
Purification in the Infinitely-Repeated Prisoners’ Dilemma∗

V. Bhaskar† George J. Mailath‡ Stephen Morris§

July 13, 2006
revised October 26, 2007

Abstract

This paper investigates the Harsanyi (1973)-purifiability of mixed strategies in
the repeated prisoners’ dilemma with perfect monitoring. We perturb the game so
that in each period, a player receives a private payoff shock which is independently
and identically distributed across players and periods. We focus on the purifia-
bility of one-period memory mixed strategy equilibria used by Ely and Välimäki
(2002) in their study of the repeated prisoners’ dilemma with private monitor-
ing. We find that any such strategy profile is not the limit of one-period memory
equilibrium strategy profiles of the perturbed game, for almost all noise distribu-
tions. However, if we allow infinite memory strategies in the perturbed game, then
any completely-mixed equilibrium is purifiable. Keywords: Purification, belief-free
equilibria, repeated games. JEL Classification Numbers: C72, C73.

1. Introduction

Harsanyi’s (1973) purification theorem is one of the most compelling justifications for
the study of mixed equilibria in finite normal form games. Under this justification,
the complete-information normal form game is viewed as the limit of a sequence of
incomplete-information games, where each player’s payoffs are subject to private shocks.
Harsanyi proved that every equilibrium (pure or mixed) of the original game is the
limit of equilibria of close-by games with incomplete information. Moreover, in the
incomplete-information games, players have essentially strict best replies, and so will
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not randomize. Consequently, a mixed strategy equilibrium can be viewed as a pure
strategy equilibrium of any close-by game of incomplete information. Harsanyi’s (1973)
argument exploits the regularity (a property stronger than local uniqueness) of equilibria
of “almost all” normal form games. As long as payoff shocks generate small changes in
the system of equations characterizing equilibrium, the regularity of equilibria ensures
that the perturbed game has an equilibrium close to any equilibrium of the unperturbed
game.1

Very little work has examined purification in dynamic games. Even in finite extensive
games, generic local uniqueness of equilibria may be lost when we build in natural
economic features into the game, such as imperfect observability of moves and time
separability of payoffs. Bhaskar (2000) has shown these features may lead to a failure of
local uniqueness and purification: For a generic choice of payoffs, there is a continuum
of mixed strategy equilibria, none of which are the limit of the pure strategy equilibria
of a game with payoff perturbations.

For infinitely repeated games, the bootstrapping nature of the system of equations
describing many of the infinite horizon equilibria is conducive to a failure of local unique-
ness of equilibria. We study a class of symmetric one-period memory mixed strategy
equilibria used by Ely and Välimäki (2002) in their study of the repeated prisoners’
dilemma with private monitoring. This class fails local uniqueness quite dramatically:
there is a two dimensional manifold of equilibria.

Our motivation for studying the purifiability of this class of strategies comes from
the recent literature on repeated games with private monitoring. Equilibrium incentive
constraints in games with private monitoring are difficult to verify because calculating
best replies typically requires understanding the nature of players’ beliefs about the
private histories of other players. Piccione (2002) showed that by introducing just the
right amount of mixing in every period, a player’s best replies can be made independent
of his beliefs, and thus beliefs become irrelevant (and so the equilibrium is belief-free,
see remark 1).2 This means in particular that these equilibria of the perfect monitoring
game trivially extend to the game with private monitoring. Piccione’s (2002) strategies
depend on the infinite history of play. Ely and Välimäki (2002) showed that it suffices
to consider simple strategies which condition only upon one period memory of both
players’ actions. These strategies again make a player indifferent between his actions
regardless of the action taken by the other player, and thus a player’s incentives do not
change with his beliefs. Kandori and Obara (2006) also use such strategies to obtain

1See Govindan, Reny, and Robson (2003) for a modern exposition and generalization of Harsanyi
(1973). A brief introduction can also be found in Morris (forthcoming).

2This was not the first use of randomization in repeated games with private monitoring. A number
of papers construct nontrivial equilibria using initial randomizations to instead generate uncertainty
over which the players can then update(Bhaskar and Obara (2002), Bhaskar and van Damme (2002),
and Sekiguchi (1997)).
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stronger efficiency results via private strategies in repeated games with imperfect public
monitoring.

At first glance, the equilibria of Piccione (2002) and Ely and Välimäki (2002) involve
unreasonable randomizations: in some cases, a player is required to randomize differently
after two histories, even though the player has identical beliefs over the continuation
play of the opponent. Moreover, the randomizations involve a delicate intertemporal
trade-off. While there are many ways of modeling payoff shocks in a dynamic game,
these shocks should not violate the structure of dynamic game. In repeated games, a
reasonable constraint is that the payoffs shocks should be independently and identically
distributed over time, and moreover, the period t shock should only be realized at the
beginning of period t. Our question is: Do the delicate intertemporal trade-offs survive
these independently and identically distributed shocks?

Our results show that, in the repeated game with perfect monitoring, none of the
Ely-Välimäki equilibria can be purified by one-period memory strategies. But they can
be purified by infinite horizon strategies, i.e., strategies that are no simpler than those
of Piccione (2002). We have not resolved the question of whether they can be purified
by strategies with finite memory greater than one.

However, while equilibria of the unperturbed perfect monitoring game are automati-
cally equilibria of the unperturbed private monitoring game, our purification arguments
do not automatically extend to the private monitoring case. We conjecture—but have
not been able to prove—that in the repeated game with private monitoring all the
Ely-Välimäki equilibria will not be purifiable with finite history strategies but will be
purifiable with infinite history strategies.

The paper is organized as follows. The next Section introduces belief-free equilibria
and purifiability using a simple example. In Section 3, we review the completely mixed
equilibria of the repeated prisoners’ dilemma introduced by Ely and Välimäki (2002).
The negative purification result for one-period history strategies is in Section 4. In Sec-
tion 5, we present the positive purification result for infinite history strategies. Finally,
in Section 6, we briefly discuss possible extensions and the private monitoring case.

2. An Introductory Example

Before discussing the repeated prisoners’ dilemma, we present a simpler game (in which
only one of the players is long-lived) to introduce belief-free equilibria and the issues
underlying their purification.3,4

3The example is also special in that the incentive of the long-lived player to play H in the stage game
is independent of the behavior of the short-lived player (see footnote 6). Our analysis of the prisoners’
dilemma does not have this feature.

4Mailath and Samuelson (2006, Section 7.6) illustrate equilibrium constructions with long-lived and
short-lived players using this example.
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h `

H 2, 3 0, 2

L 3, 0 1, 1

Figure 1: The product-choice game. Player 1, the row player, is long-lived, while the
other player is short-lived.

2.1. The unperturbed game

The stage game is illustrated in Figure 1. We think of the row player (who is long-lived)
as a firm choosing between high (H) and low (L) effort and the column player (who is
short-lived) as a customer choosing between a high (h) or low (`) priced product. Since
L is strictly dominant in the stage game, L` is its unique Nash equilibrium.

In the repeated game, the long-lived player has discount factor δ. In each period
there is a new column player who (being short-lived) myopically optimizes. The game
has perfect monitoring: in period t, both the long-lived player and the the short-lived
player (or, more specifically, the short-lived player of period t) know the history of play
ht ∈ ({H,L} × {h, `})t.

Since the long-lived player has a myopic incentive to play L, intertemporal incentives
are needed to induce the long-lived player to play H. For example, as long as δ > 1/2,
the trigger profile using Nash reversion is an equilibrium. In this equilibrium, the long-
lived player is induced to play H (with a corresponding choice of h by the short-lived
player) by the threat that a deviation to L triggers permanent play of the myopic Nash
equilibrium L`.5 This specification of behavior is an example of histories coordinating
continuation play: The continuation play after any history in which the long-lived player
has always played H is described by the trigger profile, while continuation play after
every other history is described by permanent myopic Nash.

Our interest is in a different class of equilibrium, called belief-free. These equilibria
are of particular importance in the study of private monitoring games (see remark 1).
In this class, the long-lived player randomizes uniformly over {H,L} in each period
independently of history. This randomization makes the short-lived player indifferent
between h and ` in each period, allowing us to specify behavior for the short-lived player
providing intertemporal incentives for the long-lived player. Let pa1 be the probability
the short-lived player puts on h after the long-lived player’s play of a1 ∈ {H,L} in the
previous period.6 Let V p

1 (a1) be the long-lived player’s expected value from the action

5Note that the short-lived player is always playing a myopic best reply.
6If the long-lived player’s incentive in the stage game to play H depended on the behavior of the

short-lived player, the short-lived player’s randomization depends on the previous period’s realized
actions of both players.
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a1, when the short-lived player plays h with probability p. Then,

V p
1 (H) =(1− δ)2p + δV pH

(1)

and

V p
1 (L) =(1− δ)(2p + 1) + δV pL

, (2)

where V p′ = 1
2V p′

1 (H) + 1
2V p′

1 (L) (recall that the long-lived player is randomizing uni-
formly over {H,L}). In order to be willing to randomize, the long-lived player must be
indifferent between H and L, and so V p

1 (H) = V p
1 (L) = V p for p = pH , pL.7 Equating

the right sides of (1) and (2) yields

V pH
= V pL

+
(1− δ)

δ
. (3)

Setting p = pH in (1), and p = pL in (2), and solving gives

V pH
= 2pH and V pL

= 1 + 2pL, (4)

and so (3) and (4) implies

pL = pH − 1
2δ

. (5)

For δ > 1/2, we thus have a one-dimensional manifold of one-period memory equilibria
indexed by pH ∈ [1/(2δ), 1], with pL determined by (5). There is an additional (minor)
indeterminacy arising from the lack of restrictions on the short-lived player behavior in
the initial period; without loss of generality we assume that the short-lived player plays
pH in the initial period.

Remark 1 (Private Monitoring and Belief-Free Profiles Equilibria) A similar
construction yields an equilibrium in games with private monitoring. Suppose actions
are private, and each player observes a noisy private signal âi of the other player’s action
ai at the end of the period. Suppose the signals are independent, conditional on the
action profile. We assume that the short-lived player of period t knows the history of
private signals observed by earlier short-lived players. The payoffs in Figure 1 are now
ex ante stage game payoffs, derived from an underlying ex post stage game game, where
player i’s payoff is a function of i’s action and private signal realization only (so that i’s
payoff conveys no additional information beyond that conveyed by i’s private signal).

Since there are no public histories to coordinate play and the monitoring is condi-
tionally independent, H choices cannot be supported using trigger strategies. However,

7This implies V p
1 (H) = V p

1 (L) = V p for all p ∈ [0, 1].

5



when the signals about the long-lived player’s actions are sufficiently accurate, there are
one-period memory profiles in which the long-lived player plays H in every period with
positive probability.

Just as in the game with perfect monitoring, the long-lived player randomizes uni-
formly over {H,L} in each period independently of history. This randomization again
makes the short-lived player indifferent between h and ` in each period, allowing us
to specify behavior for the short-lived player providing intertemporal incentives for the
long-lived player. Similar calculations to (1) through (5) show that there is again a one-
dimensional manifold of equilibria (Mailath and Samuelson, 2006, section 12.5): After
observing the signal â1, the short-lived player chooses h with probability pâ1 so that

pL̂ = pĤ − 1
2δ(1− 2η)

,

where η > 0 is the noise in the monitoring,

η = Pr(L̂ | Ha2) = Pr(Ĥ | La2) and 1− η = Pr(Ĥ | Ha2) = Pr(L̂ | La2).

These randomizations are chosen so that the long-lived player is indifferent between
H and L, irrespective of the private history that 2 had observed. This implies that
the optimality of the long-lived player’s behavior can be verified without calculating
the long-lived player’s beliefs about the short-lived player’s continuation play. For this
reason, such equilibria are called belief-free (Ely, Hörner, and Olszewski, 2005).

�

In belief-free equilibria the short-lived player, while always indifferent over her ac-
tions, randomizes differently after different histories (a property shared by the belief-free
equilibria described in remark 1). Since the long-lived player is randomizing uniformly
over {H,L} independently of history, the short-lived player’s beliefs over the play of the
long-lived player are independent of these different histories.

2.2. The perturbed game

We now investigate the extent to which the requisite randomizations in the belief-
free equilibria can be “justified” as the limit of essentially strict equilibria of close-by
incomplete information games. In other words, are such equilibria Harsanyi (1973)-
purifiable? In keeping with the spirit of repeated games, we perturb the stage game,
as illustrated in Figure 2. Player i’s payoff shock zi

t is private to i, realized in period
t. We assume zi

t is independent across players and histories, and (for simplicity in
this section) uniformly distributed on [0, 1]. The infinitely-repeated perfect monitoring
game with stage game displayed in Figure 2 is denoted Υ(ε1, ε2) ≡ Υ(ε). In particular,
the set of t-period histories in Υ(ε) is again given by ({H,L} × {h, `})t, so that past
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h `

H 2, 3 0, 2 + ε2z
2
t

L 3 + ε1z
1
t , 0 1 + ε1z

1
t , 1 + ε2z

2
t

Figure 2: The (ε1, ε2)-perturbed product-choice game.

actions are perfectly monitored, while payoffs shocks remain private. By construction,
in any period, if ε2 > 0, for almost all realizations of the payoff shock, the short-lived
player cannot be indifferent between h and ` (with a similar comment applying to the
long-lived player).

An equilibrium of Υ(ε) is γ-close to the belief-free equilibrium indexed by pH if
for all i and all histories ending in a1 ∈ {H,L}, the ex ante probability (i.e., taking
expectations over the current payoff shock) of the long-lived player playing H is within
γ of 1/2, and the ex ante probability of the short-lived player playing h is within γ of
pa1 . A belief-free equilibrium is purified if for all γ > 0 there exist ε1 > 0 and ε2 > 0
such that there is a γ-close equilibrium of Υ(ε1, ε2).

2.2.1. Perturbing only the short-lived player, ε1 = 0.

When ε2 > 0, the short-lived player’s best reply to any long-lived player behavior is, for
almost all realizations of zt

2, unique. Moreover, the best reply is history independent
when the long-lived player’s behavior is also history independent. Since the provision
of intertemporal incentives to the long-lived player in a belief-free equilibrium requires
history dependent play by short-lived players, any equilibrium of Υ(0, ε2) close to that
belief-free equilibrium must feature history dependent play by the long-lived player.
Nonetheless, constructing an equilibrium of Υ(0, ε2) close to any belief-free equilibrium
is straightforward: Fix a belief-free equilibrium indexed by pH (with pL given by (5)).
Since the long-lived player’s payoffs are not perturbed, his incentives are preserved by
setting the ex ante probabilities of h equal to those in the belief-free equilibrium, while
the behavior of the long-lived player is chosen to “rationalize” the behavior of the short-
lived players. Specifically, let a1 ∈ {H,L} denote the long-lived player’s action in the
previous period. The ex ante probability the short-lived player plays h is given by
Pr(h) = pa1 . Since

Pr(h) = Pr(z2
t ≤ ẑ2

a1
) = ẑ2

a1
,

where ẑ2
t is the short-lived player type indifferent between h and `, we set ẑ2

a1
= pa1 .

The long-lived player plays H with probability πa1
1 to make ẑ2

t indifferent between h
and `. Solving

πa1
1 × 3 = πa1

1 × 2 + (1− πa1
1 )× 1 + ε2ẑ

2
a1
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gives

πa1
1 =

1 + ε2ẑ
2
a1

2
. (6)

Note that, as ε2 → 0, the ex ante probability of H after a1 in the previous period, πa1
1 ,

converges to 1/2, as required.

2.2.2. Perturbing only the long-lived player, ε2 = 0.

Turning to the other extreme, we now suppose ε1 > 0 and ε2 = 0. Since the short-lived
players’ payoffs are not perturbed, short-lived players are only willing to play history
dependent strategies if the ex ante probability the long-lived player plays H is 1/2,
implying the marginal type is 1/2.

Fix a belief-free equilibrium indexed by pH and let a1 ∈ {H,L} denote the long-lived
player’s action in the previous period. Let W ε(a1) be the long-lived player’s ex ante
expected discounted value from following the strategy of playing H if z1

t ≤ 1/2 and L
if z1

t > 1/2 from this period (since z1
t = 1/2 with zero probability, the specification for

the marginal type is irrelevant),

W ε(a1) =
∫ 1/2

0
{(1− δ)2πa1

2 + δW ε(H)} dz1
t

+
∫ 1

1/2

{
(1− δ)(2πa1

2 + 1 + ε1z
1
t ) + δW ε(L)

}
dz1

t ,

where πa1
2 is the probability the short-lived player puts on h (after observing a1 from

the previous period). Simplifying.

W ε(a1) = (1− δ)
{

2πa1
2 +

1
2

+
3ε1

8

}
+

δ

2
{W ε(H) + W ε(L)},

implying
W ε(H)−W ε(L) = 2(1− δ)(πH

2 − πL
2 ). (7)

The expected discounted value to the long-lived player from playing H is

(1− δ)2πa1
2 + δW ε(H),

while from L, given the payoff realization z1
t , is

(1− δ)(2πa1
2 + 1 + ε1z

1
t ) + δW ε(L).

Since the type z1
t = 1/2 must be indifferent between H and L,

(1− δ)2πa1
2 + δW ε(H) = (1− δ)(2πa1

2 + 1 + ε1/2) + δW ε(L),
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that is
δ(W ε(H)−W ε(L)) = (1− δ)(1 + ε1/2). (8)

This implies (from (7))

πL
2 = πH

2 − 1 + ε1/2
2δ

,

which for small ε1 is close to (5).

2.2.3. Perturbing both players, ε1 > 0 and ε2 > 0.

Key to the construction of the purifying equilibrium of Υ(0, ε2) is the lack of long-lived
player perturbations, so that ex ante probabilities satisfying (5) made the long-lived
player indifferent between H and L after any history. Key to the construction of the
purifying equilibrium of Υ(ε1, 0) is that the unperturbed short-lived player must face
the history-independent randomization 1

2 ◦H + 1
2 ◦L in order to be willing to randomize

(in a history dependent manner).
The difficulty with purifying belief-free equilibria arises from the interaction between

the problem of providing incentives for two players. Fix ε1 > 0 and ε2 > 0, and consider
a candidate equilibrium in which in period t, the long-lived player puts probability πa1

1

on H and the short-lived player puts probability πa1
2 on h, where a1 ∈ {H,L} is the

long-lived player’s action in period t− 1. As before, ẑi
a1

= πa1
i is the marginal type for

each player. The reasoning in Subsection 2.2.1 still applies, and so in order for ẑ2
a1

to
be indifferent we need, from (6),

πa1
1 =

1 + ε2ẑ
2
a1

2
=

1 + ε2π
a1
2

2
.

Since πH
2 6= πL

2 , this implies πH
1 6= πL

1 . On the other hand, the reasoning in Subsection
2.2.2 still applies, and so in order for ẑ1

a1
to be indifferent we need, from (8),

δ(W ε(H)−W ε(L)) = (1− δ)(1 + ε1ẑ
1
a1

) = (1− δ)(1 + ε1π
a1
1 ),

which cannot be satisfied for distinct values πH
1 6= πL

1 . Hence, belief-free equilibria
cannot be purified by strategies that depend only on the long-lived player’s last period
action. An analysis similar to that in Section 4 shows that allowing each player’s
behavior to depend on both players’ last period action does not change this conclusion.

3. The Infinitely Repeated Prisoners’ Dilemma

Let Γ(0) denote the infinitely-repeated perfect-monitoring prisoners’ dilemma with stage
game displayed in Figure 3. Each player has a discount rate δ. The class of mixed
strategy equilibria Ely and Välimäki (2002) construct can be described as follows: The
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C D

C 1, 1 −`, 1 + g

D 1 + g,−` 0, 0

Figure 3: The unperturbed prisoners’ dilemma stage game.

profiles have one-period memory, with players randomizing in each period with player
i assigning probability pi

aa′ to C after the action profile aiaj = aa′, where j = 3 − i.
As in the previous section, the profile is constructed so that after each action profile,
the player is indifferent between C and D. Consequently, a player’s best replies are
independent of his beliefs about the opponent’s history. The requirement that after
aiaj = aa′, player i is indifferent between playing C and D when player j is playing
pj

a′a yields the following system (where W i
aa′ is the value to player i after aa′, and the

second equality in each displayed equation comes from the indifference requirement):

W i
aa′ = (1− δ)(pj

a′a + (1− pj
a′a)(−`))

+δ
{

pj
a′aW

i
CC + (1− pj

a′a)W
i
CD

}
(9)

= (1− δ)pj
a′a(1 + g) + δ

{
pj

a′aW
i
DC + (1− pa′a)W i

DD

}
. (10)

Subtracting (10) from (9) gives

0 = pj
a′a

{
(1− δ)(−g + `) + δ

[
(W i

CC −W i
DC)− (W i

CD −W i
DD)

]}
− (1− δ)` + δ(W i

CD −W i
DD).

Since at least two of the probabilities differ (if not, pj
aa′ = 0 for all aa′), the coefficient

of pj
aa′ and the constant term are both zero:

W i
CD −W i

DD =
(1− δ)`

δ
(11)

and

W i
CC −W i

DC =
(1− δ)(g − `)

δ
+ W i

CD −W i
DD

=
(1− δ)g

δ
. (12)

These two equations succinctly capture the tradeoffs facing potentially randomizing
players. Suppose a player knew his partner was going to play D this period. The myopic
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incentive to also play D is `, while the cost of doing so is that his continuation value
falls from W i

CD to W i
DD. Equation (11) says that these two should exactly balance.

Suppose instead the player knew his partner was going to play C this period. The
myopic incentive to playing D is now g, while the cost of playing D is now that his
continuation value falls from W i

CC to W i
DC . This time it is equation (12) that says that

these two should exactly balance. Notice that these two equations imply that a player’s
best replies are independent of the current realized behavior of the opponent.8

A profile described by the four probabilities (pi
aa′ : aa′ ∈ {C,D}2) for each player

i ∈ {1, 2} is an equilibrium when (9) and (10) are satisfied for the four action profiles
aa′ ∈ {C,D}2, and for i = 1, 2. Since the value functions are determined by the
probabilities, the four probabilities are free parameters, subject only to (11) and (12).
This redundancy implies a two-dimensional indeterminacy in the solutions for each of
the players, and it is convenient to parameterize the solutions by W i

CC and W i
CD.

Solving (9) for aa′ = CC gives

pj
CC =

(1− δ)` + W i
CC − δW i

CD

(1− δ)(1 + `) + δ(W i
CC −W i

CD)
, (13)

for aa′ = CD gives

pj
DC =

(1− δ)` + W i
CD − δW i

CD

(1− δ)(1 + `) + δ(W i
CC −W i

CD)
, (14)

for aa′ = DC (using (12)) gives

pj
CD =

(1− δ)(`− g/δ) + W i
CC − δW i

CD

(1− δ)(1 + `) + δ(W i
CC −W i

CD)
, (15)

and, finally, for aa′ = DD (using (11))gives

pj
DD =

(1− δ)`(1− 1/δ) + W i
CD − δW i

CD

(1− δ)(1 + `) + δ(W i
CC −W i

CD)
. (16)

As in the introductory example (see footnote 6), if the myopic incentive to play the dom-
inant action is independent of the opponent’s play, i.e., g = `, there is a particularly
simple belief-free profile. By setting W i

CC = W i
CD, we obtain a profile where j’s ran-

domization is independent of j’s previous action, pj
Ca = pj

Da for all a ∈ {C,D}. In such
an equilibrium, after any two histories ending in CC and in CD, player 1 randomizes
differently even though player 2’s continuation play is the same.

We have described an equilibrium if the expressions in (13)-(16) are probabilities.
8This is the starting point of Ely and Välimäki (2002), who work directly with the values to a player

of having his opponent play C and D this period.
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Theorem 1 There is a four-dimensional manifold of mixed equilibria of the infinitely-
repeated perfect monitoring prisoners’ dilemma: Suppose 0 < W i

CD ≤ W i
CC ≤ 1 satisfy

the inequalities

(1− δ)g/δ + δW i
CD ≤ (1− δ)` + W i

CC (17)

and (1− δ)` ≤ δW i
CD. (18)

The profile in which player i plays C with probability pi
aa′ after aiaj = aa′ in the previous

period (and plays pi
ãã′ in the first period, for any ã, ã′ ∈ {C,D}), where pi

aa′ for all
a, a′ ∈ {C,D}2 are given by (13)-(16), is an equilibrium. Moreover, (17) and (18) are
satisfied for any 0 < W i

CD < W i
CC ≤ 1, for δ sufficiently close to 1.

Proof. We need only verify that (17) and (18) imply that the quantities described
by (13)-(16) are probabilities. It is immediate that pj

CD < pj
CC and pj

DD < pj
DC ≤ pj

CC ,
so the only inequalities we need to verify are 0 ≤ pj

CD, pj
DD and pj

CC ≤ 1. Observe first
that the common denominator in (13)-(16) is strictly positive from W i

CD ≤ W i
CC .

Now, pj
CC ≤ 1, since W i

CC ≤ 1.
We also have pj

CD ≥ 0, since

(1− δ)(`− g/δ) + W i
CC − δW i

CD ≥ 0

⇐⇒ (1− δ)` + W i
CC ≥ (1− δ)g/δ + δW i

CD,

which is (17).
Finally, pj

DD ≥ 0 is equivalent to (18).

For each specification of behavior in the first period, there is a four-dimensional
manifold of equilibria. Our analysis applies to all of these manifolds, and for simplicity,
we focus on the profiles where players play pi

CC in the first period.

4. One Period Memory Purification

We now argue that it is impossible to purify equilibria of the type described in Section
3 for generic distributions of the payoff shocks using equilibria of the perturbed game
with one period history dependence.

Let Γ(ε) denote the infinitely-repeated perfect-monitoring prisoners’ dilemma with
stage game displayed in Figure 4. The payoff shock zi

t is private to player i, realized in
period t, independently and identically distributed across players, and histories, accord-
ing to the distribution function F (.).9 The distribution function has support [0, 1], and

9Harsanyi (1973) allowed the payoff perturbations to depend on both players’ actions. For tractabil-
ity, we have restricted attention to the case where the perturbations do not depend on the opponent’s
actions. We believe our results carry over to the general case, but have not verified this.
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C D

C 1 + εz1
t , 1 + εz2

t −` + εz1
t , 1 + g

D 1 + g,−` + εz2
t 0, 0

Figure 4: The perturbed prisoners’ dilemma stage game.

a density bounded away from zero. Let F be the collection such distribution functions
endowed with the weak topology. A property is generic if the set of distribution func-
tions for which it holds is open and dense in F . We explain the critical implication of
genericity after the proof of Theorem 2, when we explain why the uniform distribution
must be ruled out.

An equilibrium of Γ(ε) is γ-close to p (an equilibrium of the form described in
theorem 1), if for all i and all a, a′ ∈ {C,D}, for all histories ending in aa′, the ex ante
probability (i.e., taking expectations over the current payoff shock) of player i playing
C is within γ of pi

aa′ . An equilibrium p is purified for the distribution F if, for all γ > 0
there exists ε > 0 such that there is an equilibrium of Γ(ε) is γ-close to p.

Theorem 2 Let p be a completely mixed strategy equilibrium of the form described in
Theorem 1. Generically in the space of payoff shock distributions, there exists γ > 0
such that for all ε > 0, there is no equilibrium of Γ(ε) with one period memory within
γ distance of p.

Proof. Fix γ′ = min{pi
aa′}/2. Any profile within γ′ of p is completely mixed. We

show by contradiction that there are no one period memory equilibria in Γ(ε) that are
γ close to p, for γ sufficiently small.

Fix a one period memory equilibrium of Γ(ε) that is γ-close to the equilibrium p of
Γ(0), where γ < γ′. Denote the ex ante probability of player i playing C after observing
the action profile aa′ by πiε

aa′ . Player i will play C in period t if and only if the payoff
shock zi

t is sufficiently large. Then the probability of C is πiε
aa′ = Pr

{
zi
t ≥ ẑi

aa′
}

=
1 − F (ẑi

aa′) for some marginal type ẑi
aa′ . If zt

i ≥ ẑi
aa′ then i plays C, and plays D

otherwise. Since πiε
aa′ ∈ (0, 1), we have ẑi

aa′ ∈ (0, 1) for every action profile aa′ and for
i ∈ {1, 2}.

The marginal type ẑiε
aa′ is indifferent between C and D when the action profile played

in the last period is aa′. Let W iε
aa′ denote the ex ante value function of a player at the

action profile aa′, before the realization of his payoff shock. The interim payoff from C
after aa′ and given the payoff realization zi

t is

V iε
aa′(z

i
t, C) = (1− δ)

{
πjε

a′a − (1− πjε
a′a)` + εzi

t

}
+ δ

{
πjε

a′aW
iε
CC + (1− πjε

a′a)W
iε
CD

}
,

13



while the payoff to i from D after the profile aa′ is

V iε
aa′(z

i
t, D) = (1− δ)

{
πjε

a′a(1 + g)
}

+ δ
{

πjε
a′aW

iε
DC + (1− πjε

a′a)W
iε
DD

}
. (19)

Since ẑi
aa′ is indifferent,

(1− δ)
{

πjε
a′a − (1− πjε

a′a)` + εẑi
aa′

}
+ δ

{
πjε

a′aW
iε
CC + (1− πjε

a′a)W
iε
CD

}
= (1− δ)πjε

a′a(1 + g) + δ
{

πjε
a′aW

iε
DC + (1− πjε

a′a)W
iε
DD

}
.

Using ẑi
aa′ = F−1(1− πiε

aa′),

F−1(1− πiε
aa′) =

1
(1− δ)ε

{
(1− δ)` + δ(W iε

DD −W iε
CD)

}
+

πjε
a′a

(1− δ)ε
{
(1− δ)(g − `) + δ(W iε

DC + W iε
CD −W iε

CC −W iε
DD)

}
. (20)

Note that the right hand side of (20) is affine in πjε
a′a, player j’s mixing probability. Let

αiε and βiε denote the intercept and slope of this linear function; these do not depend
upon the profile aa′. We may therefore re-write (20) as

F−1(1− πiε
aa′) = αiε + βiεπjε

a′a. (21)

Equation (21) must hold for all a, a′ ∈ {C,D}. In other words, the points in the set

Zε
i ≡

{(
πjε

a′a, F
−1(1− πiε

aa′)
)

: a, a′ ∈ {C,D}
}

must be collinear, for i ∈ {1, 2}.
If the points in the set

Z0
i ≡

{(
pj

a′a, F
−1(1− pi

aa′)
)

: a, a′ ∈ {C,D}
}

are not collinear, then for γ sufficiently small,10 if |πjε
a′a− pj

a′a| < γ for all j ∈ {1, 2} and
a, a′ ∈ {C,D}, the points in Zε

i will also not be collinear. But this would contradict
(21) and so the existence of the putative equilibrium.

Consider first the case where, for some player i, p specifies three distinct mixing
probabilities. In that case, it is clear that for generic F , the points in the set Z0

i are
not collinear and we have the contradiction.

10Note that the bound on γ, while depending on F , is independent of ε.
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Consider now the case when p has only two distinct values of pi
aa′ for all i. From (14)

and (16), pi
DC > pi

DD, while from (13) and (16), we deduce pi
CC > pi

DD. Thus the only
possibility for only two distinct values is pi

CC = pi
DC ≡ pi

C and pi
CD = pi

DD ≡ pi
D < pi

C

for all i. But this implies

Z0
i =

{(
pj

C , F−1(1− pi
C)

)
,
(
pj

C , F−1(1− pi
D)

)
,
(
pj

D, F−1(1− pi
C)

)
,
(
pj

D, F−1(1− pi
D)

)}
=

{
pj

C , pj
D

}
×

{
F−1(1− pi

C), F−1(1− pi
D)

}
.

The points in Z0
i clearly cannot be collinear, and we again have a contradiction.

The theorem asserts that for any fixed mixed strategy equilibrium p, there does
not exist a one period purification for generic shock distributions. While we assume
that each player receives payoff shocks from the same distribution, the same argument
goes through with asymmetric payoff distributions. The theorem does not rule out
the possibility that, for generic shock distributions, there will be some mixed strategy
equilibrium p (depending on the shock distribution) that is purified with one-period
memory strategies.

In an earlier version of this work, Bhaskar, Mailath, and Morris (2004), as well as
in the introductory example of Section 2, we studied the (non-generic) case of uniform
noise. Uniform noise is special because F−1 is linear. In this case, some symmetric
strategies were purifiable but others were not. Note first that if the noise is uniform, then
the set of points {(p, F−1(1−p)) : p ∈ [0, 1]} is trivially collinear, since (p, F−1(1−p)) =
(p, (1 − p)). Thus, for any profile satisfying pj

aa′ = pi
a′a ≡ pa′a and pCD = pDC , i.e., a

strongly symmetric profile, the set Z0
i is collinear, and the profile is purifiable using one

period memory strategies.
More generally, the critical property the distribution function must satisfy for the

argument precluding purification to go through is the following: For a given set of three
points {(pκ

1 , pκ
2) ∈ [0, 1]2 : κ = 1, 2, 3}, the set{

(pκ
1 , F−1(1− pκ

2)) : κ = 1, 2, 3
}

should not be collinear.

Remark 2 (Stronger Impossibility Results) In Bhaskar, Mailath, and Morris (2004),
we had asserted that the type of argument reported here would extend to finite memory
strategy profiles of any length. Unfortunately, the argument we gave was invalid, and
while the assertion might be true, we have been unsuccessful in obtaining a proof.

Stronger impossibility results for the purifiability of belief free strategies can be ob-
tained if the stage game is one of perfect information. Bhaskar (1998) analyzes Samuel-
son’s overlapping generations transfer game and shows that finite memory implies that
no transfers can be sustained in any purifiable equilibrium. We conjecture that this
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result extends to any repeated game, where the stage game is one of perfect information
and players are restricted to finite memory strategies. In any purifiable equilibrium,
the backwards induction outcome of the stage game must be played in every period.
Simultaneous moves, as in the present paper, allow for greater possibilities of purifi-
cation: some belief free strategies are purifiable via one period memory strategies for
non-generic payoff shock distributions. More importantly, the induction argument ex-
tending the negative one period result to arbitrary finite memory strategies is not valid
in the simultaneous move case.

�

5. Purification with Infinite Memory

We now argue that, when we allow the equilibrium of the perturbed game to have
infinite history dependence, then it is possible to purify belief-free equilibria of the type
described in Section 3. To simplify notation, we focus on symmetric equilibria, so that
paa′ is the probability player 1 plays C after the profile aa′ (with player 2 playing C
with probability pa′a). Fix an equilibrium with interior probabilities, pCC , pCD, pDC ,
and pDD ∈ (0, 1).

We first partition the set of histories, H, into equivalence classes, denoted by (aa′, k),
aa′ ∈ {C,D}2 and k ≥ 0. The equivalence class (aa′, 0) with aa′ 6= CC consists of all
histories whose last action profile is aa′. The equivalence class (aa′, k) with aa′ 6= CC
and k ≥ 1 consists of all histories whose last action profile is CC and there were k
occurrences of CC after the last non-CC action profile aa′. Finally, the equivalence
class (CC, k) is a singleton, containing the k-period history in which CC has been
played in every period. Note that the null history is (CC, 0), and that any history is an
element of the partition (aa′, k), where the history ends in CC if k ≥ 1.

The purifying strategy in the perturbed game is measurable with respect to the
partition on H just described. Fix ε > 0 and let πε

aa′(k) denote the probability with
which C is played when h ∈ (aa′, k), and let W ε

aa′(k) denote the ex ante value function
of the player at this history. If

{
πε

aa′(k)
}

is a sequence (as ε → 0) of equilibria purifying
p = (pCC , pCD, pDC , pDD), then πε

aa′(k) → pCC for all k ≥ 1 and all aa′, and pε
aa′(0) →

paa′ , as ε → 0. We show a uniform form of purifiability: the bound on ε required to
make πε

aa′(k) close to pCC is independent of k.
The idea is that in the perturbed game, the payoff after a history ending in CC can

always be adjusted to ensure that the appropriate realization of z in the previous period
is the marginal type to obtain the desired randomization between C and D. We proceed
recursively, fixing probabilities after any history in an element of the partition (aa′, 0)
at their unperturbed levels, i.e., we set πε

aa′(0) = paa′ . In particular, players randomize
in the first period with probability pCC on C, and in the second period after a realized
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action profile aa′ 6= CC with probability paa′ on C.11 This turns out to determine the
value function at histories in (aa′, 0) for all aa′. In the second period after CC, W iε

CC(1)
is determined by the requirement that the ex ante probability that a player play C in
the first period is given by πε

CC(0) = pCC . Given the value W ε
CC(1), the probability

πε
CC(1) is then determined by the requirement that W ε

CC(1) be the ex ante value at the
history CC. More generally, given a history h ∈ (aa′, k) and a further realization of
CC, W ε

aa′(k + 1) is determined by the requirement that the ex ante probability that a
player play C in the previous period is given by πε

aa′(k) = paa′ , and then πε
aa′(k + 1) is

then determined by W ε
aa′(k + 1).

Denote by V ε
aa′(k; zt, â) the interim payoff from â, given the payoff realization zt,

after a history falling into the equivalence class (aa′, k) (and assuming continuation
play follows the purifying strategy). These payoffs are given by (where W ε

aa′ ≡ W ε
aa′(0))

V ε
aa′(k; zt, C) = (1− δ) {πε

a′a(k) + (1− πε
a′a(k))(−`) + εzt}

+ δ {πε
a′a(k)W ε

aa′(k + 1) + (1− πε
a′a(k))W ε

CD} (22)

and

V ε
aa′(k; zt, D) = (1− δ)πε

a′a(k)(1 + g) + δ {πε
a′a(k)W ε

DC + (1− πε
a′a(k))W ε

DD} .

Since πε
aa′(k) is the probability of C at a history in (aa′, k), the player with any payoff

realization zt ≥ ẑ ≡ F−1[1−πε
aa′(k)] chooses C, and D otherwise. Moreover, the player

with payoff realization ẑ must be indifferent between C and D, i.e.,

V ε
aa′(k; ẑ, C) = V ε

aa′(k;D). (23)

From (22),
V ε

aa′(k; zt, C) = V ε
aa′(k; ẑ, C) + (1− δ)ε(zt − ẑ),

and since V ε
aa′(k; zt, D) ≡ V ε

aa′(k;D) is independent of zt, we have (using (23))

W ε
aa′(k) =V ε

aa′(k;D) + (1− δ)ε
∫ 1

ẑ
(z − ẑ) dF (z)

=V ε
aa′(k;D) + (1− δ)εG(πε

aa′(k)),

where G(π) is the ex ante expected incremental value of the payoff shock to this player
from playing C with probability π,

G(π) =
∫ 1

F−1(1−π)
x− F−1(1− π) dF (x).

11More precisely, player 1 randomizes with probability paa′ and player 2 randomizes with probability
pa′a.
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Beginning with histories in (aa′, 0), we have

W ε
CD = (1− δ) {pDC(1 + g) + εG(pCD)}+ δ {pDCW ε

DC + (1− pDC)W ε
DD} , (24)

W ε
DC = (1− δ) {pCD(1 + g) + εG(pDC)}+ δ {pCDW ε

DC + (1− pCD)W ε
DD} , (25)

W ε
DD = (1− δ) {pDD(1 + g) + εG(pDD)}+ δ {pDDW ε

DC + (1− pDD)W ε
DD} , (26)

and

W ε
aa′(k) = (1− δ) {πε

a′a(k)(1 + g) + εG(πε
aa′(k))}

+ δ {πε
a′a(k)W ε

DC + (1− πε
a′a(k))W ε

DD} . (27)

As we indicated above, (24), (25), and (26) can be solved for W ε
CD, W ε

DC , and W ε
DD.

Moreover, these solutions converge to WCD, WDC , and WDD. It remains to determine
W ε

aa′(k) and πε
aa′(k) for k ≥ 1 (W ε

CC(0) is also determined, since πε
CC(0) = pCC).

Solving (23) at a history in (aa′, k − 1) for W ε
a′a(k) as a function of πε

aa′(k − 1) and
πε

a′a(k − 1) gives

W ε
a′a(k) =

(1− δ)(g − `)
δ

+ W ε
DC + W ε

CD −W ε
DD

+
(1− δ){`− εF−1[1− πε

a′a(k − 1)]} − δ[W ε
CD −W ε

DD]
δπε

aa′(k − 1)
. (28)

This can be re-written (using (11)) as

W ε
a′a(k) =

(1− δ)(g − `)
δ

+ W ε
DC + W ε

CD −W ε
DD

+
δ[(WCD −W ε

CD)− (WDD −W ε
DD)]− (1− δ)εF−1[1− πε

a′a(k − 1)]
δπε

aa′(k − 1)
. (29)

Examining (29), we see that the terms in the first line converge to WCC as ε → 0.
Since the numerator of the second line vanishes as ε → 0, this implies that W ε

a′a(k) →
WCC provided that πε

aa′(k − 1) is bounded away from zero.
Given a value for W ε

aa′(k),12 (27) can be re-written as

(1− δ)εG(πε
aa′(k)) + bεπ

ε
aa′(k) + cε(k) = 0, (30)

where
bε = (1− δ)(1 + g) + δ(W ε

DC −W ε
DD), (31)

12From (29), while W ε
aa′(k) is determined by πε

aa′(k − 1), it is independent of πε
aa′(k).
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and
cε(k) = δW ε

DD −W ε
aa′(k). (32)

At ε = 0, equation (30) admits a solution π0
aa′(k) that is independent of k and equals

−c0
b0

= pCC . We need to establish that πε
aa′(k) converges to pCC for all k ≥ 1, uniformly

in k.

Theorem 3 Let p = (pCC , pCD, pDC , pDD) be a symmetric completely mixed one period
memory equilibrium of the form described in theorem 1. For all η > 0, there is exists
ε(η) > 0 such that for all ε < ε(η), the equilibrium of the perturbed game Γ(ε) given by
the probabilities πε

aa′(k) described above satisfies

|πε
aa′(k)− pCC | < η ∀k ≥ 1.

Proof. First observe that there exists ξ > 0 such that

|W ε
aa′ −Waa′ | ≤ ξε (33)

for all aa′ 6= CC. This follows from the fact that there is a unique solution to equations
(24), (25), and (26) when ε = 0.

Now we establish inductively that for any η > 0 there exists ε(η), not depending on
k, such that ε ≤ ε(η) and

∣∣πε
aa′(k − 1)− pCC

∣∣ ≤ η for all aa′ imply
∣∣πε

aa′(k)− pCC

∣∣ ≤ η
for all aa′. This will prove the theorem.

Suppose that
∣∣πε

aa′(k − 1)− pCC

∣∣ ≤ η. Observe that setting ε = 0 in (29), we have

WCC =
(1− δ)(g − `)

δ
+ WDC + WCD −WDD.

Subtracting this equation from (29), we have

W ε
a′a(k)−WCC = (W ε

DC −WDC) + (W ε
CD −WCD)− (W ε

DD −WDD)

+
δ[(WCD −W ε

CD)− (WDD −W ε
DD)]− (1− δ)εF−1[1− πε

a′a(k − 1)]
δπε

aa′(k − 1)
.

From (17) and (18), δ/(1− δ) ≥ g and so

|W ε
a′a(k)−WCC | ≤ 3εξ +

2εξ + ε/g

pCC − η

= ε(3ξ +
2ξ + 1/g

pCC − η
).

Now setting ε = 0 in equation (30), we have that (recall that pCC = π0
aa′(k) for all k)

b0pCC + c0(k) = 0.
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Subtracting this equation from equation (30), we have

(1− δ)εG(πε
aa′(k)) + bε(πε

aa′(k)− pCC) + (bε − b0)pCC + cε(k)− c0(k) = 0.

Now,

|G(πε
aa′(k))| ≤ 1,

|cε(k)− c0(k)| ≤ δ |W ε
DD −WDD|+ |W ε

aa′(k)−WCC | , by (32),
|bε − b0| ≤ 2δεξ, by (31) and (33),

and bε ≥ (1− δ)(1 + g) + δ(WDC −WDD)− 2εδξ, by (31) and (33).

Furthermore, (1− δ)(1 + g) + δ(WDC −WDD) > 0 since it is equal to the denominator
in equation (13), so that bε > 0 for ε sufficiently small. Consequently,

|πε
aa′(k)− pCC | ≤ 1

bε
((1− δ)ε + |bε − b0| pCC

+δ |W ε
DD −WDD|+ |W ε

aa′(k)−WCC |)

≤
(1− δ)ε + 2δεξpCC + δεξ + ε(3ξ + 2ξ+1/g

pCC−η )

(1− δ)(1 + g) + δ(WDC −WDD)− 2δεξ
,

The last expression is less than or equal to η if

(1− δ)ε + 2δεξpCC + δεξ + ε(3ξ +
2ξ + 1/g

pCC − η
)

≤ η((1− δ)(1 + g) + δ(WDC −WDD)− 2δεξ)

or
ε ≤ η(1− δ)(1 + g) + δ(WDC −WDD)

(1− δ) + 2δξpCC + δξ + 3ξ + 2ξ+1/g
pCC−η + 2δξη

≡ ε(η),

and the theorem is proved.

6. Discussion

To understand the question of the purifiability of mixed strategy equilibria in infinite
horizon games, we work with one elegant class of one-period history strategies. Here
we have a striking result: with infinite history strategies, such strategies are purifiable.
But if we restrict ourselves to one-period history strategies in the perturbed game,
then no such strategy is purifiable (for a generic choice of noise distribution). While
we conjecture that this negative result extends to allowing all finite-memory strategy
profiles in the perturbed game, we have not been able to solve this case.
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As noted in the introduction, much of the interest in the purifiability of mixed
strategy equilibria in repeated games comes from the literature on repeated game with
private monitoring. The systems of equations for the perfect monitoring case can be
straightforwardly extended to allow for private monitoring. Unfortunately, the par-
ticular arguments that we report exploit the perfect monitoring structure to reduce
the infinite system of equations to simple difference equations, and somewhat different
arguments are required to deal with private monitoring.

We conjecture that the infinite horizon purification results would extend using gen-
eral methods for analyzing infinite systems of equations. Intuitively, private monitoring
will make purification by finite history strategies harder, as there will be many different
histories that will presumably give rise to different equilibrium beliefs that must lead
to identical mixed strategies being played, and this should not typically occur. This
argument can be formalized for one period histories, but we have not established the
argument for arbitrary finite history strategies. However, we believe that the finite his-
tory restriction may place substantial bounds on the set of mixed strategies that can be
purified in general repeated games, and we hope to pursue this issue in later work.
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