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Abstract

Methadone is used as a substitute of heroin and there may be certain groups

of users according to methadone dosage. In this work we analyze data for

314 participants of a methadone study over 180 days. The data, which is

called category-ordered data throughout this study, consists of seven cate-

gories in which six categories have an ordinal scale for representing dosages

and one category for missing dosages. We develop a clustering method

involving the so-called p-dissimilarity, modification of Prediction Strength

(PS), a null model test, and two ordering algorithms. (1) The p-dissimilarity

is used to measure dissimilarity between the 180-day time series of the par-

ticipants. It accommodates categorical and ordinal scales by using a param-

eter p as a switch between data being treated as categorical and ordinal.

It measures dissimilarity between observed dosages and missing dosages by

using a parameter β. Also, it could be applied in a wider field of applica-

tions, such as survey studies in which questions use choices on the Likert

scales and a don′tknow-category. (2) The PS determines the number of

clusters by measuring the stability of clusters, and the Average Silhouette

Width (ASW) measures coherence. We propose rules to modify PS so that

it can be fully applied to hierarchal clustering methods. Next, instead of

preselecting a clustering method, we let the data to decide which clustering

method to use based on cluster stability and cluster coherence. The parti-

tion around medoids (PAM) method is then selected. (3) We propose the

null model test to determine the number of clusters (k). Many methods

for the determination of number of clusters give values for k ≥ 2 based

on cluster compactness and separation, and suggest to use the k with the

highest value. Viewing this question from a different perspective, for a fixed

k and a selected clustering method, the null model test uses a null model

and parametric bootstrap to explore the distribution of a statistic under the



null assumption. A hypothesis test for each k can then be performed. For

our data, we construct a Markov null model without structure of clusters,

in which the distributions of the categories are the same as those of the

real data. We apply the null model test to investigate whether the clusters

found according to PAM and ASW/PS can be explained by random varia-

tion. (4) We use heatplots to evaluate the quality of clustering. A heatplot

is a graph that represents data by colour. It consists of horizontal lines

representing the data for objects. However, the interpretability of a heat-

plot strongly depends on the location of the objects along the vertical-axis.

We propose two algorithms to locate objects on a heatplot. The first algo-

rithm using multidimensional scaling (MDS) is for general use. The second

algorithm using projection vector is for the PAM method. Each of them

locates objects in a heatplot. The heatplot can then be used for informa-

tion visualisation. It displays clustering structures, relationships between

objects and clusters in terms of their dissimilarities, locations of medoids,

and the density of clusters. Despite the fact that no significant clustering

structure is observed, the sequences of categories for clusters are clinically

useful. The sequences of categories indicate detoxification. Our data shows

participants with low heroin addictions attempted to reduce/quit the use

of methadone at the third month. As for participants with high addictions,

few attempted to reduce the use of methadone at the fifth month and most

required more time to finish the detoxification process. Also, we find the

heroin onset age might have an influence on the patterns of detoxification.
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Notations

The following notations, abbreviations and defined terms are used throughout this the-

sis. They are also introduced in their first occurrence in each chapter.

Symbol Definition and Explanation

k denotes the number of clusters

xit denotes data for the tth variable for object i.

xi represents data for object i.

d(., .) denotes dissimilarity between variables

D(., .) denotes dissimilarity between objects \ clusters

Ci denotes a category i, representing a set of dosages

δii′(t) is equal to 1 when both objects i and i′ for their tth values are non-missing,

and equal to 0 otherwise.

p is a tuning constant, 0 < p < 1, for measuring dissimilarities between objects.

αii′(t) refers to dissimilarity between the tth values for objects i and i′.

It is set to the absolute value of the difference between the tth values

β(t) refers to dissimilarity between the tth values in which one or both of them are

missing values.

Symbol Explanation

MMT Methadone Maintenance Therapy

ASW(k) Average Silhouette Width index for k clusters

PS Prediction Srengh

MDS Multidimensional scaling

Dosage314 dosage data for the 314 participants for 180 days

CO314 category-ordered data for the 314 participants

Term Definition

stable methadone dosage means that categorized dosage for a participant consists

of long sequences of categories.

initial date means the first date on which a participant joined the MMT.

category-ordered data means the data that consists of categories, referring to

sets of dosage and a set of missing dosage.
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Chapter 1

Introduction

1.1 Background

Drug abuse creates problems in society and the economy. The statistical news released

by the Ministry of Justice of Taiwan in 2010 showed that among all arrests for drug

abuse violations, 74.2% of them were arrested on charges of Schedule I drugs, defined

as drugs with a high potential for abuse and highly addictive. Schedule I drugs include

heroin, opium, morphine, etc. Moreover, there was an increasing trend in the number

of arrests for abusing Schedule I drugs over the years. Winick [1962] found addicts

mature out of addiction as a reflection of their life cycle or they mature out of addic-

tion as a function of the length of their addiction. Termorshuizen et al. [2005] showed

that the concept of “maturing out” to a drug-free state did not apply to the majority

of drug users. Also, Termorshuizen et al. [2005] examined harmfulness to drug users

by the mortality rates and reported at least 27% of drug users died within 20 years of

starting regular drug use.

Among the abuse Schedule I drugs, heroin is the most expensive and highly addic-

tive. Heroin-dependent individuals who aim at overcoming their addiction are offered

a methadone maintenance therapy (MMT) for many years. The main purpose of the

MMT is not to help them to achieve abstinence but to minimize the harm associated

with the use of heroin (Ball and Ross [1991]; Ward et al. [1999]). Research showed that

MMT had a positive effect on drug users and on society (Gossop et al. [2000]; Marsch

[1998]; Masson et al. [2004]; McLellan et al. [1985]; Powers and Anglin [1993]; Strain
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1.1 Background

et al. [1993a,b]). The effect of methadone lasts 24 hours and consequently it has to be

taken on a daily basis. To date there is no clear principle for the determination of the

methadone dosage. Physicians prescribe dosages based on their own intuition.

Some researchers studied methadone dosages. Maxwell and Shinderman [2002] re-

ported that higher methadone dosages (above 100 mg/day) were more effective in treat-

ing heroin addicts, while Maremmani et al. [2003] observed that many heroin addicts

had positive outcomes with lower dosages. Both high and low dosages are consid-

ered as good prescriptions. There is no principle for determining proper methadone

dosages. Some researchers studied the association between methadone dosages and

groups. Langendam et al. [1998] observed that the mean methadone dosage was higher

for ethnic west Europeans, older drug users, HIV-positive drug users, longer duration

of methadone use and so on. Murray et al. [2008] surveyed 54 participants from a

methadone maintenance clinic and found that methadone dosage might be uniquely re-

lated to the personality disorders. On the other hand, Gossop et al. [2000] performed a

one year follow-up study on 478 participants. The Euclidean distance K-Means cluster-

ing method was used to group their study participants by the frequency of their illicit

drug use over time. Four groups were identified and two groups showed substantial

reductions in their illicit drug use and criminality. They concluded that the methadone

dosage might be related to a certain group in which MMT was appropriate. Their

works were limited in using self-reported data that was not reliable but their finding

might be clinically useful. It was possible that high/low dosage was better in treating

some groups of people. However, due to the unreliable data, they failed to address how

to find the certain group.

Ideally, drug users are expected to reduce the use of heroin by addicting to methadone

and then to quit use of methadone. The dosages should consequently have a pattern

in which they go up at the beginning of the treatment and later go down. This would

indicate detoxification. Physicians think participants with such a dosage pattern and a

high attendance rate, most will have a positive outcome. Therefore, we are interested

in the participants’ behaviour, that is, patterns of daily methadone dosage.

2



1.2 Motivation

An MMT project was launched by a hospital in Taiwan. The project provided an

opportunity to acquire more information about this therapy and offered an opportu-

nity to obtain more insight into MMT by assessing patterns of daily methadone dosage

administered to participants. Two types of methadone dosage were recorded by an

MMT database system, one being the dosage of their weekly prescriptions prescribed

by physicians and the other the daily dosage they had taken recorded by pharma-

cists. Participants would occasionally have multiple prescriptions but only one record

of dosage taken in a single day. Besides, there were occasions on which participants

abused drugs and took methadone at the same time, so participants were allowed to

take dosage that was lower than the prescribed dosage to avoid overdosing. Of those

who continued to abuse heroin while receiving the MMT, there were some fluctuations

in their dosage taken records as a result of their demand for daily methadone differ-

ing. By and large, following a weekly prescription, a participant took methadone daily

for a period of seven days. The prescription records were constant over every 7-day

period, whereas the dosage taken records varied over time. Moreover, many partici-

pants dropped-off from MMT and returned days later, which resulted in lots of missing

data in their dosage taken records. These missing records were not missing at random.

Although the numerical daily methadone dosage contains variation and non-random

missing values, these records were considered to be a more reliable data. More details

of the MMT data can be found in Chapter 2.

The aim of our work is to develop a method to divide participants into groups

and then find the differences between the groups. Unfortunately, without the data of

whether participants achieve abstinence or not, we do not understand the relationship

between treatments and final outcomes. However, by clustering, we can study about the

association between dosage patterns and demographic factors, the degrees of addictions,

retention of MMT. Also, the dosage patterns provides the possibility of developing a

guideline for prescribing a proper methadone dosage.

1.2 Motivation

The initial prescription dosage for the participants who had no experience of methadone

was 20 mg. The physicians adjusted the dosage of methadone every seven days after dis-

3



1.2 Motivation

cussing with participants their preferred prescription dosage settings. 10 mg was often

used as a unit of adjustment of prescription dosage. While receiving MMT, partici-

pants reported the frequency of their drugs use, from which physicians could measure

the effectiveness of the MMT. However, this kind of self-reported data was not reliable

and not validated. The physicians of the MMT project observed that abused drugs

would reduce the demand of daily methadone. As a result, there were fluctuations or

missing values in the dosage taken records. These fluctuations reflected the patterns

of drug abuse. There were reasons for which participants abused drugs. One of which

was they did not believe in the treatment. Ball and Ross [1991] said participants who

remained for more than six months had a marked drop in their drug abuse. However,

they found, on average, 11 % (200/1800) of people who commenced MMT after inquiry.

Besides, only 38 % of them stayed in the therapy after a year. The physicians of the

MMT project in Taiwan suspected that early drop out might be caused by participants

having no confidence in methadone.

As aforementioned, drug users are expected to have a dosage pattern which goes up

at the beginning of the treatment, followed by a period of stable dosage, and then goes

down. The physicians believe that of those with such an up-stable-down pattern and a

high attendance rate during the treatment period, most will have a positive outcome.

On the other hand, those whose daily methadone dosage fluctuates can be interpreted

as lacking motivation.

Our idea starts from identifying patterns. We define a methadone curve by joining

all daily dosages with a line. Methadone curves are a remarkable tool to show detoxi-

cation. By identifying the patterns of methadone curves, we can correct participants’

behaviours of taking dosage to the right track. We mean to convince participants that

the dosage is right for them and lead them to have an up-stable-down curve. Since

how long participants have been abusing heroin, the degrees of their addictions, the

drug abuse history and some unknown factors might all have an influence on the pat-

terns of detoxication. There might be more than one concave curve. Therefore, we

attempt to develop a clustering technique that is capable of dividing the MMT partic-

ipants into subgroups for finding dosage patterns of clusters. These patterns can then

4



1.2 Motivation

be used as a guideline for determining proper methadone dosages to increase partic-

ipants’ trust in MMT and to reduce the rate of quitting the treatment at an early stage.

The central problems of clustering the participants in our study are the fluctua-

tions of dosages and missing dosages. First of all, some participants who abused heroin

while receiving the MMT did not need the full dosages indicated on their prescrip-

tions to accommodate their addictions. In fact, they took a combination of drug and

methadone in order for their addictions to be satisfied, so it was not guaranteed that

the methadone dosages they took indeed represented detoxication. Secondly, missing

dosages were not missing at random. They were recorded as zeroes but the addic-

tions should not be zeros. These zeros appeared as sequences. In some cases, a long

sequence of zeros point to more severe problems of the participant, or a tendency to

leave the study, or illicit drug use. We take account of these issues and propose to

categorize dosages for alleviating the fluctuations of observed dosages and for keeping

the sequences of missing dosages. The ranges of observed dosages for categories are

based on the recommendations of physicians. Participants whose actual dosage is in the

range of 20 mg, that is, dosage between 1 and 20 mg, between 21 and 40 mg, between

41 and 60 mg, between 61 and 80 mg, between 81 and 100 mg, can be considered as

the same. We define a new data format. The new data consist of seven categories in

which six categories have an ordinal scale for representing dosages and one category

for missing dosages. Throughout the study we use the term “category-ordered data”

to refer to this new data. The methadone curves will then be represented by sequences

of categories. The aim of this study is thus to find clusters in which participants have

similar long sequences of categories.

Two issues arising in applied cluster analysis are the selection of the clustering

method and the determination of the number of clusters. Among clustering methods,

we focus on dissimilarity-based clustering methods because the features of our data

make the model based clustering methods hard to applied straightforward (see Section

3.3 for details). We review the Single Linkage, the Complete Linkage, the Average

Linkage, the K-Means and the partitioning around medoids (PAM) (Gordon [1999];

Hartigan and Wong [1979]; Kaufman and Rousseeuw [1990]). The Single Linkage de-

fines the dissimilarity of two clusters as the shortest distance between two objects,
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1.2 Motivation

while the Complete Linkage defines the dissimilarity as the furthest distance between

two objects. The Average Linkage, instead, utilizes the average of all distances of ob-

jects of two clusters. As for the K-Means and the PAM clustering method, the former

partitions objects into k clusters in which each object is assigned to the cluster with

the nearest mean vector, while the latter partitions objects into k clusters in which

each object is assigned to the cluster with the closest medoid. Note that k is a positive

integer and has to be decided first. The clustering methods group together objects that

are considered as similar. The criterion of considering two objects or sets as similar

is defined by dissimilarity functions. The dissimilarity functions play the role of con-

necting the researcher’s goals, features of the data and scientific knowledge (Gordon

[1990]; Hennig and Hausdorf [2006]). There is a considerable amount of literature on

dissimilarity functions. Many attempts are made with respect to study purposes. For

example, in the gene research of Luca and Zuccolotto [2011] and the financial research of

Douzal-Chouakria et al. [2009], they proposed new dissimilarity functions which adapt

the features of their data. To the best of our knowledge, a dissimilarity function for

data in which variables have both categorical and ordinal characters has not yet been

established. Therefore, we propose a so-called p-dissimilarity. The p-dissimilarity is

used to measure dissimilarity between the 180-day time series of the participants. It

accommodates categorical and ordinal scales by using a parameter p as a switch be-

tween data being treated as categorical and ordinal. It uses a parameter β to tune the

dissimilarity involving missing values compared to the distances between non-missing

values. Also, it could be applied in wider fields of application, such as survey studies

in which questions use choices on the Likert scales and a don′tknow-category.

As for the determination of the number of clusters, it is impossible to prove which

index is the best mathematically. Researchers try to use simulation studies to under-

stand the performance of index. Milligan and Cooper [1985] examined 30 indexes and

showed that the Calinski and Harabasz index (Calinski and Harabasz [1974]) had the

best performance. Arbelaitz et al. [2013] carried out a similar study, which included

many indexes that did not exist in 1985. They found that six indexes had better perfor-

mance. Our cluster analysis is performed based on the p-dissimilarity, so indexes that

can cooperate with it will be considered. The Average Silhouette Width (ASW) (Kauf-

man and Rousseeuw [1990]; Rousseeuw [1987]), which is one of the six indexes, is thus
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1.2 Motivation

used in our study. This index measures coherence of clusters. Besides, a more recent

index called Prediction Strength (PS) (Tibshirani et al. [2001]) is also used. This index

measures stability of each cluster in terms of similarity between clustering results. We

focus on these two index, one measuring coherence and the other measuring stability.

The PS index can cooperate with the p-dissimilarity, albeit with a modification. The

concept of the PS was to view an analysis of clustering as an analysis of classification.

At the beginning of the algorithm, a dataset is partitioned into a training set and a test

set. Then, for objects in the test set, the algorithm compares their “predicted class”

and their “true class”. If a hierarchical clustering method is used, the true class is built

based on the hierarchical clustering method. However, the predicted class is built on the

basis of the K-Means method. This brings an issue of measuring stability of clustering

results obtained by hierarchical clustering methods. Therefore, we propose new rules

for modifying the PS when the hierarchical clustering methods and the PAM method

are used. Also, the ASW and modified PS are used for selecting clustering methods.

We let the data to select the clustering method based on cluster stability and coherence.

Moreover, the information of k is rarely previously known, so indexes for determi-

nation of the number of clusters produce values for every k > 1 on the basis of cluster

compactness and separation, and yet only one k will be used. For some indexes, the k

which scores the highest value is used, while for other indexes, the first k with a value

above a threshold is used and, for other indexes, the k for which there is a gap between

its value and that of (k+1) is used. An area of rationale behind decisions of which k to

use is not widely understood. We attempt to view the question of determining the num-

ber of clusters from a different position. Instead of comparing values for k = 2, . . . ,K,

for a fixed k, we compare its value to the distribution of the test statistic under the null

assumption. The null assumption is that there is no cluster. We propose a null model

test to test if the dataset is homogeneous. The null model test involves a null model and

parametric bootstrap. The null model fits all non-clustering aspects of the real dataset,

such as relationships between variables, time dependency, marginal distributions and

etc. The parametric bootstrap is used to draw reference datasets from the null model.

These reference datasets are used to construct the distribution of the test statistic. The

distribution of the test statistic is used to explore whether the found number of clusters

can be explained by random variation. Also, we define a single test of the homogeneity
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1.2 Motivation

hypothesis against a clustering alternative by aggregating the test results for different k.

In addition, assessing the quality of clustering results is also of interest. Some

research has been conducted on information visualisation via heatplots of row data

matrices and of proximity matrices (Chen [2002]; Hahsler and Hornik [2011]; Hahsler,

Hornik, and Buchta [2008]; Wu, Tien, and Chen [2010]). A heatplot is a graph that

represents data by colours. It consists of horizontal lines, each representing the data

for a study object. Its interpretability strongly depends on the location of the objects

along the vertical-axis. Although the aforementioned approaches are interesting, those

studies tend to focus on preservation of clustering structure. We attempt to use the

heatplots to visualise more information on clustering structures, relationships between

objects, relationships between clusters, and relationships between an object and a clus-

ter with respect to the dissimilarities, locations of medoids, and the density of clusters.

Moreover, we can assess the quality of clustering result by looking at the changes in

colours in the heatplot. Also, one can then make statements about whether there re-

ally is some clustering which is visible by looking at the border regions of the clusters

on the heatplot. Therefore, we propose two algorithms, one using multidimensional

scaling (MDS) (Cox and Cox [1990]; Coxon and Davies [1982]) and the other using

projection vectors. Both can be used to generate orders of the objects. By orders

of the objects, we mean the locations of objects on the vertical-axis on the heatplot.

The first algorithm is for general use. The second algorithm is for the PAM method.

As the PAM method works on the basis on medoids, we use projections to quantify

information in one dimension, so that information about medoids, such as locations of

the medoids, the distance between medoids, and the relationships of the dissimilarities

among the participants can be viewed on the heatplot. Also, the colour gradient around

the medoids indicates the density the clusters. By which, we can see whether a cluster

has its objects being scattered or not. Two algorithms are proposed. Both of them can

be used for information visualisation with heatplots.

8



1.3 Outline

1.3 Outline

This study is divided into 9 chapters. Figure 1.1 shows the association between chap-

ters. Chapter 2 gives a brief overview of Methadone Maintenance Therapy Data and

literature reviews of research on the MMT. The data of the daily methadone dosages for

314 participants for a period of 180 days is selected. We propose a so-called category-

ordered data in Section 2.4.1. The category-ordered data for 314 participants for 180

days is denoted by CO314, and will be used throughout this study.

In Chapter 3 we review clustering methods and dissimilarity functions.

In Chapter 4 we propose the p-dissimilarity. The p-dissimilarity is used to measure

dissimilarity for data whose variables have characters of categorical and ordinal scales.

Also, it can be used for incomplete data. The p-dissimilarity is based on the assump-

tion that it is the neighbouring categories which contribute the most to distinguish the

target category. The purpose of the assumption is to find clusters whose participants

share similar dosage patterns in terms of sequences of categories. The p-dissimilarity

involves two parameters. p is a switch between data being treated as categorical and

ordinal and β is for measuring dissimilarity when missing values occur.

In Chapter 5 we review indexes for the determination of the number of clusters,

namely the Calinski and Harabasz (CH) (Calinski and Harabasz [1974]), the Average

Silhouette Width (ASW) (Kaufman and Rousseeuw [1990]; Rousseeuw [1987]) and the

Prediction Strength (PS) (Tibshirani et al. [2001]). The ASW and the PS are used

in this study. We propose rules to modify the Prediction Strength in Section 5.3.1.

Also, in order to avoid confusion, we call the equations for computing the dissimilarity

between objects “functions” and those for determining the number of clusters “index”.

Chapter 6 begins by selecting the value for β, p and the clustering method. We

apply the p-dissimilarity to CO314 and compare the Single Linkage, the Complete Link-

age, the Average Linkage and the PAM method by their values of the ASW and the

modified PS. The values for the PAM method are higher and therefore the PAM method
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1.3 Outline

is selected. In Section 6.2 we propose a null model test involving a null model and para-

metric bootstrap (Efron and Tibshirani [1993]). The purpose is to investigate whether

the clusters found according to the value of the index can be explained by random

variation. The process of the null model test is as follows. A null model is constructed

to represent a real data. But the null model has no structure of clusters, it is unknown

whether there exist clusters in the real data. Then, the null model and boostrap are

used to explore the distribution of a statistic such as values of the ASW. Next, the value

of the ASW for the real data is compared with the distribution of the values for the

null model. In Section 6.3 we show an application of the null model test to CO314. We

use relative frequencies to describe the movements from categories to categories over

time. Except for the category for missing dosages, we find that the dosage in categories

following a valid prescription is stable and the movements between categories in ac-

cordance with a weekly prescription. We then construct a Markov null model without

structure of clusters, in which the distributions of the categories are the same as those

of CO314. Five clusters are selected.

In Chapter 7 we propose two ordering algorithms for the heatplot in order to eval-

uate the quality of the clustering. The algorithm of MDS is for general use and the

algorithm of projection vectors is for the PAM method. We first use MDS to decide the

location of clusters on a heatplot in order to preserve clusters. We then apply either the

MDS method or projection vector method to order participants within a cluster. Also,

the ordering algorithm of projections with the heatplot is used for a visual significance

test.

In Chapter 8 we present a sensitivity analysis of clusters and list demographic data

of the five clusters. Some conclusions are drawn in Chapter 9. Despite the fact that no

significant clustering structure is observed, the sequences of categories for clusters are

clinically useful to prescribe a proper dosage to increase the efficiency of methadone

maintenance therapy.
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Figure 1.1: Schematic representation of the organization of the contents of the

thesis -
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Chapter 2

Methadone Maintenance

Therapy (MMT)

In this chapter a quick overview of the Methadone Maintenance Therapy (MMT) is

given, followed by some research that has been carried out on it. Section 2.2 introduces

the MMT database. The initial sample is composed of demographic details and the

dataset of records of dosage taken. The study period is set to 180 days. For modelling

daily methadone taken by participants for 180 days, a subset of 314 participants is

selected from the initial sample (see Section 2.3). In Section 2.4.1 a new data format is

created by transforming dosages into categories. The data consist of seven categories

in which six categories have an ordinal scale for representing dosages and one category

for missing dosages. We call it category-ordered data. The records of dosage taken for

the 314 participants for 180 days is denoted by Dosage314. The category-ordered data

for the 314 participants for 180 days is denoted by CO314. A heatmap plot is used to

have an overview of the datasets. In this study, we perform a clustering analysis on

CO314.

2.1 Literature review of methadone

Methadone was developed in 1934 to relieve pain. It was cheaper and less addictive.

Later on, it was used as a heroin substitute in a treatment called Methadone Mainte-

nance Therapy (MMT). In Taiwan, MMT was introduced in 2005. The main purpose

12



2.1 Literature review of methadone

of MMT is to minimize the harm associated with heroin use (Ward et al. [1999]). The

idea of MMT is to let drug users reduce the use of heroin by addicting to methadone

and then quit the use of methadone. The effect of methadone lasts 24 hours and conse-

quently it has to be taken on a daily basis. Ball and Ross [1991] reported, on average,

a clinic received 1800 inquiries a year, but fewer than 200 people commenced MMT.

In addition, only 38 percent of the 200 stayed in the therapy after a year. Also, par-

ticipants who remained for more than six months had a marked drop in their drug abuse.

In some studies, the effectiveness of methadone maintenance was measured by mor-

tality rates (Termorshuizen et al. [2005]), number of times illicit drugs (Marsch [1998];

Strain et al. [1993a,b]), frequency of criminal activity (Gossop et al. [2000]; Marsch

[1998]; McLellan et al. [1985]; Powers and Anglin [1993]), cost (Masson et al. [2004])

etc. Research showed that methadone did indeed have a positive effect on drug users

and on society.

More research has been done on daily methadone dosage taken by participants.

Strain et al. [1993a] studied treatment retentions and illicit drugs use. They com-

pared the groups of low to moderate doses of methadone and found that low dose of

methadone (≤ 20 mg) may improve retention but were inadequate for suppressing illicit

drug use. Langendam et al. [1998] regarded dosage greater than 60 mg as high. They

observed that participants requested to stay at lower dosage because of fear of double

addiction and of using drugs other than methadone. Bellin et al. [1999] studied associ-

ations between criminal activity and methadone dosage. They found drug user on high

dose (≥ 60 mg) were less likely to return to jail than those on low dose. Maxwell and

Shinderman [2002] compared high dose participants (≥ 100 mg/day, mean 211 mg/day)

with control participants (< 100 mg/day, mean 65 mg/day). Their result showed that

high dose was more effective in treating heroin addicts. While Maremmani et al. [2003]

observed that many heroin addicts had positive outcomes with lower dosages. The

basic issue of summarizing their studies is that they have different definitions for high

dosage. To date there is no clear principle for the determination of the methadone

dosage. However, if there were one, response to methadone could be significantly im-

proved (Maremmani et al. [2003]; Maxwell and Shinderman [2002]).
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2.2 MMT database

There are more research on associations between types of methadone programmes

and participants’ characteristics. Murray et al. [2008] considered methadone dosage

and personality disorders. The American Psychiatric Association divided personality

disorders into three groups. Cluster B was one of them. It included histrionic, narcis-

sistic, antisocial and borderline personality disorders. Murray et al. [2008] surveyed 54

participants from a methadone maintenance clinic and found that methadone dosage

might be uniquely related to the personality pathology. They suggested that methadone

dosage might be a response to misery and physicians might need to communicate with

heroin addicts with Cluster B pathology for methadone dosage to some extent. Peles

et al. [2007] reported the major risk factors for depression were female gender and high

dose (> 120 mg). Pud et al. [2012] took account that participants in MMT frequently

experienced pain, depression and sleep disorders. They attempted characterize clusters

of MMT participants and studied the association between these clusters and quality of

life measures. Participants were grouped into three clusters, one of which had highest

severity levels of pain, depression and sleep disorders. This cluster scored lowest on all

quality of life measures. Also, they reported pain was the most important symptom

differentiating MMT patients. Gossop et al. [2000] studied patterns of improvement

after receiving MMT for a year. They performed a one year follow-up study on 478

participants. They found that daily methadone dosage of participants who continued

to use the drugs during the treatment had a large variation. They used the Euclidean

distance K-Means clustering method to group the participants according to their fre-

quency of illicit drug use, including opiates, stimulants and benzodiazepines. Four

groups were identified. Two groups showed substantial reductions in their illicit drug

use and criminality. They concluded that methadone dosage might be related to a cer-

tain group and taking methadone might be of benefit to some groups. This suggested

that it might be possible to develop a principle to prescribe the best dosage for certain

subgroups whether dosage be high or low, which will help participants have positive

outcome.

2.2 MMT database

An MMT project was launched by a hospital in central Taiwan. Due to concerns about

confidentiality, the name of the hospital is not given here. The project provided an
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2.2 MMT database

opportunity to acquire more information about this therapy and offered the possibility

of developing a principle to prescribe dosage by assessing patterns of daily methadone

dosage administered to participants. As part of the MMT project, an MMT database

was developed to manage the records of its participants. The MMT database sys-

tem was a system for storing the demographic details, medical history and methadone

dosage records of participants. Firstly, the demographic details, which included age,

gender, education, etc., were recorded when participants visited the hospital for the

first time. Secondly, the medical history, which included the frequency of heroin use,

urine drug tests, an HIV test, etc., was recorded when participants re-visited the hos-

pital. However, not all of the participants underwent the urine drug tests and the HIV

test. Thirdly, the methadone dosage records, which included records of prescription and

records of dosage taken by participants, were recorded in two steps. (1) A participant

visited a doctor and received a 7-day prescription. Subsequently, the system generated

seven records, one record for each day of the prescription, with respect to the dosages

shown on it. At the same time, the system generated seven zeroes for records of dosage

taken. (2) In the following seven days, zeros would be changed to the actual dosage

taken by participants every single day they visited the hospital.

Three datasets were recorded; however, they were not synchronized. There were

cases where nurses accidently forgot to file participants’ data when they visited the

hospital for the first time. As a result, these participants had no demographic de-

tails. There were also cases where participants registered with doctors but failed to see

their doctors. Consequently, they had no methadone dosage records. These kinds of

mismatch happened quite often when merging several datasets. Another issue of this

system was the process of recording daily methadone dosage. Seven zeroes for records

of dosage taken were generated in advance. If participants did not go to the clinic to

take methadone, their records remained zeroes. Later, we will discuss these zeros from

an aspect of addictions should not be treated as zeroes.

2.2.1 Data for prescription and dosage taken

In this section we detail the difference between prescription and dosage taken in terms

of restriction and daily record.

15



2.2 MMT database

T
a
b

le
2
.1

:
Il

lu
st

ra
ti

o
n

o
f

th
e

d
a
ta

re
c
o
rd

in
g

p
ro

c
e
ss

o
f

a
p

a
rt

ic
ip

a
n
t

o
v
e
r

a
p

e
ri

o
d

o
f

8
d

a
y
s.

-
T

h
e

ta
b

le
il

lu
st

ra
te

s

h
ow

p
re

sc
ri

p
ti

on
s

an
d

d
ai

ly
m

et
h

ad
on

e
d

os
ag

e
ta

ke
n

o
f

a
p

a
rt

ic
ip

a
n
t

a
re

re
co

rd
ed

b
y

th
e

M
M

T
d

a
ta

b
a
se

in
re

sp
o
n

se
to

ev
en

ts

ov
er

a
p

er
io

d
of

8
d

ay
s.

T
h

e
tw

o
d

os
ag

e
re

co
rd

s
a
re

re
co

rd
ed

in
tw

o
st

ep
s.

(1
)

S
ev

en
re

co
rd

s
o
f

p
re

sc
ri

p
ti

o
n

a
re

g
en

er
a
te

d
o
n

ce
a

p
re

sc
ri

p
ti

on
is

re
ce

iv
ed

.
A

t
th

e
sa

m
e

ti
m

e,
se

v
en

ze
ro

es
fo

r
re

co
rd

s
o
f

d
o
sa

g
e

ta
ke

n
co

rr
es

p
o
n

d
in

g
to

th
e

va
li

d
d

a
te

s
o
f

p
re

sc
ri

p
ti

o
n

ar
e

ge
n

er
at

ed
.

(2
)

In
th

e
fo

ll
ow

in
g

se
ve

n
d

ay
s,

th
e

ze
ro

re
co

rd
s

w
il

l
b

e
ch

a
n

g
ed

to
th

e
a
ct

u
a
l

d
o
sa

g
e

ta
ke

n
b
y

th
e

p
a
rt

ic
ip

a
n
t.

In

th
e

la
st

co
lu

m
n

,
R

P
re

p
re

se
n
ts

th
e

se
t

of
th

e
re

co
rd

s
o
f

th
e

p
re

sc
ri

p
ti

o
n

s
d

o
sa

g
e,

w
h

il
e

R
D

re
p

re
se

n
ts

th
e

se
t

o
f

re
co

rd
s

o
f

d
o
sa

g
e

ta
ke

n
b
y

th
is

p
ar

ti
ci

p
an

t.

D
ay

E
ve

n
t

R
es

p
o
n
se

D
at

ab
a
se

1
R

ec
ei

ve
a

7-
d
ay

p
re

sc
ri

p
ti

on
of

50
m

g

T
ak

e
40

m
g

m
et

h
ad

on
e

G
en

er
a
te

7
p

re
sc

ri
p

ti
on

re
co

rd
s

G
en

er
a
te

7
ze

ro
re

co
rd

s

C
h

an
g
e

th
e

1s
t

ze
ro

to
40

m
g

R
P

=
{5

0,
50

,
50

,
50

,
50

,
5
0,

50
}

R
D

=
{4

0,
0,

0,
0
,

0
,

0,
0}

2
T

ak
e

45
m

g
m

et
h
ad

on
e

C
h

an
g
e

th
e

2n
d

ze
ro

to
45

m
g

R
P

=
{5

0,
50

,
50

,
50

,
50

,
5
0,

50
}

R
D

=
{4

0,
45

,
0
,

0,
0,

0,
0}

3
F

ai
l

to
ta

ke
m

et
h
ad

on
e

R
em

ai
n
ed

0
m

g
R

P
=
{5

0,
50

,
50

,
50

,
50

,
5
0,

50
}

R
D

=
{4

0,
45

,
0
,

0,
0,

0,
0}

4
T

ak
e

50
m

g
m

et
h
ad

on
e

C
h

an
g
e

th
e

4t
h

ze
ro

to
5
0

m
g

R
P

=
{5

0,
50

,
50

,
50

,
50

,
5
0,

50
}

R
D

=
{4

0,
45

,
0
,

50
,

0,
0,

0}

5
R

ec
ei

ve
a

7-
d
ay

p
re

sc
ri

p
ti

on
of

60
m

g

T
ak

e
55

m
g

m
et

h
ad

on
e

G
en

er
a
te

7
p

re
sc

ri
p

ti
on

re
co

rd
s

G
en

er
a
te

7
ze

ro
re

co
rd

s

C
h

an
g
e

o
n
e

of
th

e
5t
h

ze
ro

s
to

55
m

g

R
P

=
{5

0,
50

,
50

,
5
0,

(5
0,

6
0)

,
(5

0,
60

),
(5

0,
60

),
60
}

R
D

=
{4

0,
45

,
0
,

50
,

(5
5
,

0)
,

(0
,

0)
,

(0
,

0)
,

0
}

6
T

ak
e

55
m

g
m

et
h
ad

on
e

C
h

an
g
e

o
n
e

of
th

e
6t
h

ze
ro

s
to

55
m

g
R

P
=
{5

0,
50

,
50

,
5
0,

(5
0,

6
0)

,
(5

0,
60

),
(5

0,
60

),
60
}

R
D

=
{4

0,
45

,
0
,

50
,

(5
5
,

0)
,

(5
5,

0)
,

(0
,

0)
,

0
}

7
T

ak
e

60
m

g
m

et
h
ad

on
e

C
h

an
g
e

o
n
e

of
th

e
7t
h

ze
ro

s
to

60
m

g
R

P
=
{5

0,
50

,
50

,
5
0,

(5
0,

6
0)

,
(5

0,
60

),
(5

0,
60

),
60
}

R
D

=
{4

0,
45

,
0
,

50
,

(5
5
,

0)
,

(5
5,

0)
,

(6
0,

0
),

0
}

8
T

ak
e

45
m

g
m

et
h
ad

on
e

C
h

an
g
e

th
e

8t
h

ze
ro

to
4
5

m
g

R
P

=
{5

0,
50

,
50

,
5
0,

(5
0,

6
0)

,
(5

0,
60

),
(5

0,
60

),
60
}

R
D

=
{4

0,
45

,
0
,

50
,

(5
5
,

0)
,

(5
5,

0)
,

(6
0,

0
),

4
5}

16



2.2 MMT database

There was no restriction on getting prescriptions, but participants were allowed to

take methadone once per day. The prescription dosage was the maximum dosage that

a participant could take in a day. The initial prescription dosage for the participants

who had no experience of methadone was 20 mg. Then, doctors adjusted methadone

dosage every seven days according to their subjective judgement and participants’ pref-

erence of prescription dosage settings. In the MMT project, 10 mg was used as a unit

of adjustment of prescription dosage in practice. However, addictions to heroin varied

from participant to participant. Some participants might find that their unexpired

prescriptions were not high enough to compensate the need for heroin, so they went to

their doctors for new prescriptions with higher dosages. As a result, some participants

had more than one prescription at the same time. To avoid participants overdosing,

they were limited to use at most one prescription a day.

Only one of the multiple prescriptions was used on a day. Unfortunately, the sys-

tem failed to indicate which one was used. Of these participants who had multiple

prescriptions, they had more than one record of prescription but at most one nonzero

record of dosage taken a day. In addition, values for those nonzero records varied from

day to day. The variation of the values was a result for allowing participants to take

a dose lower than what was indicated on their prescriptions. The reasons of this were

as follows. Heroin users took MMT because of lack of money for drugs, court orders,

determination of quitting drug etc. Some participants abused heroin while receiving

the MMT, so they did not need a full prescribed dosage to accommodate their addi-

tions. In contrast, some tried to reduce methadone dosage to defeat their addictions.

Therefore, each participant had at most one nonzero record of dosage taken a day and

those nonzero records varied over time.

Table 2.1 illustrates the recording process of prescription and that of dosage taken

of a participant over a period of 8 days since they first joined MMT. The first col-

umn indicates the eight days. The second column shows the explanation of events of

getting prescriptions and taking dosage, while the third column shows the response of

the recording system to the events. The last column shows the records of prescription,

denoted by RP, and the records of dosage taken, denoted by RD. At the beginning, the

participant in Table 2.1 visits their doctor and receives a prescription of 50 mg. Then,
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2.3 Number of participants

this participant decides to take 40 mg methadone. Firstly, the system generates seven

records of 50 for the prescription records and seven zeroes corresponding to the valid

dates of their prescription. Once the participant takes 40 mg methadone, the first zero

in DD is changed to 40. On day 2, 45 mg methadone is taken, so the second zero in

DD is changed to 45. On day 3, no methadone is taken, so no change is made. On day

4, 50 mg methadone is taken, so the fourth zero is changed to 50. This participant has

only one prescription from day 1 to day 4, but has multiple prescriptions from day 5

to day 7. On day 5, the participant visits their doctor for a new prescription before

their current prescription expired. The new prescription is 60 mg. Seven records of

prescription with a dose of 60 mg and seven zeros of records of dosage taken are gener-

ated. As a result, the RP for day 5 is (50, 60). Later on, 55 mg methadone is taken, so

the RD for day 5 is (55, 0). On days 6 and 7, 50 mg and 60 mg methadone are taken,

respectively. Consequently, the records of dosage taken on day 6 and 7 are (50, 0) and

(60, 0), respectively. Note that on days 5 to 7, the database dose not record which

prescription is used. Based on limited information, our knowledge of record of dosage

taken is that one of the zeros is changed. On day 8, the first prescription expires and

45 mg methadone is taken. The eighth zero is changed to 45.

Participants should have at most one nonzero record. Therefore, in later analysis, of

those who had multiple records of dosage taken, the nonzero record would be considered

first. For example, the records of dosage taken on day 5 were (0, 55) and it was 55 mg

that would be used in the analysis.

2.3 Number of participants

Three datasets were collected from 1st January 2007 to 31st Dec 2008. However, they

were not synchronized. The dataset of medical history showed that among those who

took a blood test when they re-visited the hospital, 14 % took an HIV test. Also, 4914

urine drug tests were performed, 8 % of drug tests for morphine came positive and 1 % of

drug tests for amphetamine came positive. Note that participants underwent more than

one urine drug test. Some participants dropped and later returned to the treatment.

Their demographic details were re-collected as participants who enter the MMT for their

first time in practice. However, in our study, we appended their methadone records to
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2.3 Number of participants

Figure 2.1: The number of participants over 732 days. - The x-axis is the date

and the y-axis is the number of participants. This figure shows the number of participants

that were found to have a record of dosage taken over the period between 1st January 2007

and 31st Dec 2008.

the existing dataset of dosages. With this dataset, Figure 2.1 shows the numbers of

participants over time. As can be seen, at the beginning of the MMT project, there

are only few people. Later on, the numbers of participants goes up as the hospital

advertised MMT. Physicians considered participants who stayed in MMT more than

six months as candidates being able to achieve abstinence. We limited participants

to those who commenced MMT from 1st January 2007 to 30th June 2008 in order to

ensure that participants should be able to stay in MMT for six months. A total of 1302

participants was selected. Twenty-one of them had only one nonzero record when they

stayed in the MMT. They were eliminated in consideration of their non-contribution to

form patterns of dosage taken. Taking into account their demographic details, a total

of 1257 participants was obtained in which the two datasets could be matched. The

initial sample was composed of demographic details and dataset of records of dosage

taken.

2.3.1 Records of prescription and dosage taken for the initial sample

The records of prescriptions and records of dosage taken were stored separately. 1252

out of 1257 participants were found in the prescription dataset. A crucial issue of

the records of prescription was that codings of prescription dosages were inconsistent.

By coding, we meant the values that were used to indicate dosages. For instance, in

the prescription dataset, 2 was used to indicate 10 mg, but 2 also referred to 20 mg.
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2.3 Number of participants

Table 2.2: Frequency of prescription dosage of the 1252 participants.- A total

of 21465 prescriptions is selected. The first column refers to the coding in the records

of prescription dosages. Unfortunately, we found that the codings referring to dosage are

inconsistent. For example, a value 2 refers to 10 mg and it also refers to 20 mg. By and

large, most physicians prescribe in intervals of 10 mg and some in intervals of 20 mg.

dosage frequency dosage frequency dosage frequency

1 133 30 27976 75 3198

2 49 32.5 21 80 15634

5 841 34 21 85 1807

8 7 35 8879 90 9277

10 4981 37.5 7 95 831

11 14 40 38714 100 9086

13 14 42.5 14 105 387

15 7376 45 6021 110 5282

17 7 50 32045 115 530

17.5 7 55 4185 120 3641

18 14 57 7 125 78

20 27515 60 27114 130 1270

23 8 62.5 7 140 532

25 10411 65 2955 150 219

28 7 70 16467

This kind of inconsistency happened when creating database without a complete cod-

ing book in which a value that is unique to one dosage is listed. Regardless of the

inconsistent codings, we attempted to have a better view of prescriptions by showing

the frequency of prescribed dosage. This is shown in Table 2.2. Five dosages have

their relative frequencies greater than 10%. They are 20 mg (12.20%), 30 mg (10.75%),

40 mg (14.93%), 50 mg (12.41%) and 60 mg (10.14%). Most physicians prescribe in

intervals of 10 mg, some in intervals of 20 mg and some 5 mg.

All participants joined MMT on different dates and durations of their staying

in MMT were different. Once participants joined MMT, days on which they took

20



2.3 Number of participants

Table 2.3: Number of participants of various attendance rates.-The attendance

rates is the proportion of days of receiving methadone therapy to 180 days. Their corre-

sponding numbers of participants are listed in the table.

Attendance rate

(%)

Maximum number of

missing records

Number of

participants

≥ 90 18 169

≥ 80 36 242

≥ 70 54 314

≥ 60 72 359

≥ 50 90 412

methadone became important because the durations and days were the keys to form

dosage patterns over time. So we attempted to create a picture to display the durations

and days with/without taking methadone. Therefore, we defined a term “initial date”,

denoted day 1, as referring to the first date on which the participants joined MMT.

Figure 2.2 shows the information on durations and days for the 1257 participants. The

x-axis represents the day and the y-axis represents the participant. The colour indi-

cates whether participants took methadone. Black refers to nonzero records and white

refers to missing dosages. The participants are ordered by the numbers of their nonzero

records. Note that if the participants stay in the study, they should be able to provide

at least 180 records of dosage taken. A reference line that indicates the 180th day is

drawn. As can be seen, some participants have a chunk of missing records followed

by nonzero records. This is because their drops out of and returns to MMT. A total

of 1257 participants commenced MMT within dates ranging from 1st January 2007 to

30th June 2008, but only some of them provide nearly complete records for 180 days.

2.3.2 Selection of the meaningful sample

Ball and Ross [1991] reported, on average, only 38 percent of the participants stayed in

the therapy after a year. A clustering result for the all 1257 participants will definitely

give at least one group in which participants have most of their records appearing

as missing dosages. Such a group has no contribution to the study at all. There-

fore, instead of using 1257 participants, we should perform the analysis on a subset.
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2.3 Number of participants

Figure 2.2: Records of dosage taken for the 1257 participants for 732 days. -

The x-axis is the day and the y-axis is the participant. The colour indicates where the

missing value occurred, appearing in white. The participants are ordered by the numbers

of their nonzero records. A vertical line at x=180 is drawn for the reason that the length

of studying period was set at 180 days. Note that if the participants did not leave MMT,

they should be able to provide at least 180 records of dosage taken.
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2.3 Number of participants

This subset needs to be considered as a more purposeful sample for modelling daily

methadone taken by participants.

The selection of such subset was done based on participants’ attendance to the

clinic where they took methadone dosage. First of all, as six months was often used in

MMT studies (Ball and Ross [1991]; Masson et al. [2004]), the length of the studying

period was set to 180 days. Table 2.3 shows the number of missing records out of the

180 days and the number of participants for the attendance rates from 90% to 50%. At

an attendance rate of 90 % or more, there are 169 participants who have at most 18

missing records. On the other hand, at a rate of 50 %, there are 412 participants who

provide at least 90 records out of 180. The size of the former subset is too small and the

proportion of missing records of the latter subset is slightly too high. Both of the two

subsets are not good enough. As attendance rate goes down from 90 % to 80 %, an ad-

ditional 73 participants are recruited. With another decrement in the attendance rate

to 70 %, the number of participants goes up to 314. The expected maximum number of

missing records is 54. For two participants whose 54 missing records are aligned on dif-

ferent days, their dissimilarity would then depend on 180-54-54=72 records of observed

dosages. However, at 60 %, the expected maximum number of missing records is 72.

At the same situation, dissimilarity between two participants would then depend on at

least 36 records of observed dosages. We assumed that 30% missing records would not

affect the cluster analysis too much. Therefore, a total of 314 participants was used.

The dataset of the records of dosage taken of the 314 participants over 180 days was

denoted by Dosage314.

Of these 314 participants, 262 (83 %) were males and 52 (17 %) were females. Mean

age at admission was 37 ± 7 years (range 23 to 60) and mean age of onset heroin was

25 ± 6 years (range 13 to 50). One hundred and fifty-six (50 %) participants had

attended to high schools or universities. Seventy-seven participants were married or

lived with a partner and 234 (75 %) participants were single or divorced. One hundred

and ninety-nine (63 %) participants were occupied. Figure 2.3 shows the max, min,

mean and mean ± SD daily dosage records for Dosage314 from day 1 to day 180. Mean

dosage is 51 mg. As for these unselected 943 participants, mean age of commencing

MMT was 36 ± 8 years (range 19 to 96) and mean age of onset heroin was 25 ± 7
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2.4 A new data format : category-ordered data

Figure 2.3: The dosage taken records for 314 participants over 180 days.

years (range 11 to 57). Also, 760 (81 %) were males, 428 (45 %) received high school

or higher education, 739 (78 %) were single or divorced, 591 (63 %) were occupied.

2.4 A new data format : category-ordered data

In our study, we observed that physicians thought categorically about prescriptions.

From their point of view, prescribing a higher dosage meant that participants had their

levels of methadone dosage moved from one to another. Such a movement should be,

therefore, captured by categories. Moreover, prescription came with physicians’ assess-

ments, a zero dosage should not be treated as zero, because participants’ addictions

were not zero. Valid prescriptions meant that participants needed methadone to ac-

commodate their addictions.

In the following sections, we introduce a so called category-ordered data. The

category-ordered data for the 314 participants is denoted by CO314, the most important

dataset that is used throughout this study. Then, we introduce imputation methods

for the zero records of the category-ordered data. The imputed datasets are used to see

the influence of missing values, which is evaluated by comparing the clustering result

of CO314 and that of imputed datasets.
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2.4 A new data format : category-ordered data

(a)

Figure 2.4: Number of prescriptions for the 313 participants over 180 days.

- There are 313 out of 314 participants whose records could be found in the prescription

dataset. This figure shows number of prescriptions over 180 days. The x-axis is the day

and the y-axis is the participant. The colour represents the number of prescriptions. The

max number of prescriptions on a single day for one participant is 4. The participants are

ordered by the numbers of their nonzero prescription records.

2.4.1 Category-ordered data: CO314

Of these 314 participants in Dosage314, records of 313 participants are found in the

prescription dataset. Figure 2.4 shows the number of prescriptions of the 313 par-

ticipants over 180 days. The participants are ordered by their total of prescriptions

in 180 days. As seen, participants occasionally have multiple prescriptions. In order

to display the possible association between prescribed dosage and dosage taken, one

participant is randomly selected from those who have only one prescription on every

single day. Figure 2.5(a) shows the records of prescriptions and dosage taken of that

participant from day 1 to day 180. The record of prescription dosage is indicated by

circles, while record of dosage taken is indicated by crosses. The prescription dosage

starts from an initial level of 20 mg/day, then there is an upward trend; moreover, it

is a constant from day 29 to day 180 with a dosage of 70 mg. However, the records
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2.4 A new data format : category-ordered data

(a) (b)

Figure 2.5: Records of prescriptions and dosage taken for two selected partici-

pants from day 1 to day 180. - (a) shows a participant whose records of dosage taken

fluctuates during the period of receiving prescriptions of 70 mg. (b) shows the records

of another participant who also receives prescriptions of 70 mg; however, the records of

dosage taken of this participant are more stable in comparison to those of the participant

in (a).

of dosage taken fluctuate. This might be explained by the participant abusing drugs

while receiving MMT. Next, in order to compare the records of dosage taken for two

participants, a participant with a long sequence of prescriptions of 70 mg is selected.

Figure 2.5(b) shows records of this participant. Following the same prescriptions of 70

mg, the records of dosage taken of these two participants are different.

There are two problems with Dosage314. Firstly, using methadone dosages to quan-

tify additions, some degrees of dosage fluctuation are not meaningful. Failure to account

for fluctuations which are caused by abusing illicit drugs might result in identifying false

detoxification patterns. Therefore, given the same prescription with various dosage

taken, participants should be considered as similar. However, there are participants

with multiple prescriptions and there is no indication of which prescriptions were used.

If no drugs are abused, methadone taken by participants should show long sequences

of stability. Secondly, zero dosages need to be taken into account. Zero dosages mean

participants did not show up for receiving methadone but not participants had no

addictions. Zero dosages mean participants’ dosage taken records are missing. It is
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2.4 A new data format : category-ordered data

reasonable to impute these missing dosages. However, from a medical point of view, a

continuous 14 records of zero indicates that participants have left the study. Of those

participants who are considered as having left the study temporarily, it is reasonable

to impute their records by using the observed dosage. In contrast, of these who are

considered as having left the study for good, the records should remain as they are.

So, some missing dosages remain after imputation. But again, these records should not

be treated as zeros. Also, the dissimilarity between a missing dosage and an observed

dosage is not defined in most dissimilarity functions.

We attempted to construct a new data format by categorizing daily methadone

dosage. The new data was used as a solution for the aforementioned issues. The

purpose of categorizing dosage was to alleviate the impact caused by fluctuation, to

consider participants with same prescriptions as similar, and to keep missing dosages.

The missing dosages often occurred as a sequence. The pattern of missing dosages was

of interest. In the new data, a participant who regularly took dosage in an interval was

considered as having stable dosage. In contrast, changing to another interval regardless

how far the movement meant that their dosage was moved to another dosage level. The

advantages were as follows. The impaction of the fluctuations were minimized. It was

not guaranteed that of these participants who used the same prescriptions, all were

then regarded as similar; but, at least, most were considered as similar. Moreover,

the missing dosages were categorized. By categorizing, we could define dissimilarity of

missing dosages for distinguishing the missing dosages and observed dosages. Then, a

dissimilarity-based clustering could be performed.

In order to categorize dosages, we needed cut points of dosages. Here are how the

dosage levels were used in the research about methadone. In the research of Mattick

et al. [2009], doses between 20 and 35 mg were classified as low dose, between 50 and 80

mg as medium dose and 120 mg or more as high dose. Johnson et al. [2000] used high

dose (60 to 100 mg) and low dose (20 mg). In the research of D’Aunno and Pollack

[2002], patients were classified into three groups by methadone dosage, less than 40,

60, and 80 mg. Although doses were often increased in 10 mg increments in MMT,

the doses of 20, 60, 100 mg were most likely to be used to classify dosage levels in the
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2.4 A new data format : category-ordered data

literature.

In our study, cut points for categorizing dosages were defined by the physician. He

suggested that dosage in the range of 20 mg could be considered virtually the same.

This meant that the qualitative difference between two dosages in the same interval

could be treated as irrelevant. Therefore, observed dosages were transformed into sev-

eral ordered sets, being intervals with the width of 20 mg, and the missing dosages

were categorized, being represented by a category. The new data consisted of seven

categories in which six categories had an ordinal scale for representing dosages and one

category for missing dosages. The six categories represented for dosages smaller than

or equal to 20 mg, 21-40 mg, 41-60 mg, 61-80 mg, 81-100 mg and greater than 100

mg. The new data was called “category-ordered data” throughout this study. The new

dataset, denoted by CO314, was transformed from Dosage314.

To explore the uncategorized dataset Dosage314 and the categorized dataset CO314,

a heatplot is used. It is a technique to represent data by color and each horizontal line

in a heatplot represents data of each participant. However, locations of participants

determine the efficiency of the heatplot in terms of displaying data with respect to a

purpose. Research on ordering participants for increasing the efficiency of heatplots

is carried out in Chapter 7 in which we use heatplots for viewing data and evaluating

clustering results. Figure 2.6 shows the heatplot of Dosage314 and that of CO314. Each

horizontal line represents records of a participant from day 1 to day 180. In the graph

on the left, the 314 participants are ordered by the average of their dosages. In the

graph on the right, the order of participants mirrors that on the left. Figure 2.6(b)

shows the colour spectrum of dosage and that of category. The values of dosage, ranging

from 1 to 140, appear in a sequence of green, black and red. The values of category,

ranging from 1 to 6, appear in black, red, green, blue, cyan and purple. Note that the

colour white represents for missing values and category 7. What can be observed is

that most of dosage records in the first week are in category 1, as the initial prescription

dosage for participants, most of which have no previous experience of the MMT, is 20

mg. Subsequently, the colours of dosage start to change, reflecting the fact that the

doctors started adjusting the dosage. In the figure on the right, about one-third of the

participants shows dosage below 40 mg, one-third shows dosage from 41 to 60 mg and
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one-third shows dosage greater than 61 mg. Among those with dosage higher than 61

mg, only few of them takes dosage more than 100 mg. Besides, it can be seen that, of

these movements from categories to categories, most of them move to the next nearest

categories.

2.4.2 Imputation of the category-ordered data

In this section we attempt to impute the missing dosages. Three datasets are generated

but it is CO314 being used throughout this study. We perform imputation because the

missing values were all treated the same, being categorized to one category, but we

are curious about the influence of the missing values on clustering results. In order to

see how much difference it makes, we attempt to construct datasets with imputation.

Then, they can be used to see the influence of having treated the missing values the

same in CO314. The effect is evaluated by comparing the clustering result of CO314

and that of imputed dataset. Results for the comparison are shown in Section 8.2.

The length of the sequences of category 7, which represented missing values, de-

termined whether participants temporarily left the study or not. A sequence with

length less than 14 means that the participant temporarily left the study. Because

they temporarily left, we attempted to construct a dataset with imputation only on

these sequences of category 7 with length less than 14. Denote the value of category

on day i by ci, where ci ∈ Θ = {1, 2, . . . , 7}. The imputation method works as follows.

1. identifying the days having category 7.

2. labeling the each long sequence of the category 7.

3. distinguishing sequences to which imputation might apply. Sequences should have

length less than 14.

4. identifying the closest known values of category of each of the sequences. The

imputation will only be applied to the sequences in which its closest known values

of category are the same.

In Step 2, let ψ = {s1, s2, . . . , sa}, a < 180, be a collection of these sequences where

si∩sj = φ, for all i 6= j. Let n1, n2, . . . , na be the length of these sequences. By length,
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is meant the number of category 7 in the sequence.

In Step 3, for those sequences with length greater than or equal to 14, because par-

ticipants are considered as having left the study in days on which the sequence occurred,

there is no way to assign the category to which they belong. Therefore, these records

remain category 7. Denote the selected sequences for which the lengthes smaller than

14 by sj = {ci, . . . , ci+nj−1}.

In Step 4, for each sequence found in Step 3, the two closest known values are the

one before and the one after, that is, ci−1 and ci+nj . For the sequences of which ci−1 is

equal to ci+nj , the records are replaced by the value ci−1. In contrast, for the remaining

sequences, because there is no clear decision about whether the category 7 should be

replaced by a value close to ci−1 or a value close to ci+nj , we decide to let the records

remain category 7.

Here is an example of the aforementioned imputation method. Figure 2.7 shows

records of a participant from day 1 to day 8. The y-axis is the values of category. As

can be seen, there are several records of category 7. Also, there exist long sequences

of the category 7. After applying the imputation method, Figure 2.8 shows records of

this participant. ImpCO314 was created from CO314 by using the imputation method

for categories. The heatplot for ImpCO314 is shown in Figure 2.9(a). Although 14 days

were used in practice, we were interested in the situation of using a more strict criterion.

ImpCO7
314 was then created from CO314 in which participants continuously lacking 7

days records were considered as having left the study. So sequences of category 7 with

length greater than 7 were not imputed. The heatplot for ImpCO7
314 is shown in Figure

2.9(b).

Moreover, an imputation method for dosage was used in order for applying clus-

tering analysis on Dosage314. The imputed dataset could be then used to evaluate

the difference between clustering result for CO314. The idea was to impute dataset

of Dosage314 in which missing dosages for each participant were replaced by a lin-

ear interpolation. The imputed dosages were within the range of their closest known
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dosage record (as shown in Figure 2.10). All missing dosages in Dosage314 were im-

puted. Denote the imputed dataset by ImpDosage314. Figure 2.11 shows the heatplot

for ImpDosage314.

From Figure 2.8, we observe that some sequences with length shorter than 14 days

were not imputed. Given that the participant had temporarily left the study, it was rea-

sonable to consider the missing records being similar to the two closest known records.

One solution to improve the imputation method was to impute the category 7 with the

value by transforming the dosage in ImpDosage314 into categories. But we decided to

use the ImpCO314, ImpCO7
314 and ImpDosage314.

Daily dosages in mg for 314 participants who received MMT between 01 January

2007 and 31 December 2008 were collected. These participants were selected from a

larger study using the criterion that they had not left the study before the comple-

tion of 180 days and that they had at least 70% nonzero records of taking methadone.

Dosages in mg were converted for better interpretability to seven categories in which

six categories have an ordinal scale for representing dosages and one category for miss-

ing dosages. The resulting dataset was called “category-ordered data”, denoted by

CO314. Also, few schemes for imputation were defined based on the non-missing values

surrounding the missing days, and on length of periods of missingness. In the next

chapter we review dissimilarity function with respect to types of data, including cate-

gorical scale, ordinal scale, etc., and dissimilarity-based clustering methods. In Chapter

8 we use these imputed datasets to study about the influence of the missing values on

clustering results.
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(a)

(b)

Figure 2.6: Heatplot of Dosage314 and heatplot of CO314 - (a) shows the heatplot

of Dosage314 and the heatplot of CO314. Each horizontal line represents records of a

participant from day 1 to day 180. The 314 participants are ordered by the average of

their dosages. (b) shows the colour spectrum of dosage, ranging from 1 to 140 mg, and

that of category, ranging from 1 to 6. Note that the colour white represents for missing

values in both two colour spectrums.

Figure 2.7: Illustration of imputation: original data. - The values of category of a

participant from day 1 to day 180.
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Figure 2.8: Illustration of imputation: imputed data in which among the

records of category 7, some of them are imputed. - The imputation method is

applied to the data of the participant whose original record is shown in Figure 2.7. This

figure shows the record with imputation of this participant.

(a) (b)

Figure 2.9: Heatplot of ImpCO314 and heatplot of ImpCO7
314 - (a) shows the

heatplot of ImpCO314 in which sequences of category 7 with length greater than 14 were

not imputed. (b) shows the heatplot of ImpCO7
314 in which sequences of category 7 with

length greater than 7 were not imputed.
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Figure 2.10: Illustration of imputation for missing records - The missing records

were replaced by a linear interpolation.

Figure 2.11: Heatplot of ImpDosage314 - ImpDosage314 was created from Dosage314
by the linear interpolation.
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Chapter 3

Dissimilarity functions and

clustering methods

In this chapter we review dissimilarity functions and clustering methods. A model

based clustering is also reviewed. The dissimilarity functions are used for nominal

scale and ordinal scale. The clustering methods include the Single Linkage, Complete

Linkage, Average Linkage, K-Means and partition around mediods (PAM).

3.1 Dissimilarity functions

The purpose of this study is to cluster the MMT participants using the category-ordered

data. Performing a cluster analysis on a dataset with no cluster information other than

the observed values is called unsupervised classification (clustering). In contrast, an

analysis of a dataset which consists of groups to which objects of study belong is called

supervised classification. Note that our study is a case of clustering.

Clustering methods aim to group together objects so that objects within a cluster

are considered to be similar. The degree of similarity and dissimilarity between objects

is measured by dissimilarity functions. Following are two of the most widely used dis-

similarity functions, namely the Euclidean distance and the Manhattan distance.

Notation

Denote the observed value of the tth variable of the object i by xit, t = 1, . . . , T . There-

35



3.1 Dissimilarity functions

fore, the data for each object over T variables can be represented by a T-dimensional

vector xi = [xi1, . . . , xiT ]. Denote the dissimilarity between variables by d(·, ·) and the

dissimilarity between objects by D(·, ·).

The Euclidean distance between two objects i and i′ is defined by

D(i, i′) = d(xi,xi′) =
√

ΣT
j=1(xij − xi′j)2. (3.1)

The Manhattan distance between two objects i and i′ is defined by

D(i, i′) = d(xi,xi′) = ΣT
j=1|xij − xi′j |. (3.2)

There are more dissimilarity functions with respect to different types of data. Re-

garding the type of data, Stevens [1946] defined several ones called scale types of mea-

surements according to the arithmetic operations and meaning of measurements. The

category-ordered data has features of categorical and ordinal scales. Therefore, we first

review dissimilarity functions that can be applied to these two scales. Then, we review

dissimilarity functions for data with a time series structure.

Nominal scale

A categorical variable, which consists of θ, θ ∈ N+, categories, has its measurement

type classified as nominal scale. The categorical variable has meanings for each of the

categories. These categories can be represented by values of 0, 1, 2, . . ., θ. However,

these values can not be used for arithmetic operations. They are rather symbols than

real numbers. Two different values can be regarded either as equal or as different. An

example of this is dosage that is categorized into observed dosage and missing dosage.

We can denote these two sets by any two different values, such as, by 1 and 2; by 4

and 7; by 6 and 3. The value 1 in the former is equal to the values 4 and 6 in the

latter. The values/symbols are used to preserve the information of dosage but they do

not carry any numerical meanings.

For this type of scale, the Simple Matching Coefficient is the simplest way of com-

puting the dissimilarity between two objects. The concept of the Simple Matching
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3.1 Dissimilarity functions

Coefficient is to aggregate all matched pairs of objects i and i′. The term “matched

pair” means that the tth variable of the object i and that of the object i′ are the same.

The dissimilarity between the two objects i and i′ is defined by (Sokal and Michener

1958)

D(i, i′) = 1− {number of the matched pairs}
{total number of variables}

. (3.3)

For binary variables, which take values of “+” and “-”. The Jaccard’s coefficient

between two objects i and i′ is defined by

D(i, i′) = 1− {number of the matched pairs with “+”}
{total number of variables - number of the matched pairs with “-”}

.

(3.4)

The difference between these two dissimilarity functions is that the Simple Match-

ing Coefficient takes all matched pairs, while the Jaccard’s coefficient takes a part of

the matched pairs. In both coefficients, the larger the value is, the higher the degree of

dissimilarity between objects.

Ordinal scale

An ordinal variable, which consists of θ, θ ∈ N+, categories, has its measurement clas-

sified as ordinal scale by Stevens [1946]. The ordinal variable has meanings for each of

the categories. Also, the values of an ordinal variable are more than just symbols. The

values carry information about order by which they are comparable. In other words,

two different values can be considered to be either equal or one is smaller than the

other. An example of this is dosage levels: low dosage, mild dosage and high dosage.

These three sets can be denoted by three ordered numbers, such as, 1, 2 and 3; 4, 6

and 10; 7, 8 and 9. The values indicate the dosage levels.

For this type of scale, a method of computing the dissimilarity between objects

shown by Gordon [1999, p.20] and Gower [1971] is as follows. Firstly, the θ values of

the ordinal variable are re-coded by (θ− 1) binary variables (Sneath and Sokal, 1973).

Afterwards, the Simple Matching Coefficient (Eq 3.3) is applied to the binary data for
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3.1 Dissimilarity functions

computing the dissimilarity.

Here is an illustration of how to compute the dissimilarity between objects by trans-

forming the ordinal variable to binary variables. Following the example of the three

dosage levels of low dosage, mild dosage and high dosage, indicated by 1, 2 and 3, the

codings of the dosage levels by two binary variables, L1 and L2, are as below:

Binary variable

L1 L2

Ordinal variable


1 − −
2 + −
3 + +

When using the values 1,2,3 for dosage levels, the Simple Matching Coefficient shows

that any two dosage levels are completely different, that is, d(x, y) = 1, x = 1, 2, 3; y =

1, 2, 3, and x 6= y. On the other hand, when taking into account of ordinality of the

values, the Simple Matching Coefficient shows that the low dosage and mild dosage

are slightly similar, that is, d(low dosage, mild dosage)=1 − 1
2 = 0.5. The method of

recording keeps the ordinality and shows that one value is closer to another in compar-

ison to the others. However, the numerical difference in the ordinal variable can not be

interpreted. For example, The dissimilarity between low dosage and high dosage can

not be interpreted as double of that between low dosage and mild dosage.

Another method to compute the dissimilarity for ordinal variables works as follows.

Let F be a random variable and f be the observed values. Note that the values carry

information about order. Step 1 is to assign ranks to f , denoted by r. Denote the

highest rank value by M . Step 2 is to transform the observed values by mapping the

ranks onto [0, 1]. It can be written as (Kaufman and Rousseeuw [1990])

xf =
rf − 1

Mf − 1
, (3.5)

Next, the dissimilarity between two objects is computed by applying the usual formu-

las, such as, the Euclidean distance and the Manhattan distance, to xf .

The ranks refer to relative positions, which are determined by quantities. In our case,
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3.1 Dissimilarity functions

the width for categories (i− 1), i, and (i+ 1) are the same. However, using the above

method, the Manhattan distances from category i to categories (i− 1) and (i+ 1) are

different.

Pattern recognition methods

Levenshtein distance (LD)

A string variable is a sequence of characters. Levenshtein distance (devised by V.

Levenshtein in 1965)is used to measure the difference between two sequences. The con-

cept of the Levenshtein distance is to compute how many steps of insertions, deletions,

and substitutions are needed to transform a string into the target string. For example,

“extinct” and “instinct”. The Levenshtein distance between these two strings is 3, since

two substitution (change “e” to “i” and change “x” to “n”) and one insertion (add “s”

to the third place) are required to transform the string “extinct” into the target string

“instinct”.

Dynamic Time Warping (DTW)

DTW (Berndt and Clifford [1994]; Ratanamahatana and Keogh [2004]) is a pattern

matching technique. It computes dissimilarity according to time series patterns. It

seems relevant to the purpose of this study and might be useful to our research. Below

is its concept and equation. DTW employs the Euclidean distance to compute the

dissimilarity between two sequences. But it allows that the tth point in one sequence

not to align with the tth point in the other sequence in order to match shapes of two

sequences along the time axis.

Figure 3.1 illustrates the concept of the DTW. Let vectors x = {xi : i = 1, . . . , tx}
and y = {yj : j = 1, . . . , ty} be the records of two objects, which are represented

by two solid lines. As can be seen, the shape of the two solid lines are the same.

The Euclidean distance between these two objects is the square root of the sum of

the square difference between the paired tth points as shown in Figure 3.1(a). On

the other hand, the DTW between two objects is the square root of the sum of the

square distances between the non-aligned points as shown in Figure 3.1(b). For in-

stance, in Figure 3.1, the Euclidean distance is
√∑T

t=1(xt − yt)2, and the DTW dis-

tance is
√

(x1 − y1)2 + (x2 − y2) + · · ·+ (x5 − y5) + (x5 − y6) + (x5 − y7) + . . .. The
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3.1 Dissimilarity functions

(a) (b)

Figure 3.1: Illustration the Euclidean distance and the DTW - The two solid lines

in (a) and (b) represent the record of two objects over time. (a) illustrates the Euclidean

distance between the two objects that is the sum of the distances between the first points,

the the second points and so on. On the other hand, (b) illustrates the DTW between

the two objects that is computed by summing up the distances between either aligned or

non-aligned points of the two objects in the time axis.

fifth point of the vector x, x5, corresponds to multiple points of y, y5, y6 and y7. The

DTW takes into account the matter of shapes and computes the dissimilarity based on

the matched portions with respect to the relative time.

The dissimilarity between two objects by the DTW is defined by

DTW (x,y) = min
w

√√√√ T∑
t=1

(xwt − ywt)
2. (3.6)

The w = {wi : i = 1, . . . , T}, max(tx, ty) ≤ T < (tx + ty + 1) is called “path” which

is used to indicate the points that are used to compute the dissimilarity between objects

in order to minimize the total cumulative distance. As an example, the “path” is repre-

sented by the dotted lines in Figure 3.1. Here is the explanation of how to find the path

of DTW. Imaging a 2-dimensional space with x-axis, ranging from 1 to tx, and y-axis,

ranging from 1 to ty, the DTW computes the distance that would be traveled from

w1 = (1, 1) to wT = (tx, ty). Note the 2-dimensional space, the next travel point from

point (i, j) can only increase by 0 or 1 on each step along the grid-like path. Therefore,

the cumulative distance at the first step w1 = (1, 1) is d(x1, y1) = (x1 − y1)2. Next,
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3.1 Dissimilarity functions

three distances are compared, namely, d(x1, y2), d(x2, y1), and d(x2, y2). If d(x1, y2)

is the smallest, the second step will be w2 = (1, 2) whereby the cumulative distance

up to the second step will be (x1 − y1)2 + (x1 − y2)2. Moreover, it can be seen that

the first element of the vector x, x1, corresponds to multiple elements of y, y1 and y2.

The algorithm goes on until a warping path w = {wi : i = 1, . . . , T} is constructed.

Furthermore, the Euclidean distance between two sequences with the same length can

be regarded as a special case of the DTW in which w shows the path along the diagonal

line.

The DTW allows similar shapes to be matched and is widely used in science; how-

ever, it does not obey the triangle inequality (Ratanamahatana and Keogh [2004]). The

triangle inequality of a distance function states that a triangle is constructed by three

objects (h, i, j) where the length of the three sides of the triangle are the dissimilarities

among objects (h, i, j); in addition, the sum of any two sides of the triangle must be

greater than the remaining side. In other words, D(i, h) + D(i, j) ≥ D(h, j) hold for

all triples (h, i, j) where D(·, ·) is the dissimilarity between objects.

A dissimilarity function is said to be metric if it satisfies the triangle inequality.

Gower and Legendre [1986] said that “metric methods often have a geometric rationale

that implies that a metric and possibly a Euclidean coefficient should be chosen, thus

disfavoring non-metric coefficients”. In their paper, they investigated the metricity

for several of well-known similarity coefficients for binary variables and dissimilarities

for quantitative variables. The result showed that some of them were not metric. A

dissimilarity function should satisfy three requirements: non-negativity in which the

dissimilarity between objects is always greater or equal to zero; identity in which the

dissimilarity between a object and itself is zero; symmetry in which the dissimilar-

ity from object i to i′ is equal to that from object i′ to i. Note that the triangle

inequality is not required for dissimilarity functions Luca and Zuccolotto [2011]. In

this thesis, we call dissimilarity functions that do not satisfy triangle inequality “dis-

similarity functions” and those that satisfy the triangle inequality “distance functions”.

There are many dissimilarity functions for time series. In financial analysis, Luca

and Zuccolotto [2011] proposed a dissimilarity function base on tail dependence coef-
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3.2 Hierarchical clustering and partitioning methods

ficients. The purpose of their study was to group time series data with an association

between extremely low values. Douzal-Chouakria and Nagabhushan [2007] proposed a

dissimilarity function based on values and behaviour over time. Also, an application

on gene analysis can be found in the study of Douzal-Chouakria, Diallob, and Giroudb

[2009]. In this paper, they suggested using the partitioning around medoids (PAM)

clustering method with the proposed dissimilarity function for identifying expressed

genes of a specific cell’s function.

3.2 Hierarchical clustering and partitioning methods

In this Section we focus on dissimilarity-based clustering methods. The dissimilarity-

based clustering methods employ the dissimilarity functions to measure dissimilarity

between two objects, two clusters or one object and one cluster. Subsequently, the clus-

tering methods group objects into clusters in which objects within clusters are similar.

In the following sections we review the hierarchical and partitioning clustering methods

and show how the clustering methods work on the basis of the dissimilarity functions.

One of the approaches in the hierarchical clustering methods is the “bottom-up”

approach that works as follows. At the beginning, each object is treated as one clus-

ter. Then, the dissimilarities between any two clusters are calculated. Later, clusters

with the smallest dissimilarity are linked to each other as one cluster, which contains

two objects at this moment. Afterwards, the method repeats the calculation of dis-

similarity between clusters with a selected linkage method, described in the following

section. Again, two clusters with the smallest dissimilarity are merged. The process

of agglomeration goes on until all clusters are merged together as one cluster. Each

time of merging two clusters indicates one step up the hierarchy. Note that two merged

clusters can not be separated at the next step of hierarchy. As a result, the process of

agglomeration of each step can be displayed by a dendrogram from which clusters are

obtained. Figure 3.2 shows a dendrogram of the clustering process. The vertical-axis

represents the dissimilarity. On horizontal-axis, the bottom end of each node indi-

cates objects. At the beginning of clustering, each object is considered as one cluster.
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3.2 Hierarchical clustering and partitioning methods

Next, the dissimilarity between objects 1 and 2 is the shortest one among those be-

tween any two clusters, so objects 1 and 2 are merged as one cluster, denoted by G1.

The process stops when all objects are merged together. In this study the hierarchical

clustering methods, namely the Single Linkage, the Complete Linkage and the Aver-

age Linkage method, are used and described in Section 3.2.1. On the other hand, in

the partition methods, the number of clusters, denoted by k, has to be decided first,

and only then will the algorithms partition objects into specified number of clusters

in which each object will be assigned to the cluster with the nearest centroid. Two

of the partition clustering methods, namely the K-Means clustering method and the

partition around medoids (PAM) clustering method are introduced in Section 3.2.2.

The K-Means method aims at partitioning objects into k clusters in which each object

is assigned to the cluster with the nearest mean vector. The elements of a mean vector

are the average of each variable over the objects of a group. The PAM method aims

at partitioning objects into k clusters in which each object is assigned to the cluster

with the closest medoid. Selecting one object from each of the k clusters, the selected

objects are called the k medoids. They are the representative objects of the clusters.

Notation

Let xit, t = 1, . . . , T , be the value of the tth variable for the object i. Hence, the

data for T variables for each object can be represented by a T-dimensional vector

xi = [xi1, . . . , xiT ]. Let X be the set of data for n objects. Let n be the total of

objects and k the number of clusters. Assume that the n objects are clustered into k

clusters, (k ≤ n), let ψ = {G1, G2, . . . , Gk} be a collection of these k clusters where

Gi ∩Gj = φ, for all i 6= j and X = {G1 ∪G2 ∪ . . .∪Gk}; n1, n2, . . . , nk be the number

of objects in these k clusters. Denote the dissimilarity between values of variables by

d(·, ·) and the dissimilarity between two objects, two clusters or one object and one

cluster by D(·, ·). D(i, j) represents the dissimilarity between objects i and j. Also,

D(Gi, j) represents the dissimilarity between a cluster Gi and an object j.

3.2.1 Linkage methods

Single Linkage

The Single Linkage is known as using the nearest neighbour rule, which defines the
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Figure 3.2: An illustration of a dendrogram - The y-axis is the dissimilarity between

objects or clusters. On x-axis, the bottom end of each node indicates each object i, where

i = 1, . . . , 5. Gj , j = 1, 2, 3 represents cluster j.

dissimilarity between clusters Gi and Gj as the shortest distance between a pair of

objects. The term pair means one object in Gi and one in Gi. Of these ni times nj

dissimilarities, the smallest dissimilarity is defined as the dissimilarity between the two

clusters. Therefore, the dissimilarity between clusters Gi and Gj is defined by (Gordon

[1999])

D(Gi, Gj) = min
i′∈Gi,j′∈Gj

D(i′, j′) = d(xi′ ,xj′). (3.7)

The advantage of using this method is that the found clusters are often separated

in respect of dissimilarity. However, because this method uses a close pair of objects re-

gardless of one of the pairs of objects might be far from each other, it produces clusters

in which objects might be far apart and sometimes clusters that contain few objects if

these few objects are isolated.

Complete Linkage

The Complete Linkage is known as using the furthest neighbour rule, which defines

the dissimilarity between clusters Gi and Gj as the largest distance between an object

in Gi and an object in Gj . Therefore, the dissimilarity between clusters Gi and Gj is

defined by (Gordon [1999])

D(Gi, Gj) = max
i′∈Gi,j′∈Gj

D(i′, j′) = d(xi′ ,xj′). (3.8)
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In the Complete Linkage method, the dissimilarities of all pairs of objects of Gi and

and Gj are computed. Of those dissimilarities, the largest one is used. By this method,

clusters will not be merged together if there exists one pair of their objects that are far

away from each other. The advantage is that the found clusters are compact and have

similar diameters. However, the found clusters are not necessarily well separated.

Average Linkage

The Average Linkage defines the dissimilarity between clusters Gi and Gj based on

the average of all distance between all pairs of objects in Gi and Gj . Therefore, the

dissimilarity between clusters Gi and Gj is defined by (Gordon [1999])

D(Gi, Gj) =
1

ni × nj

∑
i′∈Gi

∑
j′∈Gj

d(xi′ ,xj′). (3.9)

In the Average Linkage method, the dissimilarities of all pairs of objects of Gi and

and Gj are computed and the average of those dissimilarities is used. This method is

regarded a compromise between the Single Linkage and the Complete Linkage methods.

The dissimilarity between clusters is not determined by two objects but it depends on

all objects in the clusters.

3.2.2 Partition clustering methods

K-Means method

The K-Means method aims at partitioning n objects into k clusters in which each object

is assigned to the cluster with the nearest mean. In other words, it aims at minimizing

an objective function LKM which is defined by (Hartigan and Wong [1979])

LKM = min
ψ={G1,G2,...,Gk}

min
{µ1,...,µk}

k∑
i=1

∑
j∈Gi

dE(xj ,µi). (3.10)

The dE(·, ·) in the equation above denotes the square Euclidean distance. One way

of writing an algorithm to perform the K-Means clustering method is as follows: Step

1, objects are randomly split into k initial sets. Step 2, each of the mean vectors of

the k sets, µi = 1
ni

∑
j∈Gi

xj ; i = 1, . . . , k, is calculated and treated as the centre of

each of the k clusters. Step 3, each object is assigned to the cluster with the smallest

Euclidean distance from the centre. Step 4, each of the mean vectors of the k clusters
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is recalculated. Then, the method repeats Step 3 to Step 4 until a local minimum of

within-cluster sum of squares is reached.

In the Euclidean space the mean vector of each cluster is calculated by taking the

aggregate all values of each variable and divided by the number of objects, so the K-

Means method can be written as a function. Thus, strictly speaking, it is regarded as

neither a dissimilarity-based nor a model-based clustering method. However, when no

row data but only dissimilarity matrix is provided, mean vectors can not be extracted

from a dissimilarity matrix. Therefore, the K-Means is not for clustering dissimilarities.

Partition around medoids (PAM) method

The PAM method aims at partitioning n objects into k clusters in which each object

is assigned to the cluster with the closest medoid. These k medoids are regarded as

representative objects among the objects of the dataset. In other words, it aims at

minimizing an objective function LPAM which is defined by (Kaufman and Rousseeuw

[1990])

LPAM = min
ψ={G1,G2,...,Gk}

min
{x(1),...,x(k)}

k∑
i=1

∑
j∈Gi

d(xj ,x(i)). (3.11)

where x(i) is the record for the medoid of Gi. The PAM clustering method consists

of phases I and II. Phase I in which initial k medoids are found is called BUILD and

phase II in which final k medoids are found is called SWAP. The phase I works as

follows. First, the object i for which the sum of the dissimilarities to all other objects

is the smallest is selected. Second, consider the nonselected objects, the object j for

which the sum of the dissimilarity of objects to their closest representative objects

(i, j) is the smallest is selected. The process is continued until k objects are selected.

In phase I, k objects, {x(i) : i = 1, . . . , k}, are selected as the initial k medoids for

each of the k clusters. The phase II works as follows. First, each object is assigned to

the cluster with the closest medoid. Next, in each of the k clusters, the method swaps

object who is considered as the medoid with one of the remaining objects, so that the

new medoid makes a minimum of sum of distances. The process repeats until the k

medoids stay without change. As the medoid vector of each cluster is the record of the

selected object, this clustering method works both on raw data and on a dissimilarity
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matrix. In addition, the PAM method includes a selection of the initial vector, so it

gives a consistent clustering result.

To sum up, the Single Linkage method tends to chain two clusters if they have

one pair of points with the shortest distance. As a consequence, objects within any

single cluster maybe far from each other. The Complete Linkage method ensures that

the widths of dissimilarities between objects in a cluster are similar, but the clusters

are not necessarily separated. As a compromise solution, the Average Linkage method

uses dissimilarities of all pairs of participants. The K-Means method uses means and

the PAM clustering method works with mediods. The mediods can be obtained from

a dissimilarity matrix. A new dissimilarity function is proposed in this thesis, and

therefore the linkage methods and the PAM are considered to be used.

3.3 Model-based clustering

The clustering methods described in the previous section, except the K-Means, are

dissimilarity-based clustering methods. Apart from it, another clustering approach

often being used is called model-based clustering method. It assumes that there is a

distribution for each cluster; therefore, a dataset can be represented by a finite mixture

of these distributions. Model-based clustering is flexible in choosing the individual

distribution which is used to model each cluster. Mixture models allow the observed

features of data to be continuous or discrete (Duda, Hart, and Stork [2001]; Fraley

and Raftery [2002, 2010]; Liao [2006]; McLachlan and Peel [2000]). Let X be the data

of all n observations {xi : i = 1, . . . , n}. The likelihood for a mixture model with k

components is

LMIX(θ1, . . . , θk; τ1, . . . , τk|X) =
n∏
i=1

k∑
g=1

τgfg(xi|θg) (3.12)

where fg and θg are the density and parameters of the gth component in the mixture

model and τg is the probability that an observation belongs to the gth component. Let

the vector φ = (τ ,θ) be the all unknown parameters of Eq 3.12. It can be fitted by

using the expectation-maximization (EM) algorithm (McLachlan and Basford [1988]).
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The EM algorithm for the mixture model alternates between two steps. At the “E”

step, the conditional expectation of the log-likelihood is computed based on the ob-

served data, averaging over the estimated distribution of the missing component mem-

berships. At the “M” step, the parameters that maximize the expected log-likelihood

from the E step are determined. Once an estimate of φ is obtained, estimates of the

posterior probabilities of component memberships can be formed for each object. Each

object is classified into the group to which it has the highest estimated posterior prob-

ability.

Model-based clustering has several advantages. With the underlying distributions,

the questions of determining the number of clusters and selecting the clustering meth-

ods becomes a question of model selection Li [2006]. Also, it measures the uncertainty

for component memberships of objects by τg. Fraley and Raftery [2002] showed model-

based clustering has more advantages in medical data, gene expression data, spatial

data, etc. Model-based clustering is flexible and can accommodate with non-Gaussian

data. But it can be limited on high-dimensional data as if the dimension of the data

is relatively large to the number of objects, the covariance might be singular, which

causes the EM algorithm to break down.

The main reason for which the model-based clustering is not considered for the

category-ordered data is the missing records. The missing values are missing not at

random. In some cases, particularly if there were longer absences, missing values point

to more severe problems of the participant, or a tendency to leave the study, or illicit

drug use. These make the implemented model-based clustering methods hard to use

as straight forward. Therefore, we focus on the dissimilarity-based clustering methods.

For whom may be interested in applying the model-based clustering method, here are

some ideas for making the method to accommodate the category-ordered data. First

of all, a sensible scheme for imputation is required. As the aforementioned, the EM

algorithm is used to take care of missing component memberships in mixture mod-

els. Since the EM algorithm can also be used to estimate missing values, it would be

interesting to include a missing imputation process by finding the distribution of the

complicated patterns of missing data using an EM algorithm in the mixture models.

Another thought is to use the EM algorithm and the multidimensional scaling (MDS)
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(Cox and Cox [1990]) (see 7.2 for details of MDS). MDS represents a dissimilarity

matrix of high dimensional data to a lower dimensional space. It would also be in-

teresting to include the EM algorithm to estimate missing values in the dissimilarity

matrix in the MDS algorithm and then to apply model-based clustering to the MDS

solution. These approaches are another research topics. In this study, we focus on the

dissimilarity-based clustering methods and propose a so-called p-dissimilarity in the

next chapter.
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Chapter 4

New dissimilarity function : the

p-dissimilarity

In this chapter we propose a new dissimilarity function, the p-dissimilarity. It can be

used to measure dissimilarity for category-ordered data. It accommodates ordinal and

categorical scales by using two parameters p and β. For convenience, we use the term

“values” to refer to {1, 2, . . . , 7}, indicating the seven categories, and we use “categories”

to refer to the six categories of dosages and one category of missing dosages. Section

4.1 explains the motivation and Section 4.2 shows the assumption and requirements for

dissimilarity between categories. Section 4.3 gives the definition of the p-dissimilarity

and Section 4.4 discusses the advantages.

4.1 Motivation of dissimilarity design

The dissimilarity functions are a fundamental aspect of the dissimilarity-based cluster-

ing methods. Many dissimilarity functions are made with respect to study purposes (see

Section 3.1). However, the existing ones are not suitable for category-ordered data. The

problem of measuring the dissimilarity for the category-ordered data is complicated.

The problem can be outlined in terms of ordinality and dissimilarity for missing values.

The Simple matching coefficient ignores the ordinality of the values of the cate-

gories. The approach of using binary variables takes into account the ordinality. By
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4.1 Motivation of dissimilarity design

this approach, the dissimilarities between value 1 and values 2 to 6 are 1
5 , 2

5 , 3
5 , 4

5 and

1. It shows that value 2 is more similar to value 1 than to the larger values. This

approach assumes that the dosage intervals of the categories are equal. However, the

dosage width of category 6 is not 20 mg. Another approach of assigning ranks (Eq

3.5) also considerers ordinality. The trouble with this approach is that, for values 1

to 5 that refer to categories for which the dosage width is 20 mg, the dissimilarities

between value 1 and values 2 to 5 are different. Moreover, both of these approaches

define dissimilarity for observed data but not for unobserved data. This means that

the dissimilarities between value 7 and values 1 to 6 are not yet defined.

The aforementioned dissimilarity functions deal with ordinal variables in a quanti-

tative way. They compute dissimilarity by quantifying categories. However, it is not

about which distance value to use for quantifying category, it is about which distance

value to use as an interpretative dissimilarity (Hennig and Hausdorf [2006]). As men-

tioned in Section 2.4, there are two important characteristics of category-ordered data.

Firstly, physicians thinks categorically in prescriptions. Secondly, the missing dosage

is treated as one category. The missing value refers to unobserved dosage. It should

thus not be treated as closer to any of the categories. These need to be taken into ac-

count. Our purpose is to find clusters in which participants within a cluster have high

agreement with regards their behaviours while receiving methadone. The behaviour is

represented by sequences of categories. The sequences of categories take in a pattern.

Our data shows that participants sometimes had their dosage changed from one cate-

gory to another, but what matters is the length of staying in the same category. The

changing of one category to another regardless of the distance of the move means the

dosage is not stable. We may want patterns that are insensitive to the sudden changes

which appear as short sequences of categories. For instance, suppose data for three

participants (A,B,C) for 7 days are [1, 1, 1, 1, 1, 2, 2], [1, 1, 3, 1, 1, 2, 2] and [1, 2, 1, 2,

1, 3, 2]. A cluster including participants A and B can be presented as the cluster with

dosage pattern of [1, 1, (1,3), 1, 1, 2, 2]. It is more useful than a cluster produced by

participants A and C.

To find clusters whose participants have similar dosages in a longer time, a dis-

similarity function should give a larger dissimilarity for participants whose values on
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the same day are in different categories and a small dissimilarity for participants most

of whose values on the same day are in the same category. We define a “neighbour-

ing category” as referring to category which is considered closest to a target category

with respect to dosages in the intervals. We use a term “ distant-neighbouring cate-

gories” to refer to the categories that are not neighbouring categories. The dissimilarity

function should then focus more on distinguishing categories and less on showing how

different the neighbouring categories and the distant-neighbouring categories are in re-

lation to the target category. The dissimilarity between neighbouring category should

contribute to the dissimilarity between participants the most. Also, the dissimilarity

function should have the dissimilarity between two categories goes larger as the cate-

gories go further apart. A concave dissimilarity function that dominate by neighbouring

category and keeps ordinality is thus ideal. However, such a dissimilarity function that

enables us to distinguish categories of observed dosage from missing values, that takes

into account ordinality, that can be used for data where each variable has mixed in-

formation on nominal and ordinal, and that enables a proper interpretation, does not

currently exist. Therefore, we propose the p-dissimilarity function. It gives a solution

for the aforementioned problems and it can be applied to the category-ordered data.

4.2 Dissimilarity between categories

The category-ordered data has a time series form, so we consider three approaches:

time warping, autoregressive model and aggregating dissimilarity by days. First of all,

the time warping focuses on patterns of the dosage taken by two participants, that is,

the shapes formed by their daily dosage records. However, this ignores the retention

in MMT. Retention in MMT is meaningful; a dosage pattern of a participant over 3

months cannot be compressed to one month or expanded to six months. So, we rather

keep the length of treatment as it is. Secondly, time series clustering works based on

the auto-correlations of participants’ daily dosage. Assume one participant has dosage

in categories 5, 4, 3, each of which has length for one month, and another participant

has dosage in categories 3, 2, 1, each of which has length for one month. They will be

grouped as one cluster because they have the same auto correlation matrix structure.

This method is not ideal in our case. The categories are essentially different and we

want to cluster on the absolute level. Also, we want to keep the length for categories.
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To achieve these, we define the dissimilarity between two time series by aggregating

daily dissimilarity between categories.

We start from the dissimilarly between categories. Assuming for the moment that

there is no category for missing dosages. We assume the following:

Assumption

It is the neighbouring category which contributes most to distinguish the target cate-

gory.

This assumption allows that the distance between a target category and its neighbour-

ing category provides the most information for separating the target category from the

others. The more distant the comparison category, the lower the rate at which the

dissimilarity increases. Hence, the dissimilarity function is not linear.The dissimilarity

function is concave from the target category to its distant-neighbouring categories.

Notation

The dosage, a numeric variable, is partitioned into θ categories denoted by Ci, i ∈ Θ =

{1, . . . , θ}. For convenience, value i refers to the ith category, the subscript of Ci. Also,

Ci refers to a category, which is a set of dosages. Let D(·, ·) denote the dissimilarity

between participants and d(·, ·) denote the dissimilarity between categories.

Following are requirements for dissimilarity between categories.

Requirement 1

The dissimilarities of all paired neighbouring categories should be equal.

d(Ci, Ci+1) = d(Ci′ , Ci′+1), for i, i′ ∈ Θ. (4.1)

Requirement 2

For i, i′, j ∈ Θ, if i < i′ < j, the dissimilarity between categories Ci and Ci′ is smaller

than that between categories Ci and Cj .

d(Ci, Ci′) < d(Ci, Cj). (4.2)
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Requirement 2 is set up in order to show ordinality. Requirement 2 means that given

a target category and another two categories, one being closer to it than the other, the

dissimilarity between the target category and the closer category should be smaller than

the dissimilarity between the target category and the more distant category. In other

words, the closer category has a smaller dissimilarity and the dissimilarity increases as

the differences between the values of categories grow larger.

Requirement 3

For i, i′, j ∈ Θ and i ≤ i′ ≤ j, the dissimilarity between categories Ci and Cj is less

than or equal to the sum of the dissimilarity between categories Ci and Ci′ and the

dissimilarity between categories Ci′ and Cj .

d(Ci, Cj) ≤ d(Ci, Ci′) + d(Ci′ , Cj). (4.3)

Requirement 3 means the dissimilarity between categories does not necessarily go up

linearly.

General requirements

1. d(Ci, Ci′) > 0, if i 6= i′, for i, i′ ∈ Θ,

2. d(Ci, Ci′) = d(Ci′ , Ci),

3. d(Ci, Ci) = 0.

This is a set of standard requirements for dissimilarity functions. A dissimilarity func-

tion should satisfy three requirements: non-negativity in which the dissimilarity be-

tween categories is always greater or equal to zero; symmetry in which the dissimilarity

from categories i to i′ is equal to that from categories i′ to i; identity in which the dis-

similarity between a category and itself is zero (Gordon [1999]; Kaufman and Rousseeuw

[1990]).
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4.3 Design of the p-dissimilarity

In this section we propose the p-dissimilarity that is designed on the basis of these

requirements. We give the definition of the p-dissimilarity in two steps. We start from

a situation in which there are no missing values in any observation (4.3.1). Then, we

move to a situation in which there are missing values (4.3.2).

4.3.1 The p-dissimilarity without missing values

Let xit ∈ Θ = {1, . . . , θ} be the category-ordered data for the participant i on the tth

day since they joined the MMT. Assuming for the moment that there are no missing

dosages, the p-dissimilarity between participants i and i′ is defined by

D(i, i′) = ΣT
t=1d(xit, xi′t) = ΣT

t=1(1− pαii′ (t)) (4.4)

where 0 < p < 1 and αii′(t) = |xit − xi′t|. The meaning of (1 − pαii′ (t)) is the

contribution of the tth dosage taken record to the dissimilarity D(i, i′).

The role of αii′ is aimed at indicating ordinality of values of categories. It should

guarantee that the difference between categories becomes large as the values of the

categories go further away from each other. Therefore, αii′(t) is defined as the absolute

value of the difference between the ordinal values of the categories of participants i and

i′ on day t. The values of categories are {1, . . . , θ}. The minimum difference between

the values is 0, and the maximum is (θ − 1); hence, αii′ ranges from 0 to (θ − 1).

The tuning constant p is for measuring dissimilarity between categories. The dissim-

ilarity between two neighbouring categories is (1− p). The advantage of the parameter

p is that the p can be used as a switch between data being treated as categorical and

ordinal. A small p indicates that the target category is considered to be very different

from its neighbouring categories. Using a small p, data are treated as rather categor-

ical. A large p indicates that the target category is considered to be not so different

from its neighbouring categories. Using a large p, data are treated as rather ordinal. In

order to determine the value of p, some subjective judgement has to be used about how

sensitive the p-dissimilarity needs to be for separating categories, and how important it
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Figure 4.1: An illustration of p-dissimilarities - The p-dissimilarities is monotonic

in absolute difference between values and concave.

is for data to be considered as more ordinal or as more categorical in practice. To high-

light the advantage, Figure 4.1 shows the p-dissimilarities between values of categories.

The dissimilarity is non-linear and the dissimilarity increases monotonically from the

neighbouring category to the distant-neighbouring categories. The smaller the p, the

larger the dissimilarity between categories is. Moreover, the dissimilarity between Ci

and Ci+1 is (1 − p). The dissimilarity between Ci and its distant-neighbouring cate-

gories can be written by an equation involving (1− p) (Eq 4.5).

The following are the properties of the p-dissimilarity for a single day with respect

to the aforementioned requirements.

Proposition 1. The differences between any two neighbouring categories are equal.

Proof

Suppose data of a single variable of two participants falls in categories (Ci, Ci′),i, i
′ ∈ Θ.

d(Ci, Ci+1) = 1− p|i−(i+1)| = 1− p|i′−(i′+1)| = d(Ci′ , Ci′+1).

Proposition 2. The dissimilarity between a target category and its neighbouring cat-

egory is smaller than that between it and its distant-neighbouring category.

Proof

For g, h, i ∈ Θ, g < h < i, and 0 < p < 1
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4.3 Design of the p-dissimilarity

d(Ch, Ci) = 1− p|i−h|

< 1− p|i−g| = d(Cg, Ci).

Proposition 3. For i, i′ ∈ Θ and i 6= i′, the dissimilarity between categories Ci and

Ci′ is

d(Ci, Ci′) = (1− p)
|i′−i|−1∑
l=0

pl. (4.5)

Proof by induction

For i, i′ ∈ Θ and i 6= i′, let |i′ − i| = n0,

When n0 = 1, d(Ci, Ci′) = 1− p = (1− p)
1−1∑
l=0

pl.

assume n0 = n, d(Ci, Ci′) = (1− pn) = (1− p)
∑n−1

l=0 p
l.

When n0 = n+ 1,

d(Ci, Ci′) = 1− pn+1

= (1− p) + (p− pn+1)

= (1− p) + p(1− pn)

= (1− p) + p(1− p)
∑n−1

l=0 p
l

= (1− p)(1 + p
∑n−1

l=0 p
l)

= (1− p)(1 +
∑n

l=1 p
l)

= (1− p)
∑n

l=0 p
l.

Therefore, d(Ci, Ci′) = (1− p)
∑|i′−i|−1

l=0 pl, ∀i, i′ ∈ Θ and i 6= i′.

By proposition 3, d(Ci, Ci+1) = (1−p), d(Ci, Ci+2) = (1−p)(1+p), and d(Ci, Ci+3) =

(1− p)(1 + p+ p2). Also, the numerical difference between d(Ci, Ci+1) and d(Ci, Ci+2)

is (1− p)p, while the difference between d(Ci, Ci+2) and d(Ci, Ci+3) is (1− p)p2 and so

on. A quantity of increment of dissimilarity when the values of the categories go larger

is in proportion to (1−p). Also, the term (1−p) is the contribution of the neighbouring

category to the dissimilarity in distinguishing a category.

Proposition 4. For all triples of participants (g, h, i), D(g, h) + D(g, i) ≥ D(h, i).

This is also known as the triangle inequality.

Proof
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It is sufficient to establish the metricity for a single variable of the p-dissimilarity defined

in Eq 4.4. Suppose a variable takes values Cg, Ch, Ci for three participants. Without

loss of generality, let g ≤ h ≤ i. Then the dissimilarities of the three participants are

D(g, h) = d(Cg, Ch) = 1− ph−g,
D(g, i) = d(Cg, Ci) = 1− pi−g,
D(h, i) = d(Ch, Ci) = 1− pi−h.

It is trivial that D(g, i) is the longest side of the triangle and the metric property is

valid for all permutations if D(g, h) +D(h, i) ≥ D(g, i).

D(g, h) +D(h, i)−D(g, i) = (1− ph−g) + (1− pi−h)− (1− pi−g)
= (1− ph−g)− pi−h + pi−g

= (1− ph−g)− pi−h(1− ph−g)
= (1− ph−g)(1− pi−h) ≥ 0

hence, the p-dissimilarity defined in Eq 4.4 is metric.

4.3.2 The p-dissimilarity with missing values

In this section we take into account missing values and give a full definition of the

p-dissimilarity. Although the dosage records are real zeros, the addiction should not

be treated as zero. It is normal that participants on specific prescriptions miss some

days. This should not spoil the dissimilarity computation. The concept of handling

the missing values is to view them as if they were observed. If missing dosages were

observed, they would be re-coded as one of the θ categories. Consequently, the dissimi-

larity between missing dosages and the θ categories would be within the range of [1−p0,
1− pθ−1], depending on the categories to which the missing dosages belong. However,

missing dosages are, in fact, not observed. They should not be considered more or less

similar to any of categories. The dissimilarity between a category of observed dosages

and the category of the missing dosages is then set from (1−p). A parameter β is used.

For day t when a missing value occurs, the contribution of the tth records to D(i, i′)

is (1 − pβii′ (t)). The selection of β(t) depends on the degree of difference between the

category of missing dosages and the categories of observed dosages as reckoned by re-

searchers. Using β = 1 means that the category of the missing dosages is considered to

be a neighbouring category of all the categories of observed dosages. Using β greater

than 1, the category of the missing dosages is considered to be a distant-neighbouring
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category. Moreover, we define all βii′(t) equal to β, that is, only one value in the range

[1, (θ-1)] will be used in the analysis. A discussion about choices of β can be found in

Section 6.1.1.

There are two situations when computing the dissimilarity of two participants i and

i′ on day t. One situation is that both participants i and i′ have their tth dosage taken

records non-missing. Another one is that there is a missing dosage. An indicator δii′(t)

is then used to distinguish these situations. δii′(t) is equal to 1 when both observations i

and i′ for their tth dosage taken records were non-missing, and it is equal to 0 otherwise.

The p-dissimilarity between participants i and i′ with a category for missing values is

defined by

D(i, i′) = ΣT
t=1[δii′(t)(1− pαii′ (t)) + (1− δii′(t))(1− pβ)], (4.6)

where δii′(t) is equal to 1 when both participants i and i′ for their tth dosage taken

records are non-missing and equal to 0 otherwise, 0 < p < 1, αii′(t) = |xit − xi′t|,
and 1 < β < (θ − 1). The meaning of p and α can be found in Section 4.3.1. The

following are the proofs of the three general requirements for the p-dissimilarity to be

a dissimilarity function.

Proposition 1. For any two participants (i, i′), the following are true for the p-

dissimilarity defined in Eq 4.6:

1. D(i, i′) ≥ 0,

2. D(i, i′) = D(i′, i),

Proof

Let xi = [xi1, . . . , xiT ] and xi′ = [xi′1, . . . , xi′T ] be the category-ordered data of par-

ticipants i and i′. The dissimilarity between the two participants D(i, i′) is equal to∑T
t=1 d(xit, xi′t).

(1) The dissimilarity of the values xit and xi′t, t = 1, . . . , T is

d(xit, xi′t) =

{
1− p|xit−xi′t|, if both are non-missing,

1− pβ, otherwise.

59



4.4 Advantages and disadvantages of the p-dissimilarity

Table 4.1: The p-dissimilarity matrix of the seven categories with β = 2. The

first six categories represent the ordered set of dosages indicated in the first column. The p-

dissimilarity is the one minus absolute value of the difference of the values of the categories.

The p-dissimilarities between category 7 and categories 1 to 7 are all (1− pβ).

Dosage values Category 1 2 3 4 5 6 7

≤ 20 mg 1 0 1-p 1-p2 1-p3 1-p4 1-p5 1-p2

21-40 mg 2 1-p 0 1-p 1-p2 1-p3 1-p4 1-p2

41-60 mg 3 1-p2 1-p 0 1-p 1-p2 1-p3 1-p2

61-80 mg 4 1-p3 1-p2 1-p 0 1-p 1-p2 1-p2

81-100 mg 5 1-p4 1-p3 1-p2 1-p 0 1-p 1-p2

> 100 mg 6 1-p5 1-p4 1-p3 1-p2 1-p 0 1-p2

missing dosages 7 1-p2 1-p2 1-p2 1-p2 1-p2 1-p2 1-p2

Since 0 < p < 1, the dissimilarity of any two values xit and xi′t is greater than or equal

to 0. This implies that

D(i, i′) = ΣT
j=1d(xit, xi′t) ≥ 0.

(2)

Case I: both xit and xi′t are non-missing

d(xit, xi′t) = 1− p|xit−xi′t| = 1− p|xi′t−xit| = d(xi′t, xit).

Case II: one of xit and xi′t is missing or both of them are missing

d(xit, xi′t) = 1− pβ = d(xit, xi′t)

This implies that

D(i, i′) = ΣT
j=1d(xit, xi′t) = ΣT

j=1d(xi′t, xit) = D(i′, i).

(3) If the object is identified to be the same participant, we define the p-dissimilarity

to be 0.

4.4 Advantages and disadvantages of the p-dissimilarity

The discussion is carried out by comparing the p-dissimilarities with the Euclidean dis-

tance. A quick review of the p-dissimilarities with β = 2 among seven categories on a
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single day is given in Table 4.1. The first column shows the dosage intervals and the sec-

ond column shows the corresponding categories. Each row shows the p-dissimilarities

between the category shown in the second column and categories 1 to 7.

Why do we not simply apply the Euclidean distance to the category-ordered data as

has been done with the p-dissimilarity? The Euclidean distance focuses on difference

between the values of categories, which fails it in matching physicians’ perspective.

Physicians focus more on sequence of constancy and less on sudden changes in cate-

gories. Following the example in Section 4.1, data for three participants (A,B,C) for

7 days are [1, 1, 1, 1, 1, 2, 2], [1, 1, 3, 1, 1, 2, 2] and [1, 2, 1, 2, 1, 3, 2]. Denote the

Euclidean distance between participants by DE(·, ·). The Euclidean distances between

participants are DE(A,B) = 2, DE(B,C) = 2.65 and DE(A,C) = 1.73. Partici-

pants A and C who have most of their values on the same day in different categories

are clustered. On the other hand, denote the p-dissimilarity between participants by

Dp(·, ·), the p-dissimilarities of the three participants with p = 0.6 are Dp(A,B) = 0.64,

Dp(B,C) = 1.84 and Dp(A,C) = 1.2. A and B are then grouped. Most of their values

on the same day are in the same category. This cluster can be presented as the one

cluster with dosage pattern of [1, 1, (1,3), 1, 1, 2, 2]. Such a pattern is captured by the

p-dissimilarity function.

Next, to use Euclidean distance for data containing missing values, an imputation

method is required. Although imputations can be used to deal with missing values,

they depend on data structure and the proportion of missing values over a study pe-

riod. In the MMT data, there are many missing dosages, and these missing dosages

are missing not at random. An additional problem is the medical consideration behind

the missing dosage. It is assumed that participants who continuously lacked 14 days’

dosage records have practically left the study. If no further non-zero dosage record can

be found, the participant is considered as having left the study. Since they have left the

study, it is reasonable not to impute their dosage and keep zero dosage as missing. In

order to apply the Euclidean distance to the category-ordered data which contains one

category for missing dosages, one needs to define the distance between the category of

the missing dosage and the categories of observed dosage.
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In contrast, the concept behind the p-dissimilarity in respect of the missing dosages

is to make use of the information on the observed dosages. We define the dissimilarity

between the category of the missing dosage and all categories to be (1−pβ), so there is

no need for imputations. Also, the p-dissimilarity allows us to observe the duration of

having missing dosages which is represented by the sequence of category. The disadvan-

tage of using (1−pβ) is that it destroys the metric property of the p-dissimilarity. Note

that the triangle inequality is not a requirement for a dissimilarity function. Suppose

category-ordered data for three participants take the values (xt, yt, zt). We assume the

value of xt is missing and |yt − zt| = 3. Let p = 0.9 and β = 1, then

d(xt, yt)+d(yt, zt)−d(xt, zt) = (1−pβ)+(1−pβ)−(1−p|yt−zt|) = 1−2pβ+p3 = −0.07 < 0.

For a dataset without missing dosages, the p-dissimilarity is metric, while for a dataset

with missing dosages, the p-dissimilarity is not metric. The p-dissimilarity is a dissim-

ilarity function but not a distance function.

To sum up, the p-dissimilarity assigns a quantitative value to distances between

neighbouring categories and categories further apart in a concave monotonic way, that

is, further categories are further away, according to the dissimilarity. Also, the in-

crease of the distance becomes smaller moving further away from a category and its

neighbours. This implies information that can be seen as stronger than ordinal. The

quantitative distance between ordinal scales is governed by the meaning of the cate-

gories with a tuning constant p. The category of missing values is treated in a specific

way, as having the same dissimilarity from all other categories, that is, pβ. In addition,

the principle behind the p-dissimilarity can be used in a wider field of applications

where researchers have a quantitative idea about the interpretative distance between

categories, such as studies that use questionnaires with choices on Likert scales and a

don′tknow-category.

In the next chapter we will move on to the question of determination of the number

of clusters.
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Chapter 5

Determination of the number of

clusters

In this chapter we review indexes for the determination of the number of clusters,

namely the Calinski and Harabasz (CH) (Calinski and Harabasz [1974]) and the Aver-

age Silhouette Width (ASW) (Kaufman and Rousseeuw [1990]). Each of which is found

to be the best indexes by simulation study (Arbelaitz et al. [2013]; Milligan and Cooper

[1985]). Also, the Prediction Strength (PS) (Tibshirani et al. [2001]) is reviewed. In

Section 5.3.1 we discuse more about the PS. A crucial issue of using the PS is that

the PS uses classification to the closest mean, which does not work for dissimilarity

data and is connected to K-Means method. However, the linkage methods work in a

substantially different way. Therefore, we propose new rules for modifying Prediction

Strength, so that it can be fully applied when hierarchical clustering methods and the

PAM method are used. Also, we call the PS without new rules “original PS”, and we

call the PS with new rules “modified PS”. The limitation of using CH is that the CH

uses the Euclidean distance. To allow us to use the p-dissimilarity, we decide to use

the ASW and the modified PS for this study.

5.1 Indexes for finding of number of clusters

Many studies have been published on indexes for determining the number of clus-

ters (Calinski and Harabasz [1974]; Hartigan [1975]; Kaufman and Rousseeuw [1990];
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Krzanowski and Lai [1988]; Tibshirani et al. [2001]). A study on the performance of the

indexes was carried out by Milligan and Cooper [1985]. They examined 30 indexes on

hierarchical clustering on artificial data sets on their performances. They found that

the best index was Calinski and Harabasz (Calinski and Harabasz [1974]).

Notation

Suppose a dataset contains T variables and n objects. Assume that the n objects

are clustered into k clusters, (k ≤ n). Denote the k clusters by Gi, i = 1, . . . , k.

Denote the number of objects in cluster Gi by ni. Denote the data for an object r

by xr = [xr1, . . . , xrT ]. Denote the dissimilarity between variables by d(·, ·) and the

squared distance between variables by dE(·, ·). Denote the dissimilarity between two

objects, two clusters or one object and one cluster by D(·, ·).

Calinski and Harabasz (CH)

The index referred to as CH(k) was proposed by Calinski and Harabasz [1974]. The

concept was to maximize the ratio of between-cluster sum of squares B(k) and within-

cluster sum of squares W (k) over the k clusters, which has the same form as the F test

statistic in ANOVA. The CH(k) is defined by

CH(k) =
B(k)/(k − 1)

W (k)/(n− k)
, (5.1)

where,

B(k) =

k∑
i=1

ni dE(Gi,µ),

W (k) =
k∑
i=1

∑
i′∈Gi

dE(Gi,xi′).

The grand centre µ is 1
n

∑n
r=1 xr, while the cluster centres Gi are 1

ni

∑
i′∈Gi

xi′ ; i =

1, . . . , k. The B(k) is the sum of distances of all cluster centres from the grand centre,

while W (k) is the sum of distances of all objects from their cluster centres. The values

of CH are computed for k > 1. Note that the CH(k) is not defined for k = 1. The k

which has the maximum CH value is suggested to be used.
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More recently, Arbelaitz et al. [2013] carried out a similar study, which included

many indexes that did not exist in 1985. The Average Silhouette Width (Kaufman and

Rousseeuw [1990]; Rousseeuw [1987]) was in the group of the best indexes.

5.2 Average Silhouette Width

The index was first proposed by Rousseeuw in 1987. The idea was to display how

similar an object r is to the cluster where it belongs and how similar the object r is to

the remaining clusters. The Silhouette Width for an object r in cluster Gi, i = 1, . . . , k

is defined by

s(r, k) =
b(r, k)− a(r, k)

max(b(r, k), a(r, k))
, (5.2)

where

a(r, k) =
1

ni − 1

∑
r′∈Gi

d(xr,xr′),

b(r, k) = min
r/∈Gj

D(r,Gj) = min
r/∈Gj

1

nj

∑
r′∈Gj

d(xr,xr′).

a(r, k) is the dissimilarity between object r and cluster Gi where object r belongs.

It is defined as the average dissimilarity between object r and the other (ni − 1) ob-

jects in the same cluster. b(r, k) is the dissimilarity between object r and one of the

remaining clusters which has a smallest dissimilarity from object r. In other words,

dissimilarities between r and Gj , where j = {1, . . . , k} \ {i}, are computed, and then

the minimum of the dissimilarities is b(r, k).

The Average Silhouette Width (ASW) for k clusters is defined by

kASW =
1

n

n∑
r=1

s(r, k).

It is the average of all Silhouette Width for n objects. Note that kASW is not defined

for k = 1 because of a(r, 1) = b(r, 1). For k > 1, the k which has the maximum Average

Silhouette Width is suggested to be used.
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5.3 Prediction Strength

5.3 Prediction Strength

This index was proposed by Tibshirani and Walther [2005]. The concept was to view an

analysis of clustering as an analysis of classification. The difference between these two

analyses is that the “true” class to which objects belong is known in the classification

but that is unknown in the clustering. The purpose of classification is to identify the

cluster where a new object belongs. It works as follows. Firstly, a dataset is split into

two subsets, one being training set and the other being test set. Secondly, the training

set is used to construct a classification model. The model is displayed as classification

rules, decision trees, or equations, which will be used to predict the cluster for a new

object. Thirdly, the classification model is applied to objects in the test set, and then

the predicted cluster for each of the objects is called “predicted” class of the object.

Because the “true” class of the objects in the test set is known, the “predicted” and

“true” classes can then be compared. A proportion of objects whose true class and pre-

dicted class are the same is reported. Also, it is used as an index for the performance

of the classification model. A basic problem about viewing clustering as classification

was the unknown “true” class, and Tibshirani and Walther [2005] proposed a solution

to build “true” class for the test set by which the comparison between the true and

predicted classes could be done.

Figure 5.1 shows the flowchart of the calculation of the Prediction Strength. First

of all, in order to use this index, one has to decide a clustering method (Method), and

only then can the Prediction Strength produce values for k = 1, 2, . . . . The options

are hierarchical clustering methods, the K-Means and the PAM method. With a se-

lected Method, the calculation of Prediction Strength for k clusters, denoted by ps(k),

involves three processes, denoted by process I, process II and process III.

First of all, the dataset is split into a training set and a test set, denoted by Xtr

and Xte. Assume that there are n objects in Xte.

The outcome of the process I is the predicted class for the objects in Xte. It works as

follows. The clustering Method with k clusters is applied to Xtr. Denote the clustering

result by C(Xtr, k). Given training clusters that are obtained from C(Xtr, k), a term
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5.3 Prediction Strength

Figure 5.1: Flowchart of the Prediction Strength. - This flowchart illustrates the

calculation of the Prediction Strength for all k = 2, 3, .... The clustering method can be

one of the hierarchical clustering methods, the K-Means and the PAM method. Of the

objects in Xte with the same true class, their predicted classes are compared and presented

by a matrix D.
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5.3 Prediction Strength

“training centres” is used to refer to the mean vectors of the training clusters. Next,

The “predicted” class of objects in Xte is defined to be the training cluster with nearest

training centre.

The outcome of the process II is the true class for the objects in Xte. By true

class, the authors mean that it is defined as the true class. The clustering Method with

k clusters is applied to Xte. Denote the obtained k clusters by {Ak1,Ak2, . . . ,Akk}.
Denote the number of objects in these clusters by nk1, nk2, . . . , nkk, respectively. The

“true” class of objects is defined to be the cluster in {Ak1,Ak2, . . . ,Akk} to which they

belong.

The outcome of the process III is the value of the Prediction Strength for each

cluster Akj , j = 1, . . . , k. Also, the minimum of these values is defined as the Prediction

Strength with k cluster. The process III works as follows. First of all, for cluster

Akj , j = 1, . . . , k, the “true” and the “predicted” classes of its objects are compared.

This is done by using an matrix D whose ii′th element is the indicator of whether two

objects i and i′ are assigned to the same cluster by the training centres of C(Xtr, k).

Next, the probability of any two objects i and i′, i 6= i′ ∈ Akj , having the same

“predicted” class is estimated, that is, the frequency of 1 of Dnki×nki
. The Prediction

Strength for the selected Method with k clusters is defined as the minimum of these

estimated probabilities of {Ak1,Ak2, . . . ,Akk}. It can be written by

ps(k) = min
1≤j≤k

1

nkj(nkj − 1)

∑
i 6=i′∈Akj

D[C(Xtr, k),Xte]ii′ . (5.3)

Hence, the average Prediction Strength is the average of m repetitions of ps(k).

Tibshirani and Walther [2005] suggested to use the largest k in which the average Pre-

diction Strength is greater or equal to 0.8 or above a user-specified threshold. The

average Prediction Strength finds the number of clusters through cluster validation.

The advantage is that the proportions of clusters can be used as a measurement for

the stability of each cluster. A similar method is proposed by Fang and Wang [2012],

their idea is that objects in a training set and a test set are drawn from the dataset

with replacement. The R-package fpc developed by Christian Hennig has implemented

these two indexes, one being prediction.strength and the other being nselectboot, re-

spectively.
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5.3.1 New rules for modifying the Prediction Strength

In some circumstances, the hierarchical clustering methods are preferred to the K-

Means method (Tibshirani et al. [2001]), so one might use the hierarchical clustering

methods to obtain the clustering result C(Xtr, k). However, in the step 4 of the algo-

rithm of the PS, the predicted class is always determined by the training centres of

C(Xtr, k) regardless which of the clustering methods is used. This step is not appro-

priate to the linkage methods and the PAM method that are not build on the basis of

the mean vectors of clusters. For instance, the Single Linkage method uses the nearest

neighbour rule to obtain C(Xtr, k). This method works in a substantially different way

from the K-Means. But labelling the class with closest training centre as the predicted

class ignores the nearest neighbour rule. Moreover, there are dissimilarity functions in

which mean is not defined, such as the p-dissimilarity. The step 4 needs to be modified.

Therefore, we consider three linkage methods and the PAM method, and propose the

corresponding solutions for modifying the Prediction Strength. Each of the solutions is

a new rule to determine the predicted class. In step 4, labelling the class with closest

training centre is called “original PS” and labelling the class with the new rule is called

“modified PS”. The new rules are as follows.

Notation

Denote the number of clusters by k. Denote k training clusters obtained from C(Xtr, k)

by {G1, G2, . . . , Gk} where Gi ∩Gj = φ, for all i 6= j. Denote data for an object r by

xr = [xr1, . . . , xrT ]. Denote the dissimilarity between variables by d(., .). Denote the

dissimilarity between a training cluster Gk′ and an object i in Xte by D(Gk′ , i).

Single Linkage

The “predicted” class of an object i in Xte is Gk′ when an object r in Gk′ has the

shortest dissimilarity from the object i among all objects in the training set, that is

d(xr,xi) < d(xj ,xi),

for all j ∈ Xtr \ {r} and r ∈ Gk′ .

Complete Linkage
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5.3 Prediction Strength

The “predicted” class of an object i in Xte is Gk′ if the object i has a shortest dis-

similarity to Gk′ among all k training clusters. The dissimilarity between Gk′ and the

object i is defined to be the greatest distance from the object i to objects in Gk′ . In

other words, the object i will be assigned to cluster Gk′ if

D(Gk′ , i) < D(Gj , i), j ∈ Θ = {1, 2, . . . , k} \ {k′}.

The dissimilarity between cluster Gk′ and object i is defined by

D(Gk′ , i) = max
xr∈Gk′

d(xr,xi). (5.4)

Average Linkage

The “predicted” class of an object i in Xte is Gk′ if object i has a shortest distance

to Gk′ among all k training clusters. The dissimilarity between Gk′ and the object i

is defined by the average of all distances from the object i to all objects in Gk′ . This

means that the object i will be assigned to cluster Gk′ if

D(Gk′ , i) < D(Gj , i), j ∈ Θ = {1, 2, . . . , k} \ {k′}.

The dissimilarity between cluster Gk′ and yi is defined by

D(Gk′ , i) =
1

nkk′

∑
xr∈Gk′

d(xr,xi), (5.5)

where nkk′ is the number of objects in Gk′ .

PAM method

The PAM method partitions objects in Xtr into k clusters in which each object is as-

signed to the cluster with the closest medoid. The clustering result for Xtr includes k

clusters and k medoids. The “predicted” class of an object i in Xte is Gk′ if the object

i has a shortest dissimilarity to the medoid of Gk′ .

The above rules are for the modification of the process of generating the predicted

class of objects in Xte. Figure 5.2 illustrates an example of the application of the new

rules to generate the predicted class for an object in a test set when linkage methods

are applied. In the figure, the circles and crosses represent the data for objects in two
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(a) (b)

(c)

Figure 5.2: Application of the new rules on C(Xtr, 2) in the three linkage meth-

ods. - The data, appearing in two symbols, is randomly selected from points within two

ellipses. For the ellipse with the circles, the diameters on the x-axis and the y-axis are 5

cm and 20 cm respectively, and the centre is (60, 80), whereas those for the ellipse with

the crosses are 10 cm, 35 cm and (100, 80). An object in Xte is located at (80, 80). Dash

lines show the Euclidean distance between the new object and circles, whereas solid lines

show the Euclidean distance between the new object and crosses with respect to the Single

Linkage method shown in (a), the Complete Linkage method shown in (b) and the Average

Linkage method shown in (c). Note that, regarding Average Linkage method, the distance

between the new object and a cluster is the average of all lines. The “predicted” class for

this object will be cross, circle and circle regarding the three linkage methods, respectively.
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training clusters obtained from C(Xtr, 2). For demonstration purposes, these two clus-

ters are, in fact, generated from two ellipses. The points, appearing in circle, are from

an ellipse with diameter on the x-axis 5 unit, that on the y-axis 20 unit and the centre

(60, 80). In contrast, the points, appearing in cross, are from an ellipse with diameter

on the x-axis 10 unit, that on the y-axis 35 unit and the centre (100, 80). Assume the

object in Xte whose data is located at (80, 80). The lines in the three graphs show the

distances between the object and the two clusters, circle in dashed lines and cross in

solid lines, for the three linkage methods. In Figure 5.2(c), the distance in the Aver-

age Linkage method is the average of all distances between the object and all objects

in circle. Likewise, the distance between the object and the other cluster is calculated

based on all objects. Finally, the “predicted” class of this object will be cross, when the

Single Linkage method is applied as shown in Figure 5.2(a). Both of the “predicted”

classes of the Complete Linkage and the Average Linkage are circle as shown in Figure

5.2(b) and Figure 5.2(c).

Here is an illustration of how the proposed three rules have a positive contribution

to the Prediction Strength. Two datasets are simulated, denoted by dataset A and

dataset B. We evaluate the efficiency of the rules by comparing the original average

Prediction Strength with 100 repetitions for 2 to 9 clusters and the modified Prediction

Strength with 100 repetitions for 2 to 9 clusters for the three linkage methods for the

simulated dataset.

Dataset A

The dataset in which objects are randomly selected from three circles with radius 100,

60 and 20, respectively, consists of a total of 473 objects as shown in Figure 5.3(a).

Dataset B

The dataset contains four clusters. Each of which has 50 objects where they are ran-

domly selected from a rectangle of which area equals to 100 times 100. Let two random

variables B1 and B2 be the data for objects. The distributions for B1 and B2 with

respect to each of the four clusters are as follows. For convenience, by B ∼ U(u1, u2),

we mean that the random variable B follows a uniform distribution with minimum u1
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(a) (b)

Figure 5.3: Simulated datasets - (a)Dataset A contains 473 objects. Data for objects

are generated from three ellipses with radius 100, 60 and 20, respectively. (b)Dataset B

contains four clusters. Each cluster includes 50 objects, generated from a square.

and maximum u2 from which a number b is generated.

Cluster 1: 40 objects with B1 ∼ U(−150,−130.001), B2 ∼ U(−100, 0);

10 objects with B1 ∼ U(−130,−50), B2 ∼ U(−100, 0)

Cluster 2: 10 objects with B1 ∼ U(50, 130), B2 ∼ U(0, 100);

40 objects with B1 ∼ U(130.001, 150), B2 ∼ U(0, 100)

Cluster 3: 10 objects with B1 ∼ U(−100, 0), B2 ∼ U(50, 130);

40 objects with B1 ∼ U(−100, 0), B2 ∼ U(130.001, 150)

Cluster 4: 40 objects with B1 ∼ U(0, 100), B2 ∼ U(−150,−130.001);

10 objects with B1 ∼ U(0, 100), B2 ∼ U(−130,−50)

The data for the 200 objects is shown in Figure 5.3(b).

Both original PS and modified PS are applied on the dataset A. As seen from Fig-

ure 5.3(a), there are three circular arcs referring to the three subsets. Each of which is

covered by another but three arcs are isolated. The Single Linkage is an ideal method

for capturing elongated shapes, so we are most interested in the result of PS for the

Single Linkage. Table 5.1 shows the original average PS and modified average PS with

100 repetitions for 2 to 9 clusters for the three linkage methods for dataset A. The

first column is the numbers of clusters, followed by every two columns the values of

the original average PS and modified PS for the Single Linkage, the Complete Linkage

and the Average Linkage, respectively. With regards the Single Linkage, the original
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average PS gives lower values than the modified average PS. Also, the original average

PS and modified average PS for Single Linkage with three clusters is 0.35 and 0.86,

respectively. According to the suggestion of Tibshirani and Walther [2005], namely

to use the largest k in which the average PS is greater or equal to 0.8, the potential

number of clusters for dataset A is three. The values of the Complete Linkage and that

of the Average Linkage are all smaller than 0.7.

Both original PS and modified PS are applied on the dataset B of which the four

subsets are separated from each other as shown in Figure 5.3(b). Table 5.2 shows the

original average PS and modified average PS with 100 repetitions for 2 to 9 clusters for

the three linkage methods. As seen, for each column, k = 4 has the highest score.

To sum up, the ASW and PS were proposed for determining the number of clusters

by measuring the cluster stability and cluster coherence. We took into account the

logic behind each clustering method and modified the PS. In the following chapters we

use the term PS to refer to the modified PS. In addition, in the next chapter we use

ASW and PS to compare the performance of the clustering methods on stability and

coherence and let our data to decide which clustering method to use.
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Table 5.1: The average Prediction Strength of dataset A - dataset A has three

subsets. Each of which is covered by another but three arcs are isolated. The Single

Linkage is an ideal method for capturing elongate shape, so we are most interested in

the result of PS for the Single Linkage. For the Single Linkage method, the modified PS

gives higher values than the original PS. Moreover, the modified average PS for the Single

Linkage method for three clusters is 0.86, whereas the original average PS gives a value of

0.35.

Number of Clusters Single Linkage Complete Linkage Average Linkage

Original Modified Original Modified Original Modified

2 0.489 0.982 0.603 0.553 0.632 0.619

3 0.354 0.858 0.504 0.518 0.486 0.504

4 0.276 0.644 0.469 0.467 0.458 0.460

5 0.229 0.494 0.430 0.408 0.411 0.409

6 0.182 0.384 0.381 0.362 0.373 0.389

7 0.150 0.286 0.376 0.341 0.373 0.359

8 0.153 0.247 0.368 0.391 0.348 0.360

9 0.100 0.193 0.349 0.380 0.340 0.334
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Table 5.2: The average Prediction Strength of dataset B - The dataset B contains

four clusters, each of which has 50 objects generated from a square. The original average

PS and modified average PS with 100 repetitions for 2 to 9 clusters for the three linkage

methods are shown below. As seen, both original PS and modified PS for the three linkage

methods show highest score at k = 4. The modified PS is preferred as it takes into account

the logic behind each clustering method.

Number of Clusters Single Linkage Complete Linkage Average Linkage

Original Modified Original Modified Original Modified

2 0.568 0.584 0.713 0.733 0.638 0.638

3 0.542 0.543 0.577 0.493 0.529 0.556

4 0.943 0.917 0.980 0.977 0.976 0.981

5 0.239 0.291 0.536 0.551 0.319 0.339

6 0.053 0.062 0.392 0.391 0.159 0.127

7 0.004 0.006 0.323 0.322 0.081 0.087

8 0.000 0.005 0.294 0.282 0.062 0.052

9 0.000 0.000 0.242 0.215 0.031 0.036
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Chapter 6

The clustering method and

number of clusters for CO314

In this Chapter we select values for the parameters of the p-dissimilarity (β and p), clus-

tering method, and the number of clusters. Figure 6.1 shows the association between

the decision making and the structure of this chapter. Section 6.1 discusses how to

determine β, p and clustering method. The PAM method and the p-dissimilarity with

p = 0.6 and β = 1.42 are selected. In Section 6.2 we propose a null model test. The

null model test uses the null model and parametric bootstrap to investigate whether

the clusters found according to PAM and the value of the indexes can be explained by

random variation. Section 6.3.3 shows an application of the null model test for CO314.

Note that the term “average PS” refers to the “average modified PS” in this chapter.

6.1 Determination of β, p, and clustering method

6.1.1 Determination of β

The p-dissimilarity function is used to construct a proximity matrix to which the clus-

tering methods will apply. It includes δ, p, α, and β (see Section 4.3.2). The p-

dissimilarity between two participants is the sum of (1− pα(t)) and (1− pβ) over time.

To use the p-dissimilarity, the values of β and the p need to be decided.

The parameter β relates to missing values. Suppose data for a participant r con-

tains T records, denoted by xr = [xr1, . . . , xrT ]. For any two participants i and j, there
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Figure 6.1: Process of decision making. -
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Table 6.1: The frequency of α. - The dosage value is partitioned into six categories,

so that the possible outcomes of α are between 0 and 5 as shown in the first column. The

average of the values of α is 1.42.

α Frequency Relative frequency (%)

0 1641493 23.12

1 2590795 36.53

2 1619155 22.79

3 829515 11.65

4 338222 4.79

5 78915 1.11

are T pair differences in terms of their daily records, that is, {|xit−xjt| : t = 1, . . . , T}.
We categorized the T pair differences into “observed differences” α in which the tth

records of both participants are non-missing, and “semi-observed differences” in which

at least one of the participants has their tth record missing. The p-dissimilarity for an

observed difference is (1− pα(t)), while that for a semi-observed difference is (1− pβ).

The process of selecting β was based on an assumption that if missing values were

observed, values of the observed differences and values of the semi-observed differences

followed the same distribution. So, for CO314, we set the β to the average of all ob-

served differences occurring in the dataset between different participants on the same

day, that is, missing values were treated as “in average distance to everything”.

Each pair of participants produced 180 differences according to their daily records.

There were
(
314
2

)
pairs of participants. One of which produced 90 observed differences,

which was also the minimum numbers of observed differences. Around 80% of the
(
314
2

)
times 180 differences were observed differences. Table 6.1 shows the frequency of α.

The possible values for α range from 0 to 5 as the categories 1 to 6 represent observed

dosages. The third column shows the relative frequency. The observed difference that

is equal to 1 has the highest relative frequency, 36.53%, whereas the relative frequency

of 2 is 22.79%. We set β equal to the mean of α, 1.42. β = 1.42 is applied to category-

ordered data for 314 participants.
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6.1.2 Determination of the clustering methods

We compared the clustering methods, namely the Single Linkage, the Complete Link-

age, the Average Linkage and the PAM method, by their values of the modified PS (see

Section 5.3.1) and their values of the ASW (see Section 5.2). The clustering method

with higher values for 2 to 20 clusters would be used for CO314. Note that the values

of the modified PS and the values of the ASW are higher for the lower numbers of

clusters. The number of repetitions of the modified PS was set to 30.

The seven graphs in Figure 6.2 show the average PS for the four clustering methods

from 2 to 20 clusters with the combination of β=1.42 and p = 0.2, 0.3, . . . , 0.8. The y-

axes represent the value of the average PS. The x-axes represent the number of clusters.

What can be observed is that, by and large, the PAM method has the higher values of

the average PS up to 20 clusters. Similarly, the seven graphs in Figure 6.3 show the

ASW for the four clustering methods from 2 to 20 clusters with the combination of

β=1.42 and p = 0.2, 0.3, . . . , 0.8. The y-axes represent the values of the ASW and the

x-axes the number of clusters. Among the three linkage methods, the values of ASW

for the Complete Linkage are higher. Comparing the values between the Complete

Linkage and the PAM, the values of the ASW for the Complete Linkage are the highest

for k = 2 and k = 3 and those for the PAM are higher in large numbers of clusters.

Overall, PAM has higher values of the average PS and higher values of the ASW, the

PAM method therefore was selected.

6.1.3 Determination of p

A large p means to consider data as approximately ordinal, while a small p means to

consider data as approximately categorical. It was clear that p = 0.9 and p = 0.1

were not suitable for CO314 for the following reasons. The values for (1− 0.9α) where

α = 1, 2, 3, 4 were 0.1, 0.19, 0.271, 0.3439. The dissimilarity between neighbouring

categories did not seem capable to capture movements of dosage levels from one stage

to another. The consequence of using p = 0.9 would be similar to the clustering result

of using the Euclidean distance (See Section 4.4). Also, the values for (1− 0.1α) where

α = 1, 2, 3, 4 were 0.9, 0.99, 0.999, 0.9999. The ordinality for categories does not seem

to be well represented by these dissimilarities. Likewise, we were sceptical about p = 0.8

80



6.2 Null model test

and p = 0.2. Suggestion from expertise in selecting a value of p given how sensitive

the p-dissimilarity needs to be to separate categories, and the importance of whether

CO314 should be considered as more ordinal or as more categorical would be helpful in

practice. In our study, we determined p based on the result of previous section. We

were aware of the issue that the determination of the β and p were subjective, so once

the values for β and p were decided, we would then perform a sensitivity analysis with

various values of p and β.

In previous section, we considered all combinations of the remaining choices of p

and clustering methods. With regards the choice of p, the decision was made based

on the values for the PAM method. Of the values of the average PS, the values with

p = 0.6 were higher than the values with lower p; but, the values with p = 0.6 were

similar to the values with higher p. Similar result for the values of the ASW with

respect to p = 0.6 was also observed. We decided to use p = 0.6 because the values of

indexes for p = 0.6 were similar to higher p and it meant to consider CO314 not to be

fully categorical or ordinal.

Finally, the PAM method and the p-dissimilarity with p = 0.6 and β = 1.42 would

be used for CO314. Details on the stability analysis can be found in Section 8.1 from

which we observe that p and β do not have a strong impact on performing a cluster

analysis of the real data.

6.2 Null model test

6.2.1 Motivation

Let k denote the number of clusters. Most of the indexes for finding the number of

clusters produce values for every k > 1, and yet only one k will be used. Which k to

use is determined by the values of the index. For some indexes, the k which scores the

highest value is used, while for other indexes, the first k with a value above a threshold

is used and, for other indexes, the k for which there is a gap between its value and

that of (k + 1) is used (Milligan and Cooper [1985]). However, there is no systematic

research about how the value changes when k changes. By and large, values for indexes

are lower for the larger k. A larger k means that the homogeneity within clusters gets
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Figure 6.2: The average Prediction Strength for the four clustering methods

for 2 to 20 clusters - The graphs show the average PS for the four clustering methods for

2 to 20 clusters with β = 1.42 and p = 0.2, 0.3 . . . , 0.8. The y-axes represent the average

PS with 30 random partitions. The x-axes represent the number of clusters. By and large,

the PAM method has the higher average PS for 2 to 20 clusters.
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Figure 6.3: The Average Silhouette Width for the four clustering methods for

2 to 20 clusters. - The graphs show the Average Silhouette Width for the four clustering

methods for 2 to 20 clusters with β = 1.42 and p = 0.2, 0.3 . . . , 0.8. The y-axes represent

the Average Silhouette Width and the x-axes the number of clusters. As can be seen, the

values of the ASW of the PAM method are higher for large numbers of clusters and those

of the Complete Linkage are the higher for k = 2 and k = 3.
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better but the separation of clusters gets worse. The maximum k above a threshold

does not indicate that a dataset indeed has k clusters.

Also, Tibshirani and Walther [2005] suggested to use the largest k in which the av-

erage Prediction Strength is greater or equal to 0.8 or above a user-specified threshold.

But we notice that there is no combination of clustering methods and p for which the

value of the average PS is higher than 0.8 when the number of clusters is greater than

or equal to 3. To choose any value of k is, in a way, to assume that there are clusters in

a dataset. Because the values of the average PS and the values of the ASW are rather

low in our case, we wonder our dataset cannot achieve 0.8 because there is no clear

cluster or the 0.8 is too high. We wonder if there is a way of using the values of the

indexes, which can be backed up with a rationale, which can be used to determine the

number of clusters and test the existence of clustering structure.

Jain and Dubes [1988] discussed validation of hierarchical structure obtained from

a hierarchical clustering method. Indexes listed in the book used rank correlations to

compare a given proximity matrix of hierarchical structure and a proximity matrix of

random partitions. Note that most indexes depend on the data type, the number of

clusters, the type of hierarchical clustering method used. Also, Bock [1985, 1996] stud-

ied several significance tests for homogeneous population and an alternative involving

clustering or heterogeneity. However, all of these do not take into account structure in

the data that is not from clustering, such as time series/Markov structure, missing val-

ues, etc. Hennig and Liao [2013] took account of data structure and concerned about

selecting k with the highest value of the ASW. An idea of null assumption in their

study was in line with that used by Buja et al. [2009]. In the research of Buja et al.

[2009], the authors illustrated a comparison between real data and reference datasets

that were simulated by a null assumption. In the research of Hennig and Liao [2013],

under a null assumption that there were no clusters, a model was built to represent

real data; they called this model a null model. The null model included features that

were the same as those of the real data. But the structure of clusters in the null model

was absent and it was unknown whether there existed clusters in the real data. Their

purpose was to test the homogeneity of the real data by comparing it to the null model.

They generated reference datasets from the null model and applied the ASW to the
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real data and to all simulated reference datasets. At each k, the distribution of the

values of the ASW of the null model without any clustering structure was constructed

by the values of the ASW of the reference datasets. They found that the k that scored

the highest ASW in the real data did not necessarily have a higher value than most of

the values of the same k under the null model, whereas some other k had their values

of ASW higher than those of the null model.

Therefore, our next objective is to build on the average PS and the ASW, and offer

a rationale for determining k by considering the existence of a clustering structure in

a dataset. We propose a null model test for investigating whether the found num-

ber of clusters can be explained by random variation and to use it as a rationale for

determining the number of clusters.

6.2.2 Proposed null model test

We attempt to construct a null model test to test if the dataset is homogeneous, that

is, there is no real clusters exist. Because the PS and ASW are used to measure the

quality of clustering, we use them as test statistics for the hypothesis test. Also, the

value of an index depends on k and clustering methods Method. The distribution of

the test statistic, therefore, depends on a fixed k and a specific Method. The observed

test statistic of the real dataset is the value of the index of the real dataset and the dis-

tribution of the test statistic is the values of the index under the null assumption. The

null model test for every fixed k of interest is performed by comparing the observed test

statistic with the distribution of the test statistic. It is used to explore k. Moreover,

we define a single test of the homogeneity hypothesis against a clustering alternative

by aggregating the test results for different k.

To construct an exact distribution of the test statistic is sometimes impossible. Al-

ternatively, we can build a model from which a set of reference datasets are drawn.

Then, the values of average PS or the values of the ASW for a set of reference datasets

can be used to explore the distribution of a statistic. Regarding sampling methods,

we consider the following. Firstly, the non-parametric boostrap, in which a sample

with the same size as in a real dataset is drawn from an empirical distribution with

replacement; secondly, the parametric boostrap, in which a sample is drawn from a
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model with estimated parameters constructed from the real dataset. As for the Monte

Carlo method, the sample is drawn from a model with fixed values of the parameters

(Davison and Hinkley [1997]).

The use of the null model in the test is that it fits all non-clustering aspects of the

real dataset, such as relationships between variables, time dependency, marginal distri-

butions and etc. The null model should relate to the real dataset. The non-parametric

and parametric boostrap are thus considered. The null assumption is that there are no

clusters. The non-parametric boostrap gives reference datasets in which the clustering

structure remains the same as the real dataset, so the distribution of the test statistic

cannot be used to compare with the observed statistic. The parametric boostrap which

gives reference datasets without clustering structure is thus considered.

The null model test uses the null model and the parametric boostrap to obtain the

distribution of a statistic on the basis of an index. We define the test statistic and the

p-value for every fixed k and Method as follows.

Test statistic

Under the null assumption, the distribution of the test statistic for a fixed k and a spe-

cific clustering method (Method) is estimated as follows. Denote the test statistic for a

real dataset for a fixed k and a specific clustering method Method by s. It is the value

for an index. Denote the distribution of the test statistic under the null hypothesis by

S. It is estimated from the values of the index for a set of reference datasets drawn

from a null model. Assume R reference datasets are simulated. Their values of the

index for k and Method are denoted by s1, s2, . . . , sR, which are used to estimate S.

P-value

The p-value is defined as a probability that is used to measure the level of evidence

against the null hypothesis, that is, under the null assumption, the probability of a new

dataset having its test statistic greater than s. In the null model test, the observed

test statistic s is compared with s1, s2, . . . , sR. If exactly a of the simulated values

are greater than s, then the approximate p-value of the significance test is defined by
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(Davison and Hinkley [1997])

p-valuek =
a+ 1

R+ 1
. (6.1)

Because the test statistics s1, s2, . . . , sR are discrete, a value 1 is added to the denomi-

nator and the numerator in order to avoid obtaining a zero probability.

The above test uses the value of index to explore k by testing whether a dataset

has a specific number of clusters. The k for which p-valuek is less than a significance

level is identified to be a potential number of clusters.

Test for homogeneity

Another purpose for performing the null model test is to test the existence of clustering

structure. We attempt to carry out this test by using a p-valueH which summarizes

the information on the results of several tests for different k. The null model test for

homogeneity works as follows.

Step 1: denote the test statistic for the ith simulated dataset for j cluster by sij .

Denote the observed statistic of the real data for j cluster by sj . We summarize the

test statistics for the simulated R datasets and the observed statistic for 1 to k clusters

by the following matrix, 
s11 . . . s1k
...

. . .
...

sR1 . . . sRk

s1 . . . sk

 .
Step 2: for j clusters in columns, assign ranks to the values {s(1j), . . . , s(Rj), si}.

Denote the ranks by {r1j , . . . , rRj , ri}. The reason for taking rank transformation is to

alleviate effects caused by large values. Then, the above matrix becomes
r11 . . . r1k
...

. . .
...

rR1 . . . rRk

r1 . . . rk

 .
Step 3: for dataset i in rows, the average of {ri1, . . . , rik} is computed, denoted by

ri., i = 1, . . . , R. Also, the average of the rank values for the real dataset {r1, . . . , rk}
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6.3 Application of the null model test to CO314

are computed, denoted by r∗.

Step 4: the distribution of the test statistic for the null model test for homogeneity is

estimated by r1., r2., . . . , rR.. The observed statistic is r∗. If exactly a of r1., r2., . . . , rR.

are greater than r∗, then the approximate p-value of this test is defined by

p-valueH =
a+ 1

R+ 1
. (6.2)

There are more possibilities of defining p-valueH , such as, the grade for each sim-

ulated dataset can be the average of the values produced by the indexes. But the

p-valueH might be dominated by some k in which the sk are relatively small. Or, defin-

ing p-valueH as the p-valuek which scores the smallest, but an adjustment of p-values

for multiple comparisons needs to be taken into account. Also, the disadvantage of us-

ing the smallest p-valuek is that more reference datasets are required in order to reach a

good accuracy. By accuracy, we mean the following. The critical value with Bonferroni

correction is approximated by α
k where α is the significant level. In a null model test

with α = 0.01 and k = 2, . . . , 20, the critical value for each k is 0.01
19 = 0.0005. We will

need a lot of reference datasets in order to possibly have a k with p-valuek = 0.0005.

6.3 Application of the null model test to CO314

There are some useful models that can be used to model a random variable that changes

over time (Shumway and Stoffer [2010]), such as the Autoregressive model (AR), the

Moving Average model (MA) and the Markov model. In the AR model, the current

state can be estimated by a linear weighted sum of previous states. The weights are the

auto regression coefficients. In the MA model, the current state can be estimated by a

linear weighted sum of current and previous errors. A first-order Markov model follows

a Markov property in which the next state depends on only the current state but not

on the sequence of previous states. Let the random variable C be the state and Θ be

the state space, so that C ∈ Θ. For the first-order Markov model, the production of

any sequence can be described by transition probabilities. The transition probability

of Ct being in state j, given that Ct−1 is in state i, can be written as

Pij(t) = P (Ct = j|C1 = c1, C2 = c2, . . . , Ct−1 = i) = P (Ct = j|Ct−1 = i). (6.3)
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Figure 6.4: Distributions of the number of participants in the seven categories.

- The y-axis represents the number of participants and the x-axis the days. The colours

designate the seven categories. The numbers of participants slightly change within periods

of seven days but dramatically change at the beginning of the next 7-day period.

We attempt to model the distributions for categories in CO314 by a Markov chain

because of

• the first weekly prescription: as a result of 20 mg for participants who had no

experience on methadone. There are more changes in the first week than later.

• weekly prescriptions: dosage level is more stable within a 7 days. Most of the

sudden changes in dosage level happen at the beginning of a weekly prescriptions.

Also, we notice that most of the participants stayed in the same category on the

next day within 7 days. Of those who moved to other categories, most of them moved

to the neighbouring categories. With the limited number of participants in CO314, we

will estimate the parameters for the Markov model by the relative frequency in CO314.

Also, we will treat the beginning of prescription and a period of 6 days separately.
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6.3.1 Exploration of movements of categories in CO314

Figure 6.4 shows the distributions of the numbers of participants of the seven categories

over 180 days. The vertical axis are the number of participants and the horizontal axis

the days. The colours designate the seven categories, corresponding to the aforemen-

tioned dosage values. What can be observed is that the number of participants in

category 1 remains steady over the first seven days, with an average of 238.29 partic-

ipants. Subsequently, on day 8, the number of participants in category 1 plunges to

51, while the number in category 2 rockets, reaching to 180, with an average of 27.71

participants in the first week. For both categories, the number of participants during

the second week is relatively stable, on day 15, the numbers drop to 44 and 115 for

categories 1 and 2, respectively. In contrast, on the same day, the number of par-

ticipants in category 3 sees a sudden increase proceeded by a marginally incremental

trend in the first two weeks. As for category 4, the number climbs steadily during the

first three weeks, but virtually doubles on day 22. There is also an upward trend in

categories 5 and 6, while, for category 7, the number fluctuates within a narrow margin.

We discovered associations between medical decisions and the distributions of these

numbers. The initial prescription dosage for participants, most of whom had no pre-

vious experience of MMT, was 20 mg (category 1). This resulted in most of the 314

participants having their dosage in category 1 from day 1 to day 7. Also, in all cate-

gories except category 7, the numbers of participants changed slightly within each seven

day periods but changed dramatically at the beginning of the next 7-day period. This

is consistent with weekly prescriptions. Regarding the number of participants in cate-

gory 7, those who were determined to quit heroin would try to reduce the methadone

dosage, and then try to quit methadone, so their records of methadone appeared to be

0 mg. On the other hand, those who abused heroin would not need to take methadone

to accommodate their addiction, and their records of methadone remained 0 mg as

well. These made to model records of participants in category 7 far more complicated

than to model records of participants in categories 1 to 6. Therefore, we focused on

the categories 1 to 6 first. Given that category 7 was excluded on day t, we estimated

the probability of transitioning from category i to category j on day t by calculating

the relative frequency, defined by
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RF
(t)
ij =

#{category j on day t, given that category i on day (t− 1) }
#{category i on day (t− 1)} −#{category 7 on day t}

(6.4)

where i, j = 1, 2, . . . , 6 ; t = 2, . . . , 180, and #{category i on day (t− 1)} denotes the

number of participants whose records are category i on day (t− 1).

Table 6.2 shows the RF from category 1 to categories 1 to 6 in a single day from day

2 to day 23. Of {RF (t)
11 : t = 2, . . . , 23}, four are below 90%, namely RF

(8)
11 = 26.09%,

RF
(9)
11 = 85.71%, RF

(15)
11 = 86.05% and RF

(22)
11 = 87.18%. As seen, of those whose

records are in category 1 on day 7, 26.09% stay in the category 1, while 70.65% move

to the category 2. Similarly, Table 6.3 shows {RF (t)
2j : j = 1, . . . , 6; t = 2, . . . , 23}. The

RF for category 2 to itself which are below 90 % are RF
(8)
22 = 88.37%, RF

(15)
22 = 63.03%

and RF
(22)
22 = 88.78%. Of those whose records are in category 2 on day 14, 63.03%

stay in the category 2, whereas 31.52% increase their dosage to category 3. Likewise,

there is a similar pattern in {RF (t)
33 : t = 2, . . . , 23}, of which values smaller than 90%

occur on day 8, 15 and 22. In addition, most of participants change their dosage to

either category 2 or category 4, which are the neighbouring categories of the category 3.

Evidences are RF
(8)
33 = 82.36%, RF

(8)
32 = 11.76%, RF

(15)
33 = 81.08%, RF

(15)
34 = 18.92%,

RF
(22)
33 = 74.45%, and RF

(22)
34 = 23.33%. In comparison to the RF from category 3 to

category 4 on other days, RF
(22)
34 = 23.33% is high.

To sum up, many participants changed their dosages to another level between

days 7 and 8; between days 14 and 15; between days 21 and 22. The transition

probability fluctuates on days 8, 15 and 22 and it is approximately constant on day

t ∈ Θ = {1, 2, . . . , 23} \ {8, 15, 22}.

Next, we attempt to formalise and then simplify the relative frequencies. Note that

only categories 1 to 6 are considered for the moment. We knew that the prescription

dosage constrained movements between categories within any seven day period and

most of the noticeable changes happened on the first day of a new prescription. Those

first days were the common multiple of the integer 7 plus 1 day. Therefore, these seven

days of a prescription can be divided into two parts, one being the beginning day on

which the noticeable changes happened, and the other being the other six days in which
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the relative frequencies are approximately constant. We defined two sets of days, ψ1

and ψ2 as follows.

• ψ1: we use a subscript d to refer to the first day of a new prescription plus 1,

Td = {days d, (d + 1), (d + 2), . . . , (d + 5) : d = 2, 9, 16, . . . , 170} and T177 =

{days 177, 178, 179, 180}, so ψ1 = {Td : d = 2, 9, . . . , 177}.

• ψ2: the set of the first days of new prescriptions. ψ2 = {days 8, 15, . . . , 169, 176}

Because the relative frequencies for every six days in Td were approximately con-

stant, we assumed that the relative frequencies for days in Td were equal and defined

the weekly average relative frequency by

ARP
(Td)
ij =

1

number of days in Td

∑
t∈Td

RF
(t)
ij

where i, j = 1, 2, . . . , 6 and t is the day of observations. For instance, T2 = {days 2, 3, . . . , 7},
ARP

(T2)
12 = 1

6(RF
(2)
12 +RF

(3)
12 +RF

(4)
12 +RF

(5)
12 +RF

(6)
12 +RF

(7)
12 ).

The figure on the top left in Figure 6.5 illustrates the ARP from category 1 to all

six categories over ψ1. The vertical axes represent the ARP and the horizontal axes

represent ψ1. The colours indicate the next possible states, where transitions from

category 1 to categories 1, 2, 3, 4, 5 and 6, appear as black, red, green, blue, cyan and

purple, respectively. The ARP from category 1 to itself, ARP11, appearing in black,

fluctuates around an average of 98.44% whereas that from category 1 to category 2,

ARP12, appearing in red, remains in the margin of 1%. The ARP from category 1

to categories 3, 4, 5 and 6 are also plotted, but those in those cases the lines overlap.

Consequently, only one line appears in cyan. The figure on the top right represents the

ARP from category 2 to all six categories. ARP22, appearing in red, maintains a high

level at 98.2%, while there are negligible changes in those from category 2 to the other

five categories. Similarly, the four graphs from the middle left to the bottom right

show the ARP from categories 3, 4, 5 and 6 to all six categories, respectively. It can be

seen that, by and large, the ARP from categories to themselves, ARPii, i = 1, 2, . . . , 6,

fluctuate within a narrow margin around 97%. In ψ1, participants are more likely to

have their dosages in the same category.
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As for ψ2, because there were dramatic changes in terms of their RF on days in ψ2,

we computed the relative frequencies for every single day. In total, there were twenty-

five days. Each of the six graphs in Figure 6.6 illustrates the relative frequencies from

a category to categories on days in ψ2. The vertical axes represent the relative fre-

quencies and the horizontal axes represent days in ψ2. The colours black, red, green,

blue, cyan and purple indicate the next possible states. The graph on the left in the

first row in Figure 6.6 shows the relative frequency from category 1 to the six cate-

gories. We can see that the relative frequency from category 1 to itself, appearing in

black, soars from RF
(8)
11 = 0.26 to RF

(15)
11 = 0.86 and continues with an upward trend.

In contrast, the relative frequency from category 1 to category 2, appearing in red,

plunges from RF
(8)
12 = 0.71 to RF

(15)
12 = 0.14 and carries on downward, hitting a low

of 0. The relative frequencies from category 1 to categories 3, 4, 5 and 6, appearing in

cyan are also plotted, but, once again, the lines overlap. Next, the graph on the right

in the first row shows the relative frequencies of from category 2 to all six categories

on days in ψ2. The relative frequencies from category 2 to category 1 fluctuate around

2%. However, those from category 2 to itself and to category 3 fluctuate widely in the

opposite direction, for example, while the RF
(15)
22 falls to 0.63, the RF

(15)
23 peaks at 0.31

on day 15. Similarly, the four graphs from the graph on the left in the second row to

that on the right in the third row show the relative frequencies from categories 3, 4, 5

and 6 to all six categories, respectively. Note that less than ten participants have their

dosages in category 5 or category 6 in days 1, 2, . . . 28.

The pattern found in the Figure 6.6 for ψ1 can be summarized as follows: firstly, on

day 8, many participants have their dosage moved from categories 1 to 2. Then, on day

15, many participants have their dosage moved from categories 2 to 3. Next, on day 22,

the dosage of a group of people move from categories 3 to 4. On day 29, some of the

participants increase their dosage from categories 4 to 5 and on days 78, 85, 92 and 99,

of those participants who move from category 4, most move to category 3. A similar

phenomenon can be observed in the graphs of the relative frequencies from categories

5 and 6, where, of those participants who move from categories 5 and 6 respectively,

most move to categories 4 and 5 respectively. This suggests that after three months

treatment, some participants start to show some positive outcome of the decrease of

their methadone dosage.
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Table 6.2: Relative frequencies (%) from category 1 to categories 1, 2, 3, 4, 5

and 6 over 22 days.-Of these participants who have their dosage changed, most increase

their dosage to category 2. The relative frequencies RF
(t)
11 , t = 2, . . . , 23 are rather stable

except on days 8, 15 and 22.

Day \ category 1 2 3 4 5 6

2 100 0 0 0 0 0

3 99.15 0.85 0 0 0 0

4 99.57 0.43 0 0 0 0

5 99.58 0.42 0 0 0 0

6 97.37 1.75 0.88 0 0 0

7 92.2 7.31 0.49 0 0 0

8 26.09 70.65 3.26 0 0 0

9 85.71 14.29 0 0 0 0

10 100 0 0 0 0 0

11 100 0 0 0 0 0

12 100 0 0 0 0 0

13 100 0 0 0 0 0

14 95.45 4.55 0 0 0 0

15 86.05 13.95 0 0 0 0

16 97.62 2.38 0 0 0 0

17 100 0 0 0 0 0

18 100 0 0 0 0 0

19 100 0 0 0 0 0

20 100 0 0 0 0 0

21 97.22 2.78 0 0 0 0

22 87.18 12.82 0 0 0 0

23 100 0 0 0 0 0
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Table 6.3: Relative frequencies (%) from category 2 to categories 1, 2, 3, 4, 5

and 6 over 22 days.-The relative frequencies RF
(t)
22 , t = 2, . . . , 23 are higher than 90 %,

except on days 8, 15 and 22. Of those participants who have their dosage changed, most

of them move to either category 1 or category 3.

Day \ category 1 2 3 4 5 6

2 0 100 0 0 0 0

3 0 100 0 0 0 0

4 0 100 0 0 0 0

5 0 100 0 0 0 0

6 0 100 0 0 0 0

7 0 96.67 3.33 0 0 0

8 2.33 88.37 9.3 0 0 0

9 0.58 99.42 0 0 0 0

10 0 98.37 1.63 0 0 0

11 0 100 0 0 0 0

12 0 99.46 0.54 0 0 0

13 0 98.92 0.54 0.54 0 0

14 0 94.89 5.11 0 0 0

15 4.24 63.03 31.52 1.21 0 0

16 0 92.66 7.34 0 0 0

17 0 98.17 1.83 0 0 0

18 0 100 0 0 0 0

19 0 98.04 1.96 0 0 0

20 0 100 0 0 0 0

21 1.06 95.74 3.2 0 0 0

22 1.02 88.78 10.2 0 0 0

23 1.09 97.82 1.09 0 0 0
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Figure 6.5: The average relative frequencies of ψ1 - ψ1 = {T2, T9, . . . , T177}
where Td = {days d, (d + 1), (d + 2), . . . , (d + 5) : d = 2, 9, 16, . . . , 170} and T177 =

{days 177, 178, 179, 180}. The six graphs from the top left to the bottom right show the

average relative frequencies from categories 1, 2, 3, 4, 5 and 6 to all six categories, coloured

in black, red, green, blue, cyan and purple, respectively. The ARF
(Td)
ij is the average of the

relative frequencies from category i to category j on days in Td. Overall, the ARF from

categories to themselves, ARFii, fluctuates within a narrow margin, around 98 %.
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Figure 6.6: The relative frequency of ψ2. - The six graphs from the top left to

the bottom right show the relative frequencies from categories 1, 2, 3, 4, 5 and 6 to all

six categories. The y-axes represent relative frequencies and the x-axes represent ψ2 =

{days 8, 15, 22,. . . , 176}. The colours indicate the categories, black, red, green, blue, cyan

and purple, respectively.
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6.3.2 The null model for CO314

The parameters for the Markov model were estimated by relative frequencies. As for

category 7, it did not appear to be representable by relative frequency. Figure 6.7 shows

the relative frequencies from category 7 to categories 1 to 7. As can be seen, because

the prescribed dosages for the first prescriptions of most of the participants were in

category 1, the relative frequencies for category 1 for the first seven days are higher.

Modeling category 7 with other six categories will result in participants has dosage

in category i on day t but has dosage in category j, which is a distant-neighbouring

category, on day (t + 1). This contradicted the fact that the valid prescribed dosage

might be below category j. The category 7 should not be included in the Markov

model. A simplified solution for ensuring that the distribution of category 7 in the

reference datasets would be the same as that in CO314 was

• to generate a reference dataset from the model. Note that participants in the

reference dataset were in a random order.

• to order participants in CO314 by the date they commenced MMT.

• to plug in the patterns of category 7 of CO314 into the reference dataset.

This meant that we identified the days on which category 7 appeared. Then the tth

record of the ith, i = 1, . . . , 314 participant in the reference datasets would be replaced

by category 7 if the tth record of the ith participant in CO314 was category 7.

We considered the Markov model for categories 1 to 6 for ψ1 and ψ2 separately.

For days in ψ1, the relative frequencies from category i to category j fluctuated in a

very narrow margin. For this reason, we assumed that the transition probability from

category i to category j was a constant from day 2 to day 180 except for days in ψ2. So,

the values of categories for days in ψ1 would be generated from a stationary Markov

model with the estimated transition probabilities obtained from aggregating all the

relative frequencies and dividing by the total observing days. The estimated transition

probabilities for days in ψ1 is defined by

ETP
(ψ1)
ij =

1

number of days in ψ1

∑
t∈ψ1

RF
(t)
ij
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6.3 Application of the null model test to CO314

Table 6.4: The estimated transition probabilities matrix of ψ1.-The first column

displays the current state. The remaining columns show the estimated transition probabil-

ities from the current state to the next states of ψ1. Note that the probability is estimated

by using Eq 6.4. The estimated transition probabilities from categories to themselves are

all above 97 %.

From Category \ To Category 1 2 3 4 5 6

1 98.47 1.46 0.07 0 0 0

2 0.65 98.21 1.01 0.13 0 0

3 0.03 1.16 97.65 1.14 0.02 0

4 0 0.25 1.33 97.25 1.16 0.01

5 0 0 0.1 1.27 97.72 0.91

6 0 0 0.048 0 0.772 99.18

where i, j = 1, 2, . . . , 6. Table 6.4 displays the estimated transition probabilities matrix

for ψ1. The first column stands for the current state. The remaining columns show the

estimated transition probabilities from the given state to the next states. As seen, the

estimated transition probabilities from categories to themselves are all above 97%.

The relative frequencies for ψ2 varied from day to day (see Figure 6.6). Therefore,

the category for the days in ψ2 would be generated from a Markov model with the

transition probability estimated by RF
(t)
ij , t ∈ ψ2.

The number of participants of CO314 was 314 and the proportions of categories 1,

2, 3, 4, 5 and 6 of CO314 on day 1 were 85.5%, 6.7%, 4.3%, 2.7%, 0.1% and 0.7%,

respectively, from which the initial states of 314 observations on day 1 were generated.

Then, the states from day 2 to day 180 were generated from the aforementioned Markov

model. Next, the pattern of category 7 in CO314 was plugged into the reference dataset.

Finally, the marginal distributions of the categories 1 to 6 and the distribution of the

missing values in the reference datasets were the same as in CO314.
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6.3 Application of the null model test to CO314

Figure 6.7: Relative frequencies from category 7 to categories 1 to 7. - The

y-axis represents the relative frequencies and the x-axis represents the day. The colour

designates the seven categories.

6.3.3 Determination of the number of clusters

We performed null model tests for CO314. A total of 1000 reference datasets was gen-

erated from the null model and then the p-dissimilarity with β=1.42 and p=0.6 were

applied to these reference datasets. We used the PS and ASW for 2 to 20 clusters for a

specific clustering method. Because method of PS was computationally heavy and the

PAM was selected for CO314, we then used PS for PAM, and we used ASW for PAM,

the Complete Linkage and the Average Linkage methods.

We applied the average PS with 50 repetitions for the PAM method with 2 to 20

clusters. Figure 6.8 shows the values of the average PS. The red line refers to the

observed statistic and the black lines refer to the values for the 1000 reference datasets.

A number of observations can be made about the values of the average PS of CO314.

Firstly, they decrease from 2 to 4 clusters. Secondly, they are above all the values of

the reference datasets from 5 to 10 clusters but below most of them for higher numbers

of clusters. Thirdly, they are zero for k= 17, 19 and 20.

The p-valuek for CO314 for between 2 to 20 clusters is shown in Figure 6.9. To

make the p-value for between 2 to 20 clusters easier to read from the figure, we plot

the −log10(p-value). The −log10(p-value) is greater than 2 means that the p-value is

smaller than 0.01. Also, −log10(0.05)=1.3. What can be observed with respect of the
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6.3 Application of the null model test to CO314

Figure 6.8: Test of each number of clusters for CO314 for the PAM method

with the average Prediction Strength. - The figure shows the average PS with 50

repetitions for 2 to 20 clusters for the PAM method. The y-axis represents the average

PS and the x-axis represents the number of clusters. The colours of the lines indicate the

datasets, black for each of the reference datasets and red for CO314.

PAM method is that −log10(p-value) is greater than 1.3 for values of k ranging from

5 to 10. This suggests that the potential numbers of clusters for the PAM method is

between 5 and 10.

Similarly, we performed another null model test with ASW. Figure 6.10 shows the

values of the ASW for the PAM method with the p-dissimilarity. The y-axis represents

the values of the ASW and the x-axis represents the number of clusters. The black lines

represent the ASW values for each of the reference datasets, and the red line represents

the values for CO314. As can be seen, there is a drop from k = 2 to k = 3 since ASW

is more likely to be higher for a lower number of clusters. Also, the null model test for

Complete Linkage and the Average Linkage were performed. The results are shown in

Figure 6.11(a) and Figure 6.11(b). The y-axes and x-axes represent the values of the

ASW and the number of clusters, respectively. The black lines represent the values for

each of the reference datasets for 2 to 20 clusters, and the red line represents the values

for CO314. As can be seen, none of them is significant. Figure 6.12 shows the result for

the p-valuek for between 2 to 20 clusters with the ASW. What can be observed is that

for the PAM method, when k = 3, 4, 5 or 6, the value of the ASW for CO314 is higher
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6.3 Application of the null model test to CO314

Figure 6.9: The null model test with average Prediction Strength. - The figure

shows the −log10(p-value) for numbers of clusters between 2 and 20 for three clustering

methods. The vertical axis on the left represents the −log10(p-value), while that on the

right represents the p-value. Note that since −log10(0.05) = 1.3, a p-value smaller than

0.05 is equivalent to a value of −log10(p-value) greater than 1.3.

than 95 % of the corresponding values for the reference datasets. This suggests that the

potential number of clusters for the PAM method with the p-dissimilarity is 3, 4, 5 or 6.

Test for homogeneity

The p-valueH for CO314 with the average PS was 0.4748, while that for CO314 with

ASW was 0.1392. This suggests that there is not enough evidence to conclude that

there exists a structure of clustering in CO314.

To sum up, a set of the potential number of clusters is identified but there is no

enough evidence to conclude about clustering structure. However, the clusters are still

useful in our study regardless of whether or not there is a clear clustering structure.

The clusters can be used to explore patterns in the daily dosage taken by partici-

pants. According to the clusters, participants with similar 180 records of dosages can

be grouped together and the variations of daily dosages among participants narrowed

down to those among participants within a cluster. The average PS and the ASW can

be used to determine the number of clusters, and the null model test can be used to

back up these indexes. By the results of the null model test for average PS and ASW,
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6.3 Application of the null model test to CO314

Figure 6.10: Test of the homogeneity between the null model and CO314 for

the ASW. - The graph shows the values of the ASW for the PAM method for between

2 to 20 clusters. The y-axis represents the values of the ASW and the x-axis represents

the number of clusters. The values of the ASW for each of the 1000 reference datasets are

displayed as in black lines and those for CO314 are displayed as a red line.

only a few k are identified to be potential number of clusters. Since both indexes picked

up the value 5 and k = 5 has the highest value of the ASW among these identified po-

tential k, later we will use the PAM clustering with five clusters.

In the next chapter we move to the topic of assessing the quality of clustering. We

propose algorithms for information visualisation via heatplots and show their applica-

tions on CO314 with the PAM clustering and five clusters.
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6.3 Application of the null model test to CO314

(a) (b)

Figure 6.11: Test of the homogeneity between the null model and CO314 with

ASW. - The graphs (a) and (b) show the values of the ASW of the Average Linkage and

those of the Complete Linkage for between 2 and 20 clusters. The values of the ASW for

each of the 1000 reference datasets are displayed as black lines, and those for CO314 are

displayed as in a red line.

Figure 6.12: The null model test with ASW. - It shows the −log10(p-value) for 2 to

20 clusters with respect to three clustering methods. The vertical axis on the left repre-

sents the −log10(p-value), while that on the right represents the p-value. Note that since

−log10(0.05) = 1.3, a p-value smaller than 0.05 is equivalent to a value of −log10(p-value)

greater than 1.3.
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Chapter 7

Visualisation of the PAM results

Two algorithms for obtaining orders for objects based on clusters to which objects

belong and dissimilarity between objects are proposed. These algorithms are useful for

visualizing clustering results to assess the quality of the clustering. Also, the ordering

algorithm with the heatplot will be used for visual significance test.

7.1 Motivation

A number of summary statistics, such as mean, median, quartile, IQR, variance, etc.,

and some graphics, such as histograms, boxplots, scatter plots and heatplots can be used

to represent the data for clusters (Leisch [2008]). Among these, we focus on heatplots.

A heatplot is a graph that represents data by colour. It consists of horizontal lines

representing the data for objects. It is particularly useful for visualizing relationship

between objects when clustering method is used. However, the interpretability of a

heatplot strongly depends on the order of the objects. In this chapter we show two

heatplots for a dataset. Their purposes and layout are as follows.

• heaplot of the dosage data is for observing the dosage patterns over time. The

record of the 180 days of each participant will be plotted along the x-axis. The

colour designates dosage.

• heatplot of the p-dissimilarity matrix is for observing the relationships between

participants/clusters. Both the x- and y-axes represent participants. Note that

the order of the participants on the x-axis mirrors the order of the participants

on the y-axis.
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7.1 Motivation

For a clustering result obtained by hierarchical clustering methods whose clustering

process can be displayed by a dendrogram, all horizontal lines in the heatplot that rep-

resent the data for objects can be re-ordered by their locations in the dendrogram as

shown in Figure 7.1. Figure 7.1(a) is a dendrogram obtained from applying the Average

Linkage method and the p-dissimilarity to CO314. The x-axis represents the dissimi-

larity. On the y-axis, the right end of each node indicates one participant. Assume

this y-axis is a 0-1 scale from the bottom to the top, and the nodes indicate locations

for the participants on the y-axis. We observe that, of these participants who are close

to each other, most are linked together. This suggest that the location can be used to

represent the relationship between participants, that is, participants show are close to

each other have a smaller dissimilarity than participants who are further away. Next,

the p-dissimilarity matrix for CO314 is re-arranged according to the locations. Figure

7.1(b) shows the p-dissimilarity matrix for participants with a heatplot. Both the x- and

y-axes represent participants. Note that the order of the participants on the x-axis as

well as that on y-axis mirrors the locations established by the dendrogram. The colour

designates the p-dissimilarity, ranging from 0 to 159, appearing in a sequence of green,

black and red. The p-dissimilarity matrix is symmetric about its diagonal, so the heat-

plot is symmetric. Also, the diagonal line shows as green, because the dissimilarities

between participants and themselves are zero. Moreover, there are some green squares

along the diagonal line. They represent the dissimilarity matrix within clusters. As

seen, some green squares have colour gradients – green, black, red – from the diagonal

line to the border of the figure. The colour gradients within clusters themselves can be

improved by flipping nodes in the tree in Figure 7.1(a) without changing the structure

of the hierarchy. However, flipping trees is beyond the scope of this study, readers are

referred to research on optimal leaf ordering for hierarchical clustering (Gale, Halperin,

and Costanzo [1984] Bar-Joseph, Gifford, and Jaakkola [2001]).

As for a result obtained by the PAM method, Figure 7.2 shows the p-dissimilarity

matrix with the heatplots. The cluster information is preserved by plotting each of

the five clusters one by one. In each cluster, participants are organized in terms of the

date they joined the MMT. Both the x- and y-axes represent participants. Also, the

numbers 1 to 5 on the y-axis indicate the five clusters. The colour indicates the dissim-

ilarity, ranging from 0 to 160. What can be observed is that most of the participants
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7.1 Motivation

(a)

(b)

Figure 7.1: The dendrogram of the Average Linkage and the heatplot of the

p-dissimilarity matrix of CO314 - (a) shows the dendrogram obtained from the Average

Linkage method with the p-dissimilarity. On the y-axis, the right end of each node indicates

each of the 314 participants. The x-axis represents the dissimilarity. (b) shows the p-

dissimilarity matrix. Both the x- and y-axes represent the 314 participants. The order of

the participants mirrors the order found by the dendrogram of (a).
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7.1 Motivation

Figure 7.2: Heatplot of p-dissimilarity matrix of CO314 with random orders

within clusters. - The heatplot of the p-dissimilarity matrix for participants. Both

the x- and y-axes represent participants. Note that the five clusters are obtained by the

PAM method and then plotted into heatplot separately. The participants within a cluster

are organized in terms of the date they joined the MMT. The colour indicates the p-

dissimilarity, ranging from 0 to 160.

within a cluster have small p-dissimilarity, appearing in green. The performance of

PAM p-dissimilarity on the category-ordered data is good as highlighted by the green

squares along the diagonal line. However, this does not indicate that there is a clear

cluster structure in the data. The random order of participants within clusters makes it

unnecessary for neighbouring participants to be regarded as most similar. The random

order generates a rather artificial order which might lead to an overoptimized view of

the heatplot regardless of whether a cluster structure exists or not. The visible cluster

structure might be misleading.

Some research has been done on information visualization via heatplots of row data

matrices and proximity matrices (Chen [2002]; Hahsler and Hornik [2011]; Hahsler,

Hornik, and Buchta [2008]; Tien, Lee, Wu, and Chen [2008]; Wu, Tien, and Chen

[2010]). They constructed an order for objects that preserved the clustering structure

and used the order with heatplots to illustrate and to assess the quality of clustering

results, which is what we are interested in. Hahsler and Hornik [2011] developed the

R package seriation, for visualizing the dissimilarity of the partitioning methods. An
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7.1 Motivation

Figure 7.3: Heatplot of p-dissimilarity matrix of CO314 by seriation. - The

heatplot of the p-dissimilarity matrix among participants. Both the x- and y-axes represent

participants. Note that the five clusters are obtained by the PAM method and labeled on

the y-axis. The order of the participants within a cluster is obtained from the algorithm

of Chen [2002] by seriation. The colour represents the p-dissimilarity, ranging from 0 to

160.

ordering algorithm proposed by Chen [2002] was implemented. The ordering algorithm

aimed at placing minimally dissimilar participants within a cluster close to the diagonal

of the heatplot. Figure 7.3 shows the heatplot of the p-dissimilarity matrix with p = 0.6

of CO314 with the order of the participants obtained from the algorithm of Chen [2002]

by seriation. Both the x- and y-axes represent participants. As can be seen, the order

preserves the clustering structure and the heatplot shows that the color gradient from

the diagonal line to the borders of the figure is much smoother in comparison to that in

Figure 7.2. However, this ordering method does not bear on clustering methods. The

relationship between medoids has been neglected.

With regards the PAM method, medoids play important roles because each object

is assigned to the cluster with the closest medoid. To visualize the clustering result for

the PAM method, we take into account the following: preservation of the clustering

structure, the information of the selected medoids, the information about the distance

between each object and their medoid and that between them and their neighbouring
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7.2 Multidimensional scaling

medoids. We attempt to develop an ordering rule which indicates the similarity struc-

ture of clusters and similarity structure of participants. We attempt to decide where

to locate an object so that its location reflects the dissimilarity between the object and

the medoid in the same cluster as well as the dissimilarity between the object and the

most closest medoid in a different cluster. An object which is close to the border line

between two medoids should be considered to be less similar to its medoid in compari-

son to objects belonging to the same cluster, so we conclude that such an object should

be plotted distant from its medoid. This in a heatplot would look like a smooth colour

gradient. Our intention is to make as smooth as possible the colour gradient of the

heatplot representing the transition to a neighbouring cluster. Then, one can make

statements about whether there really is some clustering which is visible by looking at

the border regions of the clusters on the heatplot.

7.2 Multidimensional scaling

Before getting into the ordering rules, we would like to introduce a method called mul-

tidimensional scaling (MDS) (Cox and Cox [1990]). We would use MDS to construct

ordering rules for the PAM result in Chapter 7 and we would use MDS to produce a

map for monitoring the movement of the final five clusters over time in Chapter 8.

The concept of the MDS is to represent a dissimilarity matrix in a multidimensional

space so that information in the high dimensional data can be reflected in the lower

dimensional space. Some information is lost in the process of dimension reduction. The

lost information is measured by a loss function called stress and is defined by

stress =

√∑
ij(f(dij)− dqij)2∑

ij(d
q
ij)

2
, (7.1)

where dqij is the spatial distance between objects i and j, which is computed using

the Euclidean distance, and the value of f(dij) depends on whether metric or non-metric

MDS is used. In metric MDS, f(dij) is the original dissimilarity between objects i and

j. In non-metric MDS, f(dij) represents the rank of the dissimilarity between objects

i and j. A dataset consisting of n objects has n(n − 1)/2 dissimilarities for
(
n
2

)
pair

objects. f(dij) is the value which is mapped from the original dissimilarity and best
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7.3 Order of clusters

preserves the rank order (Kruskal [1964]).

In our study, we will use the non-metric MDS because we are aiming at ordering

participants instead of focusing on the numerical values of the dissimilarities. Also,

only one dimension is needed for generating orders for objects in the heatplot. A

function called isoMDS{MASS} in R which produces the non-metric MDS will be used

throughout this study.

7.3 Order of clusters

In Chapter 6 we have selected the PAM method and five to be the clustering method

and the number of clusters for CO314. The following sections dealing with the ordering

rules are organized as follows. First of all, we introduce ordering rules in a general sit-

uation, that is, for k clusters. Afterwards, we show a heatplot of CO314 and a heatplot

of the p-dissimilarity with the order of participants obtained by the proposed ordering

algorithms.

The ordering algorithm starts from preserving the clusters in a heatplot. This can

be done by plotting clusters separately in a heatplot. We chose to determine the loca-

tion of the clusters in a heatplot first.

We propose to locate the clusters based on their objects. For each cluster, one

object is selected as the medoid by the PAM method. The medoids is thus used. The

order of the medoids on the one dimensional MDS is used to locate the clusters. There

are two ways to order the medoids. One is to apply MDS to the dissimilarity matrix of

the dataset and then obtain the order of the medoids. The orders are the locations of

the medoids on the one dimensional MDS. The other is to apply MDS to the dissim-

ilarity matrix of the k medoids and then to obtain the locations of the medoids. The

former uses all objects in the dataset, while the latter uses k objects.

In our case, the 314 participants were partitioned into 5 clusters. The MDS order

for the five medoids was generated from 1-dimensional MDS. We tried both approaches

for k = 5 and observed that the orders of the medoids were the same. Likewise, we
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7.4 Order of objects within clusters

tried both approaches for k = 7, 9, 11, 13. We obtained the same results. In general,

this might not always be the case. Since the one-dimensional MDS returned a similar

order of the medoids irrespective of whether it was applied to all participants or only to

the selected participants in our case, the first approach was used to generate an order

for clusters.

7.4 Order of objects within clusters

In the previous section the position of each of the k clusters referring to the k medoids

in a heatplot is determined. In this section we introduce ordering algorithms that aim

at preserving the similarity structure of objects by which the order of objects within a

cluster are obtained.

We introduce two algorithms for ordering objects within clusters. The algorithm 1

is to use MDS (see Section 7.4.1) and the algorithm 2 is to use projection vectors (see

Section 7.4.2). The description of each of them is organized as follows: first of all, we

introduce the process in a general situation, that is, for k clusters. Secondly, we apply

the ordering algorithm to cluster result of the PAM method with k = 5 for CO314 to

obtain an order of the participants. Then, with the obtained order, we show a heatplot

of Dosage314 and a heatplot of the p-dissimilarity matrix in order to assess the quality

of the clustering.

7.4.1 Ordering by multidimensional scaling

The first algorithm is to utilize MDS. Assume that the PAM partitions data into k clus-

ters {Gi : i = 1, . . . , k} and selects k objects as the k medoids. Then, these medoids

are ordered by the MDS (see the previous section). Denote the ordered medoids by

x(1),x(2), . . . ,x(k). Let G(1), G(2), . . . , G(k) be the corresponding clusters.

The concept of the ordering algorithm by MDS is to order of objects in G(i) by

using the information on objects in the neighbouring clusters. By neighbouring cluster,

we mean that cluster whose medoid is next to x(i) according to its location on the

1-dimensional MDS. The algorithm 1 works as follows. Step 1: the one-dimensional

MDS is applied to all objects in G(j−1), G(j) and G(j+1), j = 1, . . . , k. Step 2: the
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7.4 Order of objects within clusters

objects in G(j) are organized in terms of their locations on the one-dimensional MDS.

Then, this algorithm repeats Step 1 and Step 2 until order for all objects are obtained.

We applied this algorithm to the clustering result of PAM p-dissimilarity with k = 5.

Figure 7.4 displays the heatplot of Dosage314 and that of the p-dissimilarity matrix of

CO314. The heatplot of Dosage314 displays a much smoother colour gradient from

clusters 1 to 5. Also, the heatplot of p-dissimilarity matrix shows green, black and

red from the diagonal to the borders of the figure. What can be observed is that both

figures present a better colour gradient in comparison to the aforementioned figures

without ordering. What can be inferred from this is that the algorithm has improved

the use of the heatplot. Also, this algorithm generates an order that preserves clusters,

and shows similarity structure of clusters and similarity structure of participants. What

can be concluded from Figure 7.4 is that there does not seem to be a clear separation

between clusters. Also, there are two red lines that cross in cluster 4 in the graph

on the right. At the same position in the graph on the left where the 180 records

of this participant is plotted, it can be seen that, at the beginning of the MMT, this

participant has a higher dosage than the other participants in cluster 4. This suggests

that this participant might be an outlier in cluster 4.

7.4.2 Ordering by projection vectors

Medoids are important for the PAM method because each object is assigned to the

cluster with the closest medoid, so we want to have a method that arranges ob-

jects based on medoids. Following the notations that are defined in the Section 7.4.1,

x(1),x(2), . . . ,x(k) are the ordered k medoids, which are also k objects, G(1), G(2), . . . , G(k)

are the corresponding clusters, and d(., .) is the dissimilarity between objects. For con-

venience, di,j represents the dissimilarity between objects i and j, and d(i),(j) represents

the dissimilarity between ordered medoids i and j. The aim is to generate order for

objects in which the order is capable of displaying the relationships between objects

and medoids, in other words, dr,(i) and dr,(j) in relation to d(i),(j), where object r and

medoid x(i) are in the same clusters, and x(j) is the neighbouring medoid of x(i). In

order to achieve the purpose, we attempt to transform dr,(i) and dr,(j) into a new value

which is a value in proportion to d(i),(j). The idea is that, on the basis of medoids,

we create a two dimensional space into which dissimilarities between an object and
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7.4 Order of objects within clusters

Figure 7.4: Heatplot of Dosage314 and heatplot of the p-dissimilarity matrix of

CO314 with the order of participants generated from MDS on all participants

belonging to the same and the neighbouring clusters. - The graph on the left

displays Dosage314. The record of the 180 days of each participant is plotted along the x-

axis. The colour designates dosage. The graph on the right shows the p-dissimilarity matrix

among participants. Both the x- and y-axes represent participants. The colour represents

the dissimilarity. Note that the order of the participants within clusters is generated by

applying MDS on all participants belonging to the same and the neighbouring clusters.
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7.4 Order of objects within clusters

Figure 7.5: Illustration of the planes - The plane on the left is created by using x(j)

and x(j−1), while that on the right is created by using x(j) and x(j+1). The figures show

the scatter plot of dissimilarity. The points represent objects in G(j) in terms of their

dissimilarity to x(j) and to the neighbouring medoids. Also, a dashed line at 45 degrees is

drawn on both of the graphs.

medoids will be transformed. Then, the transformed dissimilarity will be used to order

the objects.

The ordering algorithm is divided into two cases, denoted process I and process II.

Process I is designed for medoids which have neighbouring medoids on both sides. It

is used to generate orders for objects in G(2), . . . , G(k−1). Process II is for the first and

last medoids. It is used to generate orders for objects in G(1) and G(k).

The algorithm of process I works as follows. Step 1 is to create spaces with medoids.

For any j = 2, . . . , k − 1, the neighbouring medoids of x(j) are x(j−1) and x(j+1). One

space is created by using a pair of medoids x(j) and x(j−1). The x-axis is labelled dis-

similarity to x(j) and the y-axis is labelled dissimilarity to x(j−1). Mark objects in G(j)

on the space for these two axes according to their dissimilarities as points shown in the

graph on the left in Figure 7.5. The other space is created by using x(j) and x(j+1).

Also, mark objects on the plane according to their dissimilarities as points shown in

the graph on the right in Figure 7.5.

Step 2 is to transform dissimilarities into one dissimilarity using projection vectors.
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Figure 7.6: Illustration of representing the dissimilaty between x(j) and x(j−1)

by a vector - Each point in the figures represents the dissimilarities between an object

and two medoids labelled on the axes. The dashed lines with arrows at the end refer to

the vectors −−−−−→v(j)(j−1) and −−−−−→v(j)(j+1).

On the plane of x(j) and x(j−1), each point represents the dissimilarities between an

object in G(j) and two medoids. Also, the dissimilarities between x(j) and x(j−1) can be

represented by the length of the vector from point (0, d(j),(j−1)) to point (d(j),(j−1),0).

Denote this vector by −−−−−→v(i)(j−1). Next, transforming two dissimilarities into one is done

by projecting the vector from point (0, d(j),(j−1)) to point (di,(j), di,(j−1)) onto −−−−−→v(j)(j−1).

We call the length of the projection vector “standardized projection”. Likewise, the

dissimilarities between an object and medoids, x(j) and x(j+1), are transformed into

another standardized projection. The standardized projection of object i with respect

to medoids x(j) and x(j′) is defined by

Proj(j)(j′)i =
−−−→vi,(j′) • −−−−→v(j)(j′)

‖−−−−→v(j)(j′)‖
(7.2)

where • is the inner product of the vectors, and ‖ · ‖ is the Euclidean norm. Figure 7.6

shows an example for −−−−−→v(i)(j−1) and −−−−−→v(i)(j+1). Also, Figure 7.7 shows the standardized

projections of an object i in G(j) with respect to medoids x(j−1), x(j) and x(j+1). The

two standardized projections of the object i are shown as bold lines.

Step 3 is to determine whether an object should be plotted between x(j) and x(j−1)

or it should be plotted between x(j) and x(j+1). It is determined by comparing the

standardized projections. Those whose Proj(j)(j−1)i is greater than Proj(j)(j+1)i are
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7.4 Order of objects within clusters

Figure 7.7: Illustration of standardized projection of an object - Each point in the

figures represents the dissimilarities between an object in G(j) and two medoids labelled on

the axes. Assume an object i in G(j) has its dissimilarities from three medoids, x(j−1), x(j),

and x(j+1) be di(j−1), di(j), and di(j+1), respectively. The figures show the standardized

projections of the object i with respect to medoids x(j) and x(j−1), and medoids x(j) and

x(j+1), displayed as bold lines.

plotted between x(j) and x(j−1), while those with a larger Proj(j)(j+1)i are plotted be-

tween x(j) and x(j+1).

Step 4 is to order the objects. Those plotted between x(j) and x(j−1) are orga-

nized by the value of Proj(j)(j−1)i, whereas those plotted between x(j) and x(j+1) are

ordered by Proj(j)(j+1)i. To sum up, we first identify between which two boundary

medoids objects should be located, and then, for all objects located between the given

two boundary medoids, we establish the order.

Process II is for the cases of the first and last medoids because they have only one

neighbouring medoid. For an object i in G(1), whether to plot it between x(1) and

x(2) or between x(1) and the border of the heatplot is determined by comparing two

dissimilarities, namely d(1),(2) and di,(2). If di,(2) is smaller than d(1),(2) then the object

i is more similar to x(2) than x(1) is to x(2). In order to address this relationship,

objects with a smaller dissimilarity to x(2) are plotted between x(1) and x(2). These

are then organized in terms of Proj(1)(2)i. The remaining objects in G(1) are plotted on

the other side of x(1) in order to deliver the fact that they are distant from x(2), and
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7.4 Order of objects within clusters

they are ordered by the dissimilarity between them and x(1), that is, d(1),i. As for the

objects in G(k), their dissimilarity to x(k−1) is compared to the dissimilarity between

x(k) and x(k−1), and those with a smaller dissimilarity to x(k−1) are plotted between

x(k) and x(k−1) and ordered by Proj(k)(k−1)i, while the rest are plotted on the other

side and ordered by d(k),i. To sum up, we first identify the location of objects, and then

all objects located between the given two medoids are organized by the standardized

projection, and the remaining objects organized by their dissimilarities to the medoid.

We applied this algorithm to the clustering result of PAM p-dissimilarity with k = 5.

The PAM method is based on medoids. Figure 7.8 shows the heatplot of Dosage314, and

the heatplot of the p-dissimilarity matrix of CO314. What can be observed is that both

graphs presents a good colour gradient. Also, Figure 7.8 provides the information on

the location of medoids and the relationship of dissimilarities between the participants.

This figure indicates how far apart the medoids are, and the colour gradient around

the medoids indicates the density of the clusters. In the heatplot of the p-dissimilarity,

in cluster 4, there is a participant who has p-dissimilarities between themself and oth-

ers represented by red coloured values, which creates two red lines cross at a point in

cluster 4. The dosage data for this participant start from high dosages, followed by

some missing dosages. In comparison to records for other clusters, this participant has

record that should be considered to be more similar to records of participants in clus-

ter 4. Despite the fact, the heatplot of Dosage314 shows that this participant behaves

differently, so this participant might be considered as an outlier in cluster 4.

We proposed two ordering algorithms. One uses MDS and the other uses pro-

jections. Both methods smooth heatplots. The MDS quantifies information on one

dimension and consequently information is lost. The projections quantifies information

on one dimension on the basis of medoids, so that information of medoids and the den-

sity of clusters are more visible. Figure 7.4 shows the heatplots with ordering algorithm

of MDS, while Figure 7.8 shows the heatplots with ordering algorithm of projections.

Assume that we are interested in G(2) and G(3), so we look at the heatplots of the

p-dissimilarity for G(2). We notice from Figure 7.4 that the separation between these

two cluster might not be clear. With Figure 7.8, we obtain more information. We

118
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Figure 7.8: Heatplot of Dosage314 and heatplot of the p-dissimilarity matrix

with the order of the participants obtained by using projection vectors. - The

graph on the left displays Dosage314. The record of the 180 days of each participant is

plotted along the x-axis. The participants belong to the same cluster are organized in terms

of the standardized dissimilarity. The graph on the right shows the p-dissimilarity matrix

among participants. Both the x- and y-axes represent participants. There is a potential

outlier indicated by a point in cluster 4 at which two red lines cross.

notice that there is a coherence of participants around x(2). On the other hand, par-

ticipants in G(3) tend to be scattered. The algorithm of the projections is very useful

for visualizing the clustering result obtained from the PAM method.

7.5 Comparison of CO314 and the reference datasets

Graphs are often used to visualize more complex patterns in datasets for exploratory

data analysis. However, there is no standard method for how to read graphs. Reading

graphs depends on human viewers. Buja, Cook, Hofmann, Lawrence, Lee, Swayne,

and Wickham [2009] attempted to develop graphical statistics that could be used for

statistical inference. Their idea was whether the graph was, they were generated under

the null assumption. They were interested in whether the real dataset looked anything

like the datasets generated from the model. As a solution, they suggested a test by
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7.5 Comparison of CO314 and the reference datasets

human viewer compare a plot of the real dataset with plots of simulated datasets.

In Section 6.3 we proposed a Markov model which fitted the marginal distributions

for categories but it did not model the clustering. We attempted to test how well the

null model fitted the CO314 by using the graphical statistic. The test was done by

human viewers comparing the heatplot of CO314 with heatplots of simulated CO314,

and comparing the heatplot of p-dissimilarity matrix of CO314 with heatplots of p-

dissimilarity matrices of simulated CO314. We considered

• a probability of the real dataset being picked up might be unstable if the graph

statistic was determined by one person .

• interviewees might have difficulty to read graph, so they picked up a graph at

random.

• interviewees might want to pick up more than one graphs.

Therefore, we surveyed 19 participants, 2 of which have PhD in Statistics, 5 of which

are the PhD students in the Statistics department, 2 of which are senior statisticians,

and the remaining have at least an undergraduate degree. We asked them to answer

questions based on the figures they received.

Critical region

In order to deal with the result obtained from more one person and answers for more

than one question, the critical region in our study is defined based on “sum”. We

sum up the frequency of datasets being nominated. A conclusion is drew according to

whether the real dataset is nominated the most or not. The real dataset can not get

the highest score means that there is no enough evidence to reject the null hypothesis.

P-value

Denote the frequencies of the R simulated datasets being nominated by s1, s2, . . . , sR.

Denote the frequency of the real dataset being nominated by s. If exactly a of

{s1, s2, . . . , sR} are greater than s, then the approximate p-value of this test is defined

by

p-value =
a+ 1

R+ 1
. (7.3)
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7.5 Comparison of CO314 and the reference datasets

Here is how the figures were generated. For CO314, the order of the participants

were obtained by applying algorithm 2 to the clustering result of PAM method with

k = 5 and the p-dissimilarity with p = 0.6 and β = 1.42. We randomly generated 24

reference datasets and applied the same process to obtain the order of the participants.

The twenty-five graphs in Figure 7.9 show the heatplots of the simulated CO314. In ad-

dition, the heatplot of the real CO314 is embedded in the plots with a random position.

In all twenty-five graphs, the y-axes represent the participants of five clusters and the

x-axes represent the 180 days. The seven categories are represented by seven colours,

black, red, green, blue, cyan, purple and white. The order of participants is obtained by

the algorithm of the projections. On the other hand, the twenty-five graphs in Figure

7.10 show the heatplots of the p-dissimilarity matrix. All x- and y-axes represent the

participants. The colour designates the dissimilarity, ranging from 0 to 159, appearing

in a sequence of green, black and red. The order of the participants in each graph

mirrors the order of the participants on the y-axes in Figure 7.9. The questions that

participants received are as follows. Note that Fig 1 and Fig 2 refer to Figure 7.9 and

Figure 7.10, respectively.

This is a homogeneity test between a real dataset and reference datasets, simulated

from a null model, by human viewer comparing plots. Enclosed are two figures, namely

Fig 1 and Fig 2. Both of them consist of 25 graphs. The 25 graphs in Fig 1 and those in

Fig 2 represent the same dataset and the real data is embedded among the plots with a

random position. Each horizontal line in Fig 1 represents daily dosage of a participant

from day 1 to day 180, while that in Fig 2 indicates distances (eg. Euclidean distance)

between this participant and other participants.

(Q1) Pick up three graphs in Fig 1 that you find different from the rest.

(Q2) Among those three, what is the most different one?

(Q3) Pick up three graphs in Fig 2 that you find different from the rest.

(Q4) Among those three, what is the most different one?

Define the tth-paired-graph being the tth graph in Fig 1 and that in Fig 2.

(Q5) Pick up three paired-graph that you find different from the rest.

(Q6) Among those three, what is the most different one?
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7.5 Comparison of CO314 and the reference datasets

Table 7.1 shows the frequencies of the various answers to the questions. The first

column indicates the 25 graphs. The columns 2 to 7 show the frequency of the graphs

being picked up with respect to the six questions in the survey. The last column is the

sum of the number of times that the graph has been picked. The p-value for this test

is 0.0769. We asked participants who picked up graph 21 and graph 9 about the likely

reasons. Their responses to our addition question was that they made choices based on

the shape of the black area toward the bottom and right, which was largest in graph

21 and smallest in graph 9.

The null model seems to model the distributions for categories in CO314 well because

the heatplots of the simulated CO314 show similar dosage patterns to the heatplot of

the real CO314. Also, comparing the heatplots of the p-dissimilarity matrix, that of

the real CO314 seems to be one of the possible heatplots of the p-dissimilarity of the

null model. Moreover, graph 9, the real dataset, is not identified as a dataset that is

significantly different from the null model. Therefore, we concluded that CO314 does

not seem to have a clustering structure.
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7.5 Comparison of CO314 and the reference datasets

Figure 7.9: The heatplots of simulated CO314. - All y-axes represent the participants

of five clusters, while all x-axes represent the 180 days. The seven categories are represented

by seven colours, black, red, green, blue, cyan, purple and white. The heatplot of the real

CO314 is embedded in the simulated reference datasets.
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Figure 7.10: The heatplots of the p-dissimilarity matrix of simulated CO314.

- All x- and y-axes represent the participants of five clusters. The colour indicates the

dissimilarity, ranging from 0 to 159, displayed in a sequence of green, black and red. The

heatplot of the p-dissimilarity matrix of the real CO314 is embedded in the simulated

reference datasets.
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7.5 Comparison of CO314 and the reference datasets

Table 7.1: The frequencies of answers to each question in the survey. The

answers to the six questions of 18 participants who have at least an undergraduate degree.

Note that the empty cell refers to a frequency of 0, and only 9 participants have answered

the questions 5 and 6. Graph 21 is considered to be the real dataset, with a p-value=0.0769.

Label of the dataset Q1 Q2 Q3 Q4 Q5 Q6 sum

1 1 1 2 3 1 8

2 3 1 3 1 1 9

3 2 1 2 2 2 9

4 3 3

5 5 1 1 1 8

6 7 4 1 12

7 1 1 2

8 1 1 2

9 5 4 4 2 15

10 1 1 2

11 4 3 2 2 11

13 1 1 2

14 2 2

15 2 1 1 1 5

16 1 1 2

17 1 2 1 1 5

18 3 1 4

19 1 2 1 1 5

20 5 2 4 1 1 1 14

21 7 3 9 5 5 4 33

22 2 2

23 1 1 1 3

24 2 2 3 1 8

25 5 1 3 1 2 1 13
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Chapter 8

Sensitivity analysis, stability

analysis and features of the final

five clusters

In this chapter we investigate the stability of the final clustering by comparing clustering

results for different settings of p and β. This is done by using the Adjusted Rand Index

(Rand [1971]). We use the bootstrap distribution of the Jaccard coefficient (Hennig

[2007]) to explore the stability of the clustering solution. We use the Adjusted Rand

Index to measure the agreement of the final clustering of CO314 and the clustering

result of the imputed CO314. Afterwards, we display the demographical information

related to the found five clusters.

8.1 Sensitivity analysis

To assess the sensitivity of the clustering, we evaluate how clustering results are affected

by changes in the two parameters p and β in the p-dissimilarity. To explore the stability

of the clustering, the Adjusted Rand index proposed by Hubert and Arabie [1985] is

used. The concept of the Rand index (Rand [1971]) was to calculate the proportion

of the agreement of two clustering solutions. By “agreement”, we mean how similar

two clustering solutions are when comparing any two objects. There are two cases

of agreement. One of which is that the two objects are assigned to the same cluster

in respect of one clustering solution, and to the same cluster in respect of the other
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8.1 Sensitivity analysis

clustering solution. Another case of “agreement” is that two objects are in different

clusters in respect of one clustering solution, and in different clusters in respect of the

other clustering solution. Let X be the set of all n objects. Assume that two clustering

methods are applied to X separately. Let k be the number of clusters, (k ≤ n). Let

{Gi : i = 1, . . . , k} be the collection of the k clusters obtained from one of the clustering

methods. Let {Hi : i = 1, . . . , k} be the k clusters obtained from the other clustering

method. The two clustering results can be listed by a contingency table (See Table 8.1).

The first column and the first row indicate the clusters. The nij shows the number of

participants that are clustered in Gi and in Hj . Considering all possible combinations

of paired participants
(
n
2

)
, Table 8.1 can be summarized by 4 numbers, a, b, c and d,

where the value of a is the number of pairs of observations that are in the same cluster

of {Gi, i = 1, . . . , k} and in the same cluster of {Hj , j = 1, . . . , k}; d is the number of

pairs of observations that are in different clusters whichever one of the two compared

clustering solutions is selected; b is the number of pairs of observations that are in the

same cluster Gi but in the different clusters Hj and Hj′ ; and c is the number of pairs of

observations that are in different clusters Gi and Gi′ but in the same cluster Hj . The

Rand Index is defined by

RI =
a+ d

a+ b+ c+ d
. (8.1)

Thus, RI indicates how similar two clustering solutions are. Note that the expected

value of RI for two random clusterings is not 0. The Adjusted Rand Index (Hubert

and Arabie [1985]) is an improvement of the Rand Index and is defined by

ARI =

(
n
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
n
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
. (8.2)

The expected value of the Adjusted Rand Index for two random clusterings is 0. The

value of the Adjusted Rand Index can be negative and its maximum value, indicating

strong agreement, is 1.

Stability of p and β

The final five clusters are obtained by partitioning the category-ordered data with the

PAM clustering method and the p-dissimilarity where p = 0.6 and β = 1.42. Table

8.2 shows the agreement of the final five clusters and other clusterings obtained from

127



8.1 Sensitivity analysis

Table 8.1: Contingency table of two clustering results.- A total of n participants

are partitioned into k clusters by two clustering methods. The results, which are the two

k clusters, are represented by {Gi : i = 1, . . . , k} and {Hi : i = 1, . . . , k}.

G1 G2 . . . Gk subtotal

H1 n11 n12 . . . n1k n1.

H2 n21 n22 . . . n2k n2.
...

...
...

. . .
...

...

Hk nk1 nk2 . . . nkk nk.

subtotal n.1 n.1 . . . n.1 n

various other choices of p. What can be observed is that the clustering results for p =

0.4, 0.5 and 0.7 show high agreement with the final clustering result (p = 0.6). This

suggests that the p-dissimilarity with p = 0.4, . . . , 0.7 generate very similar clustering

results. The choice p = 0.9 scores the smallest Adjusted Rand Index 0.746, but even

this is considered as representing a high agreement with the final cluster result. So, we

can conclude that the choice of p does not influence the clustering result too strongly.

Also, the values of the Adjusted Rand Index between the clustering result for p = 0.6

and β = 1.42 and those for p = 0.6 and β = 0.5, 1, . . . , 6 are computed. All these

values of the Adjusted Rand Index are 1. To sum up, the p which uses to distinguish

categories and the β which represents the missing record in the p-dissimilarity do not

have a strong impact on the performance of a cluster analysis of the real data.

Stability of the clustering

Several decisions have been made to perform a cluster analysis of the real data, such as

the choice of the clustering method (PAM), the number of clusters (5), the dissimilarity

function (the p-dissimilarity), and its parameters (p = 0.6, β = 1.42). The question

arising now is how stable is the clustering of the real data? In the paper of Hennig

[2007], in order to assess cluster stability, the author used the bootstrap distribution of

the Jaccard coefficient, which gave the stability of every single clusters of a clustering.

The method worked as follows. First of all, a bootstrap dataset was generated from

real data. Next, a clustering method was applied both to the real data and the boot-

strapped dataset. Two clustering results were obtained, one being the clusters obtained
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8.2 Comparison between CO314 and the imputed datasets

Table 8.2: Stability of the p-dissimilarity of p = 0.6 to the found clusters.- The

final five clusters are obtained by PAM clustering method on the p-dissimilarity of p = 0.6

and β = 1.42. This table shows the stability of p = 0.6 by employing Adjusted Rand Index

(ARI) to compare the clustering result of p = 0.6 and β = 1.42 to that of various p and

β = 1.42.

p ARI p ARI

0.1 0.876 0.5 0.984

0.2 0.918 0.7 1.000

0.3 0.931 0.8 0.766

0.4 0.975 0.9 0.746

by applying the clustering method to the real data, and the other being the clusters

constructed from the bootstrapped dataset. The two clustering results for the boot-

strapped points could then be compared. This was done by a Jaccard coefficient. It

computed every single clusters and its most similar bootstrapped cluster. The Jaccard

coefficient of clusters G and H is defined by

γ(G,H) =
{number of objects that belong to cluster G and also belong to cluster H}

{all objects in either clusters G or H}
A total of M bootstrapped datasets were generated and the average Jaccard coefficients

for every single cluster over M replications, denoted by γ, were used to evaluate the

cluster stability. γ > 0.75 indicates good recoveries (Hennig [2007]). We used their

method to run M = 30 bootstrap replications for CO314. The result of the Jaccard

coefficients for the five clusters in our final clustering result are 0.852, 0.786, 0.764,

0.853 and 0.966. These figures show that the five clusters are very stable and no cluster

is extremely unstable.

8.2 Comparison between CO314 and the imputed datasets

In Section 2.4.2 three datasets were created by applying the imputation methods to

CO314 and Dosage314. They are 1) ImpCO314 in which participants continuously lack

of 14 days records were not imputed, 2) ImpCO7
314 in which participants continuously

lack of 7 days records were not imputed, 3) ImpDosage314 in which the dosage dataset

Dosage314 was imputed by a linear interpolation. They are used to see the effect of
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8.3 Result of dosage patterns

treating the missing dosages in CO314 the same.

For category-ordered data, the PAM with k = 5 and the p-dissimilarity with p = 0.6

and β = 1.42 are applied. For dosage data, the PAM with k = 5 and the Euclidean dis-

tance are applied. The ARI for CO314 and the three imputed datasets, ImpCO314,

ImpCO7
314 and Dosage314, are 0.718, 0.726 and 0.54. Both clustering solutions of

ImpCO314, ImpCO7
314 show an agreement with the final clustering solution of CO314,

and the clustering solutions of Dosage314 and CO314 were fairly similar.

Table 8.3 shows the crosstable of the clustering solutions between CO314 and ImpCO314.

Of those participants assigned to the same cluster in respective of the cluster solution

of CO314, most of them are assigned to the same cluster in respective of the cluster

solution of ImpCO314. We know from Figure 7.8 that participants in G(3) tend to be

scattered. Also, the third row in the Table 8.3 shows that there are 82 participants in

G(3) by CO314. Of these 82 participants, 15 are assign to G(2) and G(4) by ImpCO314.

Around 18% of the participants are assigned to different clusters.

We applied the algorithm of the projections to the clustering result of ImpCO314.

Figure 8.1 shows the heatplot of Dosage314 and that of the p-dissimilarity matrix of

ImpCO314. What can be observed is that the heatplot of Dosage314 looks similar to

that in Figure 7.8.

Based on the result and values of ARI, we conclude that treating all the missing

dosages the same, regardless of their length, will not influence the clustering result too

strongly.

8.3 Result of dosage patterns

One month is often regarded as the minimum length of receiving methadone treat-

ment. Of those participants who complete the treatment for a month, some of them

will continue on receiving MMT. Moreover, if they stay in MMT for three months, the

possibility of overcoming their addictions becomes higher. Also, participants who stay

in MMT for six months are considered to be candidates who can achieve abstinence, so
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Figure 8.1: Heatplot of Dosage314 and of the p-dissimilarity matrix of ImpCO314

with the order obtained by the algorithm of the projections. - The graph on the

left displays Dosage314. The record of the 180 days of a participant is plotted horizontally.

The colour indicates the dosage. The missing and 0 mg are shown in white, while the

dosages between 1 and 140 mg are represented by a sequence of green, black and red.

The participants belonging to the same cluster are organized in terms of the standardized

dissimilarity. The graph on the right shows the p-dissimilarity matrix of ImpCO314. Both

the x- and y-axes represent participants.

Table 8.3: The crosstable of the clustering solution of CO314 and that of

ImpCO314 The clusters obtained from CO314 are shown in the first column. The remain-

ing columns show the cluster obtained from ImpCO314. Of those participants assigned to

the same cluster by the cluster solution of CO314, most of them are assigned to the same

cluster by the clustering solution of ImpCO314.

CO314 \ ImpCO314 1 2 3 4 5 Row Sum

1 35 2 0 0 0 37

2 0 84 12 0 0 90

3 0 6 69 9 0 82

4 0 0 1 47 4 58

5 0 0 0 2 43 47

Col Sum 35 98 84 52 45
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Table 8.4: The mean and standard deviation of dosage of the found five clusters

over three time intervals.- The first column show three time intervals for which the mean

(standard deviation) of dosages are calculated. Columns 2 to 6 show the mean (standard

deviation) of dosages of the final five clusters.

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

Mean (SD)

Day 1-30 24 (15) 32 (13) 38 (15) 45 (22) 53 (25)

Day 31-90 20 (11) 37 (13) 48 (14) 69 (17) 88 (21)

Day 91-180 19 (9) 35 (11) 53 (11) 69 (15) 98 (18)

the physicians are interested in those who are active during the 1st month and carry on

MMT for three months, and those who stay in MMT for six months. Since one month,

three months and six months are meaningful time intervals, we monitor the changes of

dosage of the five clusters in relation to three time intervals, namely day 1 to 30, day

31 to 90 and day 91 to 180.

Table 8.4 shows the mean and standard deviation of dosage for the five clusters for

the three intervals. We observe that all clusters have their mean dosage go up from

the first month to the third month. This show a process of detoxification. The clusters

1 and 2 have their mean dosage go down at the sixth month. This might reflect that

participants are trying to quit methadone. The clusters 3,4,5 have their mean dosage

go up. This suggest that participants who are highly addicted to heroin might take

longer to finish the process detoxification.

Figure 8.2 shows the frequency of the categories from day 1 to day 30 for the five

clusters. The y-axis indicates category and the x-axis indicates days. The colour desig-

nates frequency. We observe the followings: (1) There is an upward trend in categories

over time, particular in cluster 5. (2) Cluster 1 seems to have more category 7 than

cluster 5. Similarly, Figure 8.3 shows the frequency of the categories from day 31 to

day 180 for the five clusters. In this figure, frequency is defined as the number of cate-

gories for a 7-day period. For convenience, we define pattern of detoxification in three

stages. Stage I represents methadone dosage goes up, stage II represents dosage stays
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stable, and stage III represents dosage goes down. We observe the followings: (1) In

cluster 1, the participant who continuously has dosages in category 3 moves to category

2 on day 85 and moves to category 1 on day 109. Another participant has dosages in

category 2 on days 107-119, category 3 on days 120-133, category 2 on days 134-147,

category 3 on days 148-180. Most of the participants stay in low dosages. (2) In cluster

2, category 3, the frequency increases at the beginning and then goes down after day

50. This suggests that some participants with low addictions go into the stage III in

approximately 2 months. Also, around day 120, the frequency of category 3 goes up

again. This suggests that some participants take around 3 months to go into stage

II. (3) In cluster 3, many participants stay in either category 2 or category 3. After

about day 50, many participants start to move to category 3 from category 2. After

day 140, many participants in category 3 move to category 2. (4) In cluster 4, category

5, the frequency slightly goes down after day 150. Also, for category 3, the frequency

is fairly stable on days 100-150. Few participants in higher categories move to category

3 after day 150. (5) In cluster 5, participants contiguously move to higher categories

from lower categories. The frequency of category 4 is fairly stable on days 100-150.

The frequencies of categories 3-4 go up after day 150, that is, few participants move to

lower categories after day 150.

We attempt to summarize the pattern of detoxification for each cluster by the date

on which the three stages are observed: Cluster 2 (day 1-40-100), Cluster 3 (day 1-80-

140), cluster 4 (1-100-150), cluster 5 (1-100-150). Note that these dates are roughly

numbers. Also, majority in cluster 4 and cluster 5 have their dosages in high categories.

This means that participants who are highly addicted to heroin might take longer to

finish the detoxification process.

Next, we used MDS plot to monitor the movement of the five clusters from one

time interval to the next. We applied a three dimensional MDS to the p-dissimilarity

matrix of the category-ordered data at each of the three time intervals. First of all,

the three dimensional MDS was applied to the p-dissimilarity matrix of the records of

days 1 to 30, the records of days 31 to 90 and records of days 91 to 180 separately. The

stress for those models were 0.1, 0.09 and 0.08, respectively. Figure 8.4 illustrates how

the clusters moved apart depending on the dosage of their participants. What can be
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8.4 Demographical information relating to the five clusters

observed from Figure 8.4(a) is that most of the points of cluster 1 stay close to each

other and that there is a tail that is formed by a few points in clusters 4 and 5. Figure

8.4(b) shows the MDS result for the second interval. As can be seen, cluster 5 is distant

from clusters 1, 2 and 3. There is a mixing of points in clusters 2 and 3. Figure 8.4(c)

presents the results for the third interval. This graph displays very clearly each of the

five clusters. What can be concluded is that the dosage patterns of the clusters in the

first month overlap, and that they begin to show some difference in the following three

months. They are also clearly distinguishable from the third month to the sixth month.

8.4 Demographical information relating to the five clus-

ters

Table 8.5 shows age, age of the onset of heroin, gender, education, marital status and

occupation for the five clusters. The one-way ANOVA is used to compare mean ages of

the five clusters and the Chisq-test is performed to identify variables associated with

clusters. The result of ANOVA shows that there is not enough evidence to conclude

that the mean ages of the five clusters are different (p-value=0.084). The result of

ANOVA test the mean ages of heroin onset is borderline significant (p-value=0.062),

there could be some effect of age of heroin onset. The result of Chisq-test shows that

there is not enough evidence to conclude that there exists a relationship between clusters

with respect to gender (p-value=0.377), education (p-value0.996), marital status (p-

value=0.429) and occupation (p-value=0.310).There are fewer females than males in

each of the five clusters, with an average of proportion of females 17.76 %. The highest

female-male ratio is 23.40 % in cluster 5, while the smallest is 10.98 % in cluster 3.

With regards education, about half of the participants have received basic education

(elementary and junior high school) in all five clusters. With regards marital status, an

average proportion of the single and divorced participants in the five clusters is 76.18%.

With regards occupation, more than half of the participants have jobs, with an average

proportion of 63.27%.
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8.4 Demographical information relating to the five clusters

Figure 8.2: Frequency of the categories from day 1 to day 30 for the five clus-

ters. - The y-axis indicates category and the x-axis indicates days. The colour designates

frequency.
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8.4 Demographical information relating to the five clusters

Figure 8.3: Frequency of the categories from day 31 to day 180 for the five clus-

ters. - The y-axis indicates category nd the x-axis indicates days. The colour designates

frequency. The frequency is calculated based on a 7-day period.
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8.4 Demographical information relating to the five clusters

(a) (b)

(c)

Figure 8.4: The movement of clusters over time. - The three dimensional MDS is

used to illustrate the movements of the five clusters for three intervals. The graphs (a),

(b) and (c) show the three dimensional MDS of the p-dissimilarity matrix of the category-

ordered records of days 1 to 30, days 31 to 90 and days 91 to 180, respectively. The dosage

patterns of the clusters in the first month overlap, and they begin to show some difference

in the following three months. They are distinguishable from the third month to the sixth

month.
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8.4 Demographical information relating to the five clusters

Table 8.5: Demographical information relating to the five clusters.-Age is ex-

pressed as mean standard deviation. The one-way ANOVA is used to compare mean ages

of the five clusters and the Chisq-test is performed to identify categorical variables asso-

ciated with clusters. The Chisq-test shows that there is not enough evidence to conclude

that there exists a relationship between clusters with regards any of the following features:

gender, education, marital and occupation.

Clusters

1 2 3 4 5 p-value

Number of participants 37 90 82 58 47

Age mean 35.14 39.41 38.12 34.81 36.24 0.0839

SD 6.45 7.43 7.61 6.10 6.80

Age of heroin onset mean 25.58 26.24 26.79 23.84 24.29 0.0621

SD 7.37 7.07 7.22 5.67 5.98

Gender female 8 14 9 10 11 0.3777

male 29 76 73 48 36

Education elementary 4 6 6 4 3 0.9963

junior high 14 39 35 23 21

high school 19 44 38 30 19

undergraduate 0 1 2 0 3

Marital single 24 45 39 38 25 0.4294+

married 5 26 21 13 9

divorced 8 18 20 6 11

windowed 0 1 0 0 0

living with partner 0 0 1 1 1

Occupation Yes 23 56 56 31 33 0.3102

No 14 34 26 27 13

+: (single, divorced, windowed) and (married, living with partner)
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Chapter 9

Conclusion and discussion

This thesis covers the various stages of clustering analysis, including data transforma-

tion, selection of dissimilarity functions, selection of clustering methods, determination

of number of clusters, test of homogeneity, quality check for clustering results and

interpretation. Also, we define the category-ordered data and propose the following:

the p-dissimilarity, the modification of the Prediction Strength, the null model test of

homogeneity, the null model test for determination of numbers of cluster, the Markov

model for the category-ordered data and two ordering algorithms for information visu-

alisation via heatplots.

Study design, data collection, data quality, etc., have a huge impact on the findings.

Sadly, many study plans do not involve statistician from the beginning of the research

resulting in statisticians having to spend great effort on understanding data and on

data structuring. Also, it might result in research limitations on the data or worse if

the data is not able to answer the proposed research questions.

Quality check of data and understanding data are the first steps of performing

an analysis. Having analysed the MMT data, we witnessed some problems. (1) The

datasets in the MMT database were not synchronized. This reduced the number of

participants with full records. This could be improved by making staff aware of the im-

portance of having a completed dataset. (2) The difference between prescribed dosages

and dosages taken by participants reflected whether prescriptions were appropriate and

whether participants had followed physicians’ instructions. However, there was no in-
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dication for which one of the multiple prescriptions was used. This problem could be

avoided by listing the full research objectives and then creating a recording system with

the flexibility to accommodate the research objectives and future research purposes. (3)

The coding for dosage taken records was not unique. This problem could be avoided

by designing a coding book for the MMT recording system. Despite these facts, we

selected a meaningful sample with 314 participants. We took account of the weekly

prescriptions, fluctuations in dosage taken records and patterns of missing dosages,

and defined the category-ordered data CO314 by transforming the plain dosage data

Dosage314 into categories. The final clusters were obtained by using the PAM method

with five clusters and the p-dissimilarity with p = 0.6 and β = 1.42. Although none of

the five clusters could very easily be distinguished in terms of, say, their demographics,

the sequences of categories for the five clusters were clinically useful. The sequences of

categories indicated detoxification. We found the heroin onset age might have an influ-

ence on the patterns of detoxification. Participants with low addictions reduced the use

of heroin by addicting to methadone at the first month and attempted to reduce/quit

the use of methadone at the third month. As for participants with high addictions, few

attempted to reduce the use of methadone at the fifth month and most required more

time to finish the detoxification process.

Regarding developing methodologies, our first contribution was to propose the p-

dissimilarity. The p-dissimilarity was based on assessing the interpretative dissimilar-

ity between categories and focused more on sequence of constancy and less on sudden

changes in categories. This was used to measure dissimilarity between the 180-day

time series of the participants. Also, it implemented concepts of variables having in-

formation on categorical and ordinal, and thus can be used for incomplete data. The

p-dissimilarity uses p as the switch between data being categorical and ordinal, and

uses β to deal with missing values. Further, we showed that values of p and β do

not have as strong an impact on clustering as those measured by the Adjusted Rand

Index. Moreover, the p-dissimilarity quantifies the structure of the categories which

are partly categorical, partly ordinal and also contains quantitative information. The

principle behind the measure can be used in a wider field of applications, in which there

is more information about the meaning of categories than just those that are “ordinal”

or “categorical”, such as survey studies. These studies use questionnaires with choices
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on Likert scales and a don’t know-category and the researchers have a quantitative idea

about the interpretative distance between categories.

The Prediction Strength determines the number of clusters by measuring cluster

stability. It favours the K-Means method. We proposed rules to modify the use of the

Prediction Strength so that it could be fully applied to the hierarchal clustering meth-

ods and the PAM method. Additionally, instead of preselecting the clustering method,

we let data to decide on the basis of cluster stability and cluster coherence, which were

measured by the Prediction Strength and the Average Silhouette Width.

We proposed the null model test for determining the number of clusters and for

testing homogeneous population. This method took account of data structure not aris-

ing from clustering and constructed the distribution of the statistic so that a hypothesis

test for each number of clusters could be performed. Moreover, this allowed us to inves-

tigate the existence of a clustering structure. In this study, we constructed the Markov

null model to represent the category-ordered data with no clustering structure. Also,

we carried out a graphical test to validate the Markov model. The result showed that

the Markov model seemed to be a good model and there were no significant clusters.

We proposed two ordering algorithms to visualise information via heatplots. The

first general use algorithm employed multidimensional scaling (MDS). It aimed at pre-

serving cluster structures, similarity structure of clusters and that of objects in a clus-

ter. The second PAM method algorithm used projection vector. This second algorithm

aimed at preserving the aforementioned information, locating medoids, displaying how

far apart the medoids were, and displayed density of the clusters by way of a colour

gradient around the medoids. We used the algorithms and heatplot to access the qual-

ity of clustering. For CO314, the result of the Jaccard coefficients for the five clusters

in our final clustering result were 0.852, 0.786, 0.764, 0.853 and 0.966, which showed

that the five clusters were very stable. From the heatplot of the clustering result, we

observed that the participants in cluster 1 had similar dosage patterns. So do cluster

4 and cluster 5. Participants in clusters 2 and 3 tended to be scattered.
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Future work will focus on the development of the p-dissimilarity and explore the

null model test. In some applications, variables are correlated where researchers have a

quantitative idea about the interpretative distance between grouped variables. There-

fore, we will take account of correlation between variables in order to improve the use

of the p-dissimilarity and the null model test for the existence of clustering structures.

This method is limited on the MMT data, which was found to have no clustering struc-

ture. As such, its performance on data with clustering is unknown. Therefore, we will

simulate data with clustering structure. Then, we will apply the null model test to

determine the number of clusters and test the absence of clustering in order to explore

and improve the null model test. Apart from methodology, we are also interested in

comparing the patterns found in our study with the clustering results of recent data

and then aim to construct intervals of prescribed dosages in relation to clusters.
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