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Bulk ionization potentials and band alignments from three-dimensional periodic calculations
as demonstrated on rocksalt oxides
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The position of the band edges of a material plays a key role in determining the properties for a range of
applications, but fundamental band bending is an interface-dependent property that cannot be quantified without
knowledge of bulk electron energy levels. We present a method for calculating the bulk position of the valence
band maximum, and therefore the bulk ionization potential, from periodic plane wave calculations as shown
for a range of rocksalt ionic oxides. We demonstrate that, for the popular “slab alignment” technique, explicit
consideration of any surface induced electronic polarization is necessary to calculate accurate bulk ionization
potentials. Our proposed method to quantify these surface effects, using polarizable-shell based interatomic
potentials, is very computationally affordable, and our updated slab alignment method yields much improved
agreement with the available experimental data.
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I. INTRODUCTION

Knowledge of ionization potentials, fundamental band
bending, and electronic band alignment is crucial to our under-
standing of wide-ranging physical phenomena and chemical
processes at the surfaces and interfaces of different materials
[1]. A number of heterojunction alignment schemes have
been advanced based on surface spectroscopic, electrical
contact, or electrochemical measurements [1–7], which were
also supported by electronic structure calculations, typically
using density functional theory (DFT) [7–12]. Based on such
schemes, complemented by studies of defect energetics, a
concept of a fundamental charge neutrality level has been
proposed that is common in all materials and exploited
to interpret or predict defect properties and/or response to
radiation [13–15]. The schemes, however, differ significantly
in their positioning of the charge neutrality level with respect
to vacuum or mutual band alignment. In contrast, the vacuum
level itself is common to all materials by definition; it can serve
as a common source or sink of charge for all finite samples.
Therefore, establishing a robust and reliable methodology that
will let us access this level from commonly employed ab initio
techniques is necessary.

Currently, there are several computational approaches to the
calculation of bulk ionization potentials and band alignment;
each, however, has inherent difficulties. Indeed, we aspire to
quantify a local property of the bulk system that is assumed to
be independent of surface termination, and therefore periodic
boundary conditions (PBC) are applied [16] to a unit cell for
calculation purposes, most commonly in the context of Kohn-
Sham equations [17,18], where the energy reference is a result
of particular implementation of lattice sums [19] and, usually,
is not trivial to assess. In one approach, physical models
of real interfaces are constructed, thus providing directly
the band structure across the interface [10,20–23]. Upon
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formation of the interface between two different materials,
a dipole is necessarily formed, which results in an offset in
the electrostatic potential, for which in practice it is difficult to
obtain a converged value [14]. An alternative method, which
is less commonly applied, employs two-dimensional periodic
slab models and provides direct access to a common reference
level as an asymptote in vacuum, e.g., as implemented in
CRYSTAL [24]. Here, the problem arises in turn from a dipole
formed on surface termination, but at least now it depends on
the properties of one material only, and the potential offset is
the real physical origin of surface band bending. However,
the two-dimensional (2D) lattice sums are not well suited
for plane-wave methods, implemented in such popular codes
as CPMD [25], CASTEP [26], and VASP [27,28]. To access the
vacuum level from plane-wave calculations, a periodic slab
model is commonly employed, akin to the 2D slab discussed
above; however, a large interslab vacuum layer is created. The
middle of the slab approximates the bulk, whereas the middle
of the empty layer represents vacuum [29–34].

In this work, we demonstrate that, due to the lack of
consideration for surface polarization, this approach results in
errors even for the simplest rocksalt structured II-VI ionic ox-
ides, themselves of scientific interest due to their applications
as catalytic substrates [35,36] and characterizable electronic
properties [37,38], some of which are quite unusual, e.g.,
negative electron affinity, or work function [39]. Furthermore,
the stability of the (100) surfaces for these materials [40] means
that experimental surface measurements can be compared to
simulations without need for consideration of complex surface
restructuring. We propose a scheme for calculating the position
of the vacuum potential for bulk materials that takes advantage
of the intuitive strengths of the previous method, but also takes
into account the potential offset incurred through polarization
effects, accounting for the electronic redistribution at the slab
terminating surfaces in a semiclassical approximation. Our
approach results in a substantial improvement in comparison
to experiment, while being only slightly more computationally
expensive.
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II. METHODOLOGY

A. Bulk ionization potential

By convention, the vacuum potential, Vvac, is the potential
of an electron far removed from the bulk, and is set to zero.
The difference between the highest occupied one-electron
energy level of a system and the vacuum level, −eVvac, is
considered to be the first ionization potential of a system via
Koopman’s theorem [41]; while this approximation is not
strictly valid for the Kohn-Sham formalism, the errors in the
accuracy of resulting electronic energies have been shown to
be small for bound states [42]. The highest occupied energy
level (εVBM) is referred to as the energy of the valence band
maximum (VBM) in bulk materials, and therefore the first
ionization potential of the bulk can be defined as the energy
required to move an electron from the VBM to vacuum [43]:

I b
VBM = −eVvac − εb

VBM = −εb
VBM, (1)

where b denotes the bulk.
In gas-phase calculations, using for example localized basis

sets, periodicity is not applied, and the concept of the vacuum
potential far removed from a molecule is easily understood.
However, the inherent periodicity of a plane-wave basis means
that in periodic calculations one must create a vacuum region
where Vvac can be accessed. Typically, this is achieved by
creating a surface slab “supercell,” where a thick slab layer
represents the bulk material, and a large interslab vacuum
space is included to allow assessment of Vvac. In this case,
however, the electrostatic potential does not disappear in the
middle of the vacuum region (V s

bg, where bg signifies the
background level, and s signifies surface), but may remain
finite [30,32] due to both the slow convergence of the 3D
lattice sums with respect to the vacuum-layer width and/or the
effects of surface band bending. However, V s

bg is analogous
to Vvac, and so the two may be aligned with a shift in energy
equal in magnitude to eV s

bg, with e being the electron charge.
By shifting all the electron energies by the same quantity,
the “absolute” electron energies for a slab can therefore be
obtained [29,32], as illustrated in Fig. 1.

If the slab layer is thick enough then the atoms in the middle
of the slab may be likened to being in a bulk environment; thus,
it is possible to relate the energy levels for the central atoms
of the slab to the energy levels of the same atoms in the bulk.
Assuming that the lowest energy core states (e.g., 1s) on atoms
in the middle of the slab are unperturbed by surface effects,
due to their explicit localized nature, one can take such core
states in the slab and calculate the difference between their
energy (εs

c, where c signifies the core level) and the energy of
the same quantum state in the bulk (εb

c ) [44]:

�εc = εb
c − εs

c. (2)

One can then define the ionization potential of the reference
1s core state in the slab model (Ic) as the energy required to
take an electron from the core level (εs

c) to the midvacuum
layer (V s

bg); by convention this approximation then equates Ic

to the ionization potential of the corresponding state in the
bulk as [29]

I s
c = −eV s

bg − εs
c, (3)

I b
c = −eV s

bg − εb
c + �εc = I s

c , (4)

FIG. 1. (Color online) Diagram of vacuum alignment methods:
Ic (black) is the difference between −eV s

bg and εs
c, and εb

c is the
position of the core levels in bulk using this method; Ic,D (purple) is
the difference between −eV s

bg and εs
c with Ds considered explicitly,

and εb
c,D is the position of the core levels in bulk using this method.

�εb
VBM (red) is the difference in energy between the core and valence

levels in bulk, used to position the valence band maximum (VBM)
by each method (εb

VBM and εb
VBM,D); VB (white) is the valence band;

Vvac (gray) is the vacuum level. IVBM is therefore the first ionization
potential of the bulk, calculated as the difference between −eVvac and
εb

VBM (black) and εb
VBM,D (purple) and labeled as I b

VBM and I b
VBM,D,

respectively.

and from this the states in the bulk system can be aligned to
the vacuum level by shifting all the energy levels in the bulk
by �εc. This therefore allows an absolute natural alignment of
important bulk electron energies, such as εVBM, for different
materials at the DFT level as the first ionization potential can
now be defined as:

I b
VBM = −eV s

bg − εb
VBM + �εc. (5)

For a full understanding of surface properties, including
surface band bending effects from different surfaces and/or
interfaces, I b

c provides a common reference energy. However,
for a slab model with a fixed bulk geometry, introducing a
surface will alter the electronic properties of a system: the
additional electronic degrees of freedom will lead to electrons
migrating to or away from the vacuum environment, resulting
in the formation of surface multipoles that create an inherent
offset in the electrostatic potential in a slab [45,46]. Therefore,
we outline below a method that allows evaluation of surface
polarization effects, which effectively recovers the surface
independent nature of the alignment of bulk levels and thus
offers the ability to calculate bulk ionization potentials; and
only then can one begin to consider separately interface-
dependent effects such as fundamental band bending. We
note that the slab models could be geometry optimized for
the calculation of surface specific properties, and then εs

VBM
for a final geometry can be directly aligned with V s

bg to give
a valid absolute electron energy level for this surface only.
The geometry optimized surfaces could also be used to assess
bulk energy levels; however, the analysis is complicated by
the additional optimization of nuclear coordinates, which may
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lead to increases in surface polarization that can further shift εs
c

[44]. Therefore, we emphasize here that the simplest method
to assess εs

c accurately is by fixing the slab atomic structure to
that of the bulk geometry.

In an ionic material, the shift in energy levels upon surface
termination is correlated with changes in the underlying elec-
trostatic potential; more specifically, electron redistribution
will directly influence the electrostatic potential through the
formation of surface multipoles. Therefore, changes in εs

c can
be quantified by calculating the change in the electrostatic
potential in the middle of the slab (�V s

c ) and in the middle of
the vacuum gap (�V s

bg) due to electron redistribution:

�V s
c = V s,relax

c − V s
c , (6)

�V s
bg = V

s,relax
bg − V s

bg, (7)

where V s
c and V s

bg [as defined for Eq. (3)] are the electrostatic

potentials before electron redistribution, and V s,relax
c and V

s,relax
bg

are the electrostatic potentials after electronic relaxation. With
the nuclear coordinates fixed, an increase in �V s

c indicates
electron redistribution towards the surface, while a decrease
results from electron redistribution towards the center of
the slab. So in the absence of polarization, as in the bulk
environment, �V s

bg = �V s
c = 0. We can therefore define the

surface polarization correction as the multipolar shift, Ds:

Ds = e
(
�V s

bg − �V s
c

)
, (8)

where the dipolar parallel plate (planar) capacitor model is
used to define the sign on �V s

c and �V s
bg: if an electronic dipole

forms pointing in to the slab, with negative charge at the sur-
face, then �V s

c > 0 > �V s
bg [47]. This stabilizes εs

c relative to
the V s

bg, meaning that I s
c would be inflated. To remove this dipo-

lar effect, therefore, the polarization free environment must be
recreated, as achieved by subtracting out the positive shift in
electrostatic potential for the central atoms in the slab, −e�V s

c ,
and by adding e�V s

bg to remove the negative shift in V s
bg.

Ds can then be combined with I b
c to provide an improved

assessment of the bulk ionization potentials:

I b
c,D = I b

c + Ds, (9)

where I b
c is as defined in Eq. (4). Thus I b

c,D is the bulk
ionization potential for the core levels including the effects for
surface polarization, and bulk energy levels must be shifted
by Ds, as well as �εc, in order to align them correctly with
the Vvac. This applies to all energy levels and thus the first
ionization potential, as defined in Eq. (5), similarly becomes
I b

VBM,D = I b
VBM + Ds.

B. Computational details

DFT calculations have been performed using a plane-wave
basis set, as implemented in the software package VASP

[27,28], to obtain accurate electron energy levels. Only the
valence electronic configurations were calculated explicitly,
with interactions between the core and valence electrons
described using the PAW method [48]. The valence electronic
configurations for O (2s22p4), Mg (2p63s2), Ca (3s23p64s2),
Sr (4s24p65s2), and Ba (5s25p66s2) all included semicore
states. A plane-wave kinetic energy cutoff of 500 eV and a con-

verged Monkhorst-Pack grid [49] across the first Brillouin zone

with k-points spacing of 0.04 Å
−1

or denser have been used
throughout. The sole unit cell parameter for cubic rocksalts, a0,
was optimized using the analytical stress tensor, and the plane
waves were adjusted between geometry optimization steps to
remove Pulay stress [50]. Structural convergence was achieved
when the forces on all atoms were less than 0.01 eV Å−1. We
have used the PBE [51] and PBESol [52] exchange-correlation
(XC) functionals, which are both examples of the generalized
gradient approximation (GGA), as well as their nonlocal
hybrid counterparts, namely PBE0 [53] and PBESol0, wherein
25% of Hartree-Fock exchange is combined with the GGA XC
functionals [53,54]. High-frequency dielectric constants were
calculated via linear response density functional perturbation
theory at all four levels of theory [55], with >200 unoccupied
bands included in the calculation.

To represent surface termination, slab supercells were
constructed from the optimized bulk unit cell with a (100)
termination. The electronic structure in the middle of the slab
should correctly reproduce the bulk electronic structure, and
the slab is terminated with the (100) surface as this produces
the lowest disturbance to the electronic structure, i.e. the fewest
bonds are severed, has the lowest surface energy and, therefore,
has the least effect on the electronic structure. Furthermore, a
Tasker type 1 surface [56], with no residual polar moments, is
preferably chosen; otherwise, higher order multipoles must be
considered as contributing to Ds. A minimum of eight atomic
layers in the slab model and a vacuum layer of at least 18 Å
proved necessary to converge the electronic properties in the
middle of the slab, with εs

c converged to 0.01 eV. The electronic
structure of the slab was then calculated with DFT, with the
atomic structure fixed in the bulklike arrangement [29], and
−eV s

bg is taken to be the Hartree potential (energy density) in
the middle of the vacuum layer, as illustrated in Fig. 2.

FIG. 2. (Color online) Example of an MgO surface unit cell
(right) alongside a plot in red of the electrostatic potential normal to
the slab surface, V (z) (left). Highlighted in blue are (a) the midpoint
of the interslab vacuum gap where V s

bg is evaluated and (b) the middle
atoms of the slab structure, on which both V s

c and εs
c are evaluated.

Mg and O atoms are shown in green and red, respectively.

155106-3



LOGSDAIL, SCANLON, CATLOW, AND SOKOL PHYSICAL REVIEW B 90, 155106 (2014)

To calculate �V s
c and �V s

bg, the effects of electronic
relaxation in the supercell have been modeled as electronic
polarization using the approach of Lewis and Catlow [57],
in which an accurate account is given by the method of
interatomic potentials coupled with a polarizable shell model
as implemented in GULP [58]. In the polarizable shell model
a harmonic energy contribution between the core and shell
(Uc-s) for atom i is defined as

Uc-s,i = 1
2kir

2
c-s,i , (10)

where rc-s,i is the distance between the core and shell of i, and
the spring constant ki is defined as [58]

ki = Y 2/αi, (11)

where αi is the polarizability, and Y is the shell charge of the
respective ion. In this approach, cationic polarizabilities are
assumed to be system independent and equal to those of gas
phase ions (Lewis and Catlow have actually used the values of
αi originally tabulated by Pauling [59]), whereas the anionic
polarizabilities are system and site dependent. The latter could
be determined either by scaling the value of αi taken from a
system where such a value is known, using an approximate
inverse proportionality of the polarizability and the Madelung
site potential, or established empirically, for example by fitting
the high-frequency dielectric constant or refractive indices.
The potentials of Lewis and Catlow [57] were originally
parametrized to experimentally observed properties, and we
have reparametrized them to reproduce the bulk lattice (a0) and
high-frequency bulk dielectric [ε(∞)] constants as obtained
from DFT calculations to a high degree of accuracy (0.0001%)
for each XC functional. Furthermore, by taking into account
that αi is proportional to the site coordination number, we have
reduced ki by a coordination factor of nb/ni for each surface
terminating site, where nb and ni are the coordination number
for a bulk atom and atom i, respectively. The dependence of
ki on the atomic coordination therefore accounts for changes
in polarizability at surfaces and interfaces.

Using the XC-specific parametrized potentials, the slab
models were subjected to electronic minimization, in which
the atomic cores were fixed and only the polarizable shells were
allowed to move; thus representing the relaxation of valence
electrons within the DFT slab calculation. �V s

c and �V s
bg were

calculated as the differences in the Madelung site potentials
before and after shell relaxation at the oxygen core and the
mid-vacuum gap, respectively.

III. RESULTS AND DISCUSSION

Presented in Table I are first ionization potentials (negative
of the positions of the VBM), as calculated from a full band
structure, relative to vacuum for metal oxides formed by
group 2 elements of the Periodic Table (MgO, CaO, SrO,
and BaO) aligned using Eqs. (3), (4), and (9), as well as the
industrially relevant group 12 metal oxide CdO. Details of
shell model parametrization and results from our DFT and
interatomic potential based calculations are provided in the
Appendices. As we have shown for our slab model, electron
energies converge within four atomic layers (∼10 Å) and our
calculated IVBM can be compared directly to the experimental
optical absorption spectra of mixed samples, where the

TABLE I. I b
VBM and I b

VBM,D of rocksalt structured oxides, as
calculated using Eqs. (3) and (9), respectively, to align the vacuum
level. I b

VBM,D is presented in bold, while I b
VBM is presented in

italics. The bulk VBM were taken from � for MgO, CaO, and
SrO, M for BaO, and L for CdO, respectively. For comparison,
the first ionization potential as calculated from experimental optical
absorption measurements is also presented where available [39,61–
63], as well as an experimentally derived estimate for CdO from the
work function [64–66].

Expt. PBE PBESol PBE0 PBESol0

MgO 7.16 5.75 5.81 6.89 6.97
(4.79) (4.83) (6.04) (6.11)

CaO 6.25 4.67 4.74 5.64 5.90
(4.29) (4.35) (5.47) (5.73)

SrO 5.30 4.22 4.31 5.21 5.30
(4.06) (4.16) (5.27) (5.38)

BaO 3.37 3.32 4.14 4.17
(3.67) (3.66) (4.75) (4.80)

CdO 6.04–6.78 6.35 5.94
(5.69) (5.28)

penetration depth of incident radiation is several orders of
magnitude greater than the depth of any possible surface band
bending (e.g., ∼25 μm for MgO [60]), and the (100) surfaces
of these rocksalt structured materials are extremely stable
with respect to other surfaces. Furthermore, surface rumpling
on the (100) surface alters nuclear coordinates by at most 2%
[40], and so it can be safely assumed that experimental optical
measurements effectively evaluate I b

VBM.
For all the XC functionals and materials considered, we

observe changes in the absolute positioning of the VBM
relative to Vvac for the different methods of vacuum alignment.
Turning first to the GGA XC functionals, for PBE and
PBESol the I b

VBM (i.e., uncorrected for surface polarization)
are significant underestimates of ca. 2 eV for MgO and CaO
when compared to Iexpt, and I b

VBM of SrO is underestimated by
ca. 1 eV. A better agreement is universally achieved for I b

VBM,D
(i.e., corrected for surface polarization), with the multipolar
shift Ds increase/decrease of up to 0.98/0.34 eV in the case of
MgO/BaO, respectively. We also note that, when comparing
XC functionals and alignment methods, PBESol provides a
greater I b

VBM for the rock salt oxides formed from lighter
cations (Mg, Ca, Sr), while PBE gives a marginally greater
I b

VBM for the heavier Ba cation. All GGA calculations, however,
significantly underestimate IVBM compared to experiment—a
well known artifact of the inability of GGA to exclude electron
self-interaction with sufficient accuracy [67,68].

The use of nonlocal XC functionals has been shown to be
an effective method to counteract the inadequacies of GGA
functionals in representing electronic structure of ionic mate-
rials [54]. Unsurprisingly, the PBE0 results are qualitatively
better than calculated for PBE, with underestimates for I b

VBM
compared to experiment of 0.63 and 0.75 eV for MgO and
CaO, respectively, while the I b

VBM of SrO is close to Iexpt. We
also calculated the I b

VBM for CdO as 5.69 eV in this case, which
is lower than our experimental estimates of 6.04–6.78 eV.
This experimental estimate for CdO is obtained by combining
band gap measurements (0.84 eV) with the electron affinity,
which range over 5.2–5.94 eV [64–66]. Again, the results are
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FIG. 3. (Color online) Schematic illustration of the ionization potential I b
VBM,D for MgO (orange), CaO (blue), SrO (pink), BaO (green),

and CdO (gray), as calculated using the PBESol0 XC functionals. Vacuum alignments were calculated using Ic,D in Eq. (9) and illustrated with
purple dashed lines. Experimental first ionization potentials (Iexpt) are also illustrated with blue arrows, and dashed blue horizontal markers.
Black dotted lines mark out the experimental band gaps [64,69] and thus the position of the conduction band minimum relative to the vacuum
is also illustrated. Experimental band gaps are chosen due to the uncertainty in the position of unoccupied orbitals at the DFT level, with
calculated band gaps compared in the Appendices.

universally improved for I b
VBM,D: the I b

VBM,D of MgO and CaO
are now only underestimated by 0.27 and 0.58 eV, respectively,
and the I b

VBM,D of SrO remains relatively constant with a
difference of only 0.09 eV compared to Iexpt. Furthermore,
the I b

VBM,D of CdO is increased by 0.66 eV, to 6.35 eV, much
closer to our experimental estimate.

Finally, we repeated all our calculations using the PBESol0
XC functional due to its success in reproducing bulk properties
[70]. The resulting ionization potentials are all greater than
those calculated using PBE0, in contrast to our observations for
the GGA level of theory: the calculated I b

VBM,D of 6.97, 5.90,
and 5.30 eV for MgO, CaO, and SrO deviate from experiment
by only 0.19, 0.35, and 0.00 eV, respectively, as illustrated in
Fig. 3. Special attention must be paid, however, to the position
of the VBM of CdO in this case. When the vacuum level is
aligned for PBESol0 using Ic [Eq. (3)], the VBM of CdO is
positioned above both CaO and SrO. In contrast, when using
PBE0, this same method positions the VBM for CdO below
the VBM of CaO and SrO (Fig. 3). Thus an obvious question
exists: which alignment is correct? Ic,D [Eq. (9)] gives a more
consistent answer, as for both nonlocal XC functionals the
VBM of CdO is positioned below that of CaO and SrO.

Presented in Table II are �V s
bg, �V s

c , and Ds, as cal-
culated using the reparametrized shell model potentials, for
local (PBESol) and nonlocal (PBESol0) XC functionals. The
similarity of calculated values between both types of XC
functional is evident. Furthermore, the trend in results can
be convincingly linked to the increasing cation radius as one
descends the group: 0.86 Å (Mg), 1.14 Å (Ca), 1.32 Å (Sr),
1.49 Å (Ba), and the polarizability of the ionic oxides (results
included in the Appendices). We note that the overall sign of

Ds correlates with the radius of the cation relative to the O
anion, which has an ionic radius of 1.26 Å [71].

For the smaller Mg and Ca cations, the total shift in
electrostatic potential is large and negative, implying that
electrons distribute inward from the slab surface. This results
in an underestimate of the ionization potential. For the Sr
and Ba cations, which are larger than O anions, the shift in
Ds is positive, highlighting electron accumulation towards the
surface, though further verification is needed to study these
effects for actual relaxed surfaces.

We note that the differences in the Madelung potential
between equivalent sites in the bulk unit cell and the bulklike
positions in the middle of the fixed slab supercell were used to
give an accurate representation of the error bars in using the
described “slab alignment” method. For the group 2 (12) metal
oxides, the error bars are less than ±0.02 (±0.14) V before
shell optimization.

TABLE II. Calculated shifts �V s
bg and �V s

c , respectively, in V,
as a function of compound for the slab geometries as a result of shell
relaxation. Results for the PBESol (PBESol0) XC functionals are
presented. The combined polarization offset, Ds, is given in eV.

MgO CaO SrO BaO CdO

�V s
bg 0.45 0.21 0.10 −0.14

(0.40) (0.10) (−0.02) (−0.29) (0.51)
�V s

c −0.53 −0.18 −0.05 0.20
(−0.46) (−0.07) (0.06) (0.34) (−0.15)

Ds 0.98 0.39 0.16 −0.34
(0.86) (0.16) (−0.08) (−0.63) (0.66)
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IV. CONCLUSIONS

In conclusion, we have investigated the slab model tech-
nique for vacuum alignment of energy levels in bulk materials
at the plane-wave DFT level, and illustrated deficiencies
in the application of this method. Explicit consideration of
the electronic polarization, induced by the presence of a
surface, is necessary for accurate results. We have proposed
a method for quantifying the electronic polarization using
simple polarizable shell-based interatomic potentials that have
been tuned to reproduce accurately the properties predicted by
DFT calculations. Our updated results for rocksalt ionic oxides
using nonlocal XC functionals show excellent agreement with
the available experimental literature when using our suggested
bulk alignment protocol, illustrating the potential of this
method. Our observations open a path to understanding the
extent of fundamental band bending: knowledge of the bulk
ionization potential would allow for the crystal engineering of
band alignments for specific applications using band bending
effects. Further work is ongoing to generalize our observations
for more complex materials, as well as consideration of
surfaces with intrinsic polar moments such as the more
complex polymorphs of common semiconducting oxides.
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APPENDIX A: DFT OBSERVABLES: LATTICE
PARAMETER, BAND GAP, AND POLARIZABILITY

The calculated DFT observables, as used to reparameterize
the interatomic potentials and calculate the position of the
valence band maximum, are presented. Namely, the data
presented are the lattice parameter of the structure (Table III),
the electronic band gap (Table IV), and the high-frequency
dielectric constant (Table V).

TABLE III. DFT-calculated lattice parameter, a0 (Å), for the cubic
unit cells of MgO, CaO, SrO, BaO, and CdO, as optimized using
the analytical stress tensor. Calculations were performed using the
PBE, PBESol, PBE0, and PBESol0 exchange-correlation functionals,
respectively. For comparison, experimental measurements from the
literature at the lowest temperature available are also presented, with
the temperature (K) given in parentheses [72–75].

Expt. PBE PBESol PBE0 PBESol0

MgO 4.21 (19.8) 4.26 4.22 4.21 4.18
CaO 4.80 (17.9) 4.84 4.78 4.80 4.77
SrO 5.16 (293) 5.19 5.14 5.17 5.12
BaO 5.54 (298) 5.61 5.53 5.56 5.52
CdO 4.70 (294) 4.72 4.67

TABLE IV. DFT-calculated band gap, Eg (eV), for the optimized
cubic unit cells of MgO (�-�), CaO (�-M), SrO (�-M), BaO
(M-M), and CdO (X-�). Calculations were performed using the
PBE, PBESol, PBE0, and PBESol0 exchange-correlation functionals,
respectively. For comparison, direct experimental measurements from
the literature at the lowest temperature available are also presented
(indirect for CdO; direct for all other materials), with the temperature
(K) given in parentheses [64,69,76].

Expt. PBE PBESol PBE0 PBESol0

MgO 7.83 (85) 4.45 4.61 7.24 7.38
CaO 7.09 (85) 3.63 3.52 6.04 5.94
SrO 5.90 (55) 3.27 3.75 5.47 5.37
BaO 3.89 (55) 3.27 3.29 4.01 3.84
CdO 0.85 (100) 1.56 1.55

TABLE V. DFT-calculated high-frequency dielectric constant,
ε(∞), for the optimized cubic unit cells of MgO, CaO, SrO, BaO,
and CdO. Calculations were performed using the PBE, PBESol,
PBE0, and PBESol0 exchange-correlation functionals, respectively.
For comparison, experimental measurements from the literature are
also presented [77–80].

Expt. PBE PBESol PBE0 PBESol0

MgO 2.96 3.26 3.33 2.61 2.63
CaO 3.33 3.91 4.01 2.99 3.03
SrO 3.46 3.95 4.07 3.03 3.09
BaO 3.90 4.46 4.62 3.31 3.38
CdO 5.3 4.01 4.05

TABLE VI. Parameters for optimized interatomic potentials of
MgO, CaO, SrO, BaO, and CdO, respectively. The interaction
parameter, A (eV), between the cation and anion shells in each system,

and the anion shell spring constant, k (eVÅ
−2

), have been tuned to
reproduce a0 and ε(∞) from DFT calculations, as performed using the
PBE, PBESol, PBE0, and PBESol0 exchange-correlation functionals,
respectively. All other components of the interatomic potentials were
unaltered from the original work of Lewis and Catlow [57]. For
the CdO system, the Cd2+ cation was modeled as an unpolarizable
species, due to the absence in the literature of a completely polarizable
potential for this system. In all cases the observables calculated using
the tuned interatomic potential were within 0.0001% of the same DFT
observables after fitting.

PBE PBESol PBE0 PBESol0

MgO A(Mg-O) 1517.21 1447.76 1431.20 1383.76
k(O) 47.59 48.08 66.39 66.99

CaO A(Ca-O) 1124.32 1061.06 1085.33 1042.17
k(O) 37.08 37.97 58.98 60.30

SrO A(Sr-O) 996.37 944.34 969.30 921.57
k(O) 34.68 35.33 58.97 60.37

BaO A(Ba-O) 984.53 917.18 941.69 907.33
k(O) 30.76 32.06 55.06 55.83

CdO A(Cd-O) 870.82 827.33
k(O) 29.9196 30.4693
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APPENDIX B: FORCEFIELD PARAMETERS:
SHELL MODEL

The optimized interatomic potentials, as used in the
calculation of the surface polarization effects, are presented

in Table VI for the rocksalt structured systems of interest:
MgO, CaO, SrO, BaO and CdO.
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[47] L. Guimarães, H. A. de Abreu, and H. A. Duarte, Chem. Phys.

333, 10 (2007).
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