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Key Messages

• For ENS stem cells to be used in novel cell replacement therapies for enteric neuropathies such as Hirschsprung

disease then ‘proof of principle’ animal experiments need to be extended using human cells. For such studies,

robust methods of labeling transplanted human ENS stem cells need to be established.

• Our aim was to assess the ability of lentiviral vectors expressing fluorescent reporter genes to label ENS stem

cells and trace them following transplantation into mouse gut in vivo.

• Mouse and human gut-derived cells, including ENS stem cells, were transduced with a lentiviral vector

containing eGFP (green) or mCherry (red) reporter genes and analyzed in vitro and in vivo.

• In vitro, mouse and human lentivirus-transduced cells survived, maintained intense eGFP expression,

proliferated as shown by BrdU incorporation, and formed neurospheres. When transplanted into mouse gut

in vivo, transduced cells survived up to 2 months, strongly expressed eGFP and integrated into endogenous ENS

networks.

Abstract

Background Reliable methods of labeling human

enteric nervous system (ENS) stem cells for use in

novel cell replacement therapies for enteric neuropa-

thies are lacking. Here, we explore the possibility of

using lentiviral vectors expressing fluorescent reporter

genes to transduce, label, and trace mouse and human

ENS stem cells following transplantation into mouse

gut. Methods Enteric nervous system precursors,

including ENS stem cells, were isolated from enzy-

matically dissociated mouse and human gut tissues.

Lentivirus containing eGFP or mCherry fluorescent

reporter genes was added to gut cell cultures at a

multiplicity of infection of 2–5. After fluorescence

activated cell sorting for eGFP and subsequent analy-

sis with markers of proliferation and cell phenotype,

transduced mouse and human cells were transplanted

into the gut of C57BL/6 and immune deficient Rag2-/

gamma chain-/C5 mice, respectively and analyzed up

to 60 days later. Key Results Mouse and human

transduced cells survived in vitro, maintained intense

eGFP expression, proliferated as shown by BrdU

incorporation, and formed characteristic neuro-
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spheres. When transplanted into mouse gut in vivo

and analyzed up to 2 months later, transduced mouse

and human cells survived, strongly expressed eGFP

and integrated into endogenous ENS networks.

Conclusions & Inferences Lentiviral vectors express-

ing fluorescent reporter genes enable efficient, stable,

long-term labeling of ENS stem cells when trans-

planted into in vivomouse gut. This lentiviral approach

not only addresses the need for a reliable fluorescent

marker of humanENS stem cells for preclinical studies,

but also raises the possibility of using lentiviruses for

other applications, such as gene therapy.

Keywords cell replacement therapy, enteric nervous

system stem cells, enteric neuropathies, Hirschsprung

disease, human gut, lentiviral labeling.

INTRODUCTION

Stem cell transplantation therapies for congenital

defects and degenerative diseases are rapidly becoming

a reality. A number of groups, including ours, are

focusing on establishing stem cell therapies for enteric

neuropathies such as Hirschsprung disease (HSCR),

which is characterized by an absence of the enteric

nervous system (ENS) in the distal bowel.1–3 The

ultimate aim is to transplant ENS stem cells into

defective gut to replace missing enteric neurons and

restore gut function.4–6 Supporting this idea, studies

have shown that neural crest-derived cells, the precur-

sors of the ENS,7 can be harvested from embryonic and

postnatal gut, expanded in culture to form ‘neuro-

spheres’ that contain ENS stem cells, and transplanted

into aganglionic gut, where they differentiate into

enteric neurons, and in some studies, affect gut

activity8–11 (and reviewed in Refs. 4,5,12,13). Much of

this work has been carried out in mouse models of

disease, both as source and recipient of ENS stem cell-

containing neurospheres. Genetic manipulation lead-

ing to expression of fluorescent proteins14 has been the

labeling method of choice for visualizing cells prior to

and following transplantation in vivo.11 Although such

mouse genetic approaches are powerful and effective,

their use is restricted to transgenic animals and is not

applicable for human cells. If ENS stem cells are to be

used as a therapy in HSCR patients these ‘proof of

principle’ animal experiments need to be extended

using ENS stem cells obtained from humans. For such

studies to occur, robust methods of labeling human

ENS stem cells need to be established. Here, we

demonstrate that lentiviral vectors can be used to

introduce fluorescent reporter genes into mouse and

human ENS stem cells in order to label and trace them

prior to and following transplantation into in vivo

mouse gut.

MATERIALS AND METHODS

We used a self-inactivating (SIN) second generation HIV-1 based
lentiviral vector containing the spleen focus forming virus LTR
promoter, and the mutated Woodchuck Posttranscriptional Reg-
ulatory Element, which, when placed downstream of the comple-
mentary DNA to be expressed (eGFP or mCherry reporter genes)
causes a posttranscriptional increase in transgene expression
independent of transgene, promoter or vector sequences15

(Fig. 1A).

For lentiviral vector production, a previously published
protocol was followed16,17 whereby 80% confluent 293T cells
were transfected for 4 h with 40 lg of plasmids encoding the
viral backbone (pHR’SIN), 10 lg of VSV-G envelope glycopro-
tein (pMDG.2) and 30 lg of packaging proteins (gag-pol, rev, tat,
in pCMVDR8.74) using 1 lm polyethyleneimine as a transfec-
tion agent. Cells were washed and refreshed with Dulbecco’s
Modified Eagle Medium - DMEM containing glutamine, 10%
Fetal Calf Serum - FCS and antibiotic mix and viral particles
harvested after 36 h, filtered and stored frozen unconcentrated
as 200 lL aliquots. They were titered by flow cytometry.

To isolate mouse ENS precursor cells, including ENS stem
cells, gut tissues were harvested from C57BL/6 mice aged
postnatal day 4–6, and the outer muscle layers, containing the
ENS plexus layers, were peeled and enzymatically dissociated
using a method previously described.8,10 Dissociated cells were
plated onto fibronectin-coated dishes and cultured in DMEM F12
supplemented with N2 and B27 (Life Technologies, Paisley, UK)
and Primocin antibiotics (InvivoGen, Source BioScience Life-
Sciences, Nottingham UK) and 20 ng/mL of both EGF and FGF
(both Peprotech, London, UK). Human gut tissues were either full
thickness biopsies from surgical resections or mucosal biopsies
from routine endoscopy procedures carried out on pediatric
patients. All samples were obtained with ethical approval and
informed consent at Great Ormond Street Hospital, London, UK.
Human tissue samples were dissociated and cultured using a
similar protocol to that used for mouse gut.

Dissociated cells were transduced with lentivirus carrying
either eGFP or mCherry reporter genes. Lentivirus was added to
cultures at multiplicities of infection in the range of 2–5 (100 lL
for 105 cells per well) and left for 36–48 h ensuring that the cells
attached to the dish, were transduced, and the lentivirus had
inactivated. Following trypsinization, FACS analysis was per-
formed in order to both quantify the percentage of transduced
cells, and to select eGFP+ cells which were spun down, plated on
fibronectin-coated dishes, and cultured for 7–10 days for further
analysis, including transplantation.

For BrdU labeling of cells prior to transplantation, 10 lM BrdU
(Sigma-Aldrich, Dorset, UK) was applied for 48 h followed by
fixation for immunolabeling using a previously described proto-
col.8 Antibodies used were rabbit anti-SMA (1:100; Abcam,
Cambridge, UK), mouse anti-TuJ1 (1:500; Covance, Leeds, UK),
and rat anti-BrdU (1:500, AbD Serotec, Kidlington, UK). Corre-
sponding secondary antibodies were Alexa Fluor goat anti-rabbit
568, goat anti-mouse 568, and anti-rat 568 (all 1:500; Life
Technologies, Paisley, UK).

Lentivirus-transduced mouse cells were transplanted into wild-
type C57BL/6 mice, and human transduced cells were trans-
planted into immune deficient Rag2-/gamma chain-/C5 mice. For
transplantations, the distal hindgut of 8–10 weeks old animals
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was exposed by laparotomy and cells were microinjected into the
gut wall using a beveled syringe needle. Recipient mice were
maintained for up to a further 60 days before sacrifice. Whole-
mount gut analysis was performed using immunohistochemistry
(anti-TuJ1) and confocal microscopy imaging (Zeiss LSM 710;
Zeiss, Cambridge, UK).

RESULTS

After lentiviral transduction with a fluorescent repor-

ter gene, 78 � 3.9% (n = 3) of mouse and 69 � 6.4%

(n = 5) of human cells were labeled with eGFP and

selected by gating with FACS (Fig. 1B). When trans-

duced cells were visualized by eGFP expression and

manually counted under a microscope, 88.4 � 13% of

mouse and 92.1 � 3.4% of human cells were eGFP+
(Fig. 1C and D). After FACS, eGFP+ cells were cultured

for up to 65 days for mouse cells and 35 days for

human cells. During this time transduced cells sur-

vived in culture and maintained eGFP expression and

intensity. They also formed characteristic neuro-

spheres within 1 week of culture for mouse cells

(Fig. 1E), and within 10 days to 2 weeks for human

cells (Fig. 1F).

Characterization of the cultures showed that cells

proliferated as shown by BrdU (15.3 � 1.3% of non-

transduced cells were BrdU+ compared to 13.3 � 1.0%

of transduced mouse cells, p > 0.05, indicating that

lentiviral transduction does not adversely affect prolif-

eration; Fig. 2A). Both neural crest-derived cells such

as neurons (15.01 � 2.5%), and non-neural crest cells

such as smooth muscle cells (64 � 6.3%) were trans-

duced by lentivirus in human gut cell cultures as

shown by eGFP expression and co-immunolabeling

with the neuronal marker TuJ1 (Fig. 2B) and the

smooth muscle marker SMA (Fig. 2C). 84.4 � 8.8%

of TuJ1+ neurons were also GFP+. Lentiviral transduc-
tion did not significantly affect cell fate as 18.9 � 3.4%

of cells were TuJ1+ in untransduced cultures vs

15.01 � 2.5% in transduced cultures (p > 0.05). Simi-

lar findings were obtained with SMA immunostaining

where 60.4 � 3.6% of cells were SMA+ in untrans-

duced cultures vs 64 � 6.3% in transduced cultures. In

A B

C D

E F

Figure 1 Lentiviral vector and transduced

mouse and human gut-derived cells. (A) Map

showing the lentiviral plasmid construct

that expresses either eGFP or mCherry

under the spleen focus forming virus (SFFV)

promoter and the mutated Woodchuck

Posttranscriptional Regulatory Element

(WPRE) which enhances transgene

expression and titer. (B) Representative

gating for FACS analysis of lentivirally

transduced (eGFP) mouse or human gut-

derived cells showing separation of

transduced vs non-transduced cells. (C and

D) Transduced cells highly express the eGFP

reporter gene for prolonged time in culture

(C, mouse ENS cells after 65 days and D,

human ENS cells after 35 days). (E and F)

Transduced cells form characteristic

neurospheres similar in appearance to

previously reported non-transduced cells.10

Scale bars = 50 lm (C and D) and 100 lm
(E and F).
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Figure 2 Characteristics of lentivirus-transduced mouse and human gut-derived cells in vitro and following transplantation in vivo. (A) Transduced

(eGFP) mouse cells proliferate as shown by BrdU incorporation (red). Arrow shows double-labeled lentivirus-transduced eGFP expressing cell also

positive for BrdU. (B and C) Human cell phenotypes that were transduced by lentivirus include neural crest-derived neurons (B, arrow; Bi, arrowheads,

TuJ1 in red; Bii, eGFP in green) and non-neural crest-derived cells such as smooth muscle (C, SMA, red). DAPI (blue) labels all nuclei. (D) Mixed

cultures of mouse cells transduced with either eGFP (green) or mCherry (red) lentiviruses. After 2 weeks in culture, even though some cells were

juxtaposed (arrows), yellow cells (expressing both expressing eGFP and mCherry) were not observed, indicating that lentivirus cross infection does not

occur. (E) Transduced mouse ENS stem cell-containing neurospheres transplanted into recipient wild-type mouse gut. (F) Transduced human ENS

stem cell-containing neurospheres transplanted into recipient immune deficient mouse gut. In both cases, transduced cells were observed up to

2 months (E, mouse) and up to one month (F, human) after transplantation. High eGFP expression was maintained and transduced cells integrated

into the endogenous ENS network (TuJ1 immunolabeling, red). Transduced cells expressing TuJ1 are indicated by arrows and shown at high

magnification in insets (also showing DAPI in blue) in both panels. (G) Untransplanted TuJ1 immunolabeled mouse gut for comparison showing

enteric ganglion. Scale bars = 50 lm; A applies to A–D and E applies to E–G.
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mouse cell cultures the proportions of cells immuno-

positive for TuJ1, the glial marker S100, and for SMA in

untransduced vs transduced cultures were

30.12 � 1.68% vs 32.38 � 1.6%; 18 � 5.29% vs

16.63 � 3.1%; and 69.55 � 4.8% vs 66.38 � 1.89%,

respectively (p > 0.05 in all cases). Of the transduced

mouse cells, 90.6 � 10.8% of the TuJ1+ cells were

GFP+. Again, lentivirus did not preferentially trans-

duce a particular cell type (neural crest-derived or non-

neural crest-derived). This was confirmed by FACS

sorting human gut cells into p75+ve (neural crest-

derived) and p75�ve (non-neural crest-derived)

populations that were equally highly transduced with

eGFP (p75+ve/eGFP 95.01 � 3.83%; p75�ve/eGFP:

97.7 � 0.88% p = 0.22).

In order to verify that lentiviruses cannot

remobilize and do not spread to neighboring cells,

we transduced mouse gut-derived cells with either the

eGFP-containing lentiviral construct (green), or the

mCherry-containing construct (red). Both groups of

cells were cultured for 48 h to allow virus particles to

self-inactivate, cultured for 1 further week, then

mixed together and co-cultured for 2 weeks. After

this time, cells expressing exclusively eGFP or mCher-

ry were observed (Fig. 2D) and no double-labeled

(yellow) cells expressing both eGFP and mCherry were

evident.

In order to test the suitability of lentivirally labeled

cells for stem cell transplantation, lentivirally trans-

duced cells derived from both mouse and human gut

were transplanted (n = 10 for each) into recipient

mouse gut and analyzed up to 2 months later. Trans-

duced eGFP expressing cells were observed in trans-

planted gut by fluorescence microscopy even without

immunolabeling for eGFP, suggesting that the eGFP

intensity had not diminished in vivo. The transduced

mouse and human cells included smooth muscle cells

and enteric neurons, as evidenced by eGFP expression

and immunoreactivity for SMA and for TuJ1 (Fig. 2E

and F), and TuJ1+ cells showed integration into the

endogenous ENS networks (Fig. 2E and F).

DISCUSSION

Here, we report the use of lentiviruses to fluorescently

label mouse and human gut-derived cells for gut

transplantation studies. Some previous studies have

employed retroviral or adenoviral vectors to label and

track enteric or CNS-derived neural stem cells trans-

planted into gut.8,18,19 However, lentiviruses have

advantages over these previous approaches by infecting

both dividing and non-dividing cells, providing long-

term, stable transgene expression, low immunogenic-

ity, and adequate payload capacity for the majority of

cDNAs and most marker genes, making them very

useful for transducing a range of cell types.20–22

Specifically, we found the transduction efficiency of

lentivirus to be high (~90%) compared with that

reported for adenovirus transduction of mouse neural

stem cells (up to 25% in 72 h19). In our study,

lentivirus maintained efficient, stable, long-term label-

ing of gut-derived cells, including ENS stem cells.

Transduced cells survived, proliferated and expressed

fluorescent reporter genes for an extended period of

time in vitro and in vivo. They also formed neuro-

spheres that were similar in appearance to neuro-

spheres derived from non-transduced cells as

previously reported.10 Our findings therefore highlight

the use of lentiviruses for cell tracing and lineage

analysis following transplantation of transduced

human cells into mouse gut.

This lentiviral method for labeling human cells can

also be utilized prior to, or following, selection of cells

with a NCC-specific antibody such as p75NTR to obtain

enriched populations of neural crest-derived cells.23

This combined methodology, generating eGFP+/p75+
cells, may enhance the ability of selected cells to

rescue the ENS compared to a non-enriched, mixed cell

population derived from dissociated gut. Further excit-

ing applications of lentivirally transduced ENS stem

cells include the possibility of delivering genes to

target genetically defective human ENS stem cells

(e.g., those from patients with mutations in RET or

EDNRB3,24) as a somatic gene therapy tool for restora-

tion of cell function.18,19,25

Despite the fact that further research is required in

order to understand and refine the use of lentiviruses in

cell or gene therapy, the labeling method described

here is likely to become an essential part of the toolkit

for preclinical transplantation studies of human ENS

stem cells.
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