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We report a measurement of the fraction of events with a large pseudorapidity gap An within the
pseudorapidity region available to the proton dissociation products X in p + p — p + X. For a final
state p of fractional momentum loss £; and 4-momentum transfer squared 75 within 0.06 < £; < 0.09
and |1;] < 1.0 [0.2] GeV? at /s = 1800 [630] GeV, the fraction of events with Ay > 3 is found to be
0.246 = 0.001 (stat) = 0.042 (syst) [0.184 = 0.001 (stat) = 0.043 (syst)]. Our results are compared with
gap fractions measured in minimum bias pp collisions and with theoretical expectations.

DOI: 10.1103/PhysRevLett.91.011802

In a previous Letter [1], we reported a measurement of
the fraction of events with a central pseudorapidity gap
An [2] produced in pp collisions at /s = 1800 and
630 GeV. Here, we present results from a similar mea-
surement performed in a subsample of pp events con-
taining a leading (high longitudinal momentum)
antiproton (Fig. 1). Large pseudorapidity gaps are pre-
sumed to be due to Pomeron ([?) exchange and are the
signature for diffraction [3]. The process with a leading
beam particle in the final state, which is kinematically
associated with an adjacent pseudorapidity gap, is known
as single diffraction dissociation (SD), while that with a
central gap as double diffraction dissociation (DD). The
process in Fig. 1 is a combination of p-p SD and P-p DD
and will be referred to in this Letter as SDD.

Low transverse momentum (p7) processes have tradi-
tionally been treated theoretically in the framework of
Regge theory [3]. The introduction of a linear Pomeron
(P) trajectory, a(t) = a(0) + o't, with intercept a(0) =
1 + € > 1, enables the theory to correctly predict certain
salient features of the high energy behavior of hadronic
interactions, such as the rise of the total cross section and
the shrinking of the forward elastic scattering peak with
increasing energy. However, the success of the theory in
describing diffraction has been limited. While the shape
of the SD and DD distributions as a function of An are
correctly described, the normalization was found to be
suppressed relative to the theoretical predictions by about
an order of magnitude as the energy increases from /s ~
20 to 1800 GeV [1,4,5]. Proposals made to address this

011802-3
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issue are divided into two general groups: (a) those based
on “‘damping” of the SD cross section at small (anti)pro-
ton fractional momentum loss ¢ or on a changing
Pomeron intercept as a function of /s [6] or as a function
of ¢ [7], and (b) those in which only the overall normal-
ization is suppressed as /s increases [5,8—10]. The models
of group (a) cannot be applied to SDD. In a parton model
approach developed by Bjorken [11] to describe events
with a large pseudorapidity gap between two jets pro-
duced by a colorless two-gluon exchange, a suppression
of the overall normalization relative to the QCD calcu-
lation was predicted due to additional partonic color
exchanges in the same event which spoil the diffractive
pseudorapidity gap signature. In this model, which be-
longs to group (b), the color exchanges would simulta-
neously spoil all diffractive rapidity gaps in an event and
therefore the ratio of two-gap to one-gap events in a given

5 p 9 T min Mmax
p p
P\ l ‘l 1‘
M, 5 n
Pl <In M12-> <~—In M22—>
p <In1/&; Ins’
M, b Ins

FIG. 1 (color online). Schematic diagram and event topology
in pseudorapidity space of a SDD (single diffraction plus gap)
interaction, p + p— p + GAP; + M, + GAP + M,, with a
leading outgoing antiproton of fractional momentum loss ¢,
associated with a pseudorapidity gap Amn, = Int, and a gap
within the region of 7 spanned by Ins’ = Ins — lgpg—ﬁ.

n
011802-3
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interaction would be unaffected. This approach should
also hold for low p; diffractive processes. In this Letter,
we examine this issue by studying p + p — p + X with/
without a gap An within the 7 range of the system X in
addition to the gap of nominal [2] value An; = —In¢;
expected to be associated with the leading final state
antiproton.

Our study is based on our /s = 1800 (630) GeV in-
clusive SD data described in Ref. [12] ([13]). The events
were collected in the 1995-1996 Tevatron Run 1C by
triggering the Collider Detector at Fermilab (CDF) on
an antiproton detected in a Roman Pot Spectrometer
(RPS) [12]. The average instantaneous luminosity during
event collection was 0.2 X 103 (1.5 X 10%) cm 2 sec™!
at /s = 1800 (630) GeV. The components of CDF [14]
relevant to this study are the central tracking chamber
(CTC), the calorimeters, and two scintillation beam-
beam counter (BBC) arrays. The CTC tracking efficiency
varies from ~60% for p; = 300 MeV to over 95% for
pr > 400 MeV within |y| < 1.2, and falls monotonically
beyond |n| = 1.2 approaching zero at |n| ~ 1.8. The
calorimeters have projective tower geometry and cover
the regions |n| < 1.1 (central), 1.1 <|n| <2.4 (plug),
and 2.2 < |n| < 4.2 (forward). The An X A¢ tower di-
mensions, where ¢ is the azimuthal angle, are approxi-
mately 0.1 X 15° for the central and 0.1 X 5° for the plug
and forward calorimeters. The BBC arrays cover the
region 3.2 < |n| <5.9.

The events were required to have a reconstructed
RPS track of 0.06 < £; < 0.09 and |7;| < 1.0 [0.2] GeV?
at /s = 1800 [630] GeV, a hit on BBC, (proton-side
BBC) to exclude double Pomeron exchange events, and
no more than one reconstructed vertex within £60 cm
from the center of the detector along the beam direction.
The vertex requirement was imposed to reject overlap
events due to multiple interactions in the same beam-
beam crossing, since additional interactions would most
likely spoil the pseudorapidity gap signature of a diffrac-
tive event.

At /s = 1800 (630) GeV, the average & » value of 0.075
of our data samples corresponds to [P-p collision energies
of s’ = JE€zs =493 (173) GeV, at which the proton
dissociation products cover the nominal 7 range from
the maximum of 7 = In\/s = 7.5 (6.5) down to 1 =
—In(é4/s) = —4.9 (= 3.9). Thus, the CDF calorimeter
coverage, || < 4.2, is well suited for the present study.

Our analysis is similar to that used in evaluating the
DD fraction in minimum bias events collected with a
BBC coincidence trigger [1]. The method we use is based
on the approximately flat dependence of the event rate on
A expected for SDD events compared to the exponential
dependence expected for the normal SD events where
rapidity gaps within the diffractive cluster X are due to
random multiplicity fluctuations. Thus, in a plot of event
rate versus A n, the SDD signal will appear as a flattening
of an exponentially falling distribution at large A» [11].
In order to independently monitor detector effects in the
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positive and negative 7 directions, we look for 7.,
(Mmin), the m of the particle closest to 7 = 0 in the proton
(antiproton) direction, and measure experimental gaps
overlapping n =0, A”ngp = Nmax — Mmin (S€€ Flg D).
For this purpose, a particle is defined as a reconstructed
track in the CTC, a calorimeter tower with energy above a
given threshold, or a BBC hit. The tower energy thresh-
olds used, chosen to lie comfortably above noise level, are
Er = 0.2 GeV for the central and plug and £ = 1 GeV
for the forward calorimeters. The calorimeter noise was
measured using beam-beam crossing events with no re-
constructed vertex. At the calorimeter interfaces near
[nl ~ 0, 1.1, and ~2.4, where the noise level was found
to be higher, we use higher thresholds of up to 0.3 GeV.
The average number of calorimeter towers per unit An
with E2'¢ above threshold in an event is ~0.07, small
compared to the corresponding average particle density
of ~3 in the data. The fraction of SDD to total number of
events based on Angxp is obtained directly from the data
and corrected for (a) contamination from SD events,
(b) the effect of the unobserved (below threshold) par-
ticles, and (c) the triggering efficiency (acceptance) of
BBCp for SD and SDD events. These corrections are
made using a hadron-level Monte Carlo (MC) simulation.

The MC generation of SD events is described in Ref. [4].
For SDD events, a diffractive p and a cluster of M% = s&
are generated as for a SD interaction, and a DD interac-
tion is assumed to take place in the [P-p collision, which
is treated as in Ref. [1] and boosted to the lab frame. The
same thresholds are used for particles in the MC as for
towers in the data, after dividing the generated particle
Er by an m-dependent calibration coefficient of average
value ~1.6 representing the ratio of true to measured
calorimeter energy. The MC generator includes the calo-
rimeter noise, and for charged particles it is followed by a
detector simulation.

Figure 2 shows Lego histograms of events versus 7.«
and —n;, for (a) data and (b) MC generated events,
as well as MC events for (c) only SD and (d) only SDD
at /s = 1800 GeV. Similar results are obtained at
s = 630 GeV. The observed structure in the distri-
butions along 7yaxmin) 1S caused by the variation of
the tower energy thresholds with |n|. The bins at
| Mmax(min)] = 3.3 contain all events within the BBC range
of 3.2 < | N max(miny | < 5.9.

Figure 3 presents the number of events as a function of
Angxp for the 1800 GeV data (points) and for a fit to the
data using a mixture of MC generated SD and SDD
contributions (solid histogram). The SD contribution
(dashed histogram) exhibits an approximately exponen-
tial fall with increasing Angxp, as expected. The region of
Angxp > 3 is dominated by the SDD signal and is used to
extract the gap fraction (ratio of SDD to total number of
events). The approximately flat behavior expected for the
SDD distribution in this region is modulated by the
n-dependent tower thresholds used, causing the observed
bumps and dips, and by the BBC,, acceptance for SDD
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FIG. 2. The number of events as a function of 7., and
— Nmin> the n of the track or hit tower closest to 7 = 0 in the
proton and antiproton direction, respectively, at /s = 1800
GeV: (a) data; (b) Monte Carlo simulation; (¢),(d) the individual
contributions of Monte Carlo generated SD and SDD (SD +
gap) events. The MC distributions are normalized by a two-
component fit to the data using distributions (c) and (d).

events, which decreases with increasing Angxp. The MC
simulation reproduces these features of the data.

At /s = 1800 [630] GeV, the fraction of events with
Angxp >3 is (15.9+0.1)% [(17.5 = 0.2)%], of which
the contribution of background SD events, estimated us-
ing the MC simulation, is 1.2% [2.4%]. The quoted errors
are statistical. The amount of SD background in the region
Angxp > 3 depends on the tower energy calibration coef-
ficients and thereby on the calorimeter tower energy
thresholds used in the MC. For example, increasing
these thresholds has the effect of decreasing the multi-
plicity in the MC generated events, resulting in larger
rapidity gaps and hence larger SD background in the
region of Angxp > 3. The systematic uncertainty in the
background is estimated by raising (lowering) the tower
thresholds in the MC by a factor of 1.25 (evaluated from a
multiplicity uncertainty of £10%), which increases (de-
creases) the background by a factor of 1.6.

The correction factors needed to account for the ef-
fect of unobserved particles and thus convert the mea-
sured gap fractions to gap fractions corresponding to
the nominal gap definition [2], An° = In(s's,/M3M3)

BO) taty-1ma1/e)
a7

do _ [
dtpdtdésdAndn,

Here, 7, is the center of the gap An, B(0) the P-p
coupling, « the ratio of the triple-Pomeron to the P-p
couplings, and lni—;' = lné — lné — A the rapidity space
occupied by particles; v/s” will be referred to below as

“diffractive subenergy.” For numerical evaluations we
use [1] € = 0.104 = 0.002, &’ = 0.25 GeV 2, k = 0.17,
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FIG. 3 (color online). The number of events as a function of
ANy = Nmax — Mmin for data at /s = 1800 GeV (points), for
SD plus SDD (SD + gap) MC generated events (solid line), and
for only SD MC events (dashed line).

[In(M?/4[s'sy) <0, i = 1,2], where s, = 1 GeV?, were
evaluated using the SDD Monte Carlo simulation and
found to be 0.81 [0.73] at /s = 1800 [630] GeV.
Systematic errors are obtained by varying the tower en-
ergy thresholds by *25%. These errors are correlated
with the errors in the SD background contamination and
therefore a combined systematic uncertainty of 15%
[23%] was evaluated for both these effects and applied
to the extracted nominal gap fractions.

The BBC, acceptance, evaluated from the SDD MC
simulation, is 0.68 = 0.06(syst) [0.81 = 0.04(syst)], where
the error is due to a 20% systematic uncertainty assigned
to the fraction of the diffraction dissociation mass clus-
ters which do not trigger the BBC,,. For SD events, the
BBC acceptance is 0.98 = 0.01(syst) [0.98 = 0.01(syst)].
Including all systematic errors, the acceptance-corrected
SDD fractions for nominal gaps An® > 3 are 0.174 *
0.001 (stat) * 0.030 (syst) [0.138 = 0.001 (stat) =
0.032 (syst)] at /s = 1800 [630] GeV.

The An° > 3 fractions are extrapolated to all SDD
gaps of An > 3 using the shape of the gap distribution
of Eq. (1), which is based on Regge theory and factoriza-
tion. This equation, which was used in the MC simulation,
is obtained from the equation for SD by replacing the P-p
total cross section factor with the P-p DD factor «{- - -}
(see Ref. [1]).

(D

B(t;) = 6.57 GeV~! [4.1 mb"/2] X F,(t;), where F,(t;)
is the nucleon form factor. The variable ¢ is not measured
and therefore is integrated over in the calculations. Owing
to the increased phase space resulting from releasing the
requirement that the rapidity gap overlap n = 0, the
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FIG. 4 (color online). Ratios of SDD (single-diffraction plus
gap) to single-diffractive rates (solid circles) and double-
diffractive to total cross sections (open circles) as a function
of the collision energy of the subprocess, Pomeron-proton, and
pp, respectively. The uncertainties are mainly due to sys-
tematic effects, which are highly correlated among all four
data points. The dashed lines are predictions from Regge
theory and the solid lines from the renormalized gap probabil-
ity model [10].

Amn > 3 fractions are found to be larger than the An°® > 3
ones by a factor of 1.44 [1.40] at /s = 1800 [630] GeV.
The evaluation of this factor is performed analytically
and therefore no error is assigned to it; the effect of the
uncertainty in the parameter €, which controls the shape
of the An distribution in Eq. (1), is <1%.

Our results for the ratio REBP of the number of events
with a gap of An > 3 to the total number of SD events are
0.246 = 0.001 (stat) = 0.042 (syst) [0.184 = 0.001 (stat) =
0.043 (syst)] at /s = 1800 [630] GeV. These ratios are
plotted in Fig. 4 at /s’ = 493 [173] GeV, the average value
of the diffractive mass My, and compared with double-
diffractive to total cross section ratios REP? = PP /o,
where PP is obtained from [1] and o is set to the
Pomeron exchange contribution, BQ(O)(SL)E, to conform
with the definition of R$BP. The vertical error bars are
mainly due to systematic effects, which are correlated
among all points. The dashed lines represent predictions
based on Regge theory and factorization normalized to
the SD cross section at \/s = 22 GeV (see [10]). The solid
lines are predictions from the ‘“‘renormalized gap proba-
bility”” model [10], in which the Regge cross section is
factorized into two parts, one representing the pp total
cross section at the diffractive subenergy multiplied by
k", where n is the number of gaps, and a factor interpreted
as the gap probability distribution normalized to unity
over all available phase space. The bands around the solid
lines represent a 10% uncertainty due to the factor « [15].
The data are in good agreement with the renormalized
gap model predictions.
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In summary, we have measured the fraction of events
with a pseudorapidity gap An > 3 within the diffractive
cluster X of the process pp — pX and found it to be
0.246 = 0.001 (stat) = 0.042 (syst) [0.184 = 0.001 (stat) =
0.043 (syst)] for 0.06 < &, <0.09 and |r;] < 1.0 [0.2]
GeV? at /s = 1800 [630] GeV. These values are higher
than expectations from double-diffractive fractions in
minimum bias events, lower than expectations from
Regge theory and factorization, and in good agreement
with predictions based on the renormalized gap probabil-
ity model [10].
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