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Abstract

We propose a new concept for the analysis of games, the TASP, which gives
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converges in these “unstable” games, even while mixed strategies and beliefs con-
tinue to cycle. This time average, the TASP, is related to the best response
cycle first identified by Shapley (1964). Though conceptually distinct from Nash
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pearance of convergence to equilibrium. We discuss how these theoretical results
may help to explain data from recent experimental studies of price dispersion.
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1 Introduction

At the basis of the theory of learning in games is the question as to whether Nash
equilibria are stable or unstable. The hope is to predict play: if an equilibrium is an
attractor for a plausible learning dynamic, we think that it is a possible outcome for
actual play. However, testing such a prediction is complicated by the fact that there are
several measures of whether play is at or near an equilibrium. Particularly, for mixed
Nash equilibria, as players’ mixed strategies are not directly observable, necessarily in
empirical work researchers must look at play averaged over a number of periods, at
least as a first approximation. On the other hand, if a Nash equilibrium is unstable, we
would expect actual players, for example, subjects in an experiment, not to play that
equilibrium or even to be close to it. Shapley (1964) famously found that there are
games for which learning may not approach the only Nash equilibrium but rather will
continuously cycle. If we take this result seriously as an empirical prediction, then there
are games in which Nash equilibrium play will never emerge. Note that as Shapley’s
result also holds for average play, even average play should not be close to an unstable
equilibrium.

In this paper, we advance the novel hypothesis that even when learning diverges from
equilibrium, it is still possible to make a precise prediction about play. Surprisingly, in
games with a unique unstable mixed equilibrium the time average of play may converge
even when players’ mixed strategies do not. If an equilibrium is unstable under sto-
chastic fictitious play with the classical assumption that players place an equal weight
on all past experience, then both mixed strategies and time averages must diverge from
equilibrium. But we find that if greater weight is placed on more recent experience, as
it is in “weighted” stochastic fictitious play, then although the players’ mixed strategies
will approach the cycle of the type found by Shapley, the time average will converge.
We show that, as the level of noise and the level of forgetting approach zero, the time
average of play approaches the TASP (Time Average of the Shapley Polygon), that is,
the time average of the Shapley cycle under the continuous time best response dynam-
ics. We find that in many cases the TASP is close to the Nash equilibrium. Since the
time average is much easier to observe than mixed strategies, it may well appear that
play has converged to the equilibrium. We go on to identify games where the TASP and
Nash equilibrium are quite distinct, and so offer the possibility of a clearer empirical
test between the two.

These results are not of purely theoretical interest. They, in fact, arise in direct
response to recent experimental work on the economically important phenomenon of
price dispersion. Cason and Friedman (2003) and Morgan, Orzen, and Sefton (2006)
report on experimental investigations of the price dispersion models of Burdett and
Judd (1983) and Varian (1980) respectively. Both studies report aggregate data that
is remarkably close to the price distribution that would be generated if the subjects
had been playing the mixed Nash equilibrium. This is surprising if one takes learning
theory seriously, as earlier results by Hopkins and Seymour (2002) indicate that the
mixed equilibria of these models are unstable under most common learning processes.



Cason, Friedman and Wagener (2005) reexamine the data from Cason and Friedman
(2003) and indeed find that play is highly non-stationary and there are clear cycles
present. They therefore reject the hypothesis that subjects were in fact playing Nash
equilibrium. This is also consistent with the earlier results of Brown Kruse et al. (1994).
They find, in an experimental study of a Bertrand-Edgeworth oligopoly market with
no pure equilibrium, that prices cycle but prices averaged across the whole session
still approximate the mixed equilibrium distribution. Our results explain the apparent
empirical paradox. When mixed equilibria are unstable under learning, we predict
persistent cycles in play. Nonetheless, if players learn placing more weight on recent
experience, the time average of play should converge to the TASP, which in these games
is close to the Nash equilibrium.

It is true that there are existing results in evolutionary game theory that show
convergence of time averages without convergence to equilibrium. For example, the
evolutionary replicator dynamics cycle around mixed strategy equilibria of zero sum
games, but the time average of the dynamics nonetheless converge (see, for example,
Hofbauer and Sigmund (1998, pp120-130)). However, the current results are quite
different. First, we obtain convergence in exactly the class of games where time averages
do not converge under traditional assumptions. Second, the existing results show if that
there is convergence of the time average of play, it must be to a Nash equilibrium. Here,
we show convergence to the TASP which is distinct from both Nash equilibrium and
perturbed equilibrium concepts such as quantal response or logit equilibrium.

Fictitious play was introduced many years ago with the underlying principle that
players play a best response to their beliefs about opponents, beliefs that are constructed
from the average past play of opponents. This we refer to as players having “classical”
beliefs. It was in this framework that Shapley (1964) obtained his famous result. How-
ever, even when fictitious play converges to a a mixed strategy equilibrium, it does so
only in time average not in marginal frequencies. This problem motivated the intro-
duction of smooth or stochastic fictitious play (see Fudenberg and Levine (1998) for a
survey), which permits convergence in actual mixed strategies. This more recent work
still employs classical beliefs. However, experimental work has found greater success
with generalisations of fictitious play that allow for players constructing beliefs by plac-
ing greater weight on more recent events (see Cheung and Friedman (1997), Camerer
and Ho (1999) amongst many others). This is called forgetting or recency or weighted
fictitious play. Despite their empirical success, models with recency have not received
much theoretical analysis, largely because they are more difficult to analyze than equiv-
alent models with classical beliefs. This paper represents one of the few attempts to do
so.!

Many years ago, Edgeworth (1925) predicted persistent cycles in a competitive sit-
uation where the only Nash equilibrium is in mixed strategies. This view was for a

!There has been more work on fictitious play with finite memory, for example, Young (1993). Other
learning models not based on fictitious play where the speed of learning does not decrease over time
include Benaim and Weibull (2003) and Hofbauer and Sandholm (2005).



long while superseded by faith that rational agents would play Nash equilibrium, no
matter how complicated the model or market. In the case of mixed strategies, learning
theory provides some support for Edgeworth, persistent cycles are a possibility even
when agents have memory of more than the one period Edgeworth assumed (though in
other games, learning will converge even to a mixed equilibrium). Furthermore, recent
learning models that allow for stochastic choices do not imply the naive, predictable
cycles described by Edgeworth. Cycles may only be detectable by statistical tests for
non-stationarity (see Cason, Friedman and Wagener (2005)). In the absence of such
sophisticated analysis, these perturbed Edgeworth-Shapley cycles may to an outside
observer look indistinguishable from mixed equilibrium.

Thus, while it is possible in principle to distinguish between the TASP and equilib-
rium play by testing for stationarity, it may not be easy. So, it would be convenient
to have a simpler way of distinguishing between the two. We therefore construct some
examples of games where the TASP and Nash equilibrium are quite distinct. These
should make possible a simple test simply based on average play. We also find that the
comparative statics of the TASP with respect to changes in payoffs differ from those of
Nash equilibrium and of perturbed equilibrium concepts such as logit equilibrium. We
are therefore optimistic that the theoretical results of this paper can and will be tested.

2 An Overview: Shapley Polygons and Edgeworth
Cycles

We start with a generalisation of the well-known Rock-Scissors-Paper game and two
specific examples,

0 | —az| bs 0]-1]3 031
RSP=[ b | 0 |—as| A=[2]0][-1| B=[1]0]-=2 (1)
—ay| by | O 1370 310

Game A and game B both have a unique Nash equilibrium in mixed strategies, for
A, z* = (13,10,9)/32 = (0.40625,0.3125,0.28125) and, for B, z* = (9,10, 13)/32 =
(0.28125,0.3125,0.40625). They appear to be very similar. Learning theory, however,
says that they are quite different. Specifically, if a single large population of players
are repeatedly randomly matched to play one of these games, most learning and/or
evolutionary dynamics, such as fictitious play, the replicator dynamics, reinforcement
learning or stochastic fictitious play, should converge to (close to) the Nash equilibrium
in game A, but should diverge from equilibrium in game B.

Suppose we try to test this prediction experimentally. We assemble a group of sub-
jects in a laboratory and we repeatedly match them randomly in pairs to play one of
the two games. Now, mixed strategies are intrinsically hard to measure. So, suppose
as a first approximation, we simply calculate the average frequency of each strategy



over the whole experimental session. The claim in the current paper is that, with suffi-
ciently high monetary incentives, we would expect to see an average of approximately
(0.41,0.31,0.28) in game A, and approximately (0.29, 0.34, 0.37) in game B. In the
second game, play is not as close to Nash equilibrium as in the first, but since experi-
mental data is usually fairly noisy, one might well conclude that this was a reasonable
approximation, and convergence had taken place. This would of course lead one to
reject the prediction of learning theory that play in the two games should be funda-
mentally different. What we find in this paper is that while learning behaviour in the
two games is similar in terms of average frequencies, it will be quite different on other
measures.

Shapley (1964) was the first to show that there are games in which a learning process
does not converge to a Nash equilibrium. Instead, the fictitious play process that he
examined converged to a cycle of increasing length. We can recreate Shapley’s result in
the context of a single large population who are repeatedly randomly matched in pairs
to play a normal form game such as A or B above. Fictitious play assumes that agents
play a best response given their beliefs. The vector x; represents the belief at time ¢,
with x;; the probability given to an opponent playing his i-th strategy. That is, z, € SV
the simplex SV = {z = (21, ...,ay) e RN : Y ;= 1,2; > 0, fori = 1,..., N}. An agent
then chooses a pure strategy that is in the set of best responses to her current beliefs,

or b(r;).> The dynamic equation for the fictitious play process in a single population
will be

Tip1 — Tt € Y (b(@e) — m). (2)
with 7, being the step size. Classically, beliefs are assumed to be based on the average of
past play by their opponents, which implies that the step size will be equal to 1/(t+1).
An alternative, that is explored in this paper, is that players place a weight of one on last
period’s observation, a weight ¢ on the previous period, and 6" on their experience n
periods ago, for some ¢ € [0,1). Then the step size v, will be 1 — 4, a constant.

Suppose that J takes the extreme value of 0, “Cournot beliefs”, so that players play a
best response to the last choice of their opponent. In RSP, as Rock is the best response
to Scissors which is the best response to Paper, we would see a cycle of the form

P S R,P,S,R,P,S,R, ...

This is a very simple example of an “Edgeworth cycle” of best responses. Clearly, if
players follow this cycle the time average of their play will converge to (1/3, 1/3, 1/3).
Of course, for some RSP games, this will be equal to or be close to the mixed Nash
equilibrium. However, one would not describe this type of behaviour as equilibrium
play, as it involves predictable cycles rather than randomisation. Or, more formally,
there is only convergence of the time average, but not marginal frequencies.

Under classical beliefs, change will be more gradual. For example, in the case of
game B if beliefs are at a point to the right of A; in Figure 1, where x; is relatively high,

2As b(+) is not in general single valued, the dynamics arising from fictitious play present certain
mathematical difficulties. See Benaim et al. (2005) for a full treatment.
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Figure 1: The Shapley triangle for game B with the TASP (T) and the Nash equilibrium
(N).

the best response will be the second strategy, or b(z;) = es = (0,1,0). Agents in the
population play the second strategy and beliefs about the likelihood of seeing strategy
2 increase. Beliefs move in the direction of the vertex where o = 1, until they approach
near A,, and strategy 3 becomes a best response. Then, beliefs will move toward the
vertex e3 = (0,0, 1) until strategy 1 becomes the best response. That is, there will be
cyclical motion about the Nash equilibrium. In game A, it can be shown that over time
the cycles converge on the Nash equilibrium, but in game B beliefs converge to the
triangle A; Ay Az illustrated in Figure 1 and the cycles are persistent.

The easiest way to prove such convergence results is to use the continuous time best
response (BR) dynamics, defined as

&€ blx) —x. (3)

For a class of games including the game B given in (1), Gaunersdorfer and Hofbauer
(1995) show that the best response dynamics converge to the “Shapley polygon” (Gilboa
and Matsui (1991) use the term “cyclically stable set”). In game B this is the triangle
Aj A5 Az illustrated in Figure 1, but we can give a more general definition.



Definition 1 A Shapley polygon is a polygon in S™ with M vertices Ay, ..., Ay which
is a closed orbit for the best response dynamics (3).

We can then define the TASP as follows.

Definition 2 The TASP (time average of the Shapley Polygon) is

7= %/0 b((t))dt = %/0 (1)t ()

where x(0) = z(T).> That is, it is the time average of the best response dynamics (3)
over one complete circuit of a Shapley polygon.

In the standard case where the best replies along the cycle are pure strategies, it
is possible to be more specific. We label an edge the ith edge if on that edge the ith
strategy is being played. That is, on that edge, b(x) = e;, that is the vector with 1 at
position i and zero elsewhere. Suppose that at some time t;, the dynamics (3) are at
vertex A;_;. Denote the coordinates of the ith vertex as 4. Then, because between
A;_1 and A; the best response b(x) is e;, the BR dynamics imply the linear differential

equation i; = 1 — x; with initial condition z;(ty) = xiAH. Thus, we have on that edge
zi(to + 1) = 1+ exp(—t) (2" — 1). Let T} be the total time spent by the continuous

time BR dynamics on the ith edge. Or, let T} solve z/% = 1 + eXp(—Ti)(xfi*l —1).
Then, over one complete circuit of the Shapley polygon, Z; is the proportion of time
spent on side 1, or,

T;

CYM ®)

Z;

Now, Shapley polygons do not exist for every game. For example, in game A in (1)
the Nash equilibrium is a global attractor for the best response dynamics and there is
no Shapley polygon. But for the game B, there is a Shapley triangle (which is unique
and asymptotically stable) and, following Gaunersdorfer and Hofbauer (1995), we can
calculate that 4; = (6,1,3)/10, A2 = (2,6,1)/9, and A3 = (1,3,9)/13 as shown in
Figure 1. The TASP can be computed numerically as Z =~ (0.29,0.34, 0.37), marked as
“T” in Figure 1.

Benaim et al. (2005) recently have extended the theory of stochastic approximation
to set valued dynamics. Their results imply that for the game B under classical fictitious
play beliefs the discrete time dynamic (2) will approach the Shapley polygon. That
is, there will be persistent cycles in beliefs, not convergence to equilibrium. Now,
under fictitious play beliefs, the speed of learning declines each period with accumulated

3The equality of these two time averages follows by integrating the equation (3) along the periodic
solution z(t) over one period [0, 7] such that 2(0) = z(T).



experience. So, movement around the cycle is slower and slower. Observed play might
look like this
P,S R,P,P S S R, R,P,P PSS S R,RR,...

Consequently, the time average of play does not converge, see Monderer and Shapley
(1996, Lemma 1) for a general proof.

But what if players place greater weight on more recent experience, with d not at the
extreme value of 07 We show in the current paper that, like for classical fictitious play,
beliefs will cycle around the Shapley polygon (or close to it), but at constant speed.
Consequently, we can show that, like for the simple Edgeworth cycles, average play will
converge, and for ¢ close to one this time average will be close to the TASP.

Now, as we see in Figure 1, the TASP is close to the Nash equilibrium of the game
B. So, if the population of players do in fact learn according to weighted fictitious
play, then average play will be close to the Nash equilibrium because average play will
be close to the TASP. However, beliefs will continue to cycle. In contrast, in game A
both beliefs and average play will converge to the Nash equilibrium. The problem is
that beliefs are not directly observable, whereas average play which can be seen, can be
misleading. It would be very easy for an experimenter to conclude in the case of game
B that play had converged to the Nash equilibrium, when in reality only average play
had converged, and to the TASP and not to the Nash equilibrium.

Talk of convergence to point close to but not identical to Nash may well remind
readers of quantal response (QRE) or logit equilibria. The literature on these per-
turbed equilibria is now extensive and there has been considerable success in explaining
empirical phenomena. See, for example, McKelvey and Palfrey (1995) or Anderson et
al. (2002). While they are certainly a competing explanation for non-Nash play, there
are important differences. The most important is that QRE is an equiltbrium concept
and assumes stable play. It is, therefore, not consistent with the cycles described above
or the non-stationary behaviour present in much experimental data. We discuss the
comparison further in Section 8.

It is true that the simple cycles we have described would be easy to spot both
by experimenters and the players themselves.* However, consider a learning model
that is more empirically plausible such as stochastic fictitious play, that introduces
random choice into play. This stochastic element breaks up the cycles and would make
them much less obvious. It also makes each player’s choices less easy to exploit by
her opponent(s). Nonetheless, we show in Section 6 that the time average of weighted
stochastic fictitious play will definitely converge, and for a low level of noise this average
will also be close to the TASP. That is, play is stochastic and non-stationary, but all
the same will have a time average that can be close to Nash equilibrium. We think this
helps to explain what has been seen in a number of recent experiments. We discuss this
in more detail in Section 8, but first we look at the theory in greater detail.

4Indeed, since the influential work of Brown and Rosenthal (1990), experimenters dealing with
mixed strategy equilibria have been careful to check whether there is autocorrelation in play.



3 The Model

Stochastic fictitious play was introduced by Fudenberg and Kreps (1993) and is further
analysed in Benaim and Hirsch (1999), Hopkins (1999b, 2002), Ellison and Fudenberg
(2000), Hofbauer and Sandholm (2002), Hofbauer and Hopkins (2004). Models of this
kind have been applied to experimental data by Cheung and Friedman (1997), Camerer
and Ho (1999), Battalio et al. (2001) among others. We will see that under the classical
case of fictitious play beliefs, where every observation is given an equal weight, that
stochastic fictitious play gives clear predictions. Specifically, some mixed equilibria are
stable, others unstable and the behaviour of learning in the two different cases is quite
different. However, the experimental studies cited above all find that players seem to
place greater weight on more recent events than is suggested by the classical model.
When this behaviour is included in a theoretical model, the difference between stable
and unstable equilibria is significantly weakened, with potentially very little difference
in terms of average play.

Stochastic fictitious play embodies the idea that players play, with high probability,
a best response to their beliefs about opponents’ actions. Here, we concentrate on the
case where a large population of players are repeatedly randomly matched in pairs to
play a two player matrix games with N strategies and payoff matrix A. That is, for
those familiar with evolutionary game theory, initially we analyse a single population
learning model, rather than the two population asymmetric case which we investigate
later in Section 7. Time is discrete and indexed by ¢t = 1,2, ..... We write the beliefs of
a player as x; = (14, Tay, ..., Tne), Where in this context 1, is the subjective probability
in period ¢ that the next opponent will play his first strategy in that period. That is,
2, € SN. This implies that the vector of expected payoffs of the different strategies for
any player, given her beliefs, will be Az;. We write the interior of the simplex, that
is where all strategies have positive representation, as int S and its complement, the
boundary of the simplex as 9S”. We also make use of the tangent space of S, which
we denote RY = {¢ e RV : ¢, =0}

Given fictitious play beliefs, if a player were to adopt a strategy p € SV, she would
expect payoffs of p - Az. Following Fudenberg and Levine (1998, p. 118 ff), we suppose
payoffs are perturbed such that payoffs are in fact given by

m(p,x) =p- Az + Mv(p) (6)

where A > 0. Here the function v : int SV — R is defined at least for completely mixed
strategies p € int SV and has the following properties:

1. v is strictly concave, more precisely its second derivative v” is negative definite,
ie., £-v"(p)€ <0 for all p € int SV and all nonzero vectors & € RYY.

2. The gradient of v becomes arbitrarily large near the boundary of the simplex, i.e.,
lim, pgv [V'(p)| = oo.



One possible interpretation of the above conditions is that the player has a con-
trol cost to implementing a mixed strategy with the cost becoming larger nearer the
boundary. In any case, these conditions imply that for each fixed z € SV there is a
unique p = p(z) € int SV which maximizes the perturbed payoff 7(p, x) for the player.
Rather than using the best reply correspondence b(z), instead we employ a ‘perturbed
best reply function’ p(z). Typical examples of perturbation functions that satisfy these

conditions are v(p) = Y . logp; and v(p) = — >, p;log p;.

Differentiating the perturbed payoff functions (6), the first order conditions for a
maximum will be

£ Ar+ M (p(z)E =0 VEeR]. (7)
This could be written formally as
p(x) = (V') (=BAz). (8)

where § = 1/A. This shows that the perturbed best reply function p is smooth. How-
ever, an explicit evaluation of p seems to be possible only in special cases, see (11)
below.

The original formulation of stochastic fictitious play due to Fudenberg and Kreps
(1993), see also Fudenberg and Levine (1998, p. 105 ff), involved a truly stochastic
perturbation of payoffs. For example, one can replace (6) with

m(p,x) =p- Az + \p- ¢, (9)

where ¢ is a vector of i.i.d. random variables with a fixed distribution function and a
strictly positive and bounded density. Assume each player sees the realisation of her
own perturbation, then chooses an action to maximise the perturbed payoff. Then, the
probability that she will choose action ¢ will be

pi(x) = Pr(arg m;i;X[(A:E)j + Aej] =1). (10)

This defines a smooth function p(x) which approximates the best reply correspondence.
As Hofbauer and Sandholm (2002) show, the truly stochastic formulation is a special
case of the deterministic approach given above. The best-known special case is the
exponential or logit rule,
pft _ pf(xt) _ ]\e[Xp B(Axt)z 7
Zj:l eXp B(Axt)j
where f = 1/\ and “e” is for exponential. It arises from the stochastic setting (10) if
each ¢, is drawn from the double exponential extreme value distribution, and from the
deterministic smoothing (8) for v(p) = — >, pilogp;. Note that for the logit rule, if
is large, the strategy with highest expected payoff is chosen with probability close to
one. If 3 is (close to) zero, then each strategy is chosen with probability (close to) 1/N,
irrespective of the relative expected payoffs.

(11)

We now turn to the dynamic process by which beliefs are updated. We look at two
cases:



1. Large Population Deterministic Model: each period the whole population is ran-
domly matched in pairs to play. After each round the vector X; € SV of actions
chosen by those who play is publicly announced.

2. Representative Individual Model: each round only one pair is randomly drawn
out of the population to play once. They are then returned to the population
and the next round there is another random draw of a pair. After each round the
vector X, € SV representing the action chosen by one of the players who played
is publicly announced.

In the first case, the law of large numbers ensures that, given current beliefs z;,
realised play is X; = p(z;). In the second case, the play that is realised is a random
draw with probabilities given by p(x;). We are aware that neither case corresponds
exactly to standard experimental protocols. For example, in Cheung and Friedman
(1997), a finite of number of subjects were repeatedly randomly matched in pairs.
In the “history” treatment, after each choice they are then informed of the play of
all subjects. This treatment, in which all agents play every period, all see the same
information, but this consists of a finite number of choices, is intermediate between the
two formal models described above. The evolution of play will be stochastic but the
variance will be lower than in Model 2 above. However, it will not be fully deterministic
as in Model 1. We go on to show that Models 1 and 2 produce qualitatively similar
outcomes. It is therefore a reasonable hypothesis that results in a model that was closer
to experimental protocols would not be very different.’

In either case, each individual then updates her belief according to the rule,

Tir1 = (1 —y)we +7,.Xe (12)

The step-size v, will play an important role in our analysis. Under classical fictitious
play one sets v, = 1/(t + 1). That is

Xt+Xt71+"'+X1+l‘1
t+1

Tir1 = )

or all observations and initial beliefs z; are given equal weight.® Here, we explore the
implications if players place an exponentially declining weight on past experience with
0 being the forgetting factor. This implies that v, = 1 — J, a constant, as

Ti41 = (51} + (]_ - 5)Xt = (1 - 5) (Xt + 5Xt_1 + -+ 5t_1X1) + 5tx1, .

®But such a setting would be significantly more complex to model and this is the reason why we do
not attempt to do so. Note that a full treatment of actual experimental protocols would allow for subject
heterogeneity in initial beliefs, play realisations being a stochastic function of the joint distribution of
beliefs, and each player making different observations. The only paper to our knowledge that even
begins to tackle these problems analytically (rather than by simulation) is Hopkins (1999a).

5One can give a different weight to initial beliefs and more generally still one can simply say the
step size is of order 1/t.

10



Setting 0 = 0 induces “Cournot” beliefs, only the last period matters, while as ¢ ap-
proaches 1, the updating of beliefs approaches that of classical fictitious play.

If we assume that all agents have the same initial belief and use the same updating
rule then, in the large population case, the beliefs in the population will evolve according
to

Tri1 — Ty = Y, (p(2e) — T1) (13)
where v, is the step size. In the stochastic model, the above equation of motion gives
the expected change in beliefs (see Section 6 below). We will also need the continuous
time equivalent to the above discrete dynamic. We have already seen the BR dynamics
(3) which corresponds to (2). For the perturbed process (13), we clearly have

& =p(r) -, (14)
which we can call the perturbed best response (PBR) dynamics.

As is now well known, the steady states of stochastic fictitious play and, equally,
the PBR dynamics are not Nash equilibria. Rather, they are perturbed equilibria
known as quantal response equilibria (QRE) or logit equilibria. Specifically, a perturbed
equilibrium 24 satisfies

T5 = p(2p). (15)
Of course, what this equilibrium relationship implies is that beliefs must be accurate or
equilibrium beliefs Z5 are equal to the equilibrium mixed strategy p(Zz).

4 Results on the Associated Continuous Time Sys-
tems

The learning processes that we analyse unfold in discrete time. However, to understand
their asymptotic behaviour, it will be crucial to look at some associated continuous time
dynamics, the BR (3) and PBR (14) dynamics. Clearly, these are the continuous time
analogues of (2) and (13) respectively.

We consider a class of games that Hofbauer (1995) calls monocyclic (see also, Hof-
bauer and Sigmund (1998, Chapter 14.5)) that generalises the RSP game given in (1).
They are two player normal form games with a payoff matrix A that has the following
properties:

1. Qg =0

2. a;; >0fori=j+1 (mod N) and a;; < 0 else.

The first condition is only a convenient normalisation. Clearly, the strategic prop-
erties of these games would not be altered by the addition of a constant to a column.

11



Monocylic games do not have equilibria in pure strategies, only mixed equilibria. How-
ever, the equilibria of monocyclic games are not necessarily unique and do not have to
be fully mixed (see Example 1 below).

Equilibria of monocyclic games can be stable or unstable under learning. For exam-
ple, under the continuous time BR dynamics, there is a knife-edge. In particular, if z*
is a completely mixed Nash equilibrium, so that x* - Az* is the equilibrium payoff, then
if * - Ax* < 0, the equilibrium is unstable, but if z* - Az* > 0, then the equilibrium z*
is globally asymptotically stable (see Hofbauer (1995)). For the particular case of 3 x 3
monocyclic games with an unstable mixed equilibrium, Gaunersdorfer and Hofbauer
(1994) show that the best response dynamics converge to the “Shapley triangle” intro-
duced in Section 2. The essence of the proof is that it establishes that the best response
dynamics in monocyclic games move toward the set defined by max(Az); = 0. That
is, the set where the best payoff against the current population state is zero. In games
where equilibrium payoffs are negative, this set is distinct from the Nash equilibrium
and so the dynamics must diverge from equilibrium. In contrast, the Shapley polygon
is contained in this set.” In fact, in the 3 x 3 case the Shapley triangle and the set
max(Az); = 0 are identical.

Proposition 1 Suppose the game A is monocyclic, has a fully mized Nash equilibrium
x* and x* - Az* < 0. Then the mixed Nash equilibrium z* is unstable under the best
response dynamics (3). Furthermore, there is a Shapley polygon, and from an open,
dense and full measure set of initial conditions, the best response dynamics converge
to this Shapley polygon. The time average from these initial conditions converge to the

TASP z. That is,
1 [T
lim T/o x(t)dt = &

T—o00

Proof: In the Appendix.

Note that the above proposition does not claim that there is convergence to the
Shapley polygon from all initial conditions. For example, there may be mixed strategy
equilibria that are saddle points, and thus attract some initial conditions. The following
examples may help to clarify matters.®

Example 1 Take the game

0|-1[-1|1
110]|-1]-1

A= -1 1|0]-1 (16)
-1 -1 110

"This relies on the assumption that A is normalised so that A;; = 0 for all i.
8We thank Martin Hahn for providing us with these examples.
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This is a monocyclic game with a unique mized strateqy equilibrium at x* = (1/4,1/4,1/4,1/4)
with equilibrium payoffs x* - Az* = —1/4 < 0. From initial states x with x; = x3 and

To = x4 there s an orbit heading straight into x*. From all other points orbits converge

to the Shapley polygon. Hence x* is a saddle point.

Example 2 Now consider the game

0|-3|-1| 1
110|-3|-1

A= -1 1]0]-3 (17)
30 -1 100

This is a monocyclic game with a mized strateqy equilibrium at x* = (1/4,1/4,1/4,1/4)
with equilibrium payoffs —3/4. Since the game is positive definite (see below), x* is a
repellor under the best response dynamics. There are six further Nash equilibria, two at
(1/2,0,1/2,0) and (0,1/2,0,1/2), and four that mix between three pure strategies. All
these are saddle points under the best response dynamics and attract either a one or
two dimensional set of initial conditions. Still, almost all orbits approach the Shapley

polygon.

We can classify single-matrix games into three classes: negative definite, positive
definite and indefinite. A game is negative definite if £ - A < 0 for any € € R{ \ 0.
Importantly, for negative definite games, there is a unique Nash equilibrium and this
is an ESS and a global attractor for the evolutionary replicator dynamics, the best
response dynamics and the perturbed best response dynamics, see Hofbauer (2000).
On the other hand, a game is positive definite if £ - A > 0 for any £ € R{ \ 0. In
positive definite games, any fully mixed equilibrium is a global repellor for the replicator
dynamics. For the best response dynamics see Proposition 2 below. If a game is
indefinite, then a mixed equilibrium might be stable under some dynamics or learning
processes but be unstable under others. Mono-cyclic games can fall into any of these
three classes. That is, their mixed equilibrium can be stable or unstable under learning
and/or evolutionary dynamics. Note that for positive definite monocyclic games we
have (x —z*)- A(x —2*) = (x —a*)- Az > 0, where z* is a fully mixed Nash equilibrium.
Take = = e;, then as in monocyclic games e; - Ae; = 0, we have z* - Ae; < 0 for all j
and hence z* - Ax* < 0. That is, the Nash equilibrium payoff is negative. Consequently,
if a game is positive definite then by Proposition 1, any fully mixed equilibrium will
be unstable for the BR dynamics. However, positive definiteness is stronger than the
negative equilibrium payoff condition, as there are games that not positive definite but
for which z* - Az* < 0, and positive definiteness leads to the stronger result that the
mixed equilibrium is completely repelling.

Proposition 2 In a positive definite game, every fully mized equilibrium is a repellor
and every non-strict equilibrium is unstable under the best response dynamics.

13



Proof: In the Appendix.

We also have an instability result for the perturbed best response dynamics. Note
that a perturbed mixed equilibrium can only be unstable if the parameter 5 = 1/ is
sufficiently high. For very low levels of 3, the perturbed best response dynamics simply
converge to the centre of the simplex, which represents players picking actions entirely
at random.

Proposition 3 Suppose A is positive definite so that &- AE > 0 for all ¢ € RY\ 0, then
there exists a B* > 0 such that for all B > [* the fived point T3 of the perturbed best
response dynamics (14) corresponding to a completely mized equilibrium is repelling.
Furthermore, for any [ > 0 all orbits are bounded away from the boundary of the
simplex. That is, z;(t) > C(5) > 0 for large t > 0.

Proof: In the Appendix. &

5 Convergence of Average Play

We now consider what the above results on continuous time systems imply for the
underlying discrete time learning processes. Consider a monocyclic game, with a mixed
equilibrium unstable under the best response dynamics. Clearly, we would expect beliefs
for the discrete time system (2) to diverge as well. However, what happens to the time
average of play and of beliefs? Remember that under fictitious play x; the state variable
represents beliefs. The pure strategy that is actually played is given by b(z;). Let w; be
the time average of play, and w0, the time average of beliefs, under this process. That

is,
t

t
wy = ! b(xs), Wy = 1 Ts.
t Z t
s=1

s=1

For the perturbed process (13) corresponding to stochastic fictitious play, we can ex-
amine similar averages. We can write them as, respectively,

1 < 1
2t = ; ;M%% 2t = ; ;ll‘s-

Proposition 4 Suppose the game A is monocyclic, has a fully mized Nash equilibrium
x* and z* - Az* < 0. Assume the step size v, = v, a constant. Then for the discrete
time best response dynamics (2), for almost all initial conditions

lim lim w; = lim lim w; = Z.
v—0t—oo v—0 t—oo
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Proof: In the Appendix.

Now the upper-semicontinuity result in the proof covers also the discretizations (13)
since all limit points of p(y) as y — x and 5 — oo are contained in b(x). Therefore we
obtain,

Proposition 5 Suppose the game A is monocyclic, has a fully mized Nash equilibrium
x* and x* - Ax* < 0. Assume the step size v, = v, a constant. Then, for the discrete
time perturbed best response dynamics (13) from almost all initial conditions x

lim limz = Ilim lim 2 =2.
B—00,y—0t—00 B—00,y—0t—00

The importance of this result is that the time average of play in the large population
model of stochastic fictitious play converges to the TASP.

Corollary 1 Suppose the game A is monocyclic, has a fully mized Nash equilibrium x*
and x* - Ax* < 0. Then, in the large population model of weighted stochastic fictitious
play, for any € > 0, for all values of B and t sufficiently large and 6 sufficiently close
to one, the time average of play z, and the TASP T satisfy ||z — Z|| < e.

Furthermore, cyclic play actually leads to higher payoffs than playing the Nash
equilibrium. Specifically, on the TASP in monocyclical games, the average payoff in
the population b(z) - Ab(x) is zero whereas the condition for the Nash equilibrium to
be unstable is that the equilibrium payoff is strictly negative. Hence, since play will be
close to the TASP for [ large, the average payoff under weighted stochastic fictitious
play p(z;) - Ap(z;) will be close to zero and hence higher than in equilibrium.

Corollary 2 Suppose the game A is monocyclic, has a fully mixed Nash equilibrium x*
and x* - Az* < 0. Then, in the large population model of weighted stochastic fictitious
play, for any € > 0, for all values of 5 and t sufficiently large and 0 sufficiently close
to one, average payoffs satisfy |p(x;) - Ap(z)| < e.

We can compare the result of fictitious play under recency with two alternatives.
First, what happens to fictitious play under classical beliefs, where every observation
is given an equal weight? Proposition 1 establishes that in a class of monocyclic games
mixed equilibria are unstable under the BR dynamics, and by the stochastic approxi-
mation results of Benaim et al. (2005), beliefs under fictitious play should also diverge
from these equilibria. Since by definition classical beliefs are formed from the time
average of play, the time average, as for the BR dynamics, for most initial conditions
should approach the Shapley polygon. That is, there will be persistent cycles in the
time average of play and not convergence. Second, with very short memory as in a
Cournot adjustment process, that is if we take the limit of v to one, the time averages
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wy and Wy go to (1,...,1)/N as play cycles over the corners of the simplex. Similarly,
taking the double limit of 3 to infinity and ~ to one, the time averages z; and 2; would
also go to (1,....,1)/N.

One might also think that results on average play would be possible by taking the
limit of the optimisation parameter § downwards. Certainly, by results in Hopkins
(1999b) the mixed equilibrium of a monocyclic game will be locally asymptotically
stable for [ sufficiently low. Thus, for very low levels of g and v the time averages of
the PBR dynamics z; and 2; will be equal to 23 the perturbed equilibrium. However,
as [ increases the perturbed equilibrium becomes unstable. The problem is that, for
values of (3 close to the critical value 5%, little can be said about the attractors and the
time averages of the PBR dynamics. This is why we concentrate in the above results on
the limit where 3 is large and most orbits converge to a neighbourhood of the Shapley

polygon.

6 Some Stochastic Results

In this section, we consider stochastic fictitious play in single random mixing popu-
lation under the second model of a representative individual. Now the evolution of
beliefs is random rather than deterministic. This is because, first, choice is random,
the choice probabilities of any agent are given by p(x;) where p(-) is the perturbed best
response function. Furthermore, as only one player is observed each period, there is no
opportunity for noise at the individual level to be evened out over a large population.
As remarked earlier in Section 3, this approximates experimental setups, where also
we would expect the evolution of beliefs to be stochastic as the number of subjects is
certainly finite.

We show that in this case weighted stochastic fictitious play is ergodic, so that there
is a unique limiting distribution independent of initial conditions. This implies that the
time average of play always converges - in distinct contrast to the results under classical
beliefs.” Furthermore, in the limit as the forgetting parameter § approaches one, in
monocyclic games with an unstable mixed equilibrium, this distribution places no weight
on the equilibrium, but rather is clustered on the Shapley polygon. Consequently, as the
optimisation parameter 5 becomes large, the time average of the stochastic fictitious
play system approaches the TASP. Or, simply put, when the mixed equilibrium is
unstable, we expect the time average of stochastic fictitious play to be close to the
TASP.

Under the assumptions of the stochastic model, observed play X; is determined
randomly with probabilities p(z;). One can therefore calculate that the expected change

9For examples of simple games where the time average of stochastic fictitious play with classical
beliefs does not converge, see Benaim and Hirsch (1999).
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in x; will be
B(zi1|re) — 20 = v (p(2e) — 20), (18)

where under weighted stochastic fictitious play v, = 1 — §. This defines a Markov
process with the state of the process at any time given by x, € S¥, that is, the vector
of beliefs. This obviously evolves according to the actions chosen by the representative
player. Some results follow based on techniques developed by Norman (1968). We show
that the stochastic process is ergodic. That is, its limit distribution is independent of
initial conditions and the time average z; always converges.

Proposition 6 Weighted stochastic fictitious play is ergodic, with an invariant distri-
bution vs g(x) on SN. This implies that

Pr(tlim 2 =DPsp) =1
where P55 € SN and Dsg = fp(x)dygﬁ(x) = fxdl/(;ﬂ(x).

Proof: In the Appendix.

The task now is to characterise the unique limiting distribution. It is important
to realise that the theory of stochastic approximation still has a lot to say when ~, is
constant, provided it is “small”. In the model considered here, this is equivalent to o
being close to one. We can then show that the invariant distribution places no weight on
the repulsive equilibrium. That is, when the perturbed equilibrium is unstable under
the PBR dynamics, stochastic fictitious play with forgetting diverges from that rest
point as well.

Let ¢4 denote the perturbed best response vector field. That is

¢g(r) = —x + p(x)

for z € SV (the subscript is a reminder that given the definition (8) of the perturbed
best response function p(z), the vector field ¢ is parameterised by (). The Birkhoff
center of ¢ is the closure of the set of points # € SV for which = € w(x), where w(x)
is the omega limit set of = for ¢4.

Proposition 7 Let vy 5 be a limit point (for the topology of weak™ convergence) of
{vsp} (when 6 — 1). Then

(i) The support of vy s is contained in the Birkhoff center of ¢p.

(ii) If the game is positive definite and has a fully mized equilibrium x* then there exists
5% > 0 such that for any > *

v1,5(2p) =0,

where &3 is the perturbed equilibrium (satisfying ¢5(Zs) = 0) near x*.
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Proof: In the Appendix.

So, the limit distribution of the weighted fictitious play process places no weight on
the fully mixed equilibrium point. It then follows that, if there are no other equilibria
or other invariant sets, the distribution must put all its weight on the Shapley polygon,
and the time average must approach the TASP.

Proposition 8 Assume A is positive definite, has a unique Nash equilibrium that is
fully mized, and has a unique Shapley polygon that attracts all orbits of the BR dynamics
(8) starting away from the equilibrium. Then,

lim Py g = lim [ z dvyg(z) = 7. (19)

p—o0 p—o0

Proof: Any limit point of the invariant measures v1 3 as § goes to oo is an invariant
measure v of the best response dynamics.!’ Proposition 7 (ii) implies that v(z*) = 0.
Therefore, v is the unique invariant measure concentrated on the Shapley polygon,
which is given by

1 T
fav=g [ st
SN T Jo
where f: SY — R is any continuous function. Choosing f(z) = x; gives the result. 1

This result applies to any Rock-Scissors-Paper game (1) that is positive definite,
such as game B: the time average of weighted stochastic fictitious play approaches
the TASP as 6 — 1 and f — oo. However, in contrast for games like Example 2 in
Section 4 that have multiple equilibria, we cannot be so sure. Although in Example 2 all
the Nash equilibria are unstable under the BR dynamics, some are saddlepoints. The
question whether the limit invariant distribution of a constant step stochastic process
can put positive weight on equilibria that are unstable under the associated ODE has
only recently been addressed, see Benaim (1999) and Fort and Pages (1999). Though
this recent work establishes that no weight can be placed on a point that is completely
repulsive (all eigenvalues positive), saddlepoints can have positive weight, albeit only in
some rather exotic dynamical systems.!! Unfortunately, conditions that are sufficient
to rule out these unusual examples are themselves difficult to verify. Thus, while we
would expect the time average of stochastic fictitious play to be close to the TASP in
Example 2 and in similar games, it can only be determined case by case.

The main results of this paper are that weighted fictitious play can give results that
are extraordinarily different from the classical case. To clarify this claim, we conclude
this section by noting the difference is not so great if one looks at stable equilibria.
For example, when a game is negative definite, one can show that classical stochastic
fictitious play will converge with probability one to the associated perturbed equilibrium

10See Miller and Akin (1999) for invariant measures of differential inclusions.
UFor example, if the saddlepoint is part of a heteroclinic cycle, again see Benaim (1999) and Fort
and Pages (1999).
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(Hofbauer and Sandholm (2002)). As ¢ approaches 1, the probability that weighted
fictitious play will be far from the equilibrium falls to zero. Therefore, as we now see,
there is no qualitative difference between the limit as § goes to one and the classical
case, in contrast to the situation for unstable equilibria.

Proposition 9 For a negative semidefinite game,
v1(ig) =1 (20)

where 2 1s the unique perturbed equilibrium.

Proof: From Hofbauer (2000) and Hofbauer and Sandholm (2002) we know that Z4 is
unique and globally asymptotically stable under the PBR dynamics. The result then
follows from well known results in stochastic approximation, for example, Theorem 3
in Benveniste et al. (1990, p44) and/or part (i) of Proposition 7. i

7 Asymmetric Games

In this section, we consider games that are asymmetric in the evolutionary sense. That
is, there are two populations, one of row players, and one of column players. All players
only play against members of the other population. Again, it is possible to analyse both
the large population deterministic model and a truly stochastic alternative. However,
in the asymmetric framework the most natural way to treat the stochastic model is
to consider “populations” of size 1, where there is a single pair of players who play
repeatedly against each other.

Asymmetric games represent both an opportunity and a challenge. Hofbauer and
Hopkins (2005) show that in asymmetric games fully mixed equilibria are almost al-
ways saddlepoints and hence unstable under the PBR dynamics. That is, in contrast
to the symmetric situation where positive definite (unstable) and negative definite (sta-
ble) games are equally frequent, we would expect there to be divergence from almost
all mixed strategy equilibria. The only exceptions, as Hofbauer and Hopkins (2005)
find, are zero sum games and games that are linear transformations of zero sum games
(“rescaled” zero sum games). Furthermore, if there are no pure strategy equilibria for
learning to converge to, there will often be convergence to a Shapley polygon instead.
See Rosenmiiller (1971) and Krishna and Sjostréom (1998) for results in this direction.
Thus, the TASP will be the best predictor for weighted stochastic fictitious play in
many asymmetric games without pure equilibria. One problem is that there can be
several stable Shapley polygons, so a selection problem arises between different TASPs.
Another obstacle towards a general theory is that there are games without strict equi-
libria and stable Shapley polygons but chaotic attractors instead, see Cowan (1992) for
an example. But even in such games there is hope that time averages converge and the
limit is the same for most initial conditions.
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Consequently, we do not attempt to give any general results.!? Instead, we give some
examples which we hope will be helpful. We need to augment our notation slightly.
The first population choose from N strategies, the second population has M strategies
available. Payoffs are determined by two matrices, A, which is N x M, for the first
population, and B, which is M x N, for the second population. Beliefs of the second
population about the first at time ¢ are z; € SV and beliefs of the first population about
the second are y, € S™M.

The first example is how our initial example of an attracting Shapley polygon
changes when considered in the asymmetric framework.

Example 3 Consider the game

0]-3] 1
A=B=[1]0]-2 (21)
31110

where the payoffs of game B in (1) are given to both players. We know from our earlier
analysis that in the symmetric case, the BR dynamics converge to a Shapley triangle.
In the asymmetric version, the corresponding cycle in beliefs generates play that is
along the diagonal: row players always play the same strategy as column players. This
symmetric Shapley triangle is easily shown to be locally attracting in the bimatric BR
dynamics. Numerical simulations by one of us seem to suggest that from most initial
conditions beliefs will converge to it. However, this is in contrast to Berger’s (1995)
findings of other Shapley polygons (in the cyclically symmetric versions of the above
game). In particular there is a Shapley hexagon. The behavior near this hexagon seems
complicated and is not completely understood.

The next example shows how games that give rise to stable mixed equilibria in a
symmetric framework produce attracting Shapley polygons in the asymmetric alterna-
tive.

Example 4 Consider the game

01-1] 3
A=B=[2]0]-1 (22)
1] 3]0

where the payoffs of game A in (1) are given to both players. As this game is negative
definite, in the symmetric case the BR dynamics converges to the Nash equilibrium. In
the asymmetric version, beliefs will also converge if the initial conditions are such that
x = y. However, the equilibrium point is a saddlepoint and for all other initial condi-
tions, play converges to an asymmetric Shapley polygon following the strategy profiles
which the players never play on the diagonal.

120ne exception would be Proposition 6 on the ergodicity of stochastic fictitious play, which is easily
extended to the asymmetric case, see Hopkins (1999c).
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Finally, we can consider a game that is truly asymmetric. One player has payoffs
that are not monocyclic and yet there is no equilibrium in pure strategies.

Example 5 Consider another game

170]0 0]1]0
A=[0[1]0| B=[0]0]1 (23)
0] 0] 1 110]0

This truly asymmetric example is due to Shapley (1964) and has a unique fully mized
equilibrium. Shapley used this example to demonstrate the convergence of fictitious
play to what we now call a Shapley polygon. Again, the mized strategy equilibrium
s a saddlepoint under the BR dynamics, and from almost every initial condition, the
dynamics converge to the Shapley polygon.

What these examples together demonstrate is that attracting Shapley polygons exist
for a much wider class of games in the asymmetric setting than in the symmetric. Yet
at the same time this diversity prevents either easy classification or general results, but
see Rosenmiiller (1971) and Krishna and Sjostrom (1998).

8 Empirical Implications

We have seen that learning can converge to cycles, but the time average of those cycles
can be close to Nash equilibria. In this section, we do four things. First, we see if
this prediction is consistent with existing experimental evidence on games with mixed
strategy equilibria. One of our main arguments is that the time average of a cycle,
the TASP, can be very close to the time average of Nash equilibrium play. Thus our
second objective is to try to identify circumstances when in fact the TASP is distinct
from the Nash equilibrium, aiding identification. Third, we also try to identify how the
comparative statics of TASP’s and Nash equilibria can differ. Finally, we compare the
predictions of stochastic fictitious play with those of other learning models.

8.1 The TASP and Experimental Data

We start with one of the experiments of Morgan, Orzen and Sefton (MOS) (2005), who
examine repeated play of a version of the Varian (1980) model of price dispersion.’® A
group of subjects were repeatedly matched in pairs to play a duopoly game, in which
each player made a choice of price from the integers {0,1,2,...,100}. All sellers have
zero costs. Consumers are either informed or uninformed. The seller naming the lower

13We discuss here only one of their treatments: a duopoly with 5/6 of the consumers informed. MOS
ran other treatments with four sellers and/or a smaller proportion of informed buyers.
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price captures all the informed consumers and half of the uninformed and sells 66 units.
The higher price seller sells only to uninformed for a total of 6 units. If the two sellers
tie on price, they each sell 36. One can see that the best response to a price of 100 is
99 and the best response to 99 is 98 and so on, down to a price of 10. But charging the
maximum price of 100 guarantees you a profit of at least 600, while the highest profit
available if one charges a price of 9 is 66 x 9 = 594, and so 9 is dominated by 100. A
price of 100 also dominates all prices below 9. And so the best response to 10 is not 9
but 100. That is, there is a cycle of best responses like that in a RSP game and there
is no pure strategy Nash equilibrium. Although this game is not a monocyclic game,
numerical simulations suggest that the conclusion of Proposition 1 is still valid for this
game: from most initial conditions orbits of the BR dynamics converge to a unique
Shapley polygon that follows this best response cycle. However, what we can verify is
that this class of games are positive definite and therefore, its mixed Nash equilibria are
unstable under most known learning processes. This is analogous to the earlier result
of Hopkins and Seymour (2002) on the instability of the original Varian model.

Proposition 10 The discrete two player Varian model with strateqy set of N prices
{p1,p2, ..., pn} with U > 0 uninformed buyers and I > 0 informed buyers gives rise to
a positive definite game. Thus, any mized strategy equilibrium is unstable with respect
to the BR dynamics.

Proof: In the Appendix. &

Yet, curiously as MOS report, the data, aggregated across time and different sub-
jects, seems remarkably close to that which would have been generated by Nash equi-
librium play. Prices are somewhat higher, however. Furthermore, this distribution is
stable across time and different experimental sessions. Given the result on instability
above, this is not consistent with fictitious play with classical beliefs, under which the
time average should diverge. The Nash and empirical distributions are illustrated in
Figure 2.'* MOS also report that there is significant autocorrelation in prices, which is
suggestive of price cycles produced by a learning process which has not converged. We
have calculated the TASP for this game by numerical simulation of the BR dynamics
and the resulting distribution is also given in Figure 2. It is clearly closer to the data
than is the Nash equilibrium, though it is not an exact fit.

The difference between the empirical distribution and the TASP can be ascribed
to two possible explanations. First, under stochastic fictitious play, the time average
of play will only approach the TASP asymptotically. The experimental data may be
influenced by the initial conditions of the experiment. Second, under stochastic fictitious
play, play will only approach the TASP as 6 approaches 1 and 3 approaches infinity.
Estimates of these parameters from other experiments (see, for example, Battalio et al.

HFollowing MOS, the figure gives the cumulative distribution for the mixed strategy equilibrium of
the original Varian model which assumes a continuum of prices. Mixed equilibria of the discrete game
have distributions which are almost identical.
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Figure 2: Cumulative distribution functions for prices in the Varian duopoly model
under the mixed Nash equilibrium (N), the TASP (T) and the data from the experiments
of Morgan et al. (2006) (D).

(2001), Camerer and Ho (1999), Cheung and Friedman (1997) among others) are not
close to these limiting values and this may explain what we see here. For example, a
low value of 4 would imply something closer to a simple best response or Edgeworth
cycle, which in the current game implies undercutting on prices as far as 10 and then
a return to 100. This in turn would imply a uniform distribution on [10, 100]. The
actual empirical distribution is somewhere between the TASP distribution and such a
uniform distribution. Distinguishing between these explanations would require a careful
econometric investigation, which is beyond the scope of the current work.

Obviously, there are other potential explanations for behaviour of subjects in this
experiment. For example, a perturbed equilibrium such as a logit equilibrium could also
exhibit a stochastically higher distribution of prices than in Nash equilibrium. However,
while they might offer similar point predictions about the time average of play, there is
a crucial difference between the TASP and such equilibrium concepts such as logit or
quantal response equilibrium.
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The TASP is produced by non-stationary cyclical play, in contrast to the stationary
play implied by equilibrium whether it be Nash or perturbed Nash. Thus, the non-
stationary behaviour of subjects (also reported in similar experiments by Cason and
Friedman (2003), Cason, Friedman and Wagener (2005) and by Brown Kruse et al.
(1994)) makes a static equilibrium concept difficult to apply to these circumstances.
Stochastic fictitious play with classical beliefs would predict cyclic behaviour in Morgan
et al.’s (2006) experiments as the equilibrium is unstable, but at the same time would
predict the time average of play to be divergent. To our knowledge, only the current
theory, that identifies stable cycles in a learning process, can simultaneously explain
how the time average of data is similar but distinct from Nash, while at the same time
the distribution of prices is non-stationary.

To which it might be replied, play in experiments on games with mixed strategy
equilibria is always non-stationary. Such a finding was first reported by Brown and
Rosenthal (1990) but has been confirmed by many subsequent studies. Importantly,
Brown and Rosenthal (1990) were looking at data on constant sum games in which
mixed strategy equilibria are attractors under stochastic fictitious play (Hofbauer and
Sandholm (2002), Hofbauer and Hopkins (2005)). Thus, under stochastic fictitious play
under classical beliefs, asymptotically one would expect stationary equilibrium play.
However, this is no longer true with recency, with stationary play only possible as one
takes the limit of § to one (see Proposition 9). Thus, the difference between stable and
unstable equilibria under recency is much smaller than under classical beliefs.

But what the TASP implies about play is more precise than it simply being non-
stationary. Specifically, play should follow a best response cycle even as empirical
frequencies converge. In the context of oligopoly games such as those studied by Brown
Kruse et al. (1994), Cason and Friedman (2003), Morgan, Orzen, and Sefton (2006)
and Cason, Friedman and Wagener (2005), this would imply prices progressively falling,
followed by a relatively rapid rise to a high average price, followed by a slower fall and
so on. But this is what Cason, Friedman and Wagener (2005) and Brown Kruse et al.
(1994) both report. In contrast, if the mixed strategy equilibrium were stable under
stochastic fictitious play, players’ mixed strategies for ¢ close to 1 should be close to
Nash equilibrium frequencies. Play would not be stationary but there should not be
the distinct cycles present in the unstable case.

Thus, a clearer test of the TASP would be comparative. Run two apparently similar
games such as A and B in (1) experimentally and test for differences in behaviour.
This has been done by Engle-Warnick and Hopkins (2005). They investigate two 3 x 3
games that are asymmetric in the sense of Section 7, and each having a unique mixed
strategy equilibrium. The equilibrium of one game is unstable and the other stable
under classical fictitious play. The time average of play converges in both cases, rejecting
the main predictions of the model under classical beliefs, while being consistent with
weighted stochastic fictitious play. The level of serial dependence is higher, that is
cycling is more pronounced, in the unstable game, which gives support to our current
hypothesis. Clearly, however, if the differences were small or non-existent, it would be
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strong evidence against the TASP.

8.2 When is the TASP distinct from Nash equilibrium?

We move on to our second goal: to identify games where the TASP is significantly
different from Nash equilibrium. Note that for any game that is completely symmetric
the mixed Nash equilibrium and the TASP will be identical. For example, if we take
the general RSP game in (1) and set a; = ay = ag > by = by = b3, then the Nash
equilibrium and the TASP are both equal to (1/3, 1/3, 1/3). Since both the TASP and
the Nash equilibrium are continuous in payoffs, games that are almost symmetric will
give rise to only small differences beween the TASP and Nash. The game B in (1) is
an example of this.

However, it is possible to construct examples where the differences are much larger.
Take this variant of the RSP game.

0]-3]1
c=[1]0]-3 (24)
30y ] 0

For by small, it can be verified that the game is positive definite and thus the mixed
equilibrium is unstable. Note that if we take the limit of b, to zero, the Nash equilibrium
approaches (9, 13, 12)/34 ~ (0.26,0.38,0.35), still close to the centre of the simplex.
In contrast, the limit of the TASP as by goes to zero is (0,1,0). The high weight
placed on the second strategy is a consequence of the vertex As of the Shapley polygon
approaching the point (0,1,0) as by approaches zero. On the edge between A; and A,,
the BR dynamics are 5 = 1 — x5 and so when x5 is close to one, the speed at which
they approach A, is extremely slow. Thus, a very long time is spent on the second edge.

In the following game the difference between the TASP and any Nash equilibrium
is even more striking. It consists of a RSP game with the addition of another strategy
D (for “Dumb” as for ¢ > 0 it is not a best response to any pure strategy).

0]-3[1]c
110]|-3]|c

RSPD = ST1 101 (25)
d|{d|[d|O0

When ¢ > 0, then this game has no pure strategy equilibrium. For example if ¢ = 1/10
and d = —1/10, the unique Nash equilibrium is fully mixed and equal to (1,1,1,17)/20.
It is possible to calculate that, under the BR dynamics, the Nash equilibrium is a
saddle with the stable manifold being the line satisfying x; = x5 = x3. Thus for almost
all initial conditions, the BR dynamics diverge. When the weights on the first three
strategies are no longer equal, the fourth strategy is not a best reply, so that any weight
on x4 tends to die out as play diverges from equilibrium. But on the face where x4, = 0,
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we have the original RSP game, and with the above parameter values, there will be a
Shapley polygon on the face. Indeed, it is easy to calculate the TASP in this case as
(1/3,1/3,1/3,0). That is, the Nash equilibrium places a weight of 17/20 on the fourth
strategy and the TASP places no weight on it whatsoever. For this game, the Nash
equilibrium and the TASP are quite distinct.

A potential difficulty in testing the above examples experimentally is that the clarity
of the above predictions is reduced once noise is introduced. For example, the time
average of any limit cycle of the PBR dynamics in the game RSPD will give positive
weight to the strategy D, as the PBR dynamics always give positive weight to all
strategies. Similarly, also in RSPD, the logit equilibrium corresponding to the Nash
equilibrium will place greater weight on R, S and P than the Nash equilibrium does.
Nonetheless, the initial distinctions are so great, we would expect some difference to
remain. Thus, if play was closer to Nash equilibrium than to the TASP even when
monetary incentives were high, we could reject the TASP in favour of Nash equilibrium.
We make this point to emphasise that the current theory does offer testable predictions.

Furthermore, the comparative statics will be different. Suppose we double all the
payoffs in the matrix (25). The Nash equilibrium will not change. However, as such
a change is similar to an increase in the parameter (3, the logit equilibrium will move
closer to the Nash equilibrium, and the weight it places on strategy D will increase.
But an increase in payoffs will mean that stochastic fictitious play should approach the
TASP more closely. That is, the weight on D should decrease, a change that is in the
opposite direction to that of the logit equilibrium.

8.3 Are the Comparative Statics of the TASP Different from
those of Nash Equilibrium?

As point predictions are sometimes difficult to test, we can also perform some simple
comparative statics. Take a symmetric RSP game and then add a constant to the
payoffs to the first strategy.

e | —a+e|b+e
b 0 —a (26)
—a b 0

If the parameter ¢ is zero, the game is entirely symmetric and the Nash equilibrium and
the TASP are equal to (1/3, 1/3, 1/3). We can calculate the weight placed on the first
strategy in the Nash equilibrium as

1 b—a

§+8 3(a% + ab + b?)

That is, when a > b, which would imply that the mixed equilibrium is unstable under
the BR dynamics, we have a counterintuitive result: an increase in the payoffs of the
first strategy results in a reduction in the frequency of the first strategy in the mixed
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equilibrium. In contrast, one can calculate that

0Fi| (a—0)*(a+0)
Je |._, 3ab(a? + ab+ b?)log(a/b)

S

Thus, the effect is the opposite. When a > b, so that the TASP exists, an increase in
the payoff to the first strategy results in a greater weight on the first strategy in the
TASP.

8.4 Does the TASP Give a Prediction Distinct from that of
Other Learning Models?

Fictitious play is not the only model of learning in games. It is important to clarify
whether the prediction of convergence to the TASP is robust across different models,
or whether other models suggest a completely different outcome. First, reinforcement
learning in economics has been popularised by Erev and Roth (1998). Hopkins (2002)
shows that the asymptotic predictions of their model are largely similar to those of
fictitious play. For example, mixed equilibria in asymmetric games are generically
unstable under reinforcement learning. Now, the basic one parameter model of Erev
and Roth has a step size that is of order 1/t so that its time average will not converge
to a mixed equilibrium in such circumstances. However, their three parameter model
(which allows for noise and recency) will, like weighted stochastic fictitious play, be
ergodic (Hopkins (1999c)) and therefore will have a convergent time average even when
all equilibria are unstable. Whether this time average is related to the TASP is, however,
at this point pure speculation.

Second, there are learning models that have better convergence properties than
fictitious play (see Young (2004) for a recent survey). One is due to Hart and Mas-
Colell (2000). In their model, the time average of play converges to the set of correlated
equilibria of the game in question. In the RSP games the only correlated equilibrium is
the Nash equilibrium (see Viossat (2005)) and so the Hart—Mas-Colell model predicts
learning should always converge in this class of games, something that is in distinct
contrast with the learning models considered here. In contrast, the Shapley game
(Example 5 in this paper) is an example of a game where if beliefs cycle on the Shapley
polygon, play follows the best response cycle that avoids the outcomes where both
players receive a payoff of zero. This pattern of play is a correlated equilibrium. In such
games the model of Hart and Mas Colell is not necessarily in conflict with the weighted
version of stochastic fictitious play. However, the set of correlated equilibria is typically
large, whereas the TASP is a single point, and as a prediction it offers greater precision.

Finally, Foster and Young (2003) introduce a learning model where each player forms
hypotheses about the strategies of her opponents and plays (almost always) a best
response given her beliefs. When her observations of her opponents’ play are sufficient
to reject her current hypothesis, she forms a new hypothesis. Foster and Young show
that this learning model always converges to Nash equilibrium. More precisely, there are
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parameter values of the model, such that players’ mixed strategies will be close to some
Nash equilibrium for most of the time in any game. It thus offers a different prediction
from stochastic fictitious play, whether beliefs are weighted or classical, which predicts
that players’ mixed strategies should diverge from equilibrium in some games such as
game B in (1).

9 Conclusions

Much of the recent work on learning in games has been concerned with selection be-
tween different Nash equilibria, or with providing an adaptive basis for equilibrium play.
In this paper, we take a completely different approach. We found that in some games
learning under stochastic fictitious play has a non-equilibrium outcome, which never-
theless gives a precise prediction about play. We introduced the TASP (time average of
the Shapley polygon), building on earlier results by Shapley (1964) and Gaunersdorfer
and Hofbauer (1995), as an outcome for the time average of play. This we suggest
could be useful in understanding behaviour in a number of economically interesting
models, including the Varian (1980) model of price dispersion and Bertrand-Edgeworth
competition.

This also represents one of the few attempts at analysis of learning in games when
players place greater weight on more recent experience. Most previous work on stochas-
tic fictitious play and reinforcement learning has examined models with learning that
slows over time. This is despite the fact that most empirical work fitting learning mod-
els to experimental data has found that weighting recent experience more highly gives a
better fit. The two types of models do give similar predictions when considering games
that have Nash equilibria that are stable under learning. The finding here, however, is
that they give radically different results when considering equilibria that are unstable.

In this paper, we have obtained a series of theoretical results on learning. These are
asymptotic results that also depend on taking limiting values of two key parameters
that determine the level of optimisation and recency respectively. This may generate
some skepticism about their empirical relevance, firstly because real phenomena occur in
finite time, and second, because estimates of these parameters from experimental data
are not close to these limit values. However, if the TASP is to be dismissed on this basis,
so should Nash equilibrium. If one takes stochastic fictitious play or its variants such as
EWA learning (Camerer and Ho (1999)) seriously as models of human behaviour, Nash
equilibrium play only occurs as the asymptotic limit of learning behaviour, and then
only if the appropriate parameters are at their limit values. Indeed, recent research
has found that perturbed equilibria such as quantal response equilibria (McKelvey and
Palfrey (1995); Anderson et al. (2002)), that allow the optimisation parameter not to
be at its limit, often fit experimental data better.

The point is that the TASP, like Nash equilibrium, offers a qualitative prediction
about behaviour in games that can be made without any parameter estimation. Thus,
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these concepts can still be empirically useful as an initial hypothesis. One can then
go on to make their predictions more precise by using richer models that employ more
parameters. In the case of the TASP, it can be generalised by looking at the time
average of stochastic fictitious play for which there are two parameters than can affect
the long run outcome. Just as for quantal response equilibria, there is an optimisation
parameter, but in weighted stochastic fictitious play there is also the parameter that
controls the degree of forgetting or recency. However, these parameters have been jointly
estimated in existing attempts to fit stochastic fictitious play to experimental data (see
Cheung and Friedman (1997), Camerer and Ho (1999), Battalio et al. (2001) among
others). There is, therefore, no fundamental barrier to taking the TASP to the data.

Appendix

Proof of Proposition 1: Let B be set of points 2 € S¥ with 7 being the unique best
reply, and B% be set of points z € SV with precisely two pure best replies i and j. The
union of all B’ is open, dense and has full (N — 1) dimensional Lebesgue measure in S.
Let B =J;_, B'U{J;_, B"'". We will show that B is strongly forward invariant under
the best response dynamics and all orbits there approach a unique Shapley polygon
contained in B.

Suppose x € B!, i.e., (Az); > (Ax); for all j # 1. Then x(t) = etz + (1 — e ')e
and (Az(t)); = e '(Az); and for j # 1,2,

(Az(t)); = e (Ax); + (1 — e aj1 < e H(Ax); < e "(Ax); = (Az(t))1.  (27)

So along the ray from z to e;, the best response can only switch from 1 to 2 which
indeed must happen for some ¢ > 0, since ag; > 0.

Hence the orbit hits B'2. The only way to continue is towards es. Repeating the
above argument shows that orbits in B'2 move into B%, etc, and finally from BV! back
into B'2. This defines a continuous return map f : BN! — BN!. f is single-valued as
solutions starting in B are unique. f is a composition of projective maps and hence
a projective map itself. Being uniformly continuous, it can be extended to the closure
BN of the convex polyhedron BN!. A fixed point of f in B! generates a closed
orbit under the best response dynamics, an invariant N-gon, i.e., a Shapley polygon.
However, since B! contains the interior equilibrium x* we cannot directly apply a fixed
point theorem to prove the existence of the Shapley polygon.

Define V() = max;(Azx);. As shown above for z € B!, along any solution z(t) € B,
V(x(t)) = e 'V (z). Hence V(z(t)) — 0, as t — oo.

The set By = BN {z € S : V(x) = 0} is forward invariant and its closure contains
no equilibrium, since V(23) = 23-AZ3 < 0 holds for each equilibrium 24 (by assumption
for the interior equilibrium z*, and automatically for each boundary equilibrium of a
monocyclic game). Since V(z*) < 0 and V(e;) = a;41,; > 0, each ray from z* to a
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point = near e; hits the set {VV = 0} in a unique point which is thus contained in
Byt = BT n{r € S : (Az);y; = 0}, a convex (N — 2)-dimensional set. The
sets By are therefore (N — 3)-dimensional. The closure BY! is a closed and convex
polyhedron, mapped by f into itself. So by Brouwer’s fixed point theorem, it contains
a fixed point (which cannot be an equilibrium). Its orbit is a Shapley polygon I'.

To prove uniqueness and stability of this Shapley polygon, we use the projective
metric d, as in Gaunersdorfer and Hofbauer (1995). The distance between two points
z,y € int B! (the relative interior'® of BJ'!) is given by the logarithm of the double

ratio
o) = 1og (222,
rq yq

with p, ¢ being the intersection points of the line through z, y with the relative boundary
of BN, Since f(B{') C By, we have d(f(z), f(y)) < d(x,y) for x,y € int BY!. Now
(27) holds for j # 1,2 with a strict inequality even under the weaker assumption
(Az); > (Az); for all j and (Az); > (Ax)s. This shows that for z € bd B{* (with at
least a third best reply j besides N and 1), f(z) € int BY! = B¥ nint S¥. Hence
f(BYY) C int BY'Y, and hence d(f(x), f(y)) < d(x,y) for x,y € int B)'* with = # y.
Hence, by a variant of Banach’s fixed point theorem, the fixed point of f is unique and
attracts all orbits in B,

Hence all orbits in B approach the Shapley polygon I', and I' is Lyapunov stable. 1

Remark. The complement of B consists of all points with at least two non—
successive pure best replies (or more than two best replies). The behavior of orbits
starting outside B depends in an intricate way on the payoff matrix. Typically, solu-
tions starting in ¢ B are not unique. From every = ¢ B (except possibly x*) there
exists at least one solution that enters B and hence converges to I'. The solutions stay-
ing in S™ \ B can converge to a Nash equilibrium or, for N > 5, to an unstable Shapley
polygon contained in SV \ B.

Proof of Proposition 2: We first show that a positive definite game has only finitely
many equilibria. Suppose there are two equilibria,  and z, satisfying
(Az), = (AZ)y = -+ = (AZ)n (28)

and similar for . Then (Z —)-A(Z — Z) = 0 contradicts positive definiteness. Applying
these to ‘subgames’ (with restricted support) which are still positive definite we see that
each face of Sy contains at most one equilibrium.

In particular, this implies that every solution of the BR dynamics is piecewise linear,
see Hofbauer (1995).

We now use the Ljapunov function from Hofbauer (2000)

V(z) = m?X(Ax)i —z-Ax. (29)

15The relative interior int C' of a convex set C' C RY is the interior of C' within the affine space
spanned by it. The relative boundary of C' is then given by bdC = C'\ int C.
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Note that V(z) > 0 for all x and V(z) = 0 if and only if = is a NE. We show that
in a positive definite game, V' (z(t)) increases along almost all solutions x(t) of the BR
dynamics starting near an equilibrium Z. Since V(x) = (b—x)-Ax for b € b(x), we have
along a piecewise linear solution

V=bAi -3 Arv—ao-Ai=(0b—2)-Ab—z) —3-Ax = (b—2x)-A(b—x) — V(z) (30)
The first term is nonnegative in a positive definite game.

Suppose that & is an equilibrium with (28). (Usually such equilibria are completely
mixed.) Let I be the support of Z. Suppose for some z # 2, I C b(x). Then & € b(x) and
Az > z-Ax. On the other hand, (28) implies A% = x-AZ. Hence (z —x)-A(z—z) <0,
contradicting positive definiteness. Hence, for all x # Z, b(x) does not contain I. So
b(x) is contained in boundary faces opposite to . Therefore the distance |b — x| (with
b € b(z)) has a positive lower bound for « close to (but different from) . Using positive
definiteness again, this shows that the first term, (b—x)-A(b—z), in the RHS of (30) has
a positive lower bound, so V' increases along each orbit near . Hence % is a repellor.

Finally consider an arbitrary equilibrium Z with [ denoting its set of pure best
replies. Then for x close to Z, the pure best replies to x are contained in /. Hence the
face spanned by [ is locally (near Z) invariant under the BR dynamics (and attracts
orbits nearby). Hence we can apply the above argument to the game with restricted
strategy set I and conclude that all orbits in this face starting close to £ move away from
2. Hence 7 is unstable. This argument works whenever I has at least two elements, i.e.
Z is not a strict equilibrium. g

Proof of Proposition 3:'¢ We take the Liapunov function from Hofbauer (2000) and
Hofbauer and Sandholm (2002)

U(z) = (p(x),x) = n(z,2) = (p(x) — ) - Az + Av(p(z)) —v(z)) =0 (31)

where again A = 57!, Then U has a minimum on SV at Zg. Then, under the dynamics
(14), we have

U= (p(z) =) - Alp(z) —2) + Ap(z) —2) - (v(p(2)) — /()

Now, the second term on the right hand side is negative by the concavity of v(-), but the
first term of right hand side is positive as A is positive definite by assumption. Then in
the neighbourhood of x*, for 3 sufficiently large, we have U positive, and the perturbed
equilibrium is a repellor. §

Proof of Proposition 4: The Shapley polygon I' with corners A;,---, Ay is an
attractor (= asymptotically invariant set) for (3) whose basin of attraction B is open
and dense in SY, and the complement SV \ B has zero Lebesgue measure. For small
v > 0, the map (2) has an attractor nearby with basin of attraction exhausting B as

16This result on instability is proved by means of a Liapunov function, but one could also apply the
local linearisation result of Hopkins (1999b).
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v — 0. (This is well-known for discretisations of differential equations, see e.g. Stuart
and Humphries (1996) or Garay and Hofbauer (1997). The corresponding result for
differential inclusions needed here for the BR dynamics follows readily by combining
their results and methods of proof with those in Benaim et al. (2005)). The time
average wW; converges to a space average over the attractor of the map (2) with respect
to some invariant measure, which tends to the unique measure invariant under the BR
dynamics concentrated on the Shapley polygon in the limit as vy goes to zero (Miller and
Akin (1999)). The space average with respect to this unique invariant measure equals
the time average given by the expression (5). The other limit follows from the relation

N 1 11
wy — Wy = — Z (b(xs) — ) = _;(xt_i'_l —1x1) — 0,

as t approaches infinity. §

Proof of Proposition 6: If the player chooses action ¢ then denote that event as i
and event operator f;. Norman (1968) defines a Markov process on a metric space with
metric d to be “strictly distance diminishing” if p(f;) < 1 for all i where

o A @) S )

p(f) = SUP =)

Lemma 1 The Markov process defined by stochastic fictitious play with forgetting, that
is, with belief updating rule (12) with v, = 1 — ¢ is strictly distance diminishing with
respect to the standard Fuclidean metric.

Proof: Given arbitrary states x,2’, f;(x) = (1 —0)X; +dz and f;(z') = (1—9)X;+dz’.
It is easy to show therefore that d(f;(z), fi(z")) = dd(x,z") and p(f;) = 0 for all possible
events. |

Let T, (x) be the set of states reached with positive probability in n steps if we start
at x. Let d(S7,.52) be distance between two subsets S; and Sy of the state space. That
is,

d(S1,S2) = inf  d(z,2')

rE€S1,x'E€Ss

Then Norman (1968) was able to show that if the following condition holds

tlim d(Ty(x), Ty(2")) =0 for all x, 2" € S (32)

then a strictly distance diminishing Markov process is ergodic. Norman’s result (The-
orem 2.2, p66) applies to strictly distance diminishing Markov processes on a compact
metric space, here SV, where the number of possible events are finite, here N. So, we
simply need to verify the condition (32). From an arbitrary initial state z; there is a
positive probability that each player chosen continues to choose the first action for an
indefinite number of periods. As this run of play continues, x; will approach the state
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X;. This state is therefore accessible from any initial state and from the theorem of
Norman, the Markov process is ergodic. §

Proof of Proposition 7: The probability measure v, 5 is an invariant measure of the
dynamics induced by ¢4z. Hence by the Poincaré recurrence theorem, its support is
contained in the Birkhoff center of ¢4 (see e.g. Benaim, 1998, Corollary 3.2).

The second assertion follows from Theorem 3.2 of Fort and Pages (1999). According
to this theorem, it suffices to verify that properties (I) and (II) below hold in order to
conclude that v1 3(23) = 0.

(I) The process (x;) can be written as
Tir1 — 2 = YH (74, wip1) (33)

where (w;) is a sequence of i.i.d. random variables, and (z,w) — H(z,w) is a
bounded measurable function continuous in z at point 4, for almost every w.

(IT) (a) There exists a C? real valued function U defined on a neighborhood W of Zg
in SN such that for all 2 € W\ {ig}, (VU (2), ps(x)) > 0 and U(x) > U(Zp)

(b) there exists u € ker D?U(#3)* such that the variance term

N

X — X ~ ~ ~
E((%,’Wl% = g) = Y (—ip+ e, u) R,
=1

is positive.

Let (w¢) be a sequence of independent uniformly distributed random variables in [0, 1].
Set H(z,w) = —x + ¢; for Z;;Bpj(:c) <w < Y opj(z) and i = 1,...,N. Then
x — H(z,w) is continuous at &4 for every w € [0,1] \ Uij\il{z;;%) T}, by continuity of
the map = +— p(z). Furthermore

Pr(H(z,w;) = —x + ¢;) = pi(x).
Hence, we can always assume that (x;) satisfies (33).

We now check (/7). The function U(x) = 7(p(z),z) introduced in the proof of
proposition 2 satisfies (a). A simple computation yields

VU(x) = AT (p(z) — 1) — Az — M (2)
and, using A = 51,
D*U(z) = A'p'(2) — (A+ A") = W'(2) = =BA™ " (p(2)) A — (A+ AT) —"(2)/8
so that for (3 large enough DU (2) is invertible (5 det(D*U (x)) + — det(A*v" (p(x)) " A) #
0) and condition (b) reduces to prove that

N
Z<—i‘ﬂ + €i,u>2i’gyi >0

i=1
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for some u in the tangent space of S™. This is obviously true since the family (e; —
Zp)i—1,. .~ spans the tangent space of SN 1

Proof of Proposition 10: With prices {p1,ps, ..., pn} (given in ascending order), the
payoff matrix has the form

j’UN[.]/2 JDN(']/2 pN<U;+’[)/2

where U is the number of uninformed and [ is the number of informed.

Let A be the N —1x N —1 matrix formed by the formula ag;; = a;;—a;n—anj+any.
The matrix A is positive definite with respect to R if Ay is positive definite. We find
that
PN—P1  PN—P2 DPN—D3 --- DN —DN-1 |
PN — P2 PN —P2 PN —P3 ... PN —PN-1

Ag+Af =1 pv—ps PN —DP3 DN — D3

| PN —PN—-1 PN — PN-1 -+. DN —DPN-1

One can subtract columns of a matrix from other columns without any change to its
determinant. Here, we can can subtract the N — 1th column from all others, then the
(N —2)th from all to its left and continue recursively until we have an upper triangular
matrix with po — p1,ps — p2, ....,pnv — py—1 on its diagonal. The determinant is clearly
positive. One can repeat the procedure for each principal minor and obtain a similar
result. Thus, Ay is positive definite, and hence so is A with respect to R{’. Instability
of mixed strategy equilibria then follows from Proposition 2. §
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