black arrows), indicating a

more advanced stage of degradation.
These data suggest that early phagosomes that are positive for

1D4 do not fuse with cathepsin-D-positive lysosomes directly but

need some degree of maturation. Loss of the cytoplasmic epitope
of rhodopsin is an indicator of this maturation process, which
must occur before the phagosome fuses with the lysosomes and

full degradation of rhodopsin and outer segment discs can take
place.

Reduced pH does not affect the antigenicity of the
cytoplasmic epitope of rhodopsin
The synchronised loss of the C-terminal rhodopsin epitope raised
the possibility that an irreversible conformational change or post-

translational modification of rhodopsin in the maturing
phagosome might lead to loss of this epitope. Alternatively, a
protease present on the ROS themselves might become activated

upon phagosome maturation. The most likely activator of any of

Fig. 2. Synchronised loss of the C-terminal cytoplasmic rhodopsin
epitope correlates with phagosome position in the RPE. (A) The
positions of the phagosomes analysed in Fig. 1E were scored as apical or
basal depending on whether the phagosome was above or below the tight
junctions, respectively. Phagosomes from both time-points were pooled
together for this analysis, as their position according to the labelling does not
vary with time. Data are expressed as a percentage of total double-labelled
phagosomes (black bars) or total single-labelled phagosomes (white bars).
A total of 313 phagosomes were analysed in eight eyes. Data show the
mean6s.e.m. (B) In the same population of phagosomes as in A, the density
of PAG associated with 1D4 was calculated in phagosomes and outer
segments. 1D4 density in .60 ROS and .140 phagosomes was
calculated in total and normalised to outer segment density in each sample.
Four eyes were analysed for each time-point. The thin horizontal black lines
show the mean in each sample; ***P,0.0001.
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these changes would be the progressive lowering of the luminal
pH of the phagosome that has been shown to occur in other
systems (Deguchi et al., 1994; Horwitz and Maxfield, 1984;

Kielian and Cohn, 1980). We therefore isolated porcine POS,
incubated them in low pH solution (pH 5.0) and determined the
effects on C-terminal rhodopsin epitope antibody binding by

cryo-immuno-electron microscopy. As shown in Fig. 4, the
binding of C-terminal 1D4 and N-terminal RET-P1 antibodies
was unaffected by incubation in low pH solution, suggesting that

the loss of cytoplasmic 1D4 epitope is not caused by a lowering
of pH within the phagosome.

Loss of the C-terminal cytoplasmic rhodopsin epitope also
occurs in cultured RPE cells challenged with isolated POS
To further investigate the mechanisms underlying the loss of the

cytoplasmic rhodopsin epitope, it was necessary to develop a
system of cultured RPE cells. As insufficient numbers of cultured
mouse RPE cells could be obtained for cryo-immuno-electron

microscopy, we developed an in vitro assay using primary
porcine RPE cells challenged with porcine isolated POS. In order
to mimic the in vivo situation as closely as possible, primary cells

were used only after a single passage and were cultured on
TranswellH membrane inserts for 5–10 days in the presence of
low serum. Under these conditions, the cells developed a

transepithelial resistance of 160–300 Vcm2, and conventional
electron microscopy showed that they had the characteristics
of polarised RPE cells, with apical processes, melanosomes
localised close to the apical membrane and mitochondria around

the basolateral border (supplementary material Fig. S1A). To
mimic the in vivo phagocytosis process as closely as possible,
purified POS (supplementary material Fig. S1C) were sonicated

for 10 min before addition to the cells. After sonication, the size
of the isolated POS (supplementary material Fig. S1D) resembled
that of ROS engulfed by RPE in vivo (supplementary material

Fig. S1B, asterisk). Furthermore, .90% of the isolated porcine
POS stained strongly with both 1D4 and RET-P1 antibodies (data
not shown), indicating that the majority of this preparation is

composed of ROS. To determine whether the same stages of
phagosome maturation identified in vivo could be identified using
our in vitro system, cultured porcine RPE cells were challenged
with porcine POS for 1 h and chased for 2 h or 4 h (Fig. 5A–C).

After 2 h of chase, ,50% of RET-P1-positive phagosomes were
also positive for 1D4 (Fig. 5B,D). After 4 h of chase, most
(.70%) of the RET-P1-positive phagosomes were negative for

1D4 (Fig. 5C,D). Thus, there was a progression over time from
double-labelled to single-labelled phagosomes that occurred over
a similar timescale to that observed on retinal sections, suggesting

that phagosome maturation in cultured cells proceeds through
similar stages to that occurring in vivo.

Loss of the C-terminal cytoplasmic epitope of rhodopsin is
sensitive to leupeptin
To determine whether loss of the cytoplasmic 1D4 epitope occurs
through proteolysis of rhodopsin, the phagocytosis assay was also

Fig. 4. Reduced pH does not affect binding to the C-terminal cytoplasmic rhodopsin epitope. POS were incubated in neutral (pH 7.0) or low (pH 5.0) pH
solution and were prepared for cryo-immuno-electron microscopy. Ultrathin sections were labelled with 1D4 (PAG, 10 nm) and RET-P1 (PAG, 15 nm).
The pH did not affect labelling with the antibody against the cytoplasmic 1D4 epitope. Areas outlined in white are shown at higher magnification in the lower-right
corner. Scale bars: 200 nm.

Fig. 3. Loss of the N-terminal intradiscal rhodopsin epitope occurs on
fusion with the lysosome. Immunogold labelling of cryosections of mouse
retina collected 2.5 h after light onset (9.30am). (A,B) Double labelling of
rhodopsin C-terminal epitope (with 1D4; PAG, 15 nm) and cathepsin D (PAG,
10 nm). (C,D) Double labelling of rhodopsin N-terminal epitope (with RET-
P1; PAG, 15 nm) and cathepsin D (PAG, 10 nm). Outer segment discs are
visible in all phagosomes and, to some extent, in phagolysosomes. They are
less visible in B (asterisk) and they are completely absent from the smaller
phagolysosome in D. Scale bars: 500 nm. EarlyP, early phagosome; P,
phagosome; M, melanosome; PL, phagolysosome; L, lysosome; black
arrows indicate examples of PAG15; white arrows indicate examples
of PAG10.
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performed on cells that were pre-incubated with leupeptin, a
cysteine, serine and threonine protease inhibitor. This inhibitor
was present throughout the whole course of the assay. As shown

in Fig. 5D, there was an increased percentage of double-positive
phagosomes (early phagosomes) in the presence of leupeptin,
and a twofold reduction in the percentage of single-positive
phagosomes (late phagosomes) after 4 h of chase. This

demonstrates that loss of the cytoplasmic 1D4 epitope during
phagosome maturation occurs through proteolytic cleavage of a
C-terminal portion of the molecule. Leupeptin only partially

inhibited the loss of 1D4, probably because this membrane-
impermeable inhibitor relies on endocytosis to enter the endocytic
pathway and an insufficient concentration might have reached the

appropriate endocytic compartment.

Loss of 1D4 staining occurs upon interaction of phagosomes
with a pre-lysosomal compartment of the endocytic pathway
As loss of the cytoplasmic rhodopsin epitope occurred before
lysosomal fusion, the endosome was a likely source of the protease
that cleaves the cytoplasmic rhodopsin epitope during phagosome

maturation. Although phagosome–lysosome interactions are
relatively easy to measure through the acquisition of lysosomal
enzymes like cathepsin D, most studies of interaction with the

endocytic pathway have relied on measuring the acquisition of
endosomal markers or the acquisition of overexpressed Rab
proteins. We sought a more direct measure of phagosome–

endosome interactions, and took advantage of the polarised
nature of RPE cells cultured on TranswellH membrane inserts
that allow the phagocytic and endocytic pathways to be loaded

from opposite sides of the monolayer. The presence of particles
endocytosed from the basal surface in phagosomes containing ROS
taken up from the apical surface would indicate phagosome–

endosome interaction. This approach relies on probes endocytosed
from the basal surface having access to those parts of the endocytic
pathway that can potentially interact with phagosomes. In polarised
MDCK cells, probes endocytosed from basal and apical surfaces

have been shown to meet in a common apical recycling endosome
(Apodaca et al., 1994; Futter et al., 1998). To determine whether
this would also be the case in the RPE, cells were incubated with

10-nm bovine serum albumin (BSA)–gold and fluid-phase
horseradish peroxidase (HRP) for 2 h from opposite chambers.
The HRP reaction product and BSA–gold particles colocalised in

vacuoles with the morphological characteristics of endosomes –
these vacuoles were electron luscent and contained discrete
intraluminal vesicles (ILVs) (supplementary material Fig. S2A,B
insets). These pre-lysosomal compartments could be clearly

distinguished from lysosomes where the two probes also
colocalised because the lysosomes were electron dense, had
multiple membranous content and the gold particles within the

lumen were aggregated, indicating that they were contained within
a degradative compartment (supplementary material Fig. S2A,
inset). Having established that RPE cells, in common with MDCK

cells, have a common apical recycling endosome that can be
accessed from the basal surface of polarized RPE, cells cultured on
TranswellH membrane inserts were incubated with 5-nm BSA–

gold in the basal chamber for 3 h prior to challenging the cells with
POS in the apical chamber, as described above. Cells were then
processed for cryo-immuno-electron microscopy and subsequently

Fig. 5. Partial proteolytic processing of the C-terminal rhodopsin
epitope during phagosome maturation in porcine RPE cells.
Monolayers of primary porcine RPE cells on TranswellH membrane
inserts were challenged with POS apically for 1 h, washed to remove
unbound POS, chased for 2 h or 4 h at 37˚C and processed for cryo-
immuno-electron microscopy. Ultrathin sections were double labelled for
rhodopsin with antibodies against the C-terminal epitope (1D4; PAG,
10 nm) and N-terminal epitope (RET-P1; PAG, 15 nm). (A) An overview
of RPE cells and ROS. The inset shows double labelling in ROS. (B) A
double-labelled early phagosome with same density of both gold particles
as seen on ROS. (C) A single-labelled late phagosome lacking the
cytoplasmic 1D4 epitope. Scale bars: 500 nm (A), 200 nm (B,C). M,
melanosome; EarlyP, early phagosome; LateP, late phagosome.
(D) Quantification shows the percentage of total phagosomes that are
positive for both 1D4 and RET-P1 or for RET-P1 only after 2 h and 4 h of
chase, in the presence or absence of the protease inhibitor leupeptin
(L). Data show the mean6s.e.m. (three independent experiments).
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labelled for rhodopsin with antibodies against both C-terminal
cytoplasmic (1D4) and N-terminal intradiscal (RET-P1) epitopes.

Gold-loaded elements of the endocytic pathway that did not have
phagocytic content could be readily identified. Monodisperse BSA–
gold particles could be found in endocytic vacuoles, most of
which were multivesicular endosomes/bodies (MVBs), whereas

aggregated BSA–gold could be found in electron dense lysosomes
(supplementary material Fig. S3A). POS added to the upper
chamber contained no gold particles (supplementary material Fig.

S3D,E), confirming that the monolayer remained intact during the
course of the experiment. Within the cells, the maturing phagosomes
could be divided into roughly four categories: (i) double-positive

early phagosomes that contained no BSA–gold, indicating that they
had not yet fused with the endocytic pathway (Fig. 6A); (ii) BSA–
gold-containing double-positive phagosomes, where, in some cases

(e.g. Fig. 6B), one pole of the phagosome contained BSA–gold and
ILVs largely separate from the double-positive ROS discs,
suggesting recent fusion between the phagosome and MVB; (iii)
phagosomes that had lost most of the C-terminal 1D4 epitope where

the endocytosed gold particles and phagocytosed ROS are mixed
(maturing phagosomes in Fig. 6C) – importantly, in this category,
the BSA–gold particles remained monodisperse, confirming that

they were derived from a pre-lyosomal endocytic compartment; and
(iv) phagolysosomes containing only the N-terminal (RET-P1)
epitope with aggregated 5-nm gold particles, indicating that the

phagosome had fused with the lysosome (Fig. 6D). These data show
that loss of the 1D4 epitope only occurs after interaction of the
phagosome with the endocytic pathway.

Phagosome–endosome–melanosome interactions
Examination of retinal sections reveals frequent profiles suggesting
a close association of phagosomes with melanosomes. Although

apical melanosomes were observed in the vicinity of early apical
phagosomes, melanosome–phagosome interactions were mainly in
the cell body with mature phagosomes that had lost the 1D4

epitope (see examples in Figs 1 and 3). We found that, in cultured
porcine RPE where the endocytic pathway was loaded with BSA–
gold from the basal surface, vacuoles could be observed containing

melanin particles, monodisperse BSA–gold and ILVs, suggesting
MVB–melanosome fusion (supplementary material Fig. S3B).
Furthermore rhodopsin-containing phagosomes could also be
observed associated with melanosomes, but only if they

contained endocytosed BSA–gold, indicating that they had
already fused with endosomes and had begun to lose 1D4
staining (supplementary material Fig. S3C).

Sequential stages of phagosome maturation can also be
identified in macrophages
A range of different surface molecules are used by phagocytes to
recognise and engulf particles, although there are also some
common components of the core phagocytic machinery. Less is

known about the molecular regulation of phagosome maturation,
but proteomic studies of maturing phagosomes suggest that a
combination of core and cell-type-specific and particle-type-
specific components are likely to be used. Our finding that

proteolytic processing of rhodopsin occurs following fusion with
endosomes suggests that rhodopsin processing might prove to be
a very sensitive readout of a phagosome–endosome interaction

that is central to phagosome maturation in multiple phagocytes.
Therefore, we investigated whether the C-terminal rhodopsin
processing also occurred during phagosome maturation in the

macrophage cell line J774.1, when challenged with POS. After a

1-h pulse and a 2-h chase, cryo-immuno-electron microscopy
using both rhodopsin antibodies, 1D4 and RET-P1, showed that

the cytoplasmic 1D4 epitope was lost before the intradiscal RET-
P1 epitope (Fig. 7), as observed in RPE cells. Loss of the
cytoplasmic epitope was rapid in the macrophage cell line, such

that most phagosomes had a lower density of cytoplasmic 1D4
staining than the ROS before engulfment (compare Fig. 7A with
Fig. 7B). Even in phagosomes that had largely lost the 1D4

epitope, individual discs could sometimes be observed that
retained 1D4 staining (Fig. 7C). As with RPE cells, loss of the

Fig. 6. Early phagosomes interact with a pre-lysosomal compartment
of the endoytic pathway in primary porcine RPE cells. Monolayers of
primary porcine RPE cells on TranswellH membrane inserts were incubated
in the lower chamber with 5-nm BSA–gold for 3 h prior to the addition of
POS, and BSA–gold was maintained throughout the duration of the
experiment. Cells were then challenged with POS from the apical chamber
for 1 h, washed to remove unbound POS, chased for 2 h at 37˚C and
processed for cryo-immuno-electron microscopy. Ultrathin sections were
double labelled for rhodopsin with antibodies against the C-terminal epitope
(1D4; PAG, 10 nm) and N-terminal epitope (RET-P1; PAG, 15 nm). (A) A
double-labelled early phagosome (earlyP) that contains no 5-nm gold
particles. (B) A double-labelled early phagosome containing monodisperse
BSA–gold (black arrowheads) and ILVs (white arrowheads) at one pole,
suggesting recent fusion of the early phagosome with a multivesicular
endocytic compartment. (C) Maturing phagosomes (matP) containing 5-nm
BSA–gold. Note that the density of PAG 10 nm is greatly reduced compared
with that of the early phagosome shown in A and B. A lysosome
(L) containing aggregated 5-nm gold particles can be readily identified.
(D) Phagolysosome (PL) containing PAG 15 nm only and aggregated 5-nm
gold particles. Scale bars: 100 nm (A,B,D), 200 nm (C). Black and
white arrows indicate rhodopsin labelling with RET-P1 and 1D4,
respectively.
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intradiscal RET-P1 epitope was only observed in phagosomes

that appeared to have fused with electron-dense lysosomes and
had lost morphologically identifiable discs (Fig. 7D).

DISCUSSION
Phagosome maturation has been analysed in numerous model
systems and is characterised by the sequential acquisition of

endocytic markers, including multiple Rab proteins and Rab
effectors (eg. EEA1 and Vps34) (Desjardins et al., 1994; Fratti et
al., 2001; Gutierrez, 2013; Vieira et al., 2003). This ordered series
of events can be circumvented by certain microorganisms and

parasites to allow escape from degradation (reviewed in Vergne
et al., 2004), and the speed and regulation of phagosome
maturation varies amongst different phagocytes and different

phagocytic cargoes. Comparatively little is known about the
sequence of events leading to phagosome maturation in the RPE,
despite the enormous phagocytic burden of these cells and the

accumulation of the products of incomplete phagosome
degradation that occurs with age and in some retinal
degenerative diseases. The relatively synchronised burst of ROS
phagocytosis that occurs after light onset allows phagosome

maturation to be analysed in RPE cells in their native
environment, using mouse retinal sections.

In this study, we use an approach that does not rely on the
acquisition of endocytic markers by the maturing phagosome.
Instead, we focused on the phagosome content and used
cryo-immuno-electron microscopy to simultaneously analyse

rhodopsin processing and phagosome content. Immuno-electron
microscopy is unaffected by melanin quenching, which limits
immunofluorescent analysis of the RPE, and the resolution of

immune-electron microscopy allows the ready distinction
between surface and internalised ROS and between apical and
basal phagosomes. Using this approach, we have shown that

sequential stages in phagosome maturation can be identified
(Fig. 8). Early phagosomes stain for both intradiscal and
cytoplasmically exposed rhodopsin epitopes. During phagosome

maturation in RPE cells in situ, a cytoplasmically exposed C-
terminal rhodopsin epitope is lost before fusion with the
lysosome, allowing the identification of a second ‘mature’ stage
in phagosome maturation that retains the intradiscal N-terminal

rhodopsin epitope. Loss of the intradiscal epitope occurs only
upon fusion with the lysosome and subsequent degradation of the
ROS discs, allowing mature phagosomes to be distinguished from

phagolysosomes.
To analyse the mechanism of pre-lysosomal rhodopsin

processing it was necessary to analyse phagosome maturation

in cultured RPE. Although cultured RPE cells isolated from
mouse eyes have been used for phagocytosis studies (Gibbs et al.,
2010; Gibbs et al., 2003; Nandrot et al., 2007), insufficient cell

numbers could be isolated for immuno-electron microscopy
experiments. We therefore developed a system using RPE cells
isolated from porcine eyes from which ROS could also be

Fig. 7. Sequential stages of phagosome maturation can also be
identified by monitoring rhodopsin in macrophages challenged with
POS. J774A.1 macrophages seeded onto TranswellH membrane inserts
were challenged with POS for 1 h, washed to remove unbound POS, chased
for 2 h at 37˚C and processed for cryo-immuno-electron microscopy.
Ultrathin sections were double labelled for rhodopsin with antibodies against
the C-terminal epitope (1D4; PAG, 10 nm) and N-terminal epitope (RET-P1;
PAG, 15 nm). (A) Double-labelled ROS at the plasma membrane. (B) A
double-labelled early phagosome (earlyP). (C) A maturing phagosome
(matP) containing only very little 1D4 on some discs. (D) A phagolysosome
(PL) containing disorganised discs where RET-P1 has started to be
degraded. Scale bars: 200 nm (A,C), 100 nm (B,D). Black and white arrows
indicate rhodopsin labelling with RET-P1 and 1D4, respectively.

Fig. 8. Sequential stages of phagosome maturation in the RPE. Early
phagosomes are positive for the C-terminal cytoplasmic 1D4 and N-terminal
intradiscal RET-P1 epitopes. As the phagosomes mature, 1D4 staining is lost
and mature phagosomes are only positive for RET-P1. Maturing
phagosomes also show little staining for the lysosomal protein cathepsin D.
After fusion of the mature phagosome with the cathepsin D (CatD)-positive
lysosome (phagolysosome), RET-P1 staining is lost. Loss of the C-terminal
1D4 epitope occurs only after interaction with endosomes. Profiles indicative
of an interaction of melanosomes with both maturing phagosomes and
multivesicular endosomes have also been observed.
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isolated. Our system not only generates monolayers of polarised
differentiated RPE cells but, most importantly, cells were able to

reproduce accurately the in vivo process of phagocytosis in terms
of phagosome maturation, i.e. the sequential loss of the
cytoplasmic rhodopsin epitope before fusion with lysosomes. In
addition, the timing of phagosome maturation was very similar to

the process in vivo (2–4 h), in contrast to a previous study that
reported a slower phagosome degradation (12–24 h) in cultured
RPE cells (Gordiyenko et al., 2010).

How is the cytoplasmic C-terminal rhodopsin epitope lost?
Most phagosomes have either the same density of 1D4 as the
ROS themselves or have lost the epitope completely, suggesting a

remarkably synchronised process. In other cell types (Deguchi
et al., 1994), and in RPE cells (Gordiyenko et al., 2010), there is a
progressive lowering of luminal pH as the phagosome matures.

This could induce a conformational change in the rhodopsin C-
terminus or could even activate a proteolytic enzyme within the
ROS themselves, leading to a rapid and synchronised loss of the
cytoplasmic epitope. However, we have shown that 1D4 binding

to the cytoplasmic epitope of rhodopsin in isolated ROS is
unaffected by reduced pH. Alternatively, loss of the cytoplasmic
rhodopsin epitope could occur through post-translational

modification, such as phosphorylation. Although a partial
reduction in the strength of 1D4 binding occurs upon
phosphorylation of the C-terminus of rhodopsin (Molday and

MacKenzie, 1985), this is unlikely to explain the complete loss of
1D4 binding in the maturing phagosome. Treatment of RPE cells
with the protease inhibitor leupeptin substantially reduced the

extent of the loss of the cytoplasmic epitope, indicating partial
proteolysis of rhodopsin.

Sequential fusion of phagosomes with two different
populations of cathepsin-D-positive lysosomes has previously

been indicated by Bosch et al. (Bosch et al., 1993). Loss of the
cytoplasmic rhodopsin epitope occurs before fusion with
cathepsin-D-positive lysosomes and so is not a result of

sequential fusion with multiple lysosomal populations. This
implicates the endocytic pathway as the source of the protease
that cleaves the rhodopsin C-terminus. Interactions between

maturing phagosomes and endosomes have not previously been
demonstrated in RPE cells. In this study, we have directly
measured phagosome–endosome interaction by demonstrating the
mixing of phagosome and endosome content, and we have shown

that endocytosed gold particles appear in early phagosomes
before loss of the cytoplasmic rhodopsin epitope in cultured RPE
cells. This strongly suggests that a protease that cleaves rhodopsin

is delivered from the endocytic pathway to the maturing
phagosome and, thus, cleavage of the C-terminus of rhodopsin
is a reporter of phagosome–endosome interaction. The identity of

this protease is not yet known, but newly synthesised lysosomal
enzymes are delivered to early endosomes through the mannose
6-phosphate receptor (Ghosh et al., 2003; Hirst et al., 1998),

although some require lysosomal processing to become active.
However, pre-lysosomal proteolytic processing of endocytosed
molecules has been reported (Renfrew and Hubbard, 1991),
suggesting that some proteases within endosomes are active

(Blum et al., 2013).
Our demonstration that a similar processing of rhodopsin

occurs in ROS-containing phagosomes in macrophages suggests

that loss of the C-terminus of rhodopsin could be a simple,
direct and highly sensitive readout of phagosome–endosome
interactions applicable to multiple phagocytes. Much of our

current information about phagosome–endosome interactions is

derived from the acquisition by the phagosome of proteins known
to predominantly associate with the endocytic pathway, coupled

with knowledge of the function of those endocytic proteins in
transport within the endocytic pathway. Cytoplasmic rhodopsin
processing will provide a means to directly test the function of
these components of the endocytic transport machinery in

phagosome–endosome interaction and help to elucidate the
nature of phagosome–endosome interactions. It is currently not
clear whether these interactions occur via a ‘kiss and run’ type

mechanism, as has been described for interactions between
endosomes and lysosomes (Bright et al., 2005) or through tubular
connections, as have been observed in macrophages between

phagosomes and late endosomes and lysosomes (Harrison et al.,
2003). In cultured RPE cells, we observed profiles suggestive of
full fusion between MVBs and phagosomes. We also observed

profiles indicative of fusion between MVBs and melanosomes, an
interaction that, to our knowledge, has not previously been
described. MVBs form part of the melanosome biogenesis
pathway (Raposo et al., 2001), but melanosome biogenesis in

mammalian RPE cells is primarily confined to a short window in
embryonic life (Lopes et al., 2007) and so, under the conditions of
culture used in this study, melanosome biogenesis does not occur.

Thus, the profiles that we observed containing endocytosed
probes, ILVs and melanin presumably do result from interaction
between MVBs and mature melanosomes. Melanosomes are

lysosome-related organelles and, in RPE cells, and to some extent
in melanocytes, share constituents with lysosomes (Lopes et al.,
2007; Raposo and Marks, 2002). It is possible therefore that the

molecular machinery that tethers MVBs to lysosomes and
promotes their fusion could operate to promote MVB–
melanosome fusion in RPE cells, although the function of this
fusion is unclear. The function of interaction between

melanosomes and phagosomes is also not clear, although
evidence of a link between the phagocytic pathway and
melanosomes has previously been obtained in vivo (Thumann

et al., 1999). The presence of lysosomal enzymes in RPE
melanosomes raises the possibility that melanosomes might
contribute to the degradation of phagosome content, although

phagosome–melanosome interactions might also provide
protection against oxidative stress induced by phagocytosis and/
or against the gradual accumulation of harmful products of
phagocytosis, such as lipofuscin.

Our demonstration of the synchronised partial proteolytic
processing of rhodopsin provides an exquisitely sensitive readout
of phagosome maturation both in situ and in cultured cells. It

will allow further characterisation of the molecular machinery
regulating phagosome processing. Furthermore, it will aid in the
identification of defects in phagosome maturation and

degradation in aging (Katz and Robison, 1984) and in mouse
models of retinal diseases such as choroideremia and Usher’s
syndrome 1B, which have been shown to involve phagosome

degradation defects (Gibbs et al., 2003; Gordiyenko et al., 2010;
Wavre-Shapton et al., 2013).

MATERIALS AND METHODS
Antibodies and staining reagents
For rhodopsin labelling, RET-P1 and 1D4 antibodies were purchased

from Abcam (Cambridge, UK). Antibody against cathepsin D was

purchased from Millipore (Billerica, MA). For immune-electron

microscopy studies, a rabbit anti-mouse-IgG bridging antibody and

Protein-A–gold (PAG) were purchased from Dako (Glostrup, Denmark)

and CMC, University Medical Center (Utrecht, The Netherlands),

respectively.
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Mice
All animals used in this study were treated in accordance with Home

Office guidance rules under project licences 70/6176 and 70/7078,

adhering to the Association for Research in Vision and Ophthalmology

(ARVO) Statement for the Use of Animals in Ophthalmic and Vision

Research. C57Bl6 mice were used.

Cell culture
Mouse J774A.1 macrophages were cultured in GlutaMAXTM DMEM

(Invitrogen, Carlsbad, CA) with 10% FBS and were maintained at 37 C̊

under 5% CO2.

Porcine RPE cell isolation
Porcine RPE cells were isolated from fresh eyes of young boars obtained

from a local slaughterhouse. Briefly, eyes were cut open and the anterior

parts were discarded together with the lens and vitreous humour. The

posterior eye-cups were filled with PBS and the neuroretina was peeled

away and cut off at the optic nerve head. The eye-cups with the exposed

RPE layer were incubated with 106 trypsin for 30 min at 37 C̊, and the

cells were resuspended and washed with DMEM containing 10% FBS

(Invitrogen, Carlsbad, CA). Cells were maintained at 37 C̊ under 5% CO2

in GlutaMAXTM DMEM with 10% FBS. First passage RPE cells were

plated onto TranswellH membrane inserts (Corning, New York, NY) and

kept in DMEM with 1% FBS for 5–7 days. The transepithelial resistance

was measured throughout this time.

Isolation of POS
POS were isolated from fresh porcine eyes according to an established

protocol adapted from Molday and Molday (Molday and Molday, 1987)

and further developed and described in detail by Mao and Finnemann

(Mao and Finnemann, 2013). Briefly, eyes were cut open and the

neuroretina was peeled off and placed in homogenising solution [20%

(w/v) sucrose, 20 mM Tris acetate pH 7.2, 2 mM magnesium chloride,

10 mM glucose and 5 mM taurine]. The mixture was vigorously

shaken for 2 min, filtered and centrifuged against a continuous sucrose

gradient for 1 h at 25,000 rpm in a Beckman SW-27 using a SW32-Ti

swing rotor (Brea, CA) at 4 C̊. The orange band containing the POS was

collected, washed three times and finally resuspended in DMEM with

10% FBS.

Fluid-phase BSA–gold and HRP uptake assay
Monolayers of first-passage primary porcine RPE cells seeded onto

polycarbonate TranswellH membrane inserts were incubated from

opposite chambers with 10-nm BSA–gold and HRP (7 mg/ml), both

diluted in DMEM containing 0.5% BSA, for 2 h at 37 C̊. Cells were

washed thoroughly and processed for conventional electron microscopy

as described below.

Phagocytosis assay
Monolayers of first-passage primary porcine RPE cells seeded onto

polycarbonate TranswellH membrane inserts were challenged for 1 h at

37 C̊ with POS in DMEM with 10% FBS (56107 POS/ml), after POS

were subjected to a 10-min sonication step in an ultrasonic bath. After the

pulse, cells were washed three times with warm DMEM to remove the

unbound POS and chased for 2 h and 4 h. Cells were then washed three

times with warm PBS and fixed with 4% paraformaldehyde (PFA) and

0.1% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) for 3 h at room

temperature and processed as described below. For the leupeptin assay,

cells were pre-incubated with 5 mg/ml leupeptin (Sigma-Aldrich, St

Louis, MO) in DMEM with 10% FBS for 2 h, and the inhibitor was

maintained throughout the whole course of the experiment. For the

phagocytosis assay with BSA–gold, porcine RPE cells were incubated in

the lower chamber with 5-nm BSA–gold diluted in DMEM containing

0.5% BSA for 3 h at 37 C̊ before adding POS to the upper chamber.

BSA–gold was maintained throughout the experiment. Cells were chased

for 2 h and processed for cryo-immuno-electron microscopy, as

described below. The same method was used for the phagocytic assay

with mouse macrophages J774A.1.

Transmission Electron Microscopy
Conventional electron microscopy
Colloidal 5-nm and 10-nm gold were coupled to BSA as described

previously (Slot and Geuze, 1985). Porcine RPE cells plated onto

polycarbonate TranswellH membrane inserts were fixed in 2% PFA and

2% glutaraldehyde in 0.05 M cacodylate buffer for 30 min and post-fixed

with 1.5% potassium ferricyanide, 1% osmium tetroxide for 1 h in the dark

at 4 C̊. Cells were then stained with 1% tannic acid in 0.05 mM cacodylate

for 40 min, followed by dehydration (70%, 90% and absolute ethanol) and

embedding in Epon. Mouse eyes were processed as described previously

(Wavre-Shapton et al., 2013). Ultrathin sections were stained with lead

citrate and observed on a JEOL 1010 transmission electron microscope and

imaged using Gatan Orius SC1000B charge-coupled device camera. POS

were spun at 2500 g for 10 min, resuspended in 2% PFA and 2%

glutaraldehyde, fixed for 1 h and processed as described above.

Cryo-immuno-electron microscopy
Mouse eyes were fixed in 4% PFA and 0.1% glutaraldehyde in 0.1 M

phosphate buffer. The cornea was cut off, the lens was removed and the

eye-cup was cut into small pieces. Porcine RPE cells and J7741.A

macrophages grown on TranswellH membrane inserts were fixed as above

and the inserts were cut into small pieces. Pieces of retina and inserts with

cells were embedded in 12% gelatin and infused with 2.3 M sucrose. 70-

nm sections were cut at 2120 C̊ and collected in a 1:1 mixture of 2%

methylcellulose:2.3 M sucrose. Labelling was performed as described

previously (Slot et al., 1991). Samples were imaged as above and analysed

with Gatan Digital Micrograph, Adobe Photoshop and ImageJ softwares.

Quantification
To quantify the position of phagosomes by cryo-immuno-electron

microscopy, a minimum of 800 mm of RPE length was analysed and

the position of the phagosomes was recorded as apical if they were above

the tight junctions. All phagosomes below the tight junctions were scored

as basal. For quantification of phagosome maturation by cryo-immuno-

electron microscopy, the labelling of a minimum of 25 phagosomes was

analysed in four eyes. In rhodopsin labelling experiments, phagosomes

labelled for 1D4 and RET-P1 were scored as early phagosomes, whereas

phagosomes positive for RET-P1 only were scored as late. In the

cathepsin D labelling experiment, phagosomes (labelled with RET-P1)

that were positive for cathepsin D were scored as phagolysosomes. To

determine the density of the labelling in phagosomes, the size of at least

25 phagosomes in four eyes at each time-point was measured and the

number of PAG particles coupled to 1D4 was calculated using ImageJ.

The density of PAG in the outer segments was also measured in each

sample and used to normalise the values obtained in the phagosomes. For

quantification of phagosomes in RPE cells, .90 phagosomes for each

time-point were scored over three independent experiments.

Statistics
To determine the significance of the data, the non-parametric Mann–

Whitney test was used throughout. P,0.05 was considered statistically

significant.
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