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Abstract—We present a review of the critical design aspects of
monolithically integrated optical phase lock loops (OPLLs). OPLL
design procedures and OPLL parameters are discussed. A tech-
nique to evaluate the gain of the closed loop operating system is
introduced and experimentally validated for the first time. A dual-
OPLL system, when synchronised to an optical frequency comb
generator without any prior filtering of the comb lines, allows gen-
eration of high spectral purity signals at any desired frequency
from several GHz up to THz range. Heterodyne phase locking
was achieved at a continuously tuneable offset frequency between
2 and 6 GHz. Thanks to the photonic integration, small dimen-
sions, and custom-made electronics, the propagation delay in the
loop was less than 1.8 ns, allowing good phase noise performance
with OPLLs based on lasers with linewidths less than a few MHz.
The system demonstrates the potential for photonic integration
to be applied in various microwave photonics applications where
narrow-bandwidth tuneable optical filters with amplification func-
tionality are required.

Index Terms—Microwave generation, microwave photonics, op-
tical mixing, optical phase locked loops (OPLLs), phase noise, pho-
tonic integrated circuits, semiconductor lasers.

I. INTRODUCTION

PHOTONIC systems suitable for generation, transmission
and processing of microwave signals have been investi-

gated over the last few decades [1], [2]. The ability to transport
microwave frequencies over long distances with little penalty in
the optical domain was one of the key advantages that led to the
development of microwave photonic systems [3], [4].

The key component of many microwave photonic systems is
a semiconductor laser, which may have a linewidth in the range
of tens of MHz and whose frequency (wavelength) is charac-
terised by a low stability caused by the laser’s thermal drift or
its mode changes. However, for certain applications a narrow
linewidth microwave source with a stable absolute frequency
is required, thus phase stabilisation is needed. The phase of a
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photonic microwave source can be stabilised by controlling the
relative phase between two lasers and may be achieved by a
number of locking techniques in various photonic system con-
figurations: optical phase lock loop (OPLL) [5], optical injection
locking (OIL) [6], and a combination of these two—optical in-
jection phase lock techniques (OIPLL) [7]. Some of the locking
techniques rely on the synchronization to an optical comb [8],
single frequency reference signal or one of its harmonics [9].
Regardless of the type of reference source applied, OIL has
a number of characteristics which prevent it from being eas-
ily implemented and broadly applied. These include a narrow
and asymmetric stable locking bandwidth as well as instabili-
ties inside the locking range for higher levels of injected optical
power. Secondly, OIL is a purely homodyne technique, thus
having no potential for continuous tuning of an offset between
the slave and the reference laser. The OIPLL seems to be a
solution capable of overcoming some of the limitations of the
OPLL (narrow linewidth laser and short feedback loop delay)
and OIL (narrow stable locking range). The combination of
optical injection locking of the semiconductor laser and low
speed electronic feedback offers a wide locking bandwidth to-
gether with large tracking range [10]. However, the combination
of two locking techniques adds complexity to the system, and
the issue of offset tuneability remains outstanding. Against this
backdrop, the OPLL could be considered a preferable technique
as it allows offset phase locking, which thus enables adjustable
frequency spacing between the lasers. Such a coherent system
could potentially find its use in various applications, including
high-sensitivity detection, ultra-high data rate wireless commu-
nication and room temperature generation of broadly tuneable
THz signals [11]. Moreover, the OPLL has the potential for
being applied as an elementary building block in many pho-
tonic systems, where active, narrow-bandwidth, high-rejection
optical filters are required.

Many of the photonics solutions applied in the microwave
frequency domain are based on complex systems which rely
mostly on discrete components. As constant improvements in
the performance and fabrication yield of photonic integrated cir-
cuits is observed [12], there is enough evidence that monolithic
photonic integration could offer advantages in terms of a signif-
icant reduction in the system footprint, inter-element coupling
losses, packaging costs, and system power consumption thanks
to the use of a single cooler for multiple functions. Moreover,
advances and decreasing fabrication cost in photonic integra-
tion have been triggered by the recent availability of numerous
generic fabrication platforms [13], thus simplifying the devel-
opment of advanced integrated photonic systems.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 1. Photonic integrated circuit containing DBR laser and photodiode.

Fig. 2. Simplified block diagram of the OPLL feedback electronic circuit.
Laser bias circuitry is not included.

In this paper we review the design and the performance of
a monolithically integrated OPLL (see Section II). The most
important parameters and design trade-offs of the OPLL, in-
cluding a universal technique for OPLL gain (K) assessment,
are described in Section III. The generation and the character-
istics of a spectrally pure and tuneable microwave signal are
included in Section IV followed in Section V by a discussion
of the generation of sub-THz signals and the limitations to be
overcome to achieve continuous tuneability.

II. THE OPTICAL PHASE LOCK LOOP

The most general heterodyne OPLL is a negative feedback
loop where the current controlled optical source (slave laser, SL)
can be automatically phase synchronized (locked) to an optical
input reference signal (master laser, ML) with the frequency
offset corresponding to the external reference synthesizer fre-
quency [8].

The single-OPLL system presented in this paper consists of
a photonic integrated chip (PIC) and dedicated electronics for
the laser’s phase stabilisation. The InP-based monolithic PIC
contains a broadly tuneable (∼ 8 nm), buried distributed Bragg
reflection (DBR) laser, a PIN photodiode, passive optical waveg-
uides and Y-junction couplers and splitters used as interconnec-
tions. A microscope picture of the PIC is presented in Fig. 1.
The PIC’s fabrication process was previously described in detail
in [14].

A. Feedback Electronics

The OPLL feedback electronics consist of a limiting amplifier
and phase comparator followed by a two-path loop filter realised
on a multilayer printed circuit board which contains commer-
cially available 10 Gb/s emitter coupled logic and current mode
logic integrated circuits. The simplified block diagram of the
electronic board is presented in Fig. 2, and was previously ex-
tensively described in [15]. The beat signal from the integrated
photodiode is amplified to the voltage level required by the logic

circuits by a limiting amplifier, and its phase is compared against
an external RF reference source using an XOR gate. The error
signal from the XOR gate non-inverted (Q) and inverted (Q\)
outputs is coupled into the integrating and the proportional path
of the loop filter before being fed back into the laser’s phase
tuning section. The loop filter consists of two separated paths: a
high-speed proportional path and slower integral paths. The for-
mer offers a short propagation delay (<1.8 ns) and a 3 dB open-
loop bandwidth greater than 1 GHz for tracking fast changes.
The integral path tracks a wider range of frequency changes,
mostly caused by the laser thermal drift. The effect of the in-
tegrated path is limited up to ∼300 Hz, so although the OPLL
was designed as type II, its response is dominated by the fast
proportional loop and can be analysed as a first-order (Type I)
loop. Due to the frequency responses of the components of the
loop, the offset locking range (set by an external RF reference)
was limited to 2–7 GHz [16].

B. Semiconductor Laser Performance

From the phase control system perspective, the laser could be
seen as an oscillator with a current controllable frequency. The
desired requirements placed on the loop oscillator, and therefore
on the laser, are as follows: low phase noise (narrow linewidth),
wide tuning range and tuning linearity, fast (wideband) modula-
tion capability, low power consumption and small size suitable
for photonic integration purposes. The DBR lasers monolithi-
cally integrated on the OPLL PIC fulfil most of these require-
ments; however the phase noise remains an outstanding issue.
It is typical for the diode lasers to have a Lorentzian linewidth
in the lower megahertz range [17]. The SL linewidth was mea-
sured, using the self-heterodyne technique, with a 5 km fibre de-
lay line, to be 1.1 MHz (FWHM) [18]. Moreover the linewidth
can be additionally broadened by the noise from power supplies
used to bias the laser’s sections, contributing to the measured
50 MHz FWHM linewidth of the heterodyne signal generated
by photomixing two free running lasers (see Fig. 8).

The DBR consists of four separated sections, each with indi-
vidual bias contacts. The coarse tuning mechanism of the laser is
realised through current injection into the front and rear Bragg
grating sections. In the operating system the phase error cur-
rent is injected into the short phase section of the laser. The
key parameter for the loop design is the laser tuning sensitivity,
which reached 4.6 GHz/mA when measured on a discrete laser
similar to that used in the OPLL. After assembly of feedback
electronics the DC laser tuning sensitivity varied between 1.2
and 1.5 GHz/V, depending on the laser gain bias current. This
was measured with respect to the voltage at the output of the
integral path (see point A in Fig. 2), while the change of optical
wavelength was measured using an optical spectra analyser (see
Fig. 3).

It can be noticed that the laser’s tuning sensitivity varies de-
pending on the laser’s gain current value. This characteristic
implies that the laser may respond differently to the same value
of the error current applied. This will cause the change in the
loop gain and instantaneously in the loop bandwidth, thus influ-
encing the quality of the lock.
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Fig. 3. Laser wavelength change as a function of tuning voltage (point A in
Fig. 2).

C. Integrated Photodetector

A monolithically integrated PIN photodiode was included on
the PIC to detect the beat note between the slave and master
lasers; the device was 50 μm long and 7 μm wide. The design
was based on a ridge waveguide and the same active material
as the DBR lasers [14]. The photodiode –3 dB bandwidth was
assessed to be approximately 12.5 GHz, which is higher than
the frequency limit introduced by the electronic feedback board.
The dark current of 10 μA was measured for applied bias voltage
of−1.5 V. The photocurrent produced due to the integrated laser
was approximately 500 μA when the DBR laser gain current was
about 90 mA.

III. OPLL PARAMETERS ANALYSIS

The SL transfer function could be assumed to be as follows:

dφSL

dt
= kSL ie ∗ hSL (1)

where kSL
( rad

sec
mA

)
and hSL represent the SL sensitivity and im-

pulse response, respectively, ie is the error signal generated by
the phase comparator, which is subsequently filtered by a low-
pass filter and used to modulate the frequency of the SL. The
effect of the loop propagation time delay and impulse responses
of all the loop components will inevitably have an influence
on the error signal, which is fed into the SL and which can be
expressed as follows:

ie = kLFkMixKPDkamp sin[(ωRF−ωSL + ωML)t + φRF−φSL

+φML] ∗ hLF ∗ hMix ∗ hamp ∗ δ (t − τd) (2)

where
kLF loop filter gain;
kPD photodetector gain;
kMix phase detector conversion efficiency;
kamp amplifier gain;
ωRF · ϕRF reference signal angular frequency and phase;
hLF loop filter impulse response;
hMix mixer equivalent impulse response;
hamp amplifier response;
τd loop propagation delay.

Fig. 4. Relation between lasers summed linewidth and delay in the loop for
different phase error variances

To simplify calculations, some of the loop components, such
as the mixer, amplifier, photodetector, transmission lines and
connectors, can be removed from the equations assuming they
are constant over the frequency range of operation. Thus, the
equations (1) and (2) are merged into

dφSL

dt
= 2πKφerror ∗ hLF ∗ hSL ∗ δ (t − τd) (3)

where φerror = φRF − φSL + φML represents the relative phase
difference between SL and ML in reference to the external
synthesizer (RF)

K = kLFkMixkPDkampkSL (4)

is the overall gain in the loop.
From that simplified model one can identify the design trade-

offs and assess the most critical loop parameters, such as gain
and propagation delay. Both parameters are important as they
can be used to predict loop bandwidth, lock-in range, hold-in
range and the loop’s ability to control the phase noise.

A. Propagation Delay and Laser Linewidth Trade-Off

The relation between an initial laser linewidth and the re-
quired propagation delay within the loop needs to be emphasised
as these two factors influence the quality of the control system.
Moreover the relation between these two parameters can be used
as guidance to define whether the OPLL can operate in a stable
locked condition.

In order to successfully phase lock an optical source with
a relatively wide linewidth, a loop with a large bandwidth is
required. Consequently, as the transit time of the error signal
around the loop becomes important, it must be considered in the
loop design and should be kept less than a fraction of the recip-
rocal of the loop natural frequency [19]. To ensure the required
phase error variance or to avoid loop performance degradation, a
compromise between laser linewidth, loop bandwidth and loop
propagation delay must be found.

The relationship between the propagation delay and the sum
of the ML and SL linewidths, for a type I loop with gain opti-
mised to minimise the phase error variance, is inversely propor-
tional, as illustrated in Fig. 4 for phase error variance ranging
between 0.048 and 0.096 rad2 .
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The first OPLL used to stabilise a semiconductor laser diode
with 7.5 MHz linewidth was based on the homodyne phase
locking [20]. The first packaged heterodyne OPLL, used to
stabilise 6 MHz summed lasers linewidth and offering 40 ps
delay, required very sensitive free space optics components [5].
Later, a hybrid integrated OPLL allowed a 1 MHz linewidth laser
to be phase locked, despite a 10 mm path length between the
laser and photodiodes, which made delay reduction difficult [8].
For the system described in section II, based on a measured
summed linewidth of 2 MHz and a loop delay estimate of 1.8 ns,
the calculated phase error variance (σ2

ph) is 0.034 rad2 and the
loop noise bandwidth (Bn ) is 232 MHz.

For these values, the mean time between cycle slips (Tcs),
estimated using the formula [21]

Tcs =
π

4Bn
exp

(
2/σ2

ph

)
(5)

is 4.02 × 1016 s, which corresponds to several decades mean
time between cycle slips, suggesting that cycle slipping should
not be an issue.

B. Gain

These values of the different parameters of the loop can be
defined at the design stage of the OPLL development. However,
to the best of our knowledge, measurement of the parameters of
a fully assembled, operating OPLL system has not previously
been reported.

In this paper we propose a technique which allows an ex-
perimental assessment of the gain in the operational system,
feasible only if stable locking is achieved. In order to measure
the gain (K), the single OPLL assembly presented in Fig. 7
was used. The loop operating conditions were changed by read-
justing the SL gain current, while keeping the reference offset
frequency fixed. The SL gain current was increased by 4 mA
from the previous operational condition at 90 mA. This caused
the loop gain to change, mainly due to changes in the SL tuning
sensitivity as the bias current of the phase section changed to
maintain the same locked frequency. The variation in the laser
tuning sensitivity as a function of the laser DC tuning voltage
is presented in Fig. 3. Thanks to the extensive hold-in range,
the loop remained in the locked condition. As a consequence
of the increasing loop gain, the secondary peaks became visi-
ble in the phase noise spectra. Instantaneously, the phase noise
power at lower offset frequencies was increasingly reduced. To
confirm these observations the calculated phase noise spectral
density [22] for different values of gain (K) were calculated
and are shown in Fig. 5.

Thereafter, the secondary peak power was measured with
respect to the minimum phase noise power at small offset fre-
quencies from the carrier. The measured relative power of the
secondary peak is plotted against the offset frequency of the sec-
ondary peak in Fig. 6. As the loop gain increased, the frequency
offset and relative peak power both increased. Further increase
in the loop gain resulted in unstable locking and eventually a
complete loss of lock. Calculations of the phase noise [23] for
the measured laser linewidths and estimated loop propagation

Fig. 5. Changes of the phase noise spectral density at low offset frequencies
from the carrier for a range of different gains (K ), calculated for the first order
optical phase lock loop.

Fig. 6. Peak height of the phase noise spectral density for the first order optical
phase lock loop.

delay of 1.8 ns allow assessing the range of the loop gain (K)
to be between 3.2 × 108 and 5.44 × 108 rad/s.

It can be seen that the frequency offset of the measured peak
is slightly higher than that predicted by the simulation. This
could be explained by the fact that the frequency response of
the loop components other than the loop filter was assumed to
be uniform.

This result shows that the proposed gain assessment technique
could be applied to different OPLL systems providing they are in
a stable locked condition and are characterised by the extensive
hold-in range.

IV. EXPERIMENTAL RESULTS

The overall performance of the integrated OPLL PIC was
assessed by heterodyning the master signal and SL output on a
broad bandwidth (>50 GHz) photodiode connected to a high-
performance electrical spectrum analyser. This approach re-
duced complexity and allowed the phase locked heterodyne
signal to be observed directly on the spectrum analyser, without
the need to use any down-conversion procedures [24].

The schematic of the experimental arrangement is presented
in Fig. 7. The temperature of the PIC submount was controlled
through a Peltier cooler. Two lensed fibres with a spot size diam-
eter of 3 μm and the working distance of approximately 20 μm
were aligned at the front and rear facet of the PIC. The input
fibre was used to couple the reference signal into the buried opti-
cal waveguide and hence into the integrated photodetector. The
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Fig. 7. Schematic of the measurement assembly

Fig. 8. Spectrum of the unlocked and locked signals at an offset of 3.2 GHz,
detected on the integrated photodiode.

Fig. 9. Measured beat note spectra for different offset frequencies in range
from 2 GHz to 6 GHz (RBW = 200 kHz, VBW = 10 kHz)

second fibre collected the output signal of the phase stabilised
SL.

Depending on the experimental assembly the OPLL could
be locked to a single frequency master laser or to an optical
frequency comb generator (OFCG) [25].

The spectra for the free running and the offset phase locked
heterodyne signal between the SL and the master are presented
in Fig. 8.

An external cavity laser with a linewidth of 100 kHz was
used as the master laser; the linewidth of the SL was measured
to be 1.1 MHz (FWHM). The unlocked beat note exhibits a slow
frequency drift over more than 500 MHz due to the variations of
temperature. Once locked, the beat note exhibited a signal peak
power improvement and the expected linewidth reduction up to
the bandwidth to the OPLL.

Offset tuning of this monolithically integrated OPLL system
across 4 GHz was achieved by changing the reference synthe-
sizer frequency between 2 and 6 GHz (see Fig. 9). To acquire
locking, the frequency difference between the slave and the mas-
ter laser must be close to the reference frequency and therefore
needs to be manually set. This can be achieved by changing

Fig. 10. Scheme of the photonic oscillator based on the dual optical filter

Fig. 11. Dual-OPLL photonic integrated circuit containing DBR lasers and
photodiodes

the laser front and rear grating currents, thus tuning the laser
wavelength.

Moreover, the system is capable of acquiring stable lock re-
gardless of which of the two lasers, master or slave, has the
longer wavelength [25]. This means that the SL can be locked
to both sides of any of the comb line of interest.

Fig. 9 also demonstrates changes to the loop gain across the
tuning range, as reflected in the magnitude of the side lobes (see
Section III). Across the tuning range a FWHM linewidth of less
than 10 Hz (measurement limited) was measured.

The single side-band phase noise performance of less than
−80 dBc/Hz at offsets above 10 kHz of the heterodyne between
the slave and the master laser was achieved [16], [26]. The phase
error variance of the generated heterodyne signal, measured in
bandwidth from 1 kHz to 10 GHz, was between 0.038 and 0.22
rad2 (depending on the loop gain), as presented in [26].

V. DUAL OPLL, FOR FREQUENCY GENERATION

One potential use of the OPLL PIC is to develop a dual
arm circuit for frequency generation in combination with an
OFCG to enable high-performance millimetre-wave and THz
sources as represented in Fig. 10. The source, based on the
photonic synthesis, would consist of i) a broad span OFCG to
provide a reference in the form of a phase-correlated train of
optical frequencies, ii) an ultrafast photodiode to convert the
heterodyne signal from optical into electrical domain [27] and
iii) two OPLLs used as a very narrow bandwidth (<1 GHz)
optical filters which can amplify and frequency offset the two
selected comb lines of interest.

A single chip can integrate all photonic components required
to build two OPLL-based optical filters, such as two DBR lasers,
two PIN photodiodes and optical waveguides. A photograph of
such a PIC is presented in Fig. 11. The monolithic integration
approach significantly reduces the overall size of the system, but
also makes it more resistant to environmental changes. For in-
stance, both lasers are equally affected by temperature changes,
which improves the long-term frequency stability and linewidth
of the heterodyne signal.

Higher frequency, spectrally pure signals can be generated
by increasing the wavelength spacing between two DBR lasers



3898 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 32, NO. 20, OCTOBER 15, 2014

Fig. 12. Optical spectra of two free running widely tuneable DBR lasers

Fig. 13. Measured optical spectra of the comb (blue line) and two tuneable
DBR slave lasers integrated on singe PIC (red line).

and phase locking each of them to the corresponding comb
lines. This ensures that both SLs will simultaneously follow
any phase change (within the locking range) of the reference
OFCG, while the spacing between the SLs will remain constant,
ensuring generation of absolute frequency. Both DBR lasers
offer a tuning range of 7–9 nm, which is sufficient to generate
the beat note of any frequency between the microwave and THz
range through photomixing. The tuning capabilities of the DBR
laser are shown in Fig. 12.

For the purposes of this experiment a broad span OFCG would
be required, for instance, a recirculating amplified fibre loop
with a phase modulator [28], which can generate comb with the
span of up to 2 THz, would be suitable.

Measured optical spectra of the two monolithically integrated
DBR lasers spaced by 800 GHz together with 2 THz span optical
comb are presented in Fig. 13.

The photocurrent from the integrated laser is approximately
500 μA when the laser is operating at 70 mA gain current. How-
ever the photocurrent associated with the coupled OFCG signal
was below 15 μA, when the optical reference signal was am-
plified up to 22 dBm before being coupled into the dual-OPLL
PIC. This suggests either high propagation losses in the optical
waveguides or low coupling efficiency at the facet. The OPLL
electronics require at least −40 dBm of RF power from the inte-
grated PD to achieve stable locked operation. This requirement
was barely met thus limiting the operation and locking ability
of the system. However a demonstration at the optimum offset
frequency, where sufficient loop gain was obtained, was done

Fig. 14. Heterodyne signals between OFCG and DBR lasers at different offset
locking frequencies. The grey area indicates the restricted frequencies which
cannot be generated by the photonic source based on a single OPLL.

for signal frequencies up to 50 GHz and high purity signal was
demonstrated [14].

A. Tuneability of the High Frequency Signal Source

As expected, the continuous tuneability range of the system
is limited by the bandwidth of the components of the loop.
For the OPLL described here this was the amplifier and the
phase comparator. With higher performance electronics, OPLLs
with higher frequency offsets of up to 18 GHz [29] and, more
recently, of up to 9 GHz [30] were also reported. However for the
dual arm-OPLL in which SLs are locked to the comb lines, the
influence of the beat with adjacent comb lines onto the locked
OPLL within the loop bandwidth must be taken into account.

One would expect that when the difference of offsets between
the slave and the two adjacent comb lines falls within the loop
bandwidth, instabilities will occur and will prevent the acquisi-
tion of lock at offset frequencies close to half of the frequency
spacing between the comb lines. Therefore spacing between the
comb lines should be selected in such a way as to be equal or
greater than

Fcomb ≥ 2 × foffset+FBW (6)

where foffset should be considered as the highest offset locking
frequency in GHz, and FBW is an open loop bandwidth of
the loop filter. This was demonstrated in [25] where the OPLL
system was locked at the highest offset of 5.3 GHz for the comb
lines spaced by 12 GHz, while the open loop bandwith of the
loop filter is greater than 1 GHz [26].

Using the system in Fig. 7, beat notes can be generated by
photomixing the OFCG and the SL locked to one of the comb
lines at different offset frequencies. The spectra of these beat
notes for the range of offset frequencies are presented in Fig. 14.

The part of the spectrum shown as a grey area in Fig. 14 cannot
be easily accessed when a single OPLL with 4 GHz tuneability
between the comb lines and a OFCG with 12 GHz comb line
spacing are used. It can also be noted that a set of unwanted beat
notes with other comb lines appear as expected on the spectrum.
This suggests that two aspects would need to be addressed be-
fore a fully operational, broadly tuneable and spectrally pure
photonic source for mm-wave or THz generation based on the
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OPLL can be achieved: all unwanted frequencies must be sup-
pressed, and, second, access to the frequencies between the
comb lines must be improved, i.e. the tuneability should be fur-
ther increased. Both limitations can be easily compensated by
implementing a second OPLL with identical performances. The
dual OPLL-based system increases the tuneability by allowing
access to any desired frequency between the comb lines; it also
suppresses all unwanted photomixing products.

It must be noted that even though the input to the OPLL
may contain all OFCG lines, the output of the discussed system
is only the SL wavelength. This means that the OPLL can be
considered as a high quality active optical filter with a very
narrow bandwidth and gain. Such a dual OPLL, phase locked to
an OFCG would therefore create a broadly tuneable, photonic
source for the mm-wave and THz generation with the highest
generated frequency being defined by either the comb span or
the tuning range of the lasers.

VI. CONCLUSION

The characteristics and properties of a monolithically inte-
grated OPLL system, such as tuneability and long-term fre-
quency locking were demonstrated. A heterodyne signal with
linewidth in range of tens of Hz was generated. The relation
between the loop delay and the summed laser linewidths, which
determines the stable bandwidth of the OPLL, was explained. A
technique to evaluate the gain of the OPLL was proposed, anal-
ysed and experimentally verified. The potential for dual OPLL
continuously tuneable frequency sources was discussed and a
demonstration of such a source was done for frequency below
50 GHz while the tuning of the lasers on chip would potentially
allow for frequency generation up to 1.8 THz.
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