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Abstract Ischaemia–reperfusion (IR) injury is a composite of
the injury sustained during a period of reduced or absent blood
flow to a tissue or organ and the additional insult sustained
upon reperfusion that limits the amount of tissue that can be
salvaged. IR injury plays a central role in both native and
transplant acute kidney injury (AKI). Native AKI is associated
with increased morbidity and mortality in hospital inpatients,
and transplant AKI contributes to graft dysfunction, ultimately
limiting graft longevity. In this review, we discuss the poten-
tial therapeutic benefits of a cost-effective and low-risk inter-
vention, remote ischaemic preconditioning (RIPC), and its
applicability in the prevention and reduction of AKI.
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Therapeutic benefits

Introduction

When an organ or tissue is rendered ischaemic, there is inev-
itable cell death and tissue injury, the extent of which can be
limited by timely reperfusion. However, paradoxically, an
additional injury occurs upon reperfusion which limits the
amount of tissue that can be salvaged. This composite injury
is termed ‘ischaemia–reperfusion (IR) injury’.

In both native [1–3] and kidney transplant [4] acute kidney
injury (AKI), IR injury plays a significant role. The pathogen-
esis of AKI, regardless of aetiology, results in a degree of IR
injury, the majority of which affects the vulnerable tubular
epithelium. Native AKI is associated with the subsequent
development of chronic kidney disease (CKD) [5, 6] and
increased mortality in patients admitted to hospital [7]. In
renal transplantation, despite an improvement in 1-year kid-
ney transplant survival, long-term allograft survival has not
altered significantly in recent years [8–10]. IR injury at the
time of transplantation is associated with an increased risk of
acute rejection, delayed graft function and poor overall graft
function [11]. Therefore, strategies to reduce IR injury at the
time of transplantation may be the best therapeutic interven-
tion to increase graft longevity.

Ischaemic preconditioning is an intervention targeted
against IR injury whereby brief, non-lethal periods of ischae-
mia activate an innate response that confers protection against
a later prolonged and thus potentially lethal period of ischae-
mia. Ischaemic conditioning may be applied before (precon-
ditioning), during (perconditioning) or following
(postconditioning) ischaemia and may be applied remotely.
In this review, we discuss the potential of remote ischaemic
preconditioning (RIPC) in protecting against native and trans-
plant AKI. The therapeutic potential of this simple, low-cost
protective strategy has attracted much attention in recent
years, with a number of large clinical trials about to report
their findings, including one in renal transplantation.

Ischaemia–reperfusion injury

Ischaemia–reperfusion injury was first described in 1960 by
Jennings et al. who demonstrated that myocardial infarct size
in the dog following 24 h of ischaemia alone was similar to
that after 30 min of ischaemia followed by 60 min of
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reperfusion [12]. A variety of experimental interventions to
specifically modify the reperfusion phase of IR have been
shown to reduce IR injury, further establishing the injurious
nature of reperfusion.

Strategies to limit clinical ischaemic injury have mainly
focussed on timely reperfusion, including interventions such
as primary coronary intervention, thrombolysis for stroke and
reduction of both warm and cold ischaemic times in trans-
plantation. However, given that a significant proportion of
tissue dysfunction and cell death following IR injury is attrib-
utable to reperfusion injury and that there has arguably been
maximal optimisation of therapeutic techniques and their
timing (within the current framework of healthcare delivery),
attention has turned towards interventions which specifically
target IR injury, either to enhance resistance to ischaemia and/
or to reduce reperfusion injury. One such strategy is ischaemic
preconditioning.

Ischaemic preconditioning

Ischaemic preconditioning is a whole body innate reflex that
protects against subsequent IR injury and is activated by brief,
non-lethal periods of tissue or organ ischaemia. The phenom-
enon was first described in 1986 by Murray et al. who dem-
onstrated that a series of 45-min periods of circumflex coro-
nary artery occlusion, separated by 5min of reperfusion, could
significantly reduce myocardial infarct size in dogs following
subsequent prolonged ischaemia [13]. The magnitude of the
effect size observed was much greater than that found with
any pharmacological agent, and the effect was widely repro-
ducible and subsequently demonstrated in many different
animal models and species, including chicken, pig, rat, dog,
mouse and sheep [14].

Following on fromMurray et al.’s [13] discovery, Pryzlenk
et al. demonstrated that ischaemic conditioning could be ap-
plied remotely [15]. These authors found that brief periods of
ischaemia applied to one vascular bed could remotely protect
another—in this case circumflex artery preconditioning
protected the anterior descending coronary artery territory
from injury following a subsequent prolonged occlusion
[15]. Subsequent studies established that the preconditioning
stimulus could be applied to a different organ, with protection
spreading to remote organs, including the heart, brain and
kidney. Now termed ‘remote ischaemic preconditioning’, this
intervention gained potential clinical applicability with the
discovery that the ischaemic preconditioning stimulus could
be applied non-invasively in humans using a blood pressure
cuff placed on a limb and inflated above systolic blood pres-
sure to induce limb ischaemia [16].

The protective effects of ischaemic preconditioning have
been demonstrated to occur in two ‘windows’, with the initial
period of protection occurring immediately following the

preconditioning stimulus and lasting for between 1 and 4 h
[17–19], and the onset of a delayed or ‘second window of
protection’ occurring at 24 h following preconditioning, and
lasting for between 24 and 72 h [18, 20, 14]. However, it
should be noted that timely reperfusion remains a requirement
even despite ischaemic preconditioning [13], with the latter
delaying rather than abrogating the onset of cellular death. The
discovery that preconditioning could be activated both non-
invasively and remotely led directly to potential clinical ap-
plications of this therapy. Initial interest in cardioprotection
has extended to virtually all organ systems that may be sub-
jected to IR injury in the clinical setting, including not only
cerebrovascular disease but also many forms of surgery.

Mechanisms of protection of RIPC

From its inception, researchers have postulated that RIPC
relies on three components: local mediators which initiate
(or trigger) the preconditioning cascade, humoral and/or neu-
ral factors which transfer protection systemically from the
remote site and end-effectors which confer this protection to
the threatened organ or tissue.

Triggers

Certain factors, termed ‘trigger factors’, are released locally at
the time of preconditioning ischaemia and include adenosine,
bradykinin and endogenous opioids. These triggers initiate the
cascade of protection locally by activating G-protein-coupled
receptors [14] and thereby promoting the recruitment of pro-
tein kinase mediators (such as PI3K, ERK/MAPK, PKC and
JAK/STAT) [21–23].

Signal transduction

The mechanism by which the protective signal is transferred
systemically from the area of index ischaemia has been the
subject of some debate. Evidence for the involvement of a
humoral factor is supported by the observation that protection
can be transferred by the transfusion of serum from a rabbit
that has undergone ischaemic preconditioning to one which
has not [24, 25]. This factor is believed to be a protein that is
heat stable, dialysable and of a size less than 15 kDa [26, 27].
In pigs, RIPC applied to the recipient animal conferred pro-
tection against IR injury to the denervated donor heart during
transplantation, again supporting a humoral hypothesis [28].
Attempts to identify this circulating factor have proved chal-
lenging. However, recently, stromal cell-derived factor-1
(SDF-1α or CXCL12), a cardioprotective chemokine of
10 kDa that is induced by hypoxia, has been demonstrated
to be upregulated following RIPC in rats. The resultant
cardioprotection was blocked in rats treated with AMD3100,
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a highly specific inhibitor of CXCR4, the target receptor for
SDF-1α [29].

Neurogenic mechanisms of signal transfer have also
been suggested. In rats, Dong et al. demonstrated that
femoral nerve section abolished the effects of limb IPC
[30]. Local injection of adenosine into the nerve produced
a similar protection to that of IPC, whereas intravenous
injection of adenosine had no effect. Administration of an
adenosine antagonist partially abolished the effects of IPC
[30]. In a rat myocardial infarction model, hexamethoni-
um (an autonomic antagonist) abolished the protection by
RIPC achieved by mesenteric artery occlusion [31]. The
autonomic ganglion blocker trimetaphan has been shown
to inhibit RIPC in a human model [19].

The humoral and neuronal pathways may work in series to
spread protection systemically. Lim et al. demonstrated that in
mice, femoral vein occlusion or femoral and sciatic nerve
resection abolished the protective effects of RIPC, implicating
both humoral and neural pathways [32].

End-effectors

Ischaemic preconditioning activates at least three main salu-
tatory pathways, i.e. the cyclic guanosine monophosphate/
cGMP-dependent protein kinase (cGMP/PKG) pathway
[33], the reperfusion injury salvage kinase (RISK) pathway
[34, 35] and the survivor-activating factor enhancement
(SAFE) pathway [36]. There is a degree of overlap between
these pathways, in particular where they converge in mito-
chondria [37]. In the mitochondria, although there is some
uncertainty regarding the mechanism, the potassium-
dependent ATP (KATP) channel is activated, leading to closure
of the mitochondrial permeability transition pore (mPTP).
Closure of the mPTP prevents the influx of ions through this
channel, thus preventing mitochondrial rupture and cell death
by apoptosis.

The second window of protection—delayed or late IPC

Ischaemic preconditioning initiates a complex genomic and
proteomic response that is thought to underpin the late phase
of protection. This includes regulation of anti-apoptotic and
anti-inflammatory gene transcription, which is likely to be
responsible for the second window of protection [38, 39].
Later phase protection requires the synthesis of inducible
nitric oxide synthase, heat shock proteins or cyclo-oxygen-
ase-2, secondary to the upregulation of genes for these factors.
These then act locally via the mPTP or KATP channels to
induce a state of protection [40].

The role of the innate immune system

Activation of the innate immune system by non-lethal periods
of ischaemia may be mediated by germline-encoded toll-like
receptors (TLRs) and may contribute to the development of
ischaemic tolerance. Activation of feedback inhibitors of in-
flammation following an ischaemic insult effectively renders
the tissue immunosuppressed; consequently, the inflammatory
response to a subsequent lethal insult is attenuated [41]. In
mice, deficiency of TLR4 is associated with a reduction in
myocardial IR injury in mice [42], but the absence of a
functional TLR4 has been demonstrated to block IPC [43, 44].

Pathophysiology of renal IR injury

During ischaemia, renal epithelial cells are deprived of ATP
and are therefore unable to maintain essential homeostatic
processes. This ultimately leads to cell death by apoptosis or
necrosis [45] if timely reperfusion does not occur. Although
any segment of the nephron may be affected, the cells most
vulnerable are in the renal proximal tubule and distal medul-
lary thick ascending limb of the loop of Henle [46, 47]. The
factors contributing to the vulnerability of these cells to is-
chaemia are high metabolic rate, required for ion transport,
and a limited capacity for anaerobic metabolism. Additionally,
marked microvascular congestion and hypoperfusion have
been found in this region which persists despite restoration
of cortical blood flow, therefore contributing to prolonged
ischaemic injury [47]. Proximal tubular cell injury leads to
afferent arteriolar vasoconstriction by tubuloglomerular feed-
back, luminal obstruction and backleak of filtrate across in-
jured cells, with resultant ineffective glomerular filtration and
a profound drop in the glomerular filtration rate (GFR). En-
dothelial cell injury and endothelial dysfunction are primarily
responsible for this phenomenon, known as the extension
phase of AKI [48].

Ischaemic injury results in the loss of the apical brush
border of proximal tubular cells. Disrupted microvilli detach
from the apical surface, forming membrane bound blebs that
are released into the tubular lumen. The detachment and loss
of tubular cells, in combination with brush border vesicle
remnants, cellular debris and uromodulin, result in tubular
casts which may cause obstruction [3, 47]. Necrotic cell death
is rare, but it may occur in the highly susceptible outer med-
ullary regions. Conversely, apoptosis may be seen in both
proximal and distal tubular cells. Apoptosis has been demon-
strated in distal tubular cells during nephrotoxic AKI and also
in donor kidneys before transplantation—in one study this
was found to be associated with delayed graft function [49].
In addition to tubular cell injury, podocyte dysfunction may
occur, with foot process effacement and loss of slit diaphragm
integrity, and resultant proteinuria [50].
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Alteration in the cell cytoskeleton also contributes to injury
during ischaemia and is of particular importance in the
specialised cells of the proximal tubule in which the cell
membrane is augmented by microvilli, which are essential to
the normal functioning of these cells. The spectrin–actin cy-
toskeleton is responsible for the adherence of ion pumps to the
cell membrane, and cytoskeletal disruption leads to the redis-
tribution of basolateral Na+/K+ATPase pumps to the apical
membrane within 10 min of cytoskeletal disruption. The
resultant bidirectional transport of sodium and water across
the apical and basolateral cellular membrane leads to cellular
sodium being retransported to the tubular lumen, and thus to
an increased fractional excretion of sodium. Effective sodium
transport is further disrupted by ineffective transcellular sodi-
um transport, secondary to a deficiency in the supply of ATP.
The high concentration of sodium in the filtrate activates
glomerular feedback, stimulating the macula densa to induce
afferent arteriolar vasoconstriction, with a subsequent reduc-
tion in GFR [47]. A diagram summarising the effects of IR
injury on the renal tubular epithelium is shown in Fig. 1.

In renal transplants, histological abnormalities associated
with delayed graft function due to prolonged ischaemia in-
clude increased brush border loss, tubular necrosis, cell shed-
ding, tubular dilatation and interstitial inflammation [51]. The
appearance of mild histological abnormalities is often associ-
ated with substantial effects on graft function.

Renal dendritic cells and macrophages play an important
role in the innate and adaptive immune response in acute IR
injury [52] and are also thought to contribute to injury through
the production of tumour necrosis factor [53]. Animal models
of renal IR injury have shown increased levels of mannin–
binding lectin (MBL) early in reperfusion, with subsequent
complement deposition [54], although other, more recent an-
imal studies have demonstrated that following reperfusion, the
internalisation of MBL by tubular epithelial cells promotes
cell death independently of complement activation [55]. Ac-
tivation of the innate immune system by germline-encoded
TLRs in response to renal ischaemia contributes to inflamma-
tion and proximal tubular injury, and resolution of this inflam-
mation might be causal in the recovery of injured tubular cells
[56, 57]. Upregulation of gene and protein expression of
TLR2 and TLR4 in rat kidneys has been demonstrated fol-
lowing IR injury [58] and may be of particular importance to
AKI in kidney transplantation.

Evidence for a clinical benefit of RIPC

Most human studies have used limb ischaemia to activate
RIPC due to the inaccessibility of vital organs for IPC. The
first such clinical study demonstrated an effect of limb ischae-
mia to prevent experimental IR injury to the endothelium and
was rapidly followed by the first clinical trial of RIPC [59]. In

this small study, eight patients undergoing coronary artery
bypass grafting (CABG) were randomised to receive either
RIPC or control. The results demonstrated an increase in
blood lactate dehydrogenase (collected from the coronary
perfusion catheter) in the preconditioned group, which the
investigators attributed to an ability to maintain anaerobic
metabolism in preconditioned cells [59].

In 2007, Hausenloy et al. were the first to demonstrate a
reduction in troponin T levels in adults randomised to receive
RIPC prior to CABG with cross-clamp fibrillation [60]. In
2009, Venugopal et al. also demonstrated a reduction in tro-
ponin T following RIPC in patients undergoing cold blood
cardioplegia [61]. However in 2010, Rahman et al. published
a larger single-centre double-blind randomised controlled trial
in which 162 patients undergoing CABG were randomised to
receive either RIPC or placebo. In this study there was no
difference in troponin release or in any other clinical outcome
between the two groups [49]. Most recently, a larger single-
centre study of 329 patients undergoing isolated CABG with
cold blood cardioplegia and cardiopulmonary bypass,
randomised to RIPC or placebo, demonstrated a reduction in
post-operative troponin I in the preconditioned group [62].
The authors also attempted to address the question of whether
a reduction in troponin equated to a measurable longer term
clinical benefit. They reported a reduction in all-cause mortal-
ity in the preconditioned group that was sustained during
>4 years of follow-up.

In the clinical setting of primary coronary intervention
(PCI) for acute myocardial infarction, Iliodromitis et al. were
the first to investigate whether RIPC would attenuate the
inflammatory response in elective single vessel PCI with
coronary stenting. In their 2006 study, these authors demon-
strated an increase in cardiac enzymes and C-reactive protein
in the preconditioned group and postulated that RIPC in-
creased the inflammatory response [63]. Subsequently, Hoole
et al., in their 2009 study of 242 patients undergoing elective
PCI, demonstrated that RIPC prior to PCI attenuated
procedure-related troponin release [52]. However, in a sepa-
rate study, the same group showed that there was no beneficial
effect on left ventricular dysfunction during coronary balloon
occlusion in single vessel coronary disease [53].

Increased interest in the clinical usefulness of RIPC in the
setting of myocardial ischaemia (CABG or PCI) has led to the
publication of many other small trials in recent years, all
reporting differing outcomes. However, the largest study to
date by far—a multicentre double-blind randomised con-
trolled trial, ‘Effect of Remote Ischemic preConditioning on
clinical outcomes in patients undergoing Coronary Artery
bypass graft surgery’ (ERICCA), is currently underway to
investigate whether RIPC improves 1-year cardiovascular
outcomes and reduces AKI in the setting of CABG. This trial
has recently completed recruitment of 1,610 patients,
randomised to either RIPC or sham-RIPC. The primary

Pediatr Nephrol



endpoint is MACCE (=major adverse cardiac and cerebral
event(s)—a combined outcome score) at 1 year, but quality
of life and echocardiography follow-up are also included [64].

Evidence for a clinical benefit of RIPC in the kidney

In AKI, there are several interesting clinical questions. Firstly,
can RIPC protect the kidneys against ‘bystander’ AKI, i.e.
does RIPC prior to myocardial injury reduce collateral dam-
age to the kidney? Secondly, can RIPC protect against planned
ischaemic insults such as contrast nephropathy? Thirdly, can
RIPC reduce IR injury to the allograft during transplantation?
Additionally, can RIPC protect patients with chronic or end-
stage kidney disease against IR injury in other organ systems,
for example myocardial stunning during haemodialysis?

Animal studies have demonstrated the therapeutic potential
of RIPC in protecting from IR injury in the kidney [65, 66],
but these benefits have proved difficult to translate into clin-
ical studies in humans. Although several studies have been
published in humans, these tend to be small, single-centre
studies, and many report differing and short-term endpoints,
thusmaking them difficult to compare or interpret. In addition,
the role of co-existent comorbid states and polypharmacy in
such patients are confounders, and the degree to which cannot
easily be ascertained. A summary of the currently available
clinical trial evidence is provided in Table 1, which also
presents details on the published trials of RIPC that report
renal endpoints.

Clinical trials of RIPC to protect against bystander AKI

A recent meta-analysis of studies in cardiac/abdominal aortic
aneurysm surgery suggests that there is a benefit of RIPC in
reducing renal injury post-surgery [67]. However in only five
trials were the absolute creatinine values documented and
included in the analyses; however, differing measures were
reported and so the results were adjusted and reported as
standardised mean values. Additionally, these trials were not
powered towards renal endpoints, and the total number of
patients included was 377, which is still most likely under-
powered to detect a significant renal effect. The doubt over

whether RIPC can protect against bystander renal injury dur-
ing surgery should be answered in due course by currently
ongoing large clinical trials, such as ERICCA.

RIPC in protection against contrast nephropathy

One other potential application that has been investigated in a
clinical trial is the use of RIPC to protect against contrast-
induced AKI. Patients with pre-existing renal dysfunction
(serum creatinine >1.4 mg/dl or estimated (e) GFR of
<60 ml/min/1.73 m2) were randomised to receive RIPC (4×
5-min arm cuff inflations) or sham prior to elective coronary
angioplasty. The authors reported a reduction in the rate of
contrast-induced AKI, from 40% in the control group to 12%
in the RIPC group (n=100, p=0.002) [68]. Not only are these
results of potential relevance in the setting of CKD patients
undergoing routine investigation or elective angiography, es-
pecially in avoiding the precipitation of dialysis dependence in
patients with CKD stage 5 estimated GFR [(eGFR) <15ml/min],
but they may also help to relieve anxiety surrounding the use of
PCI in patients presenting acutely. Studies have demonstrated
increased morbidity and mortality in patients with CKD who
present with acute coronary syndromes, some of which may be
attributable to management possibly being compromised by a
reluctance to use therapies involving contrast, which may subse-
quently precipitate dialysis [69].

A further single-centre randomised controlled trial, ‘Effect
of Remote Ischaemic Conditioning on Contrast-Induced Ne-
phropathy in patients undergoing elective coronary angiog-
raphy (ERICCIN)’, is currently underway. The aim of this
study is to recruit 362 patients at risk of contrast nephropathy
(pre-existing eGFR <60 ml/min/1.73 m3), randomised to ei-
ther 4 cycles of 5 min of arm cuff inflation to 200 mmHg or
sham (10 mmHg), administered 2 h prior to contrast adminis-
tration for cardiac catheterisation. The primary endpoint is a
rise in creatinine of >25 % of eGFR, or a rise in creatinine of
>44 μmol/l at 48 h, with secondary endpoints of eGFR over
3 months and the biomarkers neutrophil gelatinase-associated
lipocalin (NGAL) and urinary albumin at 6 h, 48 h and
3 months post-contrast administration [70].
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RIPC in kidney transplantation

The use of direct IPC in transplantation (preconditioning of
the donor organ at retrieval by repeated clamping/unclamping
of the arterial supply) has been investigated in clinical trials in
liver transplantation [71]. However, no similar studies have as
yet been published in kidney transplantation.

A pilot clinical trial carried out by our group in the setting
of paediatric living-donor renal transplantation demonstrated
the protective effects of late (‘second window’) RIPC. A
blood pressure cuff was used to cause 5-min periods of limb
ischaemia (3 cycles, applied to the donor and recipient) 24 h in
advance of surgery. A prospective cohort of patients (n=20)
were randomised in a blinded fashion to sham RIPC or RIPC
(n=10 in each group). The groups did not differ in terms of
donor/recipient age, sex, weight, height, baseline creatinine or
cold ischaemic time.

Post-operative excretion of retinol binding protein (RBP;
area under the curve for RBP 72 h post-transplantation) in
RIPC patients was significantly reduced compared to the
controls [1.2 × 105 vs. 1.5 × 105, respectively; p=0.02]. The
time for plasma creatinine to halve was shorter in the RIPC
group than in the controls (5.5 ± 2.3 vs. 9.4 ± 3.5, respectively;
p=0.007). RIPC resulted in significant improvement of long-
term renal function. The mean area under the curve (AUC
eGFR) for the intermediate follow-up period (1–24 months
post-transplantation) was 366 and 303 in the control (n=10)
and RIPC (n=9) groups, respectively (p=0.009). The AUC
eGFR for the late follow-up period (up to 60 months post-
transplantation) was also significantly higher in the RIPC
group (1,190; n=7] than in the control group (1,103; n=7;
p=0.04) (Fig. 2).

A second randomised controlled study of RIPC in renal
transplantation was published (as a letter to the editor) earlier
this year. In this small study, live donor kidney transplant
recipients and their donors were randomised in pairs to receive
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Fig. 2 Effect of remote ischaemic preconditioning (RIPC) on long-term
graft function following transplantation (Tx). eGFR Estimated glomerular
filtration rate
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either donor RIPC, recipient RIPC or none. The RIPC stimu-
lus was 3×5-min leg cuff inflations to 300 mmHg, separated
by 5min of reperfusion. The timing of the RIPC stimulus prior
to surgery was not specified. In this small study, the authors
did not observe any differences between the three groups in
terms of urine volume, plasma creatinine, AKI biomarkers,
length of hospital stay or cost [72].

Of note, a study of direct ischaemic preconditioning in the
setting of deceased-donor transplantation has reported a sig-
nificant improvement in creatinine, eGFR and urine NGAL in
patients who received the intervention. In this study,
perconditioning (i.e. ischaemic conditioning performed dur-
ing the period of ischaemic injury) was delivered by 3 × 5-
min cycles of external iliac artery clamping, carried out while
the venous and arterial anastomoses were formed [73].

A much larger study of RIPC in live donor renal transplan-
tation, the REnal Protection Against Ischaemia Reperfusion in
transplantation (REPAIR), has finished recruiting and com-
pleted 1 year of follow-up for the primary endpoint (iohexol
GFR at 12 months post-transplantation). This study is unique
in that it examines whether there is an additive effect of early
and late preconditioning—participants are randomised in
donor/recipient pairs to receive early RIPC, late RIPC, both
or none. A study of RIPC immediately prior to surgery in
cadaveric renal transplantation (recipient RIPC) is also under-
way in Scandinavia, and the Remote Ischemic Precondition-
ing in Abdominal Organ Transplantation (RIPCOT) study is
recruiting 580 deceased organ donors and recipients of kid-
neys, livers and pancreata.

It is hoped that the results of these trials will determine
whether RIPC should be accepted as a standard part of care in
renal transplantation. Further questions, such as whether RIPC
should be applied to the donor, recipient or both, will need to
be directly addressed in subsequent studies.

Other potential applications of RIPC

Other potential benefits of RIC during native AKI, such as to
improve renal function, reduce mortality or protect against
long-term CKD, have not as yet been investigated. It is chal-
lenging to conduct studies in this setting in that the onset,
degree and nature of the IR injury cannot be predicted and,
therefore, the comparison of cohorts in clinical trials would
prove difficult.

A clinical trial is currently underway investigating the
effects of RIPC to protect against myocardial stunning in
haemodialysis patients. The primary endpoint is regional wall
abnormalities on two-dimensional echocardiogram within 4 h
of the intervention, with secondary endpoints including:
change in haemodynamic variables, frequency of intradialytic
hypotension, longer term echocardiographic changes and the
biomarkers troponin-T, plasma interleukin-6 and N-type pro-
brain natriuretic peptide.

Summary

Remote ischaemic preconditioning is a safe, inexpensive and
well-tolerated intervention that might have significant clinical
benefits in reducing tissue and organ damage following IR
injury. Several large randomised controlled clinical trials are
currently underway which should resolve current conflicts
regarding the potential utility of this technique in clinical
practice.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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