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Abstract
We present a theory of decision by sampling (DbS) in which, in comtithstraditional
models, there are no underlying psychoeconomic scales. Instead, we #ssuam
attribute's subjective value is constructed from a series of bioi@ipal comparisons to a
sample of attribute values drawn from memory and is its rank wvitieisample. We assume
that the sample reflects both the immediate distribution obat&rivalues from the current
decision's context and also the background, real-world distribution of atkiflutes. DbS
accounts for concave utility functions; losses looming larger than daipsrbolic temporal
discounting; and the overestimation of small probabilities and the unidetsh of large

probabilities.

Keywords: judgment; decision making; sampling; memory; utility; gains @sses; temporal

discounting; subjective probability.
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Decision by Sampling

Here we offer an account of why the descriptive psychoeconomic functtonsave
utility functions for money, hyperbolic temporal discounting functions, and iex@+shaped
subjective probability functions - take the forms that they do. Theessd# our decision by
sampling (DbS) account is that attribute values (e.g., monetary anpuotbabilities, delays)
are evaluated against a sample of other attribute values using siogplitive tools. The
decision samples assumed to comprise both attribute values from both the immediate
context in which a decision is made (e.g., the attribute values@f options on offer) and
values from memories of previously encountered attribute valuestf®@sg, values
encountered in previous decisions). In this article, we focus uponféee @f previously
encountered attribute values.

Theories of decision making often take economic theory as a startinggqetted
utility theory for decision under risk; exponential discounting for decisiotisdelayed
outcomes. The next step is to assess the degree to which peopldetialans as they
should (e.g., Allais, 1953; Kahneman & Tversky, 1979, 2000). The normative tkeben
modified to create a descriptive theory of observed behavior by includingoaddit
psychological insight (e.g., prospect theory, Kahneman & Tversky, 1979, T\&rsky
Kahneman, 1992, regret theory, Loomes & Sugden, 1982, and rank dependent wiijty the
Quiggin, 1983, 1992, in decision under risk; hyperbolic discounting, Rachlin, 1989, for
intertemporal choice; support theory, Tversky & Koehler, 1994, for probajtigment). In
beginning with a limited set of simple cognitive tools we are takigghedogy as a starting
point. We then consider how economic decisions might be made using thptetsols.

A key difference between the approach we develop here and those demaed fr
normative economic accounts is that we do not assume that peopledideelshg-term
internal scales along which they represent value, probability, tenthaation, or any other

magnitudes. Instead, we assume that people can only sample gemmadmory and then
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judge whether a target value is larger or smaller than thess. iéhis approach is inspired
by and builds on a series of successful accounts of key aspects of judghelecision
making based on psychological assumptions concerning sampling from, and comparison
with, items from memory. In norm theory (Kahneman & Miller, 1986)rtbemality of a
stimulus is derived by comparing it to the norm (counterfactual exaraptka set of
exemplars retrieved from memory) that it evokes. In decisionthelory (Busemeyer &
Townsend, 1993), and its multialternative generalization (Roe, Busgndeyewnsend,
2001), the time course of decision making is accounted for by the seqaantjaing of
information from the decision context, with outcome valances constrigttgive to one
another. In support theory (Tversky & Koehler, 1994), the subjective propaifibt focal
hypothesis depends on the sample of alternative hypotheses considered b\ettieasubjs
given by the ratio of the support for the focal hypothesis and the sumsafgpert for all
hypotheses under consideration (see Windschitl & Well's, 1998, comparisastibéor a
similar mechanism). Dougherty, Gettys, and Oden's (1999) decision masdej m
MINERVA-DM (based on Hintzman's, 1984, 1988 memory model) gives a menhhgis
which the support for hypotheses depends on the similarity to traces istonemory,
providing an account of many heuristics and biases (see also Juslms&?2002). In the
stochastic difference model (Gonzalez-Vallejo, 2002), the diffesehetween the target
attribute value and other attribute values in the sample of itethg idecision context
determines the preference for one prospect over another. In sunmehgfithese models,
judgments and decisions result from comparison of an attribute's valisatople of other
values, either from the decision context or from memory. For awefienemory processes
in judgment and decision making see Weber, Goldstein, and Barlas, (b898)eber &
Johnson (in press).

In DbS, we assume that only the most simple cognitive processdiaalor

comparison and frequency accumulation - are involved in evaluating adtrdeite against
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a decision sample. Our assumption that, to a first approximatiopac@ons are only
ordinal (i.e., only "greater than", "equal to", or "less thantdgivated by evidence from
psychophysics which suggests that people are rather good at discrimitiatiigfsom one
another, but rather bad at identifying or estimating the magnitude sthe stimuli (see
Garner, 1962; Miller, 1956; Laming, 1984, 1997; Shiffrin & Nosofsky, 1994; Stewa
Brown, & Chater, in press). Our assumption that people are goodpadseeack of and
manipulating frequencies is well established (e.g., Gigerenttwf&age, 1995; see
Sedimeier & Betsch, 2002, for a recent review). By keeping a fnegumunt of the number
of comparison outcomes that favor the target, one can derive the rttuektafget attribute
value within the decision sample (see, e.g., Kornienko, 2004, for a deatmmsthat a
cardinal utility function may be derived by keeping a frequency count of bioypnal
comparisons.) It is this rank that we assume is the subjeclive @gan attribute. When
normalized to lie between O (the worst attribute value) and 1 (8tatigbute value), the
subjective value arelative rankof an attribute value is given by= (R- 1) / (N - 1) whereR
is the rank within the sample bfitems. The relative rank is effectively the proportion of
attribute values in the sample that are less than the tangettat value or, equivalently, the
probability that a randomly selected attribute value will be lems the target attribute value.

In assuming that the subjective value of an item is its rank watsample, DbS
embodies the frequency principle of range-frequency theory (Parducci, 1965, 1h985ye-
frequency theory, the subjective value of an item is a weighted sitsrahk within the
immediate context and its position within the range set by the imteextiatext. We
consider the range principle further in the General Discussion.

So far we have said little about the sample of attribute vajsest which an item is
compared. The basic idea is that, when considering a target atvddue, there will
typically already be some other attribute values from the contelxé afdcision in the

sample. The target attribute value will also evoke other valoaslng-term memory, and it
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is the effect of these attributes that we focus upon in thde(tf., Kahneman and Miller,
1986). Thus, the subjective value of an option is constructed online whetnievesrisidered
(cf., Bettman, M. F. Luce, & Payne, 1998; Payne, Bettman, & #ohi®992; Slovic, 1995)
and will vary from occasion to occasion with (a) the distribution tobate values from the
immediate decision context, (b) the distribution of attribute valuesemory, and (c)
stochasticity in the sample of attribute values from both the inmateedecision context and
also from memory.

As a starting point, we assume that the contents of memorytsethecstructure of
the world, and represents a subset of the attribute values that fygiqddly encounter.
There is good evidence that memory is adaptively reflects thewstwaftthe environment
(e.g., Anderson, 1990; Anderson & Milson, 1989; Anderson & Schooler, 1991; @hater
Brown, 1999; Oaksford & Chater, 1998; Shepard 1987). In the following sectensliw
examine the distributions of gains, losses, time delays, and prakalitiat people
encounter. We focus on these attributes because they are the psychptogitiaes of
economic decisions: Many decisions involve evaluating the value of sdimeungertain, or
delayed gain or loss. We will use these distributions to make poedi@bout the subjective
value functions that will be revealed when people make decisions ¢ortkext of these real-
world distributions.

Gains

First we consider gains. Following Kahneman and Tversky (1979) we cogaidsr
and losses separately. Key questions are: (a) What is théutisini of gains in people's
memories? (b) What effect will this distribution have on the stibggaluation of gains?

We assume that the decision sample, to which a target gain jp@zuhnis a small,
random sample of gains from memory. Of course this random samplungsm is likely
to be incorrect: other factors, such as recency, similaritybackiground knowledge will

surely play a role. However, in what follows we pursue this randomplgsay hypothesis as a
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first approximation.

An approximation to the distribution of gains that people encounter can ladecve
by examining credits to people's current (in the UK; checking in théobk8) accounts.
Figure 1A shows the frequency with which credits of different amouatsade. These data
are a random sample of one year of credits to current accounts telddming UK bank.
Automatic credits were omitted, but all manual payments includirgtdilebits, standing
orders, and salary payments were included. The distribution of caggitsximately follows
a power law, with many small gains and relatively fewer laggérs (the data roughly follow
a straight line on the plot of log frequency against log credit). Thea@ismn of this power-
law relation between event magnitude and event probability is unsurpasiigs seen in
many aspects of the world (see Bak, 1997, for a review). For examapleal phenomena
such as earthquake energies follow this pattern (Gutenberg & Rit&4&; Johnstone &
Nava, 1985), as do social phenomena like the size of corporation& @imon, 1977), city
sizes, and the frequencies of words within natural language (Zipf, 1949).

Supposing that the decision sample can contain an unlimited number of essempla
the subjective value of a target credit within our larger sampteedlits is given by its
relative rank within this large sample. Figure 2A plots theiveaank of each credit.
Because of the equivalence between the relative rank of a ttrdetta value and the
proportion of attribute values that are smaller than the targpird=PA can also be described
as a plot of the cumulative probability of obtaining a gain at ledsigass that on the
abscissa.

As a direct consequence of the distribution of credits, relatnleisaan increasing
but negatively accelerating function of the size of the credit. Huditional incremental
wealth has a diminishing impact on the relative rank of the créaitsexample, a credit of
£1000 has less than twice the psychological value of a credit of £5Q0ninagy, from only

the assumption that people make ordinal comparisons with a samplees veflecting the
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positively-skewed real-world distribution, DbS predicts that the malgubjective value of
an extra unit of wealth diminishes as wealth increasesdaecave utility functions for
gains).

If the distribution fg) of gainsg in the world follows a power-law distribution with
powery (i.e., flg) = ¢ @’ wherec is a normalizing constantf)en DbS predicts a power-law
revealed utility function, as the relative rankgaé given by the cumulative distribution
functionr(g)=c/ (1 +y) g™

The assumption that gains are fully sampled is unlikely to be true tigemell-
established finding of a severely limited capacity of short-termang (Miller, 1956).
However, if a small, randomly drawn sample of gains is considdrex similar predictions
follow. The relative rank of an attribute value is determined bytbkability that a
randomly sampled credit will be less than or equal to that value, Teudistribution of
relative ranks for a given target and given sample size will be lmhdfmgure 3A illustrates
the binomial distribution of relative ranks obtained for a target \@l#250 if 5 items are
sampled randomly from the distribution of credits. Figure 3B illussrabw this binomial
distribution will change as a function of the target credit. (Eveagpgperpendicular to the
attribute value axis is a binomial distribution.) As the meankof@amial distribution is its
probability parameter, then Figure 2A represents the mean refatikdor a target credit,
independent of sample size.

Bordley and LiCalzi (2000) present an argument that is similar tDliseaccount
above. In their account, the value of a gain is the probability thélt meet an uncertain
target. Thus, the value of the gain depends on its location within thewlisn of target
values. Bordley and LiCalzi do not give a detailed psychological accothr ofigin of the
distribution of the target values, but do suggest that they result froentaimty over which
targets are necessary to achieve higher superordinate goals. Turag #sst people select an

outcome to maximize the probability of meeting this target and showhibatpproach
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makes the same predictions as expected utility. This approadhiler $0 DbS in that the
subjective value of a target attribute depends upon its ordinal posisomia reference
distribution, but differs from DbS in assuming that the referend¢ghdiion reflects an
uncertain aspiration level rather than the real-world distributigaiofs.

In summary, DbS predicts a power-law utility function modulated by birltymia
distributed noise. The power-law function is a result of memorgatfig the scale-free
distribution of credits observed in the environment, and the binomial isdise result of a
sampling process. This motivation of this prediction stands in cottrdsscriptive models,
which simply assume a curvature of the utility function, rather tkplaming it. For
example, in prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman,th892)
curvature of the utility function describes risk aversion. Here we hmalependently
motivated the curvature, and risk aversion will follow as a consequéiicis curvature.

Losses

We carried out a parallel analysis for losses. Figure 1B showshsofrequency with
which debits are made from current bank accounts depends on the magnihedeatit.

Like gains, the distribution of losses also follows a power lath many small losses and
relatively few large losses. The mean relative rank of Id$seany sample size) can be
derived as for gains, and is illustrated in Figure 2B. As befocegmental loss produces a
diminishing rise in relative rank. A comparison with gains revealst@resting prediction.
There are relatively more small losses compared to small @amsflected in the differing
best fitting powers of -0.93 for gains and -0.96 for losses). This niatketsve sense: One is
paid in a lump sum (e.g., a monthly salary) which one spends on many thogsnortgage,
grocery bills, etc.). Because of this asymmetry, a loss aofemgnagnitude will have a higher
relative rank than that of a gain of the same monetary amount. Gectlhis conclusion, that
losses loom larger than gains, is exactly that embodied in Kahnemanensily's (1979)

prospect theory. DbS predicts this asymmetry in behavior becauséstharasymmetry in
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the natural real-world distribution of gains and losses.

Friedman (1989) gives an argument related to DbS. Friedman assutrtbsrthare
more small gains and losses than large gains and losses, congitt@otr data on credits
and debits. He further assumes that we have a limited caparc#grisitivity to these gains
and losses (because of time, memory, and other cognitive constnirdis)we distribute
over the most likely outcomes: We are assumed to be more setsgivall gains and losses
because there are more of them. This is consistent with ourd2b8rd according to which
people are sensitive to small gains and losses because they amumerous and hence
more frequently sampled. Friedman proves that these two assumpédfenient to
produce an S-shaped approximation to the true, conventional, concave utilitgrfumith
the point of inflection at current wealth.

One might wonder whether the positively skewed distributions of gains et los
will be found else where or whether they are specific to bank accaumesreason to expect
that these positively skewed distributions will occur in many contsxttgeiubiquity of
power law distributions. Another is that we found positively skewedllisions in other
domains. For example, we have also examined the distribution of pridé&ssupermarkets.
Figure 4A shows the relative ranks for a large number of pricée isupermarket. Figures
4B and C show two examples of the relative ranks calculated fat Brebchocolate
products. In almost all of the cases we have examined, we have foutncefyoskewed
distribution of prices, which leads to a concave function for relasinks.

Time

We seek a uniform account of behavior across a wide variety of dombhare is
evidence that the processing of number and time may rely upon a commoal cesiburce
(Walsh, 2003). Thus, the treatment of temporal delays that wehafferis the same as that
outlined above for gains and losses. More specifically, the subjeeiive of a target

temporal delay will be determined in the context of a decision sawhpkber temporal
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delays.

We argue that DbS explains of some of the key temporal anomalies/eegvby
Loewenstein and Thaler (1989). As before, we assume that theuwdistniof delays in
memory reflects the distribution in the real world. To obtain a capgeoximation, our
colleague, Stian Reimers, collected the number of hits produced bteamet search engine
(http://www.google.com) when prompted with various temporal delays.dé(evaulated hits
over different search strings representing the same period éeday™, "one day", "1 day",
"24 hours") for intervals between 1 day and 1 year. Figure 5 plots theefrey of different
temporal intervals as a function of their magnitude. As for gaingoasds, the distribution
approximately follows a power law (replicating the findings of Pollmas88; and
Pollmann & Baayen, 2001, who used different sources of data and tiradg)eflihe best
fitting slope for this distribution, and those obtained by Polimann from otvpora with
other ranges, are listed in Table 1. (Power laws also deskaliine intervals between
repetitions of words in New York Times headlines, words in paretteiances to children,
and e-mails from particular correspondents in Anderson's mail box, Amd&rSchooler,
1991).

Hyperbolic Temporal Discounting

Figure 6 shows the mean relative rank assigned to each delay asanfahdelay
magnitude assuming random sampling from the distribution in Figure 5. lectaindelay
has a diminishing effect, just as for gains and losses. DbS pradigiecific form for the
mean relative rank of a delay as a function of its magnitude afgtrline provides a better
fit to a log-log plot of the distribution of temporal intervals (Fighyehan it does to a linear-
log plot, indicating that a power law function describes the distribofiamervals better
than an exponential function. Approximating the distribution of tinveish a power law fi)

= c t” gives the cumulative distribution function, which is the mean relatinke function, of

r(ty =ct™/ (1 -7). Thus DbS predicts power-law temporal discounting, in which the
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discount rate decreases over time, rather than the normative expbdisetunting, where
the discount rate is constant. It is experimentally well estadydi that people's discount rate
does indeed decrease over time (Kirby, 1997; Benzion, Rapoport, & Ya8%; Thaler,
1981).

As estimates of range from -1.7 to -1.4 (see Table 1), estimates of the powiee of
discounting function will range from -0.7 to -0.4. A power of -1.0 gives hypierbol
discounting and therefore DbS predicts sub-hyperbolic discounting. This differs
hyperbolic discounting in that it predicts that people will not discount lolayslas much as
is predicted either by hyperbolic or exponential discounting. Just such rgfisdieported by
Myerson and Green (1995) and Simpson and Vuchinich (2000).

Discount Rate Depends on the Magnitude of the Gain

Discount rate decreases with the magnitude of the gain on offerBenzion, et al.,
1989; Green, Myerson, & McFadden, 1997; Holcomb & Nelson, 1989, as cited in
Loewenstein & Thaler, 1989; Thaler, 1981). If magnitudes are sampladdom from
memory then DbS does not account for this phenomenon. If it is assumeninifeity
plays a role in the sampling process, DbS can offer an account.mbstée a positive
correlation between the delay until a gain and the size of the gdue world: As large gains
are less frequent than small gains, the average delay betwgegdans must be larger than
the delay between small gains. Assume that people sample laage délen considering
large gains, because large gains and large delays were assiociagepast. In this context of
large delays, the target delay will receive a low relatim& mpared to the case when the
sample comprises small delays. In other words, in the contextayfsdevoked by the large
gain, the given target delay will seem less bad, and thus be disctagsed/e return to the
issue of similarity sampling in the General Discussion.
Discount Rate is Greater for Gains than Losses

Thaler (1981) found that discount rates were higher for gains than fes loks
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equivalent magnitude. In any account where losses loom larger thanigaunding DbS, the
discount rate for gains will appear higher. This is because theudisate depends not only
on the discounting function but also upon the curvature of the utility functionideorise
discount rate implied by an indifference betwegm&w and the larger amouny flelayed by
time t. With a power law utility function u§ = ¥” and any discount functiont}(

x'=y"f(t)

gives a discount rate of

The discount rate incorporates the curvature of the utility functign &enzion et al. 1989;
Mazur, 1987; Thaler, 1981, but see Chapman, 1996, for a separation, akulais
Santiesteban, 2003, though this example does not involve gains and losses) tfidus,
curvaturey is larger for losses, the discount rate will be smallere Nlwit, even if the free
parameter(s) of a utility function are fitted at the same @sithe free parameter(s) of the
discounting function and differences in the discounting parameters are émencinnot be
sure that the difference in discounting parameters reflectseattfdiscounting of gains and
losses. Johnson and Bickel (2005) found that, when fitting a hyperbolic-ld@udisng
function of the fornx/y =1/ (1 +kt)°, thek ands free parameters were correlated. The
equivalence o$ in this form withy in the above form means thayifis different for gains
and lossesk will also differ for gains and losses even if gains and losgediscounted in
exactly the same way.
DbS and Working Memory Load

The DbS explanation of the shape of the temporal discounting function teehat
subjective value of a target delay is derived from comparisons wdinale of delays from
memory. In support of this, a working-memory load has been found to &ffegotal

discounting. With a larger working-memory load, discounting of delayed gagneater
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(Hinson, Jameson, & Whitney, 2003). According to DbS, a larger workingonydoad
should reduce the number of items in the decision sample. In turmehiss that, in the
absence of other larger delays from memory, the delay associ#tea aalayed outcome
will seem particularly bad in comparison to only the zero delay aharediate outcome.
Thus, DbS correctly predicts the finding of greater discounting when wark@mgory is
loaded.
Summary

We do not suggest that DbS can offer an account of all of the inf@tahthoice
phenomena reported in the literature. There are surely other impusteiological factors
at play, such as savoring and dread (e.g., Loewenstein, 1987) and roenwaltiag (e.g.,
Shefrin & Thaler, 1988; Prelec & Loewenstein, 1998). However, Dh&xpglain why
discounting is (sub)hyperbolic and, with a plausible modification (assumagimilarity
sampling rather than random sampling), can explain why the discourd ratkiced for
larger amounts of money. Finally, because the curvature of the futilityion is often
combined within the measure of discount rate, DbS (and presumably atielsincan
explain why gains are discounted more heavily than losses.

Risk

We treat probability in the same way as we have treated gasses| and delays. We
will argue that the distribution of probabilities that people experiensech that small
probabilities will be over weighted and large probabilities will be umageghted. In other
words, subjective probability is an inverse S-shaped function of actlalmlty (e.g.,
Abdellaoui, 2000; Bleichrodt & Pinto, 2000; Gonzalez & Wu, 1999; Kahneman &HKyge
1979; Prelec, 1998; Tversky & Kahneman, 1992; Wu & Gonzalez, 1996, 1999; but see
Hertwig, Barron, Weber, & Erev, 2004, for the opposite pattern fatlgrobabilities when
probabilities are experienced as the number of successful outcomessavess of trials).

There is some evidence that probabilities (or frequencies) angacedwith attribute
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values retrieved from memory. Dougherty and Hunter (2003a, b) found comdiatween
working memory span and probability judgments. Larger working memory spansieainci
with less subadditivity. (Subadditivity is the extent to which the judgelailities of a set
of mutually exclusive, exhaustive events sum to greater than 1.) Fuitieiconstraints
increased subadditivity. They argued that these data are consisteatmodel where larger
working memory and longer time allows target probabilities to be comhpare larger pool
of sampled probabilities. Together with the finding that the partiérdguencies with which
the items were experienced affected the probability judgmentss 8trong evidence that
probabilities are judged in comparison to a decision sample.

There is one striking difference between the distributions of gaisses and delays,
and the distribution of probabilities: Probabilities are bounded to be &etivand 1, and
thus cannot follow a power-law distribution. Here we shall argudlibat are more
cognitively relevant events with small and large probabilities thémmid-range
probabilities. Specifically, we shall present four argumentsh kesaxls to the same
conclusion: that small probabilities will be overestimated and largigabilities
underestimated in a DbS framework.

The Distribution of Probability Phrases

As with time and money, here we attempt to find a proxy for thalison of
probabilities in long-term memory from which people sample when theyateah target
probability. Because people prefer to give verbal rather than numeesaiiptions of
probabilities (Beyth-Marom, 1982; Brun & Teigen, 1988; Budescu & Walldi@85; Erev &
Cohen, 1990; Olson & Budescu, 1997; Wallsten, Budescu, Zwick, & Kemp, 18@3nany
different verbal labels (Budescu, Weinberg, & Wallsten, 1988; Ka&IBudescu, 2004),
and find it about as easy to reason with verbal or numerical desosmtf probabilities (see
Budescu & Wallsten, 1995, for a review) we chose to analyze tipeginey with which

verbal phrases occurred in natural language. As before, we asstuithe tnaailability of
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probabilities in memory reflects this real world distribution.

Karelitz and Budescu (2004) asked 20 participants to generate phrésgsdo
phrases that spanned the whole probability range and that they also iedandryday
lives" (p. 29). We used the 71 different phrases that their geatits generated in our
analysis. For each phrase, we attempted to determine two trahg¢fse umerical
probability equivalent of the phrase, and (b) the frequency with the phnased to describe
probabilities in natural language.

There is already a literature that attempts to relate naatgniobabilities and verbal
phrases (see Budescu & Wallsten, 1995, for a review). Herginwpdy asked 40 participants
to imagine that a truthful person had used each phrase to describelthkeilgy of winning
an urn draw by drawing a red ball from 100 balls in total. For eacheglpasicipants were
asked to say how many red balls (between 0 and 100 inclusive) the pliggestad were in
the urn. For each participant, phrases were presented in ardifi@nedom order. Table 2
shows the mean and standard deviation of the probability attached to easdsplut of a
total of 2,840 responses, 121 lay two interquartile ranges outside theanpldewer
quartiles and were deleted as outliers. Their deletion does aot tfé qualitative pattern of
the results. Where our phrases overlap with those of other regsgi@agth-Marom, 1982;
Budescu & Wallsten, 1985; Clarke, Ruffin, Hill, & Beaman, 1992; Relytosteller, &
Youtz, 1989) there is reasonable agreement on the numerical equivalents.

To estimate the frequency of the phrases in natural language, nwleskthe British
National Corpus (BNC) World Edition (http://www.natcorp.ox.ac.uk/indexhtihere are
about 100 million words in the BNC, which was designed to be represertéspoken and
written English. The frequency with which each phrase occurreded lis Table 2. Where
one phrases is a sub-phrase of another (e.g., 'certain’ is a subgbtiadyg certain’), then
the frequency of the sub-phrase was counted ignoring occurrences of the aghsuase.

Because some of the phrases also occur in natural language outsioletéixé of probability
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description, a random sample of twenty occurrences was analyzexdfoplerase to estimate
the proportion of the time that the phrases was used to describe biliyodde product of
the frequency of occurrence and the proportion of times a phrase i ukssttibe a
probability was calculated to give the frequency with which each ptwvase@sed to describe
a probability. (Omitting this weighting does not alter qualitativegpattlescribed below.)
Figure 7 plots the relative rank of each phrase against the prob#ialityest
represents it. Because very small (or zero) and very largertairg probabilities are more
frequent than for midrange probabilities, the function has an inversefg-sBecause large
probabilities are more frequent than small probabilities the powliat probability

judgments would be accurately calibrated (i.e., at which the sivi@gbbability function
crosses the line y = x) is less than p = .5. When the funsfiore= p? / ((p? +(1 -p)9)*'4) is
fitted to these data, the best estimateds .59 (2 = .92). The range ¢f values for which
90% of the variance is captured is .46 to .67. This range coincicesaddy well withg
values found by Camerer and Ho (1984; .56), Tversky & Kahneman (1994= .61) and

Wu and Gonzalez (199%,= .71). In other words, there is good agreement between the
function we have derived here using the distribution of probability phrasesural
language and those that best describe choices between gambles.

Table 2 shows that the numerical values assigned to many probabilitggphras
quite variable. This finding is well established in the literafee® Budescu &
Wallsten,1995). Thus, the positioning of each probability phrase on thesabstisigure 7
is subject to some noise. However, if one instead smears owrttréoation to the increase
in relative rank due to each phrase over the full distribution of nuahgncbability
equivalents for each phrase, rather than just using the mean equiaalent,similar inverse
S-shape function is found.

The Distribution of Probabilities in Experiments



Decision by Sampling 18

Brown and Qian (2004) examined the distribution of probabilities used in s
designed to elicit the form of the probability weighting function in dexisnaking under
both risk and uncertainty. In a majority of studies, smaller andrlargbabilities are over-
represented compared to mid-range probabilities. Figure 8A illustiatewith the
probabilities used by Gonzales and Wu (1999). Figure 8B shows the redatikvenat would
be assigned to a target probability if the sample people compaperbinprised the
experimental probabilities for each experiment. Again, small probebiare overestimated
and large probabilities are underestimated.

Subjective Estimates of Probability Frequency

Brown and Qian (2004) asked participants to estimate the reladiyeeincies with
which different probabilities occur in the environment, and found th&d\aand high
probabilities are rated as occurring most frequently, and (b) high pridiealare rated as
occurring more often than low probabilities. Assuming the veridicalipyagticipants'
ratings, DbS can therefore explain both the S-shape of the probabilifytivg curve and
also its asymmetry.

Sampling of Events

From assuming that there are few frequent events and many rare @akdsford &
Chater, 1994) we argue that the distribution of probabilities experiensedh that there are
many small and large probabilities and relatively few moderate piitesbiHere we
illustrate this argument by considering a toy universe, where their 100 possible
events that can and will ever occur. We begin by assuming that guefey of these events
follows Zipf's power law (see Figure 9A). Many real-world evesush as the frequency of
words in natural language, follow just such a distribution (see Bag,,1997; ljiri & Simon,
1977; Mandelbrot, 1982; Zipf, 1949). According to support theory (Tversky & Koehler,
1994), people judge the probability of an event by comparing it to possibleatiterevents.

Thus, here we do not assume that people have access to the rawdiesgakeach event.
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Instead they judge how likely each event is compared to a subset of padiwbiatives.
Continuing the word frequency example, the raw frequencies themsedvest af
communicative importance. Instead, what matters and what is expedi is co-occurrence
(indeed many computational models of the lexical semantics arewsadtfrom just such
co-occurrence relations, e.g., the hyperspace analogue to language, Bungke&s, 1996,
and latent semantic analysis, Landauer and Dumais, 1997). Tiatyigxperience the
relative frequencies of words in a particular context. For exanty@eaw frequencies of
"hedge" and "fence" are not experienced directly. Instead, we expetigeir relative
frequencies in contexts like "the horse jumped over the...".

Figure 9B shows the probability with which various relative probabilétres
experienced when pairs of events are drawn from the universe of eypaddically,
consider sampling two evertts andE,. Call the absolute probability of these evemtand
p.. Thus, the probability of randomly sampling the pair from the univergees by the pair
probability p, p.. The relative probability of evel; isp: / (p. + p2) and the relative
probability of evenk; isp./ (p1 + p2). The probability with which each relative probability
can be experienced can be calculated by averaging over all possiblpaksgrdand it is this
distribution that is plotted in Figure 9B. We suggest that it isethelative probabilities that
people encode, and thus sample from memory. Figure 9C plots the natiane rahk of a
probability within a sample from all of the relative probabilifieBectively the cumulative
density function, exactly as for gains, losses, and delays). Tlete@mportant features of
this resulting function. First, there are more small and lagig¢ive probabilities than
intermediate values: The cumulative density function is steepgatlynand finally. Second,
certain round fractions (e.g., 1/2, 1/3) occur frequently. Note thatohtise density of the
fractal-like pattern is at the edges despite the central spikes

The immediately preceding argument assumes people are sensitiggeative

probability of one event compared to anotbefr (p: + p2). An alternative assumption is that
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people are sensitive to the oqug p.. Because odds are a simple monotonic transform of
relative probability - specificallpdds= probability/ (1 - probability) - the distribution and
cumulative distribution of odds can be derived directly from those fativelprobability.
Crucially, for a given pair of events, the relative rank of thatired probability is the same as
the relative rank for the corresponding odds. Thus, according to DbSateerehnk of an
event will be the same whether people are sensitive to odds torag@eobability (though
presenting the chances of an event happening as odds rather than probajttityetii
evoke a different sample of chances from long-term memory).
General Discussion

The shapes of the descriptive functions for the utility of gains anedptssmporal
discounting, and the subjective value of probabilities are well estialdliin the literature.
Here, we have offered an account of why these functions might tat@nethat they do.
DbS makes two key claims about the psychology of decision making. Fopteman make
only binary, ordinal comparisons between attribute values. Second, atrdues are
compared with a decision sample comprising a sample of values feomomy. The
distribution of values in memory is assumed to reflect the distoibati attribute values in
the world. Thus, according to DbS, these functions take the forms thmcdose of the real-
world distribution of gains, losses, delays, and probabilities. Thessengtions are sufficient
to account for incremental wealth having diminishing incrementalyuilé., risk aversion);
losses looming larger than gains; sub-hyperbolic temporal discounting, defeadency of
magnitude and nature of the outcome; and overestimation of small proésbitid
underestimation of large probabilities.
DbS and Economic Theory

The assumption that people do not directly utilize internal scalesfioe constitutes
a break from Bentham's (1789/1970) notion that utility is calibrated onernaht

psychological scale and thus a break from psychological theories deoweddonomics
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that make a similar assumption. Interestingly, mainstream ecorbeary has not assumed
the existence of such scales. Indeed the revealed preferenpectatison (Samuelson, 1937),
which has become standard in economics, takes utility to be reveatbddayable
preferences. For one item to have higher utility than another fotieubar person is taken to
mean no more than the first item would be chosen over the second byrsioat Savage
(1954) generalized this result to utilities and probabilities, showiaig given certain
normatively reasonable constituency conditions on people's preferences oblasgdnese
preferences could be used to reveal utility and probability informatiaumtsineously. From
the revealed preference perspective, the utility and probabilityssaed derived from
dispositions concerning preferences, rather than amounting to psychologicel. dihe
approach developed in this paper has intriguing similarities to andedtiffes from this view.
The similarity is that, in our approach, people have access onlyitbitnery preferences (or
more generally binary, ordinal comparison of perceptual magnitudes) and teetheeextent
that people have a broader grasp of their own more global preferdrasespiust be
constructed from their own binary preferences (Kornienko, 2004), jusé &cbnomist
constructs probability and utility scales from a person's binary chdibesaccount also has
a striking dissimilarity from the economists' conception. This islee we assume that
sampling from memory is limited and stochastic. People's judgmeatpanticular attribute
will be strongly influenced by the particular comparison items thathiappen to sample.
Hence, people's assessments of payoffs, probabilities, time Istemd other attributes, will
be highly malleable, rather than conforming to a stable ordering tentesd economic
theory.
Prospect Relativity

In this article we have focused upon the effect of the attributeesdhat people
sample from memory. However, as we suggested above, we also thiakribate values

from the immediate context in which a decision is made areikédyp to be sampled and
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thus influence judgment and decision making. Two existing experiments hamamesahe
effect of the context in which a decision is made on judged certajotyadents of risky
prospects (Birnbaum, 1992; Stewart, Chater, Stott, & Reimers, 20603 decision under
risk (Stewart et al., 2003; see Benartzi & Thaler, 2001, feabworld example). In both of
these experiments the distribution of options (either values from apeiticipant had to
draw a certainty equivalent, or the range of prospects from whichiegant could select
one to play) was manipulated. Birnbaum and Stewart et al. both foond &ifects of these
manipulations which were consistent with attribute values being judgeaiparison to
other attribute values in the immediate decision context.

DbS and the Time Course of Decision

Recently, psychologists have begun to consider the time course of decikimg m
(e.g., Roe, Busemeyer, & Townsend, 2001; Diederich, 2003). We can &erS as a
sequential sampling model, where pairs of attribute values aresth@dinal comparison,
and frequency counts of favorable comparisons are maintained. This foomglauld
naturally be extended to model the time course of decision making. \sagavhat this
accumulation will continue either until a response deadline or unti sbrashold or
difference is reached.

This account differs from that of Roe et al. (2001) and Diederich (2008)eir
account, dimensions, rather than attribute values, are sampledllroanone process, with
stochastic switching between dimensions during the course of the dguistess. At each
step, the valence of each alternative is derived by comparisonweith @her alternative in
the choice set. Valences are integrated over time to produceemeds, with the preferences
for each option competing via similarity weighted lateral inhibitiorDbS, valences would
simply be incremented by favorable ordinal, binary comparisons. Compétiareen
options in DbS would not come from lateral inhibition, but instead fronfeittethat

comparisons are binary. Because comparisons are assumed to beariinoaiycing a new



Decision by Sampling 23

option that is similar to an existing option would cause the favorablparsons to be
shared between them.
Range-Frequency Theory

In Parducci's (1965, 1995) range-frequency theory, an attribute value ighdede
sum of its ordinal rank within the immediate context and its inteszale position within the
range set by the immediate context. In DbS, only rank matters. Howe®bS, effects of
the absolute magnitude of an attribute value (i.e., range eftectgrise because items in the
decision sample includes not only items from the immediate conteatdaubther values
from memory. If the distribution of extra-contextual attribute valsesiform, then the
subjective attribute value is that given by range-frequency theory. Thusjggest that
demonstrations of effects of the position within the range with ramkdoglstant in fact
reflect the use of attribute values from outside the immedaatext. To the extent that these
are fixed from one situation to the next, it will appear as ifertban pair-wise ordinal
information is available when this is not necessarily the case.

Consistent with this, applications of range-frequency theory to auehsas price
perception and wage satisfaction ratings have typically found thatrtkiéregjuency
weighting is weighted more highly, and the range/end-point relative pogterhighly,
when the distribution of the decision sample is made salientl§g.gimultaneous
presentation: Brown, Gardner, Owald, & Qian, 2004; Niedrich, Sha&riéedell, 2001; cf.
also Alba, Mela, Shimp, & Urbany, 1999).

Decision by Similarity Sampling

It is unlikely that attribute values in the decision sample argkal randomly from
memory. It seems likely that other factors such as similantyrecency must play a role.
Most models of memory retrieval assign a major role to recenayagor determining
retrieval probability, and hence any complete account must assumeckat items are more

likely to be included in the decision sample. For example, Parducci (a896)s that the
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context for evaluation includes both recent exemplars and also remdmekigeme
exemplars (anchors). However similarity will also determingtiodability of inclusion: for
example, the price of a car is likely to be judged with referemeesample of similarly-
priced cars, and wage satisfaction is likely to be evaluatedns tef a sample of wages
earned by individuals in similar occupations and earning similar waggs Rablen, Brown,
& Oswald, 2004).

In the discussion of how discount rate depends on the magnitude of the owteome,
suggested that the long [shorter] delays experienced in the receipie@{dmaller] monetary
values would be sampled when considering the discounting of larger [§maliezs. This
suggestion is consistent with the idea that whole exemplars aptesmather than isolated
attribute values. Many exemplar models of memory offer the poténtisdependently-
motivated accounts of the retrieval processes that might underporthation of decision
samples. Indeed, some of these accounts have been applied to judgmesttalafity. In
Kahneman and Miller's (1986) norm theory, for example, a stimulus or isadged and
interpreted in relation to an evoked contextual set of relevant siimelients that are
retrieved in response to the event to be judged. Such retrieval miayilaety-based.
Dougherty et al. (1999) develop a similarity-based model of memory,rkamtz
MINERVAZ2 (Hintzman, 1984, 1988), and apply it to a wide range of likelihaddment
phenomena. Thus, exemplar theories of memory can underpin models of btyaiéaid
DbS can be interpreted as an account of processes operating subseaneslahiity-stage
phenomena. More specifically, the availability heuristic suggesteteat frequencies or
likelihoods are judged by the ease with which instances come to mingky\&
Kahneman, 1973). As Schwarz and Vaughn (2002) note, fluency of recall anat afnte
recall may provide distinct sources of information. DbS, while fangssn content, is
distinctive in assuming that only relative magnitude judgments arablatb provide the

basis for judgment, and that judgments are made purely on the basalypbathe number
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of retrieved exemplars above and below the target item on the dimehaerest. In some
cases (e.g., Brown et al., 2004) this simplistic sampling proadediter fit to the data than
when similarity (or dissimilarity) are taken into account.
Unifying Normative and Contextual Models of Decision Making

We see the DbS framework as an important step towards unifyinganatimodels
of decision making, where attribute values are derived from fixed psyehomic functions
of external values, and contextually driven models, such as range fredqleoigyand
multialternative decision field theory. We have offered an accoumntevthe frequently
observed psychoeconomic functions arise from the real-world decision nesikimgnment
which also incorporates an explanation of how variations in that contéxtflvence

decisions.
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Table 1

Best Fitting Powers for Power-Law Fits to the Distribution ofdys in Several Corpora

Source Range Best-Fitting Power
Telegraph 30 days -1.7
Google hits 1 year -1.5
Frankfurter Allgmeine Zeitung NRC/Handelsblad 500 years -1.4

International Herald Tribune (Pollmann & Baayen,

2001)
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Judged Numerical Equivalents and BNC Frequencies of Probability Phrases.

Judged numerical equivalents BNC frequency
Phrase M SD Mdn IQR Raw Proportion of Adjusted
frequency  probability uses frequency
impossible 0.00 0.00 0.0 0.0 6170 1.00 6170
not possible 0.00 0.00 0.0 0.0 1217 1.00 1217
no chance 0.00 0.00 0.0 0.0 534 .60 320
never 0.00 0.00 0.0 0.0 48217 .80 38574
extremely doubtful 3.76 281 3.0 3.0 20 .95 19
almost impossible 3.79 3.19 25 4.0 486 .90 437
pretty impossible 5.36 5.86 3.0 7.5 2 1.00 2
almost unfeasible 6.33 6.14 5.0 8.0 0 .00 0
highly unlikely 7.11 5.08 5.0 5.0 172 1.00 172
highly improbable 7.31 5.17 5.0 5.0 27 1.00 27
very doubtful 8.08 5.73 5.0 5.0 66 .95 63
very unlikely 8.25 4.58 9.5 5.0 157 1.00 157
little chance 11.75 7.38 10.0 10.0 273 .80 218
faint possibility 11.89 8.71 10.0 15.0 7 1.00 7
pretty doubtful 13.20 8.57 10.0 12.25 1 1.00 1
improbable 13.28 1122 10.0 15.0 340 1.00 340
small chance 1443 8.03 10.0 10.0 20 .95 19
not very feasible 1451 9.63 10.0 125 0 .00 0
not likely 15.38 10.23 15.0 15.0 455 1.00 455
slight possibility 16.22 1098 15.0 12.0 3 1.00 3
doubtful 16.75 10.72 15.0 15.0 1303 .25 326
quite doubtful 17.00 9.51 20.0 10.0 1 1.00 1
pretty unlikely 17.08 10.17 15.0 15.0 6 .83 5
unlikely 17.38 1155 15.0 175 5099 1.00 5099
not very likely 17.72 1171 150 15.0 18 1.00 18
rather unlikely 19.53 12.71 20.0 20.0 17 1.00 17
slight chance 20.93 17.01 15.0 21.3 5 1.00 5
slight probability 21.48 16.22 15.0 20.0 0 .00 0
against the odds 23.46 17.04 20.0 35.0 48 .20 10
a chance 28.49 17.97 25.0 29.0 3093 22 680
little likely 29.58 18.07 25.0 21.3 2 1.00 2
a possibility 32.85 20.12 30.0 35.0 638 .70 447
uncertain 37.63 16.39 45.0 26.3 4608 A5 691
possible 42.69 16.24 50.0 20.0 31550 .20 6310

(table continues
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Judged numerical equivalents BNC frequency
Phrase M SD Mdn IQR Raw Proportion of Adjusted
frequency  probability uses frequency
little uncertain 42.87 2372 40.0 30.0 16 13 2
maybe 45.66 10.28 50.0 10.0 6064 .20 1213
even odds 50.00 0.00 50.0 0.0 4 .25 1
fifty-fifty chance 50.00 0.00 50.0 0.0 9 1.00 9
toss-up 50.00 0.00 50.0 0.0 13 0.46
medium likelihood 50.00 0.00 50.0 0.0 0 .00
fair chance 53.22 11.77 50.0 10.0 57 .35 20
fair possibility 53.86 10.17 50.0 10.0 0 .00 0
fair probability 58.98 13.85 50.5 20.0 0 .00 0
quite possible 59.93 16.39 60.0 20.0 234 .60 140
more likely 63.90 9.36 60.0 10.0 3556 .00 0
probable 64.26  9.88 65.0 10.0 1177 .90 1059
good possibility 66.31 14.14 65.0 15.0 2 1.00 2
good chance 69.08  9.07 70.0 10.0 366 75 275
likely 69.70 13.20 70.0 20.0 16733 .85 14223
good probability 71.90 10.14 70.0 20.0 1 1.00 1
usually 74.15 1096 75.0 15.0 18619 .85 15826
rather likely 7425 9.88 75.0 11.3 1 1.00 1
very feasible 7426 10.15 75.0 10.0 3 .00 0
most of the time 78.74 10.78 80.0 15.0 580 .95 551
high likelihood 79.73  8.50 80.0 16.3 5 1.00 5
fairly certain 79.83 12.16 85.0 20.0 56 1.00 56
great likelihood 80.82 9.64 80.0 125 1 1.00 1
high possibility 80.93 7.30 80.0 11.0 1 1.00 1
most likely 81.05 11.86 80.0 15.0 1341 .00 0
very likely 8153 8.05 80.0 135 296 .85 252
great possibility 82.49 8.04 80.0 10.0 1 1.00 1
quite certain 82.85 10.27 85.0 15.0 97 .90 87
pretty certain 8530 9.19 89.5 10.0 45 1.00 45
very certain 89.78 7.35 90.0 11.3 15 .87 13
almost certain 92.32 5.76 95.0 5.0 1694 1.00 1694
most definitely 95.13 5.32 95.0 7.8 109 .20 22
sure thing 97.53 4.34 100.0 5.0 27 .35 9
always 100.00 0.00 100.0 0.0 41869 .90 37682
absolute certainty 100.00 0.00 100.0 0.0 37 40 15
certain 100.00 0.00 100.0 0.0 36121 .25 9030
definitely 100.00 0.00 100.0 0.0 3233 .80 2586
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Figure Captions
Figure 1 A: The distribution of credits to people's current bank accountsh@&diktribution
of debits from people's current bank accounts.
Figure 2.A: The relative rank of credits within the entire population oflitse B: The
relative rank of debits within the entire population of debits.
Figure 3.A: The distribution of relative ranks for a target credit of £250lBe distribution
of relative ranks as a function of the target credit. Sampte=st
Figure 4.A: The relative ranks of 9756 prices from a UK supermarkethB:rélative ranks
of the prices of bread. C: The relative ranks of the prices obtdtec
Figure 5.The distribution of time delays on the internet.
Figure 6.The distribution of relative ranks of delays within the entire popradf delays.
Figure 7.The relative rank of probability phrases.
Figure 8.A: The probabilities used in Gonzalez and Wu's (1999) experiment. BeHtire
ranks for probabilities in this experiment.
Figure 9.A: The probability of events in a universe of 100 possible events. B: The
probability of the relative probabilities of events in randomly setiepters of events. C: The

cumulative probability of the relative probabilities. See text foaite
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Figure 2

A

1.0 H

Relative Rank

500 1000 1500
Credit/£

o

1.0 H

Relative Rank
~
== T WW‘W

0 500 1000 1500
Debit/E



Decision by Sampling

Figure 3

A

PD
N

.0 2 4 .6 .8 1.0

Relative Rank




Decision by Sampling 43
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Figure 8
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