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Abstract

We present a theory of decision by sampling (DbS) in which, in contrast with traditional

models, there are no underlying psychoeconomic scales. Instead, we assume that an

attribute's subjective value is constructed from a series of binary, ordinal comparisons to a

sample of attribute values drawn from memory and is its rank within the sample. We assume

that the sample reflects both the immediate distribution of attribute values from the current

decision's context and also the background, real-world distribution of attribute values. DbS

accounts for concave utility functions; losses looming larger than gains; hyperbolic temporal

discounting; and the overestimation of small probabilities and the underestimation of large

probabilities.

Keywords: judgment; decision making; sampling; memory; utility; gains and losses; temporal

discounting; subjective probability.
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Decision by Sampling

Here we offer an account of why the descriptive psychoeconomic functions - concave

utility functions for money, hyperbolic temporal discounting functions, and inverse-S-shaped

subjective probability functions - take the forms that they do. The essence of our decision by

sampling (DbS) account is that attribute values (e.g., monetary amounts, probabilities, delays)

are evaluated against a sample of other attribute values using simple cognitive tools. The

decision sample is assumed to comprise both attribute values from both the immediate

context in which a decision is made (e.g., the attribute values of other options on offer) and

values from memories of previously encountered attribute values (e.g., those values

encountered in previous decisions). In this article, we focus upon the effect of previously

encountered attribute values. 

Theories of decision making often take economic theory as a starting point: expected

utility theory for decision under risk; exponential discounting for decisions with delayed

outcomes. The next step is to assess the degree to which people make decisions as they

should (e.g., Allais, 1953; Kahneman & Tversky, 1979, 2000). The normative theory is then

modified to create a descriptive theory of observed behavior by including additional

psychological insight (e.g., prospect theory, Kahneman & Tversky, 1979, Tversky &

Kahneman, 1992, regret theory, Loomes & Sugden, 1982, and rank dependent utility theory,

Quiggin, 1983, 1992, in decision under risk; hyperbolic discounting, Rachlin, 1989, for

intertemporal choice; support theory, Tversky & Koehler, 1994; for probability judgment). In

beginning with a limited set of simple cognitive tools we are taking psychology as a starting

point. We then consider how economic decisions might be made using these simple tools.

A key difference between the approach we develop here and those derived from

normative economic accounts is that we do not assume that people have stable, long-term

internal scales along which they represent value, probability, temporal duration, or any other

magnitudes. Instead, we assume that people can only sample items from memory and then
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judge whether a target value is larger or smaller than these items. This approach is inspired

by and builds on a series of successful accounts of key aspects of judgment and decision

making based on psychological assumptions concerning sampling from, and comparison

with, items from memory. In norm theory (Kahneman & Miller, 1986) the normality of a

stimulus is derived by comparing it to the norm (counterfactual examples and a set of

exemplars retrieved from memory) that it evokes. In decision field theory (Busemeyer &

Townsend, 1993), and its multialternative generalization (Roe, Busemeyer, & Townsend,

2001), the time course of decision making is accounted for by the sequential sampling of

information from the decision context, with outcome valances constructed relative to one

another. In support theory (Tversky & Koehler, 1994), the subjective probability of a focal

hypothesis depends on the sample of alternative hypotheses considered by the subject, and is

given by the ratio of the support for the focal hypothesis and the sum of the support for all

hypotheses under consideration (see Windschitl & Well's, 1998, comparison heuristic for a

similar mechanism). Dougherty, Gettys, and Oden's (1999) decision making model

MINERVA-DM (based on Hintzman's, 1984, 1988 memory model) gives a mechanism by

which the support for hypotheses depends on the similarity to traces stored in memory,

providing an account of many heuristics and biases (see also Juslin & Perrson, 2002). In the

stochastic difference model (González-Vallejo, 2002), the differences between the target

attribute value and other attribute values in the sample of items in the decision context

determines the preference for one prospect over another. In summary, in all of these models,

judgments and decisions result from comparison of an attribute's value to a sample of other

values, either from the decision context or from memory. For a review of memory processes

in judgment and decision making see Weber, Goldstein, and Barlas, (1995) and Weber &

Johnson (in press).

In DbS, we assume that only the most simple cognitive processes - ordinal

comparison and frequency accumulation - are involved in evaluating a target attribute against
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a decision sample. Our assumption that, to a first approximation, comparisons are only

ordinal (i.e., only "greater than", "equal to", or "less than") is motivated by evidence from

psychophysics which suggests that people are rather good at discriminating stimuli from one

another, but rather bad at identifying or estimating the magnitude of the same stimuli (see

Garner, 1962; Miller, 1956; Laming, 1984, 1997; Shiffrin & Nosofsky, 1994; Stewart,

Brown, & Chater, in press). Our assumption that people are good at keeping track of and

manipulating frequencies is well established (e.g., Gigerenzer & Hoffrage, 1995; see

Sedlmeier & Betsch, 2002, for a recent review). By keeping a frequency count of the number

of comparison outcomes that favor the target, one can derive the rank of the target attribute

value within the decision sample (see, e.g., Kornienko, 2004, for a demonstration that a

cardinal utility function may be derived by keeping a frequency count of binary, ordinal

comparisons.) It is this rank that we assume is the subjective value of an attribute. When

normalized to lie between 0 (the worst attribute value) and 1 (the best attribute value), the

subjective value or relative rank of an attribute value is given by r = (R - 1) / (N - 1) where R

is the rank within the sample of N items. The relative rank is effectively the proportion of

attribute values in the sample that are less than the target attribute value or, equivalently, the

probability that a randomly selected attribute value will be less than the target attribute value. 

In assuming that the subjective value of an item is its rank within a sample, DbS

embodies the frequency principle of range-frequency theory (Parducci, 1965, 1995). In range-

frequency theory, the subjective value of an item is a weighted sum of its rank within the

immediate context and its position within the range set by the immediate context. We

consider the range principle further in the General Discussion.

So far we have said little about the sample of attribute values against which an item is

compared. The basic idea is that, when considering a target attribute value, there will

typically already be some other attribute values from the context of the decision in the

sample. The target attribute value will also evoke other values from long-term memory, and it
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is the effect of these attributes that we focus upon in this article (cf., Kahneman and Miller,

1986). Thus, the subjective value of an option is constructed online whenever it is considered

(cf., Bettman, M. F. Luce, & Payne, 1998; Payne, Bettman, & Johnson, 1992; Slovic, 1995)

and will vary from occasion to occasion with (a) the distribution of attribute values from the

immediate decision context, (b) the distribution of attribute values in memory, and (c)

stochasticity in the sample of attribute values from both the immediate decision context and

also from memory.

As a starting point, we assume that the contents of memory reflects the structure of

the world, and represents a subset of the attribute values that people typically encounter.

There is good evidence that memory is adaptively reflects the structure of the environment

(e.g., Anderson, 1990; Anderson & Milson, 1989; Anderson & Schooler, 1991; Chater &

Brown, 1999; Oaksford & Chater, 1998; Shepard 1987). In the following sections we will

examine the distributions of gains, losses, time delays, and probabilities that people

encounter. We focus on these attributes because they are the psychological primitives of

economic decisions: Many decisions involve evaluating the value of some risky, uncertain, or

delayed gain or loss. We will use these distributions to make predictions about the subjective

value functions that will be revealed when people make decisions in the context of these real-

world distributions.

Gains

First we consider gains. Following Kahneman and Tversky (1979) we consider gains

and losses separately. Key questions are: (a) What is the distribution of gains in people's

memories? (b) What effect will this distribution have on the subjective valuation of gains? 

We assume that the decision sample, to which a target gain is compared, is a small,

random sample of gains from memory. Of course this random sampling assumption is likely

to be incorrect: other factors, such as recency, similarity, and background knowledge will

surely play a role. However, in what follows we pursue this random sampling hypothesis as a
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first approximation. 

An approximation to the distribution of gains that people encounter can be revealed

by examining credits to people's current (in the UK; checking in the US) bank accounts.

Figure 1A shows the frequency with which credits of different amounts are made. These data

are a random sample of one year of credits to current accounts held by a leading UK bank.

Automatic credits were omitted, but all manual payments including direct debits, standing

orders, and salary payments were included. The distribution of credits approximately follows

a power law, with many small gains and relatively fewer larger gains (the data roughly follow

a straight line on the plot of log frequency against log credit). The observation of this power-

law relation between event magnitude and event probability is unsurprising, as it is seen in

many aspects of the world (see Bak, 1997, for a review). For example, natural phenomena

such as earthquake energies follow this pattern (Gutenberg & Richter, 1949; Johnstone &

Nava, 1985), as do social phenomena like the size of corporations (Ijiri & Simon, 1977), city

sizes, and the frequencies of words within natural language (Zipf, 1949).

Supposing that the decision sample can contain an unlimited number of exemplars,

the subjective value of a target credit within our larger sample of credits is given by its

relative rank within this large sample. Figure 2A plots the relative rank of each credit.

Because of the equivalence between the relative rank of a target attribute value and the

proportion of attribute values that are smaller than the target, Figure 2A can also be described

as a plot of the cumulative probability of obtaining a gain at least as big as that on the

abscissa.

As a direct consequence of the distribution of credits, relative rank is an increasing

but negatively accelerating function of the size of the credit. Thus, additional incremental

wealth has a diminishing impact on the relative rank of the credits. For example, a credit of

£1000 has less than twice the psychological value of a credit of £500. In summary, from only

the assumption that people make ordinal comparisons with a sample of values reflecting the
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positively-skewed real-world distribution, DbS predicts that the marginal subjective value of

an extra unit of wealth diminishes as wealth increases (i.e., concave utility functions for

gains). 

If the distribution f(g) of gains g in the world follows a power-law distribution with

power � (i.e., f(g) = c g� where c is a normalizing constant) then DbS predicts a power-law

revealed utility function, as the relative rank of g is given by the cumulative distribution

function r(g) = c / (1 + �) g�+1. 

The assumption that gains are fully sampled is unlikely to be true given the well-

established finding of a severely limited capacity of short-term memory (Miller, 1956).

However, if a small, randomly drawn sample of gains is considered, then similar predictions

follow. The relative rank of an attribute value is determined by the probability that a

randomly sampled credit will be less than or equal to that value. Thus, the distribution of

relative ranks for a given target and given sample size will be binomial. Figure 3A illustrates

the binomial distribution of relative ranks obtained for a target value of £250 if 5 items are

sampled randomly from the distribution of credits. Figure 3B illustrates how this binomial

distribution will change as a function of the target credit. (Every plane perpendicular to the

attribute value axis is a binomial distribution.) As the mean of a binomial distribution is its

probability parameter, then Figure 2A represents the mean relative rank for a target credit,

independent of sample size. 

Bordley and LiCalzi (2000) present an argument that is similar to the DbS account

above. In their account, the value of a gain is the probability that it will meet an uncertain

target. Thus, the value of the gain depends on its location within the distribution of target

values. Bordley and LiCalzi do not give a detailed psychological account of the origin of the

distribution of the target values, but do suggest that they result from uncertainty over which

targets are necessary to achieve higher superordinate goals. They assume that people select an

outcome to maximize the probability of meeting this target and show that this approach
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makes the same predictions as expected utility. This approach is similar to DbS in that the

subjective value of a target attribute depends upon its ordinal position in some reference

distribution, but differs from DbS in assuming that the reference distribution reflects an

uncertain aspiration level rather than the real-world distribution of gains. 

In summary, DbS predicts a power-law utility function modulated by binomially

distributed noise. The power-law function is a result of memory reflecting the scale-free

distribution of credits observed in the environment, and the binomial noise is the result of a

sampling process. This motivation of this prediction stands in contrast to descriptive models,

which simply assume a curvature of the utility function, rather than explaining it. For

example, in prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992) the

curvature of the utility function describes risk aversion. Here we have independently

motivated the curvature, and risk aversion will follow as a consequence of this curvature.

Losses

We carried out a parallel analysis for losses. Figure 1B shows how the frequency with

which debits are made from current bank accounts depends on the magnitude of the debit.

Like gains, the distribution of losses also follows a power law, with many small losses and

relatively few large losses. The mean relative rank of losses (for any sample size) can be

derived as for gains, and is illustrated in Figure 2B. As before, incremental loss produces a

diminishing rise in relative rank. A comparison with gains reveals an interesting prediction.

There are relatively more small losses compared to small gains (as reflected in the differing

best fitting powers of -0.93 for gains and -0.96 for losses). This makes intuitive sense: One is

paid in a lump sum (e.g., a monthly salary) which one spends on many things (e.g., mortgage,

grocery bills, etc.). Because of this asymmetry, a loss of a given magnitude will have a higher

relative rank than that of a gain of the same monetary amount. Of course, this conclusion, that

losses loom larger than gains, is exactly that embodied in Kahneman and Tversky's (1979)

prospect theory. DbS predicts this asymmetry in behavior because there is an asymmetry in
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the natural real-world distribution of gains and losses. 

Friedman (1989) gives an argument related to DbS. Friedman assumes that there are

more small gains and losses than large gains and losses, consistent with our data on credits

and debits. He further assumes that we have a limited capacity for sensitivity to these gains

and losses (because of time, memory, and other cognitive constraints) which we distribute

over the most likely outcomes: We are assumed to be more sensitive to small gains and losses

because there are more of them. This is consistent with our DbS account according to which

people are sensitive to small gains and losses because they are more numerous and hence

more frequently sampled. Friedman proves that these two assumptions are sufficient to

produce an S-shaped approximation to the true, conventional, concave utility function with

the point of inflection at current wealth.

One might wonder whether the positively skewed distributions of gains and losses

will be found else where or whether they are specific to bank accounts. One reason to expect

that these positively skewed distributions will occur in many contexts is the ubiquity of

power law distributions. Another is that we found positively skewed distributions in other

domains. For example, we have also examined the distribution of prices in UK supermarkets.

Figure 4A shows the relative ranks for a large number of prices in the supermarket. Figures

4B and C show two examples of the relative ranks calculated for bread and chocolate

products. In almost all of the cases we have examined, we have found positively skewed

distribution of prices, which leads to a concave function for relative ranks.

Time

We seek a uniform account of behavior across a wide variety of domains. There is

evidence that the processing of number and time may rely upon a common cortical resource

(Walsh, 2003). Thus, the treatment of temporal delays that we offer here is the same as that

outlined above for gains and losses. More specifically, the subjective value of a target

temporal delay will be determined in the context of a decision sample of other temporal
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delays. 

We argue that DbS explains of some of the key temporal anomalies reviewed by

Loewenstein and Thaler (1989). As before, we assume that the distribution of delays in

memory reflects the distribution in the real world. To obtain a crude approximation, our

colleague, Stian Reimers, collected the number of hits produced by an internet search engine

(http://www.google.com) when prompted with various temporal delays. We accumulated hits

over different search strings representing the same period (e.g., "a day", "one day", "1 day",

"24 hours") for intervals between 1 day and 1 year. Figure 5 plots the frequency of different

temporal intervals as a function of their magnitude. As for gains and losses, the distribution

approximately follows a power law (replicating the findings of Pollmann, 1998; and

Pollmann & Baayen, 2001, who used different sources of data and time periods). The best

fitting slope for this distribution, and those obtained by Pollmann from other corpora with

other ranges, are listed in Table 1. (Power laws also describe the time intervals between

repetitions of words in New York Times headlines, words in parental utterances to children,

and e-mails from particular correspondents in Anderson's mail box, Anderson & Schooler,

1991).

Hyperbolic Temporal Discounting

Figure 6 shows the mean relative rank assigned to each delay as a function of delay

magnitude assuming random sampling from the distribution in Figure 5. Incremental delay

has a diminishing effect, just as for gains and losses. DbS predicts a specific form for the

mean relative rank of a delay as a function of its magnitude. A straight line provides a better

fit to a log-log plot of the distribution of temporal intervals (Figure 5) than it does to a linear-

log plot, indicating that a power law function describes the distribution of intervals better

than an exponential function. Approximating the distribution of times t with a power law f(t)

= c t-� gives the cumulative distribution function, which is the mean relative rank function, of

r(t) = c t-�+1 / (1 - �
�
. Thus DbS predicts power-law temporal discounting, in which the
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discount rate decreases over time, rather than the normative exponential discounting, where

the discount rate is constant. It is experimentally well established that people's discount rate

does indeed decrease over time (Kirby, 1997; Benzion, Rapoport, & Yagil, 1989; Thaler,

1981). 

As estimates of � range from -1.7 to -1.4 (see Table 1), estimates of the power of the

discounting function will range from -0.7 to -0.4. A power of -1.0 gives hyperbolic

discounting and therefore DbS predicts sub-hyperbolic discounting. This differs from

hyperbolic discounting in that it predicts that people will not discount long delays as much as

is predicted either by hyperbolic or exponential discounting. Just such a finding is reported by

Myerson and Green (1995) and Simpson and Vuchinich (2000).

Discount Rate Depends on the Magnitude of the Gain

 Discount rate decreases with the magnitude of the gain on offer (e.g., Benzion, et al.,

1989; Green, Myerson, & McFadden, 1997; Holcomb & Nelson, 1989, as cited in

Loewenstein & Thaler, 1989; Thaler, 1981). If magnitudes are sampled at random from

memory then DbS does not account for this phenomenon. If it is assumed that similarity

plays a role in the sampling process, DbS can offer an account. There must be a positive

correlation between the delay until a gain and the size of the gain in the world: As large gains

are less frequent than small gains, the average delay between large gains must be larger than

the delay between small gains. Assume that people sample large delays when considering

large gains, because large gains and large delays were associated in the past. In this context of

large delays, the target delay will receive a low relative rank compared to the case when the

sample comprises small delays. In other words, in the context of delays evoked by the large

gain, the given target delay will seem less bad, and thus be discounted less. We return to the

issue of similarity sampling in the General Discussion.

Discount Rate is Greater for Gains than Losses

Thaler (1981) found that discount rates were higher for gains than for losses of
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equivalent magnitude. In any account where losses loom larger than gains, including DbS, the

discount rate for gains will appear higher. This is because the discount rate depends not only

on the discounting function but also upon the curvature of the utility function. Consider the

discount rate implied by an indifference between £x now and the larger amount £y delayed by

time t. With a power law utility function u(x) = x� and any discount function f(t),

x��y�f�t�

gives a discount rate of

x
y
��f�t��

1

�

The discount rate incorporates the curvature of the utility function (e.g., Benzion et al. 1989;

Mazur, 1987; Thaler, 1981, but see Chapman, 1996, for a separation, and also Kirby &

Santiesteban, 2003, though this example does not involve gains and losses). Thus, if the

curvature � is larger for losses, the discount rate will be smaller. Note that, even if the free

parameter(s) of a utility function are fitted at the same time as the free parameter(s) of the

discounting function and differences in the discounting parameters are found, one cannot be

sure that the difference in discounting parameters reflects different discounting of gains and

losses. Johnson and Bickel (2005) found that, when fitting a hyperbolic-like discounting

function of the form x / y = 1 / (1 + k t)s, the k and s free parameters were correlated. The

equivalence of s in this form with � in the above form means that if � is different for gains

and losses, k will also differ for gains and losses even if gains and losses are discounted in

exactly the same way.

DbS and Working Memory Load

The DbS explanation of the shape of the temporal discounting function is that the

subjective value of a target delay is derived from comparisons with a sample of delays from

memory. In support of this, a working-memory load has been found to affect temporal

discounting. With a larger working-memory load, discounting of delayed gains is greater
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(Hinson, Jameson, & Whitney, 2003). According to DbS, a larger working memory load

should reduce the number of items in the decision sample. In turn, this means that, in the

absence of other larger delays from memory, the delay associated with a delayed outcome

will seem particularly bad in comparison to only the zero delay of an immediate outcome.

Thus, DbS correctly predicts the finding of greater discounting when working memory is

loaded.

Summary

We do not suggest that DbS can offer an account of all of the intertemporal choice

phenomena reported in the literature. There are surely other important psychological factors

at play, such as savoring and dread (e.g., Loewenstein, 1987) and mental accounting (e.g.,

Shefrin & Thaler, 1988; Prelec & Loewenstein, 1998). However, DbS can explain why

discounting is (sub)hyperbolic and, with a plausible modification (assuming that similarity

sampling rather than random sampling), can explain why the discount rate is reduced for

larger amounts of money. Finally, because the curvature of the utility function is often

combined within the measure of discount rate, DbS (and presumably other models) can

explain why gains are discounted more heavily than losses.

Risk

We treat probability in the same way as we have treated gains, losses, and delays. We

will argue that the distribution of probabilities that people experience is such that small

probabilities will be over weighted and large probabilities will be under weighted. In other

words, subjective probability is an inverse S-shaped function of actual probability (e.g.,

Abdellaoui, 2000; Bleichrodt & Pinto, 2000; Gonzalez & Wu, 1999; Kahneman & Tversky,

1979; Prelec, 1998; Tversky & Kahneman, 1992; Wu & Gonzalez, 1996, 1999; but see

Hertwig, Barron, Weber, & Erev, 2004, for the opposite pattern for small probabilities when

probabilities are experienced as the number of successful outcomes over a series of trials).

There is some evidence that probabilities (or frequencies) are compared with attribute
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values retrieved from memory. Dougherty and Hunter (2003a, b) found correlation between

working memory span and probability judgments. Larger working memory spans coincided

with less subadditivity. (Subadditivity is the extent to which the judged probabilities of a set

of mutually exclusive, exhaustive events sum to greater than 1.) Further, time constraints

increased subadditivity. They argued that these data are consistent with a model where larger

working memory and longer time allows target probabilities to be compared to a larger pool

of sampled probabilities. Together with the finding that the particular frequencies with which

the items were experienced affected the probability judgments, this is strong evidence that

probabilities are judged in comparison to a decision sample.

There is one striking difference between the distributions of gains, losses and delays,

and the distribution of probabilities: Probabilities are bounded to be between 0 and 1, and

thus cannot follow a power-law distribution. Here we shall argue that there are more

cognitively relevant events with small and large probabilities than with mid-range

probabilities. Specifically, we shall present four arguments. Each leads to the same

conclusion: that small probabilities will be overestimated and large probabilities

underestimated in a DbS framework.

The Distribution of Probability Phrases

As with time and money, here we attempt to find a proxy for the distribution of

probabilities in long-term memory from which people sample when they evaluate a target

probability. Because people prefer to give verbal rather than numerical descriptions of

probabilities (Beyth-Marom, 1982; Brun & Teigen, 1988; Budescu & Wallsten, 1985; Erev &

Cohen, 1990; Olson & Budescu, 1997; Wallsten, Budescu, Zwick, & Kemp, 1993), use many

different verbal labels (Budescu, Weinberg, & Wallsten, 1988; Karelitz & Budescu, 2004),

and find it about as easy to reason with verbal or numerical descriptions of probabilities (see

Budescu & Wallsten, 1995, for a review) we chose to analyze the frequency with which

verbal phrases occurred in natural language. As before, we assume that the availability of
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probabilities in memory reflects this real world distribution. 

Karelitz and Budescu (2004) asked 20 participants to generate phrases to "select

phrases that spanned the whole probability range and that they also used in their everyday

lives" (p. 29). We used the 71 different phrases that their participants generated in our

analysis. For each phrase, we attempted to determine two things: (a) the numerical

probability equivalent of the phrase, and (b) the frequency with the phrase is used to describe

probabilities in natural language.

There is already a literature that attempts to relate numerical probabilities and verbal

phrases (see Budescu & Wallsten, 1995, for a review). Here, we simply asked 40 participants

to imagine that a truthful person had used each phrase to describe the probability of winning

an urn draw by drawing a red ball from 100 balls in total. For each phrase, participants were

asked to say how many red balls (between 0 and 100 inclusive) the phrases suggested were in

the urn. For each participant, phrases were presented in a different random order. Table 2

shows the mean and standard deviation of the probability attached to each phrases. Out of a

total of 2,840 responses, 121 lay two interquartile ranges outside the upper and lower

quartiles and were deleted as outliers. Their deletion does not affect the qualitative pattern of

the results. Where our phrases overlap with those of other researchers (Beyth-Marom, 1982;

Budescu & Wallsten, 1985; Clarke, Ruffin, Hill, & Beaman, 1992; Regan, Mosteller, &

Youtz, 1989) there is reasonable agreement on the numerical equivalents. 

To estimate the frequency of the phrases in natural language, we searched the British

National Corpus (BNC) World Edition (http://www.natcorp.ox.ac.uk/index.html). There are

about 100 million words in the BNC, which was designed to be representative of spoken and

written English. The frequency with which each phrase occurred is listed in Table 2. Where

one phrases is a sub-phrase of another (e.g., 'certain' is a sub-phrase of 'fairly certain'), then

the frequency of the sub-phrase was counted ignoring occurrences of the subsuming phrase.

Because some of the phrases also occur in natural language outside the context of probability
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description, a random sample of twenty occurrences was analyzed for each phrase to estimate

the proportion of the time that the phrases was used to describe a probability. The product of

the frequency of occurrence and the proportion of times a phrase is used to describe a

probability was calculated to give the frequency with which each phrase was used to describe

a probability. (Omitting this weighting does not alter qualitative pattern described below.)

Figure 7 plots the relative rank of each phrase against the probability that best

represents it. Because very small (or zero) and very large (or certain) probabilities are more

frequent than for midrange probabilities, the function has an inverse S-shape. Because large

probabilities are more frequent than small probabilities the point at which probability

judgments would be accurately calibrated (i.e., at which the subjective probability function

crosses the line y = x) is less than p = .5. When the function w(p) = p
�
 / ((p
�
 +(1 - p)
�
)1 / 
�
) is

fitted to these data, the best estimate for 
�

 is .59 (r2 = .92). The range of 
�

 values for which

90% of the variance is captured is .46 to .67. This range coincides reasonably well with 
�

values found by Camerer and Ho (1994, 
�

 = .56), Tversky & Kahneman (1994, 
�

 = .61) and

Wu and Gonzalez (1996, 
�

 = .71). In other words, there is good agreement between the

function we have derived here using the distribution of probability phrases in natural

language and those that best describe choices between gambles.

Table 2 shows that the numerical values assigned to many probability phrases are

quite variable. This finding is well established in the literature (see Budescu &

Wallsten,1995). Thus, the positioning of each probability phrase on the abscissa of Figure 7

is subject to some noise. However, if one instead smears out the contribution to the increase

in relative rank due to each phrase over the full distribution of numerical probability

equivalents for each phrase, rather than just using the mean equivalent, a very similar inverse

S-shape function is found.

The Distribution of Probabilities in Experiments
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Brown and Qian (2004) examined the distribution of probabilities used in experiments

designed to elicit the form of the probability weighting function in decision making under

both risk and uncertainty. In a majority of studies, smaller and larger probabilities are over-

represented compared to mid-range probabilities. Figure 8A illustrates this with the

probabilities used by Gonzales and Wu (1999). Figure 8B shows the relative rank that would

be assigned to a target probability if the sample people compared it to comprised the

experimental probabilities for each experiment. Again, small probabilities are overestimated

and large probabilities are underestimated. 

Subjective Estimates of Probability Frequency 

Brown and Qian (2004) asked participants to estimate the relative frequencies with

which different probabilities occur in the environment, and found that (a) low and high

probabilities are rated as occurring most frequently, and (b) high probabilities are rated as

occurring more often than low probabilities. Assuming the veridicality of participants'

ratings, DbS can therefore explain both the S-shape of the probability weighting curve and

also its asymmetry.

Sampling of Events

From assuming that there are few frequent events and many rare events (Oaksford &

Chater, 1994) we argue that the distribution of probabilities experienced is such that there are

many small and large probabilities and relatively few moderate probabilities. Here we

illustrate this argument by considering a toy universe, where there are only 100 possible

events that can and will ever occur. We begin by assuming that the frequency of these events

follows Zipf's power law (see Figure 9A). Many real-world events, such as the frequency of

words in natural language, follow just such a distribution (see, e.g., Bak, 1997; Ijiri & Simon,

1977; Mandelbrot, 1982; Zipf, 1949). According to support theory (Tversky & Koehler,

1994), people judge the probability of an event by comparing it to possible alternative events.

Thus, here we do not assume that people have access to the raw frequencies of each event.
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Instead they judge how likely each event is compared to a subset of possible alternatives.

Continuing the word frequency example, the raw frequencies themselves are not of

communicative importance. Instead, what matters and what is experienced is co-occurrence

(indeed many computational models of the lexical semantics are constructed from just such

co-occurrence relations, e.g., the hyperspace analogue to language, Lund & Burgess, 1996,

and latent semantic analysis, Landauer and Dumais, 1997). That is, they experience the

relative frequencies of words in a particular context. For example, the raw frequencies of

"hedge" and "fence" are not experienced directly. Instead, we experience their relative

frequencies in contexts like "the horse jumped over the...".

Figure 9B shows the probability with which various relative probabilities are

experienced when pairs of events are drawn from the universe of events. Specifically,

consider sampling two events E1 and E2. Call the absolute probability of these events p1 and

p2. Thus, the probability of randomly sampling the pair from the universe is given by the pair

probability p1 p2. The relative probability of event E1 is p1 / (p1 + p2) and the relative

probability of event E2 is p2 / (p1 + p2). The probability with which each relative probability

can be experienced can be calculated by averaging over all possible event pairs, and it is this

distribution that is plotted in Figure 9B. We suggest that it is these relative probabilities that

people encode, and thus sample from memory. Figure 9C plots the mean relative rank of a

probability within a sample from all of the relative probabilities (effectively the cumulative

density function, exactly as for gains, losses, and delays). There are two important features of

this resulting function. First, there are more small and large relative probabilities than

intermediate values: The cumulative density function is steepest initially and finally. Second,

certain round fractions (e.g., 1/2, 1/3) occur frequently. Note that most of the density of the

fractal-like pattern is at the edges despite the central spikes.

The immediately preceding argument assumes people are sensitive to the relative

probability of one event compared to another p1 / (p1 + p2). An alternative assumption is that
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people are sensitive to the odds p1 / p2. Because odds are a simple monotonic transform of

relative probability - specifically odds = probability / (1 - probability) - the distribution and

cumulative distribution of odds can be derived directly from those for relative probability.

Crucially, for a given pair of events, the relative rank of the relative probability is the same as

the relative rank for the corresponding odds. Thus, according to DbS the relative rank of an

event will be the same whether people are sensitive to odds or relative probability (though

presenting the chances of an event happening as odds rather than probability might well

evoke a different sample of chances from long-term memory).

General Discussion

The shapes of the descriptive functions for the utility of gains and losses, temporal

discounting, and the subjective value of probabilities are well established in the literature.

Here, we have offered an account of why these functions might take the forms that they do.

DbS makes two key claims about the psychology of decision making. First, people can make

only binary, ordinal comparisons between attribute values. Second, attribute values are

compared with a decision sample comprising a sample of values from memory. The

distribution of values in memory is assumed to reflect the distribution of attribute values in

the world. Thus, according to DbS, these functions take the forms they do because of the real-

world distribution of gains, losses, delays, and probabilities. These assumptions are sufficient

to account for incremental wealth having diminishing incremental utility (i.e., risk aversion);

losses looming larger than gains; sub-hyperbolic temporal discounting, with a dependency of

magnitude and nature of the outcome; and overestimation of small probabilities and

underestimation of large probabilities. 

DbS and Economic Theory

The assumption that people do not directly utilize internal scales for value constitutes

a break from Bentham's (1789/1970) notion that utility is calibrated on an internal

psychological scale and thus a break from psychological theories derived from economics
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that make a similar assumption. Interestingly, mainstream economic theory has not assumed

the existence of such scales. Indeed the revealed preference interpretation (Samuelson, 1937),

which has become standard in economics, takes utility to be revealed by observable

preferences. For one item to have higher utility than another for a particular person is taken to

mean no more than the first item would be chosen over the second by that person. Savage

(1954) generalized this result to utilities and probabilities, showing that, given certain

normatively reasonable constituency conditions on people's preferences over gambles, these

preferences could be used to reveal utility and probability information simultaneously. From

the revealed preference perspective, the utility and probability scales are derived from

dispositions concerning preferences, rather than amounting to psychological claims. The

approach developed in this paper has intriguing similarities to and differences from this view.

The similarity is that, in our approach, people have access only to their binary preferences (or

more generally binary, ordinal comparison of perceptual magnitudes) and hence, to the extent

that people have a broader grasp of their own more global preferences, these must be

constructed from their own binary preferences (Kornienko, 2004), just as the economist

constructs probability and utility scales from a person's binary choices. This account also has

a striking dissimilarity from the economists' conception. This is because we assume that

sampling from memory is limited and stochastic. People's judgments of a particular attribute

will be strongly influenced by the particular comparison items that they happen to sample.

Hence, people's assessments of payoffs, probabilities, time intervals, and other attributes, will

be highly malleable, rather than conforming to a stable ordering as in standard economic

theory. 

Prospect Relativity

In this article we have focused upon the effect of the attribute values that people

sample from memory. However, as we suggested above, we also think that attribute values

from the immediate context in which a decision is made are also likely to be sampled and
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thus influence judgment and decision making. Two existing experiments have examined the

effect of the context in which a decision is made on judged certainty equivalents of risky

prospects (Birnbaum, 1992; Stewart, Chater, Stott, & Reimers, 2003) and in decision under

risk (Stewart et al., 2003; see Benartzi & Thaler, 2001, for a real-world example). In both of

these experiments the distribution of options (either values from which a participant had to

draw a certainty equivalent, or the range of prospects from which a participant could select

one to play) was manipulated. Birnbaum and Stewart et al. both found strong effects of these

manipulations which were consistent with attribute values being judged in comparison to

other attribute values in the immediate decision context.

DbS and the Time Course of Decision

Recently, psychologists have begun to consider the time course of decision making

(e.g., Roe, Busemeyer, & Townsend, 2001; Diederich, 2003). We can formulate DbS as a

sequential sampling model, where pairs of attribute values are subject to ordinal comparison,

and frequency counts of favorable comparisons are maintained. This formulation could

naturally be extended to model the time course of decision making. We envisage that this

accumulation will continue either until a response deadline or until some threshold or

difference is reached.

This account differs from that of Roe et al. (2001) and Diederich (2003). In their

account, dimensions, rather than attribute values, are sampled in an all or none process, with

stochastic switching between dimensions during the course of the decision process. At each

step, the valence of each alternative is derived by comparison with every other alternative in

the choice set. Valences are integrated over time to produce preferences, with the preferences

for each option competing via similarity weighted lateral inhibition. In DbS, valences would

simply be incremented by favorable ordinal, binary comparisons. Competition between

options in DbS would not come from lateral inhibition, but instead from the fact that

comparisons are binary. Because comparisons are assumed to be binary, introducing a new
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option that is similar to an existing option would cause the favorable comparisons to be

shared between them. 

Range-Frequency Theory

In Parducci's (1965, 1995) range-frequency theory, an attribute value is a weighted

sum of its ordinal rank within the immediate context and its interval scale position within the

range set by the immediate context. In DbS, only rank matters. However, in DbS, effects of

the absolute magnitude of an attribute value (i.e., range effects) can arise because items in the

decision sample includes not only items from the immediate context but also other values

from memory. If the distribution of extra-contextual attribute values is uniform, then the

subjective attribute value is that given by range-frequency theory. Thus, we suggest that

demonstrations of effects of the position within the range with rank held constant in fact

reflect the use of attribute values from outside the immediate context. To the extent that these

are fixed from one situation to the next, it will appear as if more than pair-wise ordinal

information is available when this is not necessarily the case. 

Consistent with this, applications of range-frequency theory to areas such as price

perception and wage satisfaction ratings have typically found that the rank/frequency

weighting is weighted more highly, and the range/end-point relative position less highly,

when the distribution of the decision sample is made salient (e.g., by simultaneous

presentation: Brown, Gardner, Owald, & Qian, 2004; Niedrich, Sharma, & Wedell, 2001; cf.

also Alba, Mela, Shimp, & Urbany, 1999). 

Decision by Similarity Sampling

It is unlikely that attribute values in the decision sample are sampled randomly from

memory. It seems likely that other factors such as similarity and recency must play a role.

Most models of memory retrieval assign a major role to recency as a factor determining

retrieval probability, and hence any complete account must assume that recent items are more

likely to be included in the decision sample. For example, Parducci (1996) argues that the



Decision by Sampling     24

context for evaluation includes both recent exemplars and also remembered extreme

exemplars (anchors). However similarity will also determine the probability of inclusion: for

example, the price of a car is likely to be judged with reference to a sample of similarly-

priced cars, and wage satisfaction is likely to be evaluated in terms of a sample of wages

earned by individuals in similar occupations and earning similar wages (e.g., Rablen, Brown,

& Oswald, 2004). 

In the discussion of how discount rate depends on the magnitude of the outcome, we

suggested that the long [shorter] delays experienced in the receipt of large [smaller] monetary

values would be sampled when considering the discounting of larger [smaller] values. This

suggestion is consistent with the idea that whole exemplars are sampled, rather than isolated

attribute values. Many exemplar models of memory offer the potential for independently-

motivated accounts of the retrieval processes that might underpin the formation of decision

samples. Indeed, some of these accounts have been applied to judgments of probability. In

Kahneman and Miller's (1986) norm theory, for example, a stimulus or event is judged and

interpreted in relation to an evoked contextual set of relevant stimuli or events that are

retrieved in response to the event to be judged. Such retrieval may be similarity-based.

Dougherty et al. (1999) develop a similarity-based model of memory, Hintzman's

MINERVA2 (Hintzman, 1984, 1988), and apply it to a wide range of likelihood judgment

phenomena. Thus, exemplar theories of memory can underpin models of availability, and

DbS can be interpreted as an account of processes operating subsequent to availability-stage

phenomena. More specifically, the availability heuristic suggests that event frequencies or

likelihoods are judged by the ease with which instances come to mind (Tversky &

Kahneman, 1973). As Schwarz and Vaughn (2002) note, fluency of recall and content of

recall may provide distinct sources of information. DbS, while focussing on content, is

distinctive in assuming that only relative magnitude judgments are available to provide the

basis for judgment, and that judgments are made purely on the basis of a tally of the number
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of retrieved exemplars above and below the target item on the dimension of interest. In some

cases (e.g., Brown et al., 2004) this simplistic sampling provides a better fit to the data than

when similarity (or dissimilarity) are taken into account.

Unifying Normative and Contextual Models of Decision Making

We see the DbS framework as an important step towards unifying traditional models

of decision making, where attribute values are derived from fixed psychoeconomic functions

of external values, and contextually driven models, such as range frequency theory and

multialternative decision field theory. We have offered an account where the frequently

observed psychoeconomic functions arise from the real-world decision making environment

which also incorporates an explanation of how variations in that context will influence

decisions. 
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Table 1

Best Fitting Powers for Power-Law Fits to the Distribution of Delays in Several Corpora

Source Range Best-Fitting Power

Telegraph 30 days -1.7

Google hits 1 year -1.5

Frankfurter Allgmeine Zeitung NRC/Handelsblad

International Herald Tribune (Pollmann & Baayen,

2001)

500 years -1.4
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Table 2

Judged Numerical Equivalents and BNC Frequencies of Probability Phrases.

Judged numerical equivalents BNC frequency

Phrase M SD Mdn IQR Raw
frequency

Proportion of
probability uses

Adjusted
frequency

impossible 0.00 0.00 0.0 0.0 6170 1.00 6170

not possible 0.00 0.00 0.0 0.0 1217 1.00 1217

no chance 0.00 0.00 0.0 0.0 534 .60 320

never 0.00 0.00 0.0 0.0 48217 .80 38574

extremely doubtful 3.76 2.81 3.0 3.0 20 .95 19

almost impossible 3.79 3.19 2.5 4.0 486 .90 437

pretty impossible 5.36 5.86 3.0 7.5 2 1.00 2

almost unfeasible 6.33 6.14 5.0 8.0 0 .00 0

highly unlikely 7.11 5.08 5.0 5.0 172 1.00 172

highly improbable 7.31 5.17 5.0 5.0 27 1.00 27

very doubtful 8.08 5.73 5.0 5.0 66 .95 63

very unlikely 8.25 4.58 9.5 5.0 157 1.00 157

little chance 11.75 7.38 10.0 10.0 273 .80 218

faint possibility 11.89 8.71 10.0 15.0 7 1.00 7

pretty doubtful 13.20 8.57 10.0 12.25 1 1.00 1

improbable 13.28 11.22 10.0 15.0 340 1.00 340

small chance 14.43 8.03 10.0 10.0 20 .95 19

not very feasible 14.51 9.63 10.0 12.5 0 .00 0

not likely 15.38 10.23 15.0 15.0 455 1.00 455

slight possibility 16.22 10.98 15.0 12.0 3 1.00 3

doubtful 16.75 10.72 15.0 15.0 1303 .25 326

quite doubtful 17.00 9.51 20.0 10.0 1 1.00 1

pretty unlikely 17.08 10.17 15.0 15.0 6 .83 5

unlikely 17.38 11.55 15.0 17.5 5099 1.00 5099

not very likely 17.72 11.71 15.0 15.0 18 1.00 18

rather unlikely 19.53 12.71 20.0 20.0 17 1.00 17

slight chance 20.93 17.01 15.0 21.3 5 1.00 5

slight probability 21.48 16.22 15.0 20.0 0 .00 0

against the odds 23.46 17.04 20.0 35.0 48 .20 10

a chance 28.49 17.97 25.0 29.0 3093 .22 680

little likely 29.58 18.07 25.0 21.3 2 1.00 2

a possibility 32.85 20.12 30.0 35.0 638 .70 447

uncertain 37.63 16.39 45.0 26.3 4608 .15 691

possible 42.69 16.24 50.0 20.0 31550 .20 6310

(table continues)
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Judged numerical equivalents BNC frequency

Phrase M SD Mdn IQR Raw
frequency

Proportion of
probability uses

Adjusted
frequency

little uncertain 42.87 23.72 40.0 30.0 16 .13 2

maybe 45.66 10.28 50.0 10.0 6064 .20 1213

even odds 50.00 0.00 50.0 0.0 4 .25 1

fifty-fifty chance 50.00 0.00 50.0 0.0 9 1.00 9

toss-up 50.00 0.00 50.0 0.0 13 0.46 6

medium likelihood 50.00 0.00 50.0 0.0 0 .00 0

fair chance 53.22 11.77 50.0 10.0 57 .35 20

fair possibility 53.86 10.17 50.0 10.0 0 .00 0

fair probability 58.98 13.85 50.5 20.0 0 .00 0

quite possible 59.93 16.39 60.0 20.0 234 .60 140

more likely 63.90 9.36 60.0 10.0 3556 .00 0

probable 64.26 9.88 65.0 10.0 1177 .90 1059

good possibility 66.31 14.14 65.0 15.0 2 1.00 2

good chance 69.08 9.07 70.0 10.0 366 .75 275

likely 69.70 13.20 70.0 20.0 16733 .85 14223

good probability 71.90 10.14 70.0 20.0 1 1.00 1

usually 74.15 10.96 75.0 15.0 18619 .85 15826

rather likely 74.25 9.88 75.0 11.3 1 1.00 1

very feasible 74.26 10.15 75.0 10.0 3 .00 0

most of the time 78.74 10.78 80.0 15.0 580 .95 551

high likelihood 79.73 8.50 80.0 16.3 5 1.00 5

fairly certain 79.83 12.16 85.0 20.0 56 1.00 56

great likelihood 80.82 9.64 80.0 12.5 1 1.00 1

high possibility 80.93 7.30 80.0 11.0 1 1.00 1

most likely 81.05 11.86 80.0 15.0 1341 .00 0

very likely 81.53 8.05 80.0 13.5 296 .85 252

great possibility 82.49 8.04 80.0 10.0 1 1.00 1

quite certain 82.85 10.27 85.0 15.0 97 .90 87

pretty certain 85.30 9.19 89.5 10.0 45 1.00 45

very certain 89.78 7.35 90.0 11.3 15 .87 13

almost certain 92.32 5.76 95.0 5.0 1694 1.00 1694

most definitely 95.13 5.32 95.0 7.8 109 .20 22

sure thing 97.53 4.34 100.0 5.0 27 .35 9

always 100.00 0.00 100.0 0.0 41869 .90 37682

absolute certainty 100.00 0.00 100.0 0.0 37 .40 15

certain 100.00 0.00 100.0 0.0 36121 .25 9030

definitely 100.00 0.00 100.0 0.0 3233 .80 2586
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Figure Captions

Figure 1. A: The distribution of credits to people's current bank accounts. B: The distribution

of debits from people's current bank accounts.

Figure 2. A: The relative rank of credits within the entire population of credits. B: The

relative rank of debits within the entire population of debits.

Figure 3. A: The distribution of relative ranks for a target credit of £250. B: The distribution

of relative ranks as a function of the target credit. Sample size = 5.

Figure 4. A: The relative ranks of 9756 prices from a UK supermarket. B: The relative ranks

of the prices of bread. C: The relative ranks of the prices of chocolate.

Figure 5. The distribution of time delays on the internet.

Figure 6. The distribution of relative ranks of delays within the entire population of delays.

Figure 7. The relative rank of probability phrases.

Figure 8. A: The probabilities used in Gonzalez and Wu's (1999) experiment. B: The relative

ranks for probabilities in this experiment.

Figure 9. A: The probability of events in a universe of 100 possible events. B: The

probability of the relative probabilities of events in randomly selected pairs of events. C: The

cumulative probability of the relative probabilities. See text for details.
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Figure 1
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Figure 2
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Figure 3
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Figure 4

A

.0

.2

.4

.6

.8

1.0

0 10 20 30 40 50

R
el

at
iv

e 
R

an
k

Price/£

B C

.0

.2

.4

.6

.8

1.0

0 1 2 3 4 5

R
el

at
iv

e 
R

an
k

Price/£

.0

.2

.4

.6

.8

1.0

0 1 2 3 4 5

R
el

at
iv

e 
R

an
k

Price/£



Decision by Sampling     44

Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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