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We consider the initial/boundary value problem for a diffusion equation involving multiple 
time-fractional derivatives on a bounded convex polyhedral domain. We analyze a 
space semidiscrete scheme based on the standard Galerkin finite element method using 
continuous piecewise linear functions. Nearly optimal error estimates for both cases of 
initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth 
data. Further we develop a fully discrete scheme based on a finite difference discretization 
of the time-fractional derivatives, and discuss its stability and error estimate. Extensive 
numerical experiments for one- and two-dimensional problems confirm the theoretical 
convergence rates.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

We consider the following initial/boundary value problem for a multi-term time fractional diffusion equation in u(x, t):

P (∂t)u − �u = f , in Ω T ≥ t > 0,

u = 0, on ∂Ω T ≥ t > 0,

u(0)= v, in Ω, (1.1)

where Ω denotes a bounded convex polygonal domain in Rd (d = 1, 2, 3) with a boundary ∂Ω , f is the source term, and 
the initial data v is a given function on Ω and T > 0 is a fixed value. Here the differential operator P (∂t) is defined by

P (∂t) = ∂α
t +

m∑
i=1

bi∂
αi
t ,

where 0 < αm ≤ ... ≤ α1 < α < 1 are the orders of the fractional derivatives, bi > 0, i = 1, 2, ..., m, with the left-sided Caputo 
fractional derivative ∂β

t u, 0 < β < 1, being defined by (cf. [17, p. 91])
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∂
β
t u(t) = 1

Γ (1 − β)

t∫
0

(t − s)−βu′(s)ds, (1.2)

where Γ (·) denotes the Gamma function.
In the case of m = 0, the model (1.1) reduces to its single-term counterpart

∂α
t u − �u = f in Ω × (0, T ]. (1.3)

This model has been studied extensively from different aspects due to its extraordinary capability of modeling anomalous 
diffusion phenomena in highly heterogeneous aquifers and complex viscoelastic materials [1,31]. It is the fractional analogue 
of the classical diffusion equation: with α = 1, it recovers the latter, and thus inherits some of its analytical properties. 
However, it differs considerably from the latter in the sense that, due to the presence of the nonlocal fractional derivative 
term, it has limited smoothing property in space and slow asymptotic decay in time [32], which in turn also impacts related 
numerical analysis [12] and inverse problems [14,32].

The model (1.1) was developed to improve the modeling accuracy of the single-term model (1.3) for describing anoma-
lous diffusion. For example, in [33], a two-term fractional-order diffusion model was proposed for the total concentration 
in solute transport, in order to distinguish explicitly the mobile and immobile status of the solute using fractional dynam-
ics. The kinetic equation with two fractional derivatives of different orders appears also quite naturally when describing 
subdiffusive motion in velocity fields [28]; see also [16] for discussions on the model for wave-type phenomena.

There are very few mathematical studies on the model (1.1). Luchko [25] established a maximum principle for problem 
(1.1), and constructed a generalized solution for the case f ≡ 0 using the multinomial Mittag-Leffler function. Jiang et 
al. [9] derived formal analytical solutions for the diffusion equation with fractional derivatives in both time and space. 
Li and Yamamoto [22] established the existence, uniqueness, and the Hölder regularity of the solution using a fixed point 
argument for problem (1.1) with variable coefficients {bi}. Very recently, Li et al. [21] showed the uniqueness and continuous 
dependence of the solution on the initial value v and the source term f , by exploiting refined properties of the multinomial 
Mittag-Leffler function.

The potential applications of the model (1.1) motivate the design and analysis of numerical schemes that have optimal 
(with respect to data regularity) convergence rates. Such schemes are especially valuable for problems where the solution 
has low regularity. The case m = 0, i.e., the single-term model (1.3), has been extensively studied, and stability and error 
estimates were provided; see [23,34,37] for the finite difference method, [19,20,36] for the spectral method, [10–12,18,27,
29,30] for the finite element method, and [4,7] for meshfree methods based on radial basis functions, to name a few. In 
particular, in [10–12], the authors established almost optimal error estimates with respect to the regularity of the initial 
data v and the right hand side f for a semidiscrete Galerkin scheme. These studies include the interesting case of very 
weak data, i.e., v ∈ Ḣq(Ω) and f ∈ L∞(0, T ; Ḣq(Ω)) for −1 < q ≤ 0.

Numerical methods for the multi-term ordinary differential equation were considered in [6,15]. In [38], a scheme based 
on the finite element method in space and a specialized finite difference method in time was proposed for (1.1), and error 
estimates were derived. We also refer to [24] for a numerical scheme based on a fractional predictor–corrector method for 
the multi-term time fractional wave-diffusion equation. The error analysis in these works is done under the assumption that 
the solution is sufficiently smooth and therefore it excludes the case of low regularity solutions. This is the main goal of the 
present study. However, the derivation of optimal with respect to the regularity error estimates requires additional analysis 
of the properties of problem (1.1), e.g., stability, asymptotic behavior for t → 0+ . Relevant results of this type have recently 
been obtained in [21], which, however, are not enough for the analysis of the semidiscrete Galerkin scheme, and hence in 
Section 2, we make the necessary extensions.

Now we describe the semidiscrete Galerkin scheme. Let {Th}0<h<1 be a family of shape regular and quasi-uniform parti-
tions of the domain Ω into d-simplexes, called finite elements, with a maximum diameter h. The approximate solution uh
is sought in the finite element space Xh of continuous piecewise linear functions over the triangulation Th

Xh = {
χ ∈ H1

0(Ω): χ is a linear function over τ , ∀τ ∈ Th
}
.

The semidiscrete Galerkin FEM for problem (1.1) is: find uh(t) ∈ Xh such that(
P (∂t)uh,χ

) + a(uh,χ) = ( f ,χ), ∀χ ∈ Xh, T ≥ t > 0, uh(0) = vh, (1.4)

where a(u, w) = (∇u, ∇w) for u, w ∈ H1
0(Ω), and vh ∈ Xh is an approximation of the initial data v . The choice of vh will 

depend on the smoothness of the initial data v . We shall study the convergence of the semidiscrete scheme (1.4) for the 
case of initial data v ∈ Ḣq(Ω), −1 < q ≤ 2, and right hand side f ∈ L∞(0, T ; Ḣq(Ω)), −1 < q < 1. The case of nonsmooth 
data, i.e., −1 < q ≤ 0, is very common in inverse problems and optimal control [14,32]; see also [5,13] for the parabolic 
counterpart.

The goal of this work is to develop a numerical scheme based on the finite element approximation for the model 
(1.1), and provide a complete error analysis. We derive error estimates optimal with respect to the data regularity for the 
semidiscrete scheme, and a convergence rate O (h2 + τ 2−α) for the fully discrete scheme in case of a smooth solution. 
Specifically, our essential contributions are as follows. First, we obtain an improved regularity result for the inhomogeneous 
problem, by allowing less regular source term, cf. Theorem 2.3. This is achieved by exploiting the complete monotonicity of 
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the multinomial Mittag-Leffler function, cf. Lemma 2.4. Second, we derive nearly optimal error estimates for a semidiscrete 
Galerkin scheme for both homogeneous and inhomogeneous problems, cf. Theorems 3.1–3.4, which cover both smooth and 
nonsmooth data. Third, we develop a fully discrete scheme based on a finite difference method in time, and establish its 
stability and error estimates, cf. Theorem 4.1. We note that the derived error estimate for the fully discrete scheme holds 
only for smooth solutions.

The rest of the paper is organized as follows. In Section 2, we recall the solution theory for the model (1.1) for both 
homogeneous and inhomogeneous problems, using properties of the multinomial Mittag-Leffler function. The readers not 
interested in the analysis may proceed directly to Section 3. Almost optimal error estimates for their semidiscrete Galerkin 
finite element approximations are given in Section 3. Then a fully discrete scheme based on a finite difference approximation 
of the Caputo fractional derivatives is given in Section 4, and an error analysis is also provided. Finally, extensive numerical 
experiments are presented to illustrate the accuracy and efficiency of the Galerkin scheme, and to verify the convergence 
theory. Throughout, we denote by C a generic constant, which may differ at different occurrences, but always independent 
of the mesh size h and time step size τ .

2. Solution theory

In this part, we recall the solution theory for problem (1.1). We shall describe the solution representation using the 
multinomial Mittag-Leffler function, and derive optimal solution regularity for the homogeneous and inhomogeneous prob-
lems.

2.1. Multinomial Mittag-Leffler function

First we recall the multinomial Mittag-Leffler function, introduced in [8]. For 0 < β < 2, 0 < βi < 1 and zi ∈C, i = 1, ..., m, 
the multinomial Mittag-Leffler function E(β1,...,βm),β (z1, ..., zm) is defined by

E(β1,...,βm),β(z1, ..., zm) =
∞∑

k=0

∑
l1+...+lm=k
l1≥0,...,lm≥0

(k; l1, ..., lm)

∏m
i=1 zli

i

Γ (β + ∑m
i=1 βili)

,

where the notation (k; l1, ..., lm), l1 ≥ 0, i = 1, . . . , m, denotes the multinomial coefficient, i.e.,

(k; l1, ..., lm) = k!
l1!...lm! with k =

m∑
i=1

li .

It generalizes the exponential function ez: with m = 1 and β = β1 = 1, it reproduces the exponential function ez . It 
appears in the solution representation of problem (1.1), cf. (2.4) below. We shall need the following two important lemmas 
on the function E(β1,...,βm),β (z1, ..., zm), recently obtained in [21].

Lemma 2.1. Let 0 < β < 2, 0 < βi < 1, β1 > max{β2, ..., βm} and β1π
2 < μ < β1π . Assume that there is K > 0 such that −K ≤

zi < 0, i = 2, ..., m. Then there exists a constant C = C(β1, ..., βm, β, K , μ) > 0 such that

E(β1,...,βm),β(z1, ..., zm) ≤ C

1 + |z1| , μ ≤ ∣∣arg(z1)
∣∣ ≤ π.

Lemma 2.2. Let 0 < β < 2, 0 < βi < 1 and zi ∈ C, i = 1, ..., m. Then we have

1

Γ (β0)
+

m∑
i=1

zi E(β1,...,βm),β0+βi (z1, ..., zm) = E(β1,...,βm),β0(z1, ..., zm).

2.2. Solution representation

For s ≥ −1, we denote by Ḣ s(Ω) ⊂ H−1(Ω) the Hilbert space induced by the norm:

‖v‖2
Ḣ s(Ω)

=
∞∑
j=1

λs
j〈v,ϕ j〉2

with {λ j}∞j=1 and {ϕ j}∞j=1 being respectively the eigenvalues and the L2(Ω)-orthonormal eigenfunctions of the Laplace 

operator −� on the domain Ω with a homogeneous Dirichlet boundary condition. Then {ϕ j}∞j=1 and {λ1/2
j ϕ j}∞j=1, form an 

orthonormal basis in L2(Ω) and H−1(Ω), respectively. Further, ‖v‖Ḣ0(Ω) = ‖v‖L2(Ω) = (v, v)1/2 is the norm in L2(Ω) and 
‖v‖ ˙ −1 = ‖v‖H−1(Ω) is the norm in H−1(Ω). It is easy to verify that ‖v‖ ˙ 1 = ‖∇v‖L2(Ω) is also the norm in H1(Ω)
H (Ω) H (Ω) 0



828 B. Jin et al. / Journal of Computational Physics 281 (2015) 825–843
and ‖v‖Ḣ2(Ω) = ‖�v‖L2(Ω) is equivalent to the norm in H2(Ω) ∩ H1
0(Ω) [35, Lemma 3.1]. Note that Ḣ s(Ω), s ≥ −1 form a 

Hilbert scale of interpolation spaces. Hence, we denote ‖ · ‖Hs(Ω) to be the norm on the interpolation scale between H1
0(Ω)

and L2(Ω) for s ∈ [0, 1] and ‖ · ‖Hs(Ω) to be the norm on the interpolation scale between L2(Ω) and H−1(Ω) for s ∈ [−1, 0]. 
Then, ‖ · ‖Hs(Ω) and ‖ · ‖Ḣ s(Ω) are equivalent for s ∈ [−1, 1]. Further, for a Banach space B and any r ≥ 1, we define the space

Lr(0, T ; B) = {
u(t) ∈ B for a.e. t ∈ (0, T ) and ‖u‖Lr(0,T ;B) < ∞}

,

and the norm ‖ · ‖Lr(0,T ;B) is defined by

‖u‖Lr(0,T ;B) =
{

(
∫ T

0 ‖u(t)‖r
Bdt)1/r, r ∈ [1,∞),

ess supt∈(0,T )‖u(t)‖B , r = ∞.

Upon denoting �α = (α, α − α1, ..., α − αm), we introduce the following solution operator

E(t)v =
∞∑
j=1

(
1 − λ jt

α E �α,1+α

(−λ jt
α,−b1tα−α1 , ...,−bmtα−αm

))
(v,ϕ j)ϕ j . (2.1)

This operator is motivated by a separation of variables [25,26]. Then for problem (1.1) with a homogeneous right hand 
side, i.e., f ≡ 0, we have u(x, t) = E(t)v . However, the representation (2.1) is not always very convenient for analyzing its 
smoothing property. We derive an alternative representation of the solution operator E using Lemma 2.2:

E(t)v =
∞∑
j=1

E �α,1
(−λ jt

α,−b1tα−α1 , ...,−bmtα−αm
)
(v,ϕ j)ϕ j

+
m∑

i=1

bit
α−αi

∞∑
j=1

E �α,1+α−αi

(−λ jt
α,−b1tα−α1 , ...,−bmtα−αm

)
(v,ϕ j)ϕ j . (2.2)

Besides, we define the following operator Ē for χ ∈ L2(Ω) by

Ē(t)χ =
∞∑
j=1

tα−1 E �α,α

(−λ jt
α,−b1tα−α1 , ...,−bmtα−αm

)
(χ,ϕ j)ϕ j . (2.3)

The operators E(t) and Ē(t) can be used to represent the solution u of (1.1) as:

u(t) = E(t)v +
t∫

0

Ē(t − s) f (s)ds. (2.4)

The operator Ē has the following smoothing property.

Lemma 2.3. For any t > 0 and χ ∈ Ḣq(Ω), q ∈ (−1, 2], there holds for 0 ≤ p − q ≤ 2∥∥Ē(t)χ
∥∥

Ḣ p(Ω)
≤ Ct−1+α(1+(q−p)/2)‖χ‖Ḣq(Ω).

Proof. The definition of the operator Ē in (2.3) and Lemma 2.1 yield

∥∥Ē(t)χ
∥∥2

Ḣ p(Ω)
= t−2+(2+q−p)α

∞∑
j=1

(
λ jt

α
)p−q∣∣E �α,α

(−λ jt
α,−b1tα−α1 , ...,−bmtα−αm

)∣∣2
λ

q
j

∣∣(χ,ϕ j)
∣∣2

≤ Ct−2+(2+q−p)α
∞∑
j=1

(λ jtα)p−q

(1 + λ jtα)2
λ

q
j

∣∣(χ,ϕ j)
∣∣2

≤ Ct−2+(2+q−p)α
∞∑
j=1

λ
q
j

∣∣(χ,ϕ j)
∣∣2 ≤ Ct−2+(2+q−p)α‖χ‖Ḣq(Ω),

where the last line follows by the inequality sup j∈N
(λ j tα)p−q

(1+λ j tα)2 ≤ C , for 0 ≤ p − q ≤ 2. �
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2.3. Solution regularity

First we recall known regularity results. In [22], Li and Yamamoto showed that in the case of variable coefficients {bi(x)}, 
there exists a unique mild solution u ∈ C((0, T ]; Ḣγ (Ω)) ∩ C([0, T ]; L2(Ω)) and u ∈ C([0, T ]; Ḣγ (Ω)) ∩ L∞(0, T ; Ḣ2(Ω))

when v ∈ L2(Ω), f = 0 and v = 0, f ∈ L∞(0, T ]; L2(Ω)), respectively, with γ ∈ [0, 1). These results were recently refined in 
[21] for the case of constant coefficients, i.e., problem (1.1). In particular, it was shown that for v ∈ Ḣq(Ω), 0 ≤ q ≤ 1, and 
f = 0, u ∈ L1/(1−q/2)(0, T ; H2(Ω) ∩ H1

0(Ω)); and for v = 0 and f ∈ Lr(0, T ; Ḣq(Ω)), 0 ≤ q ≤ 2, r ≥ 1, u ∈ Lr(0, T ; Ḣq+2−γ (Ω))

for some γ ∈ (0, 1]. Here we follow the approach in [21], and extend these results to a slightly more general setting of 
v ∈ Ḣq(Ω), −1 < q ≤ 2, and f ∈ L2(0, T ; Ḣq(Ω)), −1 < q ≤ 1. The nonsmooth case, i.e., −1 < q ≤ 0, arises commonly in 
related inverse problems and optimal control problems.

We shall derive the solution regularity to the homogeneous problem, i.e., f ≡ 0, and the inhomogeneous problem, i.e., 
v ≡ 0, separately. These results will be essential for the error analysis of the space semidiscrete Galerkin scheme (1.4) in 
Section 3. First we consider the homogeneous problem with initial data v ∈ Ḣq(Ω), −1 < q ≤ 2.

Theorem 2.1. Let u(t) = E(t)v be the solution to problem (1.1) with f ≡ 0 and v ∈ Ḣq(Ω), q ∈ (−1, 2]. Then there holds∥∥P (∂t)
�u(t)

∥∥
Ḣ p(Ω)

≤ Ct−α(�+(p−q)/2)‖v‖Ḣq(Ω), t > 0,

where for � = 0, 0 ≤ p − q ≤ 2 and for � = 1, −2 ≤ p − q ≤ 0.

Proof. We show that (2.2) represents indeed the weak solution to problem (1.1) with f ≡ 0 and further it satisfies the 
desired estimate. We first discuss the case � = 0. By Lemma 2.1 and (2.2) we have for 0 ≤ p − q ≤ 2∥∥E(t)v

∥∥2
Ḣ p(Ω)

=
∞∑
j=1

λ
p
j

(
E �α,1

(−λ jt
α,−b1tα−α1 , ...,−bmtα−αm

)

+
m∑

i=1

bit
α−αi E �α,1+α−αi

(−λ jt
α,−b1tα−α1 , ...,−bmtα−αm

))2

(v,ϕ j)
2

≤ Ct−(p−q)α
∞∑
j=1

(λ jtα)p−q

(1 + λ jtα)2
λ

q
j

∣∣(v,ϕ j)
∣∣2 ≤ Ct−(p−q)α‖v‖2

Ḣq(Ω)
,

where the last line follows from the inequality sup j∈N
(λ j t

α)p−q

(1+λ j tα)2 ≤ C for 0 ≤ p −q ≤ 2. The estimate for the case � = 1 follows 
from the identity ‖P (∂t)E(t)v‖Ḣ p(Ω) = ‖E(t)v‖Ḣ p+2(Ω) . It remains to show that (2.2) satisfies also the initial condition in 
the sense that limt→0+ ‖E(t)v − v‖Ḣq(Ω) = 0. By identity (2.1) and Lemma 2.1, we deduce

∥∥E(t)v − v
∥∥2

Ḣq(Ω)
=

∞∑
j=1

λ2
j t

2α
∣∣E �α,1+α

(−λ jt
α,−b1tα−α1 , ...,−bmtα−αm

)∣∣2
λ

q
j

∣∣(v,ϕ j)
∣∣2 ≤ C‖v‖2

Ḣq(Ω)
< ∞.

Using Lemma 2.2, we rewrite the term λ jtα E �α,1+α(−λ jtα, −b1tα−α1 , ..., −bmtα−αm ) as

λ jt
α E �α,1+α

(−λ jt
α,−b1tα−α1 , ...,−bmtα−αm

) = (
1 − E �α,1

(−λ jt
α,−b1tα−α1 , ...,−bmtα−αm

))
−

m∑
i=1

bit
α−αi E �α,1+α−αi

(−λ jt
α,−b1tα−α1 , ...,−bmtα−αm

)
.

Upon noting the identity limt→0+ (1 − E �α,1(−λ jtα, −b1tα−α1 , ..., −bmtα−αm )) = 0, and the boundedness of
E �α,1+α−αi

(−λ jtα, −b1tα−α1 , ..., −bmtα−αm ) from Lemma 2.1, we deduce that for all j

lim
t→0+ λ jt

α E �α,1+α

(−λ jt
α,−b1tα−α1 , ...,−bmtα−αm

) = 0.

Hence, the desired assertion follows by Lebesgue’s dominated convergence theorem. �
Now we turn to the inhomogeneous problem with a nonsmooth right hand side, i.e., f ∈ L∞(0, T ; Ḣq(Ω)), −1 < q ≤ 1, 

and a zero initial data v ≡ 0.

Theorem 2.2. For f ∈ L∞(0, T ; Ḣq(Ω)), −1 < q ≤ 1, and v ≡ 0, the representation (2.4) belongs to L∞(0, T ; Ḣq+2−ε(Ω)) for any 
ε ∈ (0, 1/2) and satisfies∥∥u(·, t)

∥∥
Ḣq+2−ε (Ω)

≤ Cε−1tεα/2‖ f ‖L∞(0,t;Ḣq(Ω)). (2.5)

Hence, it is a solution to problem (1.1) with a homogeneous initial data v = 0.
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Proof. By construction, it satisfies the governing equation. By Lemma 2.3, we have

∥∥u(·, t)
∥∥

Ḣq+2−ε (Ω)
=

∥∥∥∥∥
t∫

0

Ē(t − s) f (s)ds

∥∥∥∥∥
Ḣq+2−ε (Ω)

≤
t∫

0

∥∥Ē(t − s) f (s)
∥∥

Ḣq+2−ε (Ω)
ds

≤ C

t∫
0

(t − s)εα/2−1
∥∥ f (s)

∥∥
Ḣq(Ω)

ds ≤ Cε−1tεα/2‖ f ‖L∞(0,t;Ḣq(Ω))

which shows the desired estimate. Further, it satisfies the initial condition u(0) = 0, i.e., for any ε > 0,
limt→0+ ‖u(·, t)‖Ḣq+2−ε (Ω) = 0, and thus it is indeed a solution of (1.1). �

Next we extend Theorem 2.2 to allow less regular right hand sides f ∈ L2(0, T ; Ḣq(Ω)), −1 < q ≤ 1. Then the function 
u(x, t) satisfies also the differential equation as an element in the space L2(0, T ; Ḣq+2(Ω)). However, it may not satisfy the 
homogeneous initial condition u(x, 0) = 0. In Remark 2.1 below, we argue that a weaker class of source term that produces 
a legitimate weak solution of (1.1) is f ∈ Lr(0, T ; Ḣq(Ω)) with r > 1/α and −1 < q ≤ 1. Obviously, for 1/2 < α < 1, it does 
give a solution u(x, t) ∈ L2(0, T ; Ḣq+2(Ω)). To this end, we introduce the shorthand notation

Ē j
�α(t) = tα−1 E �α,α

(−λ jt
α,−b1tα−α1 , ...,−bmtα−αm

)
.

The function Ē j
�α(t) is completely monotone [3].

Lemma 2.4. The function Ē j
�α(t) for j ∈N has the following properties:

Ē j
�α(t) is completely monotone and

T∫
0

∣∣Ē j
�α(t)

∣∣dt <
1

λ j
.

Theorem 2.3. For f ∈ L2(0, T ; Ḣq(Ω)), −1 < q ≤ 1, the representation (2.4) belongs to L2(0, T ; Ḣq+2(Ω)) and satisfies the a priori 
estimate

‖u‖L2(0,t;Ḣq+2(Ω)) + ∥∥P (∂t)u
∥∥

L2(0,t;Ḣq(Ω))
≤ C‖ f ‖L2(0,t;Ḣq(Ω)). (2.6)

Proof. By Young’s inequality for the convolution ‖k ∗ f ‖Lp ≤ ‖k‖L1‖ f ‖Lp , k ∈ L1, f ∈ Lp , p ≥ 1, and Lemma 2.4, we deduce∥∥∥∥∥
t∫

0

Ēn
�α(t − τ ) fn(τ )dτ

∥∥∥∥∥
2

L2(0,T )

≤
( T∫

0

∣∣Ēn
�α(t)

∣∣dt

)2( T∫
0

∣∣ fn(t)
∣∣2

dt

)
≤ 1

λ2
n

T∫
0

∣∣ fn(t)
∣∣2

dt.

Hence,

‖u‖2
L2(0,T ;Ḣq+2(Ω))

=
∞∑

n=1

λ
q+2
n

∥∥∥∥∥
t∫

0

Ēn
�α(t − τ ) fn(τ )dτ

∥∥∥∥∥
2

L2(0,T )

≤
∞∑

n=1

λ
q
n

T∫
0

∣∣ fn(t)
∣∣2

dt = ‖ f ‖2
L2(0,T ;Ḣq(Ω))

.

The estimate on ‖P (∂t)u‖L2(0,t;Ḣq(Ω)) follows analogously. This completes the proof. �
Remark 2.1. The condition f ∈ L∞(0, T ; Ḣq(Ω)) in Theorem 2.2 can be weakened to f ∈ Lr(0, T ; Ḣq(Ω)) with r > 1/α. This 
follows from Lemma 2.3 and Hölder’s inequality with r′ , 1/r′ + 1/r = 1

∥∥u(·, t)
∥∥

Ḣq(Ω)
≤

t∫
0

∥∥Ē(t − s) f (s)
∥∥

Ḣq(Ω)
ds ≤ C

t∫
0

(t − s)α−1
∥∥ f (s)

∥∥
Ḣq(Ω)

ds ≤ C

(
t1+r′(α−1)

1 + r′(α − 1)

)1/r′

‖ f ‖Lr(0,t;Ḣq(Ω)),

where 1 + r′(α − 1) > 0 by the condition r > 1/α. It follows from this that the initial condition u(·, 0) = 0 holds in the 
following sense: limt→0+ ‖u(·, t)‖Ḣq(Ω) = 0. Hence for any α ∈ (1/2, 1) the representation (2.4) remains a legitimate solution 
under the weaker condition f ∈ L2(0, T ; Ḣq(Ω)).

3. Error estimates for semidiscrete Galerkin scheme

Now we derive and analyze the space semidiscrete Galerkin FEM scheme (1.4). First we describe the semidiscrete scheme, 
and then derive almost optimal error estimates for the homogeneous and inhomogeneous problems separately. In the anal-
ysis we essentially use the technique developed in [12] and improved in [10,11].
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3.1. Semidiscrete scheme

To describe the scheme, we need the L2(Ω) projection Ph : L2(Ω) → Xh and Ritz projection Rh : H1
0(Ω) → Xh , respec-

tively, defined by

(Phψ,χ) = (ψ,χ) ∀χ ∈ Xh,

(∇Rhψ,∇χ) = (∇ψ,∇χ) ∀χ ∈ Xh.

The operators Rh and Ph satisfy the following approximation property [35].

Lemma 3.1. For any ψ ∈ Ḣq(Ω), 1 ≤ q ≤ 2, the operator Rh satisfies:

‖Rhψ − ψ‖L2(Ω) + h
∥∥∇(Rhψ − ψ)

∥∥
L2(Ω)

≤ Chq‖ψ‖Ḣq(Ω).

Further, for s ∈ [0, 1] we have∥∥(I − Ph)ψ
∥∥

Hs(Ω)
≤ Ch2−s‖ψ‖Ḣ2(Ω) ∀ψ ∈ H2(Ω) ∩ H1

0(Ω),∥∥(I − Ph)ψ
∥∥

Hs(Ω)
≤ Ch1−s‖ψ‖Ḣ1(Ω) ∀ψ ∈ H1

0(Ω).

By interpolation, the operator Ph is also bounded on Ḣq(Ω), −1 ≤ q ≤ 0.

Now we can describe the semidiscrete Galerkin scheme. Upon introducing the discrete Laplacian �h : Xh → Xh defined 
by

−(�hψ,χ) = (∇ψ,∇χ) ∀ψ,χ ∈ Xh,

and fh = Ph f , we may write the spatially discrete problem (1.4) as

P (∂t)uh(t) − �huh(t) = fh(t) with uh(0) = vh, (3.1)

where vh ∈ Xh is an approximation to the initial data v . Next we give a solution representation of (3.1) using the eigenvalues 
and eigenfunctions {λh

j }N
j=1 and {ϕh

j }N
j=1 of the discrete Laplacian −�h . First we introduce the operators Eh and Ēh , the 

discrete analogues of (2.2) and (2.3), for t > 0, defined respectively by

Eh(t)vh =
N∑

j=1

E �α,1
(−λh

j t
α,−b1tα−α1 , ...,−bmtα−αm

)(
v,ϕh

j

)
ϕh

j

+
m∑

i=1

bit
α−αi

N∑
j=1

E �α,1+α−αi

(−λh
j t

α,−b1tα−α1 , ...,−bmtα−αm
)(

v,ϕh
j

)
ϕh

j ,

(3.2)

and

Ēh(t) fh =
N∑

j=1

tα−1 E �α,α

(−λh
j t

α,−b1tα−α1 , ...,−bmtα−αm
)(

fh,ϕ
h
j

)
ϕh

j . (3.3)

Then the solution uh of the discrete problem (3.1) can be expressed by:

uh(t) = Eh(t)vh +
t∫

0

Ēh(t − s) fh(s)ds. (3.4)

On the finite element space Xh , we introduce the discrete norm ‖ | · ‖ |Ḣ p(Ω) defined by

‖|ψ‖|2
Ḣ p(Ω)

=
N∑

j=1

(
λh

j

)p(
ψ,ϕh

j

)2
ψ ∈ Xh.

The norm ‖ | · ‖ |Ḣ p(Ω) is well defined for all real number p. Clearly, ‖ |ψ‖ |Ḣ1(Ω) = ‖ψ‖Ḣ1(Ω) and ‖ |ψ‖ |Ḣ0(Ω) = ‖ψ‖L2(Ω) for 
any ψ ∈ Xh . Further, the following inverse inequality holds [12]: if the mesh Th is quasi-uniform, then for any l > s

‖|ψ‖|Ḣl(Ω) ≤ Chs−l‖|ψ‖|Ḣ s(Ω) ∀ψ ∈ Xh. (3.5)
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Lemma 3.2. Assume that the mesh Th is quasi-uniform. Then for any vh ∈ Xh the function uh(t) = Eh(t)vh satisfies∥∥∣∣P (∂t)
�uh(t)

∥∥∣∣
Ḣ p(Ω)

≤ Ct−α(�+(p−q)/2)‖|vh‖|Ḣq(Ω), t > 0,

where for � = 0, 0 ≤ p − q ≤ 2 and for � = 1, p ≤ q ≤ p + 2.

Proof. Upon noting ‖ |P (∂t)Eh(t)vh‖ |Ḣ p(Ω) = ‖ |Eh(t)vh‖ |Ḣ p+2(Ω) , it suffices to show the case � = 0. Using the representation 
(3.4) and Lemma 2.1, we have for 0 ≤ p − q ≤ 2

∥∥∣∣Eh(t)vh
∥∥∣∣2

Ḣ p(Ω)
≤ C

N∑
j=1

(λh
j )

p

(1 + λh
j t

α)2

∣∣(vh,ϕ
h
j

)∣∣2

≤ Ct−(p−q)α
N∑

j=1

(λh
j t

α)p−q

(1 + λh
j t

α)2

(
λh

j

)q∣∣(vh,ϕ
h
j

)∣∣2

≤ Ct−(p−q)α‖|vh‖|2Ḣq(Ω)
,

where the last inequality follows from sup1≤ j≤N
(λh

j tα)p−q

(1+λh
j tα)2 ≤ C for 0 ≤ p − q ≤ 2. �

The next result is a discrete analogue to Lemma 2.3.

Lemma 3.3. Let Ēh be defined by (3.3) and χ ∈ Xh. Then for all t > 0

∥∥∣∣Ēh(t)χ
∥∥∣∣

Ḣ p(Ω)
≤

{
Ct−1+α(1+(q−p)/2)‖|χ‖|Ḣq(Ω), 0 ≤ p − q ≤ 2,

Ct−1+α‖|χ‖|Ḣq(Ω), p < q.

Proof. The proof for the case 0 ≤ p − q ≤ 2 is similar to Lemma 2.3. The other assertion follows from the fact that {λh
j }N

j=1
are bounded from zero independent of h. �
3.2. Error estimates for the homogeneous problem

To derive error estimates, first we consider the case of smooth initial data, i.e., v ∈ Ḣ2(Ω). To this end, we split the error 
uh(t) − u(t) into two terms:

uh − u = (uh − Rhu) + (Rhu − u) = ϑ + �.

By Lemma 3.1 and Theorem 2.1, we have for any t > 0∥∥�(t)
∥∥

L2(Ω)
+ h

∥∥∇�(t)
∥∥

L2(Ω)
≤ Ch2‖v‖Ḣ2(Ω). (3.6)

So it suffices to get proper estimates for ϑ(t), which is given below.

Lemma 3.4. The function ϑ(t) := uh(t) − Rhu(t) satisfies for p = 0, 1∥∥ϑ(t)
∥∥

Ḣ p(Ω)
≤ Ch2−p‖v‖Ḣ2(Ω).

Proof. Using the identity �h Rh = Ph�, we note that ϑ satisfies

P (∂t)ϑ(t) − �hϑ(t) = −Ph P (∂t)�(t),

with ϑ(0) = 0. By the representation (3.4),

ϑ(t) = −
t∫

0

Ēh(t − s)Ph P (∂t)�(s)ds.

Then by Lemmas 3.3 and 3.1, and Theorem 2.1 we have for p = 0, 1

∥∥ϑ(t)
∥∥

Ḣ p(Ω)
≤

t∫ ∥∥Ēh(t − s)Ph P (∂t)�(s)
∥∥

Ḣ p(Ω)
ds
0
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≤ C

t∫
0

(t − s)(1−p/2)α−1
∥∥P (∂t)�(s)

∥∥
L2(Ω)

ds

≤ Ch2−p

t∫
0

(t − s)(1−p/2)α−1
∥∥P (∂t)u(s)

∥∥
Ḣ2−p(Ω)

ds

≤ Ch2−p

t∫
0

(t − s)(1−p/2)α−1s−(1−p/2)α ds‖v‖Ḣ2(Ω) ≤ Ch2−p‖v‖Ḣ2(Ω),

which is the desired result. �
Using (3.6), Lemma 3.4 and the triangle inequality, we arrive at our first estimate, which is formulated in the following 

theorem:

Theorem 3.1. Let v ∈ Ḣ2(Ω) and f ≡ 0, and u and uh be the solutions of (1.1) and (1.4) with vh = Rh v, respectively. Then∥∥uh(t) − u(t)
∥∥

L2(Ω)
+ h

∥∥∇(
uh(t) − u(t)

)∥∥
L2(Ω)

≤ Ch2‖v‖Ḣ2(Ω).

Now we turn to the nonsmooth case, i.e., v ∈ Ḣq(Ω) with −1 < q ≤ 1. Since the Ritz projection Rh is not well-defined 
for nonsmooth data, we use instead the L2(Ω)-projection vh = Ph v and split the error uh − u into:

uh − u = (uh − Phu) + (Phu − u) =: ϑ̃ + �̃. (3.7)

By Lemma 3.1 and Theorem 2.1 we have for −1 ≤ q ≤ 1∥∥�̃(t)
∥∥

L2(Ω)
+ h

∥∥∇�̃(t)
∥∥

L2(Ω)
≤ Ch2+min(0,q)

∥∥u(t)
∥∥

Ḣ2+min(0,q)(Ω)

≤ Ch2+min(0,q)t−α(1−max(q/2,0))‖v‖Ḣq(Ω).

Thus, we only need to estimate the term ϑ̃(t), which is stated in the following lemma.

Lemma 3.5. Let ̃ϑ(t) = uh(t) − Phu(t). Then for p = 0, 1, −1 < q ≤ 1, there holds (with �h = | ln h|)∥∥ϑ̃(t)
∥∥

Ḣ p(Ω)
≤ Chmin(q,0)+2−p�ht−α(1−max(q/2,0))‖v‖Ḣq(Ω).

Proof. Obviously, Ph P (∂t )̃� = P (∂t)Ph(Phu − u) = 0 and using the identity �h Rh = Ph�, we get the following problem 
for ϑ̃ :

P (∂t)ϑ̃(t) − �hϑ̃(t) = −�h(Rhu − Phu)(t), t > 0, ϑ̃(0) = 0. (3.8)

Using (3.4), ϑ̃(t) can be represented by

ϑ̃(t) = −
t∫

0

Ēh(t − s)�h(Rhu − Phu)(s)ds. (3.9)

Let A = Ēh(t − s)�h(Rhu − Phu)(s). Then by Lemma 3.3, there holds for p = 0, 1:

‖A‖Ḣ p(Ω) ≤ C(t − s)εα/2−1
∥∥∣∣�h(Rhu − Phu)(s)

∥∥∣∣
Ḣ p−2+ε (Ω)

≤ C(t − s)εα/2−1
∥∥∣∣(Rhu − Phu)(s)

∥∥∣∣
Ḣ p+ε (Ω)

.

Then by (3.5), Theorem 2.1 and Lemma 3.1 we have for p = 0, 1, −1 ≤ q ≤ 1 and ε ∈ (0, 1)

‖A‖Ḣ p(Ω) ≤ Chmin(q,0)+2−p−ε(t − s)εα/2−1
∥∥u(s)

∥∥
Ḣmin(q,0)+2(Ω)

≤ Chmin(q,0)+2−p−ε(t − s)εα/2−1s−(1−max(q/2,0))α‖v‖Ḣq(Ω).

Then plugging the estimate back into (3.9) yields

‖ϑ̃‖Ḣ p(Ω) ≤ Chmin(q,0)+2−p−ε

t∫
0

(t − s)εα/2−1s−(1−max(q/2,0))α ds‖v‖Ḣq(Ω)

≤ Cε−1hmin(q,0)+2−p−εt−α(1−max(q/2,0))‖v‖ ˙ q ,
H (Ω)
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where the last inequality follows from the fact

t∫
0

(t − s)εα/2−1s−(1−max(q/2,0))α ds = tεα/2−(1−max(q/2,0))α B
(
εα/2,1 − (

1 − max(q/2,0)
)
α

)
,

the identity

B
(
εα/2,1 − (

1 − max(q/2,0)
)
α

) = Γ (εα/2)Γ (1 − (1 − max(q/2,0))α)

Γ (εα/2 + 1 − (1 − max(q/2,0))α)
,

and the estimate Γ (εα/2) = Γ (1 + εα/2)/(εα/2) ≤ Cε−1. Now with the choice ε = 1/�h , and the fact that h−1/| ln h| is 
uniformly bounded for h > 0, we obtain the desired estimate. �

Now the triangle inequality yields an error estimate for nonsmooth initial data.

Theorem 3.2. Let f ≡ 0, u and uh be the solutions of (1.1) with v ∈ Ḣq(Ω), −1 < q ≤ 1, and (1.4) with vh = Ph v, respectively. Then 
with �h = | ln h|, there holds∥∥uh(t) − u(t)

∥∥
L2(Ω)

+ h
∥∥∇(

uh(t) − u(t)
)∥∥

L2(Ω)
≤ Chmin(q,0)+2 �h t−α(1−max(q/2,0))‖v‖Ḣq(Ω).

3.3. Error estimates for the inhomogeneous problem

Now we derive error estimates for the semidiscrete Galerkin approximation of the inhomogeneous problem with f ∈
L∞(0, T ; Ḣq(Ω)), −1 < q ≤ 0, and v ≡ 0, in both L2- and L∞-norm in time. The case f ∈ L∞(0, T ; Ḣq(Ω)), 0 < q ≤ 1, is 
simpler and can be treated analogously. To this end, we appeal again to the splitting (3.7). By Theorem 2.2 and Lemma 3.1, 
the following estimate holds for �̃:∥∥�̃(t)

∥∥
L2(Ω)

+ h
∥∥∇�̃(t)

∥∥
L2(Ω)

≤ Ch2+q−εt−εα
∥∥u(t)

∥∥
Ḣ2+q−ε (Ω)

≤ Cε−1h2+q−ε‖ f ‖L∞(0,t;Ḣq(Ω)),

where the last inequality follows from the fact t ≤ T , and tεα is bounded. Now the choice �h = | ln h|, ε = 1/�h , yields∥∥�̃(t)
∥∥

L2(Ω)
+ h

∥∥∇�̃(t)
∥∥

L2(Ω)
≤ C�hh2+q‖ f ‖L∞(0,t;Ḣq(Ω)). (3.10)

Thus, it suffices to bound the term ϑ̃ ; see the lemma below.

Lemma 3.6. Let ̃ϑ(t) be defined by (3.9), and f ∈ L∞(0, T ; Ḣq(Ω)), −1 < q ≤ 0. Then with �h = | ln h|, there holds∥∥ϑ̃(t)
∥∥

L2(Ω)
+ h

∥∥∇ϑ̃(t)
∥∥

L2(Ω)
≤ Ch2+q�2

h‖ f ‖L∞(0,t;Ḣq(Ω)).

Proof. By (3.4) and Lemma 3.3, we deduce that for p = 0, 1

∥∥ϑ̃(t)
∥∥

Ḣ p(Ω)
≤

t∫
0

∥∥Ēh(t − s)�h(Rhu − Phu)(s)
∥∥

Ḣ p(Ω)
ds

≤ C

t∫
0

(t − s)εα/2−1
∥∥∣∣�h(Rhu − Phu)(s)

∥∥∣∣
Ḣ p−2+ε (Ω)

ds

≤ C

t∫
0

(t − s)εα/2−1
∥∥∣∣Rhu(s) − Phu(s)

∥∥∣∣
Ḣ p+ε (Ω)

ds.

Further, using (3.5) and Lemma 3.1, we deduce for p = 0, 1

∥∥ϑ̃(t)
∥∥

Ḣ p(Ω)
≤ Ch−ε

t∫
0

(t − s)εα/2−1
∥∥Rhu(s) − Phu(s)

∥∥
Ḣ p(Ω)

ds

≤ Ch2+q−p−2ε

t∫
0

(t − s)εα/2−1
∥∥u(s)

∥∥
Ḣ2+q−ε (Ω)

ds.

Now by (2.5) and the choice ε = 1/�h we get for p = 0, 1:
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∥∥ϑ̃(t)
∥∥

Ḣ p(Ω)
≤ Cε−1h2+q−p−2ε‖ f ‖L∞(0,t;Ḣq(Ω))

t∫
0

(t − s)εα/2−1sεα/2ds

≤ Cε−2h2+q−p−2ε‖ f ‖L∞(0,t;Ḣq(Ω)) ≤ Ch2+q−p�2
h‖ f ‖L∞(0,t;Ḣq(Ω)),

where the first inequality follows directly from (2.5) and the second inequality follows from

t∫
0

(t − s)εα/2−1sεα/2ds ≤ tεα/2

t∫
0

(t − s)εα/2−1ds = 2

εα
tεα ≤ Cε−1.

This completes the proof of the lemma. �
An inspection of the proof of Lemma 3.6 indicates that for 0 < q < 1, one can get rid of one factor �h . Now we can state 

an error estimate in L∞-norm in time.

Theorem 3.3. Let v ≡ 0, f ∈ L∞(0, T ; Ḣq(Ω)), −1 < q ≤ 0, and u and uh be the solutions of (1.1) and (1.4) with fh = Ph f , respec-
tively. Then with �h = | ln h| and t > 0, there holds∥∥uh(t) − u(t)

∥∥
L2(Ω)

+ h
∥∥∇(

uh(t) − u(t)
)∥∥

L2(Ω)
≤ Ch2+q�2

h‖ f ‖L∞(0,t;Ḣq(Ω)).

Last, we derive an error estimate in L2-norm in time. To this end, we need a discrete analogue of Theorem 2.3, whose 
proof follows identically and hence is omitted.

Lemma 3.7. Let uh be the solution of (1.4) with vh = 0. Then for arbitrary p > −1

T∫
0

∥∥∣∣P (∂t)uh(t)
∥∥∣∣2

Ḣ p(Ω)
+ ∥∥∣∣uh(t)

∥∥∣∣2
Ḣ p+2(Ω)

dt ≤
T∫

0

∥∥∣∣ fh(t)
∥∥∣∣2

Ḣ p(Ω)
dt.

Theorem 3.4. Let v ≡ 0, f ∈ L∞(0, T ; Ḣq(Ω)), −1 < q ≤ 0, and u and uh be the solutions of (1.1) and (1.4) with fh = Ph f , respec-
tively. Then

‖uh − u‖L2(0,T ;L2(Ω)) + h
∥∥∇(uh − u)

∥∥
L2(0,T ;L2(Ω))

≤ Ch2+q‖ f ‖L2(0,T ;Ḣq(Ω)).

Proof. We use the splitting (3.7). By Theorem 2.3 and Lemma 3.1

‖�̃‖L2(0,T ;L2(Ω)) + h‖∇�̃‖L2(0,T ;L2(Ω)) ≤ Ch2+q‖u‖L2(0,T ;Ḣ2+q(Ω)) ≤ Ch2+q‖ f ‖L2(0,T ;Ḣq(Ω)).

By (3.4), (3.8) and Lemmas 3.7 and 3.1, we have for p = 0, 1:

T∫
0

∥∥ϑ̃(t)
∥∥2

Ḣ p(Ω)
dt ≤ C

T∫
0

∥∥∣∣�h(Rhu − Phu)(t)
∥∥∣∣2

Ḣ p−2(Ω)
dt ≤ C

T∫
0

∥∥∣∣(Rhu − Phu)(t)
∥∥∣∣2

Ḣ p(Ω)
dt

≤ Ch4+2q−2p
∥∥u(t)

∥∥2
L2(0,T ;Ḣ2+q(Ω))

≤ Ch4+2q−2p
∥∥ f (t)

∥∥2
L2(0,T ;Ḣq(Ω))

.

Combing the preceding two estimates yields the desired assertion. �
4. A fully discrete scheme

Now we describe a fully discrete scheme for problem (1.1) based on the finite difference method introduced in [23]. To 
discretize the time-fractional derivatives, we divide the interval [0, T ] uniformly with a time step size τ = T /K , K ∈ N. We 
use the following discretization:
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∂α
t u(x, tn+1) = 1

Γ (1 − α)

n∑
j=0

t j+1∫
t j

(tn+1 − s)−α ∂u(x, s)

∂s
ds

= 1

Γ (1 − α)

n∑
j=0

u(x, t j+1) − u(x, t j)

τ

t j+1∫
t j

(tn+1 − s)−α ds + rn+1
α,τ

= 1

Γ (2 − α)

n∑
j=0

dα, j
u(x, tn+1− j) − u(x, tn− j)

τα
+ rn+1

α,τ , (4.1)

where dα, j = ( j + 1)1−α − j1−α with j = 0, 1, 2, ..., n and rn+1
α,τ denotes the local truncation error. Lin and Xu [23, Lemma 

3.1] (see also [34, Lemma 4.1]) showed that the truncation error rn+1
α,τ can be bounded by∣∣rn+1

α,τ

∣∣ ≤ C max
0≤t≤T

∣∣utt(x, t)
∣∣τ 2−α. (4.2)

Then the multi-term fractional derivative P (∂t)u(t) at t = tn+1 in (1.1) can be discretized by

P (∂t)u(tn+1) = Pτ (∂̄t)u(tn+1) + Rn+1
τ , (4.3)

where the discrete differential operator Pτ (∂̄t) is defined by

Pτ (∂̄t)u(tn+1) := 1

Γ (2 − α)

n∑
j=0

P j
u(x, tn+1− j) − u(x, tn− j)

τα
, (4.4)

where the coefficients {P j} are defined by

P j = dα, j +
m∑

i=1

Γ (2 − α)bidαi , jτ
α−αi

Γ (2 − αi)
, j ∈N.

Then by (4.2) the local truncation error Rn+1
τ of the approximation Pτ (∂̄t)u(tn+1) is bounded by

∣∣Rn+1
τ

∣∣ ≤ C max
0≤t≤T

∣∣utt(x, t)
∣∣(τ 2−α +

m∑
i=1

biτ
2−αi

)
≤ Cτ 2−α max

0≤t≤T

∣∣utt(x, t)
∣∣. (4.5)

By the monotonicity and convergence of {dα, j} [23, Eq. (13)], we know that

P0 > P1 > ... > 0 and P j → 0 for j → ∞. (4.6)

Now we arrive at the following fully discrete scheme: find Un+1 ∈ Xh such that(
Pτ (∂̄t)Un+1,χ

) + (∇Un+1,∇χ
) = (

F n+1,χ
) ∀χ ∈ Xh, (4.7)

where F n+1 = f (x, tn+1). Upon setting γ = Γ (2 − α)τα , the fully discrete scheme (4.7) is equivalent to finding Un+1 ∈ Xh
such that for all χ ∈ Xh

P0
(
Un+1,χ

) + γ
(∇Un+1,∇χ

) =
n−1∑
j=0

(P j − P j+1)
(
Un− j,χ

) + Pn
(
U 0,χ

) + γ
(

F n+1,χ
)
. (4.8)

The next result gives the stability of the fully discrete scheme.

Lemma 4.1. The fully discrete scheme (4.8) is unconditionally stable, i.e., for all n ∈N∥∥Un
∥∥

L2(Ω)
≤ ∥∥U 0

∥∥
L2(Ω)

+ c max
1≤ j≤n

∥∥F j
∥∥

L2(Ω)
, (4.9)

where the constant c depends only on α and T .

Proof. The case n = 1 is trivial. Then the proof proceeds by mathematical induction. By noting the monotone decreasing 
property of the sequence {Pn} from (4.6) and choosing χ = Un+1 in (4.8), we deduce
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P0
∥∥Un+1

∥∥
L2(Ω)

≤
n−1∑
j=0

(P j − P j+1)
∥∥Un− j

∥∥
L2(Ω)

+ Pn
∥∥U 0

∥∥
L2(Ω)

+ γ
∥∥F n+1

∥∥
L2(Ω)

≤
n−1∑
j=0

(P j − P j+1)
∥∥Un− j

∥∥
L2(Ω)

+ Pn
∥∥U 0

∥∥
L2(Ω)

+ γ max
1≤ j≤n+1

∥∥F j
∥∥

L2(Ω)

≤ P0
∥∥U 0

∥∥
L2(Ω)

+ (
c(P0 − Pn) + γ

)
max

1≤ j≤n+1

∥∥F j
∥∥

L2(Ω)
.

Using the monotonicity of {Pn} again gives

c(P0 − Pn) + γ ≤ c P0 − (c P N − γ ).

It suffices to choose a constant c such that c P N − γ > 0. By taking τ = T /N and noting the concavity of the function 
g(τ ) = (T + τ )1−α , we get g(τ ) − g(0) ≤ g′(0)τ , i.e., (T + τ )1−α − T 1−α ≤ (1 − α)T −ατ , and thus

dα,N = (N + 1)1−α − N1−α = (
(T + τ )1−α − T 1−α

)
τα−1 ≤ (1 − α)T −ατα.

Hence

P N ≤
(

(1 − α) +
m∑

i=1

Γ (2 − α)bi(1 − αi)

Γ (2 − αi)
T α−αi

)
T −ατα =: C0T −ατα.

Then by choosing c = C−1
0 T α we obtain

P0
∥∥Un+1

∥∥
L2(Ω)

≤ P0
∥∥U 0

∥∥
L2(Ω)

+ c P0 max
1≤ j≤n+1

∥∥F j
∥∥

L2(Ω)
.

The desired result follows by dividing both sides by P0. �
Next we state an error estimate for the fully discrete scheme. In order to analyze the temporal discretization error, we 

assume that the solution is sufficiently smooth.

Theorem 4.1. Let the solution u be sufficiently smooth, and {Un} ⊂ Xh be the solution of the fully discrete scheme (4.8) with U 0 such 
that ∥∥U 0 − v

∥∥
L2(Ω)

≤ Ch2‖v‖Ḣ2(Ω).

Then there holds∥∥u(tn) − Un
∥∥

L2(Ω)
≤ C

(
h2

(
‖v‖H2(Ω) + ‖ f ‖L∞(0,T ;L2(Ω)) + max

0≤t≤tn

‖ut‖Ḣ2(Ω)

)
+ τ 2−α max

0≤t≤tn

∥∥utt(t)
∥∥

L2(Ω)

)
.

Proof. We split the error en = u(tn) − Un into

en = (
u(tn) − Rhu(tn)

) + (
Rhu(tn) − Un) =: �n + θn.

Here �n is a special case of �(t) := u(t) − Rhu(t) with t = tn . Applying Lemma 3.1, we have∥∥�(t)
∥∥

L2(Ω)
≤ Ch2∥∥u(t)

∥∥
Ḣ2(Ω)

≤ Ch2(‖v‖H2(Ω) + ‖ f ‖L∞(0,T ;H1(Ω))

)
,∥∥∂t�(t)

∥∥
L2(Ω)

≤ Ch2∥∥∂t u(t)
∥∥

Ḣ2(Ω)
.

It suffices to bound the term θn . By comparing (1.1) and (4.7), we have the error equation(
Pτ (∂̄t)θ

n,χ
) + (∇θn,∇χ

) = (
ωn,χ

)
, (4.10)

where the right hand side ωn is given by

ωn = Rh Pτ (∂̄t)u(tn) − P (∂t)u(tn) = −Pτ (∂̄t)�n − Rn
τ := ωn

1 + ωn
2,

where the truncation error Rn
τ is defined in (4.3). Using the identity

� j+1 − � j =
t j+1∫
t j

�t(t)dt,

we can bound the term ωn by
1
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Table 1
Numerical results for the case with a smooth solution at t = 1 with β = 0.2 and α = 0.25, 0.5, 0.95, discretized on a uniform mesh with h = 2−10 and 
τ = 0.2 × 2−k .

α τ 1/10 1/20 1/40 1/80 1/160 Rate

α = 0.25 L2-norm 5.58e-4 1.73e-4 5.25e-5 1.51e-5 3.90e-6 ≈1.81 (1.75)
α = 0.5 L2-norm 1.45e-3 5.11e-4 1.78e-4 6.17e-5 2.08e-5 ≈1.55 (1.50)
α = 0.95 L2-norm 7.92e-3 3.79e-3 1.82e-3 8.73e-4 4.20e-4 ≈1.06 (1.05)

∥∥ωn
1

∥∥
L2(Ω)

≤ C

∥∥∥∥∥
n−1∑
j=0

�(t j+1) − �(t j)

τ

t j+1∫
t j

(tn − s)−α +
m∑

i=1

bi(tn − s)−αi ds

∥∥∥∥∥
L2(Ω)

≤ C
n−1∑
j=0

τ−1

t j+1∫
t j

∥∥�t(t)
∥∥

L2(Ω)
dt

t j+1∫
t j

(tn − s)−α +
m∑

i=1

bi(tn − s)−αi ds

≤ Ch2 max
0≤t≤tn

‖ut‖Ḣ2(Ω)

( tn∫
0

(tn − s)−α +
m∑

i=1

bi(tn − s)−αi ds

)

≤ Ch2 max
0≤t≤tn

‖ut‖Ḣ2(Ω).

Meanwhile, the second term ωn
2 can be bounded using (4.5). Then by the stability from Lemma 4.1 for the error equation 

(4.10), we obtain∥∥θn
∥∥

L2(Ω)
≤ C

(∥∥θ0
∥∥

L2(Ω)
+ max

1≤ j≤n

∥∥ω j
1

∥∥
L2(Ω)

+ max
1≤ j≤n

∥∥ω j
2

∥∥
L2(Ω)

)
≤ C

(
h2‖v‖Ḣ2(Ω) + h2 max

0≤t≤tn

‖ut‖Ḣ2(Ω) + τ 2−α max
0≤t≤tn

∥∥utt(t)
∥∥

L2(Ω)

)
. �

Remark 4.1. The error estimate in Theorem 4.1 holds only if the solution u is sufficiently smooth. There seems no known 
error estimate expressed in terms of the initial data (and right hand side) only for fully discrete schemes for nonsmooth 
initial data even for the single-term time-fractional diffusion equation with a Caputo fractional derivative.

5. Numerical experiments

In this part we present one- and two-dimensional numerical experiments to verify the error estimates in Sections 3
and 4. We shall discuss the cases of a homogeneous problem and an inhomogeneous problem separately.

5.1. The case of a smooth solution

Here we consider the following one-dimensional problem on the unit interval Ω = (0, 1) with 0 < β < α < 1

∂α
t u(x, t) + ∂

β
t u(x, t) − ∂2

x u(x, t)= f , 0 < x < 1, 0 ≤ t ≤ T ,

u(0, t) = u(1, t)=0, 0 ≤ t ≤ T ,

u(x,0)= v(x), 0 ≤ x ≤ 1.

(5.1)

In order to verify the estimate in Theorem 4.1, we first check the case that the solution u is sufficiently smooth. To this end, 
we set initial data v to v(x) = x(1 − x) and the source term f to f (x, t) = (2t2−α/Γ (3 − α) + 2t2−β/Γ (3 − β))(−x2 + x) +
2(1 + t2). Then the exact solution u is given by u(x, t) = (1 + t2)(−x2 + x), which is very smooth.

In our computation, we divide the unit interval Ω into N equally spaced subintervals, with a mesh size h = 1/N . Sim-
ilarly, we fix the time step size at τ = 1/K . Here we choose N large enough so that the space discretization error is 
negligible, and the time discretization error dominates. We measure the accuracy of the numerical approximation U n by 
the normalized L2 error ‖Un − u(tn)‖L2(Ω)/‖v‖L2(Ω) . In Table 1, we show the temporal convergence rates, indicated in the 
column rate (the number in bracket is the theoretical rate), for three different α values, which fully confirm the theoretical 
result, cf. also Fig. 1 for the plot of the convergence rates.

5.2. Homogeneous problems

In this part we present numerical results to illustrate the spatial convergence rates in Section 3. We performed numerical 
tests on the following three different initial data:
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Fig. 1. Numerical results for the case with a smooth solution at t = 1 with β = 0.2 and α = 0.25, 0.5, 0.95, discretized on a uniform mesh h = 2−10 and 
τ = 0.2 × 2−k .

Fig. 2. Numerical results for example (2a) at t = 1 with β = 0.2 and α = 0.25, 0.5, 0.95, discretized on a uniform mesh h = 2−k and τ = 2 × 10−5.

Table 2
Numerical results for the nonsmooth case (2b) with α = 0.5 and β = 0.2 at t = 1, 0.01, 0.001, discretized on a uniform mesh with h = 2−k and τ =
t/(5 × 104).

t k 3 4 5 6 7 Rate

t = 1 L2-norm 1.86e-3 4.64e-4 1.16e-4 2.87e-5 6.88e-6 ≈2.02 (2.00)
H1-norm 4.89e-2 2.44e-2 1.22e-2 6.07e-3 2.96e-3 ≈1.01 (1.00)

t = 0.01 L2-norm 8.04e-3 2.00e-3 5.01e-4 1.24e-4 2.98e-5 ≈2.03 (2.00)
H1-norm 2.31e-1 1.16e-1 5.79e-2 2.88e-2 1.40e-2 ≈1.01 (1.00)

t = 0.001 L2-norm 1.65e-2 4.14e-3 1.03e-3 2.56e-4 6.18e-4 ≈2.01 (2.00)
H1-norm 5.15e-1 2.58e-1 1.29e-1 6.41e-2 3.13e-2 ≈1.01 (1.00)

(2a) Smooth data: v(x) = sin(2πx) which belongs to H2(Ω) ∩ H1
0(Ω).

(2b) Nonsmooth data: v(x) = χ(0,1/2] which lies in the space Ḣε(Ω) for any ε ∈ [0, 1/2).
(2c) Very weak data: v(x) = δ1/2(x), a Dirac δ1/2(x)-function concentrated at x = 1/2, which belongs to the space Ḣ−ε (Ω)

for any ε ∈ (1/2, 1].

In order to check the convergence rate of the semidiscrete scheme, we discretize the fractional derivatives with a small time 
step τ so that the temporal discretization error is negligible. In view of the possibly singular behavior as t → 0, we set the 
time step τ to τ = t/(5 × 104), with t being the terminal time. For each example, we measure the error e(t) = u(t) − uh(t)
by the normalized errors ‖e(t)‖L2(Ω)/‖v‖L2(Ω) and ‖∇e(t)‖L2(Ω)/‖v‖L2(Ω) . The normalization enables us to observe the 
behavior of the error with respect to time in case of nonsmooth initial data.

5.2.1. Numerical results for example (2a): smooth initial data
The numerical results show O (h2) and O (h) convergence rates for the L2- and H1-norms of the error, respectively, for 

all three different α values, cf. Fig. 2. As the value of α increases from 0.25 to 0.95, the error at t = 1 decreases accordingly, 
which resembles that for the single-term time-fractional diffusion equation [12].

5.2.2. Numerical results for example (2b): nonsmooth initial data
For nonsmooth initial data, we are particularly interested in errors for t close to zero, and thus we also present the errors 

at t = 0.01 and t = 0.001; see Table 2. The numerical results fully confirm the theoretically predicted rates for nonsmooth 
initial data. Further, in Table 3 we show the L2-norm of the error for fixed h = 2−6 and t → 0. We observe that the error 
deteriorates as t → 0. Upon noting v ∈ Ḣ1/2−ε(Ω), it follows from Theorem 3.2 that the error grows like O (t−3α/4), which 
agrees well with the results in Table 3.

5.2.3. Numerical results for example (2c): very weak initial data
The numerical results show a superconvergence with a rate of O (h2) in the L2-norm and O (h) in the H1-norm, cf. 

Fig. 3(a). This is attributed to the fact that in one-dimension the solution with the Dirac δ-function as the initial data is 
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Table 3
L2-error with α = 0.5 and h = 2−6 for t → 0 for nonsmooth initial data (2b).

t 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8 Rate

Case (2b) 2.56e-4 5.39e-4 1.15e-3 2.91e-3 6.77e-3 1.55e-2 ≈−0.37(−0.375)

Fig. 3. Numerical results for example (2c) with α = 0.5, β = 0.2 at t = 0.005, 0.01, 1.0, uniform mesh in time with τ = t/(5 × 104).

Table 4
Numerical results for example (3a) with α = 0.5 and β = 0.2 at t = 1, 0.01, 0.001, discretized on a uniform mesh h = 2−k and τ = t/(5 × 104).

t k 3 4 5 6 7 Rate

t = 1 L2-norm 1.76e-3 4.40e-4 1.10e-4 2.71e-5 6.53e-6 ≈2.01 (2.00)
H1-norm 4.72e-2 2.36e-2 1.18e-2 5.86e-3 2.86e-3 ≈1.01 (1.00)

t = 0.01 L2-norm 6.34e-4 1.59e-4 3.96e-5 9.82e-6 2.38e-6 ≈2.01 (2.00)
H1-norm 1.89e-2 9.46e-3 4.72e-3 2.35e-3 1.15e-3 ≈1.01 (1.00)

t = 0.001 L2-norm 4.55e-4 1.15e-4 2.88e-5 1.15e-6 1.73e-6 ≈2.02 (2.00)
H1-norm 1.45e-2 7.31e-3 3.66e-3 1.82e-3 8.88e-4 ≈1.01 (1.00)

smooth from both sides of the support point and the finite element spaces Xh have good approximation property. When 
the singularity point x = 1/2 is not aligned with the grid, Fig. 3(b) indicates an O (h3/2) and O (h1/2) convergence rate for 
the L2- and H1-norm of the error, respectively, which agrees with our theory.

5.3. Inhomogeneous problems

Now we consider the inhomogeneous problem with v ≡ 0 on the unit interval Ω = (0, 1) and test the following two 
examples:

(3a) Nonsmooth data: f (x, t) = (χ[1/2,1](t) + 1)χ[0,1/2](x). The jump at x = 1/2 leads to f (t, ·) /∈ Ḣ1(Ω); nonetheless, for 
any ε > 0, f ∈ L∞(0, T ; Ḣ1/2−ε(Ω)).

(3b) Very weak data: f (x, t) = (χ[1/2,1](t) + 1)δ1/2(x) where f involves a Dirac δ1/2(x)-function concentrated at x = 0.5.

5.3.1. Numerical results for example (3a)
Since the errors are bounded independently of the time, cf. Theorem 3.3, we only present the errors in L∞ in time, i.e., 

‖e(t)‖L2(Ω) and ‖∇e(t)‖L2(Ω) . In Table 4, we present the L2- and H1-error at t = 1, 0.01, and 0.001. The numerical results 
agree well with our theoretical predictions, i.e., O (h2) and O (h) convergence rates for the L2- and H1-norms of the error, 
respectively.
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Table 5
Numerical results for example (3b) with α = 0.5 and β = 0.2 at t = 1, 0.01, 0.001, discretized on a uniform mesh h = 1/(2k + 1) and τ = t/(5 × 104).

t k 3 4 5 6 7 Rate

t = 1 L2-norm 1.02e-2 4.01e-3 1.49e-3 5.35e-4 1.82e-4 ≈1.49 (1.50)
H1-norm 3.24e-1 2.35e-1 1.65e-1 1.11e-1 6.94e-2 ≈0.50 (0.50)

t = 0.01 L2-norm 4.66e-3 1.91e-3 7.29e-4 2.64e-4 9.02e-5 ≈1.45 (1.50)
H1-norm 1.54e-1 1.14e-1 8.16e-2 5.54e-2 3.47e-2 ≈0.55 (0.50)

t = 0.001 L2-norm 4.30e-3 1.83e-3 7.12e-4 2.61e-4 8.97e-5 ≈1.45 (1.50)
H1-norm 1.47e-1 1.11e-1 8.05e-2 5.50e-2 3.45e-2 ≈0.55 (0.50)

Table 6
Numerical results for example (3b) with α = 0.5 and β = 0.2 at t = 1, 0.01, 0.001, discretized on a uniform mesh with h = 2−k and τ = t/(5 × 104).

t k 3 4 5 6 7 Rate

t = 1 L2-norm 5.35e-4 1.34e-4 3.35e-5 8.31e-6 2.01e-6 ≈2.01 (1.50)
H1-norm 1.49e-2 7.48e-3 3.74e-3 1.86e-3 9.07e-4 ≈1.01 (0.50)

t = 0.01 L2-norm 6.67e-4 1.67e-4 4.17e-5 1.04e-5 2.52e-6 ≈2.03 (1.50)
H1-norm 2.56e-2 1.29e-2 6.44e-3 3.20e-3 1.56e-3 ≈1.02 (0.50)

t = 0.001 L2-norm 8.19e-4 2.08e-4 5.22e-5 1.30e-5 3.19e-6 ≈2.02 (1.50)
H1-norm 3.96e-2 2.00e-2 1.00e-3 4.98e-3 2.45e-3 ≈1.01 (0.50)

Table 7
Numerical results for (4a) with α = 0.5 and β = 0.2 at t = 0.1, 0.01, 0.001, discretized on a uniform mesh, h = 2−k and τ = t/104.

t k 3 4 5 6 7 Rate

t = 0.1 L2-norm 5.25e-3 1.35e-3 3.38e-4 8.24e-5 1.98e-5 ≈2.06 (2.00)
H1-norm 9.10e-2 4.53e-2 2.25e-2 1.09e-2 4.99e-3 ≈1.04 (1.00)

t = 0.01 L2-norm 1.25e-2 3.23e-3 8.09e-4 1.97e-4 4.65e-5 ≈2.05 (2.00)
H1-norm 2.18e-1 1.08e-1 5.35e-2 2.62e-2 1.27e-2 ≈1.05 (1.00)

t = 0.001 L2-norm 3.02e-2 7.84e-3 1.97e-3 4.81e-4 1.16e-4 ≈2.03 (2.00)
H1-norm 5.30e-1 2.64e-1 1.31e-1 6.38e-2 3.14e-2 ≈1.04 (1.00)

5.3.2. Numerical results for example (3b)
In Table 5 we show convergence rates at three different times, i.e., t = 0.1, 0.01, and 0.001. Here the mesh size h is 

chosen to be h = 1/(2k + 1), and thus the support of the Dirac δ-function does not align with the grid. The results indicate 
an O (h1/2) and O (h3/2) convergence rate for the H1- and L2-norm of the error, respectively, which agrees well with the 
theoretical prediction. If the Dirac δ-function is supported at a grid point, both L2- and H1-norms of the error exhibit a 
superconvergence phenomenon, i.e., orders O (h2) and O (h), respectively, which are one half order higher than theoretical 
ones, cf. Table 6. This superconvergence phenomenon still awaits theoretical justifications.

5.4. Examples in two-dimension

In this part, we present three two-dimensional examples on the unit square Ω = (0, 1)2.

(4a) Nonsmooth initial data: v = χ(0,1/2)×(0,1) and f ≡ 0.
(4b) Very weak initial data: v = δΓ with Γ being the union of {1/4} × [1/4, 3/4] ∪ [1/4, 3/4] × {3/4} clockwise and 

[1/4, 3/4] × {1/4} ∪ {3/4} × [1/4, 3/4] counterclockwise. The duality is defined by 〈δΓ , φ〉 = ∫
Γ

φ(s) ds. By Hölder’s 
inequality and the continuity of the trace operator from Ḣ1/2+ε(Ω) to L2(Γ ) [2], we deduce δΓ ∈ H−1/2−ε(Ω).

(4c) Nonsmooth right hand side: f (x, t) = (χ[1/20,1/10](t) + 1)χ(0,1/2)×(0,1)(x) and v ≡ 0.

To discretize the problem, we divide each direction into N = 2k equally spaced subintervals, with a mesh size h = 1/N
so that the domain [0, 1]2 is divided into N2 small squares. We get a symmetric mesh by connecting the diagonal of each 
small square.

The numerical results for example (4a) are shown in Table 7, which agree well with Theorem 3.2, with a rate O (h2) and 
O (h), respectively, for the L2- and H1-norm of the error. Interestingly, for example (4b), both the L2-norm and H1-norm of 
the error exhibit superconvergence, cf. Table 8. The numerical results for example (4c) confirm the theoretical results; see 
Table 9. The solution profiles for examples (4b) and (4c) at t = 0.1 are shown in Fig. 4, from which the nonsmooth region 
of the solution can be clearly observed.
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Fig. 4. Numerical solutions of examples (4b) and (4c) with h = 2−6, α = 0.5, β = 0.2 at t = 0.1.

Table 8
Numerical results for example (4b) with α = 0.5 and β = 0.2 at t = 0.1, 0.01, 0.001 for a uniform mesh with h = 2−k and τ = t/104.

t k 3 4 5 6 7 Rate

t = 0.1 L2-norm 1.18e-2 3.18e-3 8.41e-4 2.18e-4 5.41e-5 ≈1.92 (1.50)
H1-norm 2.25e-1 1.13e-1 6.60e-2 3.40e-2 1.66e-2 ≈0.92 (0.50)

t = 0.01 L2-norm 2.82e-2 7.62e-3 2.28e-3 5.26e-4 1.25e-4 ≈1.95 (2.00)
H1-norm 5.66e-1 3.09e-1 1.65e-1 8.52e-2 4.19e-2 ≈0.94 (1.00)

t = 0.001 L2-norm 6.65e-2 1.83e-3 4.98e-3 1.33e-3 3.30e-4 ≈1.91 (2.00)
H1-norm 1.66e0 8.93e-1 4.75e-1 2.43e-1 1.21e-1 ≈0.95 (1.00)

Table 9
Numerical results for example (4c) with α = 0.5 and β = 0.2 at t = 0.1, 0.01, 0.001 for a uniform mesh with h = 2−k and τ = t/104.

t k 3 4 5 6 7 Rate

t = 0.1 L2-norm 2.28e-3 5.86e-4 1.47e-4 3.58e-5 7.91e-6 ≈2.07 (2.00)
H1-norm 3.97e-2 1.97e-2 9.77e-3 4.76e-3 2.13e-3 ≈1.06 (1.00)

t = 0.01 L2-norm 1.06e-3 2.73e-4 6.86e-5 1.67e-6 3.70e-7 ≈2.06 (2.00)
H1-norm 1.85e-2 9.18e-3 4.56e-3 2.22e-3 9.94e-4 ≈1.06 (1.00)

t = 0.001 L2-norm 8.66e-4 2.28e-4 5.75e-5 1.40e-6 3.11e-7 ≈2.04 (2.00)
H1-norm 1.56e-2 7.82e-3 3.88e-3 1.90e-3 8.47e-4 ≈1.05 (1.00)

6. Concluding remarks

In this work, we have developed a simple numerical scheme based on the Galerkin finite element method for a multi-
term time fractional diffusion equation which involves multiple Caputo fractional derivatives in time. A complete error 
analysis of the space semidiscrete Galerkin scheme is provided. The theory covers the practically very important case of 
nonsmooth initial data and right hand side. The analysis relies essentially on some new regularity results of the multi-
term time fractional diffusion equation. Further, we have developed a fully discrete scheme based on a finite difference 
discretization of the Caputo fractional derivatives. The stability and error estimate of the fully discrete scheme were es-
tablished, provided that the solution is smooth. The extensive numerical experiments in one- and two-dimension fully 
confirmed our convergence analysis: the empirical convergence rates agree well with the theoretical predictions for both 
smooth and nonsmooth data.
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