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Abstract

Observations of the cosmic microwave background have led to a golden age of cosmology, where

precise measurements can be confronted with predictions from cosmological models. Ongoing and

future surveys of the distribution of galaxies will continue this revolution: they will enable us to

test the laws of gravity, uncover the properties of dark energy and dark matter, and reinforce the

connection to high-energy physics. However, current galaxy survey analyses are already limited

by our ability to identify and treat observational systematics, and this problem will be even more

pronounced in future experiments. Therefore, it is essential to develop novel methods to deal with

these complications when testing cosmological models and searching for new physics. This is the

focus of this thesis.

Firstly, I will present measurements of primordial non-Gaussianity obtained from the clustering

of quasars from the Sloan Digital Sky Survey. Primordial non-Gaussianity is a powerful probe of

inflation, the leading theory of the initial conditions of the universe, but its effects on the distribution

of quasars are mimicked by observational systematics. I will describe a framework to deal with

these systematics and robustly measure primordial non-Gaussianity from the clustering of quasars.

Secondly, I will present a new set of wavelet transforms on the sphere and the ball. These

approaches are highly promising for analysing cosmological and geophysical data and dealing with

their systematics in novel ways.

Finally, I will examine the recent claims that extra massive neutrinos can resolve the tensions

between cosmic microwave background, galaxy survey and supernova observations. I will demon-

strate that this conclusion is premature since it is driven by the least robust data sets. Given the

growing number of cosmological observables and their varied levels of robustness, combining data

sets and dealing with such tensions will become critical in the near future.
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1
Introduction

“The purpose of models is not to fit the data but to sharpen the questions.”. S. Karlin

1.1. The Universe

Cosmology is the quantitative study of the Universe as a whole: its content, origin, evolution,

and fate. Its recent success as a precision science mostly rests on two pillars: large data sets mapping

the Universe on a wide range of scales and frequencies, and a remarkable model describing these

observations at unprecedented fidelity. Yet, many questions remain unsolved, and cosmology is

an active field of research, requiring a vital balance of theory and observation, and overlapping

with numerous other disciplines including astronomy, chemistry, particle physics, statistics, signal

processing, and machine learning.

1.1.1. Composition and structure

The fundamental assumption of the current concordance model—ΛCDM , summarised in the

following sections—is the homogeneity and isotropy of the Universe on large scales. Supported

by a range of observations, this idea has been promoted to a guiding axiom: the Cosmological

Principle, stating the Universe looks the same for all observers, whoever and wherever they are. A

natural consequence of this axiom is the assumption that the observable Universe is a fair sample,

i.e., representative of the whole Universe, and that the same physical laws apply throughout.

Violations of these assumptions are under investigation, but they are not considered in this thesis.
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One of the pillars of the ΛCDM model is the theory of General Relativity (GR), which describes

the interplay between mass, gravity, and space time. A good review GR from a cosmological

perspective is provided in Dodelson (2003), and we use the same conventions here. Following the

principles of GR, the Universe can be viewed as an evolving object, the structure and dynamics of

which are influenced by its content, and vice versa. More precisely, in the current concordance

model, the Universe is mainly composed of four ingredients:

• Baryonic matter: “visible” matter interacting through gravitational, electromagnetic, strong

and weak forces, composing stars, planets, and living organisms. Making up only 4.9% of the

total energy budget today, it mostly contains hydrogen and light elements formed in the early

Universe.

• Relativistic species: electromagnetic radiation and neutrinos, mainly produced in the early

Universe in the form of the cosmic microwave and neutrino backgrounds (CMB and CνB,

respectively). They are currently subdominant in energy density compared to the other

components, but played an essential role in earlier epochs (see details below).

• Cold dark matter (CDM): non-baryonic, pressureless, non-relativistic matter, that interacts

very weakly (or not at all) through the electromagnetic force. Although it hasn’t been directly

observed or produced, its existence is well motivated by a range of observations including

the CMB, galaxy rotation curves, galaxy clustering (Davis et al., 1982; Oort, 1932; Rubin

and Ford, 1970; Zwicky, 1933) and gravitational lensing of galaxies and clusters (Clowe

et al., 2004, 2006; Dietrich et al., 2012; Massey et al., 2007; Taylor et al., 1998). It makes

up 26.8% of the energy budget of the Universe, and played a crucial role in the formation of

structures in the Universe, such as galaxies and clusters of galaxies. CDM remains by far the

simplest and most successful joint explanation of a plethora of phenomena. The detection of

its associated particles as well as understanding baryonic physics in the CDM context (e.g., in

galaxy formation) are active fields of research (see e.g., Aalseth et al. 2011a,b; Angle et al.

2008; Bernabei et al. 2008).

• Dark energy (Λ): it dominates the energy budget of the Universe today (68.3%) and drives

a phase of accelerated expansion (Perlmutter et al., 1999; Riess et al., 1998, 2004). It is

currently indistinguishable from a cosmological constant, which poses a deep theoretical

challenge. In particular, when considered as vacuum energy, the theoretical prediction under

estimates the observed value by 120 orders of magnitude. This discrepancy is likely due to our
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inability to unify quantum physics and GR and correctly compute all the contributions to the

energy of the vacuum. Modern reviews of these theoretical challenges can be found in Carroll

(2001), Clifton et al. (2012), and Martin (2012). Dark energy is a pressing question, and the

search for deviations from a cosmological constant are high priorities of modern observational

cosmology.

Cosmological observables such as the CMB and galaxy surveys, detailed in subsequent sections,

inform us about the proportions of these four constituents, which have dominated the energy

budget in various epochs, and influenced the formation of structure and the expansion history of

the Universe.

The idea of an expanding Universe was introduced to resolve the apparent violation of homo-

geneity in Hubble’s observations of the recession of galaxies. The expansion is encoded in the scale

factor a, which is isotropic and a function of physical time t only, with a = 1 today. The space-time

metric gµν of the expanding, homogenous, isotropic Universe takes a simple form,

gµνdx
µdxν = −c2dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 dφ2)

)
. (1.1)

In this metric, often called the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, (r, θ, φ) are

the 3D polar coordinates labelling the points of the 3-dimensional constant-time slice, thereby

defining comoving observers. k is a measure of the spatial curvature, reduced to canonical values

k = +1, 0,−1 corresponding to a constant-positive-curvature, a flat, and a negative-curvature 3D

spaces, respectively. Another important quantity is the conformal time η,

η ≡
∫

dt

a(t)
, (1.2)

which is used to defined the comoving particle horizon in the time interval t − ti, denoted by

χ(t) = η− ηi. The latter is the maximum comoving distance travelled by a photon traveled between

ti and t, and therefore defines a causal horizon beyond which particles have not been causally

connected since ti. In addition, solving for the geodesics equations gµνdxµdxν yields that the

physical momentum and energy of photons scale as a−1 as the Universe expands, the result leading

to the definition of redshift z,
λobs

λem
≡ 1 + z =

a(tobs)

a(tem)
, (1.3)

connecting the wavelengths and scale factors at emission and observation times (tem and tobs,

respectively). For observations made today, we have tobs = today and a(tobs) = 1 by convention.
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For small redshifts, expansion around tobs yields the famous Hubble law cz ≈ H0d with the Hubble

constant defined as

H0 =
1

a

da

dt

∣∣∣∣
tobs

, (1.4)

sometimes expressed in terms of the dimensionless parameter h as H0 = 100 hkms−1Mpc−1. While

early measurements of cepheids yielded h ∼ 0.7 (Sandage, 1958), current CMB, supernovae and

gravitational lensing measurements are able to pin down H0 to percent level. However, some of the

most recent measurements are discrepant (Freedman et al., 2001; Hinshaw et al., 2013; Planck

Collaboration, 2013k; Riess et al., 2011a), and it is unclear whether this points to new physics

or to residual systematic uncertainties in the measurements. Extra relativistic species in the early

universe, such as neutrinos, could alleviate these tensions if they are confirmed. This issue is briefly

considered below and in the last chapter of this thesis.

Assuming GR as a theory of gravity, the dynamics of the Universe are beautifully encapsulated

in terms of the Friedmann and Lemâıtre solution of the Einstein equations,

(
ȧ

a

)2

=
8πGρ

3
− k

a2
+

Λ

3
(1.5)

ä

a
= −4πG

3
(3P + ρ) +

Λ

3
. (1.6)

These equations—often called the Friedmann equations—connect the content and the (background)

expansion of the Universe, entirely captured in the time-dependent scale factor a(t). The components

are encoded in the equation of state P = P (ρ), which can be written as P = wρ for perfect fluids.

Relativistic particles have w = 1/3, matter w = 0, and cosmological constant w = −1, although the

search for deviations from w = −1 is an active research topic.

Using the equation of state—a byproduct of the Einstein and Friedmann equations—,

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0, (1.7)

one finds the solution ρ(a) = ρ0a
−3(1+w). This result, in conjunction with the Friedmann equations,

gives

a(t) =

 t2/3(1+w), w 6= −1

eH̄t, w = −1.
(1.8)

for a flat universe. In other words, a radiation-dominated Universe has a ∝
√
t, whereas matter-

domination yields a ∝ t2/3. A cosmological constant drives an exponential solution (with a constant
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Hubble parameter H = H̄).

Finally, the Friedmann equations can be rewritten in terms of the critical density ρcr = 3H2/8πG,

to pull out an explicit curvature term

Ω(a)− 1 =
k

H2a2
, (1.9)

where Ω(a) is the total energy density in units, Ω(a) = ρ/ρcr. Observationally, the Universe appears

to be spatially flat (i.e., Ω = 1), but this raises an important fine-tuning problem — the flatness

problem—, for the initial conditions of the cosmological model, as detailed below.

1.1.2. Brief history

The observable Universe was smaller, denser and hotter in the past. In the standard cosmological

paradigm, described in the next section, an initial phase of inflation is assumed to have caused a

60 e-fold (=e60 ≈ 1026) accelerated expansion and imprinted a distinctive, nearly scale-invariant

spectrum of perturbations on a smooth background. Inflation is discussed in more details below.

After this initial phase, the Universe was filled with an ionised baryon-electron-photon plasma. The

mean free path of photons—subject to Thomson scattering—was extremely short due to the high

number density of free electrons. During this radiation-dominated epoch, the Universe expanded

as a ∝
√
t and cooled, steadily decreasing the mean photon energy, and eventually becoming

dominated by matter rather than radiation. Recombination occurred at a temperature of about 3000

K, when the Universe was about 380,000 years old. Electrons and protons of the primordial plasma

combined into neutral atoms, while photons began to free-stream, their mean free path becoming

larger than the Hubble scale. This is when the CMB was emitted. The Universe then remained

matter dominated for a long period, expanding as a ∝ t2/3, and allowing matter perturbations to

grow as the scale factor. Cosmic structures started to form: stars, quasars, galaxies, clusters of

galaxies. The period between recombination and the formation of light sources is known as the

dark ages. Reionisation occurred when the first objects were energetic enough to ionise neutral

hydrogen, slowly filling the Universe with an ionised plasma. This process is believed to have

occurred between 150 million and one billion years after inflation. These estimates will soon be

refined by precise observations of the polarisation of the CMB, and by 21-cm experiments, which

will map the neutral hydrogen in the epoch of reionisation. At the age of 10 billion years, the
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Today : dark energy domination

Galaxy formation

400 million years : End of reionisation

Dark ages

380,000 years : cosmic microwave background

Universe fully ionised

Inflation and reheating

Figure 1.1: Our picture of cosmic history, as suggested by cosmological observations and explained

by the concordance model.

Universe started to undergo a new period of accelerated expansion, presumably driven by dark

energy, which stopped the growth of matter perturbations on all scales. Figure 1.1 gives a cartoon

overview of the various stages of the history of the Universe, starting from a phase of inflation to

the recent dark energy domination epoch. If the accelerated expansion persists, it will prevent any

more structures from entering the cosmological horizon, and new gravitationally bound structures

from forming.

1.2. The early Universe

1.2.1. The cosmic microwave background

As previously discussed, recombination of electrons and protons occurred when the Universe

cooled below ∼ 3000 K, leading to the emission of relic radiation known as the cosmic microwave

background (CMB). The CMB is the cornerstone of modern cosmology and one of the pillars of the

ΛCDM model. First detected by Penzias and Wilson (1965), then identified by Dicke et al. (1965),

its spectrum is the most perfect black body spectrum ever measured. It was first measured by

COBE (Smoot et al., 1992), which also detected its temperature fluctuations—of the order of 1 in
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100,000— which have since then been studied by a great number of experiments. In particular, the

WMAP satellite mission (Spergel et al., 2003) revealed the extraordinary informative power of these

fluctuations, and firmly established cosmology as a precision science. More recently, the Planck

satellite (Planck Collaboration, 2013g) refined our understanding of these fluctuations. Planck also

bridged the gap between WMAP, mapping & 0.2 degree scales, and experiments like the South Pole

Telescope (Keisler et al., 2011) and the Atacama Cosmology Telescope (Dunkley et al., 2011), which

focused on very small (. 0.1 deg2) angular scales. The angular power spectra of the temperature

and polarisation fluctuations from the first Planck release are shown in Figure 1.2. Their amplitude

and features are intimately related to the composition and physical laws of the early Universe. For

instance, the peaks of the power spectra constrain the curvature, the amount of dark matter and

dark energy, whereas the damping tail informs us about the number of relativistic species at the

time of recombination.

Figure 1.2: The angular power spectra of the CMB temperature and polarization fluctuations

measured by Planck (Planck Collaboration, 2013i).

Not only is the physics of the CMB itself well understood and tested, but CMB experiments also

provide a number of secondary observables. In particular, the lensing of the CMB by the intervening

matter can now be mapped at great accuracy (Das et al., 2011; Planck Collaboration, 2013d; van

Engelen et al., 2012), and is becoming established as a powerful cosmological probe.

Finally, the CMB temperature maps can be used to search for physics that is not captured by

angular power spectra. Indeed, the latter only contain all the information if the CMB is Gaussian.

This has been tested to excellent precision, but current measurements leaves room for small
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deviations, which will be discussed in the next section. Beyond (non-)Gaussianity of the CMB, map-

based techniques are used to search for specific physics or features in the CMB, such as signatures

of collisions with bubble Universes, cosmic strings, and deviations from homogeneity or isotropy.

These are beyond the scope of this thesis, but some of the most recent investigations can be found

in Feeney et al. (2013); Planck Collaboration (2013a,b,c) and references therein.

1.2.2. Inflation and primordial non-Gaussianity

The CMB offers a unique picture of the early Universe, and Figure 1.2 shows that it is remarkably

well described by the ΛCDM model. However, a number of phenomena are unexplained without

appropriate initial conditions, set by an initial phase of inflation. A pedagogic review of these

problems and how to resolve them is presented in Baumann (2009). Here I only summarise how

the inflationary paradigm addresses the horizon and flatness problems.

The horizon problem results from the observation that the CMB is uniform to 10−5, and that this

uniformity cannot be explained by causality alone. Indeed, in ΛCDM Fourier modes can only evolve

from outside to inside the horizon, since the radiation- and then matter-dominated Universe has

been in decelerating expansion from recombination until recent times, before dark energy started

to dominate. In fact, the particle horizon in the ΛCDM model is approximately 1 degree on across

the CMB sky, which is at odds with the measured full-sky uniformity.

The flatness problem results from analysing Equation 1.9 and noticing that spatial flatness is an

unstable point; in other words any deviation from flatness grows with time. Since CMB observations

indicate that the Universe is spatially flat to percent level (i.e., the total density today is close to the

critical density), it must have been even flatter in the past. One can extrapolate these constraints to

find e.g., |Ω− 1| < O(10−16) at the time of nucleosynthesis, yielding a striking fine-tuning problem.

Inflation is an elegant solution to these problems, and is currently the leading theory for the

initial conditions of the Universe. It consists of a period of quasi-de Sitter expansion with H2 � |Ḣ|,

where comoving separations grow as a(t) = eHt and can cross the horizon. But one of the features

of inflation is that it must end, i.e., it must only last for a finite period, and then return to a standard

picture of matter and radiation domination. Therefore, a cosmological constant alone is not a

viable solution since it would give constant H. This corresponds to the “old inflation” scenario

(Guth, 1981; Guth and Weinberg, 1981): a scalar field trapped in a false vacuum. Therefore, a

viable model of inflation requires a physical clock (Linde, 1982). One simple implementation of
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this idea is a rolling scalar field with Lagrangian L = − 1
2∂µφ∂

µφ − V (φ). The potential energy

produces an exponential expansion rate, solving both the horizon and flatness problems provided

the scale factor increases by at least a factor of e60. The condition H2 � |Ḣ| therefore translates into

V (φ)� φ̇2, and inflation ends when reaching the bottom of the potential, to undergo oscillations

and reheat the Universe. This process is illustrated in Figure 1.3. This reheating converts the

potential energy of the inflaton into particles of the Standard Model. (see e.g., Allahverdi et al. 2010

for a review). Quantum density and metric fluctuations are generated during inflation, yielding

powerful predictions, such as the near scale-invariance of its scalar perturbations and the existence

of tensor perturbations producing gravitational waves. The latter leave a distinctive large-scale

angular power in the B-mode polarisation of the CMB, the detection of which is one of the main

goals of ongoing CMB experiments.

Figure 1.3: Example of an inflaton potential, from Baumann (2009). CMB fluctuations are created by

quantum fluctuations δφ, and acceleration occurs when the potential energy of the field dominates

over its kinetic energy. Inflation ends at φend when the kinetic energy has grown to become

comparable to the potential energy. At reheating, the energy density of the inflaton is converted

into radiation.

Inflation is a successful phenomenological model, but its exact physical implementation is

currently poorly understood. Dozens of classes of models exist, with hundreds of different variants,

all solving the previous horizon and flatness problems (see Planck Collaboration et al. 2013 for

a set of models tested with Planck data). In addition, there is currently a growing ambition to

implement inflation in the context of a more fundamental theory, such as string theory. Therefore,

pinning down the detailed physics of inflation and reducing the space of models with observational

constraints is a pressing question.
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One of the most important observables that can help discriminate between classes of inflationary

models is primordial non-Gaussianity (PNG), denoting deviation from Gaussianity in the primordial

fluctuations. In the CMB, since angular power spectra only measure the Gaussian information, PNG

is measured by higher-order correlations, such as bispectra and trispectra, i.e., correlations between

triplets and quadruplets of modes on the sky, as illustrated in Figure 1.4.

k1

k2

⇔

⇔k1

k2

k3

k2/k1

k3/k1

folded

squeezed

equilateral

|k1 − k2|

B(k1, k2, k3) = B( k3
k1
, k2
k1

)

P (k1, k2) = P (|k1 − k2|)

Figure 1.4: Power spectrum and bispectrum in Fourier space. Conditions P (|k1−k2|) and

B(k1, k2, k3) = B(k3k1 ,
k2
k1

) ensure that they are equivalent to the 2- and 3-point correlations in

real space. The power spectrum is a one-dimensional curve; the bispectrum is a two-dimensional

surface which is a function of the triangle formed by (k1, k2, k3). In the context of inflation, limiting

configurations (squeezed, equilateral, folded) correspond to different physical mechanisms.

Specific physical mechanisms during inflation will create correlations in different configurations

and shapes. For this reason, PNG is a powerful window on inflation. In particular, canonical single-

field slow-roll inflation predicts negligible level of squeezed-type PNG (see e.g., Allen et al. 1987;

Bartolo et al. 2004; Maldacena 2003; Salopek and Bond 1990). Any measurement of deviations

from this prediction can thus provide evidence for non-standard inflationary physics.

This specific form of PNG arising from squeezed configurations is the so-called local model,

where the primordial potential φ is modified by including higher order terms,

Φ = φ+ fNL[φ2 − 〈φ2〉] + gNL[φ3 − 3φ〈φ2〉], (1.10)

where all fields are evaluated at the same spatial coordinate, and fNL and gNL are real-valued
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constants (often called the skewness and kurtosis parameters).

The most stringent constraints on local PNG currently come from higher-order statistics of

the CMB. Most recently, the Planck Collaboration reported −8.9 < fNL < 14.3 (95% CL) (Planck

Collaboration, 2013h), while constraints on the kurtosis have been obtained from the WMAP

satellite, also consistent with gNL = 0. While these results are compatible with Gaussian initial

conditions, their uncertainties still leave room for non-standard inflation models. Importantly, PNG

can be detected in surveys of the large-scale distribution of galaxies, as detailed below. Performing

this measurement in real data is one of the objectives of this thesis.

1.3. The evolved Universe

The CMB is a powerful window on the early Universe, but is not sensitive to all predictions of the

ΛCDM model. For example, the effects the dark energy are only detectable on the largest angular

scales through the Integrated Sachs-Wolfe (ISW) effect, the blueshifting of CMB photons due to

evolving potential wells at late times. Relativistic species like neutrinos are hard to distinguish from

radiation, and theories of gravity can only be tested indirectly through their geometrical effects.

Finally, the CMB is a surface by nature, and CMB temperature experiments like Planck are already on

the verge of being limited by the number of modes (∼ 106 modes). Even though CMB polarisation

and lensing have not yet reached their full maturation, they will also be ultimately limited by the

statistical power of the last scattering surface.

On the contrary, the large-scale structure of the Universe is a three-dimensional structure giving

access to a much larger number of modes, and a plethora of additional observables. Ongoing

and future experiments like the Dark Energy Survey1 (DES), Euclid2, the Square Kilometer Array3

(SKA), the Large Synoptic Survey Telescope4 (LSST), will probe > 109 modes and an immense

range of physical processes, scales and epochs, which will allow us to test detailed scale- and

redshift-dependent models of dark matter, dark energy, gravity, and baryonic physics.

1http://www.darkenergysurvey.org/
2http://sci.esa.int/euclid/
3https://www.skatelescope.org/
4http://www.lsst.org/lsst/
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1.3.1. Matter perturbations and structure formation

Figure 1.5 shows the power spectrum of the matter perturbations today (z = 0), i.e., fluctuations

in the dark matter and baryon fluid, superimposed with a variety of observables. This again

highlights the remarkable success of the ΛCDM model to describe cosmological observations in a

range of scales and frequencies. The form of the matter power spectrum can be derived with linear

perturbation theory and evolving the primordial scale-invariance power spectrum P (k) ∝ k, as

summarised below.

Figure 1.5: Matter power spectrum from a range of probes, reproduced from Hlozek et al. (2012),

where the data sets are described in detail.

The turnover scale around k ∼ 0.02 hMpc−1 is due to the very different physics that affects the

modes entering the horizon before or after matter-radiation equality. The largest scale modes are

always bigger than the horizon (“super-horizon”) and don’t evolve through causal processes. During

radiation- and matter-dominated epochs, they grow linearly with conformal time, and become

constant once dark energy starts to dominate. At intermediate scales, modes enter the horizon

after matter-radiation equality and evolve in a dark matter-dominated Universe. Since cold dark

matter is pressureless, in this case the perturbations also grow linearly with conformal time. The

smallest-scale modes, however, enter the horizon before matter-radiation equality and evolve in

a radiation-dominated Universe. Therefore, the power at these scales is suppressed by a factor of
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∼ k−4 due to oscillations in the photon plasma, yielding the ∼ k−3 scaling of the matter power

spectrum at k > 0.1 hMpc−1.

The matter power spectrum is a rich source of cosmological information, since it is sensitive to

the composition, initial conditions, and evolution of the Universe.

1.3.2. Galaxy surveys

Unlike the CMB, the distribution of matter is not directly observable. It is sampled by tracers of

the light distribution, such as galaxies and quasars, which probe the large-scale structure through

their positions, and the magnification and lensing of their light by gravity. This thesis focuses on the

study of the clustering of galaxies and quasars found by wide area surveys. Obviously, other tracers

can be used, such as the distribution of neutral hydrogen, measured in the Lyα forest of quasar

spectra or with future 21cm radio surveys. Their study can bring a great deal of information about

baryonic physics and the z > 1 Universe.

There are two distinct types of surveys of the large-scale structure (with a spectrum of inter-

mediate cases, not considered here): spectroscopic and photometric surveys. In the former, one

uses a high-resolution spectrograph to stare at bright sources and acquire their spectral energy

distribution to estimate their type, characteristics and redshift. Hence, such surveys provide the 3D

positions of galaxies and quasars, and can be used to map the large-scale structure in great detail.

However, they are limited by the sensitivity of the spectrographs, and by the time and financial

constraints needed to acquire good spectra of large numbers of sources. Photometric surveys, on

the contrary, make use of broad band filters and wide-field cameras to overcome these constraints.

They can detect faint sources (typically hundreds of millions of galaxies) over large areas of the

sky (from hundreds to tens of thousands of square degrees), giving access to larger volumes and

higher statistical power. Obviously, other complications arise, since the light spectrum is now

only observed through a handful of filters. Topical issues include detecting sources and classifying

sources (e.g., distinguishing galaxies from stars), estimating their fluxes and shapes in noisy images,

and estimating their photometric redshift (photo-z). Most of these issues remain open problems

and intense areas of research. Interestingly, some of them benefit from machine learning techniques

(e.g., Collister and Lahav 2004; Graff et al. 2014), such as neural networks, which efficiently find

classification and estimation rules in existing data and prove useful when physical models are not

available or perform poorly (e.g., for photo-z estimation and star-galaxy separation).
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Photometric surveys also rely different types of analysis compared to spectroscopic surveys.

In general, photo-z estimates contain significant uncertainties, causing the radial distribution of

detected galaxies to be poorly known. Hence one cannot probe the 3D distribution of matter,

for example through 3D statistics such as the Fourier power spectrum P (k). The most common

alternative is to measure the projected clustering of galaxies, involving 2D statistics such as angular

power spectra or 2D correlation functions, in redshift slices of size greater than the photometric

redshift uncertainties. In the best cases (with good photo-z), using sufficiently small bins and cross-

correlations between overlapping redshift samples enable the recovery of most of the information

compared to the 3D distribution. Some of the most recent measurements of the 3D and 2D clustering

of galaxies are presented in Figure 1.6. A notable advantage of exploiting angular power spectra

in redshift bins is to keep the angular and radial dimensions decoupled in the analysis. This can

facilitate the treatment of redshift dependent effects (sometimes difficult to incorporate in P (k)

approaches5), and observational complications — or systematics —, which usually affect the angular

and radial information differently. The identification and robust treatment of systematics is a central

point of this thesis. Indeed, future surveys will not be limited by statistical uncertainties, but rather

by our ability to deal with systematics.

The balance between depth, volume, photo-z uncertainties, and systematics can advantage

spectroscopic and photometric surveys in different applications. The former are currently used for

accurate measurements of the 3D power spectrum and bispectrum, mainly aiming at sub-percent

level measurements of baryon acoustic oscillation feature. But the largest ongoing and future

surveys —the Kilo Degree Survey6 (KiDS), DES, Euclid, LSST— are all photometric. Beyond the

gain in volume and statistical power, this is also because such surveys are optimal for measuring and

combining information from the clustering and gravitational lensing of galaxies. These quantities

do not only probe different scales and types of physics, but also suffer from different systematics. In

particular, cosmic shear — the magnification of light and distortion of shapes of galaxies due to

gravity— is a powerful window on the matter distribution, but also involves complications such

as intrinsic alignment and shape measurement noise. The agreement but also complementarity

between various probes of the large-scale structure is illustrated in Figure 1.5. The ΛCDM model

remarkably fits all datasets, but future experiments will decrease the errors on these measurements

by orders of magnitude. Combining data sets and testing models will then be challenging.

5Most spectroscopic P (k) analyses assume no redshift evolution within the redshift range of the sample. It can be
shown that sample spanning a large redshift range requires the a full 3D approach, for example involving the Fourier-Bessel
transform, to exploit all the information.

6http://kids.strw.leidenuniv.nl/
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Figure 1.6: Left: measurements of the 3D power spectrum of galaxies from the Baryon Acoustic

Oscillation Survey (Anderson et al., 2012). Right: tomographic angular power spectrum of luminous

red galaxies from SDSS DR7 (Thomas et al., 2010).

1.3.3. Scale-dependent halo and galaxy bias

Connecting the distribution of light tracers to the underlying matter is a difficult task, due our

limited knowledge of the physics controlling the formation and evolution of galaxies in dark matter

halos. These complications are usually encapsulated in a galaxy (or quasar) bias term, which is

added on top of the halo bias, to relate the galaxy and the dark matter overdensity fields. In its

simplest incarnations —well verified observationally for certain types of galaxies— the bias is linear

and scale-independent on large-scales, and becomes non-linear, and scale-dependent on small scales.

The development of bias models is an active field of research, involving theoretical investigations

and extensive comparisons to cosmological simulations. A major challenge of ongoing and future

surveys will be to connect phenomenological bias models (fitted to measurements of the clustering

of galaxies as a function of scale, luminosity, galaxy type) to the underlying physics of dark matter

halo and galaxy formation.

Interestingly, the halo bias itself can be affected by primordial physics. The example considered

in this thesis is primordial non-Gaussianity, which couples large and small scale modes in the

initial conditions. This coupling can propagate and modify the abundance of halos in overdense

regions (by tilting the halo mass function), therefore also affecting the number of galaxies in

a scale-dependent manner. The effect can be visualised in Figure 1.7: non-zero local PNG will
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δ(x)

δc

Figure 1.7: The Kaiser effect (Kaiser 1984) describes the fact that galaxies form at the peaks of the

primordial density fluctuations. Squeezed non-Gaussianity increases the large scale modulation of

the density peaks and thus impacts the clustering of tracers. Compared to the Gaussian case, not

only are tracers more massive but they are more correlated over large distances, which modifies the

bias of the power spectrum at large-scales.

increase the abundance of massive halos on either large or small scales (for positive and negative

fNL, respectively). Therefore, the net signature of primordial non-Gaussianity on the large-scale

structure is an enhancement of the bias of tracers on large-scales. Quantitatively, non-zero fNL and

gNL will modify the “Gaussian” bias bG(z) into (Dalal et al., 2008; Desjacques and Seljak, 2010b;

Matarrese and Verde, 2008; Slosar et al., 2008; Smith et al., 2012)

bNG(k, z) = bG(z) +
βf (z)fNL + βg(z)gNL

α(k, z)
(1.11)

βf = 2δc
(
bG(z)− 1

)
(1.12)

βg = 3
∂ log n

∂fNL
(1.13)

α(k, z) =
2k2T (k)D(z)

3ΩmH2
0

(1.14)

where δc is the spherical collapse threshold, n the halo number density, and α(k, z) relates the

linear density field and the primordial potential through δlin(k, z) = α(k, z)Φ(k). These expressions

neglect an additional small contribution induced by the effect of PNG on the halo mass function

(which can absorbed in bG). For simplicity, the implicit mass dependence of bG, βf , and βg is also

neglected, and the bias bG is considered to be only redshift dependent. Note that for βg we use

the fitting formula from Smith et al. (2012), which is valid for the range of masses and scales

considered in this thesis.

Primordial non-Gaussianity is powerful window on the early Universe, and it is remarkable that
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its effect can be measured in the bias of large-scale structure tracers. However, measurements of the

bias on large scales are largely limited by cosmic variance and the presence of spurious large-scale

correlations, often produced by contamination from observational systematics. This thesis deals

with this specific problem, i.e., measuring the bias and constraining primordial non-Gaussianity in

the presence of these two complications.

1.3.4. Quasars

Quasars are the compact, energetic regions surrounding the central supermassive black hole of

massive galaxies. The violent accretion of material by black holes makes quasars the most luminous

objects in the known Universe. They have a very distinctive spectral energy distribution, show

in Figure 1.8, and radiate in a range of frequencies, from X-rays to the far-infrared, with a peak

in the ultraviolet-optical bands. Some quasars are also strong sources of radio emission and of

gamma-rays.

Among all tracers of the large-scale structure, quasars are the most biased, and their bias strongly

increases with redshift (b ∼ 2, 3, 5 at z = 1.5, 2, 2.5 respectively), mostly because they form and

reside in average mass halos across cosmic times (Fanidakis et al., 2013; Tinker et al., 2010).

Figure 1.8: Typical spectral energy distribution of a quasar, from Vanden Berk et al. (2001).

Thanks to the distinctive quasar spectrum, spectroscopic surveys of quasars don’t suffer from
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stellar contamination. However, they are based on small samples of bright sources pre-selected in

specific redshift ranges. This is due to the limited sensitivity of multi-fiber spectrographs and the

resources needed to verify large numbers of sources.

This thesis focuses on surveys of photometric quasars, i.e., quasar candidates identified with an

imaging survey, here the Sloan Digital Sky Survey7 (SDSS). The main advantage of this type of

survey is to detect a large number of quasars up to redshift z ∼ 4, and probe much larger volumes

than spectroscopic surveys, therefore significantly decreasing the variance of large-scale clustering.

This makes quasars ideal populations for PNG studies. However, a significant fraction of these

photometric candidates are likely to be stars, mostly because it is difficult to distinguish quasars

from stars and estimate their redshift using only photometric information. The performances of the

star-quasar classification are also heavily redshift-dependent as the emission lines fall in or out of

the photometric filters as they get redshifted. Observational systematics couple with these effects to

create a complex spatially varying stellar contamination and depth in photometric quasar samples.

These effects lead to spurious large-scale correlations and prevent from harnessing the statistical

power of photometric quasars to constrain PNG. The first part of this thesis (chapters 1-3) largely

deals with the resolution of this problem.

1.3.5. Cosmological neutrinos

Neutrinos are electrically neutral fermions playing an important role in sub-atomic interactions.

Solar and atmospheric experiments have revealed that they are massive, in contrast with the

predictions from the standard model of particle physics. Yet, their precise masses have not been

measured. This is an active research area in cosmology because the number and masses of neutrinos

affect both the CMB and matter anisotropies. In particular, ongoing and future CMB and galaxy

surveys should provide precise measurements of these quantities, and guide the extensions of the

standard models of cosmology and particle physics.

In the early universe, neutrinos are relativistic and behave like radiation, therefore affecting

the acoustic peaks and damping tail of the CMB power spectrum. The latter is not very sensitive

to the mass of neutrinos, but rather to their number, usually parametrised by Neff , the number

of extra relativistic species (or dark radiation). The fiducial value Neff = 3.046 corresponds to

three active neutrinos (of left-handed chirality), the difference from three being due to the small

7http://www.sdss.org/
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Figure 1.9: Effect of massive neutrinos on the matter and CMB power spectra, reproduced from

Park et al. (2012).

amount of entropy from electron/positron annihilation that gets transferred to the neutrino. Neff

is by design equal to three in the idealised case that all of this entropy is transferred to photons.

Current estimates of Neff have a slight (1− 2σ) preference for Neff > 3.046 (Dunkley et al., 2011;

Keisler et al., 2011; Planck Collaboration, 2013k), especially when combining the CMB with local

measurements of H0 (Freedman et al., 2001; Hinshaw et al., 2013; Planck Collaboration, 2013k;

Riess et al., 2011a).

In the late universe, massive neutrinos free-stream and suppress the growth of structure on

small scales, in proportion to their total mass, as shown in Figure 1.9. Therefore, the latter can be

constrained by any observable of the matter power spectrum, including the clustering of galaxies

and quasars, cosmic shear, abundances of clusters of galaxies, and redshift space distortions. Some

recent measurements of the σ8 parameter, the RMS of matter fluctuations on a 8 h−1Mpc scale,

are in significant tension with the CMB estimate. It was also argued that including very massive

neutrinos in the ΛCDM model could resolve these discrepancies.

It is currently unclear whether the discrepancies on H0 and σ8 measurements are hints of

new physics or due to residual systematics in the measurements. The last chapter of this thesis

investigates these tensions, and whether extending ΛCDM with extra massive neutrinos (active or

sterile) can resolve them. It is focused on tracking down the origin of the tensions and testing the

extended models with robust combinations of data sets.
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1.4. Wavelets in cosmology

The uncertainty principle of harmonic analysis states that functions cannot be perfectly localised

in both real and frequency spaces simultaneously. In other words, a Dirac delta function (perfectly

localised) in one space is necessarily unbounded (i.e., has infinite support) in the other space.

Wavelets are the compromise solution: they are bounded (or band-limited) in both spaces, as

shown in Figure 1.10, and can be constructed to probe specific scales and frequency ranges. The

prove particularly useful to represent or analyse data with localised features. In fact, they are a

key ingredient of the notion of sparsity, which aims at finding and exploiting sets of functions or

dictionaries to optimally represent data with the smallest number of components. Many natural

datasets turn out to be sparse in wavelet-type bases, which has lead the development of ground-

breaking algorithms in applications such as data compression and reconstruction. Comprehensive

overviews of the fundamentals of wavelets and sparsity can be found in e.g., Daubechies 1992a;

Mallat 1999.

Figure 1.10: Example of “mexican hat” wavelets constructed to be localised in time and frequency

domains (Couderc and Zareba, 1998). These wavelets are redundant, i.e., a given scale or frequency

is probed by more than one wavelet.

In cosmology, wavelets have been commonly used to search for anomalous features in the

CMB (e.g., Feeney et al. 2011a), as well as constraining dark energy (McEwen et al., 2007a, 2008)

and primordial non-Gaussianity (Cayón et al., 2001; Vielva et al., 2004). The latter modifies the

average amplitude and size of hot and cold spots, which are efficiently represented in wavelet

bases. They are also used in several raw data analysis operations, for example to decompose and

process CMB polarisation beams and galaxy shapes (e.g., Kuijken 2006; Refregier and Bacon 2003).

Most recently, the perspectives of using wavelets and sparsity for galaxy survey data analysis have
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become apparent. Indeed, most features of the large-scale structure —filaments, clusters, voids—

can be represented with a small number of localised components. The chapters 4 and 5 of this thesis

deal with developing wavelets on the 2D sphere and on the 3D ball with interesting localisation

and reconstruction properties, and lay down the perspectives of applying them to CMB and galaxy

survey data.

1.5. Thesis outline

Each chapter of this thesis consists of a paper written by myself and collaborators. I was critically

involved in every aspect of these papers, including the development of the theory and methods,

the implementation and application to data, and the writing of the manuscript, where I was the

main author. The chapters of this thesis are reproductions of the following papers as they appear in

print. Minor formatting changes have been made to made to match thesis requirements. The titles,

co-authors and publication details of the papers comprising each chapter are listed below. All were

carried out in collaboration with the named co-authors.

Chapter 1: Estimating the large-scale angular power spectrum in the presence of systematics:

a case study of Sloan Digital Sky Survey quasars.

This work was published as Boris Leistedt, Hiranya V. Peiris, Daniel Mortlock, Aurélien

Benoit-Lévy, Andrew Pontzen, 2013, Monthly Notices of the Royal Astronomical Society, 435

(3): 1857-1873, and was carried out in collaboration with the named co-authors.

Chapter 2: Exploiting the full potential of photometric quasar surveys: Optimal power spectra through

blind mitigation of systematics.

This work was published as Boris Leistedt, Hiranya V. Peiris, 2014, Monthly Notices of the

Royal Astronomical Society, 444(1): 2-14, and was carried out in collaboration with the

named co-authors.

Chapter 3: Constraints on primordial non-Gaussianity from 800,000 photometric quasars.

This work was carried out in collaboration with Hiranya V. Peiris and Nina Roth, and was

submitted to Physical Review Letters in August 2014. It is currently in review.
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Chapter 4: S2LET: a code to perform fast wavelet analysis on the sphere.

This work was published as Boris Leistedt, Jason D. McEwen, Pierre Vandergheynst, Yves

Wiaux, 2013, Astronomy & Astrophysics, 558, A128, and was carried out in collaboration

with the named co-authors.

Chapter 5: Exact Wavelets on the Ball.

This work was published as Boris Leistedt, Jason D. McEwen, 2012, IEEE Transactions on

Signal Processing, 60, 6257-6269, and was carried out in collaboration with the named

co-authors.

Chapter 6: No new cosmological concordance with massive sterile neutrinos.

This work was published as Boris Leistedt, Hiranya V. Peiris, Licia Verde, 2014, Physical

Review Letters, 113, 041301, and was carried out in collaboration with the named co-authors.
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2
Estimating the large-scale angular power spectrum in

the presence of systematics: a case study of Sloan

Digital Sky Survey quasars

“The first principle is that you must not fool yourself and you are the easiest person to fool”.

R. Feynman

2.1. Abstract

The angular power spectrum is a powerful statistic for analysing cosmological signals imprinted

in the clustering of matter. However, current galaxy and quasar surveys cover limited portions

of the sky, and are contaminated by systematics that can mimic cosmological signatures and

jeopardise the interpretation of the measured power spectra. We provide a framework for obtaining

unbiased estimates of the angular power spectra of large-scale structure surveys at the largest scales

using quadratic estimators. The method is tested by analysing the 600 CMASS mock catalogues

constructed by Manera et al. (2013) for the Baryon Oscillation Spectroscopic Survey (BOSS). We

then consider the Richards et al. (2009) catalogue of photometric quasars from the Sixth Data

Release (DR6) of the Sloan Digital Sky Survey (SDSS), which is known to include significant stellar

contamination and systematic uncertainties. Focusing on the sample of ultraviolet-excess (UVX)

sources, we show that the excess clustering power present on the largest-scales can be largely

mitigated by making use of improved sky masks and projecting out the modes corresponding to the

principal systematics. In particular, we find that the sample of objects with photometric redshift
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1.3 < z̃p < 2.2 exhibits no evidence of contamination when using our most conservative mask

and mode projection. This indicates that any residual systematics are well within the statistical

uncertainties. We conclude that, using our approach, this sample can be used for cosmological

studies.

2.2. Introduction

The cosmic microwave background (CMB) and the large-scale structure (LSS) of galaxies contain

a wealth of physical information that can be used to test models of the origin and evolution of

the Universe. Both are well-described by correlated Gaussian random fields, and therefore can be

characterised by two-point statistics (see, e.g., Bond et al. 1998, 2000; Tegmark et al. 2002a). In

particular, the angular power spectrum is a natural tool for CMB data analysis, and has also proved

useful for the study of the clustering properties of galaxy surveys in redshift bins. Such tomographic

approaches will be essential for exploiting next generation surveys such as the Dark Energy Survey1

(DES), which will provide large photometric catalogues where the uncertainties on the redshift

estimates complicate a full three-dimensional analysis.

However, data unavoidably contain non-cosmological contributions, for example due to instru-

mental errors and systematic uncertainties. These contaminants result in additional correlations

in the measured power spectra, and can compromise our interpretation of the observables if not

correctly treated. In the context of galaxy surveys, observational systematics and calibration errors

can result in extra clustering power over a wide range of scales (see e.g., Huterer et al. 2013;

Ross et al. 2011, 2012a; Thomas et al. 2010, 2011). This proves especially problematic at the

largest scales, since the corresponding modes need to be constrained from partial sky data. These

modes are nonetheless crucial for testing early universe theories such as cosmological inflation (e.g.,

Albrecht and Steinhardt 1982; Guth 1981; Linde 1982), the standard paradigm for describing the

origin of structure in the universe. Future galaxy surveys will be able to test this paradigm very

precisely, particularly through the search for signatures of primordial non-Gaussianity (PNG). PNG

creates a scale-dependent galaxy bias affecting the 2-point clustering properties of LSS tracers at

the largest scales (Dalal et al., 2008; Matarrese and Verde, 2008). Hence, these scales, which can

be strongly affected by systematics, require particularly careful treatment.

1www.darkenergysurvey.org
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Quasars, being highly biased tracers of LSS, are excellent candidates to study the scale- and red-

shift dependence of galaxy bias, for example to constrain PNG. However, since current spectroscopic

samples have low number densities and cannot compete with PNG constraints derived from the

CMB, one must resort to photometric quasar catalogues. The largest catalogues currently available

are extracted from the Sloan Digital Sky Survey (SDSS), and were used to study PNG and the

integrated Sachs-Wolfe effect (ISW) (Giannantonio et al., 2006, 2008; Slosar et al., 2008; Xia et al.,

2010, 2011). However, these studies demonstrated the high sensitivity of the correlation functions

to the sky masks under consideration, indicating the presence of significant levels of contamination

by stars and calibration-related systematics. In particular, recent work by Pullen and Hirata (2013),

corroborated by Giannantonio et al. (2014), confirmed the high levels of contamination in the

Richards et al. (2009) catalogue of SDSS photometric quasars, leading to concerns about the use of

this sample for clustering measurements. In this work, we use sample reduction, masking and mode

projection to identify a subset of objects in this catalogue that can be used for cosmological analyses.

We concentrate on the main systematics found by previous studies, and analyse their impact on

the clustering measurements through auto- and cross-correlation of redshift subsamples with each

other, and with templates of the systematics. Note that cross-correlating with external data can also

prove useful in identifying and mitigating the systematics in quasar samples.

When analysing photometric catalogues in redshift bins, the theory power spectrum predic-

tions require precise estimates of the redshift distributions, which are compromised by the large

uncertainties of the photometric redshifts. This issue is critical for photometric quasars, since their

redshift estimates are significantly more uncertain than for other types of galaxies and include a

significant fraction of catastrophic failures. We investigate the use of spectroscopic catalogues for

calculating robust and unbiased redshift distribution estimates for the photometrically-selected

quasar subsamples.

In addition to data quality and modelling issues, various methodological issues arise when

estimating the power spectrum of a galaxy survey for comparison with theory. The pseudo-spectrum

(Hivon et al., 2002; Wandelt et al., 2001) and quadratic maximum likelihood (Bond et al., 2000;

Tegmark, 1997) estimators were developed to measure the power spectrum in the presence of

sky cuts. However, numerous technical subtleties and constraints due to pixelisation or limited

computer resources are implicit in these estimators, and can create significant biases if not handled

carefully, as concluded by several studies on the CMB (see e.g., Copi et al. 2011; Efstathiou 2004a;

Eriksen et al. 2007; Pontzen and Peiris 2010). This paper aims to clarify these technicalities in the

context of galaxy surveys.
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This article is organised as follows. In Sec. 2 we define and illustrate the properties of quadratic

power spectrum estimators, and demonstrate their validity by applying them to a set of mock

catalogues. In Sec. 3 we turn to the Richards et al. (2009) catalogue of SDSS photometric

quasars. We present our data samples, redshift distribution estimates, masks, and power spectrum

measurements, and discuss the impact of the main systematics on these measurements. Our

conclusions are presented in Sec. 4. Further technical details on smoothing and masking rules,

Karhunen-Loève compression and χ2 measures are contained in appendices.

2.3. Theory and methods

2.3.1. Background

We consider a real signal x(n) on the unit sphere S2, equivalently described in terms of its

spherical harmonic coefficients {x`m} with ` ∈ N and m ∈ {−`, . . . , `}. The angular power spectrum

{C`} of x is defined as

C` =
∑̀
m=−`

|x`m|2
2`+ 1

, (2.1)

and corresponds to the average power in fluctuations on scales of order 180/` degrees on the sphere.

Assuming that x is a realisation of an underlying random field denoted by X, the power spectrum of

x can be viewed as a compression technique, and used to perform statistical inference on physical

models of X. In particular, this compression is lossless if X is an isotropic Gaussian random field,

and the power spectrum is then a sufficient statistic containing all the relevant information in

the realisation x. Moreover, the ‘observed’ power spectrum C` is a realisation of a ‘theory’ power

spectrum C` that fully characterises the field of interest X. The variance of the former, known as

cosmic variance, depends on the number of modes on the sky and is given by

Var(C`) =
2C2

`

2`+ 1
. (2.2)

In practice, real data contain a finite amount of information, and the continuous signal x is

observed at finite resolution on the sphere. In the context of LSS surveys, galaxy catalogues are
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usually constructed from raw imaging data and then reduced into pixelised overdensity maps

x = (x0, . . . , xNpix−1) where xi = x(ni) and ni is the centre of the ith pixel on the sphere. More

details on the construction of such maps from the source number counts will be given in Sec. 2.3.4.

The average correlation between the pixels, namely the pixel-pixel covariance matrix, depends on

the theory power spectrum through a Legendre expansion, i.e.,

S = 〈xxt〉 =
∑
`

C`P
`, (2.3)

where (P`)ij = (2`+ 1)/4π P`(ni · nj) is a useful matrix notation (Tegmark, 1997). A quadratic

estimator for the power spectrum of full-sky pixelised data is given by the projection of the data

onto the Legendre matrices, i.e.,

C` = xtP`x, (2.4)

which is the pixel-space equivalent of Eq. (3.1) (see discussion and references in Pontzen and Peiris

2010).

In this section we have used an arbitrary equal-area pixelisation scheme, but henceforth we

will adopt the HEALPIX conventions (Górski et al., 2005). In defining Eq. (2.4), we only considered

full sky coverage. This assumption will be relaxed in the next section. We also implicitly assumed

that the power spectrum of the pixelised map x was equal to that of the continuous signal x. This

approximation is only true at high resolution when the pixel size is small compared with 180/`, and

the integrals in the spherical harmonics and Legendre transforms are correctly approximated by

matrix multiplications through quadrature, as in Eq. (2.4). The bias induced by pixelisation as a

function of ` is critical for low-resolution power spectrum estimation, and needs to be corrected.

This issue is investigated in Appendix 2.7.1, and the following sections will assume that the relevant

corrections have been applied.

2.3.2. Partial sky coverage and quadratic estimators

Due to contamination or inaccessibility of certain regions of the sky, most cosmological applic-

ations involve signals that only cover a portion of the sphere. The power spectrum must then be

calculated from a cut-sky map x̃. From a theoretical perspective, the latter can be viewed as the

restriction of the full sky map x using a binary mask m = (m0, . . . ,mNpix−1), such that mi = 0 for

masked pixels and mi = 1 elsewhere. Masked/unmasked vectors or matrices are related to each
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other through an operator K, a diagonal matrix such that (K)ij = miδij (with δij the Kronecker

delta) removing pixels that lie inside the mask2. In what follows, the addition of a tilde will

represent cut-sky quantities.

In the presence of partial sky coverage, applying Eq. (2.4) on the cut-sky map x̃ leads to a

cut-sky power spectrum {C̃`} that considers the zones inside the mask as data, i.e., as pixels with

x(n) = 0. Consequently C̃` differs from the quantity of interest C` and is not a realisation of the

underlying theory spectrum C`. Inverting this effect involves deconvolving the effect of the mask

from the observed power spectrum {C̃`}, leading to the definition of the ‘pseudo-spectrum’ (PCL)

estimator (Brown et al. 2005; Efstathiou 2004b; Hivon et al. 2002; Wandelt et al. 2001),

ĈPCL
` =

∑
`′

(M−1)``′ C̃`′ , (2.5)

where C̃`′ = x̃tP̃`x̃ are the cut-sky estimates. The coupling matrix is defined as

(M)``′ = Tr P̃`P̃`′ , (2.6)

and is a function of the mask only. Since the variance of each `-mode depends on number of times it

is observed, the minimum variance, namely the cosmic variance presented in Eq. (3.2), is achieved

on the full sky only. Partial sky coverage decreases the number of observed modes, and the variance

of the PCL estimates in the absence of noise is approximately

Var(ĈPCL
` ) ≈ 1

fsky
Var(C`). (2.7)

Here, fsky =
∑
imi/Npix is the fraction of the sky covered by the mask, with fsky = 1 corresponding

to full sky coverage. Equation (2.7) is a good approximation for small scale modes, which remain

numerous after masking. The exact expression for the variance in the Gaussian framework is given

in Eq. (2.11), and must be used for low-` modes since they are sensitive to the shape of the mask.

The PCL approach is simply an inversion of the mask and does not attempt to minimise the loss

of information caused by the decrease in the number of observed modes. In fact, it is well known

that the PCL estimates are only optimal (i.e., unbiased, minimum variance estimates) for a flat

power spectrum (see e.g., Efstathiou 2004b and Pontzen and Peiris 2010). This equivalence will

prove useful in the context of galaxy surveys, as we shall see in the next sections. To recall the

2Hence b̃ = Kb for any data vector b, while for any matrix B we write B̃ = KBK implicitly taking advantage of the
property Kt = K.
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definition of the optimal estimator, we consider the generic class of quadratic estimators of the form

Ĉ` = x̃tE`x̃. (2.8)

In this formalism, the PCL estimator reads

E`
PCL =

∑
`′

(M−1)PCL
``′ P̃`′ , (2.9)

with the coupling matrix (M)PCL
``′ = Tr P̃`P̃`′. In the Gaussian case, the expected value of the generic

quadratic estimator is given by

〈Ĉ`〉 = Tr C̃E`, (2.10)

and its variance by

V``′ = 〈Ĉ`Ĉ`′〉 − 〈Ĉ`〉〈Ĉ`′〉 = 2Tr C̃E`C̃E`′ . (2.11)

As a result, in the presence of sky cuts the uncertainties on the power spectrum estimates are

typically significantly correlated. Uncorrelated error bars can be obtained by diagonalising the

covariance matrix and using the resulting rotation matrix to transform the power spectrum estimates

and the theory predictions (Tegmark, 1997; Tegmark et al., 2002a).

In the previous equations, C̃ denotes the cut-sky pixel-pixel covariance matrix, which can be

modelled as the superposition of a signal part S̃ calculated with a theory prior {C`} and noise, i.e.,

C̃ = 〈x̃x̃t〉 = S̃ + Ñ. (2.12)

The pixel-pixel covariance matrix must also incorporate any additional signal present in the data,

such as the systematics, as detailed in Sec. 2.3.4.

The minimum variance estimator in the Gaussian framework, first introduced in Tegmark (1997),

is the so-called quadratic maximum likelihood (QML) estimator. The latter reads

E`
QML =

∑
`′

(M−1)QML
``′

1

2
C̃−1P̃`′C̃−1, (2.13)

and uses the deconvolution matrix

(M)QML
``′ =

1

2
Tr C̃−1P̃`C̃−1P̃`′ . (2.14)
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In the Gaussian, isotropic case, QML is a lossless estimator that recovers all the relevant information

contained in the data. The deconvolution and covariance matrices of the estimates are then equal

to the inverse of the Fisher information matrix. While being no longer theoretically optimal for

anisotropic theories, Pontzen and Peiris (2010) showed that QML remained superior to PCL.

PCL and QML can be contrasted in terms of the computational complexity and quality of the

final power spectrum estimates. They both depend on the mask, but QML additionally requires

an accurate model of the pixel-pixel covariance matrix. This model requires priors on the fiducial

theory {C`} and on the additional correlations present in the data, such as noise and systematics.

Although the pseudo-spectrum estimator does not explicitly use such priors, it is equivalent to a

maximum likelihood analysis when a flat spectrum is assumed in place of a more motivated choice

for the pixel-pixel covariance matrix (Efstathiou, 2004b; Pontzen and Peiris, 2010). As a result, PCL

yields nearly optimal estimates when the power spectrum is close to flat and with no anisotropic

contributions. Moreover, the sensitivity to the shape of the spectrum decreases at small scales as the

number of observed modes increases. A simple inversion of the mask then maximises the likelihood

function and the variance of PCL reaches its minimum, namely the inverse of the Fisher matrix

(Efstathiou, 2004b, 2006), i.e.,

VPCL
``′ ≈

2C`C`′
2`+ 1

(M−1)PCL
``′ ≈ (M−1)QML

``′ = VQML
``′ . (2.15)

Note that this result is only valid in the regime where the signal dominates in the covariance matrix.

To illustrate the contrast between the PCL and QML estimates, we calculated and compared

their covariance matrices in three realistic settings of interest, involving typical masks and spectra

of CMB and galaxy catalogues. The masks are shown in Fig. 2.1, the theory power spectra in

Fig. 2.2, and the resulting covariance matrices in Fig. 2.3. For the CMB, we considered the KQ85

mask (smoothed, galaxy part only) and the best-fit theory angular power spectrum of the Wilkinson

Microwave Anisotropy Probe 9-year data release (WMAP, see e.g., Bennett et al. 2012; Hinshaw

et al. 2012). As a realistic setting for a galaxy survey, we considered a mask created from the sky

coverage of the SDSS DR6, enlarged and smoothed for stability of the estimates, shown in Fig. 2.1

(the variance rapidly becomes unstable for complex mask shapes and requires binning, as detailed

in Sec. 2.3.3). We used CAMB SOURCES3 (Challinor and Lewis, 2011) to project the matter power

spectrum P (k) (corresponding to the WMAP 9-year cosmology) into an angular power spectrum

using the redshift distribution of the CMASS sample, using a fixed astrophysical bias bg = 2. The

3http://camb.info/sources/
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(a) CMB mask (b) LSS mask

Figure 2.1: Fiducial CMB and galaxy survey masks used to calculate the covariance matrices of

Fig. 2.3. These masks are in Galactic coordinates and approximate the WMAP KQ85 mask and the

SDSS DR6 sky coverage respectively.

CMASS sample will be described in further detail in Sec. 2.3.5.

The CMB spectrum varies across three orders of magnitude in the range 0 < ` < 50 and, as

expected, QML performs better than PCL in this range. In particular, the variance of the largest

scale modes is up to 20% smaller compared with PCL. For this mask, PCL is a good estimator for

` > 50; its variance is typically within ∼ 10% of that expected for a maximum likelihood estimator,

although the degree of suboptimality will depend on the noise and the geometry of sky cut under

consideration (Efstathiou, 2004a,b, 2006; Hamimeche and Lewis, 2009). The variance of the

estimates is much larger for the galaxy survey mask, but since the CMASS spectrum varies by only

one order of magnitude in 0 < ` < 200, the variance of the PCL and QML estimates in fact only

differ by a few percent for ` > 15. In conclusion, since LSS power spectra are close to flat, PCL

yields nearly optimal estimates, when no motivated prior for C̃ is available. However, the degree of

suboptimality increases when considering masks with complex geometries, and in the presence of

non-isotropic contributions (e.g., spatial fluctuations due to calibration errors). In this case, the

implicit assumptions in the PCL estimator are poor priors for a maximum likelihood analysis, and

a better model of the pixel-pixel covariance matrix must be used in the QML estimator to obtain

optimal estimates.

The complexity and resources involved in the PCL and QML algorithms also differ considerably.

PCL benefits from fast, low-memory algorithms, and therefore can be applied to resolutions and

multipole ranges which are amply sufficient for galaxy survey analyses. By contrast, QML involves

the inversion of large covariance matrices and the execution of non-symmetric matrix multiplications.

Although our optimised QML algorithm advantageously balances the work-load across processors

and minimises memory use, typical galaxy surveys such as the SDSS (fsky ∼ 1/6) can only be

analysed at HEALPIX Nside = 64 on a personal computer. To ensure that the estimates are minimally
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Figure 2.2: Fiducial CMB and CMASS angular power spectra used to calculate the covariance

matrices of Fig. 2.3. The grey bands show the cosmic variance.

affected by the resolution, accurate smoothing and masking rules are detailed in Appendix 2.7.1.

Neglecting these considerations can lead to significant biases if the estimation is performed at

low-resolution. Since high-` maximum likelihood estimates might be desirable at high-resolution

in some cases, Gruetjen and Shellard (2012) recently proposed a iterative algorithm (similar to

the Newton-Raphson iterative scheme presented in the next section) to converge to the maximum

likelihood solution using an augmented PCL basis. This approach will prove useful for obtaining

optimal estimates of the damping tail of the CMB spectrum, where a full QML analysis is intractable,

and PCL estimates are sub-optimal due to the exponential decay and anisotropic contributions to

these modes (Hamimeche and Lewis, 2009). However, this improved estimator is unnecessary

for the study of galaxy surveys, since PCL is nearly optimal at the smallest scales where shot

noise dominates. Alternatively, the complexity of the QML estimator can be reduced by adopting

Karhunen-Loève compression (Tegmark et al., 1997, 1998, 2002b; Vogeley and Szalay, 1996); for

further details see Appendix 2.7.2. The results of this paper were obtained without this technique

since we were able to run the estimator at Nside = 64 without any other approximation, thus

covering the scales which are not dominated by shot noise.

2.3.3. Likelihood analysis and band-powers

The size and the shape of the mask strongly influence the variance of power spectrum estimates,

and thus, the quality of any subsequent analysis. Typical CMB masks only cause a modest increase

in the variance (e.g., ∼ 30% for a WMAP-style mask with fsky = 75%) compared with the full sky

case. By contrast, galaxy survey masks typically have fsky < 20% and can increase the variance of
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Figure 2.3: Covariance matrices |V``′ | of the PCL and QML estimates calculated for the CMB and LSS

spectra and masks in Figs. 2.1 and 2.2 in the absence of noise and systematics. For a CMB spectrum,

the QML variances (top and middle right) are smaller and less correlated than PCL variances (top

and middle left), and the resulting PCL estimates are significantly suboptimal compared to QML. For

the LSS spectrum, which is considerably flatter, this distinction is much less pronounced (bottom

left and right panels), as expected by the reduction of QML to PCL in the case of a flat spectrum.
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the individual multipoles by factors of 5-10.

This problem is usually addressed by estimating the power spectrum in multipole bands, which

smoothes the power spectrum, Gaussianises the likelihood function, reduces the sensitivity to

the input prior, and decreases the variance of the estimates. In particular, this approach proves

useful for PCL since its prior can be significantly suboptimal when using complex masks and in the

presence of anisotropic contributions. The PCL and QML estimators in Eqs. (2.9) and (2.13) are

straightforwardly transformed into band-power estimators by considering binned Legendre matrices

P̃b =
∑
`∈Lb P̃`, where Lb denotes the range of multipoles included in the b-th bin. The pixel-pixel

covariance matrix C̃ is unchanged and calculated as before, but the coupling matrices in the binned

formulation are given by

(M)bb′ =
∑
`∈Lb

∑
`′∈Lb′

(M)``′ . (2.16)

The expectation value of each band-power estimate reads

〈Ĉb〉 =
∑
`

Wb`C`, (2.17)

where the window function Wb` is constructed with the coupling matrix through

Wb` =
∑
b′

(M)−1
bb′ (M)b′`. (2.18)

Hence, to be confronted with band-power estimates, the theory power spectrum must be transformed

into band-powers using these window functions.

Using large band-powers guarantees that the likelihood function is sufficiently close to Gaussian

for QML to deliver maximum-likelihood estimates. However, intermediate situations with smaller

bins and complex masks might not fulfil this condition, leading to sub-optimal estimates. This issue

can be addressed by iteratively converging to the maximum-likelihood solution using a Newton-

Raphson scheme (Bond et al., 1998, 2000; Knox et al., 1998). With the so-called Newton-Raphson

maximum likelihood (NRML) estimator, each iteration improves the previous one using

δC` =
∑
`′

(M−1)QML
``′

1

2
Tr
[(

xxt − C̃
)(

C̃−1P̃`C̃−1
)]
. (2.19)

This approach is in fact equivalent to calculating the i-th estimate by feeding QML with the previous
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iteration. The formulation of the NRML estimator then simplifies to

Ĉi+1
` = x̃t(E`)ix̃, (2.20)

where (E`)i explicitly makes use of the covariance matrix calculated from Ĉi`, namely C̃ =∑
` P̃`′Ĉi` + Ñ. Hence, a critical issue is to construct a reliable covariance matrix at each iter-

ation.

Both PCL and QML estimates can be extended to estimate the angular cross-power spectra (and

hence cross band-powers) between two maps denoted by x̃1 and x̃2. The PCL estimator reads

ĈPCL,cross
` = x̃t1E

`
PCLx̃2, (2.21)

and implicitly assumes flat auto-power spectra and zero cross-power spectrum as priors. On the

contrary, since QML derives from a likelihood function, the estimator must be adapted (following

e.g., Padmanabhan et al. 2005; Tegmark and de Oliveira-Costa 2001) by considering the input data

vector as a concatenation of the two maps,

x̃ =

 x̃1

x̃2

 , (2.22)

and by using a pixel-pixel covariance matrix which incorporates all the information about the maps

and their cross-correlation,

C̃ =

 C̃11 C̃12

C̃†12 C̃22

 . (2.23)

This formulation makes use of priors for the three power spectra, and must include models of

the additional correlations and noise present in the data. The auto- and cross-spectra can be

simultaneously estimated from x̃ and C̃ using the usual formulation of QML, i.e., Eqs. (2.13) and

(2.14), In particular, the matrices to be used in the estimator with the covariance matrix of Eq. (2.23)

in order to calculate Ĉ11
` , Ĉ22

` and Ĉ12
` read

P̃`
11 =

 P̃` 0

0 0

 , P̃`
22 =

 0 0

0 P̃`

 , P̃`
12 =

 0 P̃`

P̃` 0

 . (2.24)
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2.3.4. Galaxy surveys, shot noise and systematics

Galaxy catalogues are usually provided as lists of objects whose positions and properties, such

as photometric colours, were measured by an instrument in the context of a sky survey. To relate to

the dark matter distribution, a catalogue must be pixelised into a number count map G̃, and then

transformed into an overdensity map x̃. Given a pixelisation scheme, if Gi denotes the number of

objects in the i-th pixel (described by its size Ωi and the position of its centre ni), the overdensities

are constructed as

x̃i =
G̃i

ΩiḠ
− 1, (2.25)

where Ḡ = Nobj/∆Ω is the average number of objects per steradian. Nobj is the total number of

objects in the catalogue, and ∆Ω is the total surface outside the mask. The Poisson sampling of

the observed tracers naturally gives rise to shot noise, characterised by a diagonal noise matrix

Ñ (Huterer et al., 2001) such that (Ñ)ij = Ḡ−1δij , where δ is the Kronecker delta. Moreover, the

power spectrum estimates of galaxy survey overdensity maps always include a constant bias term

due to shot noise,

〈Ĉ`〉 = C` +
1

Ḡ
. (2.26)

Since the cosmological contribution C` steadily decreases with ` in the linear regime, shot noise

usually dominates on small scales for catalogues with small number densities (i.e., for ` higher than

a limit determined by Ḡ).

So far, we assumed that the map x was the result of cosmological clustering encapsulated by

a theory power spectrum {C`}. In other words, the relevant correlations in the map were due

to {C`} and the shot noise 1/Ḡ. However, observations x̃obs are often contaminated by various

signals introducing spurious correlations and requiring appropriate modelling to avoid suboptimal

estimates. In particular, x̃obs can always be described as the superposition of the true cosmological

signal x̃true and a contamination part due to systematics. We will assume that templates of the

systematics are available, namely nsys maps denoted by ck with k = 1, . . . , nsys. In this case, one

can adopt a model for the contamination signal, and estimate its parameters from the data. The

best-fit contamination model is then subtracted from the measured power spectra. This approach

was recently used to correct the angular power spectra and 2-pt correlation functions of the CMASS

sample with a best-fit linear contamination model (Ho et al., 2012; Ross et al., 2011).

A more robust approach to mitigate the influence of the systematics is to incorporate their
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contribution in the pixel-pixel covariance matrix with large coefficients ξk, i.e.,

C̃ij = S̃ij + Ñij +
∑
k

ξk c̃
k
i c̃
k
j . (2.27)

This technique, known as mode projection (Ho et al., 2008; Slosar et al., 2004), assigns a very

large variance to the modes corresponding to the systematics in pixel space, such that they do

not influence the power spectrum estimates4. As a result, the QML estimates are unbiased in the

power spectrum of x̃true as ξi → ∞, provided that the contamination signal can be described as

a linear combination of the templates. In the Bayesian perspective, mode projection is equivalent

to marginalising over the parameters of a linear model of the contamination. Hence, non-linear

contamination or neglected systematics leave residual biases that must be eliminated by other

means, for example through masking or modelling of the contamination signal.

2.3.5. Illustration: recovering the power spectrum of the CMASS sample

The ongoing Baryon Oscillation Spectroscopic Survey (BOSS) is part of SDSS-III (Eisenstein

et al., 2011) and aims to measure the spectroscopic redshifts of 1.5 million galaxies, 160,000

quasars and various ancillary targets from SDSS photometry (Gunn et al., 1998, 2006). The CMASS

spectroscopic sample includes extended sources selected using colour magnitude cuts to produce a

roughly volume limited sample in the redshift range 0.4 < z < 0.7. In the DR9 release of BOSS,

CMASS uses data taken up to the end of July 2011 and covers 3344 deg2 in the Northern and

Southern Galactic caps.

Manera et al. (2013) presented a set of 600 mock catalogues for the CMASS DR9 sample,

constructed based on a ΛCDM cosmology defined by {Ωm = 0.274,Ωbh
2 = 0.0224, h = 0.70, ns =

0.95, σ8 = 0.8}, and evolved using 2nd-order Lagrangian perturbation theory (Crocce et al., 2006;

Scoccimarro, 1997). These mock catalogues were used to compute accurate covariance matrices for

CMASS and constrain cosmological parameters (Sánchez et al., 2012), test deviations from General

Relativity (Samushia et al., 2013) and measure the scale-dependent halo bias (Ross et al., 2013).

To evaluate the performance of the previously described angular power spectrum estimators, we

compared the mean and standard deviation of the power spectrum estimates of the mock catalogues

with the theoretical expectations. We only considered the CMASS DR9 mock catalogues in the

4This approach does not prevent the extraction of cosmological signals that happen to have the same power spectra as
the systematics. In particular, projecting out a systematic is equivalent to ignoring one mode defined in pixel space.
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Figure 2.4: Mask of the CMASS DR9 sample in the Northern Galactic Cap, in equatorial coordinates.

Northern Galactic cap (NGC), covering 2635 deg2 as shown in Fig. 2.4. We computed a theory

prediction for the angular power spectrum of the underlying dark matter with CAMB SOURCES

(Challinor and Lewis, 2011) using a redshift distribution parametrised by an Edgeworth expansion

of the redshift histogram of CMASS objects.

We calculated the PCL and QML estimates of the individual mock catalogues at HEALPIX resolu-

tions NPCL
side =128 and NQML

side =64. The mean and variance of the estimates compared with theoretical

expectations are shown in Fig. 2.5. Note that the error bars of the power spectrum estimates are

correlated; see Eq. (2.11). We subtracted the shot noise and also multiplied the theory prediction by

a scale-independent bias of 1.9, the value used to construct these mock catalogues (Manera et al.,

2013). We were able to recover the theory power spectrum and the covariance of the estimates with

good precision using the smoothing, masking and band-limit rules defined in Appendix 2.7.1. The

estimates and the theory predictions from CAMB SOURCES were insensitive to small changes in the

redshift distribution. However, we observed that inconsistent smoothing, masking and band-limit

rules led to biases in the recovered power spectra, resulting from a mismatch between the model

pixel-pixel covariance matrices and the information content in the data. As expected, due to the

flatness of the power spectrum and the simple geometry of the mask, QML performed only mar-

ginally better than PCL, which yielded nearly-optimal estimates in the absence of systematics. The

theory spectrum was converted into band-powers using the exact window functions in Eqs. (2.17)

and (2.18), which are shown in the bottom panel of Fig. 2.5.
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Figure 2.5: Average PCL and QML estimates of the 600 CMASS mock catalogues (Manera et al.,

2013). Shot noise was subtracted from the estimates, and the angular power spectrum was

calculated with CAMB SOURCES (black dashed line) using a scale-independent astrophysical bias

bg = 1.9. The theory band-powers (black solid line) were obtained by applying the exact PCL

and QML binning window functions of Eqs. (2.18) and (2.17) (bottom panel). We were able to

recover the theory power spectrum and the covariance of the estimates with good precision using

the smoothing, masking and band-limit rules defined in Appendix 2.7.1.
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2.4. Application to SDSS photometric quasars

2.4.1. Data and subsamples

We considered the Richards et al. (2009) catalogue of photometric quasars, which is based on

the Sixth Data Release (DR6) of the SDSS (Adelman-McCarthy et al., 2008). The objects in this

catalogue – which we call RQCat as in Pullen and Hirata (2013) – were photometrically selected by

a binary Bayesian classifier trained in 4D colour space using several catalogues of spectroscopically-

confirmed stars and quasars. The final version of the catalogue includes 1,172,157 objects with

several quality and technical flags, which can be exploited to apply further systematics cuts and

obtain cleaner samples. The Bayesian classifier was initially applied to all point sources in the DR6

release without restriction, and explicitly assumed that 95% of the input objects were stars (i.e.,

constant star and quasar priors pstar = 0.95 and pquasar = 0.05). It was also applied with stronger

priors (pstar = 0.98) to objects with photometric redshifts z̃p (estimated by the SDSS pipeline, as

opposed to the true redshift z) in three redshift ranges 0 < z̃p ≤ 2.2, 2.2 < z̃p ≤ 3.5 and z̃p > 3.5 to

achieve higher efficiency5 and completeness. The efficiency is degraded in the two higher redshift

ranges since the Bayesian classifier performs worse due to the overlap between the stellar and

quasar loci in the colour space (at z ∼ 2.6). More sophisticated algorithms such as XDQSO (Bovy

et al., 2011a) were developed to specifically address this issue and identify higher-redshift quasars

for spectroscopic follow-up in the context of BOSS (Ross et al., 2012b). However, in this work

we focused on z ≤ 2.2 objects, where the performance of the binary Bayesian classifier used by

Richards et al. (2009) is satisfactory.

Colour-based selection of quasars is difficult, and RQCat is expected to be significantly contam-

inated by stars, which are often misclassified as quasars due to similar colours. Hence, the full

catalogue cannot be used as a statistical sample for direct power spectrum analysis due to its low

efficiency (lower than 80%). In this work, we restricted ourselves to good UV-excess low-redshift

objects, defined as u − g < 1.0 and z̃p < 2.2 (the corresponding flags are GOOD>0, UVX=1 and

LOWZ=1). This sample, denoted by UVX-LOWZ, is the least contaminated by stars and achieves

96.3%± 1.2 efficiency (Richards et al., 2009).

5The efficiency, or purity, of a catalogue denotes the fraction of objects which are quasars. It characterises the ability of
the classifier to separate quasars from stars.
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Previous studies considered the UVX sources in RQCat for cosmological analyses, e.g., studying

the environment of quasars (Myers et al., 2006, 2007a), detecting the ISW effect (Corasaniti et al.,

2005; Giannantonio et al., 2006, 2008; Giannantonio et al., 2012) and constraining PNG (Slosar

et al., 2008; Xia et al., 2010, 2011). Recent work by Pullen and Hirata (2013), corroborated by

Giannantonio et al. (2014), found that the UVX objects were significantly contaminated, as indicated

by the cross-spectra of redshift bins which exhibited excess power at the largest scales.

The two main sources of systematics in quasar photometric catalogues are contamination and

calibration errors. The origin of contamination lies in the classification stage: selecting quasars

based on photometric data is a complex task. Various objects can be misclassified as quasars, and

are thus present in the final catalogues. Since the clustering properties of these contaminants differ

from those of quasars, they affect the measured power spectra and can jeopardise the interpretation

of the data. Calibration errors, on the other hand, are present in the catalogue regardless of the

ability of the classifier to separate stars and quasars. In the ideal case, a perfect classifier applied to

all point sources detected by a given instrument will lead to a sample with clustering properties

purely due to cosmological physics. However, real instruments are not perfectly calibrated, and

observing conditions also change with time, introducing spurious correlations due to variations

in the number of detected sources on the sky. In addition, calibration errors impact the apparent

magnitude estimates, which propagate through the Bayesian classifier (since the latter does not

model or account for them), inducing a spatial dependence in its efficiency.

Contamination and calibration issues can be addressed in different ways. First, it is important to

reduce the catalogue of interest by selecting the most reliable objects (here UVX sources) and also

restricting the analysis to the most reliable areas of the sky. Secondly, corrections can be applied

to the power spectrum estimates themselves to minimise the remaining spurious correlations.

Alternatively, one can opt for a Bayesian analysis and marginalise over the systematics in the

cosmological analysis. In this study, we focused on the sample reduction approach. We separated

the UVX-LOWZ sample into four subsamples by selecting objects with photometric redshifts z̃p

in bins with ranges [0.5, 1.3], [1.3, 1.8], [1.8, 2.2] and [1.3, 2.2]. These samples are called Low-z,

Mid-z, High-z and Mid+High-z respectively, as referred to as the RQCat subsamples. We rejected

low redshift quasars (z̃p < 0.5) because their power spectra were severely contaminated: this

can be attributed to strong stellar contamination, and to the fraction of low-z quasars which are

extended sources and were therefore not processed by the Bayesian classifier. The corresponding

incompleteness is non-trivial and likely to depend on observational effects such as dust absorption

and seeing variations.
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z̃ s

z̃p

Figure 2.6: Distributions of the photometric and spectroscopic redshift estimates (z̃p and z̃s) of

the RQCat UVX-LOWZ sample, cross-matched with the SDSS-DR7, BOSS and 2SLAQ spectroscopic

quasar catalogues (blue, red and green dots). The dashed lines indicate the photometric redshift

cuts used to assemble the four RQCat subsamples. The photometric redshift estimates are seen to be

unreliable and cannot be used to estimate the redshift distributions of the photometrically-selected

subsamples. On the contrary, the cross-matched samples have reliable spectroscopic redshifts, and

can be used for this purpose. However, one must apply the relevant completeness corrections in

order to account for the change of selection function between the photometric and cross-matched

subsamples (due to e.g., different magnitude limits).

2.4.2. Theory predictions

In order to calculate theoretical predictions for the angular power spectra of the four RQCat

subsamples, we used CAMB SOURCES (Challinor and Lewis, 2011), a high-precision code which

projects the 3D matter power spectrum P (k) into angular auto- and cross-power spectra. Since

this study is focused on the impact of the systematics on the observed power spectra, we fixed the

cosmological parameters to Planck ΛCDM best-fit values6 (Planck Collaboration, 2013g). We opted

6Fixed to Ωch2 = 0.188,Ωm = 0.315,Ωbh
2 = 0.02205, H0 = 67.3 kms−1Mpc−1, ln(1010As) = 3.089, ns =

0.9603, and τ = 0.089.
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Figure 2.7: Histograms of the redshifts and apparent magnitudes of UVX-LOWZ objects in RQCat,

and of objects with good spectra found in the SDSS-DR7, BOSS and 2SLAQ spectroscopic quasar

catalogues. In addition to the higher number of objects, the SDSS-DR7 cross-matched sample has

redshift and magnitude distributions close to that of RQCat, indicating similar selection functions.

Hence, the redshift distributions of the RQCat subsamples can be estimated using the cross-matched

sample, with only minor completeness corrections to account for the differences in magnitude limits.

By contrast, BOSS and 2SLAQ target significantly different redshift and magnitude ranges, and

the completeness corrections required to estimate the redshift distributions of RQCat are strongly

redshift- and magnitude-dependent. In addition, the latter are limited by sample variance due to

the smaller number of objects.

for a scale-independent linear bias to relate the observed galaxy clustering to dark matter.

Although the matter power spectrum P (k) only depends on cosmological parameters, computing

angular power spectrum predictions requires additional knowledge about the distributions and

properties of the samples under consideration. In particular, the auto-angular power spectrum of a

sample of interest reads

C` =
2

π

∫
dkk2P (k)[W`(k)]2, (2.28)

where the window function W`(k) includes several cosmological effects, as detailed in Challinor

and Lewis (2011). In fact, W`(k) requires two quantities in addition to the standard cosmological

parameters: the unit-normalised redshift distribution of tracers, denoted by n(z), and the logarithmic

slope of the number counts s, which accounts for the effect of magnification due to lensing. A

simplified formula for W`(k), which we use for illustration purposes only (see Challinor and Lewis

(2011) for the full formalism), reads

W`(k) =

∫
dz [bgn(z) + 2(2.5s− 1)f(z)]D(z)j`(kr), (2.29)

where bg is the linear galaxy bias, D(z) is the growth factor, j` is the spherical Bessel function, r(z)
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Figure 2.8: Low-resolution redshift- and magnitude-dependent completeness corrections for estimat-

ing the redshift distributions of the RQCat subsamples through cross-matching with the SDSS-DR7,

BOSS and 2SLAQ spectroscopic quasar catalogues. As expected from Fig. 2.7, the redshift distri-

bution of the cross-matched sample with SDSS-DR7 only requires weak magnitude corrections to

relate to that of RQCat. On the contrary, BOSS and 2SLAQ require significant corrections, since

they target different redshift and magnitude ranges than RQCat.

is the comoving distance, and f(z) is the lensing window function, giving rise to magnification. In

this work, we assumed that the logarithmic slope of the number counts, defined as

s =
d logN(m)

dm
, (2.30)

was constant in each redshift range. We estimated its value for the four RQCat subsamples by

calculating the slope of the histogram of number counts in terms of the g-band PSF magnitude at

g = 21. We found s = 0.18, 0.89, 0.89 and 0.87 respectively for these subsamples, consistent with

previous studies in similar redshift ranges (Pullen and Hirata, 2013; Xia et al., 2009). The choice

of a scale- and redshift-independent linear bias is motivated by previous studies of RQCat and of

low-redshift quasars in general (e.g., Giannantonio et al. 2014; Myers et al. 2007a; Pullen and

Hirata 2013; Sherwin et al. 2012). The redshift evolution of the bias in 0.5 < z < 2.2 proves to

be smaller than the uncertainty on the completeness corrections, and thus marginally affects the

predicted angular power spectra.

2.4.3. Redshift distributions estimates

The quasars in each RQCat subsample are characterised by a normalised redshift distribution

n(z), with n(z)dz corresponding to the probability of finding a quasar with redshift between z and

z + dz. Consequently, n(z) incorporates the physical distribution (i.e., originating from the quasar

58



0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

Low-z : 0.5 < z̃p ≤ 1.3

z

ñ
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Figure 2.9: Final estimates of the redshift distributions of the four RQCat photometric subsamples,

calculated by cross-matching with the SDSS-DR7 spectroscopic quasar catalogue (Schneider et al.,

2010). The accuracy of the redshift distribution estimates is essential for obtaining robust angular

power spectrum estimates. Maps of the photometric and cross-matched samples are shown on the

right subpanels at HEALPIX resolution Nside = 64. The dashed vertical lines in the main subpanels

indicate the photometric redshift cuts used to construct the RQCat subsamples. Since the cross-

matched samples have different selection functions, their redshift distributions (red thin histograms)

must be corrected in order to accurately estimate the redshift distributions of the RQCat samples.

The thick black histograms show the final estimates obtained by applying magnitude- and pixel-

dependent completeness corrections, and were fitted with a superposition of Gaussian distributions

(solid lines) for use in CAMB SOURCES.
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luminosity function), the survey characteristics (such as the magnitude limits), and the photometric

redshift cuts used to construct the subsample under consideration. The simplest estimator for n(z)

is a normalised histogram of the photometric redshifts of all objects in each subsample of interest.

However, in practice, this approach does not yield good estimates due to the large uncertainties

in quasar photometric redshift estimates. To illustrate this issue, we used the SDSS-DR7, BOSS

and 2SLAQ spectroscopic quasar catalogues (Croom et al., 2009; Pâris et al., 2012; Schneider

et al., 2010) to find objects in the four RQCat subsamples for which reliable spectra, and thus

good spectroscopic redshifts, were available. Figure 2.6 shows the photometric and spectroscopic

redshifts (z̃p and z̃s, respectively) of the cross-matched objects. The dispersion of the points (z̃p, z̃s)

around z̃p = z̃s demonstrates that the photometric redshift estimates of quasars suffer from large

uncertainties and catastrophic failures, yielding a large fraction of spectroscopic redshifts outside

the photometric windows used to construct the RQCat subsamples, indicated by the dashed lines.

The photometric redshift estimates do not accurately follow the underlying redshift distributions

n(z), and cannot be used to compute accurate angular power spectrum predictions.

Nevertheless, one can use the redshift distributions of the cross-matched samples, which can be

calculated with great accuracy using the spectroscopic redshift estimates, whose uncertainties are

negligible compared to the precision required for n(z). However, the redshift, magnitude and spatial

distributions of the cross-matched samples may deviate from those of the photometric samples

due to differences in their selection functions, caused, e.g., by different magnitude limits, redshift

ranges, or sky coverage. In order to avoid biases in the redshift distribution estimates, one must

include a completeness correction factor, denoted by fc, which is a function of redshift z, magnitude

g and position on the sky n.

In practice, we divide the redshift and magnitude domains into bins denoted by [zmin
i , zmax

i ]

(centred at zi) and [gmin
j , gmax

j ] (centred at gj) respectively, and the sky into pixels denoted by k.

For each RQCat subsample, an estimator of n(z) at redshift z = zi is given by

ñ(zi) = C
∑
jk

Nobj(cross, [zmin
i , zmax

i ], [gmin
j , gmax

j ], k)

f̃c(zi, gj , k)
, (2.31)

whereC is a normalisation constant (such that
∑
i ñ(zi) = 1) andNobj(cross, [zmin

i , zmax
i ], [gmin

j , gmax
j ], k)

is the number of objects in the cross-matched sample in the ith redshift bin, jth magnitude bin and

kth pixel.

With an estimator of n(z) in hand, we now discuss how to construct the completeness correction.
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A simple estimator for the correction in the (i, j, k)th volume element reads

f̃c(zi, gj , k) =
Nobj(cross, [zmin

i , zmax
i ], [gmin

j , gmax
j ], k)

Nobj(photo, [zmin
i , zmax

i ], [gmin
j , gmax

j ], k)
, (2.32)

where Nobj(photo, [zmin
i , zmax

i ], [gmin
j , gmax

j ], k) is the number of objects in the photometric sample

(namely, one of the RQCat subsamples), thus constructed using the photometric redshifts.

The resolution of previous multidimensional histograms is limited by sample variance and by

the uncertainties on (both photometric and spectroscopic) redshift and magnitude estimates7. To

estimate the redshift distribution of the RQCat subsamples, we investigated the use of the SDSS-DR7,

BOSS and 2SLAQ spectroscopic quasar catalogues. The redshift and magnitude distributions of the

UVX-LOWZ objects in RQCat cross-matched with these catalogues are shown in Fig. 2.7. We found

that the BOSS- and 2SLAQ-based cross-matched samples were small and had selection functions

quite different from RQCat. As a result, the estimator required significant completeness corrections,

and the multidimensional histograms had to be constructed with large bins to reduce sample

variance and biases due to uncertainties on the redshift and magnitude estimates. On the other

hand, cross-matching with SDSS-DR7 led to large samples which had selection functions similar to

that of the RQCat subsamples. Fig. 2.8 shows low-resolution estimates of completeness corrections

arising when cross-matching the whole UVX-LOWZ sample (union of the RQCat subsamples) with

SDSS-DR7, BOSS and 2SLAQ, where spatial dependence was neglected for purposes of illustration.

Even at such low resolution, the completeness corrections for BOSS and 2SLAQ exhibit strong

redshift and magnitude dependences (and are limited by sample variance due to the low number

of cross-matched objects). For these reasons, the final redshift distribution estimates of the four

RQCat samples were calculated using the SDSS-DR7 catalogue. The right panels of Fig. 2.9 show

number count maps of the RQCat subsamples and the SDSS-DR7-based cross-matched samples.

The numbers of objects in the respective subsamples are summarised in Table 2.1.

With the high number of cross-matched objects, we were able to test various assumptions for the

completeness corrections, such as the weakness of the redshift-dependence, and choose resolutions

that yielded the best estimates. Since SDSS-DR7 spans the same redshift range as RQCat, no redshift-

dependent corrections were required (Fig. 2.8 shows that the correction is only weakly redshift

dependent, apart from a mild transition at z = 2. Neglecting this transition did not significantly

impact the final estimates). We used magnitude-dependent completeness corrections at resolution

∆g = 1.0, due to the different magnitude limits in the SDSS photometric and spectroscopic data.

7We will neglect the uncertainty in the sky position since it is negligible compared to the pixel size used for the
completeness correction.
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Table 2.1: Number of objects in the four RQCat redshift subsamples (Nobj photo), and for which

good spectra (and thus good spectroscopic redshifts) were found in the SDSS-DR7 quasar catalogue

(Nobj cross). These cross-matched samples were used to estimate the redshift distributions shown

in Fig 2.9.

Low-z Mid-z High-z Mid+High-z
Nobj photo 95,185 109,713 92,740 202,453
Nobj cross 19,328 17,589 10,654 28,243

Finally, the SDSS-DR7 spectroscopic quasar catalogue was assembled from different data releases of

SDSS and is known to be non-uniform on the sky (Schneider et al., 2010). Indeed, Fig. 2.9 shows

that the cross-matched samples contain regions with a greater number of objects, in some cases

exploring fainter magnitudes. To address this spatial dependence, we calculated the magnitude-

dependent completeness corrections in individual pixels at HEALPIX resolution Nside = 16. The final

estimates ñ(zi) are shown in Fig. 2.9, and were fitted by superpositions of Gaussian distributions

for use in CAMB SOURCES.

Figure 2.10 shows the estimates obtained with CAMB SOURCES (thus using the full formalism

from Challinor and Lewis 2011) with our best estimates for s and n(z), compared with the same

estimates where magnification and completeness corrections were neglected. The large differences

between the resulting angular power spectra demonstrate that these effects must be accounted for,

and carefully estimated from the data in order to avoid significant biases in the theory predictions.

2.4.4. Masks and systematics

We considered five sources of systematics: stellar contamination, dust absorption, seeing, airmass

and sky brightness. Following Pullen and Hirata (2013), we constructed the stellar density map

from SDSS DR6 point sources with 18.0 < r < 18.5 and i < 21.3. For the extinction, we used the

dust maps from Schlegel et al. (1998) with the corrections by Peek and Graves (2010). Templates

for seeing, airmass and sky brightness were constructed with the MANGLE software (Hamilton and

Tegmark, 2004; Swanson et al., 2008) using data retrieved from the FIELDS table in the SDSS CAS

server. All maps were binned onto the HEALPIX grid at resolution Nside = 128, and are shown in

Fig. 2.11.

We designed three sky masks by excluding pixels based on their values in the systematics maps.

The thresholds are summarised in Table 2.2, and the resulting masks are presented in Fig. 2.12.
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Figure 2.10: Theory predictions for the four RQCat subsamples computed with CAMB SOURCES. The

black lines show the final theory predictions, calculated with the best redshift distribution estimates

presented in Sec. 2.4.3, for a Planck cosmology and a fixed galaxy bias bg = 2.3. The blue dashed

lines show the predictions obtained by neglecting the effect of magnification, and the red dot-dashed

lines by neglecting the completeness correction in the estimated redshift distributions (i.e., using

the redshift histograms of the cross-matched samples without accounting for the differences in
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spectra C̃` of their overdensity maps.
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Table 2.2: Systematics thresholds used to restrict the power spectrum analysis of RQCat to the most

reliable regions of the sky to minimise contamination from calibration errors. The maps of the

systematics are shown in Fig. 2.11, and the resulting masks in Fig. 2.12.

Systematic (unit) Mask 1 Mask 2 Mask 3
Seeing (arcsec) 2.0 1.6 1.55
Reddening (mag) 0.05 0.05 0.045
Stellar density (stars/deg2) 562 400 350
Airmass (mag) 1.4 1.3 1.25
Sky brightness (nmgy/arcsec2) 2×10−9 1.8×10−9 1.75×10−9

(a) Mask 1 (b) Mask 2 (c) Mask 3

Figure 2.12: Masks used for the power spectrum analysis of RQCat, in Equatorial coordinates.

Retained regions are based on thresholds summarised in Table 2.2 and the systematics templates of

Fig. 2.11. Additional excised rectangles follow Pullen & Hirata (2012). The three masks respectively

have fsky = 0.148, 0.121, and 0.101.

Following Pullen and Hirata (2013), we also excised rectangular regions with missing data8. Our

first mask is therefore very similar to those used in previous studies of RQCat and constitutes the

reference mask. The two other masks use more aggressive systematics cuts.

The cut-sky angular power spectra, C̃`, of the systematics maps for the three masks are shown

in Fig. 2.11. Interestingly, stellar density and dust absorption templates display strong large-scale

power (` < 30), and calibration error templates (seeing, airmass, sky brightness) have notable

features at ` ∼ 70, 110 and 150. The masked template maps have these features reduced, but not

eliminated. Since the data are known to be affected by these systematics, the measured spectra are

likely to be contaminated at these multipoles.

2.4.5. Power spectrum results

We obtained angular band-power estimates with the QML estimator and multipole bins of size

8In equatorial (J2000) coordinates, the discarded angular rectangles are (α, δ) = (122◦−139◦,−1.5−(−0.5)◦), (121◦−
126◦, 0◦ − 4◦), (119◦ − 128◦, 4◦ − 6◦), (111◦ − 119◦, 6◦ − 25◦), (111.5◦ − 117.5◦, 25◦ − 30◦), (110◦ − 116◦, 32◦ −
35◦), (246◦ − 251◦, 8.5◦, 13.5◦), (255◦ − 270◦, 20◦ − 40◦), (268◦ − 271◦, 46◦ − 49◦), (232◦ − 240◦, 26◦ − 30◦).
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Figure 2.13: Illustration of the suboptimality of the PCL estimator in the case of the Mid+High-z

subsample. The top panels show the covariance matrices of the PCL and QML estimates with

∆` = 11 for the three masks of Fig. 2.12. The suboptimality of the PCL prior is measured by the

fractional increase of variance compared to QML, shown in the right column. The bottom panel

shows the resulting effects on the power spectrum estimates, which are more pronounced for the

second and third masks due to their complex geometry.
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∆` = 11, which led to a good balance in terms of multipole resolution and variance of the estimates.

We did not use the PCL estimator for the final results because the geometry of the second and

third masks, in addition to the presence of systematics, yielded significantly suboptimal estimates.

To illustrate this point, Fig. 2.13 shows a comparison of the PCL and QML covariance matrices

and the band-power estimates of the Mid+High-z subsample for the three masks. Any significant

increase of the PCL variance compared to that of QML, especially on diagonal- and nearly-diagonal

elements which contain the most significant contributions, demonstrates the suboptimality of the

PCL prior. For the first mask, the PCL variance of these elements is at most ∼ 20% greater than

the QML variance, indicating that the resulting estimates are nearly optimal. However, for the

second and third masks, these elements have a PCL variance up to ∼ 50% greater than that of

QML, and the resulting PCL estimates significantly differ from the optimal QML estimates, as shown

in the bottom panel of Fig. 2.13. This effect is less pronounced for larger multipole bins (e.g.,

∆` = 31), as the likelihood becomes less sensitive to the priors on the pixel-pixel covariance matrix.

However, the resulting loss of resolution prevents the study of localised multipole ranges affected

by systematics. For these reasons we opted for the QML estimator with ∆` = 11 in the final analysis.

We systematically marginalised over the values the monopole and the dipole by projecting them out.

They are poorly constrained from cut-sky data, and may affect the power spectrum estimates over a

wide range of multipoles when deconvoling the cut-sky power spectrum into full sky estimates9.

We used the values Ḡ−1 = 1.95 · 10−5, 1.55 · 10−5, 1.85 · 10−5 and 8.15 · 10−6 respectively for the

shot noise of the four RQCat subsamples, calculated from the average number count per steradian

assuming 5% stellar contamination.

The auto- and cross-spectra of the four RQCat samples are presented in Figs. 2.14 and 2.15,

and the χ2 values of the theory prediction are listed in Table 2.3. We subtracted the shot noise

from the auto-spectra, and used a constant bias, bg = 2.3, following previous studies of these data

(Giannantonio et al., 2006, 2008; Pullen and Hirata, 2013; Slosar et al., 2008; Xia et al., 2010).

The theory predictions are summarised in Fig. 2.10. We also used the exact window functions Wb`

for converting the theory power spectra into band-powers; see Eq. (2.17). Figure 2.16 shows the

cross-correlation power spectra of the quasar samples with the systematics templates, and Table 2.4

lists the corresponding χ2 values. Details of the χ2 computation are contained in Appendix 2.7.3.

In Figs. 2.14 and 2.15, the top panels show the final band-power estimates, where the pixel

space modes corresponding to the five systematics templates were projected out. The effect of mode

9In standard P (k) analyses, this issue is resolved by applying an integral constraint to the power spectrum estimates (see,
.e.g, Tegmark et al. 2002a).
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projection on the estimates is illustrated in the bottom panels, showing the differences in the QML

estimates. Hence, these values can be added to the estimates in the top panels to recover the results

without mode projection. The change in the covariance of the estimates due to mode projection is

negligible.

Reference mask

Our first mask, which is similar to that used in previous studies of RQCat (Giannantonio et al.,

2006, 2008; Pullen and Hirata, 2013; Slosar et al., 2008; Xia et al., 2010), is mostly based on

extinction, stellar density and seeing cuts, and also excises a few pixels with extreme values of

airmass and sky brightness. When using this reference mask, the auto-spectrum estimates of the

four RQCat subsamples exhibit significant excess power in the first multipole bin. In particular, the

cross-correlation of the Low-z sample with the other samples confirm the presence of systematics

in common. The cross-spectra of the quasar subsamples with the systematics templates, shown in

Fig. 2.16, enable us to identify the main sources of contamination responsible for this excess power.

In addition to seeing and airmass, which are the main contaminants in the four samples, stellar

contamination affects the Low-z sample, and dust extinction and sky brightness contaminate the

Mid-z and High-z samples.

The auto- and cross-spectra are marginally improved by projecting out the modes corresponding

to the systematics templates, as shown by the small decrease in the χ2 values, summarised in

Tables 2.3 and 2.4. In particular, the large-scale power excess persists, confirming the conclusions

by Pullen and Hirata (2013) that the contamination must involve non-linear combinations of

systematics, or else systematics which have not been accounted for.

Improved masks

Our second mask is based on more restrictive cuts on the systematics, the most important of which

are seeing and stellar density cuts. Using this mask not only improves the overall quality of the

estimates, as measured by the χ2, but also eliminates the excess power at low ` in all subsamples

except the Low-z one. Interestingly, the cross-spectra of the Low-z sample with the others exhibit no

excess power. This indicates that the systematics responsible for the excess in the Low-z sample are

successfully mitigated in the Mid-z and High-z samples, and thus in the Mid+High-z sample. The

cross-spectra with the systematics templates are significantly decreased, although dust extinction

and seeing still affect the Mid-z and High-z samples. Mode-projection further improves the quality
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Table 2.3: The chi square values for the auto- and cross-power spectra of the four RQCat samples

presented in Figs. 2.14 and 2.15, with and without mode projection (mp). The number of degrees

of freedom is ν − p = 13, and the probability to exceed (PTE) the observed chi squares are shown in

parentheses. The results are shown in bold when PTE < 1% (corresponding to χ2
13 = 27.7).

χ2
ν−p Mask 1 Mask 2 Mask 3

no mp mp no mp mp no mp mp
Low-z 56.6 (2e-7) 44.4 (3e-5) 16.4 (0.23) 12.4 (0.49) 25.6 (0.02) 20.2 (0.09)
Mid-z 23.9 (0.03) 22.9 (0.04) 11.2 (0.59) 11.1 (0.60) 8.8 (0.78) 8.7 (0.79)
High-z 16.4 (0.22) 14.4 (0.34) 12.9 (0.45) 11.8 (0.54) 11.0 (0.61) 11.5 (0.57)
Mid+High-z 13.6 (0.40) 13.1 (0.44) 8.2 (0.83) 8.3 (0.82) 4.2 (0.99) 4.5 (0.98)
Low-z / Mid-z 33.2 (2e-4) 23.7 (5e-3) 27.7 (1e-4) 15.8 (0.07) 27.9 (1e-4) 15.3 (0.08)
Low-z / High-z 10.2 (0.68) 11.5 (0.24) 12.1 (0.52) 7.3 (0.60) 6.2 (0.94) 3.5 (0.94)
Low/MidHigh-z 26.3 (0.02) 19.9 (0.02) 17.9 (0.16) 9.7 (0.37) 13.9 (0.38) 8.3 (0.50)
Mid-z / High-z 6.1 (0.94) 4.3 (0.89) 11.0 (0.61) 3.9 (0.92) 9.2 (0.75) 2.7 (0.97)

of the estimates, but does not eliminate the excess power in the Low-z sample.

The third mask is based even more stringent cuts on the systematics. The cross-spectra with

the systematics templates show that using this mask further decreases the influence of extinction,

airmass and seeing on the Mid-z and High-z samples. However, it fails to remove the excess

power in the Low-z sample, and dust extinction continues to impact the Mid-z sample. Yet, no

statistical anomalies are observed in the auto-spectra of Mid-z , High-z and Mid+High-z samples.

Mode-projection further improves the χ2 values of all auto- and cross-spectra. In particular, the

χ2 values for the cross-spectra between the Mid-z and the High-z samples significantly improve,

indicating a successful mitigation of the remaining levels of extinction.

In summary, when using the third mask and mode projection, the auto-spectra of the Mid-z ,

the High-z and Mid+High-z samples exhibit no evidence of systematics, and are well-fitted by the

theory prediction. The cross-spectra of these samples with the Low-z sample are also not anomalous,

indicating the absence of systematics in common. Mode-projection eliminates the contributions (to

linear order) of the five systematics we have considered, so that any remaining contamination can

only involve non-linear combinations or unidentified systematics. Their presence is confirmed in

the Low-z subsample, but the other subsamples exhibit no evidence of contamination, indicating

that any residual systematics are well within the sample variance.

2.5. Discussion

We have investigated the problem of estimating angular auto- and cross-power spectra on the
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Figure 2.14: QML estimates of the (dimensionless) auto-power spectra of the overdensity maps of

the four RQCat samples presented in Fig. 2.9. The estimates were calculated for the three masks

in Fig. 2.12 (blue diamond, red triangles and black squares) for multipole bins of size ∆` = 11,

and compared with the theory prediction for a Planck cosmology (solid line). The top panel shows

the estimates obtaining by mode-projecting the five systematics of Fig 2.11. The bottom panel

indicates the difference in the estimates when mode projection is not used, i.e., Ĉno mp
b − Ĉmp

b , and

can be added to the top panel to recover the estimates without mode projection (the change in the

covariance of the estimates due to mode projection is negligible).

Table 2.4: The chi square values for the cross-power spectra of the four RQCat samples with the

systematics templates, presented in Fig. 2.16, using the same conventions as Table 2.3.

χ2
ν−p Stellar density Extinction Airmass Seeing Sky brightness

Masks 1 / 2 / 3 Masks 1 / 2 / 3 Masks 1 / 2 / 3 Masks 1 / 2 / 3 Masks 1 / 2 / 3
Low-z 17 / 11.2 / 15.5 10.5 / 9.1 / 14.3 23.9 / 8.2 / 6.7 50 / 25.2 / 12.5 11.3 / 4.1 / 6.9
Mid-z 4.0 / 9.5 / 15.3 12.3 / 17.7 / 13.1 26.9 / 16.1 / 8.2 19.9 / 11.1 / 11.3 8.4 / 6.4 / 7.7
High-z 3.3 / 5.7 / 6.5 28 / 26.9 / 47.1 5.8 / 3.0 / 6.8 32 / 20.1 / 12.1 27.9 / 18.6 / 15
Mid+High2.8 / 5.3 / 7.7 11.2 / 14.3 / 23 20.2 / 9.1 / 6.1 34.7 / 14.8 / 9.6 19.8 / 10.8 / 6.6
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Figure 2.15: QML estimates of the (dimensionless) cross-power spectra of the RQCat overdensity

maps using the same conventions as Fig. 2.14.
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largest scales in the presence of systematics, and applied this framework to the UVX sources in the

RQCat catalogue of SDSS photometric quasars. Previous studies (Giannantonio et al., 2014; Pullen

and Hirata, 2013; Xia et al., 2011) indicated that this catalogue was not suitable for clustering

analyses due to the high-levels of contamination by the systematics. We examined these conclusions

by focusing on 0.5 < z̃p ≤ 2.2 objects, divided into four redshift bins, and attempted to remove

the influence of the main systematics using improved sky masks and mode projection. We also

improved the theoretical predictions by making use of refined redshift distributions estimated by

cross-matching objects in RQCat with the SDSS-DR7 spectroscopic catalogue and applying robust

completeness corrections.

In agreement with previous studies, we found that z̃p < 1.3 objects exhibited significant levels

of contamination by systematics, in particular dust absorption, airmass and seeing, which could not

be eliminated by masking and mode projection. The remaining excess power on large scales points

to the presence of unknown or non-linear combinations of the systematics in this redshift bin.

The large-scale excess power observed in the auto- and cross-spectra of 1.3 < z̃p ≤ 2.2 objects

was eliminated by using improved sky masks based on templates of five of the main systematics.

The agreement with the theory predictions further improved when projecting out the modes

corresponding to these systematics. Within the statistical uncertainties, we found no evidence for

remaining contamination in this sample. We conclude that photometric quasar samples can be

made suitable for cosmological studies.

We did not attempt to model the contamination signal, but rather constructed a sample (through

object selection and masking) which exhibited negligible levels of contamination. This approach

relies on the ability to measure these levels of contamination, in our case through auto- and

cross-spectra of the samples and cross-spectra with systematics templates, which are limited by the

variance of the estimates due to the shot noise and sky coverage. Consequently, more contaminated

samples (such as the whole RQCat) with higher number densities require a model of the systematics

in order to obtain clustering measurements that are not dominated by spurious correlations. In this

context, mode projection can be used to marginalise over the parameters of linear contamination

models while estimating the power spectrum. However, future surveys may require more sophistic-

ated algorithms, or even Bayesian component separation models similar to COMMANDER-RULER

(Eriksen et al., 2006, 2008) used in the context of Planck (Planck Collaboration, 2013f).

The clustering properties of the large galaxy and quasar catalogues produced by next generation

photometric surveys such as DES will put tight constraints on models of galaxy bias and PNG.

However, stellar contamination and calibration errors will always be present in galaxy survey
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data, and may compromise our understanding of the observables if not correctly treated. Thus, as

sample variance becomes steadily smaller with increasing catalogue sizes, efficient strategies for

mitigating the systematics, such as those presented here, will become critical for the cosmological

interpretation of these surveys.
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2.7. Appendices

2.7.1. Pixelisation, band-limit and smoothing issues

The equations defining the PCL and QML estimators do not impose maximum multipoles for

the reconstruction, the coupling or the covariance matrices. Such bounds are called band-limits,

and are in practice imposed by the finite information content of x, which depends on the resolution

of the map and any additional operations such as smoothing. In particular, pixelising the signal

x into a (full or cut-sky) map x induces a distortion in the power spectrum estimates, which we

parametrise as

Cpix
` = b2`C`, (2.33)
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where Cpix
` and C` are the power spectra of x and x respectively. The continuous map x is usually

not accessible, but can be approximated using a high-resolution pixelisation, which in practice will

correspond to the highest resolution at which the data are available (and will only require a small

correction of the pixelisation-induced bias as detailed below). x will then refer to a smoothed,

lower-resolution map constructed from x, which will be used to estimate the power spectrum

on a specific range of scales. This approach is motivated by the complexity of the PCL and QML

pixel-space estimators which depends on the number of pixels in the mask. It is usually desirable to

use the lowest resolution for which the power spectrum can be accurately estimated in the range of

multipoles of interest.

The beam b` is decomposed into a pixelisation-induced part bpix
` and a smoothing part bpix

` . In the

previous sections we have assumed that pixelisation distortions were negligible, i.e., bpix
` ≈ 1 for all

`, but this assertion is true for a mode ` only if the pixels of x are small compared with 180/` degrees.

We considered the HEALPIX pixelisation of the sphere, where a map at resolution Nside has 12N2
side

equal-area pixels. In terms of its effect on the power spectrum, pixelising a signal at resolution

Nside is well approximated by smoothing with a Gaussian kernel of full width at half maximum

(FWHM) 41.7/Nside degrees. This beam, shown in Fig. 2.17, smoothly decays as ` increases, and

imposes an effective band-limit of `max = 7Nside on the pixelised map. However, it is well-known

that the accessible multipoles for a map at HEALPIX resolution Nside lie within ` ∈ [0, 2Nside].

Higher multipoles are not accessible because the integrals in the spherical harmonics and Legendre

transforms are not accurately approximated by matrix multiplications at this resolution. It is

essential to smooth the initial map before degrading it in order to avoid a mismatch between the

band-limits, while insuring that the power spectrum can be reconstructed up to `max = 2Nside.

We investigated this issue and found that band-limiting the map at `max = 4Nside gives optimal

performance. This can be realised by a Gaussian smoothing of FWHM 60/Nside degrees, as illustrated

in Fig. 2.17.

However, the smoothing procedure introduces information from outside the mask into the map,

hence biasing the estimates (Aurich and Lustig, 2011; Copi et al., 2011; Feeney et al., 2011b). This

effect depends on the resolution of the map and the shape of the mask, and can significantly affect

the power spectrum on a wide range of scales. To avoid this smoothing-induced contamination,

the mask must be extended. A systematic procedure is to smooth the complement of the mask, i.e.,

1−m, and keep the pixels below a certain threshold (0.01 in this work). But because the Gaussian

kernel is band-limited in harmonic space but not compact in pixel space, the smoothing will always

leak contamination signal into the data. Also, depending on the threshold, the mask extension might
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at HEALPIX resolution Nside. The beam must be accounted for in the construction of the model

covariance matrices, and inverted when comparing the estimates with theory.

be large and thus significantly increase the variance of the estimates. This can be resolved by using

a top-hat smoothing of diameter 90/Nside degrees, which band-limits the data at `max = 4Nside

similar to the Gaussian smoothing. The top-hat kernel is compact and the mask extension is smaller

and requires no threshold. However its extent in harmonic space is infinite (in other words it is

not band-limited), as shown in Fig. 2.17, which can introduce further contamination in the map

due to approximated smoothing. This can be avoided by performing the top-hat smoothing at

high-resolution with a large band-limit. Alternatively, the smoothing can easily be performed in

pixel space through explicit convolution since the kernel has a simple shape and the procedure can

be parallelised.

In conclusion, the power spectrum of a high-resolution signal can be estimated from a map at

lower resolution Nside provided that the band-limits, the pixelisation and smoothing-induced biases

are correctly handled. Before degradation, the initial map is smoothed with a Gaussian kernel of

FWHM 60/Nside degrees or a top-hat kernel of diameter 90/Nside degrees, and the mask must be

extended accordingly to minimise the contamination due to smoothing. The estimation can then be

performed on the low resolution map in the range ` ∈ [0, 4Nside] and the signal covariance matrix

created with a prior b2`C` up to `max = 4Nside in order to incorporate all the information in the

data. Dividing by the beam b2` leads to accurate unbiased band-power estimates of C` in the range

` ∈ [0, 2Nside].

2.7.2. Karhunen-Loève compression demystified
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The Karhunen-Loève (KL) transform (Tegmark et al., 1997, 1998, 2002b; Vogeley and Szalay,

1996) refers to finding a basis in which the transformed data pixels are statistically orthogonal with

respect to a prior on the power spectrum. The transformation matrix B satisfies

x̃ = Bỹ. (2.34)

such that

〈ỹnỹ∗n′〉 = λnδnn′ , (2.35)

and the columns Bn are the eigen-vectors of the pixel-pixel covariance matrix, i.e.,

C̃Bn = λnBn. (2.36)

Hence x̃ and ỹ retain the same information and KL compression is equivalent to a principal

component analysis performed through singular value decomposition (SVD) of the pixel-pixel

covariance matrix. However, this approach is only optimal if the noise covariance is diagonal.

Anisotropic noise requires a so-called prewhitening operation, changing the eigen-problem to be

solved into

S̃Bn = λnÑBn, (2.37)

where the eigen-vectors now diagonalise both the signal and the noise covariance matrices. If

the transformation is renormalised such that B†nNBn = 1 before transforming the map x, the

coefficients λn can be interpreted as signal-to-noise ratios, i.e.,

〈ỹnỹ∗n′〉 = δnn′(1 + λn). (2.38)

The power spectrum is invariant under rotation in the isotropic case, it can be estimated from

y provided that the matrices C̃ and P` are in the same coordinate system. In the KL basis the

most informative contributions to the spectrum explicitly come from the first KL modes, as they

correspond to high SNR modes. Hence KL compression is often used to remove the noisiest modes

and speed up power spectrum estimation, in particular for the matrix inversion in the QML estimator.

However, this gain is usually offset by the cost of the preliminary SVD required to compute the KL

transformation matrix.

Moreover, although removing the noisiest modes leaves the PCL and QML estimates unbiased, it

increases their variance and potentially impacts the estimates on a wide range of scales. In particular,
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Figure 2.18: Histograms of the χ2 values of the PCL (left) and QML (right) estimates of the 600

CMASS mock catalogues. We used multipole bins of size ∆` = 11, and the theory prediction from

CAMB SOURCES. The boxes show the Poisson errors due to sample variance. The histograms were

normalised and compared with the theoretical χ2 probability distributions (thick lines). Their good

agreement demonstrates the validity of the χ2 given by Eq. 2.39.

assuming a constant diagonal noise, the KL modes calculated from a full sky covariance matrix

S directly relate to the theory spectrum. The largest modes correspond to the largest C`’s with

multiplicity 2`+ 1. On the cut sky, this degeneracy is broken and each mode uniquely relates to a

linear combination of C`’s with finite support peaking at the previous full sky value (thus conserving

the order of the modes). Small masks increase the scope of this combination, and removing small

KL modes can thus impact a wide range of multipoles. Logically, considering the CMB spectrum

with a typical CMB mask shows that the lowest KL modes, the noisiest, relate to high ` multipoles,

and removing them leaves the low ` power spectrum estimates unchanged. However for a galaxy

survey the theory spectrum is flatter and the mask larger, and the noisiest modes then relate to a

wide range of multipoles. Therefore, removing them also impacts the largest scales. Fortunately this

effect is reduced when performing the estimation in bins, and the KL compression has a negligible

impact on the quality and the variance estimates.

We did not use KL compression in the context of our analyses because the gain in computer time

is marginal. We were able to run the QML estimator at Nside = 64 without any approximation.

2.7.3. χ2 for band-power estimates

To compare power spectrum measurements with theory predictions we used a χ2 defined as

χ2 =
∑
bb′

(Ĉb − Cb)V−1
bb′ (Ĉb′ − Cb′) (2.39)
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where Ĉb denotes the (PCL or QML) band-power estimates and Cb′ the theory band-powers,

constructed from the theory power spectrum C` (calculated from CAMB SOURCES) using the window

functions Wb` defined in Eqs. (2.17) and (2.18). The covariance matrix V is calculated using

Eq. (2.11) and is equal to the inverse of the Fisher matrix when the QML estimator is used. Note

that the shot noise 1
Ḡ

must be subtracted from the auto-spectrum estimates Ĉb.

It is well known that observed power spectra C` as calculated by Eq. (3.1) are only described by

Gaussian statistics at high-` when the central limit theorem applies. For low-` estimates, one must

resort to alternative likelihood functions (see, e.g., Hamimeche and Lewis 2009; Jaffe et al. 1999).

However, when estimating band-powers rather than individual multipoles, these effects can be

neglected, and a Gaussian likelihood can be used to compare the estimates with theory band-powers.

To illustrate this point, Fig. 2.18 shows the χ2 values for the PCL and QML estimates of the 600

CMASS mock catalogues with bin size ∆` = 11 in the range [2,120], corresponding to 11 degrees

of freedom. The normalised histograms follow the theoretical χ2 distributions, demonstrating the

validity of a Gaussian likelihood, as expected when using band-powers.
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3
Exploiting the full potential of photometric quasar

surveys: optimal power spectra through blind

mitigation of systematics

“If tortured sufficiently, data will confess to almost anything”. F. Menger

3.1. Abstract

We present optimal measurements of the angular power spectrum of the XDQSOz catalogue of

photometric quasars from the Sloan Digital Sky Survey. These measurements rely on a quadratic

maximum likelihood estimator that simultaneously measures the auto- and cross-power spectra

of four redshift samples, and provides minimum-variance, unbiased estimates even at the largest

angular scales. Since photometric quasars are known to be strongly affected by systematics such as

spatially-varying depth and stellar contamination, we introduce a new framework of extended mode

projection to robustly mitigate the impact of systematics on the power spectrum measurements.

This technique involves constructing template maps of potential systematics, decorrelating them on

the sky, and projecting out modes which are significantly correlated with the data. Our method is

able to simultaneously process several thousands of nonlinearly-correlated systematics, and mode

projection is performed in a blind fashion. Using our final power spectrum measurements, we

find a good agreement with theoretical predictions, and no evidence for further contamination by

systematics. Extended mode projection not only obviates the need for aggressive sky and quality

cuts, but also provides control over the level of systematics in the measurements, enabling the
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search for small signals of new physics while avoiding confirmation bias.

3.2. Introduction

Quasars are bright, highly biased tracers of the large scale structure (LSS) of the universe, and

are useful for testing cosmological models in large volumes and over extended redshift ranges. In

particular, their bias can inform us about the abundance and mass of dark matter halos in which

they form, opening new windows on galaxy formation and the astrophysics of active galactic nuclei

(e.g., Fan et al. 2006). In addition, they can be used to constrain primordial non-Gaussianity (PNG)

which is predicted to enhance the bias of LSS tracers on large scales (Dalal et al., 2008; Komatsu

et al., 2009; LoVerde et al., 2008; Matarrese and Verde, 2008). However, these applications require

accurate auto- and cross-correlation power spectrum measurements, which are complicated by the

presence of significant systematics in the data, and the difficulty of creating large, deep quasar

catalogues. Indeed, although quasar candidates are easily confirmed with spectroscopy, quasars are

point sources, and most point sources in the sky are stars. Since acquiring high resolution spectra is

a time- and resource-consuming process, the creation of large quasar catalogues is cumbersome

and can only be realised by preselecting targets and scheduling them for spectroscopic follow-up.

In optical frequencies, catalogues of photometric quasars were constructed from the Sloan Digital

Sky Survey (SDSS, Gunn et al. 2006), and promising candidates were followed up using the

SDSS spectrograph, yielding large catalogues of confirmed quasars such as the Baryon acoustic

OScillations Survey (BOSS, Dawson et al. 2013).

While spectroscopic catalogues don’t suffer from stellar contamination, photometric samples are

larger and extend to fainter magnitudes, and can therefore yield more precise measurements of the

clustering and the bias of quasars. However, photometric data are significantly contaminated by

multiple sources of systematics, either intrinsic (e.g., dust extinction), observational (e.g., seeing,

airmass), or instrumental (e.g., instrument calibration), and star-quasar separation using only

colour information is also nontrivial. These systematics affect the properties of the raw images in

complex ways, propagate into the final quasar catalogues, and create spurious spatial correlations

(spatially-varying star-quasar separation efficiency will induce a spurious clustering signal, see

e.g., Huterer et al. 2013). Finally, some of these correlations may also be imprinted in spectroscopic

catalogues, since the latter rely on targets selected from photometric quasars. Therefore, not
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just precise — but also accurate — cosmological inferences from quasar surveys require careful

mitigation of systematics.

The first studies of the clustering of quasars in optical frequencies used both spectroscopic

(e.g., Outram et al. 2003; Ross et al. 2009; Shen et al. 2007) and photometric (e.g., Myers et al.

2006) catalogues from early SDSS data, and were used to constrain numerous cosmological and

astrophysical quantities of interest, such as the quasar bias, PNG, and the quasar luminosity function

(Myers et al., 2007a; Richards et al., 2006; Serber et al., 2006; Slosar et al., 2008; Strand et al.,

2008). They exhibited power excesses on large and small scales (Myers et al., 2007b), which were

even more significant in the DR6 photometric quasar catalogue (Richards et al., 2009). Although

cuts to the data were not sufficient to remove this excess power, thus pointing to PNG (Giannantonio

et al., 2012; Karagiannis et al., 2013; Xia et al., 2009, 2011), recent work has demonstrated

that the excess power was due to systematics (Pullen and Hirata, 2013) and could be eliminated

using mode projection (Leistedt et al., 2013). Indeed, it is known that spatially-varying stellar

contamination can combine with other systematics and generate such excess clustering power,

mimicking significant levels of PNG (Giannantonio et al., 2014). Alternatively, other studies have

focused on using the cross-correlations of the photometric quasars with other data (Giannantonio

and Percival, 2014), thus extracting some of the information they contain while avoiding the main

systematics. The resulting PNG constraints were competitive with those obtained using normal

galaxies (e.g., Ross et al. 2013). The eighth data release of SDSS yielded a new catalogue of

photometric quasars, XDQSO (Bovy et al., 2011a), relying on the extreme deconvolution technique

(Bovy et al., 2011b); the latest spectroscopic data were used to provide an improved probabilistic

selection of quasars, with greater control over completeness issues. XDQSO extends to fainter

magnitudes, and was primarily used to select high redshift candidates scheduled for spectroscopic

follow-up in the context of BOSS (Ross et al., 2012c). Its extension, coined XDQSOz (Bovy et al.,

2012), provides estimates and probability density distributions for the photometric redshifts of the

catalogued objects. XDQSOz was cross-correlated with the cosmic microwave background (CMB)

lensing map from the Atacama Cosmology Telescope (Sievers et al., 2013) to constrain the quasar

bias (Sherwin et al., 2012). Constraints on PNG were also derived from clustering measurements

(Agarwal et al., 2014b; Ho et al., 2013), but required significant cuts and corrections to exploit

measured power spectra, and corrected for systematics using methodologies introduced in Agarwal

et al. (2014a); Ho et al. (2012); Ross et al. (2011, 2012a).

Quasar clustering studies therefore remain suboptimal and limited due to cuts and corrections

needed to address the high levels of spurious correlations created by systematics. Nevertheless, most
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of the potential systematics are actually known and can be mapped onto the sky. It is their complex

impact on the data which is not known, and prevents the modelling of spurious correlations when

estimating power spectra. Mode projection, however, can mitigate the impact of systematics in

a robust manner, while minimising the need to throw out hard-won data through masking and

cuts (Leistedt et al., 2013; Pullen and Hirata, 2013; Slosar et al., 2004; Tegmark et al., 1998). The

purpose of this work is to extend the standard mode projection approach by designing a generic

methodology to mitigate the impact of large numbers of known systematics in a flexible and robust

manner. We apply this technique to the XDQSOz catalogue in order to precisely control the level

of the contamination and accurately measure the power spectrum on the largest scales, which

is essential for constraining PNG. Next generation photometric surveys, such as the Dark Energy

Survey1 (DES), will reach unprecedented precision and will require careful treatment of systematics.

This extended mode projection approach will enable the full potential of such surveys to be exploited

in the search for new physics.

This article is organised as follows. In Sec. 2 we recall the definitions and properties of

quadratic power spectrum estimators, and introduce the extended mode projection technique to

mitigate systematics when estimating power spectra. In Sec. 3 we turn to the XDQSOz catalogue

of photometric quasars. We present our data samples, theory predictions and power spectrum

measurements, and discuss the ability of the extended mode projection, in combination with blind

analysis techniques, to mitigate systematics. The discussion and conclusions are presented in Sec. 4.

3.3. Theory and methods

3.3.1. Power spectrum estimation

The statistics of a Gaussian random field on the sphere are entirely characterised by its power

spectrum C`. Any realisation of this field, denoted by x, has an observed power spectrum C`, defined

1www.darkenergysurvey.org
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as the variance of the spherical harmonic coefficients a`m,

C` =
∑̀
m=−`

|a`m|2
2`+ 1

, (3.1)

which, on the full sky only, is an unbiased estimator of C` (i.e., over many realisations, 〈C`〉 = C`)

with cosmic variance

Var(C`) =
2C2

`

2`+ 1
. (3.2)

Cosmological models usually predict theory C`s which can then be confronted with observed

C`s to constrain model parameters. However, when measuring C` with real data, several issues

arise. Most datasets are only defined on a portion of the sky, and C` must then be estimated from a

cut-sky – or masked – data vector x. This issue has been extensively studied in the context of the

CMB (e.g., Efstathiou 2004a,b, 2006; Gruetjen and Shellard 2012; Knox et al. 1998; Pontzen and

Peiris 2010; Tegmark 1997), and also more specifically for LSS data (e.g., Ho et al. 2012; Leistedt

et al. 2013; Tegmark et al. 2002a). The two main quadratic angular power spectrum estimators are

the pseudospectrum (PCL) and quadratic maximum likelihood (QML) estimators. In both cases,

band-power estimates Ĉb (i.e., estimates of C` in multipole bins ∆`b) are quadratic in the data,

Ĉb = xtEbx, (3.3)

blwhere Eb characterises the estimator under consideration. The covariance of the estimates,

denoted by Vbb′ = Cov(Ĉb, Ĉb′), includes a cut-sky induced variance which is larger than the cosmic

variance and specific to the estimator at hand, and a contribution from the noise and systematics in

the data. The equations and implementation details we use are detailed in Leistedt et al. (2013),

and in this paper we only provide a summary of the main characteristics of these estimators.

The PCL estimator deconvolves the mask-induced mode-coupling to produce unbiased estimates

of C`. The estimator is straightforward to implement, not very computationally intensive, but only

optimal (i.e., it provides minimum-variance estimates) when C` is close to flat, and if the mask

has a simple geometry. The QML estimator is unbiased in C` and is a minimum variance estimator,

but is computationally intensive and requires priors on the power spectrum, noise and potential

systematic uncertainties in the data. These priors go in a pixel-pixel covariance C modelled as the
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superposition of a signal part S calculated using a theory prior {C`} and noise N, i.e.,

C = 〈xxt〉 = S + N =
∑
`

C`P
` + N, (3.4)

where (P`)ij = (2`+ 1)/4π P`(ni · nj) is a useful matrix notation (Tegmark, 1997) in which ni

denotes the angular position of the ith pixel. In fact, it can be shown that PCL is equivalent to QML

when assuming uncorrelated pixels, i.e., using a flat power spectrum as prior. Further complications

arise because power spectra of real data can only be accurately estimated in a multipole range

0 < ` < `max, where `max mainly depends on the noise level and the resolution at which the pixelised

maps are analysed. These parameters must be consistently adjusted when constructing priors and

computing the power spectrum estimates. Rules that guarantee the correct implementation of the

PCL and QML estimators for LSS studies are detailed in Leistedt et al. (2013).

3.3.2. Extended mode projection

As mentioned in the introduction, real data are often contaminated by systematic effects which

create spurious correlations in the measured power spectra. A first order solution is to construct

masks to ignore the regions of the sky which are not reliable, for example by rejecting pixels

based on quality cuts, or where potential systematics are significant (e.g., dust, seeing). However,

this approach does not remove the spurious correlations due to spatially-varying depth or stellar

contamination in the unmasked region. Hence, masking is insufficient when these systematics are

not negligible compared to noise and the cosmic variance. In addition, several ad hoc choices are

required to define what one means by unreliable regions, decide which systematics to include, and

what cuts to apply in order to construct the sky mask. As a consequence, there is a risk of being

subject to confirmation bias, i.e., one may perform the analysis using an initial mask, then notice it

is insufficient to remove the impact of systematics, and therefore perform another analysis with a

more stringent mask, until the results are in accordance with expectation.

To illustrate more robust solutions to mitigate systematics, let us start with a toy model where

the observed data y is the superposition of the systematics-free data vector x (of covariance C) and

a set of Nsys systematics maps ti, i.e.,

y = x +

Nsys∑
i=1

αiti. (3.5)
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With a method to estimate and fix the αi parameters at hand, one could correct the maps or the

power spectra to remove the impact of the systematics (Ho et al., 2012; Ross et al., 2011, 2012a).

However, if the systematics are not well-described by a linear model, the correction may be not be

robust, and create biases in the measured power spectra.

Alternatively, one could sample the coefficients αi, estimate the power spectra of the corrected

data vector y −∑αiti, and finally perform a Bayesian Monte Carlo marginalisation over the αis.

This approach can be seen as an analytic marginalisation of systematics to linear order, and is

more robust than attempting to correct the data or the power spectra. Interestingly, this approach

can be implemented in the QML estimator to directly obtain power spectrum estimates for the

systematics-free map x. This mode projection (e.g., Leistedt et al. 2013; Pullen and Hirata 2013;

Slosar et al. 2004; Tegmark et al. 1998) is implemented by using a prior covariance matrix

D = C + lim
ε→∞

∑
i

εtit
t
i, (3.6)

and setting ε to large values, i.e., by giving a large variance to the templates ti. Hence, the spatial

modes corresponding to these templates2 are considered as noise and ignored when estimating the

power spectra.

To gain intuition into the mode projection process and find its limitations, let us first notice

that the results of the QML estimator are invariant under rotation, i.e., transforming the data and

the prior covariance matrix D using an arbitrary rotation matrix does not affect the band-power

estimates (the rotation is a linear transformation of the data pixels and conserves the information

content). Therefore, it is straightforward to show that using mode projection with only one template

is equivalent to masking one pixel of the data vector x in an arbitrary rotated frame (defined by

the template). With multiple templates, this masking interpretation is only valid if the templates

are orthogonal on the patch of sky of interest, i.e., if ttitj = δij . In this case only, projecting out

Nsys templates is equivalent to masking Nsys pixels in some rotated frame. Hence, the increase in

variance in the band-power estimates scales as the number of templates. However, real systematics

are often correlated, and projecting out Nsys systematics may correspond to masking less than

Nsys pixels, leaving no control over the effective increase in variance in Vbb′ . Moreover, without

physically-motivated models for the contamination, one may want to include large numbers of

templates and consider more generic data-driven models. Yet, in this case many modes may in fact

not be relevant in treating systematics, and only contribute to increasing the variance of the band-

2In this paper, we will use the terms templates and spatial modes interchangeably.
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power estimates. The standard mode projection framework is not appropriate in these situations,

because it leaves no control over the increase in variance or the accepted level of contamination

when projecting out numerous correlated modes.

To address these issues, we extend the mode projection framework and add two operations to it,

prior to power spectrum estimation. Firstly, the systematics templates are decorrelated on the patch

of sky of interest. This eliminates the redundant information and leads to a minimal representation

of the input templates. Secondly, the resulting orthogonal modes are cross-correlated with the data,

yielding null tests that can be used to select and only project out the modes which significantly

contaminate the data. This selection can be done according to any criteria of interest, such as cuts

based on reduced χ2 for null tests, which is the metric we use in this work. Together, these two

extensions provide control over the effective number of modes and the increase in variance due to

mode projection. We now detail our implementation of extended mode projection in the context of

galaxy and quasar survey analysis.

For the first step, we stack the systematics templates to construct a matrix T where the rows

contain the modes to be projected out. As detailed in the next sections about SDSS quasars, we

will in fact use modes ti which are either base systematics templates, or products of templates,

so that Eq. (3.5) will be extended to non-linear contamination models. The templates ti are then

decorrelated using standard singular value decomposition (SVD) techniques to find a transformation

matrix W which, once applied to T, yields uncorrelated templates contained in the rows of a matrix

U. This procedure is encapsulated in the set of equations3

TtT = WΛWt (3.7)

U = TW (3.8)

UtU = WtTtTW = Λ , (3.9)

where Λ is a diagonal matrix containing the eigenvalues λi of T. The advantage of this decorrelation

step is twofold. Firstly, the output templates, denoted by ui, are orthogonal (utiuj = λiδij), and

yield a minimal description of the input systematics. Secondly, the SVD provides the number and the

significance of the orthogonal modes in this minimal description. In particular, it may find modes

which are consistent with numerical noise4, and can safely be ignored since they are redundant or

3Note that one may modify these equations to incorporate a covariance matrix and use the Sherman-Morrison formula to
analytically perform the mode projection. In this work, we have employed Eq. (3.6) instead, to avoid the need to reweight
all templates using a large covariance matrix, which is computationally very intensive.

4A mode is considered as numerical noise if the ratio between its eigenvalue and the largest eigenvalue of the system is
smaller than numerical precision.
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not significant in the input system.

The second step aims to select which of these orthogonal modes ui should be projected out.

In this work, we resort to C` estimators to measure cross-correlation power spectra between the

data and the systematics templates. In principle, any measure of correlation could be used, but

resorting to power spectrum estimators captures scale information, which is desirable since the

χ2 will be used to project out modes for the auto-correlation power spectrum. On average, LSS

data such as quasar and galaxy surveys should not be correlated with observational systematics,

e.g., dust extinction, seeing variation or stellar density. Individual realisations may exhibit non-zero

cross-spectra, but, in the absence of systematics, these should be consistent with zero within the

statistical uncertainties resulting from the estimator and the noise. Therefore, the cross-spectra

can be used for null tests, yielding one reduced χ2 per systematics mode, to decide if the mode

should be projected out. Large χ2 indicates significant spurious correlation between the data and

the mode, pointing to contamination by systematics. For a given set of uncorrelated systematics,

one can impose a global χ2
cut and only project out the modes with null test χ2 above this value.

The χ2
cut can be fixed according to absolute criteria, for example χ2

cut = 1.0, which ensures that the

remaining (i.e., non-projected) modes pass the null tests and are consistent with zero within the

statistical uncertainties. Alternatively, one can also adjust χ2
cut to control the number of projected

modes — and thus, the increase in variance — in the estimated power spectra. The next section

provides more details about the power spectrum estimator used for the null tests.

In conclusion, extended mode projection only relies on the ability to create systematics templates,

decorrelate them, and cross-correlate them with the data of interest. It allows one to consider

generic contamination models with large numbers and complex combinations of templates, from

which the main orthogonal modes will be extracted. Under the reasonable assumption that these

systematics — and thus the orthogonal modes — do not correlate on average with the data, one can

efficiently find the modes which need to be projected out. Compared to other techniques previously

applied to galaxy and quasar survey data (Agarwal et al., 2014b; Ho et al., 2013; Ross et al., 2011,

2012a), extended mode projection does not attempt to directly correct the data or the power spectra

but rather, analytically marginalises over the systematics when computing band-power estimates.

Beyond the parameters of the cross-power spectrum estimator (e.g., band-power width), which

are guided by the sky coverage and noise level, the only tunable parameters in this technique

are the set of input systematics templates and χ2
cut, which corresponds to the accepted level of

correlation between a potential systematic and the data. Therefore, this framework is based on the

principles of blind analysis, and can be used in a variety of situations where the data are non-linearly
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contaminated by several systematics.

3.3.3. Fast cross-power spectra and null-tests

With our implementation of extended mode projection, the systematics modes to be projected

out are selected based on null tests resulting from cross-power spectra with the data of interest.

Due to the potentially large number of modes, it is essential to use a fast estimator to compute these

cross-power spectra. The PCL estimator is a good candidate, but may be suboptimal when using

complex masks, or if the cross spectra are significantly non-flat, which is likely when considering

significantly contaminated data such as quasar surveys (Leistedt et al., 2013). Yet, using the QML

estimator would require significant time and memory resources, despite these power spectra only

being used for null tests, and thus not requiring the same level of accuracy as the main C` analysis.

Therefore, we designed an approximate QML estimator which yields fast null tests which are

quasi-optimal when compared with the full QML estimator. This new estimator simply replaces the

Fisher matrix in Eb
QML by the inverse covariance matrix of the PCL estimator. More precisely, we

compute cross spectra between one data sample xmap and a systematics mode xsys using

Ĉnulltest
b =

∑
b′

G−1
bb′

1

2
[xtmapC−1

mapPb′C−1
sysxsys], (3.10)

where Gb1b2 is the covariance of the PCL estimator, which can be simplified to

Gb1b2 =
∑

b1b2b3b4

M−1
b1b3

M−1
b2b4

Cmap
b3

Csys
b4

4Πb1b2b3b4 , (3.11)

where M is the PCL coupling matrix. Here, Πb1b2b3b4 = Tr [Pb1Pb2Pb3Pb4 ] is computationally

intensive to evaluate but only depends on the mask under consideration, and can therefore be

precalculated. In this formulation, Cmap
b and Csys

b are priors for the band-powers of the data and the

systematics mode to be cross correlated, also used to construct the covariance matrices Cmap and

Csys. In particular, Cmap
b is the theoretical prior also used in the main optimal estimator, whereas

we obtain Csys
b using a fast PCL estimator applied to xsys. As a consequence, the approximate

power spectrum estimator of Eq. (3.10) is fast and can be used to efficiently calculate the numerous

cross-power spectra between the data and the systematics. In this work, we use null test χ2s

which are simply calculated using a Gaussian likelihood comparing the Ĉnulltest
b with zero, as in
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Cross-match with SDSS DR7

Cross-match with BOSS DR9

XDQSOz p(z) sum

Fit with Gaussian sum
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Figure 3.1: Redshift distributions of the photometric quasar samples selected with PQSO > 0.8

and top hat windows on the photometric redshift estimates ẑp, highlighted by the grey regions.

The black curves show redshift distribution estimates n(z) of the underlying quasar distributions,

calculated as the sum of the posterior distributions on the individual redshift estimates. The dashed

line shows a fit with Gaussian kernels, used for calculating the theoretical C`’s. The red and blue

dashed curves are redshift histograms of the objects cross-matched to the SDSS DR7 and BOSS

DR9 spectroscopic quasar catalogues. These are only used for qualitative purposes, since they

provide estimates of n(z) which are biased towards low- and high-redshift, respectively, due to the

magnitude and redshift selection effects (details in the text).

Leistedt et al. (2013). In a later section, we compare the χ2 values obtained by the optimal and the

approximate power spectrum estimators, and show that the latter is sufficiently accurate for the

masks, data and systematics under consideration.

3.4. Application to SDSS photometric quasars

We now apply the extended mode projection framework to photometric quasars from the SDSS,

and compare the resulting power spectrum measurements with theoretical predictions. We discuss

these measurements, their suitability for cosmological inference, and the ability of extended mode

projection to eliminate spurious correlations due to spatially-varying systematics.
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3.4.1. Sample selection and redshift distributions

We consider the XDQSOz catalogue of photometric quasars (Bovy et al., 2012), which contains

quasar candidates selected from the set of point sources of the SDSS DR8 imaging data, covering

∼ 104 deg2 of the southern and northern Galactic sky. For each object, XDQSOz includes the

probability of being a quasar or a star, calculated from the observed magnitudes (ugriz) and

their estimated errors, using a data-driven model of the density distribution of quasars in ugriz

flux-redshift space. This model was constructed by applying the extreme deconvolution algorithm

(Bovy et al., 2011b) to the spectroscopically-confirmed quasars in the SDSS DR7 quasar catalogue

(Schneider et al., 2010). XDQSOz also includes photometric redshift estimates ẑp, defined as the

highest peak in the posterior distribution of the individual photo-z estimates. Although the latter

distributions are not directly released in the public version of XDQSOz, they can be straightforwardly

recalculated using the flux-redshift space model and the publicly-available code.

We consider all objects with PQSO > 0.8, but with no further cuts to the data, other than the

sky masks described in the next section. We separate this catalogue into four samples by selecting

objects with photometric redshifts ẑp in top-hat windows ranging [0.5, 1.35], [1.35, 1.7], [1.7, 2.2] and

[2.2, 3.5], which have comparable numbers of objects, and thus similar shot noise. We reject the

low-redshift objects (z̃p < 0.5); this redshift range suffers from nontrivial incompleteness issues

due to missed low-z quasars, which are resolved and therefore not processed by the point source

star-quasar classifier.

In order to calculate theoretical predictions for the angular power spectra of the four samples,

we follow Leistedt et al. (2013) and use CAMB SOURCES (Challinor and Lewis, 2011) to compute

and project the 3D matter power spectrum into angular auto- and cross-power spectra. We

fix the cosmological parameters to Planck ΛCDM best-fit values5 (Planck Collaboration, 2013g).

Importantly, although the matter power spectrum only depends on cosmological parameters, the

projected power spectra require additional information about the samples under consideration: the

unit-normalised redshift distribution of tracers n(z), and the logarithmic slope of the number counts

s, to account for the effect of magnification due to lensing. We estimated s for the four samples by

calculating the slope of the histogram of number counts in terms of the g-band PSF magnitude at

g = 21. We found ŝ = 0.361, 0.445, 0.493, and 0.355, respectively, for these samples.

The redshift distributions are nontrivial to estimate because photometric redshift estimates of

5Specifically, Ωch2 = 0.118,Ωm = 0.305,Ωbh
2 = 0.0221, H0 = 67.7 kms−1Mpc−1, ln(1010As) = 3.09, ns =

0.961, τ = 0.095, Neff = 3.046, and
∑
mν = 0.05.
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Figure 3.2: Templates of the main systematics selected as potential contaminants in the photometric

quasar catalogues, and used within the extended mode projection approach. Apart from the first

row, all systematics are mapped in the ugriz bands and included in the analysis, but only templates

for the i band are shown here. More details can be found in the text, and the full descriptions of the

nature and units of these quantities (only referred to by their abbreviated names in this paper) can

be found in the SDSS database and documentation.
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Figure 3.3: A subset of systematics templates originating from the decorrelation (using Mask 1) of

the basic set of systematics, a subset of which is presented in Fig. 3.2.

quasars suffer from large uncertainties (typically σ(ẑphot) ∼ 0.3) and large fractions of outliers (see

e.g., Bovy et al. 2012; Richards et al. 2009). In the present case, the actual n(z) of the quasar

samples extend significantly beyond the windows used to construct them. This not only introduces

uncertainties in the theoretical predictions, but also cosmological information in the cross-power

spectra, since the n(z) of the samples are likely to overlap with each other, as detailed in the next

sections. One solution to reduce the associated uncertainties is to employ low-resolution histograms,

which are more robust to individual photo-z uncertainties, but do not capture all the structure of

the underlying n(z). Alternative methods also exist to attempt to estimate high-resolution n(z)

from the poorly-determined photometric redshifts (e.g., Matthews and Newman 2010; McQuinn

and White 2013). In Leistedt et al. (2013), we used a cross-matching technique to obtain unbiased

estimates for the n(z) of the Richards et al. (2009) catalogue SDSS DR6 photometric quasars.

In our case the XDQSOz catalogue includes posterior distributions for the redshift estimates of

individual objects, which are computed with the same data-driven model used for the classification,

and trained with the best spectroscopic data available. Hence, a simple estimator for n(z) is the

sum of the posterior distributions of the individual objects in each sample. Fig. 3.1 shows the

resulting n(z), as well as a fit using a superposition of Gaussian kernels for use in CAMB SOURCES.

We also show the redshift histograms of cross-matched catalogues of quasars found in catalogues of

spectroscopically-confirmed quasars from SDSS DR7 and BOSS DR9 (Pâris et al., 2012; Schneider
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et al., 2010). We applied the relevant flags and cuts to create spatially-uniform versions of these

catalogues, i.e., with constant depth, in order to avoid spurious selection effects due to depth

variations. However, SDSS DR7 mostly contains bright objects, and BOSS DR9 is dominated by

z > 2.2 quasars. Therefore the dashed redshift histograms shown in Fig. 3.1 are biased estimates of

n(z), but nevertheless confirm the features found in the XDQSOz n(z). In particular, all four samples

contain low-redshift quasars (z ∼ 0.7− 1.0), mainly because of their large scatter in ugriz colour

space which overlaps with that of higher redshift quasars – hence the difficulty of separating them

(Bovy et al., 2011a). The corrections required to follow Leistedt et al. (2013) and obtain unbiased

n(z) estimates through cross-matching are more difficult to calculate for XDQSOz than the Richards

et al. (2009) catalogue, because the former extends to fainter magnitudes and higher redshifts. In

particular, using the full spectroscopic catalogue requires spatially-dependent corrections, which

are much more uncertain due to sample variance. For these reasons, we did not attempt to derive

and apply these corrections, but rather used the n(z) obtained using the stacked XDQSOz redshift

posterior distributions. This should provide the most robust solution, since the XD data-driven

model has not been demonstrated to suffer from any biases or systematics over the redshift ranges

of interest.

In this paper, we focus on evaluating the quality of the measurements and the capacity of

mode projection to mitigate systematics. Hence, we will fix the parameters used to calculate the

theoretical angular power spectra, and also observational parameters such as the shot noise and the

bias of quasars. The latter is assumed to be scale-independent and fixed to

b(z) =

[
1 +

(
1 + z

2.5

)5
]
, (3.12)

which is consistent with observations (e.g., Porciani and Norberg 2006; Sherwin et al. 2012; Slosar

et al. 2008). As shown in subsequent sections, these parameters provide a good fit to the measured

power spectra. However, it is essential to consider their uncertainties when testing models and

inferring cosmological parameters. Hence, all theoretical and observational parameters will be

varied in the companion paper (Leistedt et al., 2014), where we constrain PNG and evaluate the

robustness of these constraints to the underlying models and assumptions.

3.4.2. Masks and systematic uncertainties
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Figure 3.4: Masks constructed for the power spectrum analysis of the XDQSOz samples. Mask 1

(grey + white) and Mask 2 (grey only) are created by applying dust extinction cuts E(B − V ) > 0.1

and E(B − V ) > 0.08 to the full SDSS DR8 coverage (black region), in addition to the common

cuts Psfwidthi > 2.0 and Score> 0.6 to avoid bad quality regions.

The main source of systematics in photometric quasar catalogues is stellar contamination,

which arises because separating stars from quasars using imaging data is a difficult task. With

the PQSO > 0.8 cut, one can expect a significant fraction of the selected photometric quasars to

be stars. However this proportion further depends on the redshift range of interest, since the

colours of quasars, and thus the separability of the stellar and quasar loci, evolve with redshift.

In addition, observing conditions unavoidably vary with time, and thus on the sky, as data are

acquired. This affects both the number of detected point sources and the star-quasar separation,

thus creating spatially-varying depth and stellar contamination. We have mapped as many of the

potential systematics as possible in order to create templates for the mode projection framework. In

what follows, we detail the construction of a base set and an extended set of systematics templates,

which will be projected out when estimating the quasar power spectra.

For Galactic dust extinction, which affects the properties of point sources and photometric

colours, we used the maps of E(B−V ) from Schlegel et al. (1998) and Planck (Planck Collaboration,

2013e). They differ in some regions of the sky, especially near the Galactic plane, but are correlated,

so we include both maps in the set of systematics prepared for extended mode projection. For the

stellar density, we constructed a stellar density map from the SDSS DR6 point sources selected with

18.0 < r < 18.5 and i < 21.3, and a second map with an additional cut g − r > 1.4 to select red

stars (Pullen and Hirata, 2013). We retrieved the data for the calibration and observing conditions

from the FIELDS table in the SDSS CAS server. We mapped all quantities on the sky directly on the

HEALPIX (Górski et al., 2005) grid, as the quasar maps are also manipulated in this format. This
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solution does not use the exact geometry of the SDSS tiles (which would require the use of the

MANGLE software (Hamilton and Tegmark, 2004; Swanson et al., 2008)) but is much faster while

being sufficiently accurate on the scales of interest. Fig. 3.2 shows the base set of systematics we

include in this study. Apart from the first row, all templates were constructed for the five ugriz

bands, and only the i band is shown in Fig. 3.2. Also, the following quantities were not included

on the figure for space reasons: ra, dec, run, fields, mjd, mustart, nustart, total, devapcorrection,

devapcorrectionerr, devmodelapcorrection, devmodelapcorrectionerr, nfaintobj, nstaroffset. Full details

of the nature, description and units of these quantities can be found in the SDSS database and

documentation.

The total number of templates in this set of base systematics is 220, but after decorrelating these

templates only ∼ 100 have significant eigenvalues, the others being consistent with numerical noise,

i.e., redundant modes in the system of templates. A subset of these orthogonal modes is shown in

Fig. 3. With such a small number of modes, all can be projected out when estimating power spectra,

since they only generate a small increase in variance Vbb′ . However, this setting will only treat the

spurious clustering due to linear combinations of these systematics. The actual contamination signal

is likely to be non-linear and therefore may not be effectively eliminated. To consider non-linear

contamination model, we create an extended set of templates, also including products of pairs of

the base systematics. Once decorrelated, the ∼ 22, 000 maps were reduced to ∼ 3, 700 modes. Since

they are orthogonal modes, projecting out all of them would be equivalent to removing ∼ 3, 700

data points in some rotated basis, thus significantly increasing the variance of the estimates. For

this reason, we now use the extended mode projection approach to project out only those modes

which are significantly correlated with the quasar data, as detailed in the next section.

Although extended mode projection considers non-linear contamination models, it is unlikely

to fully clean the stellar contamination across the whole survey area, in particular in the worst

regions where systematics are significant. Hence, we construct two masks, shown in Fig. 3.4. Both

exclude pixels with PSFWIDTHi > 2.0 and SCORE > 0.6. In addition, Mask 1 uses E(B − V ) > 0.1

and Mask 2 uses E(B − V ) > 0.08, to remove more dusty regions in the South Galactic Cap. The

masks were extended to avoid smoothing-induced contamination, as explained in Feeney et al.

(2011b) and Leistedt et al. (2013). Note that previous SDSS quasar studies used more aggressive

masks (Ho et al., 2013; Leistedt et al., 2013; Pullen and Hirata, 2013), and the point of extended

mode projection precisely is to avoid extra sky cuts and obtain finer control over the elimination of

contamination by projecting out the relevant systematics.
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3.4.3. Estimation settings and blind mitigation of systematics

We used the QML estimator to simultaneously measure the auto- and cross- angular power

spectra of the four XDQSOz samples. We used HEALPIX resolution of Nside = 64 for all quasar maps,

masks and systematics templates in this work, in which case the power spectrum can be estimated

accurately up to `max ∼ 130, which is a satisfactory band-limit given the noise levels and the sky

cuts under consideration, and the computational requirements of the estimator. The choice of the

multipole bin size is guided by the variance of the estimates. For most cases we adopted a bin size

∆` = 21 to obtain a good compromise between variance and multipole resolution of the estimated

power spectra. We also used ∆` = 15 for the final runs in order to obtain a better resolution on the

lowest multipoles, and therefore a better sensitivity to the PNG signal. The resulting constraints on

PNG are presented in the companion paper (Leistedt et al., 2014), and are indeed more stringent in

that setting. For the fiducial power spectrum priors required for QML, we used the theoretical power

spectra detailed in the previous sections. The QML estimator is robust to small changes in these

values, especially when measuring the auto- and cross- spectra, which are relatively featureless6,

and simultaneously estimated from the four quasar maps and the full prior covariance matrix.

For the power spectrum measurements presented in the next section, we considered three

settings for the treatment of systematics (in combination with the two masks of Fig. 3.4): no mode

projection (“no mp”), projection of the base set of systematics “basic mp”, ∼ 100 uncorrelated

modes), and projection of the extended set plus products of pairs of templates (“ext. mp”, ∼ 3700

uncorrelated modes). For the latter, we followed our implementation of extended mode projection,

and only projected the modes which were significantly correlated with the data. To perform this

selection, we cross-correlated the quasar maps with all orthogonal modes using the approximate

QML estimator presented in Section 3.3.3, using the same setting as the main estimator (Nside = 64,

`max = 130, ∆` = 21 or ∆` = 15). The resulting cross-spectra were used as null tests, and we

calculated a reduced χ2 per systematics mode using a simple Gaussian likelihood (Leistedt et al.,

2013). Fig. 3.5 shows the comparison of the reduced χ2 obtained with the optimal and approximate

QML estimators detailed in Section 3.3.3, and demonstrates that the latter is sufficiently accurate for

the purpose of these null tests. We observe no significant bias, a reasonable scatter around the axis

χ2
opt.QML = χ2

approx.QML, and a small number of outliers. In particular, we see that selecting modes

6Since quasars span large volumes, the projection integrals weaken features such as the baryon acoustic oscillations.
The latter would only be detectable using narrow redshift samples, which cannot be done with XDQSOz due to the large
uncertainties of the photometric redshift estimates.
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Figure 3.5: Comparison of the reduced χ2 obtained with the optimal and approximate QML cross-

correlation estimators. Each dot is a value obtained by using both estimators to calculate the

cross-spectra between the four quasar samples (colour-coded) and the base set of 220 systematics

templates.
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Figure 3.6: Distributions of the reduced χ2 arising from null tests performed with the cross-power

spectra of the four quasar samples (four panels) with the ∼ 3700 orthogonal modes of the extended

set of systematics templates (∼ 200 base templates plus products of pairs). The last step of extended

mode projection consists of choosing a χ2
cut to decide which modes will be projected out when

estimating the angular power spectra of the quasar samples.
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for mode projection with the cut χ2
approx.QML > 1 reproduces the selection using a cut χ2

opt.QML > 1

reasonably well, validating the use of the approximate estimator in the null tests.

Fig. 3.6 shows the distributions of the reduced χ2 values obtained by cross-correlating the four

quasar maps with the ∼ 3700 modes. Interestingly, these distributions can be used to qualitatively

evaluate the level of contamination of the samples, and also the effect of masking. In particular, the

second and third samples are the least contaminated, and the χ2 distributions are not improved

by using the second mask instead of the first mask, in addition to being robust to the multipole

resolution (∆` = 21 or ∆` = 15). The null tests also demonstrate that the first and fourth samples

are significantly contaminated by systematics, since a large fraction of the modes have large reduced

χ2. Using resolution ∆` = 15 yields even more modes with large χ2, because the cross spectra are

able to extract features due to systematics which were not discernible with ∆` = 21. In the next

section, all power spectra calculated with extended mode projection were computed by projecting

out modes with χ2 > 1. One can adjust this parameter to set the accepted level of correlation

between with the data and the templates, above which modes are considered as contaminated by

systematics and are projected out. One or multiple values for the χ2 cut should be decided before

the analysis, so that the systematics mitigation relies on objective criteria, and is performed in a

blind fashion. Alternatively, iterating and refining the χ2 cut during the analysis could improve the

systematics mitigation, but may also yield fine-tuning and over-processing of the data if the results

do not conform to expectation (confirmation bias), jeopardising the search for new physics.

We finally note that previous analyses of SDSS quasars (e.g., Pullen and Hirata 2013) used

samples with redshift distributions that were not overlapping: therefore their cross-power spectra

could be used as null tests, i.e., any systematics in common between the quasar samples would be

detectable in the cross-spectra between redshift bins, which should be consistent with zero in the

absence of systematics. In this work, the redshift distributions of the quasar samples overlap, some

of them significantly, implying that the cross-spectra will contain cosmological information. We will

demonstrate in the next section and the companion paper (Leistedt et al., 2014) that the fourth

sample is not only the one with the most constraining power for PNG, but also the one with the

redshift distribution overlapping the least with the other samples: its cross-power spectra can thus

be used for approximate null tests.

3.4.4. Power spectrum measurements
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Figure 3.7: Auto- and cross-angular power spectra of the four XDQSOz quasar samples measured

with the quadratic maximum likelihood (QML) estimator, for the two masks in Fig. 3.4, without

(“no mp”) and with (“basic mp”) mode projection of the base set of systematics (220 templates

from the SDSS FIELDS table, shown in Fig. 3.2). The solid lines show our fiducial theoretical power

spectra from a Planck best-fit cosmology and fNL = 0, and the shaded bands show the excursion

region allowed when varying fNL in [−50, 50] (see text for details).
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Figure 3.8: Same as Fig. 3.7, but using extended mode projection. We used a non-linear contam-

ination model incorporating the base set of systematics templates and also pairs of products of

templates, yielding ∼ 22, 000 templates: but only ∼ 3, 700 orthogonal spatial modes remained after

decorrelation. We calculated QML cross-angular power spectra to perform null-tests and calculated

reduced χ2, as shown in Fig. 3.6.
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Fig. 3.7 shows the results of the QML estimator applied to the quasar samples in three settings:

Masks 1 and 2 without mode projection, and Mask 2 with mode projection of the base set of

systematics templates. The black lines show our fiducial theoretical predictions, detailed in the

previous section. The shaded band indicates the zone spanned by the theory curves when varying

PNG in −50 < fNL < 50. Note that all spectra are dimensionless, since they relate to overdensity

maps. At first examination, we see that all measured power spectra exhibit significant excess

power on a range of scales compared to the theoretical expectation. In particular, the first and the

fourth samples (the low and high redshift quasar samples) are in significant disagreement with

the theoretical curve. The quasar cross-power spectra also exhibit power excesses, pointing to the

presence of significant systematics and spatially-varying stellar contamination in these samples.

Qualitatively, the discrepancy between the measurements and the prediction agrees with the levels

of contamination measured by the null test χ2 histograms of the previous section, indicating that

at least some of the systematics responsible for the excesses are included in the sets of templates

prepared for mode projection.

Indeed, the third set of spectra of Fig. 3.7 show that using the basic mode projection significantly

decreases the power excesses in the auto-spectra, especially that of the fourth sample. The auto-

power spectra are now subject to an offset compared to the theoretical predictions. Although this

could be due to inadequate cosmological or observational parameters in the predictions, such as

underestimated biases, significant excess power in the cross-power spectra indicates that part of

the remaining discrepancies must be due to systematics. In the formalism of Section 3.3.2, this

also demonstrates that a linear model of the basic set of systematics (∼ 100 uncorrelated modes) is

insufficient to describe the contamination signal and spurious clustering. Moreover, since the error

bars of Fig. 3.7 only include cosmic variance and shot noise, we deduce that the contamination

level is so large that it prevents any reliable measurement of the quasar bias and PNG. In fact,

constraining7 PNG from the measurements of Fig. 3.7 (ignoring the null test cross-spectra and

thus the evidence for high levels of systematics) would yield very large levels of PNG, significantly

above the limits set by previous studies of SDSS quasars, luminous red galaxies (LRGs), and in

the CMB (e.g., Giannantonio et al. 2014; Planck Collaboration 2013h). The purpose of extended

mode projection is precisely to address these issues, and reduce the levels of systematics below the

statistical uncertainties by marginalising over the most contaminated modes.

7The error bars of Fig. 3.7 use the fiducial priors and are included to illustrate the large discrepancies and power excesses
due to systematics. To exploit these power spectra in a likelihood analysis, one would need to recompute the covariance
matrices around the best-fit theoretical power spectra, which were done for the cleanest power spectrum estimates of
Fig. 3.8.
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Fig. 3.8 shows three sets of estimates obtained when using extended mode projection with the

more restrictive mask (Mask 2). The first set of spectra are calculated using band powers of width

∆` = 21 for both quasar spectra and null tests, the third set uses ∆` = 15 for both, and the second

set is an intermediate setting where the quasar spectra use ∆` = 15 and the null tests ∆` = 21. This

hybrid case is to check the robustness of the final spectra, since we observed in Fig. 3.6 that the null

tests with ∆` = 21 and ∆` = 15 yielded slightly different χ2 distributions for the first and fourth

(most contaminated) quasar samples.

Firstly, we see that the three settings are in good overall agreement with each other, and also

with the fiducial theoretical predictions, as demonstrated by the χ2 values presented in Table 3.1.

Indeed, despite a few band-powers that seem discrepant with the theory predictions at the ∼ 1− 2σ

level when examining Fig. 3.8, the values of the probability to exceed (PTE) show that the fiducial

spectra are good fits to the measurements. This indicates that extended mode projection succeeds

at mitigating the most important systematics and reduce the contamination to a level below the

statistical uncertainties. Interestingly, the multipole resolution ∆` = 21 yields better χ2 than

∆` = 15. This can be explained by the fact that some systematics had their correlation signatures

averaged and smoothed out at ∆` = 21, but resolved at ∆` = 15. In other words, greater multipole

resolution generally uncovers more systematics, and may require the use of more numerous or more

complex combinations of systematics templates. But for the three sets of spectra shown in Fig. 3.8,

none of the low-` band powers in the auto- and cross-power spectra exhibit evidence for systematics.

Therefore we conclude that they are suitable for cosmological inference and for constraining PNG,

which produces a signal that is more pronounced on large scales. Indeed, the error bars and shaded

bands of Fig. 3.8 demonstrate that the clean power spectra will be able to constrain PNG.

3.5. Conclusion

Photometric quasar surveys are deep and span extended redshift ranges, which allows us to

probe the largest scales of the universe, and therefore test physics which is not well constrained

by galaxy surveys. In particular, they can be used to constrain PNG, which is expected to enhance

quasar clustering on large scales and leave a characteristic scale-dependent signature in the quasar

bias. However, this requires accurate power spectrum measurements, which are compromised by

the presence of numerous observational systematics, creating spurious correlations which can mimic
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Table 3.1: The chi-square values for the power spectra measured using extended mode projection

with Mask 2 with χ2
cut = 1.0, presented in Fig. 3.8. The theory curves use Planck ΛCDM cosmology,

fNL = 0, and fiducial linear bias b(z) = 1 + [(1 + z)/2.5]5. The numbers of degrees of freedom are

ν − p = 7 and ν − p = 9 for ∆` = 21 and ∆` = 15, respectively. The probability to exceed (PTE) the

observed chi squares are shown in parentheses. Note that PTE < 1% corresponds to χ2
7 = 18.4 and

χ2
9 = 21.6.

C` estimator: ∆` = 21 ∆` = 15 ∆` = 15
Ext. mp null tests: ∆` = 21 ∆` = 21 ∆` = 15

Bin 1 auto 4.81 (0.682) 7.42 (0.593) 7.66 (0.568)
Bin 2 × Bin 1 8.15 (0.319) 6.13 (0.727) 5.67 (0.772)
Bin 2 auto 3.89 (0.792) 4.79 (0.852) 6.23 (0.716)
Bin 3 × Bin 1 7.91 (0.341) 12.62 (0.180) 10.60 (0.304)
Bin 3 × Bin 2 2.19 (0.948) 4.02 (0.909) 9.50 (0.392)
Bin 3 auto 0.76 (0.997) 6.39 (0.699) 9.16 (0.423)
Bin 4 × Bin 1 8.43 (0.296) 13.60 (0.137) 10.71 (0.296)
Bin 4 × Bin 2 9.33 (0.230) 13.00 (0.162) 17.24 (0.045)
Bin 4 × Bin 3 5.83 (0.559) 7.55 (0.579) 12.94 (0.165)
Bin 4 auto 3.44 (0.8411) 3.14 (0.958) 4.07 (0.906)

the signatures of new physics.

We have introduced the extended mode projection technique to robustly mitigate the impact

of large numbers of systematics when estimating angular power spectra, and applied it to the

photometric quasars from the SDSS XDQSOz catalogue. This technique only relies on the ability to

map known and potential sources of systematics on the sky, and cross-correlate them with the data

of interest. Previous studies of XDQSOz data required stringent quality and sky cuts, and even the

removal of band-powers in order to avoid excessive contamination by systematics. In our analysis,

we have used minimal sky cuts, and applied the extended mode projection approach using a large

number of systematics templates. Mode projection is equivalent to a Bayesian marginalisation

over the amplitudes of the modes of the contamination model when estimating the power spectra.

The base set of templates included 220 potential systematics found in the SDSS database, and

we have also included products of pairs of templates, leading to a total of ∼ 22, 000 systematics

templates, yielding a non-linear model for the contamination signal. We have then decorrelated the

systematics, and cross-correlated the resulting ∼ 3, 700 orthogonal modes with the quasar samples

to carry out null tests and detect the modes which most likely create spurious correlations in the

data. We have finally estimated clean quasar power spectra by projecting out the modes which

yielded reduced χ2 > 1 for the cross-spectrum null tests. Our pool of systematics and resulting

contamination model was very general, and the sky masks minimal; thus, the reduced χ2 cut is the

only tuneable parameter in the extended mode projection approach. Our approach is therefore
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based on the principles of blind analysis, since projecting out modes with reduced χ2 > 1 is a

simple and pre-selected criterion for the accepted level of correlation between the systematics and

the maps, which does not depend on the intrinsic clustering of quasars. Using various settings for

both the power spectrum estimation and the systematics mitigation, we have tested that the power

spectrum measurements are robust to these choices, and consistent with the theoretical predictions.

In a companion paper (Leistedt et al., 2014), we show that these spectra, used in a combined

likelihood function, yield stringent and robust constraints on PNG and on the bias of quasars. In

particular, the constraints separately derived using the auto- and cross-spectra are consistent with

each other, and robust to the underlying model and assumptions, for example to the uncertainties in

the redshift distributions of the samples. This demonstrates that the remaining levels of correlations

created by systematics are below the statistical uncertainties, and that the quasar power spectra are

suitable for use in cosmological inferences.

Future galaxy and quasar survey data will reach unprecedented precision, and will require

accurate mitigation of large numbers of systematics. For instance DES, Euclid (Amendola et al.,

2013), and LSST (Abell et al., 2009) will observe hundreds of millions of objects, and probe

extended redshift ranges and finer angular scales. This makes them very promising for testing

new physics beyond the standard cosmological model, such as PNG, the neutrino sector, dark

energy phenomenology, and modifications to General Relativity. At such precision levels, and given

that these new physics signatures are typically small deviations from the standard model, power

spectrum measurements will be highly sensitive to any systematics. The extended mode projection

framework is a good candidate for mitigating such systematics in a robust and blind fashion, while

extracting as much information as possible from the hard-won data.

3.6. Acknowledgements

We are grateful to Jo Bovy, David Hogg and Adam Myers for sharing the XDQSOz catalogue

with us. We also thank Daniel Mortlock, Nina Roth, Filipe Abdalla, Aurélien Benoit-Lévy, and
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4
Constraints on primordial non-Gaussianity from

800,000 photometric quasars

“No one trusts a model except the man who wrote it; everyone trusts an observation, except the

man who made it”. H. Shapley

4.1. Abstract

We derive robust constraints on primordial non-Gaussianity (PNG) using the clustering of

800,000 photometric quasars from the Sloan Digital Sky Survey in the redshift range 0.5 < z < 3.5.

These measurements rely on the novel technique of extended mode projection to control the impact

of spatially-varying systematics in a robust fashion, making use of blind analysis techniques. This

allows the accurate measurement of quasar halo bias at the largest scales, while discarding as little

as possible of the data. The standard local-type PNG parameters fNL and gNL both imprint a k−2

scale-dependent effect in the bias. Constraining these individually, we obtain −49 < fNL < 31

and −2.7 × 105 < gNL < 1.9 × 105, while their joint constraints lead to −105 < fNL < 72 and

−4.0× 105 < gNL < 4.9× 105 (all at 95% CL) . Introducing a running parameter nfNL
to constrain

b(k) ∝ k−2+nfNL and a generalised PNG amplitude f̃NL, we obtain −45.5 exp(3.7nfNL) < f̃NL <

34.4 exp(3.3nfNL
) at 95% CL. These results incorporate uncertainties in the cosmological parameters,

redshift distributions, shot noise, and the bias prescription used to relate the quasar clustering to the

underlying dark matter. These are the strongest constraints obtained to date on PNG using a single

population of large-scale structure tracers, and are already at the level of pre-Planck constraints from

the cosmic microwave background. A conservative forecast for a Large Synoptic Survey Telescope-like
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survey incorporating mode projection yields σ(fNL) ∼ 5 – competitive with the Planck result –

highlighting the power of upcoming large scale structure surveys to probe the initial conditions of

the universe.

4.2. Introduction

Canonical single-field slow-roll inflation predicts initial conditions for structure formation that

are essentially Gaussian (Acquaviva et al., 2003; Allen et al., 1987; Babich et al., 2004; Bartolo

et al., 2004; Falk et al., 1993; Gangui and Martin, 2000; Gangui et al., 1994; Komatsu and Spergel,

2001; Maldacena, 2003; Salopek and Bond, 1990; Verde et al., 2000; Wang and Kamionkowski,

2000). Any measurement of deviations from this prediction — summarised by the term primordial

non-Gaussianity (PNG) — can thus provide evidence for non-standard inflationary physics. One

of the most physically interesting forms of PNG is the so-called local model, where the primordial

potential φ is modified by including higher order terms,

Φ = φ+ fNL[φ2 − 〈φ2〉] + gNL[φ3 − 3φ〈φ2〉], (4.1)

where all fields are evaluated at the same spatial coordinate, and fNL and gNL are real-valued

constants (often called the skewness and kurtosis parameters).

The most stringent constraints on PNG currently come from higher-order statistics of the cosmic

microwave background (CMB). Most recently, the Planck collaboration reported −8.9 < fNL < 14.3

(95% CL) (Planck Collaboration, 2013h), while constraints on the kurtosis have been obtained

from the WMAP satellite: −7.4× 105 < gNL < 8.2× 105 (WMAP5, 95% CL) (Smidt et al., 2010),

or gNL = (−4.3 ± 2.3) × 105 (WMAP9, 68% CL) (Regan et al., 2013), gNL = (−3.3 ± 2.2) × 105

(WMAP9, 68% CL) (Sekiguchi and Sugiyama, 2013). While these results are compatible with

Gaussian initial conditions, their uncertainties still leave room for non-standard inflation models.

The unknown relation (bias) between the dark matter density field and a set of observed tracers

(which inhabit dark matter halos) is generally considered to be a complication in constraining

cosmological parameters from large-scale structure (LSS) data. However, in the case of PNG, the

bias is actually an advantage that can be used to distinguish between non-Gaussianity in the initial

conditions and that generated through late-time non-linear structure formation. PNG introduces

a distinctive k-dependence into the halo bias; qualitatively, the bias for local-type PNG scales as
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b(k) ∼ k−2 (Dalal et al., 2008; Desjacques and Seljak, 2010b; Matarrese and Verde, 2008; Slosar

et al., 2008; Smith et al., 2012).

This implies that the strongest signal can be expected on large scales (small k), accessible to

wide-area galaxy surveys. At these scales, the bias can be well-approximated by a multiplicative

factor between the dark matter- and galaxy power spectra. LSS clustering constraints on PNG

provide an independent validation of the CMB results, and are predicted to improve significantly

with on-going and future LSS surveys, eventually surpassing CMB constraints if systematic errors

can be controlled (Carbone et al., 2008; Desjacques and Seljak, 2010a; Giannantonio et al., 2012;

Hamaus et al., 2011; Lidz et al., 2013; Mao et al., 2013; Marian et al., 2011; Pillepich et al., 2012).

Quasars – the bright nuclei at the centre of the most active galaxies – are highly-biased tracers

of the LSS, spanning large volumes and covering extended redshift ranges: in principle, quasar

surveys are ideal for constraining PNG Giannantonio et al. (2014); Slosar et al. (2008). However,

previous analyses have been complicated by the presence of spurious excess power at large scales

due to systematics, which mimic the signature of PNG (Giannantonio et al., 2014; Leistedt and

Peiris, 2014; Leistedt et al., 2013; Pullen and Hirata, 2013; Xia et al., 2009, 2011).

In this Letter, we use a large sample of quasars (Bovy et al., 2012) from the Sloan Digital Sky

Survey (SDSS) (Gunn et al., 2006) to constrain PNG. Using a novel technique for blind mitigation

of systematics described in Leistedt and Peiris (2014), we are able to significantly enhance the

constraining power of the dataset, resulting in PNG constraints from a single LSS dataset which are

competitive with those from the CMB. Our results represent a significant step toward achieving the

exquisite control of systematics necessary to exploit future LSS surveys to measure PNG.

4.3. PNG with photometric quasars

The first LSS constraints on PNG were derived in Slosar et al. (2008) using a combination

of tracers from early SDSS releases, leading to fNL = 28+23
−24 (68% CL). Among these tracers, the

photometric quasars — candidate quasars identified using imaging data only — have the highest bias

and probe the largest volume. Therefore, they had the most constraining power (fNL = 8+26
−37 at 68%

CL), demonstrating their potential to constrain PNG and complement CMB experiments. However,

subsequent analyses (Giannantonio et al., 2014; Xia et al., 2009, 2011) of photometric quasars

from the Sixth SDSS Data Release (using the catalogue from Richards et al. 2009) also revealed
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systematic effects, such as spatially-varying depth and stellar contamination, which could strongly

bias the clustering measurements on the largest scales and jeopardise cosmological inferences if

not properly mitigated (Leistedt et al., 2013; Pullen and Hirata, 2013). Giannantonio and Percival

(2014); Giannantonio et al. (2014) obtained fNL = 5± 21 (68% CL) using a range of LSS probes,

discarding the auto-correlation of quasars to avoid the main systematic contamination. Ho et al.

(2013) used the latest catalogue of SDSS photometric quasars, XDQSOz (Bovy et al., 2011a, 2012),

to obtain fNL = 103+148
−146 (68% CL), and fNL = 2+65

−66 (68% CL) when combined with constraints

from the clustering of Luminous Red Galaxies, relying however on stringent quality cuts on the

survey maps and power spectra to limit the impact of systematics. Therefore, photometric quasars

have thus far remained underexploited for PNG, as systematics are handled by removing hard-won

data.

4.4. XDQSOz power spectrum measurements

A different approach was adopted by two of us in Leistedt and Peiris (2014), where the

SDSS XDQSOz catalogue was analysed with minimal quality and sky cuts, leading to a sample

of ∼ 800, 000 quasars covering ∼ 8300 deg2 (compared to ∼ 400, 000–500, 000 objects used by

previous analyses). This base sample was further separated into four redshift bins by selecting

objects with photometric redshift estimates ẑp in top-hat windows [0.5, 1.35], [1.35, 1.7], [1.7, 2.2],

[2.2, 3.5]. A quadratic maximum likelihood Bond et al. (1998); Tegmark (1997) method was used

to simultaneously estimate the auto- and cross-angular power spectra of the z-binned data. To

mitigate the impact of systematics in these power spectra, Leistedt and Peiris (2014) introduced

a novel technique, extended mode projection, relying on the fact that most potential systematics

(e.g., observing conditions, calibration) were also measured during SDSS observations, and could

therefore be mapped onto the sky.

We constructed a non-linear, data-driven model of systematics, using ∼3,700 orthogonal tem-

plates obtained by decorrelating ∼20,000 maps of potential contaminants, including 200 base

templates constructed from SDSS data and products of pairs. These orthogonal templates were

cross-correlated with the XQDSOz data, yielding null tests which are used to select the most sig-

nificant systematics following the principles of blind analysis. These were then marginalised over

via mode projection (Leistedt et al., 2013; Pullen and Hirata, 2013; Slosar et al., 2004; Tegmark,
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Figure 4.1: Redshift distributions of the four quasar samples used in this analysis, parametrised as

superpositions of normal distributions. The shaded regions show the 1, 2 and 3σ regions explored

when adding 5% uncertainty to the parameters of these fits, which are included in the MCMC

analysis.

1997; Tegmark et al., 1998; Wandelt et al., 2004) in the power spectrum estimator, self-consistently

enhancing the estimator variance. This approach allows precision control over systematics, and

yields robust measurements of the angular power spectra of XDQSOz quasars, even at the largest

angular scales.

We now turn to the ingredients and models needed to connect the power spectrum measurements

to theoretical predictions and constrain PNG.

The redshift distributions n(z) of the four quasar samples, shown in Fig. 4.1, were estimated

in Leistedt and Peiris (2014) by stacking the posterior distributions of the individual photometric

quasars, and then fit with a superposition of Gaussians. Here, we also added a 5% Gaussian

uncertainty on the parameters of this fit (illustrated by the shaded bands in Fig. 4.1) which

propagates into the final uncertainties in the PNG parameters.

The shot noise was measured in each sample from the average surface density of photometric

quasars, but is also subject to uncertainties due to the unknown fraction of stars in the samples —

between 0 and 20% from the quality cuts applied to XDQSOz (Leistedt and Peiris, 2014). Since

non-zero stellar contamination reduces the shot noise, we also marginalised over this effect when

constraining PNG.
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Figure 4.2: Constraints on the quasar bias model described in Eq. 4.4. The solid line shows the

fiducial model with b0 = 1, β = 5, and the shaded bands show the 1σ constraints (b0 = 0.96± 0.15,

68% CL, β and fNL marginalised) from the XDQSOz power spectra when varying the bias and PNG

parameters, the shot noise, and the redshift distributions. The coloured bands show the results

when fixing β = 5 and allowing a different bias amplitude in each redshift bin, to demonstrate the

ability of the overall model to simultaneously describe the four samples.

4.5. Halo bias from PNG

The impact of local-type PNG is to modify the halo bias by adding a k-dependent term to the

Gaussian bias bG(z) (Dalal et al., 2008; Desjacques and Seljak, 2010b; Matarrese and Verde, 2008;

Slosar et al., 2008; Smith et al., 2012)

bNG(k, z) = bG(z) +
βf (z)fNL + βg(z)gNL

α(k, z)
. (4.2)

Here, we neglect an additional small contribution induced by the effect of PNG on the halo mass

function, which is independent of k and can thus be absorbed in bG(z). Note that we have also

suppressed the implicit mass dependence of bG, βf , and βg in the previous equation. The exact

expression for α(k, z) and fitting functions for βf and βg can be found in Smith et al. (2012).

A simple extension of the local model is the introduction of a spectral index nfNL in the fNL-

generated scale-dependent bias (Agarwal et al., 2014b; Agullo and Shandera, 2012; Dias et al.,

2013; Giannantonio et al., 2014; Wagner and Verde, 2012), i.e., changing its scaling from k−2 into

k−2+nfNL by using

α(k, z) → α(k, z)

(
k

kpiv

)−nfNL

, (4.3)
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Figure 4.3: Constraints on local-type fNL (in the ΛCDM+fNL model, with nfNL
= gNL = 0) using

the power spectrum analysis of XDQSOz quasars, for different bias models and incorporating

uncertainties in the redshift distributions and cosmological parameters. The error bars show the

1 and 2σ constraints, the dashed line shows fNL = 0, and the shaded bands show the constraints

from Planck (Planck Collaboration, 2013h).

where we choose kpiv = 0.06 Mpc−1. Note that this parametrisation is not equivalent to an

intrinsically scale-dependent fNL as described in Becker et al. (2011, 2012). Instead, it allows us

to extend our analysis to other types of PNG, like that generated by single-field inflation with a

modified initial state Agullo and Shandera (2012), or models with several light fields (Dias et al.,

2013).

The quasar bias is known to evolve strongly with redshift (e.g., Myers et al. 2006, 2007a,b; Shen

et al. 2009; White et al. 2012), and thus one cannot use a constant linear bias per redshift bin due

to the extended and complicated redshift distributions shown in Fig. 4.1. For the Gaussian bias b(z)

in Eq. 4.2, we used

b(z) = b0

[
1 +

(
1 + z

2.5

)β]
, (4.4)

which is in good agreement with previous studies of SDSS quasars (e.g., Porciani and Norberg

2006).

4.6. Monte Carlo Markov Chain (MCMC) analysis

We built a Gaussian likelihood (Leistedt et al., 2013), jointly using the 10 auto- and cross-
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angular power spectra (between redshift bins) estimated in Leistedt and Peiris (2014), at multipole

resolution ∆` = 15. The theoretical predictions were calculated using CAMB sources (Challinor and

Lewis, 2011), modified to support PNG and our quasar bias model. We used emcee (Foreman-Mackey

et al., 2013) to run an MCMC analysis, and sample combinations of the following parameters:

Cosmological parameters (‘cosmo’): parameters of the base ΛCDM model, with fiducial values

and uncertainties corresponding to the constraints from Planck combined with Baryon Acoustic

Oscillations (BAO), as in Planck Collaboration (2013g). Bias model: the model described above,

with uniform priors b0 ∈ [0, 2] and β ∈ [4, 6]. Redshift distributions (‘n(z)’): the amplitude and

width of the Gaussian functions used to fit the n(z) estimates, with Gaussian priors of 5% 1σ

uncertainties around the fiducial values. Additionally, we sampled the slope of number counts,

which controls magnification bias, with Gaussian priors centred at the measured value with 5% 1σ

uncertainty. Shot noise: we marginalised over the shot noise with a prior [0.8, 1.0] times the value

measured from the photometric quasar surface density, in order to account for the unknown (but

bounded) amount of stellar contamination.

4.7. Results

We first test the robustness of the bias model by examining the bias measured in the four redshift

samples individually and jointly. Therefore, in addition to the ‘coupled’ model presented above, used

to connect all power spectra to the theory predictions, we consider an alternative, ‘decoupled’ case

where the bias amplitude of each redshift sample is fit separately, using four parameters b1, b2, b3, b4.

In this case, we used β = 5 and uniform priors bi ∈ [0, 2]. The constraints on the bias parameters

from the XDQSOz power spectra are shown in Fig. 4.2, and demonstrate that the separate bias

amplitudes bi, i = 1 . . . 4 of the four samples are in good agreement with each other, with the fiducial

model with b0 = 1 and β = 5 (black line), and also with the results obtained with the coupled

model (shaded band). Note that the slope parameter β is used to capture the uncertainty in the

evolution of the bias at z > 2.5. This redshift range is not as strongly constrained by the data, but is

nevertheless crucial since it has the greatest bias, and therefore is expected to produce the strongest

PNG signature.

Having confirmed that Eq. 4.4 is an adequate model for the quasar bias, we can now advance

towards constraining the PNG parameters. Unless stated otherwise, all values are quoted at 95% CL.
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Figure 4.4: 1σ and 2σ joint constraints on fNL and gNL for the (b0, β) + n(z)+cosmo case, i.e., mar-

ginalising over the uncertainties in the cosmological parameters, redshift distributions, and bias

model.
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Figure 4.5: 1σ and 2σ joint constraints on f̃NL and nfNL
for the extended model of Eq. 4.3,

marginalising over the same parameters as Fig. 4.4.

113



Model fNL gNL/105

base+fNL −4+27+8
−35−10 —

base+gNL — 0.3+1.1+0.5
−2.2−0.8

base+fNL+gNL −10+54+28
−60−35 0.2+2.9+1.8

−2.7−1.5

Table 4.1: PNG constraints for different models. The base model is (b0, β)+cosmo+n(z). The first

super/subscript corresponds to the 68% CL, and the 95% CL can be obtained by adding the second

number.

Fig. 4.3 shows the constraints on fNL only (with nfNL
= gNL = 0) for various combinations of

parameters and sources of uncertainties. As expected, adding parameters (e.g., using the ‘decoupled’

bias model) increases the error estimates. When only varying b0, β, we obtain −26 < fNL < 34

(top row), and adding the uncertainties in the cosmological parameters and redshift distributions

relaxes the constraints to −49 < fNL < 31 (bottom row). Note that this case is more conservative

but introduces degeneracies between parameters, in particular those affecting the overall amplitude

of the power spectra, such as the bias b0, the amplitude of matter fluctuations σ8, and the relative

amplitudes of the peaks in n(z). However, fNL does not suffer from any direct degeneracies with

these parameters given its specific signature on large scales, yielding constraints which are robust

to the choice of model.

When only using gNL as a source of scale-dependent bias, we obtain−2.7×105 < gNL < 1.9×105.

However, as apparent from Eq. 4.2, and as shown in Roth and Porciani (2012), fNL and gNL

leave similar signatures on the scale-dependent bias of LSS tracers, and are not easily separable.

Despite the large volume and extended redshift range spanned by our data, this degeneracy

is confirmed by their joint constraints, shown in Fig. 4.4, leading to −105 < fNL < 72 and

−4.0× 105 < gNL < 4.9× 105.

For the extended model of Eq. 4.3, we can introduce a generalised parameter f̃NL, which only

corresponds to fNL as defined in Eq. 4.1 when nfNL
= 0. In this model, the scale-dependent bias

scales as b(k) ∼ k−2+nfNL , so the constraints on f̃NL widen as nfNL increases, due to the less

pronounced signature of PNG on large scales. Nevertheless, f̃NL can be constrained at any nfNL
< 2.

Fig. 4.5 shows the joint constraints on f̃NL and nfNL
, summarised as −45.5 exp(3.7nfNL

) < f̃NL <

34.4 exp(3.3nfNL), fully compatible with f̃NL = 0.
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4.8. Future prospects

We performed a Fisher forecast of a Large Synoptic Survey Telescope-like photometric survey

(LSST Dark Energy Science Collaboration, 2012), using angular power spectra of galaxies in 20

tomographic bins in the redshift range 0.5 < z < 3.5, with bias modelled by b0 = 1, β = 3 in Eq. 4.4.

This idealised forecast, without any contamination by systematics, yields a 1σ uncertainty on fNL of

∼ 1, consistent with the 3D power spectrum analysis of Carbone et al. (2008).

We then incorporated realistic estimates of the main 50 systematics identified in Leistedt and

Peiris (2014). This translates into a ∼ 10% clustering contamination for ` > 100, up to factors of a

few on the largest scales where the PNG signal is strongest. Without any mitigation in the subsequent

analysis, the resulting estimate for fNL is biased by ∆fNL ∼ 30, which is highly significant compared

to the expected uncertainty. Including a harmonic-space mode projection in the forecast removes

this bias, while consistently increasing the parameter uncertainty to σ(fNL) = 5, comparable to

current Planck constraints. However, this increase in uncertainty will be significantly reduced when

performing the mode projection in pixel space, using sky maps of the systematics which will be

available for a real survey (Leistedt and Peiris, 2014; Leistedt et al., 2013).

4.9. Conclusion

Photometric quasar surveys, while potentially constituting ideal datasets for probing PNG, have

thus far been systematics-limited. We derived constraints on PNG using the results of a novel

power-spectrum estimation method applied to ∼ 800, 000 photometric quasars from SDSS. This

approach self-consistently marginalises over a non-linear data-driven model of spatially-varying

systematics. Our results, summarised in Table 4.1, incorporate uncertainties in the cosmological

parameters and the parameters of a realistic bias model, while marginalising over uncertainties in

the redshift distributions of the quasars. The resulting constraints on fNL and gNL are the tightest

obtained using a single population of LSS tracers, and are at the level of pre-Planck CMB constraints.

Our results demonstrate the potential of future LSS surveys to reach the fNL ∼ 1 levels predicted by

the simplest models of inflation.
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5
S2LET: A code to perform fast wavelet analysis on the

sphere

“Energy is neither created nor destroyed. It just changes shape”. S. Reynolds

5.1. Abstract

We describe S2LET, a fast and robust implementation of the scale-discretised wavelet transform

on the sphere. Wavelets are constructed through a tiling of the harmonic line and can be used to

probe spatially localised, scale-dependent features of signals on the sphere. The reconstruction of

a signal from its wavelets coefficients is made exact here through the use of a sampling theorem

on the sphere. Moreover, a multiresolution algorithm is presented to capture all information of

each wavelet scale in the minimal number of samples on the sphere. In addition S2LET supports the

HEALPix pixelisation scheme, in which case the transform is not exact but nevertheless achieves

good numerical accuracy. The core routines of S2LET are written in C and have interfaces in Matlab,

IDL and Java. Real signals can be written to and read from FITS files and plotted as Mollweide

projections. The S2LET code is made publicly available, is extensively documented, and ships with

several examples in the four languages supported. At present the code is restricted to axisymmetric

wavelets but will be extended to directional, steerable wavelets in a future release.

117



5.2. Introduction

Signals defined or measured on the sphere arise in numerous disciplines, where analysis

techniques defined explicitly on the sphere are now in common use. In particular, wavelets on the

sphere (Antoine and Vandergheynst, 1998, 1999; Baldi et al., 2009; Marinucci et al., 2008; McEwen

et al., 2006; Narcowich et al., 2006; Starck et al., 2006a; Wiaux et al., 2005, 2006, 2007, 2008; Yeo

et al., 2008) have been applied very successfully to problems in astrophysics and cosmology, where

data-sets are increasingly large and need to be analysed at high resolution in order to confront

accurate theoretical predictions (e.g. Barreiro et al. 2000; Basak and Delabrouille 2012; Cayón

et al. 2001; Deriaz et al. 2012; Labatie et al. 2012; Lan and Marinucci 2008; McEwen et al. 2006,

2007a,b, 2008; Pietrobon et al. 2008; Schmitt et al. 2010; Starck et al. 2006b; Vielva et al. 2004,

2006a,b, 2007; Wiaux et al. 2006, 2008).

While wavelet theory is well established in Euclidean space (see e.g. Daubechies 1992b), multiple

wavelet frameworks have been developed on the sphere, only a fraction of which lead to exact

transforms in both the continuous and discrete settings. In fact, discrete methodologies (Schröder

and Sweldens, 1995; Sweldens, 1996, 1997) achieve exactness in practice but may not lead to

a stable basis on the sphere (Sweldens, 1997). In the continuous setting several constructions

are theoretically exact, and have been combined with sampling theorems on the sphere to enable

exact reconstruction in the discrete setting also. In particular, scale-discretised wavelets (Wiaux

et al., 2008) lean on a tiling of the harmonic line to yield an exact wavelet transform in both the

continuous and discrete settings. In the axisymmetric case, the scale-discretised wavelets reduce to

needlets (Baldi et al., 2009; Marinucci et al., 2008; Narcowich et al., 2006), which were developed

independently using an analogous tiling of the harmonic line. Similarly, the isotropic undecimated

wavelet transform (UWT) developed by (Starck et al., 2006a) exploits B-splines of order 3 to cover

the harmonic line with filters with greater overlap but nevertheless compact support.

In this paper we describe the new publicly available S2LET1 code to perform the scale-discretised

wavelet transform of complex signals on the sphere. At present S2LET is restricted to axisymmetric

wavelets (i.e. azimuthally symmetric when centred on the poles) and includes generating functions

for axisymmetric scale-discretised wavelets (Wiaux et al., 2008), needlets (Baldi et al., 2009;

Marinucci et al., 2008; Narcowich et al., 2006) and B-spline wavelets (Starck et al., 2006a). We

intend to extend the code to directional, steerable wavelets and spin functions in a future release.

1http://www.s2let.org/
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The core routines of S2LET are written in C, exploit fast algorithms on the sphere, and have interfaces

in Matlab, IDL and Java.

We note that many very useful public codes are already available to compute wavelet transforms

on the sphere, including isotropic undecimated wavelet, ridgelet and curvelet transforms2 (Starck

et al., 2006a), invertible filter banks3 (Yeo et al., 2008), needlets (NeedATool4; Pietrobon et al.

2010) and scale-discretised wavelets (S2DW5; Wiaux et al. 2008). S2LET aims primarily to provide

a fast and flexible implementation of the scale-discretised transform with exact reconstruction on

the sphere using the sampling theorem of McEwen and Wiaux (2011), although it has also been

extended to support some of the features of these other codes. Furthermore, particular attention

has been paid in the development of S2LET to prove a user-friendly code, supporting multiple

programming languages, and which is extensively documented.

The remainder of this article is organised as follows. In section 2 we detail the construction

of scale-discretised axisymmetric wavelets and the corresponding exact scale-discretised wavelet

transform on the sphere. In section 3 we describe the S2LET code, including implementation details,

computational complexity and numerical performance. We present a number of simple examples

using S2LET in section 4, along with the code to execute them. We conclude in section 5.

5.3. Wavelets on the sphere

We review the construction of scale-discretised wavelets on the sphere through tiling of the

harmonic line (Wiaux et al., 2008). Directional, steerable wavelets were also considered by Wiaux

et al. (2008), however we restrict our attention to axisymmetric wavelets here. Furthermore, the use

of a sampling theorem on the sphere guarantees that spherical harmonic coefficients capture all the

information content of band-limited signals, resulting in theoretically exact harmonic and wavelet

transforms. One may alternatively adopt samplings of the sphere for which exact quadrature rules

do not exist, such as HEALPix (Górski et al., 2005), but which nevertheless exhibit other useful

properties, leading to numerically accurate but not theoretically exact transforms.

2http://jstarck.free.fr/mrs.html
3https://sites.google.com/site/yeoyeo02
4http://www.fisica.uniroma2.it/~pietrobon/
5http://www.spinsht.org/

119

http://jstarck.free.fr/mrs.html
https://sites.google.com/site/yeoyeo02
http://www.fisica.uniroma2.it/~pietrobon/
http://www.spinsht.org/


5.3.1. Harmonic analysis on the sphere

The spherical harmonic decomposition of a square integrable signal f ∈ L2(S2) on the two-

dimensional sphere S2 reads

f(ω) =

∞∑
`=0

∑̀
m=−`

f`mY`m(ω), (5.1)

where Y`m are the spherical harmonic functions, which form the canonical orthogonal basis on

S2. The spherical harmonic coefficients f`m, with ` ∈ N and m ∈ Z such that |m| ≤ `, form a

dual representation of the signal f in the harmonic basis on the sphere. The angular position

ω = (θ, φ) ∈ S2 is specified by colatitude θ ∈ [0, π] and longitude φ ∈ [0, 2π). The spherical

harmonic coefficients are given by

f`m = 〈f |Y`m〉 =

∫
S2

dΩ(ω)f(ω)Y ∗`m(ω), (5.2)

with the surface element dΩ(ω) = sin θdθdφ. We consider band-limited signals in the spherical

harmonic basis, with band-limit L if f`m = 0, ∀` ≥ L. For band-limited signals sampling theorems

can be invoked so that both forward and inverse transforms can be reduced to finite summations

that are theoretically exact. Sampling theorems effectively encode a quadrature rule for the exact

evaluation of integrals on the sphere from a finite set of sampling nodes. Various sampling theorems

exist in the literature (e.g. Driscoll and Healy 1994; Healy et al. 1996; McEwen and Wiaux 2011).

In this work we adopt the McEwen and Wiaux (2011) sampling theorem (hereafter MW), which

is based on an equiangular sampling scheme and, for a given band-limit L, requires the lowest

number of samples on the sphere of all sampling theorems, namely (L − 1)(2L − 1) + 1 ∼ 2L2

samples (for comparison ∼ 4L2 samples are required by Driscoll and Healy (1994)). Fast algorithms

to compute the corresponding spherical harmonic transform scale as O(L3) and are numerically

stable to band-limits of at least L = 4096 (McEwen and Wiaux, 2011). The GLESP pixelisation

scheme (Doroshkevich et al., 2005) also provides a sampling theorem based on the Gauss-Legendre

quadrature, and could be used in place of the MW sampling theorem. However, GLESP uses more

samples than Gauss-Legendre quadrature requires, which may lead to an overhead when considering

large band-limits and numerous wavelet scales. We focus on the MW sampling scheme to obtain

a theoretically exact transform. Alternative sampling schemes that are not based on sampling

theorems also exist such as HEALPix (Górski et al., 2005), which is supported by S2LET, MRS and

Needatool. HEALPix does not lead to exact transforms on the sphere but the resulting approximate
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transforms nevertheless achieve good accuracy and benefit from other practical advantages, such as

equal-area pixels.

5.3.2. Scale-discretised wavelets on the sphere

The scale-discretised wavelet transform allows one to probe spatially localised, scale-dependent

content in the signal of interest f ∈ L2(S2). The j-th wavelet scale WΨj∈ L2(S2) is defined as the

convolution of f with the wavelet Ψj ∈ L2(S2):

WΨj (ω) ≡ (f ?Ψj)(ω) ≡ 〈f |RωΨj〉

≡
∫
S2

dΩ(ω′)f(ω′)(RωΨj)∗(ω′), (5.3)

where ∗ denotes complex conjugation. Convolution on the sphere is defined by the inner product of

f with the rotated wavelet RωΨj . We restrict our attention to axisymmetric wavelets, i.e. wavelets

that are azimuthally symmetric when centred on the poles. Consequently, the rotation operator Rω
is parameterised by angular position ω = (θ, φ) only and not also orientation6. For the axisymmetric

case the spherical harmonic decomposition of WΨj is then simply given by a weighted product in

harmonic space:

WΨj

`m =

√
4π

2`+ 1
f`mΨj∗

`0 , (5.4)

where WΨj

`m = 〈WΨj |Y`m〉, f`m = 〈f |Y`m〉 and Ψj
`0δm0 = 〈Ψj |Y`m〉, and where δm0 is the Kronecker

delta symbol.

The wavelet coefficients extract the detail information of the signal only; a scaling function

and corresponding scaling coefficients must be introduced to represent the low-frequency (low-`),

approximate information of the signal. The scaling coefficients WΦ ∈ L2(S2) are defined by the

convolution of f with the scaling function Φ ∈ L2(S2):

WΦ(ω) ≡ (f ? Φ)(ω) = 〈f |RωΦ〉, (5.5)

or in harmonic space,

WΦ
`m =

√
4π

2`+ 1
f`mΦ∗`0, (5.6)

6As already noted, the extension to directional scale-discretised wavelets has been derived by Wiaux et al. (2008). At
present the S2LET code supports axisymmetric wavelets only; directional wavelets will be added in a later release.
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where WΦ
`m = 〈WΦ|Y`m〉 and Φ`0δm0 = 〈Φ|Y`m〉.

Provided the wavelets and scaling function satisfy an admissibility property (defined below), the

function f may be reconstructed exactly from its wavelet and scaling coefficients by

f(ω) =

∫
S2

dΩ(ω′)WΦ(ω′)(Rω′Φ)(ω)

+

J∑
j=J0

∫
S2

dΩ(ω′)WΨj (ω′)(Rω′Ψj)(ω), (5.7)

or equivalently in harmonic space by

f`m =

√
4π

2`+ 1
WΦ
`mΦ`0 +

√
4π

2`+ 1

J∑
j=J0

WΨj

`mΨj
`0. (5.8)

The parameters J0, J define the lowest and highest scales j of the wavelet decomposition and must

be defined consistently to extract and reconstruct all the information content of f . These parameters

depend on the construction of the wavelets and scaling function and are defined explicitly in

the next paragraphs. The admissibility condition under which a band-limited function f can be

decomposed and reconstructed exactly is given by the following resolution of the identity:

4π

2`+ 1

|Φ`0|2 +

J∑
j=J0

|Ψj
`0|2
 = 1, ∀`. (5.9)

We are now in a position to define wavelets and a scaling function that satisfy the admissibility

property. In this paper, we use the smooth generating functions defined by Wiaux et al. (2008) in

order to tile the harmonic line. Alternative definitions are also supported by S2LET, as presented at

the end of this section. Consider the C∞ Schwartz function with compact support on [−1, 1]:

s(t) ≡

 e
− 1

1−t2 , t ∈ [−1, 1]

0, t /∈ [−1, 1]
, (5.10)

for t ∈ R. We introduce the positive real parameter λ ∈ R+
∗ to map s(t) to

sλ(t) ≡ s
(

2λ

λ− 1
(t− 1/λ)− 1

)
, (5.11)
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which has compact support in [1/λ, 1]. We then define the smoothly decreasing function kλ by

kλ(t) ≡
∫ 1

t
dt′

t′ s
2
λ(t′)∫ 1

1/λ
dt′

t′ s
2
λ(t′)

, (5.12)

which is unity for t < 1/λ, zero for t > 1, and is smoothly decreasing from unity to zero for

t ∈ [1/λ, 1]. We finally define the wavelet generating function by

κλ(t) ≡
√
kλ(t/λ)− kλ(t) (5.13)

and the scaling function generating function by

ηλ(t) ≡
√
kλ(t). (5.14)

The wavelets and scaling function are constructed from their generating functions to satisfy the

admissibility condition given by Eqn. (6.35). A natural approach is to define Ψj
`m from the generating

functions κλ to have support on [λj−1, λj+1], yielding

Ψj
`m ≡

√
2`+ 1

4π
κλ

(
`

λj

)
δm0. (5.15)

For these wavelets Eqn. (6.35) is satisfied for ` ≥ λJ0 , where J0 is the lowest wavelet scale used

in the decomposition. The scaling function Φ is constructed to extract the modes that cannot be

probed by the wavelets (i.e. modes with ` < λJ0):

Φ`m ≡
√

2`+ 1

4π
ηλ

(
`

λJ0

)
δm0. (5.16)

To satisfy exact reconstruction, J is set to ensure the wavelets reach the band-limit of the signal of

interest, yielding J = dlogλ(L− 1)e. The choice of the lowest wavelet scale J0 is arbitrary, provided

that 0 ≤ J0 < J . The wavelets and scaling function may then be reconstructed on the sphere

through an inverse spherical harmonic transform. The harmonic tiling and real space representation

of these wavelets are shown in Figure 5.1 and Figure 5.2 respectively.

In addition to the scale-discretised generating functions (Wiaux et al., 2008), S2LET also supports

the needlet functions (Marinucci et al., 2008)7, which yield a similar tiling of the harmonic line,

as shown in Figure 5.1. The B-spline filters used to construct the isotropic undecimated wavelet

7In our implementation of needlets we use a scaling function to represent the approximate information in the signal,
which is not always included (e.g., NeedAtool; Pietrobon et al. 2010).
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(a) Tiling of the harmonic line

`

Φ`0 Ψ2
`0 Ψ3

`0 Ψ4
`0

Ψ5
`0

(b) Angular profiles of the scaling function and the first wavelets

Φ(θ, φ = 0) Ψ2(θ, φ = 0) Ψ3(θ, φ = 0)

θ θ θ

Figure 5.1: Wavelets and scaling function constructed with the scale-discretised (SD), needlet and

B-spline generating functions (Marinucci et al., 2008; Starck et al., 2006a; Wiaux et al., 2008) with

parameters λ = 3 and J0 = 2 and for band-limit L = 128. The tiling is shown in the top panel, and

the profiles of the reconstructed wavelets in the bottom panel.

transform (Starck et al., 2006a) are also supported, as also shown in Figure 5.1.8 With these three

constructions, the wavelets and scaling functions are well-localised both spatially on the sphere and

also in harmonic space. Consequently, the associated wavelet transforms on the sphere can be used

to extract spatially localised, scale-dependent features in signals of interest.

8For the B-spline-based construction to probe approximately the same scales as the scale-discretised and needlet ones, we
defined the generating functions as

kλ(t) =
3

2
B3(2

tλJ−1

L
) (5.17)

B3(x) =
1

12
(|x− 2|3 − 4|x− 1|3 + 6|x|3 − 4|x+ 1|3 + |x+ 2|3), (5.18)

so that the jth filter has (compact) support [0, L/λJ−j−2] and peaks at the same scales as the j-th scale-discretised and
needlet filters obtained with the same parameters.
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Φ(ω) Ψ2(ω) Ψ3(ω)

Ψ4(ω) Ψ5(ω)

Figure 5.2: Wavelets for scales j ∈ {2, 3, 4, 5} and scaling function constructed through a tiling

of the harmonic line using scale-discretised functions, with parameters λ = 3 and J0 = 2 and for

band-limit L = 128. This plot was produced with a Matlab demo included in S2LET.

5.4. The S2LET code

In this section we describe the S2LET code. We first introduce a multiresolution algorithm to

capture each wavelet scale in the minimum number of samples on the sphere, which follows by

taking advantage of the reduced band-limit of the wavelets for scales j < J−1. This multiresolution

algorithm reduces the computation cost of the transform considerably. We then provide details of the

implementation, the computational complexity and the numerical accuracy of the scale-discretised

wavelet transform supported in S2LET. We finally outline planned future extensions of the code.

5.4.1. Multiresolution algorithm

In harmonic space, the wavelet coefficients are simply given by the weighted product of the

spherical harmonic coefficients of f and the wavelets, as expressed in Eqn. (6.30). Although the

wavelet coefficients can be analysed at the same resolution as the signal f (i.e., at full resolution),

by construction they have different band-limits for different scales j, as shown in Figure 5.1. The

reconstruction can thus be performed at lower resolution, without any loss of information if a

sampling theorem is used. This approach yields a multiresolution algorithm where the wavelet

coefficients are reconstructed with the minimal number of samples on the sphere: the j-th wavelet
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coefficients have band-limit k = λj+1 when using the scale-discretised and needlet kernels, and

k = L/λJ−j−2 when using the B-splines. When the MW sampling theorem is used, the wavelets

are recovered on (k − 1)(2k − 1) + 1 samples on the sphere. This approach leads to significant

improvements in terms of speed and memory use compared to the full-resolution case, as shown in

the next section. Figure 5.3 illustrates the use of the full-resolution and multiresolution transforms

on a map of Earth topography data with the scale-discretised filters and the MW scheme. When

adopting the HEALPix sampling of the sphere, multiresolution can also be used. However HEALPix

does not rely on a sampling theorem and therefore the resolution for the reconstruction of each

wavelet scale must be chosen heuristically and adapted to the desired accuracy. For example, in the

MRS code (Starck et al., 2006a) it is chosen such that Nside
j = k/2. More detail on the accuracy of

the wavelet transform with HEALPix are provided below.

(a) Full-resolution scale-discretised wavelet transform (b) Multiresolution scale-discretised wavelet transform

Figure 5.3: Scale-discretised wavelet transform of a band-limited topography map of the Earth

for λ = 3, J0 = 2 and L = 128, i.e. with the scale-discretised wavelets shown in Figure 5.2.

The wavelet transform decomposes the band-limited signal into wavelet coefficients that extract

spatially localised, scale-dependent features. Since the wavelets for different scales j have different

band-limits, the wavelet coefficients can be reconstructed at lower resolution on the sphere for

lower scales j. Panel (a) shows the full-resolution wavelet transform of the topography map. The

original Earth topography map is shown in the top-left plot, the scaling coefficients are shown in

the top-right plot, while the wavelet coefficients at scales j ∈ {2, 3, 4, 5} are shown left-to-right,

top-to-bottom respectively in the remaining plots. Panel (b) shows the same decomposition but

using the multiresolution algorithm. The signals shown in panel (b) contain the same information

as in panel (a) but represented in the minimal number of samples on the sphere. These plots were

produced by one of the many Matlab demos provided with S2LET.
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5.4.2. Implementation

The core numerical routines of S2LET are implemented in C. By adopting a low level program-

ming language such as C for the implementation of the core algorithms, computational efficiency is

optimised. The C library includes the full-resolution and multiresolution wavelet transforms, with

specific optimisations for real signals in order to take advantage of all symmetries of the spherical

harmonic transform. The wavelet transform is computed in harmonic space through Eqn. (6.30)

and Eqn. (6.32), for the input parameters (L, λ, J0). To reconstruct signals on the sphere, by default

S2LET uses the exact spherical harmonic transform of the MW sampling theorem (McEwen and

Wiaux, 2011) implemented in the SSHT9 code. In this case all transforms are theoretically exact

and one can analyse and synthesise real and complex signals at floating-point precision. S2LET has

been extended to also support the HEALPix sampling scheme, in which case the transform is not

theoretically exact but nevertheless achieves good numerical accuracy.

We provide interfaces for the C library in three languages: Matlab, IDL and Java. The Matlab

and IDL codes also include routines to read/write signals on the sphere stored in either HEALPix

FITS10 files or the FITS file format used to stored MW sampled signals. In addition, functionality to

plot the Mollweide projection of real signals for both MW or HEALPix samplings is included. The

Java interface includes an object-oriented representation of sampled maps, spherical harmonics and

wavelet transforms. All routines and interfaces are well documented and illustrated with several

examples for both the MW and HEALPix samplings. These examples cover multiple combinations of

parameters and types of signals. S2LET requires SSHT, which implements fast and exact algorithms to

perform the forward and inverse spherical harmonic transforms corresponding to the MW sampling

theorem (McEwen and Wiaux, 2011). SSHT in turn requires the FFTW11 package for the computation

of fast Fourier transforms. The fast spherical harmonic transforms implemented in SSHT compute

Wigner functions, and thus the spherical harmonic functions, through efficient recursion using

either the method of Trapani and Navaza (2006) or Risbo (1996). Here we present results using

the recursion of Risbo (1996). The fast spherical harmonic transform algorithms implemented in

SSHT scale as O(L3) (McEwen and Wiaux, 2011).

Although primarily intended to perform the scale-discretised wavelet transform of Wiaux et al.

(2008), S2LET also supports the needlet and spline-based wavelet transforms developed by Marinucci

9http://www.spinsht.org/
10http://fits.gsfc.nasa.gov/
11http://www.fftw.org/
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et al. (2008) and Starck et al. (2006a). As shown in Figure 5.1, these generating functions yield

the same number of wavelet scales (for the parameter choices described previously). However,

with the scale-discretised and needlet generating functions the j-th wavelet scale has compact

support in [λj−1, λj+1], whereas the support is much wider with the B-splines, i.e. [0, L/λJ−j−2]

in the S2LET implementation. As a consequence, when using the multiresolution algorithm the

wavelet coefficients must be captured on a greater number of pixels than with the scale-discretised

or needlet kernels, while probing approximately the same scales, as shown in Figure 5.1.

The complexity of the axisymmetric wavelet transform is dominated by spherical harmonic trans-

forms since the wavelet transforms are computed efficiently in harmonic space, through Eqn. (6.30)

and Eqn. (6.32) for the forward transform and through Eqn. (6.35) for the inverse transform.

Given a band-limit L and wavelet parameters (λ, J0), recall that the maximum scale is given by

J = dlogλ(L − 1)e and hence the wavelet transform (forward or inverse) involves (J − J0 + 3)

spherical harmonic transforms (one for the original signal, one for the scaling coefficients and

(J − J0 + 1) for the wavelet coefficients). If the scaling coefficients and all wavelet coefficients

are reconstructed at full-resolution in real space, the axisymmetric wavelet transform scales as

O((J − J0 + 3)L3). However, in the previous section we established a multiresolution algorithm

that takes advantage of the reduced band-limit of the wavelets for scales j < J − 1. With the

multiresolution algorithm with a sampling theorem, only the finest wavelet scales j ∈ {J − 1, J} are

computed at maximal resolution corresponding to the band-limit of the signal. The complexity of

the overall multiresolution wavelet transform is then dominated by these operations and effectively

scales as O(L3).

5.4.3. Numerical validation

We first evaluate the performance of S2LET in terms of accuracy and complexity using the MW

sampling theorem, for which all transforms are theoretically exact. We show that S2LET achieves

floating-point precision and scales as detailed in the previous section.

We consider band-limits L = 2i with i ∈ {2, . . . , 10} and generate sets of spherical harmonic

coefficients f`m following independent Gaussian distributions N (0, 1). We then perform the wavelet

decomposition and reconstruct the harmonic coefficients, denoted by f rec
`m. We evaluate the accuracy

of the transform using the error metric ε = max |f`m − f rec
`m|, which is theoretically zero since all

signals are band-limited by construction. The complexity is quantified by observing how the
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(a) Numerical accuracy of the wavelet transform
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(b) Computation time of the wavelet transform

Figure 5.4: Numerical accuracy and computation time of the scale-discretised wavelet transform

computed with S2LET. We consider L = 2i with i ∈ {2, . . . , 10}, with parameters λ = 2, J0 = 0.

These results are averaged over many realisations of random band-limited signals and were found

to be very stable. The scale-discretised transform is either performed at full-resolution (solid lines)

or with the multiresolution algorithm (dashed lines). Very good numerical accuracy is achieved by

both the full-resolution and multiresolution algorithms (which achieve indistinguishable accuracy),

with numerical errors comparable to floating-point precision, found empirically to scale as O(L) as

shown by the red line in panel (a). Computation time scales as O(L3) for both algorithms as shown

by the red line in panel (b), in agreement with theory. The multiresolution algorithm is four to five

times faster than the full-resolution approach for the band-limits considered.
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computation time tc = [tsynthesis + tanalysis]/2 scales with band-limit, where the synthesis and analysis

computation times are specified by tsynthesis and tanalysis respectively. Since we evaluate the wavelet

transform in real space, a preliminary step is required to reconstruct the signal f from the randomly

generated f`m. This step is not included in the computation time since its only purpose is to generate

a valid band-limited test signal on the sphere. The analysis then denotes the decomposition of

f into wavelet coefficients WΨj and scaling coefficients WΦ on the sphere. The synthesis refers

to recovering the signal f rec from these coefficients. The final step, which is not included in the

computation time either, is to decompose f rec into harmonic coefficients f rec
`m in order to compare

them with f`m. The stability of both ε and tc is checked by averaging over hundreds of realisations

of f`m for L = 2i with i ∈ {2, . . . , 8} and a few realisations with i ∈ {9, 10}. The results proved to

be very stable, i.e. the variances of the error and timing metrics are lower than 5%. Recall that

for given band-limit L the number of samples on the sphere required by the exact quadrature is

(2L− 1)(L− 1) + 1. All tests were run on an Intel 2.0GHz Core i7 processor with 8GB of RAM. On

this machine, precision of floating point numbers is of the order of ∼ 10−16, and errors are expected

to add up and accumulate when considering linear operations such as the spherical harmonic and

wavelet transforms. The accuracy and timing performance of the scale-discretised wavelet transform

implemented in S2LET are presented in Figure 5.4. S2LET achieves very good numerical accuracy,

with numerical errors comparable to accumulated floating-point errors only12. Moreover, the

full-resolution and multiresolution algorithms are indistinguishable in terms of accuracy. However,

the latter is four to five times faster than the former for the band-limits considered since only the

wavelet coefficients for j ∈ {J − 1, J} are computed at full-resolution. As shown in Figure 5.4,

computation time scales as O(L3) for both algorithms, in agreement with theory.

S2LET can also be used with HEALPix, in which case the accuracy of the spherical harmonic

transform is critical to the accuracy of the wavelet transform (since HEALpix does not rely on a

sampling theorem it does not exhibit theoretically exact harmonic transforms, unlike SSHT or GLESP).

The performances of the spherical harmonic transforms in HEALPix and GLESP have been widely

studied in the past (see, e.g., Doroshkevich et al. 2011; Reinecke 2011; Reinecke and Seljebotn

2013), and that of the MW sampling were presented in McEwen and Wiaux (2011). We do not

compile the entirety of these results here, but we have reproduced the essential results on our

machine; Table 5.1 summarises the orders of accuracy of the HEALPix iterative spherical harmonic

transform. Using the same setup as previously, we calculated the maximum error on the spherical

12The GLESP sampling adopted in MRS also achieves floating point accuracy, although using many more pixels to capture
the wavelet scales due to the greater band-limits of the spline-based kernels and the oversampling of the GLESP scheme.
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max |f`m − f rec
`m| L = Nside/2 L = Nside L = 2Nside L = 3Nside

0 iteration ∼ 10−6 ∼ 10−4 ∼ 10−2 ∼ 10−1

1 iterations ∼ 10−10 ∼ 10−7 ∼ 10−3 ∼ 10−1

2 iterations ∼ 10−14 ∼ 10−10 ∼ 10−5 ∼ 10−1

3 iterations ∼ 10−14 ∼ 10−13 ∼ 10−6 ∼ 10−1

4 iterations ∼ 10−14 ∼ 10−14 ∼ 10−7 ∼ 10−1

Table 5.1: Order of magnitude of the accuracy of the HEALPix spherical harmonic transform,

averaged over the parameter Nside.

harmonic coefficients when performing the transform back and forth, averaged over the values

of Nside, since the results were found to be sensitive only to the ratio L/Nside. Even with several

iterations, which multiplies the number of transforms and thus computation time, the spherical

harmonic transform in HEALPix remains at least an order of magnitude less accurate than the MW

and GLESP counterparts (which, being both theoretically exact, achieve comparable performances,

see Doroshkevich et al. 2011; McEwen and Wiaux 2011; Reinecke 2011; Reinecke and Seljebotn

2013). Since the wavelet transforms implemented in MRS and Needatool are also computed in

harmonic space, their complexity and accuracy are dominated by that of the underlying spherical

harmonic transforms. As a consequence, when adopting the HEALPix scheme, S2LET, MRS and

Needatool achieve similar performances, resulting from the computation time and accumulated

errors of (J − J0 + 1) HEALPix spherical harmonic transforms. In the multiresolution case, the

results depend on the resolution chosen to reconstruct each wavelet scale.

5.4.4. Future extensions

In future work we plan to extend S2LET to support directional, steerable wavelets on the

sphere (Wiaux et al., 2008). We also plan to exploit recent ideas leading to fast (spin) spherical

harmonic transforms (McEwen and Wiaux, 2011) to yield faster algorithms than those developed

by Wiaux et al. (2008) and McEwen et al. (2013) to compute directional wavelet transforms on

the sphere. Finally, we intend to add support to analyse spin signals on the sphere (c.f. Geller and

Marinucci, 2010; Geller et al., 2008; Starck et al., 2009). In a future release, the code will also be

parallelised, which will lead to further speed improvements. The S2LET code will thus be under

active development with future releases forthcoming. In any case, we hope this first version of

the S2LET code will prove useful for axisymmetric scale-discretised wavelet analysis on the sphere.

Indeed, the code has already been used as an integral part of the new exact flaglet wavelet transform
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on the ball (Leistedt and McEwen, 2012), the spherical space constructed by augmenting the sphere

with the radial line.

5.5. Examples

The S2LET code is extensively documented and ships with several examples in the four languages

supported. In this section we present a subset of short examples, along with the code to execute

them in order to demonstrate the ease of using S2LET to perform wavelet transforms13. All examples

were run with the scale-discretised wavelet generating functions.

5.5.1. Wavelet transform from the command line

S2LET includes ready-to-use high-level programs to directly decompose a real signal into wavelet

coefficients. The inputs are a FITS file containing the signal of interest and the parameters for the

transform. The program writes the output coefficients in FITS files in the same directory as the

input file and with a consistent naming scheme. These commands are available for both HEALPix

and MW sampling schemes. For the MW sampling case illustrated in Example 5.1, the wavelet

transform is theoretically exact and the band limit corresponds to the resolution of the input map,

which will be read automatically from the file. The transform may be performed in full-resolution or

multiresolution by adjusting the multiresolution flag specified by the last parameter (respectively 0

and 1), and the output wavelet coefficients are computed at full and minimal resolution accordingly.

For the case of a HEALPix map, as illustrated in Example 5.2, the band-limit must be supplied as

the last parameter in the command. The output scaling and wavelet coefficients of a HEALPix map

are reconstructed and stored in FITS files at the same resolution as the input map. For both MW

and HEALPix samplings the output coefficients may be read and plotted using the Matlab or IDL

routines.

>> ./bin/s2let_axisym_mw_analysis_real <inputFitsFile > <lambda > <J_0 >

<multiresFlag >

>> ./bin/s2let_axisym_mw_synthesis_real <outputRoot > <lambda > <J_0 > <bandLimit >

Example 5.1: Performing the forward (analysis) and inverse (synthesis) wavelet transform of a real signal (MW
sampling) from the command line.

13Note that the code uses a slightly different notation compared to the equations of this article: B refers to the wavelet
scaling parameter (denoted λ herein) and Jmin to the first scale of the transform (denoted J0 herein).
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>> ./bin/s2let_axisym_hpx_analysis_real <inputFitsFile > <lambda > <J_0 >

<bandLimit >

>> ./bin/s2let_axisym_hpx_synthesis_real <outputRoot > <lambda > <J_0 >

<bandLimit >

Example 5.2: Performing the forward (analysis) and inverse (synthesis) wavelet transform of a real signal (HEALPix
sampling) from the command line.

5.5.2. Wavelet transform in Matlab and IDL

Examples 5.3 and 5.4 read real signals on the sphere from FITS files, calculate the wavelet

coefficients and plot them using a Mollweide projection. The first case is a Matlab example where

the input map is a simulation of the cosmic microwave background in the HEALPix sampling. The

second case is a IDL example where the input map is a topography map of the Earth in MW sampling.

S2LET ships with versions of these two examples in C, Matlab and IDL.

5.5.3. Wavelet denoising in C

Example 5.5 illustrates the use of the wavelet transform to denoise a signal on the sphere. The

input noisy map is a band-limited topography map of the Earth in MW sampling at resolution

L = 128. It is read from a FITS file, decomposed into wavelet coefficients (for given parameters λ

and J0) which are then denoised by thresholding. The denoised signal is reconstructed from the

denoised wavelet coefficients and written to a FITS file.

In this example we consider a noisy signal y = s + n ∈ L2(S2), where the signal of interest

s ∈ L2(S2) is contaminated with noise n ∈ L2(S2). We consider zero-mean white Gaussian noise

on the sphere, where the variance of the harmonic coefficients of the noise is specified by

E
(
|n`m|2

)
= σ2, ∀`,m. (5.19)

A simple way to evaluate the fidelity of the observed signal y is through the signal-to-noise ratio

(SNR), define on the sphere by

SNR(y) ≡ 10 log10

‖s‖22
‖y − s‖22

, (5.20)
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% Example: Wavelet transform in Matlab

lambda = 3; J0 = 2; L = 192;

Jmax = s2let_jmax(L, lambda);

% Read a real HEALPix map from a FITS file

inputfile = ’data/somecmbsimu_hpx_128.fits’;

[f, nside] = s2let_hpx_read_real_map(inputfile);

% Perform the wavelet transform

[f_wav , f_scal] = s2let_axisym_hpx_analysis (f,’B’,lambda ,’L’,L,’J_min’,J0);

% Plot the map and the wavelet coefficients

figure; ns = ceil(sqrt (2+Jmax -J0+1));

subplot(ns, ns , 1);

s2let_hpx_plot_mollweide(f);

title(’Initial band -limited data’)

subplot(ns, ns , 2);

s2let_hpx_plot_mollweide(f_scal);

title(’Scaling fct’)

for j = J0:Jmax

subplot(ns, ns, j-J0+3);

s2let_hpx_plot_mollweide(f_wav{j-J0+1});

title([’Wavelet scale : ’,int2str(j)-J0+1])

end

Example 5.3: Performing the wavelet transform of a real signal (HEALPix sampling) using the Matlab interface.

; Example: Wavelet transform in IDL

lambda = 3

J0 = 2

; Read a real MW map from a FITS file

file = ’data/earth_tomo_mw_128.fits’

f = s2let_mw_read_real_map(file)

L = s2let_get_mw_bandlimit(f)

Jmax = s2let_j_max(L, lambda)

; Perform the wavelet transform

f_wav = s2let_axisym_mw_wav_analysis_real (f, lambda , J0)

f_rec = s2let_axisym_mw_wav_synthesis_real (f_wav)

; Plot the map and the wavelet coefficients

ns = ceil(sqrt (3+Jmax -J0))

!P.MULTI=[0,ns,ns]

s2let_mw_plot_mollweide , f_rec , title=’Band -limited map’

s2let_mw_plot_mollweide , f_wav.scal , title=’Scaling map’

for j=0, Jmax -J0 do begin

s2let_mw_plot_mollweide , f_wav .(j), title=’Wavelet map ’+strtrim(j+1,2)+’

on ’+strtrim(Jmax -J0+1,2)

endfor

!P.MULTI=0

Example 5.4: Performing the wavelet transform of a real signal (MW sampling) using the IDL interface.
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where the signal energy is defined by

‖y‖22 ≡ 〈y|y〉 =

∫
S2

dΩ(ω)|y(ω)|2 =
∑
`m

|y`m|2. (5.21)

We seek a denoised version of y, denoted by d ∈ L2(S2), with large SNR(d) so that d isolates the

informative signal s. When taking the wavelet transform of the noisy signal y, one expects the

energy of the informative part to be concentrated in a small number of wavelet coefficients, whereas

the noise energy should be spread over various wavelet scales. In this particular toy example, the

signal has significant power on large scales, as shown in Figure 5.3, which are well described in the

wavelet basis and less affected by the random white noise. Since the transform is linear, the wavelet

coefficients of the j-th scale are simply given by the sum of the individual contributions:

Y j(ω) = Sj(ω) +N j(ω), (5.22)

where capital letters denote the wavelet coefficients, i.e. Y j ≡ y ?Ψj , Sj ≡ s ?Ψj and N j ≡ n ?Ψj .

For the zero-mean white Gaussian noise defined by Eqn. 6.46, the noise in wavelet space is also

zero-mean and Gaussian, with variance

E
(
|N j(ω)|2

)
= σ2

∑
`

|Ψj
`0|2 ≡

(
σj
)2
.

Denoising is performed by hard-thresholding the wavelet coefficients Y j , where the threshold is

taken as T j = 3σj . The denoised wavelet coefficients Dj ≡ d ?Ψj are thus given by

Dj(ω) =

 0, if Y j(ω) < T j(ω)

Y j(ω), otherwise
. (5.23)

The denoised signal d ∈ L2(S2) is reconstructed from its wavelet coefficients Dj and the scaling

coefficients of y, which are not thresholded. The denoising procedure outlined above is particularly

simple and more sophisticated denoising strategies can be developed; we adopt this simple denoising

strategy merely to illustrate the use of the S2LET code. In this example we perform the wavelet

transform with parameters λ = 2 and J0 = 0. For a noisy signal y with SNR(y) = 11.78dB, the

scale-discretised wavelet denoising recovers a denoised signal d with SNR(d) = 14.66dB. The initial,

noisy and denoised maps are shown in Figure 5.5. When switching to needlets and B-spline

wavelets while keeping λ and J0 unchanged, the denoised signals have SNR(d) = 14.68dB and
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14.46dB respectively.

5.6. Summary

In the era of precision astrophysics and cosmology, large and complex data-sets on the sphere

must be analysed at high precision in order to confront accurate theoretical predictions. Scale-

discretised wavelets are a powerful analysis technique where spatially localised, scale-dependent

signal features of interest can be extracted and analysed. Combined with a sampling theorem, this

framework leads to an exact multiresolution wavelet analysis, where signals on the sphere can be

reconstructed from their scaling and wavelet coefficients exactly.

We have described S2LET, a fast and robust implementation of the scale-discretised wavelet

transform. Although the first public release of S2LET is restricted to axisymmetric wavelets, the

generalisation to directional, steerable wavelets will be made available in a future release. The core

numerical routines of S2LET are written in C and have interfaces in Matlab, IDL and Java. Both

MW and HEALPix pixelisation schemes are supported. In this article we have presented a number

of examples to illustrate the ease of use of S2LET for performing wavelet transform of real signals

stored as FITS files and to plot scaling and wavelet coefficients on Mollweide projections of the

sphere. We have also detailed a denoising example where denoising is performed through simple

hard-thresholding in wavelet space. Although only a simple denoising strategy was performed

to illustrate the use of the S2LET code, it nevertheless performed very well, highlighting the

effectiveness of the scale-discretised wavelet transform on the sphere.
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(a) Band-limited signal

(b) Noisy signal with SNR(y) = 11.8dB

(c) Denoised signal with SNR(d) = 14.66dB

Figure 5.5: Wavelet denoising by hard-thresholding, using parameters λ = 2 and J0 = 0 and

scale-discretised generating functions.When using needlets and B-spline wavelets, the denoised

signals have SNR(d) = 14.68dB and 14.46dB respectively. This example is included in S2LET as a

documented demo program.
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// Example: Wavelet denoising in C

int lambda = 2, J0 = 0;

// Read a real MW map from a FITS file

char inputfile [100] = "..."

double *f;

int L = s2let_fits_read_mw_bandlimit(file);

s2let_mw_allocate_real (&f, L);

s2let_fits_read_mw_map(f, file , L);

// Perform multiresolution wavelet analysis

double *f_wav , *f_scal;

s2let_axisym_mw_allocate_f_wav_multires_real (&f_wav , &f_scal , lambda , L, J0);

s2let_axisym_mw_wav_analysis_multires_real (f_wav , f_scal , g, lambda , L, J0);

// Threshold the wavelets with a noise model

s2let_axisym_wav_hardthreshold_multires_real (f_wav , threshold , lambda , L, J0);

// Reconstruct the denoised signal

double *f_denoised;

s2let_mw_allocate_real (&f_denoised , L);

s2let_axisym_mw_wav_synthesis_multires_real (f_denoised , f_wav , f_scal ,

lambda ,L,J0);

// Write the denoised signal

char outputfile [100] = "..."

s2let_fits_write_mw_map(outfile ,f_denoised ,L);

Example 5.5: Denoising a real signal (MW sampling) in C through hard-thresholding of the wavelet coefficients.
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6
Exact Wavelets on the Ball

“When you change the way you look at things, the things you look at change”. M. Planck

6.1. Abstract

We develop an exact wavelet transform on the three-dimensional ball (i.e. on the solid sphere),

which we name the flaglet transform. For this purpose we first construct an exact transform on the

radial half-line using damped Laguerre polynomials and develop a corresponding quadrature rule.

Combined with the spherical harmonic transform, this approach leads to a sampling theorem on the

ball and a novel three-dimensional decomposition which we call the Fourier-Laguerre transform.

We relate this new transform to the well-known Fourier-Bessel decomposition and show that band-

limitedness in the Fourier-Laguerre basis is a sufficient condition to compute the Fourier-Bessel

decomposition exactly. We then construct the flaglet transform on the ball through a harmonic

tiling, which is exact thanks to the exactness of the Fourier-Laguerre transform (from which the

name flaglets is coined). The corresponding wavelet kernels are well localised in real and Fourier-

Laguerre spaces and their angular aperture is invariant under radial translation. We introduce a

multiresolution algorithm to perform the flaglet transform rapidly, while capturing all information

at each wavelet scale in the minimal number of samples on the ball. Our implementation of these

new tools achieves floating-point precision and is made publicly available. We perform numerical

experiments demonstrating the speed and accuracy of these libraries and illustrate their capabilities

on a simple denoising example.
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6.2. Introduction

A common problem in data analysis is the extraction of non-trivial patterns and structures of

interest from signals. This problem can be addressed by projecting the data onto an appropriate

basis. Whereas Fourier analysis focuses on oscillatory features, wavelets extract the contributions

of scale-dependent features in both real and frequency space simultaneously. Initially defined in

Euclidean space, wavelets have been extended to various manifolds and are now widely used in

numerous disciplines. In particular, spherical wavelets (Antoine and Vandergheynst, 1998, 1999;

Baldi et al., 2009; Marinucci et al., 2008; McEwen et al., 2006; Starck et al., 2006a; Wiaux et al.,

2005, 2006, 2008; Yeo et al., 2008) have been extremely successful at analysing data on the sphere

and have now become a standard tool in geophysics (e.g., Audet 2011; Audet and Johnson 2011;

Charléty et al. 2012; Loris et al. 2010; Simons et al. 2011; Simons et al. 2011) and astrophysics

(e.g., Barreiro et al. 2000; Basak and Delabrouille 2012; Cayón et al. 2001; Deriaz et al. 2012;

Faÿ et al. 2008; Labatie et al. 2012; Lan and Marinucci 2008; McEwen et al. 2006, 2007a,b, 2008;

Pietrobon et al. 2008; Schmitt et al. 2010; Starck et al. 2006b; Vielva et al. 2004, 2006a). Naturally,

data may also be defined on the three-dimensional ball when radial information (such as depth,

redshift or distance, for example) is associated with each spherical map.

First approaches to perform wavelet-type transforms on the ball were developed by Fengler

et al. (2006); Michel (2005) in the continuous setting only, which thus cannot be used for exact

reconstruction in practice. The spherical Haar transform (Lessig, 2007; Lessig and Fiume, 2008)

was extended to the ball by Chow (2010) to support exact analysis and synthesis. However, this

framework is very restrictive and may not necessarily lead to a stable continuous basis Schröder

and Sweldens (1995); Sweldens (1996, 1997). The first wavelet transform on the ball to tackle

both the continuous and discrete settings was developed in the influential work of Lanusse et al.

(2012). This wavelet transform is based on an isotropic undecimated wavelet construction, built on

the Fourier-Bessel transform. Since these wavelets are isotropic, their angular aperture depends

on the distance to the origin. Although the wavelet transform on the ball is exact in Fourier-Bessel

space, wavelet coefficients must be recovered on the ball from their Fourier-Bessel coefficients (in

order to extract spatially localised information). However, there exists no exact quadrature formula

for the spherical Bessel transform (the radial part of the Fourier-Bessel transform) (Lemoine, 1994),

and thus no way to perform the Fourier-Bessel transform exactly. Consequently, the undecimated

wavelet transform on the ball is not theoretically exact when wavelet coefficients are recovered on
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the ball. Nevertheless, the isotropic undecimated wavelet transform does achieve good numerical

accuracy, which may be sufficient for many applications.1 Wavelets on the ball have also been

discussed in geophysics by Simons et al. (2011); Simons et al. (2011), who espoused a philosophy

of separability in the three Cartesian coordinates of a ball-to-“cubed-sphere-ball” mapping, although

in Simons et al. (2011) examples are shown where wavelet transforms have been performed on

each spherical shell only but not in the radial direction. In ongoing work, these same authors

have extended their approach to the ball, where the wavelet transform in the radial direction is

tailored to seismological applications by honouring certain major discontinuities in the seismic

wavespeed profile of the Earth (Charléty et al., 2012; Loris et al., 2010). At present, to the best of

our knowledge, there does not exist an exact wavelet transform of a band-limited signal defined on

the ball.

One reason there is no exact wavelet transform on the ball is due to the absence of an exact

harmonic transform. We resolve this issue by deriving an exact spherical Laguerre transform on

the radial half-line, leading to a new Fourier-Laguerre transform on the ball which is theoretically

exact. Furthermore, this gives rise to a sampling theorem on the ball, where all information of a

band-limited function is captured in a finite number of samples. With an exact harmonic transform

on the ball in hand, we construct exact wavelets through a harmonic tiling, which we call flaglets

(since they are built on the Fourier-LAGuerre transform). Each wavelet kernel is localised in real

and Fourier-Laguerre spaces, and probes a characteristic angular scale which is invariant under

radial translation. Flaglets allow one to probe three-dimensional spherical data in position and scale

simultaneously. Moreover, their exactness properties guarantee that the flaglet transform captures

and preserves all the information contained in a band-limited signal.

The remainder of this article is organised as follows. In Section 6.3 we define the spherical

Laguerre transform on the radial half-line and the Fourier-Laguerre transform on the ball. In Section

6.4 we construct the exact flaglet transform on the ball. In Section 6.5 we present a multiresolution

algorithm to compute the flaglet transform and evaluate our algorithms numerically. A simple

denoising example is presented in Section 6.6. Concluding remarks are made in Section 6.7.

6.3. Harmonic Analysis on the Ball

1The accuracy of the Fourier-Bessel transform, and thus the isotropic undecimated wavelet transform on the ball, may be
improved by numerical iteration, although this can prove problematic for certain applications.
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The aim of this section is to construct a novel three-dimensional transform which is appropriate

for spherical coordinates and admits an exact quadrature formula. For this purpose, we first set out

a radial one-dimensional transform inspired by the Laguerre polynomials and we derive a natural

sampling scheme and quadrature rule on the radial half-line. We relate this novel spherical Laguerre

transform to the spherical Bessel transform and show that the latter can be evaluated exactly if the

signal is band-limited in the spherical Laguerre basis. We combine the spherical Laguerre transform

with the spherical harmonics to form the Fourier-Laguerre transform on the ball, yielding a novel

sampling theorem and an exact harmonic transform.2

6.3.1. The spherical Laguerre transform

The Laguerre polynomials, solutions to the Laguerre differential equation Pollard (1947);

Weniger (2008), are well known for their various applications in engineering and physics, notably in

the quantum-mechanical treatment of the hydrogen atom Dunkl (2003), as well as in modern optics

Bond et al. (2011); Siegman (1973). They form a natural orthogonal basis on the interval [0,∞)

(i.e. non-negative reals R+) with respect to an exponential weight function. In this work, since we

use this expansion along the radial half-line, we define the spherical Laguerre basis function Kp(r)

with r ∈ R+ as

Kp(r) ≡
√

p!

(p+ 2)!

e−r/2τ√
τ3

L(2)
p

( r
τ

)
, (6.1)

where L(2)
p is the p-th generalised Laguerre polynomial of order two, defined as

L(2)
p (r) ≡

p∑
j=0

(
p+ 2

p− j

)
(−r)j
j!

, (6.2)

and τ ∈ R+ is a scale factor that adds a scaling flexibility and shall be defined at the end of this

section. The basis functions Kp are orthonormal on R+ with respect to a radial inner product:

〈Kp|Kq〉 =

∫
R+

drr2Kp(r)K
∗
q (r) = δpq. (6.3)

Note that the complex conjugate ∗ is facultative since we use real basis functions. Any square-

2A harmonic transform is typically associated with basis functions which are eigenvalues of the Laplacian operator (e.g.
the Fourier transform). In this paper our basis functions on the radial half-line (and thus on the ball) are not solutions of
the Laplacian, hence harmonic analysis on the ball is interpreted in a broader sense. Nonetheless, these basis functions
form orthonormal transforms and define valid dual spaces. We define band-limited signals to have bounded support in the
transform space of these orthogonal basis functions.
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integrable real signal f ∈ L2(R+) may be expanded as

f(r) =

∞∑
p=0

fpKp(r), (6.4)

for natural p ∈ N, where fp is the projection of f onto the p-th basis function:

fp = 〈f |Kp〉 =

∫
R+

drr2f(r)K∗p (r). (6.5)

The decomposition follows by the orthogonality and completeness of the spherical Laguerre basis

functions: orthonormality is given by Eqn. (6.3), while the completeness relation is obtained by

applying the Gram-Schmidt orthogonalisation process to the basis functions and exploiting the

completeness of polynomials on L2(R+, r2e−rdr).

When it comes to calculating the transform, one must evaluate the integral of Eqn. (6.5)

numerically. We consider functions f band-limited at P in the spherical Laguerre basis, such that

fp = 0, ∀p ≥ P . It is straightforward to show that if f is band-limited, then both er/2τKp(r) and

er/2τf(r) are polynomials of maximum degree P − 1. In this case, Eqn. (6.5) is the integral of a

polynomial of order 2P − 2 on R+ with weight function r2e−r. Thus, applying Gaussian quadrature

(e.g., Graça and Esmeralda Sousa-Dias 2012; Watson 2007) with P sampling nodes is sufficient to

evaluate this integral exactly. The resulting quadrature formula is known as the Gauss-Laguerre

quadrature and is commonly used to evaluate numerical integrals on R+. Hence, Eqn. (6.5) reduces

to a weighted sum:

fp =

P−1∑
i=0

wif(ri)K
∗
p (ri), (6.6)

where ri ∈ R+ is the i-th root of the P -th generalised Laguerre polynomial of order two, and

wi =
(P + 2)rie

ri

(P + 1)[L
(2)
P+1(ri)]2

∈ R+ (6.7)

is the corresponding weight. Any P -band-limited function f can be decomposed and reconstructed

exactly using the spherical Laguerre transform. All information content of the function is captured in

P samples located in the interval [0, rP−1] where rP−1 is the largest root of the sampling. Since rP−1

increases with P , one may wish to rescale the sampling so that the spherical Laguerre transform

contains samples in any interval of interest [0, R], with R ∈ R+, while the underlying continuous

function is nevertheless defined on R+. The scale factor τ is then chosen such that τ = R/rP−1.

Figure 6.1 shows the resulting spherical Laguerre sampling constructed on r ∈ [0, 1] (i.e. rescaled

143



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

6

8

10

12

14

16

r

B
an
d
-l
im

it
P

Figure 6.1: Spherical Laguerre sampling scheme on r ∈ [0, 1] for increasing band-limit P . If a

function f is P -band-limited then f and the basis functions need only be evaluated on P points for

the spherical Laguerre transform to be exact. For a particular P , the associated sampling is denser

near the origin since the quadrature is constructed on R+ with measure e−rdr.

with τ) for increasing band-limit P . Figure 6.2 shows the first six basis functions constructed on

r ∈ [0, 1] and the sampling nodes used to obtain an exact transform.3 Note that the spherical

Laguerre transform is a real transform that can be extended to complex signals by considering the

real and imaginary parts separately.

6.3.2. Relation to the spherical Bessel transform

The spherical Bessel transform is a fundamental radial transform arising from the resolution

of the Laplacian operator in spherical coordinates. It is central to the Fourier-Bessel transform,

commonly used in cosmology (Abramo et al., 2010; Leistedt et al., 2012; Rassat and Refregier,

2012) to analyse the spectral properties of galaxy surveys in three dimensions. In this section we

derive an analytical formula to exactly compute the spherical Bessel transform of a function whose

3If one preferred to consider the measure dr rather than the spherical measure r2dr, then the basis functions rKp(r)
shown in Figure 6.2 (c) could be used in place of the spherical Laguerre basis functions defined here.
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Figure 6.2: First six spherical Laguerre basis functions Kp(r) constructed on r ∈ [0, 1] and the

associated sample positions (circles). A function f with band-limit P = 6 can be decomposed and

reconstructed exactly using these six basis functions only. In that case, f and the basis functions

are solely evaluated at the sampling points. Functions rKp(r) can be viewed as basis functions in

cartesian coordinates satisfying the usual orthogonality relation
∫
R+ dr(rKp(r))(rKq(r)) = δpq.
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spherical Laguerre transform is band-limited. This section is optional to the reader interested in

wavelets only.

The spherical Bessel transform of f ∈ L2(R+) reads

f̃`(k) = 〈f |j`〉 =

√
2

π

∫
R+

drr2f(r)j∗` (kr), (6.8)

for k ∈ R+, ` ∈ N, and where j`(kr) is the `-th order spherical Bessel function. Note again that the

complex conjugate is facultative since the spherical Bessel functions are real. The reconstruction

formula is given by

f(r) =

√
2

π

∫
R+

dkk2f̃`(k)j`(kr). (6.9)

The spherical Bessel transform is thus symmetric and the problem is reduced to the calculation of a

similar inner product for the decomposition and the reconstruction. However, to our knowledge,

there exists no method to compute such an integral exactly for a useful class of functions, and finding

a quadrature formula for the spherical Bessel functions on R+ is a non-trivial issue. Moreover, the

use of numerical integration methods does not always guarantee good accuracy because of the

oscillatory nature of the spherical Bessel functions.

To find a tractable expression to compute Eqn. (6.8), we first express f by its spherical Laguerre

expansion, giving

f̃`(k) =

√
2

π

∑
p

fpj`p(k), (6.10)

which is a finite sum if f is band-limited in spherical Laguerre space. In this expression j`p(k) is the

projection of Kp onto j`(kr), i.e.

j`p(k) ≡ 〈Kp|j`〉 =

∫
R+

drr2Kp(r)j
∗
` (kr). (6.11)

Consequently, the problem of computing the spherical Bessel decomposition of f is recast as

evaluating Eqn. (6.10), through the computation of the inner product of Eqn. (6.11). But unlike

the initial problem of Eqn. (6.8), j`p(k) admits an analytic formula. Starting from the definition of

Laguerre polynomials in Eqn. (6.2), one can show that

j`p(k) =

√
p!

(p+ 2)!

p∑
j=0

cpjµ
`
j+2(k), (6.12)
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where the cpj satisfy the following recurrence:

cpj ≡
(−1)j

j!

(
p+ 2

p− j

)
= −p− j + 1

j(j + 2)
cpj−1. (6.13)

The functions µ`j(k) are the moments of j`(kr)e−
r
2τ , i.e.

µ`j(k) ≡ 1

τ j−
1
2

∫
R+

drrjj`(kr)e
− r

2τ . (6.14)

From Watson (1995) we find an analytical solution for the latter integral:

µ`j(k) =
√
π 2j k̃` τ

3
2

Γ(j + `+ 1)

Γ(`+ 3
2 )

(6.15)

× 2F1

(
j + `+ 1

2
;
j + `

2
+ 1; `+

3

2
;−4k̃2

)

where k̃ = τk is the rescaled k scale and 2F1 is the Gaussian hypergeometric function. Since either

(j + ` + 1)/2 or (j + `)/2 is a positive integer, the latter reduces to a polynomial of k̃2 and it is

possible to compute the quantity j`p(k) exactly using Eqn. (6.12) to (6.15). Consequently, the

inverse spherical Bessel transform f̃`(k) may then be calculated analytically through Eqn. (6.10),

which is computed exactly if f is band-limited in the spherical Laguerre basis.

6.3.3. The spherical harmonic transform

Whereas the spherical Laguerre transform is specifically designed for analysing functions on

the radial half-line, the spherical harmonic transform is a natural choice for the angular part of a

consistent three-dimensional analysis. For a function f ∈ L2(S2) on the two-dimensional sphere,

the transform reads

f(ω) =

∞∑
`=0

∑̀
m=−`

f`mY`m(ω), (6.16)

where ω = (θ, φ) ∈ S2 are spherical coordinates of the unit sphere S2, with colatitude θ ∈ [0, π] and

longitude φ ∈ [0, 2π). Thanks to the orthogonality and completeness of the spherical harmonics

Y`m(ω), the inverse transform is given by the following inner product on the sphere:

f`m = 〈f |Y`m〉 =

∫
S2

dωf(ω)Y ∗`m(ω), (6.17)
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with surface element dω = sin θdθdφ. For a function which is band-limited in this basis at L,

i.e. f`m = 0, ∀` ≥ L, the decomposition and reconstruction operations can be performed with a

finite summation over the harmonics. This is usually resolved by defining an appropriate sampling

theorem on the sphere with nodes ωj = (θj , φj), associated with a quadrature formula. Various

sampling theorems exist in the literature (Driscoll and Healy, 1994; Healy et al., 1996; McEwen

and Wiaux, 2011); the main features of all sampling theorems are (i) the number of nodes required

to capture all information in a band-limited signal and (ii) the complexity of the related algorithms

to compute forward and inverse spherical harmonic transforms. Although this work is independent

from this choice (provided that it leads to an exact transform), we adopt the McEwen & Wiaux

(hereafter MW) sampling theorem (McEwen and Wiaux, 2011) which is equiangular and has the

lowest number of samples for a given band-limit L, namely (L − 1)(2L − 1) + 1 ∼ 2L2. The

corresponding algorithms to compute the spherical harmonic transforms scale as O(L3) and are

numerically stable to band-limits of at least L = 4096 (McEwen and Wiaux, 2011). Further technical

details are provided in Section 6.5.2.

6.3.4. The Fourier-Laguerre transform

We define the Fourier-Laguerre basis functions on B3 = R+ × S2 as the product of the spherical

Laguerre basis functions and the spherical harmonics: Z`mp(r) = Kp(r)Y`m(ω) with the 3D spherical

coordinates r = (r, ω) ∈ B3. The orthogonality and completeness of the Fourier-Laguerre basis

functions follow from the corresponding properties of the individual basis functions, where the

orthogonality relation is given explicitly by the following inner product on B3:

〈Z`mp|Z`′m′p′〉 =

∫
B3

d3rZ`mpZ
∗
`′m′p′(r) (6.18)

= δ``′δmm′δpp′ ,

where d3r = r2 sin θdrdθdφ is the volume element in spherical coordinates. Any three-dimensional

signal f ∈ L2(B3) can be decomposed as

f(r) =

P−1∑
p=0

L−1∑
`=0

∑̀
m=−`

f`mpZ`mp(r), (6.19)

with L and P the angular and radial band-limits, respectively, i.e. f is such that f`mp = 0, ∀` ≥ L,
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∀p ≥ P . The inverse relation is given by the projection of f onto the basis functions:

f`mp = 〈f |Z`mp〉 =

∫
B3

d3rf(r)Z∗`mp(r). (6.20)

The Fourier-Laguerre transform may also be related to the Fourier-Bessel transform using the results

of Section 6.3.2.4

In practice, calculating the Fourier-Laguerre transform requires the evaluation of the integral of

Eqn. (6.20). For this purpose, combining the quadrature rules on the sphere and on the radial half-

line leads to a sampling theorem on B3. For a signal with angular and radial band-limits L and P ,

respectively, all of the information content of the signal is captured in N = P [(2L− 1)(L− 1) + 1] ∼

2PL2 samples, yielding an exact Fourier-Laguerre transform on B3. The three-dimensional sampling

consists of spherical shells, discretised according to a sampling theorem (where here we adopt the

MW sampling theorem), located at the nodes of the radial sampling. The radial sampling may

furthermore be rescaled to any spherical region of interest [0, R] × S2 using the parameter τ to

dilate or contract the radial quadrature rule.

6.4. Wavelets on the Ball

The exactness of the Fourier-Laguerre transform supports the design of an exact wavelet trans-

form on the ball. In this section we first define a three-dimensional convolution operator on the ball,

derived from the convolutions defined on the sphere and on the radial half-line. We then construct

flaglets through an exact tiling of Fourier-Laguerre space, leading to wavelet kernels which are

spatially localised and form a tight frame. Furthermore, each kernel projects onto an angular scale

which is invariant under radial translation. We finally introduce a multiresolution algorithm to

compute the flaglet transform and capture the information of each wavelet scale in the minimal

number of samples on the ball, while optimising the computational cost of the transform.

4The Fourier-Laguerre and the Fourier-Bessel transforms of f are related through

f̃`m(k) =

√
2

π

∑
p

f`mpj`p(k).

If f is band-limited in terms of its Fourier-Laguerre decomposition, the latter sum is finite and both transforms can be
calculated exactly since j`p(k) admit the exact analytic formula Eqn. (6.12).
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6.4.1. Convolutions

The convolution of two functions f and h in a (Hilbert) space of interest is often defined by the

inner product of f with a transformed version of h. In standard Fourier analysis this transformation

is the natural translation. Likewise, for two signals on the sphere f, h ∈ L2(S2), the convolution is

constructed from the rotation operator Rω:

(f ? h)(ω) ≡ 〈f |Rωh〉 =

∫
S2

dω′f(ω′) (Rωh)
∗

(ω′). (6.21)

where, here and henceforth, we restrict ourselves to axisymmetric kernels h, so that the rotation

is only parameterised by an angle ω = (θ, φ) (Wiaux et al., 2007, 2008). The spherical harmonic

decomposition of f ? h is given by the product of the individual transforms:

(f ? h)`m = 〈f ? h|Y`m〉 =

√
4π

2`+ 1
f`mh

∗
`0, (6.22)

with f`m = 〈f |Y`m〉 and h`0δm0 = 〈h|Y`m〉.

Similarly, we introduce a translation operator Tr to construct the convolution of two functions

on the radial half-line f, h ∈ L2(R+):

(f ? g)(r) ≡ 〈f |Trh〉 =

∫
R+

dr′r′2f(r′) (Trh)
∗

(r′). (6.23)

The convolution in Laguerre space (GÂólich and Markett, 1982; Kanjin, 1986; Markett, 1986) is

defined such that the action Tr on the basis functions is

(TrKp)(r
′) ≡ K∗p (r)Kp(r

′), (6.24)

in which case f ? h simplifies to a product in spherical Laguerre space, yielding

(f ? h)p = 〈f ? h|Kp〉 = fph
∗
p, (6.25)

where fp = 〈f |Kp〉 and hp = 〈h|Kp〉. Consequently any function f which is translated by a

distance r on the radial half-line has each coefficient fp transformed into fpKp(r). This operation

corresponds to a translation with a damping factor, which is illustrated on a wavelet kernel in
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Figure 6.3 (the wavelet kernel itself is defined in Section 6.4.3).5

Finally, we define the convolution of two functions on the ball f, h ∈ L2(B3), where h is again

assumed to be axisymmetric in the angular direction, by combining the convolution operators

defined on the sphere and radial half-line, yielding

(f ? h)(r) ≡ 〈f |TrRωh〉 (6.26)

=

∫
B3

d3r′f(r′) (TrRωh)
∗

(r′). (6.27)

The convolution is given in harmonic space by the product

(f ? h)`mp = 〈f ? h|Z`mp〉 =

√
4π

2`+ 1
f`mph

∗
`0p, (6.28)

with f`mp = 〈f |Z`mp〉 and h`0pδm0 = 〈h|Z`mp〉.

6.4.2. Exact flaglet transform

With an exact harmonic transform and a convolution operator defined on the ball in hand, we

are now in a position to construct the exact flaglet transform on the ball. For a function of interest

f ∈ L2(B3), we define its jj′-th wavelet coefficient WΨjj
′

∈ L2(B3) as the convolution of f with

the flaglet (i.e. wavelet kernel) Ψjj′ ∈ L2(B3):

WΨjj
′

(r) ≡ (f ?Ψjj′)(r) = 〈f |TrRωΨjj′〉. (6.29)

The scales j and j′ respectively relate to angular and radial spaces. Since we restrict ourselves to

axisymmetric kernels, the wavelet coefficients are given in Fourier-Laguerre space by the product

WΨjj
′

`mp =

√
4π

2`+ 1
f`mpΨ

jj′∗
`0p , (6.30)

where WΨjj
′

`mp = 〈WΨjj
′

|Z`mp〉, f`mp = 〈f |Z`mp〉 and Ψjj′

`0pδm0 = 〈Ψjj′ |Z`mp〉. The wavelet coeffi-

cients contain the detail information of the signal only; a scaling function and corresponding scaling

coefficients must be introduced to represent the low-frequency, approximate information of the

signal. The scaling coefficients WΦ ∈ L2(B3) are defined by the convolution of f with the scaling

5Note that this translation operator may also be viewed in real space as a convolution with a delta function, similarly to
the Euclidian convolution.
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(a) Wavelet kernel translated by r = 0.2
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(b) Wavelet kernel translated by r = 0.3
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(c) Wavelet kernel translated by r = 0.4

Figure 6.3: Slices of an axisymmetric flaglet wavelet kernel constructed on the ball of radius R = 1,

translated along the radial half-line. The chosen kernel has j = j′ = 5 and is constructed at

resolution P = L = 64. For clarity we zoomed on the range r ∈ [0, 0.5] (the slice hence relates to

a ball of radius r = 0.5). The three-dimensional wavelet can be visualised by rotating this slice

around the vertical axis passing through the origin. The translation on the radial half-line not only

translates the main feature (the wavelet peak) but also accounts for a damping factor. Flaglets are

well localised in both real and Fourier-Laguerre spaces and their angular aperture is invariant under

radial translation.
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function Φ ∈ L2(B3):

WΦ(r) ≡ (f ? Φ)(r) = 〈f |TrRωΦ〉, (6.31)

or in Fourier-Laguerre space,

WΦ
`mp =

√
4π

2`+ 1
f`mpΦ

∗
`0p, (6.32)

where WΦ
`mp = 〈WΦ|Z`mp〉 and Φ`0pδm0 = 〈Φ|Z`mp〉.

Provided the flaglets and scaling function satisfy an admissibility property, a function f may be

reconstructed exactly from its wavelet and scaling coefficients by

f(r) =

∫
B3

d3r′WΦ(r′)(TrRωΦ)(r′) (6.33)

+

J∑
j=J0

J′∑
j′=J′0

∫
B3

d3r′WΨjj
′

(r′)(TrRωΨjj′)(r′),

or equivalently in harmonic space by

f`mp =

√
4π

2`+ 1
WΦ
`mpΦ`0p (6.34)

+

√
4π

2`+ 1

J∑
j=J0

J′∑
j′=J′0

WΨjj
′

`mp Ψjj′

`0p.

The parameters J0, J ′0, J and J ′ defining the minimum and maximum scales must be defined

consistently to extract and reconstruct all the information contained in f . They depend on the

construction of the flaglets and scaling function and are defined explicitly in the next section.

Finally, the admissibility condition under which a band-limited function f can be decomposed

and reconstructed exactly is given by the following resolution of the identity:

4π

2`+ 1

|Φ`0p|2 +

J∑
j=J0

J′∑
j′=J′0

|Ψjj′

`0p|2
 = 1, ∀`, p. (6.35)

We may now construct flaglets and scaling functions that satisfy this admissibility property and thus

lead to an exact wavelet transform on the ball.

6.4.3. Flaglets and scaling functions

We extend the notion of harmonic tiling (Marinucci et al., 2008; Pietrobon et al., 2010; Wiaux
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et al., 2008) to the Fourier-Laguerre space and construct axisymmetric wavelets (flaglets) well

localised in both real and Fourier-Laguerre spaces. We first define the flaglet and scaling function

generating functions, before defining the flaglets and scaling function themselves.

We start by considering the C∞ Schwartz function with compact support

s(t) ≡

 e
− 1

1−t2 , t ∈ [−1, 1]

0, t /∈ [−1, 1]
, (6.36)

for t ∈ R. We introduce the positive real parameter λ ∈ R+
∗ to map s(t) to

sλ(t) ≡ s
(

2λ

λ− 1
(t− 1/λ)− 1

)
, (6.37)

which has compact support in [ 1
λ , 1]. We then define the smoothly decreasing function kλ by

kλ(t) ≡
∫ 1

t
dt′

t′ s
2
λ(t′)∫ 1

1/λ
dt′

t′ s
2
λ(t′)

, (6.38)

which is unity for t < 1/λ, zero for t > 1, and is smoothly decreasing from unity to zero for

t ∈ [1/λ, 1]. Axisymmetric flaglets are constructed in a two-dimensional space corresponding to

the harmonic indices ` and p. We associate λ with `-space and we introduce a second parameter

ν associated with p-space, with the corresponding functions sν and kν . We define the flaglet

generating function by

κλ(t) ≡
√
kλ(t/λ)− kλ(t) (6.39)

and the scaling function generating function by

ηλ(t) ≡
√
kλ(t), (6.40)

with similar expressions for κν and ην , complemented with a hybrid scaling function generating

function

ηλν(t, t′) ≡ [ kλ(t/λ)kν(t′)

+ kλ(t)kν(t′/ν) (6.41)

− kλ(t)kν(t′) ]
1/2

.
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The flaglets and scaling function are constructed from their generating functions to satisfy

the admissibility condition given by Eqn. (6.35). A natural approach is to define Ψjj′

`mp from the

generating functions κλ and κν to have support on [λj−1, λj+1]× [νj
′−1, νj

′+1], yielding

Ψjj′

`mp ≡
√

2`+ 1

4π
κλ

(
`

λj

)
κν

(
p

νj′

)
δm0. (6.42)

With these kernels, Eqn. (6.35) is satisfied for ` > λJ0 and p > νJ
′
0 , where J0 and J ′0 are the lowest

wavelet scales used in the decomposition. The scaling function Φ is constructed to extract the modes

that cannot be probed by the flaglets:6

Φ`mp ≡



√
2`+1
4π ην

(
p

νJ
′
0

)
δm0, if ` > λJ0 , p ≤ νJ′0√

2`+1
4π ηλ

(
`
λJ0

)
δm0, if ` ≤ λJ0 , p > νJ

′
0√

2`+1
4π ηλν

(
`
λJ0

, p

νJ
′
0

)
δm0, if ` < λJ0 , p < νJ

′
0

0, elsewhere.

To satisfy exact reconstruction, J and J ′ are defined from the band-limits by J = dlogλ(L − 1)e

and J ′ = dlogν(P − 1)e. The choice of J0 and J ′0 is arbitrary, provided that 0 ≤ J0 < J and

0 ≤ J ′0 < J ′. This framework generalises the notion of the harmonic tiling used to construct exact

wavelets on the sphere (Marinucci et al., 2008; Wiaux et al., 2008); in fact, the flaglets defined

here reduce in angular part to the wavelets defined in Wiaux et al. (2008) for the axisymmetric

case. The flaglets and scaling function tiling of the Fourier-Laguerre space of the ball is illustrated

in Figure 6.4. Flaglets and the scaling function may be reconstructed in the spatial domain from

their harmonic coefficients. In Figure 6.5 flaglets are plotted in the spatial domain for a range of

different scales; translated flaglets are plotted in Figure 6.3. The flaglets are well localised in both

real and Fourier-Laguerre spaces and their angular aperture is invariant under radial translation.

6.5. Multiresolution Algorithm

In this section we discuss our implementation of the Fourier-Laguerre and flaglet transforms.

We notably introduce a multiresolution algorithm for the flaglet transform to capture each wavelet

scale in the minimal number of samples on the ball, thereby reducing the computational cost of

6Note that despite its piecewise definition Φ`mp is continuous along and across the boundaries p = νJ
′
0 and ` = λJ0 .
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` p
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p
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Figure 6.4: Tiling of Fourier-Laguerre space at resolution L = N = 64 for flaglet parameters

λ = ν = 2, giving J = J ′ = 7. Flaglets divide Fourier-Laguerre space into regions corresponding

to specific scales in angular and radial space. The scaling part, here chosen as J0 = J ′0 = 4, is

introduced to cover the low frequency region and insures that large scales are also represented by

the transform.
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(a) (j, j′) = (4, 5) (b) (j, j′) = (4, 6)

(c) (j, j′) = (5, 5) (d) (j, j′) = (5, 6)

Figure 6.5: Slices of four successive axisymmetric flaglet wavelet kernels, probing different scales in

angular and radial space. The flaglet parameters are λ = ν = 2 and the kernels are constructed

at resolution L = N = 92 on a ball of radius R = 1. For visualisation purposes we show the

flaglets corresponding to j ∈ {4, 5} and j′ ∈ {5, 6}, translated to r = 0.3 and zoomed on the range

r ∈ [0, 0.4]. Kernels of angular order j = 4 (first row) probe large angular scales compared to those

of order j = 5 (second row). Similarly, kernels of radial order j′ = 5 (first column) probe large

radial scales compared to those of order j′ = 5 (second column).
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the transform. We finally provide accuracy and complexity tests for our implementation of both

transforms, which we make publicly available.

6.5.1. Algorithm

In our framework, each flaglet Ψjj′ has compact support in Fourier-Laguerre space on `× p ∈

[λj−1, λj+1] × [νj
′−1, νj

′+1], as shown in Figure 6.4. Thus, Ψjj′ has band-limits in ` and p of

λj+1 and νj
′+1 respectively. For a band-limited function f ∈ L2(B3), recall that the jj′-th wavelet

contribution is given by the simple product of Eqn. (6.30) in harmonic space. Consequently, the

band-limits of WΨjj
′

are given by the minimum of the band-limits of f and Ψjj′ . Thus, for j < J or

j′ < J ′ the wavelet scale WΨjj
′

can be represented in fewer samples than f , without any loss of

information. We exploit this property by designing a multiresolution approach where each wavelet

scale is represented in real space with the smallest number of samples necessary. Note that the

scaling function must be used at full resolution since its angular and radial band-limits are L and

P respectively. To summarise the multiresolution algorithm, although f is decomposed at full

resolution, the wavelets coefficients are reconstructed in real space with the minimum number of

samples supporting their band-limits. This leads to a significant reduction in computation time,

which is then dominated by the small number of full resolution Fourier-Laguerre transforms.

6.5.2. Fast implementation

Our implementation of the algorithms of this article is made available in the following three

packages, which are written in C and include MATLAB interfaces for most high-level features, and

are described in turn:

• FLAG: spherical Laguerre transform and Fourier-Laguerre transforms on the ball (exact spher-

ical Bessel and Fourier-Bessel decompositions are optional features that additionally require

the GNU Math Library7).

• S2LET: axisymmetric wavelet transform on the sphere through harmonic tiling.

• FLAGLET: axisymmetric flaglet transform on the ball, combining FLAG and S2LET to construct

flaglets in Fourier-Laguerre space through harmonic tiling.
7http://www.gnu.org/software/gsl/
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We make these three packages publicly available.8 All packages require SSHT9, which implements

fast and exact algorithms to perform the forward and inverse spherical harmonic transforms

corresponding to the MW sampling theorem (McEwen and Wiaux, 2011). SSHT requires the FFTW10

package.

Since the naive spherical harmonic transform scales as O(L4) and the spherical Laguerre

transform scales as O(P 2), the naive complexity of the Fourier-Laguerre transform is O(P 2L4).

However, rather than computing triple integrals/sums over the ball directly, it is straightforward

to show that the Fourier-Laguerre transform can be performed separately on the sphere and on

the radial half-line, like the Fourier-Bessel transform (Leistedt et al., 2012). Since the angular and

radial samplings are separable, the related transforms can be computed independently through a

separation of variables, so that the complexity reduces to O(Q5) for Q ∼ P ∼ L. The separation of

variables also means we are able to exploit high-performance recurrences and algorithms that exist

for both the spherical Laguerre and spherical harmonic transforms. In particular, the radial basis

functions Kp(r) are calculated using a normalised recurrence formula derived from the recurrence

on the Laguerre polynomials. Moreover, a critical point for the accuracy of the Fourier-Laguerre

transform is the computation of the Gauss-Laguerre quadrature, for which we use the previous

normalised recurrence complemented with an appropriate root-finder algorithm. The fast spherical

harmonic transforms implemented in the SSHT package use the Trapani & Navaza method (Trapani

and Navaza, 2006) to efficiently compute Wigner functions (which are closely related to the

spherical harmonics) through recursion.11 These fast spherical harmonic transform algorithms

(McEwen and Wiaux, 2011) scale as O(L3). The final complexity achieved by the Fourier-Laguerre

transform is thus O(Q4).

The flaglet transform (forward and inverse) is calculated in a straightforward manner in Fourier-

Laguerre space, thus its computation is dominated by the Fourier-Laguerre transform of the signal,

approximation coefficients, and wavelets coefficients at all scales, requiring [(J + 1− J0)(J ′ + 1− J ′0) + 2]

Fourier-Laguerre transforms. If all wavelet contributions are reconstructed at full resolution in real

space, the overall wavelet transform scales as O([(J + 1− J0)(J ′ + 1− J ′0)+2]Q4). Note that J and

J ′ depend on the band-limits L and P and the parameters λ and ν, respectively. However, in the

previous section we established a multiresolution algorithm that takes advantage of the band-limits

of the individual flaglets. With this algorithm, only the scaling function and the finest wavelet

8http://www.flaglets.org/
9http://www.jasonmcewen.org/

10http://www.fftw.org/
11Alternatively, Risbo’s method could also be used to compute Wigner functions (Risbo, 1996).
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scales (i.e. j ∈ {J − 1, J} and j′ ∈ {J ′ − 1, J ′}) are computed at maximal resolution corresponding

to band-limits L and P . The complexity of the overall multiresolution flaglet transform is then

dominated by these operations and scales as O(Q4).

6.5.3. Numerical validation

In this section we evaluate FLAG and FLAGLET in terms of accuracy and complexity. We show that

they achieve floating-point precision and scale as detailed in the previous section. In both cases we

consider band-limits L = P = 2i with i ∈ {2, . . . , 9} and generate sets of harmonic coefficients f`mp

following independent Gaussian distributions N (0, 1). We then perform either the Fourier-Laguerre

or the flaglet decomposition, before reconstructing the harmonic coefficients, therefore denoted

by f rec
`mp. We evaluate the accuracy of the transforms using the error metric ε = max |f`mp − f rec

`mp|,

which is theoretically zero for both transforms since all signals are band-limited by construction.

The complexity is quantified by observing how the computation time tc = [tsynthesis + tanalysis]/2

scales with the band-limits, where the synthesis and analysis computation times, tsynthesis and

tanalysis respectively, are defined explicitly for the two transforms in the paragraphs that follow.

The stability of both ε and tc is checked by averaging over hundreds of realisations of f`mp in

the cases i ∈ {2, . . . , 7} and a small number of realisations for i ∈ {8, 9}. Recall that for given

band-limits L and P the number of samples on the ball required by the exact quadrature is

N = P [(2L− 1)(L− 1) + 1]. All tests were run on a 2.5GHz Core i5 processor with 8GB of RAM.

The results of these tests for the Fourier-Laguerre transform are presented on Figure 6.6. The

indicators ε and tc are plotted against the number of samples N . Each test starts from coefficients

f`mp randomly generated. The synthesis refers to constructing the band-limited signal f from

the decomposition f`mp. The analysis then corresponds to decomposing f into Fourier-Laguerre

coefficients f rec
`mp. As shown in Figure 6.6, FLAG achieves very good numerical accuracy, with

numerical errors comparable to floating-point precision, and computation time scales as O(Q4), in

agreement with theory.

The results of similar tests for the flaglet transform (entirely performed in real space) are

presented on Figure 6.7. As previously, the indicators ε and tc are plotted against the number of

samples N . Since we evaluate the flaglet transform in real space, a preliminary step is required

to construct a band-limited signal f from the randomly generated f`mp. This step is not included

in the computation time since its only purpose is to generate a valid band-limited test signal in
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real space. The analysis then denotes the decomposition of f into wavelet coefficients WΨjj
′

and

scaling coefficients WΦ on the ball. The synthesis refers to recovering the signal f rec from these

coefficients. The final step, which is not included in the computation time, is to decompose f rec

into Fourier-Laguerre coefficients f rec
`mp in order to compare them with f`mp. As shown in Figure 6.7,

FLAGLET achieves very good numerical accuracy, with numerical errors comparable to floating-point

precision. Moreover, the full resolution and multiresolution algorithms are indistinguishable in

terms of accuracy. However, the latter is ten times faster than the former since only the scaling

function and a small number of wavelet coefficients are computed at full resolution. As shown in

Figure 6.7, computation time scales as O(Q4) for both algorithms, in agreement with theory.

6.6. Denoising Illustration

In this section we illustrate the use of the flaglet transform in the context of a simple denoising

problem. We consider two datasets naturally defined on the ball and contaminate them with band-

limited noise. We compute the flaglet transform of the noisy signal and perform simple denoising

by hard-threshold the wavelet coefficients. We reconstruct the signal from the thresholded wavelet

coefficients and examine the improvement in signal fidelity.

6.6.1. Wavelet denoising

Consider the noisy signal y = s + n ∈ L2(B3), where the signal of interest s ∈ L2(B3) is

contaminated with noise n ∈ L2(B3). A simple way to evaluate the fidelity of the observed signal y

is to examine the signal-to-noise ratio, which we define on the ball by

SNR(y) ≡ 10 log10

‖s‖22
‖y − s‖22

. (6.43)

The signal energy is given by

‖y‖22 ≡ 〈y|y〉 =

∫
B3

d3r|y(r)|2 =
∑
`mp

|y`mp|2, (6.44)

where the final equality follows from a Parseval relation on the ball (which follows directly from
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(a) Numerical accuracy of the Fourier-Laguerre transform
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(b) Computation time of the Fourier-Laguerre transform

Figure 6.6: Numerical accuracy and computation time of the Fourier-Laguerre transform computed

with FLAG, where N corresponds to the number of samples on the ball required to capture all the

information contained in the band-limited test signal. We consider L = P = 2i with i ∈ {2, . . . , 9}.
These results are averaged over many realisations of random band-limited signals and were found

to be very stable. Very good numerical accuracy is achieved, with numerical errors comparable to

floating-point precision, found empirically to scale as O(Q2) as shown by the red line in panel (a),

where Q ∼ P ∼ L. Computation time scales as O(Q4) as shown by the red line in panel (b), in

agreement with theory.
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(a) Numerical accuracy of the flaglet transform
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(b) Computation time of the flaglet transform

Figure 6.7: Numerical accuracy and computation time of the flaglet transform computed with

FLAGLET, where N corresponds to the number of samples on the ball required to capture all the

information contained in the band-limited test signal. We consider L = P = 2i with i ∈ {2, . . . , 9},
with parameters λ = ν = 2, J0 = J ′0 = 0. These results are averaged over many realisations of

random band-limited signals and were found to be very stable. The flaglet transform is either

performed at full-resolution (dashed lines) or with the multiresolution algorithm (solid lines). Very

good numerical accuracy is achieved by both the full resolution and multiresoltion algorithms (which

achieve indistinguishable accuracy), with numerical errors comparable to floating-point precision,

found empirically to scale as O(PL) as shown by the red line in panel (a). The multiresolution

algorithm is ten times faster than the full-resolution approach. Computation time scales as O(PL3)

for both algorithms as shown by the red line in panel (b), in agreement with theory.
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the orthogonality of the Fourier-Laguerre basis functions). In practice, we compute signal energies

through the final Fourier-Laguerre space expression to avoid the necessity of an explicit quadrature

rule.

We seek a denoised version of y, denoted by d ∈ L2(B3), such that SNR(d) is as large as possible

in order to extract the informative signal s. We take the flaglet transform of the noisy signal since

we intend to denoise the signal in wavelet space, where we expect the energy of the informative

signal to be concentrated in a small number of wavelet coefficients while the noise energy will be

spread over many wavelet coefficients. Since the flaglet transform is linear, the wavelet coefficients

of the jj′-th scale of the noisy signal is simply the sum of the individual contributions:

Y jj
′
(r) = Sjj

′
(r) +N jj′(r), (6.45)

where capital letters denote the wavelet coefficients, i.e. Y jj
′ ≡ y ?Ψjj′ , Sjj

′ ≡ s ? Ψjj′ and

N jj′ ≡ n ?Ψjj′ .

In the illustrations performed here, we assume the noise model

E
(
|n`mp|2

)
= σ2

( p
P

)2

δ``′δmm′δpp′ , (6.46)

which corresponds to a white noise for the angular space with a dependence on the radial mode

p, where E(·) denotes ensemble averages. We do not opt for a white noise in radial space (i.e.

E
(
|n`mp|2

)
= σ2δ``′δmm′δpp′) because the latter has its energy concentrated in the centre of the

ball due to the shape of the spherical Laguerre basis functions. The p-dependence gives a greater

weight to small-scale radial features and hence yields a more homogeneous noise on the ball, which

is more useful for visualisation purposes. For this noise model one can show that the expected

covariance of the wavelet coefficients of the jj′-th scale reads

E
(
|N jj′(r, ω)|2

)
= σ2

∑
`p

( p
P

)2

|Ψjj′

`0p|2|Kp(r)|2 (6.47)

≡
(
σjj
′
(r)
)2

.

Denoising is performed by hard-thresholding the wavelet coefficients Y jj
′
, where the threshold

is taken as T (r) = 3σjj
′
(r). The wavelet coefficients of the denoised signal Djj′ ≡ d ?Ψjj′ are thus
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given by

Djj′(r) =

 0, if Y jj
′
(r) < T (r)

Y jj
′
(r), otherwise.

(6.48)

The denoised signal d is then reconstructed from its wavelet coefficients and scaling coefficients

(the latter are not thresholded and thus not altered). To assess the effectiveness of this simple flaglet

denoising strategy when the informative signal s is known, we compute the SNR of the denoised

signal and compare it to the SNR of the original noisy signal. In what follows we apply this simple

denoising technique to two datasets naturally defined on the ball.

6.6.2. Examples

The first dataset we consider is the full-sky Horizon simulation (Teyssier et al., 2009): an N-body

simulation covering a 1Gpc periodic box of 70 billion dark matter particles generated from the

concordance model cosmology derived from 3-year Wilkinson Microwave Anisotropy Probe (WMAP)

observations (Spergel et al., 2007). The purpose of such a simulation is to reproduce the action

of gravity (and to a minor extent galaxy formation) on a large system of particles, with the initial

conditions drawn from a cosmological model of interest. The outcome is commonly used to confront

astrophysical models with observations. For simplicity we only consider a ball of 1MPc radius

centered at the origin so that the structures are of reasonable size. Figure 6.8 shows the initial

data, band-limited at L = P = 128, as well as their wavelet coefficients with λ = ν = 2, J = J ′ = 7

and scaling coefficients for J0 = J ′0 = 6 since the lower scale indices do not contain a great deal

of information. We see that the filamentary distribution of matter is naturally suited to a flaglet

analysis on the ball since the informative signal is likely to be contained in a reduced number

of wavelet coefficients. The original data are corrupted by the addition of random noise defined

by Eqn. (6.46) for an SNR of 5dB. The wavelet denoising procedure described previously is then

applied. The denoised signal is recovered with an SNR of 11dB, highlighting the effectiveness of

this very simple flaglet denoising strategy on the ball. The results of this denoising illustration are

presented in Figure 6.9.

The second dataset we consider is Ritsema’s seismological Earth model of shear wavespeed

perturbations in the mantle, known as S40RTS (Ritsema et al., 2011; Simons et al., 2011; Simons

et al., 2011).12 The model supplies spherical harmonic coefficients in the angular dimension and

12http://www.earth.lsa.umich.edu/~jritsema/
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(a) Band-limited data (b) Scaling coefficients

(c) (j, j′) = (6, 6) (d) (j, j′) = (6, 7)

(e) (j, j′) = (7, 6) (f) (j, j′) = (7, 7)

Figure 6.8: Flaglet decomposition of the N-body simulation dataset considered for the first denoising

example. The initial dataset was pixelised and band-limited at L = P = 128. The flaglet parameters

are λ = ν = 2 (giving J = J ′ = 7) and the scaling coefficients correspond to J0 = J ′0 = 6 since

the lower scale indices do not contain a great deal of information. The four wavelet coefficients

together with the scaling coefficients decompose the initial dataset exactly, i.e. the original signal

can be recovered perfectly from these wavelet and scaling coefficients. All signals were oversampled

on L = P = 256 for visualisation purposes.
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(a) Band-limited data (b) Noise

(c) Noisy signal (d) Denoised signal

Figure 6.9: Denoising of an N-body simulation. The data are contaminated with a band-limited noise

and decomposed into wavelet coefficients. Denoising is performed by a simple hard-thresholding

of the wavelet coefficients, following a noise model. The denoised signal is then reconstructed

from the thresholded wavelet coefficients. In this example, for an initial SNR of 5dB, the flaglet

denoised signal is recovered with SNR of SNR = 11dB (with resolution L = P = 128, oversampled

on L = P = 256 and using flaglet parameters λ = ν = 2, J0 = J ′0 = 0, giving J = J ′ = 7).
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radial spline coefficients in the depth dimension to define a signal on the ball, which we band-limit.

Contrarily to the first example, Ritsema’s model does not contain a lot of structure at the smallest

scales but essentially contains large-scale features. As previously, the original data are corrupted

by the addition of random noise defined by Eqn. (6.46) for an SNR of 5dB. The flaglet denoising

procedure described previously is then applied. The denoised signal is recovered with an SNR of

17dB, again highlighting the effectiveness of this very simple flaglet denoising strategy on the ball.

As expected, the improvement in SNR is better than for the previous dataset since the informative

signal is mainly captured by a few large wavelet scales. The results of this denoising illustration are

presented in Figure 6.10.

6.7. Conclusions

One reason an exact wavelet transform of a band-limited signal on the ball has not yet been

derived is due to the absence of an exact harmonic transform on the ball. We have taken advantage

of the orthogonality of the Laguerre polynomials on R+ to define the spherical Laguerre transform, a

novel radial transform that admits an exact quadrature rule. Combined with the spherical harmonics,

we used this to derive a sampling theorem and an exact harmonic transform on the ball, which

we call the Fourier-Laguerre transform. A function that is band-limited in Fourier-Laguerre space

can be decomposed and reconstructed at floating-point precision, and its Fourier-Bessel transform

can be calculated exactly. For radial and angular band-limits P and L, respectively, the sampling

theorem guarantees that all the information of the band-limited signal is captured in a finite set of

N = P [(2L− 1)(L− 1) + 1] samples on the ball.

We have developed an exact wavelet transform on the ball, the so-called flaglet transform,

through a tiling of the Fourier-Laguerre space. The resulting flaglets form a tight frame and are

well localised in both real and Fourier-Laguerre spaces. Their angular aperture is invariant under

radial translation. We furthermore established a multiresolution algorithm to compute the flaglet

transform, capturing all the information contained in each wavelet scale in the minimal number of

samples on the ball, thereby reducing the computation cost of the flaglet transform considerably.

Flaglets are a promising new tool for analysing signals on the ball, particularly for extracting

spatially localised features at different scales of interest. Exactness of both the Fourier-Laguerre and

the flaglet transforms guarantees that any band-limited signal can be analysed and decomposed

168



(a) Band-limited data (b) Noise

(c) Noisy signal (d) Denoised signal

Figure 6.10: Denoising of a seismological Earth model. The data are contaminated with a band-

limited noise and decomposed into wavelet coefficients. Denoising is performed by a simple

hard-thresholding of the wavelet coefficients, following a noise model. The denoised signal is then

reconstructed from the thresholded wavelet coefficients. In this example, for an initial SNR of 5dB,

the flaglet denoised signal is recovered with SNR of 17dB (with resolution L = P = 128 and using

flaglet parameters λ = ν = 3, J0 = J ′0 = 0, giving J = J ′ = 7).
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into wavelet coefficients and then reconstructed without any loss of information. To illustrate these

capabilities, we considered the denoising of two different datasets which were contaminated with

synthetic noise. A very simple flaglet denoising strategy was performed by hard-thresholding the

wavelet coefficients of the noisy signal, before reconstructing the denoised signal from the threshol-

ded wavelet coefficients. In these illustrations a considerable improvement in SNR was realised by

this simple flaglet denoising strategy, demonstrating the effectiveness of flaglets for the analysis of

data defined on the ball. Our implementation of all of the transforms and examples detailed in this

article is made publicly available. In future work we intend to revoke the axisymmetric constraint

by developing directional flaglets.
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7
No new cosmological concordance with massive sterile

neutrinos

“I have done a terrible thing, I have postulated a particle that cannot be detected”. W. Pauli

7.1. Abstract

It has been claimed recently that massive sterile neutrinos could bring about a new concordance

between observations of the cosmic microwave background (CMB), the large-scale structure (LSS)

of the Universe, and local measurements of the Hubble constant, H0. We demonstrate that this

apparent concordance results from combining datasets which are in significant tension, even within

this extended model, possibly indicating remaining systematic biases in the measurements. We

further show that this tension remains when the cosmological model is further extended to include

significant tensor modes, as suggested by the recent BICEP2 results. Using the Bayesian evidence,

we show that the minimal ΛCDM model is strongly favoured over its neutrino extensions by various

combinations of datasets. Robust data combinations yield stringent limits of
∑
mν . 0.3 eV and

meff
ν,sterile . 0.3 eV at 95% CL for the sum of active and sterile neutrinos, respectively.

7.2. Introduction

The temperature fluctuations of the cosmic microwave background (CMB), as measured by the

Planck satellite (Planck Collaboration, 2013k), have yielded sub-percent level constraints on the
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cosmological parameters of the vanilla ΛCDM model. However, the primary CMB temperature

fluctuations only indirectly probe the growth of cosmic structure, and it is therefore essential to

complement it with observations large-scale structure (LSS) such as galaxy clusters, weak lensing,

and clustering measurements. The first cosmological results from the Planck satellite have revealed

a ∼ 2σ tension between CMB temperature measurements and the Sunyaev-Zel’dovich (SZ) cluster

abundances (Planck Collaboration, 2013j), mainly in terms of σ8, the linear-theory mass dispersion

on a scale of 8h−1 Mpc. A similar tension is observed with the X-ray cluster counts (Vikhlinin et al.,

2009).

Massive neutrinos can potentially alleviate this tension because they suppress power in the

clustering of matter at late times. They are an appealing solution since solar and atmospheric

experiments have already provided evidence for their mass, with room for extra sterile species,

supported by anomalies in short baseline and reactor neutrino experiments (for reviews of particle

physics constraints, see e.g., Abazajian et al. (2012); Beringer et al. (2012); Conrad et al. (2013);

Gonzalez-Garcia et al. (2012). Cluster abundances, galaxy surveys and weak lensing are sensitive

to the total neutrino mass, either from active neutrinos
∑
mν (the total mass from active species),

or sterile neutrinos meff
ν,sterile (an effective parameter that connects to actual neutrino masses in

the context of specific models, see e.g., Lesgourgues and Pastor (2012). In addition, an extra

parameter Neff can be introduced to denote the effective number of relativistic species, in which

case Neff > 3.046 (the standard number) is referred to as “dark radiation”, and is also appealing as

it could alleviate the tension between Planck and local H0 measurements (Verde et al., 2013).

A number of recent studies have carried out joint analyses of various data combinations to

conclude that these tensions are resolved within a new concordance model which implies non-

standard neutrino parameters (Battye and Moss, 2014; Beutler et al., 2014; Giusarma et al., 2014;

Hamann and Hasenkamp, 2013; Wyman et al., 2013). Battye and Moss (2014) argued that

combining the CMB with lensing or SZ cluster measurements reveals evidence for non-zero neutrino

mass in both the active and sterile neutrino scenarios. Hamann and Hasenkamp (2013); Wyman

et al. (2013) claimed that sterile neutrinos could reconcile Planck with LSS data, in particular with

the X-ray cluster abundances (Vikhlinin et al., 2009) and the latest constraints on H0 (Riess et al.,

2011b). By combining the CMB with shear and redshift space distortion (RSD) measurements,

Beutler et al. (2014) found hints of non-zero masses for active neutrinos. Finally, Dvorkin et al.

(2014); Zhang et al. (2014) further claimed that sterile neutrinos could resolve a potential tension

between Planck and BICEP (BICEP2 Collaboration et al., 2014) constraints on r0.002, the tensor-to-

scalar ratio at k = 0.002 Mpc−1.
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Figure 7.1: Constraints on the ΛCDM+Neff +meff
ν,sterile model, showing that non-zero sterile neutrino

mass is only favoured as a result of a tension between the CMB and cluster data (PlaSZ, Xray) in

the σ8–Ωm plane, and the degeneracy between σ8 and neutrino mass.

Although these conclusions are not universally accepted (Efstathiou, 2013; Feeney et al., 2013;

Hu et al., 2014; Planck Collaboration, 2013k; Verde et al., 2013), tension between the datasets may

indeed point to new physics. Alternatively, tension may also indicate remaining systematic biases in

the measurements, which can have substantial impact on cosmological parameter measurements at

the level of precision achieved by current data. Consequently, new physics in the neutrino sector is

only a viable solution if the extra parameters eliminate the tension between datasets seen in the

standard concordance cosmology, and is robustly confirmed by a variety of datasets. In this Letter,

we show that sterile neutrinos do not relieve the tension between Planck and X-ray and SZ clusters,

or with local measurements of H0. Further, we show that the extended neutrino models are not

preferred over the minimal model by any data combination, and that robust combinations of current

measurements prefer low neutrino masses
∑
mν , meff

ν,sterile . 0.3 eV.

7.3. Data and methods.

We use CosmoMC (Lewis and Bridle, 2002) to constrain the parameters of the ΛCDM model

extended with active (+Neff ,
∑
mν) and sterile (+Neff ,m

eff
ν,sterile) neutrinos, using combinations of

the following datasets. CMB: the Planck CMB temperature likelihood (Planck Collaboration, 2013i),

combined with Wilkinson Microwave Anisotropy Probe (WMAP) polarisation (Bennett et al., 2012),

and high-` temperature spectra from Atacama Cosmology Telescope (ACT) and South Pole Telescope

(SPT) (Das et al., 2013; Keisler et al., 2011; Reichardt et al., 2012). Lensing: the CMB lensing
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likelihood from Planck (Planck Collaboration, 2013d). BAO: the Baryon Acoustic Oscillations (BAO)

measurements from 6dF (Beutler et al., 2011), Sloan Digital Sky Survey (SDSS) DR7 (Padmanabhan

et al., 2012), WiggleZ (Blake et al., 2011), and Baryon Oscillation Spectroscopic Survey (BOSS)

DR11 (Anderson et al., 2013). Shear: the weak lensing tomographic analysis from Canada-France

Hawaii Telescope Lensing Survey (CFHTLenS) (Kilbinger et al., 2013). PlaSZ: the Planck SZ cluster

abundances (Planck Collaboration, 2013j). RSD: the RSD measurements from BOSS (Beutler et al.,

2013, 2014). Xray: X-ray cluster mass function constraints (Vikhlinin et al., 2009). HST: the H0

measurement using supernovae by the Hubble Space Telescope (Riess et al., 2011b). Clustering: the

3D galaxy power spectrum from WiggleZ (Blake et al., 2010; Parkinson et al., 2012), and the power

spectrum of the reconstructed halo density field derived from Luminous Red Galaxies (LRG) in

SDSS DR7 (Reid et al., 2010), both up to k = 0.2 hMpc−1. Note that we only use either the power

spectrum or the BAO measurement from each dataset.

Finally, we use the Evidence ratio (or Bayes factor), which gives the relative odds of two models

correctly describing the observations, under the assumption of equal a priori model probabilities

(see e.g., Cox 1946; Verde et al. 2013 and references therein). We calculate ln[EΛCDM/Eext.], the

logarithm of the Evidence ratio of the ΛCDM model divided by that of the the extended neutrino

models; thus, positive numbers favour the minimal model. In practice, since the models are nested,

we compute Evidence ratios with the Savage-Dickey Density Ratio, and we use Kernel Density

Estimation (KDE) to process Monte-Carlo Markov chains and reliably compute the marginalised

posterior distributions at the ΛCDM values (
∑
mν = 0.06 eV,meff

ν,sterile = 0.0 eV, Neff = 3.046). The

errors are calculated by jackknifing the KDE parameters. For all parameters, we consider the same

prior ranges as the official Planck analysis (Planck Collaboration, 2013k). However, the Bayes

factors only depend on the neutrino parameters since we consider nested models. Specifically, we

assume uniform priors in [0, 5], [0, 3] and [3.046, 10] for
∑
mν , meff

ν,sterile and Neff , respectively, and

we impose meff
ν,sterile/(Neff − 3.046) < 7 eV to avoid a degeneracy between very massive neutrinos

and cold dark matter.

7.4. No new concordance with sterile neutrinos.

Fig. 7.1 shows constraints on the σ8–meff
ν,sterile plane for several data combinations, including

those used by Battye and Moss (2014); Hamann and Hasenkamp (2013); Wyman et al. (2013). Our
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Table 7.1: Evidence ratios ln[EΛCDM/Eext.] between the minimal ΛCDM model and the extended

neutrino models, in the active and sterile scenarios, showing that the extended models are not

favoured by any data combination. In particular, the upper part refers to the “tension” data

combinations of Fig. 7.1, whereas the lower part corresponds to more robust data combinations

(details in text), for which marginalised constraints are presented in Tables 7.2 and 7.3.

Active Sterile
CMB+BAO+PlaSZ+Xray+HST 1.52+0.16

−0.33 −0.16+0.39
−0.35

CMB+Lensing+BAO+Shear+PlaSZ 3.77+0.10
−0.09 1.05+0.26

−0.55

CMB+BAO 4.42+0.04
−0.05 3.10+0.07

−0.14

CMB+Lensing+BAO 4.64+0.03
−0.09 2.99+0.06

−0.05

CMB+Lensing+BAO+Clustering 4.70+0.02
−0.00 3.35+0.09

−0.13

CMB+Lensing+BAO+Clusters 4.65+0.10
−0.19 2.61+0.21

−0.23

CMB+Lensing+BAO+Shear 4.32+0.10
−0.16 2.10+0.21

−0.41

CMB+Lensing+BAO+RSD 4.14+0.10
−0.19 1.81+0.11

−0.09

minimal dataset is CMB+BAO, since adding BAO to CMB does not shift the contours but constrains

the matter density Ωm and reduces the error-bars (as expected for consistent datasets). However,

the addition of the PlaSZ or Xray clusters, which prefer lower σ8, shifts the contours significantly

(by more than 2σ) outside the region allowed by CMB+BAO. This clearly indicates that the addition

of sterile neutrinos to the ΛCDM model does not bring the CMB and cluster measurements into

agreement. Note that the active scenario (not shown here) leads to similar results and tension,

and does not yield concordance within the extended model either. Thus we may conclude that the

tension must be resolved either by considering systematics in one or more of the relevant datasets,

or else by new physics other than the introduction of massive (active or sterile) neutrinos. This is

confirmed by the Bayes factor, presented in the first section of Table 7.1, showing that the extended

models are not preferred over the minimal ΛCDM model even in the presence of a tension.

Cluster cosmology is currently limited by modelling rather than statistical uncertainties (Planck

Collaboration, 2013j); thus, error-bars on the X-ray, SZ and optical clusters data used in Fig. 7.1

and in Battye and Moss (2014); Beutler et al. (2014); Dvorkin et al. (2014); Giusarma et al.

(2014); Hamann and Hasenkamp (2013); Wyman et al. (2013); Zhang et al. (2014) may need to

be significantly increased to account for additional potential systematics. The calibration of the

mass-observable relation is critical for deriving robust cosmological constraints from clusters, and is

complicated by uncertainties in mass measurements and the selection functions (see e.g., Rozo et al.

2013; Vikhlinin et al. 2009). Constraints on σ8 from PlaSZ clusters are sensitive to assumptions

and uncertainties in the modelling, as investigated in Planck Collaboration (2013j), and there are

indications of a systematic mismatch between masses obtained via weak lensing compared with SZ
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masses (von der Linden et al., 2014). The error bars on σ8(Ωm)β from X-ray clusters used in Battye

and Moss (2014) should be enlarged to account for confirmed sources of systematic uncertainties

(Vikhlinin et al., 2009). Interestingly, it was shown that the mass calibration by Rozo et al. (2014)

from a self-consistent analysis of X-ray, SZ, and optical scaling relations is consistent with a minimal

flat ΛCDM model with no massive neutrinos (1.7σ), and is a better fit to additional data (e.g. H0).

Finally, the model dependence of these cluster constraints in the context of non-standard models

has not been investigated; therefore it is unclear whether they can be used in a joint analysis in the

context of such extended models.

If, after further investigation of such systematic effects, PlaSZ and Xray clusters remain in tension

with CMB+BAO, this tension cannot be simply resolved by adding sterile neutrinos.

7.5. Constraints on neutrino masses from robust datasets.

We now investigate the constraints obtained on neutrino masses when combining datasets which

are compatible and have been demonstrated to be robust to modelling uncertainties. Recent works

using galaxy power spectra have obtained tight constraints on the mass of active neutrinos (e.g.,

Giusarma et al. 2013; Riemer-Sorensen et al. 2013; Thomas et al. 2010), and also showed that

it could help in breaking degeneracies with the freedom in the primordial power spectrum from

inflation (de Putter et al., 2014). For Clustering data, we use the power spectra from SDSS DR7

(reconstructed halo power spectrum) and WiggleZ (galaxy power spectrum), truncated at k = 0.2

hMpc−1 in order to avoid non-linear scales, marginalising over the galaxy bias. For Shear data, we

use the tomographic weak gravitational lensing analysis by the CFHTLenS (Kilbinger et al., 2013),

which were shown to be usable in neutrino extensions of ΛCDM (Beutler et al., 2014). For the

Clusters data, we use the thermal SZ measurements from cross-correlation of the CMB with X-ray

clusters (Hajian et al., 2013), which are the most recent cluster-derived cosmological constraints.

They rely on cross-correlations, and were also demonstrated to be robust to the choices in the

modelling and data (tested with Planck and WMAP). We jointly use the Planck CMB temperature and

Lensing power spectra (to probe the growth of structure with the CMB) with the BAO constraints

(to constrain Ωm). Finally, we also use the RSD measurements from BOSS (Beutler et al., 2013).

Tables 7.2 and 7.3 summarise the constraints on neutrino masses in the active and sterile

neutrino scenarios, respectively, i.e., ΛCDM+Neff +meff
ν,sterile and ΛCDM+Neff +meff

ν,sterile models,
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Table 7.2: Marginalised 95% CL constraints on the ΛCDM+Neff +
∑
mν model from a variety of

robust LSS datasets with the Planck CMB temperature and lensing measurements. These datasets

are not in tension and tightly constrain the mass of active neutrinos.∑
mν[eV] Neff

CMB+BAO <0.23 <3.88
CMB+Lensing+BAO <0.25 <3.84
CMB+Lensing+BAO+Clustering <0.26 <3.80
CMB+Lensing+BAO+Clusters <0.29 <3.78
CMB+Lensing+BAO+Shear <0.34 <3.79
CMB+Lensing+BAO+RSD <0.37 <3.75

Table 7.3: Same as Table 7.2, but for the ΛCDM+Neff +meff
ν,sterile model, showing tight constraints

on the mass of sterile neutrinos.

meff
ν,sterile[eV] Neff

CMB+BAO <0.28 <3.91
CMB+Lensing+BAO <0.35 <3.84
CMB+Lensing+BAO+Clustering <0.24 <3.87
CMB+Lensing+BAO+Clusters <0.33 <3.83
CMB+Lensing+BAO+Shear < 0.51 <3.82
CMB+Lensing+BAO+RSD < 0.59 <3.70

arising from a variety of data combinations. We see that multiple combinations yield similar

constraints, and tend to small neutrino masses, e.g.,
∑
mν , meff

ν,sterile . 0.3 eV at 95% CL. Note that

some of these constraints may be relaxed by adding freedom to the model, for example to the

primordial power spectrum (de Putter et al., 2014). Interestingly, as also noted by Beutler et al.

(2014), the Shear and RSD data prefer lower σ8 and thus, larger neutrino mass. However, the Bayes

factors presented in the second section of Table 7.1 indicate a preference for the minimal ΛCDM

model in all cases, even with the Shear and RSD data. Note that Beutler et al. (2014) marginalised

over the lensing information which, as is well-known (Planck Collaboration, 2013k), leads to a

preference for higher σ8; conversely, our analysis combined the CMB temperature and lensing

information.

Fig. 7.2 illustrates the persistence of the tension between the CMB+BAO, HST, PlaSZ and Xray

data, as one extends the minimal ΛCDM model in the neutrino sector. The tension with local

measurements of H0 is alleviated by Neff because of the degeneracy between these parameters

(Feeney et al., 2013; Verde et al., 2013), but the tension with PlaSZ and Xray clusters persists

despite the addition of both Neff and neutrino masses. The levels of tension are comparable in

minimal and extended models when adding Lensing and Clustering data. We note that the PlaSZ

and Xray constraints were derived for the ΛCDM model, and it is unclear whether they can be used
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Figure 7.2: Persistence of the tension as the minimal ΛCDM model is extended in the neutrino

sector, i.e., as Neff and massive active or sterile neutrinos are added.

in the context of the extended models. In contrast, the datasets used in Tables 7.2 and 7.3 all relied

on uncompressed likelihoods or constraints shown to be usable within the extended models.

Finally, sterile neutrinos were claimed (Dvorkin et al., 2014; Zhang et al., 2014) to also resolve

the tension in the Planck measurements of the tensor-to-scalar ratio (r0.002 < 0.11 at 95% CL) and the

recent BICEP result, r0.002 = 0.2+0.07
−0.05 (BICEP2 Collaboration et al., 2014). However, the tension in

the σ8–Ωm plane detailed previously persists in the extended model ΛCDM+ r0.002 +Neff +meff
ν,sterile,

as shown in Fig. 7.3. Hence, the relaxed constraints on r0.002 from this data combination originates

from a compromise between datasets in tension, not a new concordance. This is confirmed by the

Bayes factors, presented in Table 7.4, showing that the extended model is not favoured over ΛCDM.

7.6. Conclusions.

The need for extra parameters yielding a new cosmological concordance can only be convincing

if the combined datasets are in tension in the minimal model, and in agreement in extended model.

We show that massive sterile neutrinos do not bring about a new cosmic concordance, but rather

highlight the tension between the CMB+BAO and SZ or X-ray clusters. A compilation of current

LSS data which have been demonstrated to be robust to modelling uncertainties, when combined

178



0.28 0.30 0.32

Ωm

0.75

0.80

0.85

σ
8

0.0 0.2 0.4 0.6 0.8

meff
ν, sterile [eV]

0.00

0.08

0.16

0.24

0.32

r 0
.0

0
2

CMB+Lensing+BAO+Clustering

CMB+BAO+Xray+HST

CMB+BAO+Xray+HST+BICEP

Figure 7.3: Constraints on the ΛCDM+ r0.002 + Neff +meff
ν,sterile model, illustrating the persisting ten-

sion between X-ray clusters and CMB+BAO in the σ8–Ωm plane, despite an apparent reconciliation

of the BICEP and Planck results on r0.002.

Table 7.4: Evidence ratios ln[EΛCDM/Eext.] between the minimal ΛCDM model and the

ΛCDM+ r0.002 + Neff +meff
ν,sterile model, showing that sterile neutrinos are not favoured by the data,

even when adding the BICEP results.

Sterile
CMB+Lensing+BAO+Clustering 2.89+0.13

−0.19

CMB+BAO+Xray+HST −0.70+0.07
−0.02

CMB+BAO+Xray+HST+BICEP −0.66+0.05
−0.04

with Planck, tend to small masses
∑
mν , meff

ν,sterile . 0.3 eV at 95% CL in the context of the ΛCDM

model extended with Neff and neutrino mass parameters. Similarly, as found in Feeney et al.

(2013); Verde et al. (2013) the data cannot distinguish between Neff ∼ 3 and 4, and do not favour

extra neutrinos over the standard 3 families. These conclusions are corroborated by the Bayesian

evidence: the more complex models are not preferred, even when using datasets in tension. We

conclude that current cosmological constraints do not provide evidence for large neutrino masses or

extra neutrinos, even in the presence of the tension between Planck CMB and SZ and X-ray clusters.

If this tension does not resolve after further investigation of systematic effects, new physics beyond

massive neutrinos will be necessary to reconcile these datasets.
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Frieman, M. Fukugita, B. T. Gänsicke, E. Gates, B. Gillespie, K. Glazebrook, J. Gray, E. K. Grebel,
J. E. Gunn, V. K. Gurbani, P. B. Hall, P. Harding, M. Harvanek, S. L. Hawley, J. Hayes, T. M.
Heckman, J. S. Hendry, R. B. Hindsley, C. M. Hirata, C. J. Hogan, D. W. Hogg, J. B. Hyde, S.-i.
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Seo, E. S. Sheldon, A. Simmons, R. A. Skibba, M. A. Strauss, M. E. C. Swanson, D. Thomas,
J. L. Tinker, R. Tojeiro, M. V. Magaña, L. Verde, C. Wagner, D. A. Wake, B. A. Weaver, D. H.
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the Gaussianity of the COBE DMR data with spherical wavelets. Mon. Not. Roy. Astron. Soc., 318:
475–481, Oct. 2000. doi: 10.1046/j.1365-8711.2000.03772.x.

N. Bartolo, E. Komatsu, S. Matarrese, and A. Riotto. Non-Gaussianity from inflation: theory and
observations. Physics Reports, 402:103–266, Nov. 2004. doi: 10.1016/j.physrep.2004.08.022.

S. Basak and J. Delabrouille. A needlet internal linear combination analysis of WMAP 7-year data:
estimation of CMB temperature map and power spectrum. Mon. Not. Roy. Astron. Soc., 419:
1163–1175, Jan. 2012. doi: 10.1111/j.1365-2966.2011.19770.x.

R. A. Battye and A. Moss. Evidence for Massive Neutrinos from Cosmic Microwave Background
and Lensing Observations. Physical Review Letters, 112(5):051303, Feb. 2014. doi: 10.1103/
PhysRevLett.112.051303.

D. Baumann. TASI Lectures on Inflation. ArXiv e-prints, July 2009.

A. Becker, D. Huterer, and K. Kadota. Scale-Dependent Non-Gaussianity as a Generalization
of the Local Model. Journal of Cosmology and Astroparticle Physics, 1101:006, 2011. doi:
10.1088/1475-7516/2011/01/006.

183



A. Becker, D. Huterer, and K. Kadota. Constraining Scale-Dependent Non-Gaussianity with Future
Large-Scale Structure and the CMB. Journal of Cosmology and Astroparticle Physics, 1212:034,
2012. doi: 10.1088/1475-7516/2012/12/034.

C. Bennett, D. Larson, J. Weiland, N. Jarosik, G. Hinshaw, et al. Nine-Year Wilkinson Microwave
Anisotropy Probe (WMAP) Observations: Final Maps and Results. 2012.

C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, N. Odegard, K. M. Smith, R. S. Hill,
B. Gold, M. Halpern, E. Komatsu, M. R. Nolta, L. Page, D. N. Spergel, E. Wollack, J. Dunkley,
A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. L. Wright. Nine-Year Wilkinson Microwave
Anisotropy Probe (WMAP) Observations: Final Maps and Results. ArXiv e-prints, Dec. 2012.

J. Beringer, J. F. Arguin, R. M. Barnett, K. Copic, O. Dahl, D. E. Groom, C. J. Lin, J. Lys, H. Murayama,
C. G. Wohl, W. M. Yao, P. A. Zyla, C. Amsler, M. Antonelli, D. M. Asner, H. Baer, H. R. Band,
T. Basaglia, C. W. Bauer, J. J. Beatty, V. I. Belousov, E. Bergren, G. Bernardi, W. Bertl, S. Bethke,
H. Bichsel, O. Biebel, E. Blucher, S. Blusk, G. Brooijmans, O. Buchmueller, R. N. Cahn, M. Carena,
A. Ceccucci, D. Chakraborty, M. C. Chen, R. S. Chivukula, G. Cowan, G. D’Ambrosio, T. Damour,
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I. Pérez-Fournon, I. Pérez-Ràfols, P. Petitjean, R. Pfaffenberger, J. Pforr, M. M. Pieri, F. Prada,
A. M. Price-Whelan, M. J. Raddick, R. Rebolo, J. Rich, G. T. Richards, C. M. Rockosi, N. A. Roe,
A. J. Ross, N. P. Ross, G. Rossi, J. A. Rubiño-Martin, L. Samushia, A. G. Sánchez, C. Sayres, S. J.
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