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PREFACE 

The Project 

In April 2010, Bill Gates gave a talk at MIT in which he asked: ‘are the brightest minds working on the most 
important problems?’ Gates meant improving the lives of the poorest; improving education, health, and 
nutrition. We could easily add improving peaceful interactions, human rights, environmental conditions, living 
standards and so on. Philosophy of Information (PI) proponents think that Gates has a point – but this doesn’t 
mean we should all give up philosophy. Philosophy can be part of this project, because philosophy understood 
as conceptual design forges and refines the new ideas, theories, and perspectives that we need to understand and 
address these important problems that press us so urgently. Of course, this naturally invites us to wonder which 
ideas, theories, and perspectives philosophers should be designing now. 

In our global information society, many crucial challenges are linked to information and communication 
technologies: the constant search for novel solutions and improvements demands, in turn, changing conceptual 
resources to understand and cope with them. Rapid technological development now pervades communication, 
education, work, entertainment, industrial production and business, healthcare, social relations and armed 
conflicts.  There is a rich mine of philosophical work to do on the new concepts created right here, right now. 

Philosophy “done informationally” has been around a long time, but PI as a discipline is quite new. PI takes 
age-old philosophical debates and engages them with up-to-the minute conceptual issues generated by our ever-
changing, information-laden world. This alters the philosophical debates, and makes them interesting to many 
more people – including many philosophically-minded people who aren’t subscribing philosophers. 

We, the authors, are young researchers who think of our work as part of PI, taking this engaged approach. 
We’re excited by it and want to teach it. Students are excited by it and want to study it. Writing a traditional 
textbook takes a while, and PI is moving quickly. A traditional textbook doesn’t seem like the right approach 
for the philosophy of the information age. So we got together to take a new approach, team-writing this 
electronic text to make it available more rapidly and openly. 

Here, we introduce PI now. We cover core ideas, explaining how they relate both to traditional philosophy, and 
to the conceptual issues arising all over the place – such as in computer science, AI, natural and social sciences, 
as well as in popular culture. This is the first version, for 2013. Next year we’ll tell you about PI 2014. 

We hope you love PI as much as we do!  If so, let us have your feedback, and come back in 2014. Maybe some 
of you will ultimately join us as researchers. Either way, enjoy it. 

Yours, Patrick, Bert, Simon, Nir, Federico, Carson, Phyllis, Andrew, Eric, Giuseppe, Federica, Christoph, 
Mariarosaria, Matteo, Orlin, and Hector. 

Preface 

P 
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1. A QUICK HISTORY OF THE PHILOSOPHY OF INFORMATION 

Mapping many thinkers (Beta Chapter) 

 

1.1 Introduction 

To those who work with mathematical concepts of 
information every day, the answer to the question “why 
worry about information?” will be blindingly obvious. 
Even those unfamiliar with the mathematical concepts may 
be able to see for themselves that information has come to 
be very important to us, but remain bewildered as to where 
this explosion in talk of information came from. 

We could begin in many different places, but choose to 
open with the vision of the brilliant British mathematician, philosopher and engineer Charles Babbage (1791-
1871), who invented a peculiar machine known as the “difference engine”, a feat of engineering that can easily 
be seen as a precursor to the modern computer, although it did not actually run any programs. The difference 
engine was essentially a calculating machine, automatic and constructed in order to erase the errors in 
calculation that were so common in Babbage’s time. (Previously, most calculating was done in the head, or 
aided by pen and paper.) 
 
The machine that Babbage envisioned would have been a massive undertaking, consisting of an incredibly large 
number of wheels, vast quantities of brass, and many different cogs and sector gears. The government at the 
time had spent a lot of money financing Babbage’s quest to build the machine. Sadly, the difference engine was 
never actually built during Babbage’s lifetime. However, after a brief period in the shadows, the idea of the 
machine became popular once again and this led eventually to the successful real-world construction of a 
difference engine. The importance of Babbage’s contribution is that he took the theory of numbers out of the 
world of abstraction and into the realm of technology, computability, and engineering. Babbage is the first 
figure in our history of the philosophy of information who thought about bringing the abstract notion of 
calculation into the materiality of life. 

In this chapter we will follow the progress of the idea of information into philosophy, via technologies now in 
daily use. We explain the beginning of the mathematical approach to information, and how it enabled the 
creation of concepts, followed by technology and further concepts, that revolutionised our world. There are 
introductions to the profound thinkers who should be much more widely understood than they are – 

Chapter 

1 

‘It is hardly to be expected that a single 
concept of information would satisfactorily 
account for the numerous possible 
applications of this general field.’ 
(Shannon, 1993, p. 180) 
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particularly Alan Turing (1912-1954) and Claude Shannon (1916-2001) – but these introductions can be very 
formal and mathematical. Here, the key aim is to convey how the insights of these mathematicians came to 
have such profound philosophical implications. We will look first at Turing, then at Shannon, before turning to 
an examination of how their ideas generated novel ideas applicable in many different places. 

Some of these places include exciting schools of philosophical thought all around the world. We will look at 
Norbert Wiener and the “Cybernetic” school, which focused on how to use information to control nature and 
regulate ecology. Then we will examine the French continental school, beginning with Gilbert Simondon, who 
sought to articulate new informational concepts using their own brand of speculative realism. Finally, there are 
towering figures such as Fred Dretske, (1932-2013) who contributed so much to the philosophy of information 
debates in epistemology and knowledge. We will look at all of these figures, and more, in this chapter. 

1.2 Turing’s basic idea 

What did Alan Turing give us? Why might he be 
considered the father of modern computer science? 
Turing gave us a lot of things, and it is easy to get 
distracted trying to understand the details of his 
work. But one way of understanding Turing’s vital 
importance is by seeing him as the person who gave 
us the idea of computation. This is the idea that we 
could take many different procedures that at first 
sight look quite different, and reduce all of them to 
different sets of basic operations that could be run by 
a machine, separating the operations themselves 
from the brain normally used to run them. The other 
side of this idea was that of a machine that was not a 
coffee-maker, washing machine, or lawnmower, but 
a machine that could run these many different 
procedures by running these basic operations on data 
to produce more data – a kind of information 
processing. 
 
The machine described is a computer, of course. 
What makes your computer, and also your smart 
phone and your iPad, special among all the machines 
you have is that they can do a lot of different things 
(your other machines can only do one or two things). 
Looking back, it can be difficult to grasp how 
startling this idea was: a machine created not to do 
some specific thing, like make coffee, wash clothes, 
or mow grass, but to do indefinitely many things, depending only on the ingenuity of the programs 
created for it. 
 
Turing’s main way of giving us these ideas is by way of what came to be called a “Turing Machine” 
(Turing, 1936). Turing was concerned with what can and cannot be calculated or computed and how. He 

Figure 1: Alan Mathison Turing (1912–1954) © 
National Portrait Gallery, London 
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came up with the idea of a machine that mimics a human calculating using pen and paper (see figure 2). 
Turing suggested that the operations of the human computor (to distinguish it from an artificial computer) 
performing some task may be completely mechanized by breaking down the rules of computation into a 
series of basic sub-rules. We can consider the human computor making calculations easier by using her 
notebook, and breaking down her operations page by page. Imagine her following instructions to alter the 
page she is on, or turn to another page. Simplify by thinking of the content of each page as replaceable in 
principle by a single symbol, and think of a very long notebook, so the human computor never reaches 
the last page. We have something like an infinitely running paper tape, with symbols on page after page 
after page. The human computor moves from page to page, following the instructions either to change 
the symbol or to move, according to the symbols.  She could use this procedure to do many things, such 
as add numbers. 

 
Figure 2: Computors in an accounting office (1924) (Source: Library of Congress) 

 
Figure 3: A modern reproduction of a Turing Machine. (Courtesy of Mike Davey) 

Turing argued that either human computors or some mechanical devices could perform computation, 
when this is understood as finite sequences of such operations on symbols – operations either to change 
the symbol or to move – as described above (see figure 3). Remember that Turing’s contribution wasn’t 
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an actual machine – it was the idea of this possible machine. The Turing machine was an abstract, idealized 
representation of a human computor, whose operation is determined by discrete, effective steps: at each 
step it is entirely defined what the computor is allowed to do. This machine was a hypothetical 
mechanical device with unlimited storage capacity (an infinite tape to write on, like the infinite sequence 
of pages in the notebook) and a limited set of possible actions (defined by its table of instructions). It was 
proven that such a general and simple idea would be computationally equivalent to almost any conceivable 
digital computing system. In this way, Turing defined the computation process itself.  And once this is 
defined, it doesn’t matter whether it is done by a person with a notebook, or by a machine working from 
a hard disc or USB drive or – in Turing’s mind – a tape and a scanner. 

In this case, we imagine a human computor performing some particular task, and understand that if a 
machine follows the same instructions as the person, the machine will perform the same task. So far this 
is describing a machine something like a simple calculator, able to perform a limited range of tasks, but 
nothing like a modern computer. But Turing generalized his idea further to the universal Turing machine, 
by showing that it is possible to construct a single universal machine that can be used to compute any 
function that is computable on a standard special-purpose machine (Turing, 1936, pp. 241-242). If the 
universal machine is supplied with a tape, at the beginning of which is the table of instructions for some 
special-purpose computing machine, then the universal machine will compute the same function as the 
special-purpose machine. But so long as different instructions can be loaded onto the universal machine, 
it will be able to compute multiple other functions, of many other special-purpose machines. The exact 
construction of the universal machine doesn’t matter here. For our purposes, think of the operation of 
the universal Turing machine as explained by its execution of the instructions of some special-purpose 
Turing machine. Now, the universal Turing machine is like a modern computer, which can upload 
various different software programs to enable it to do indefinitely many different kinds of computations. 

This is how Turing gave us the idea of a computer. (See 
section 13.3b for further discussion.) 

1.3 Shannon’s basic idea 

What did Claude Shannon give us? He created a new 
branch of maths known as mathematical communication 
theory.  That was very important to maths, but why does it 
matter outside maths?  At heart, Shannon gave us a very 
general language in which to describe precisely many very 
different things. This is the language of information. The 
connection with Turing’s work is immediate once you 
realise that the inputs and outputs of a Turing machine are 
information. Turing gave us the idea of a computer, which 
processes information.  The idea of information already 
existed. But Shannon gave us the language in which we can 
describe the bits required for a computer programme and 
the bandwidth of an internet connection, and all the things 
that are essential to make computers actually work. 
Shannon allowed us to quantify information – say how much 
information there is. As computers and informational 

technology like the internet have become so much a part of Figure 4: Claude Elwood Shannon (1916-2001) (Courtesy of MIT 
Museum, Boston / Nixdorf Museums Forum, Paderborn) 
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our daily lives, this language of information (now there are multiple languages) has become increasingly 
important to navigate the world successfully. Further, we will see in the next section how the idea of a general 
language of information, now that we have it, can also describe many more things.   
 
Shannon showed in 1948 how information could be transmitted efficiently across communication channels 
using coded messages. So Shannon described an information-generating system as a combination of five 
essential components: an information source, a transmitter, a channel, a receiver and a destination (Shannon, 
1948, p. 4; Wiener, 1948, p. 79). The information source produces a message to be communicated to the 
receiver. The transmitter operates on the message to produce a signal suitable for transmission over the 
channel, which is simply the medium of signal transmission. The receiver reconstructs the message from the 
signal. Finally, the destination is the entity for which the message is intended. According to Shannon, 
communication amounts to the source of information producing a sequence of symbols, which is then 
reproduced by the receiver. The reproduction is only to some degree of accuracy – as we find when unable to 
distinguish every word clearly during a mobile phone conversation. 
 
Taking this description of communication, Shannon attempted to solve the ‘fundamental problem of 
communication’ (Shannon, 1948, p. 1), finding the optimal way to reproduce, exactly or approximately, 
messages at their destination from some source of information. One vital but easily missed novelty in 
Shannon’s work is that his information theory has abstracted away from the physical media of communication, 
so that relevant physical constraints can be analysed separately. It doesn’t matter whether you are using a phone 
– mobile or landline, or what make or model – or any of many different radios, or a Skype call, or sending a 
large file by email.  Shannon’s theory is about the information transmitted and tells you about that information, 
whatever the particular physical medium you are using to transmit it. Shannon provided a statistical definition 
of information as well as general theorems about the theoretical lower bounds of bit rates and the capacity of 
information flow – which tell you how fast you can transmit information. 
 
Importantly, on Shannon’s analysis of information (there are now many other analyses), information does not 
involve any meaning. It doesn’t matter whether you are trying to send “Meet you for lunch on Tuesday 2pm”, 
or “8459264628399583478324724448283”. Shannon information concerns only correlations between 
messages, variables, etc. For example, it concerns whether the message received matches – correlates with – the 
message sent. It is a quantitative measure of how much information is successfully conveyed. Shannon 
information is much more specific than our ordinary usage of “information”; Shannon information tells us 
nothing about whether a message is useful or interesting. The basic aim is coding messages (perhaps into binary 
codes like 000010100111010) at the bare minimum of bits we must send to get the message across. One of the 
simplest unitary forms of Shannon information is the recording of a choice between two equally probable basic 
alternatives, such as “On” or “Off”. A sufficient condition for a physical system to be deemed a sender or 
receiver of information is the production of a sequence of symbols in a probabilistic manner (Wiener, 1948, p. 
75). 
 
Shannon’s mathematical theory is still used today in “information theory”, which is the branch of study 
that deals with quantitative measures of information. Two of Shannon’s metrics are still commonly used: 
one a measure of how much information can be stored in a symbol system, and the other a measure of 
the uncertainty of a piece of information. The English anthropologist Gregory Bateson famously defined 
information as “a difference that makes a difference.” This definition aptly characterizes Shannon’s first 
metric. Binary is the code usually used by computers, representing everything using only two symbols, 0 
and 1. One binary digit, or bit, can store two pieces of information, since it can represent two different 
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states: 0 or 1. However, two bits can store four states: 00, 01, 10 and 11. Three bits can store eight states, 
four sixteen and so on. This can be generalized by the formula log 2 (x), where x represents the number 
of possible symbols in the system. Log 2 (8), for instance, equals 3, indicating that three binary bits of 
information are needed to encode eight information states. These possibilities are essential to how much 
disc space is needed to store a computer program. 
 
Shannon’s second metric is “entropy,” a term recommended to him by John von Neumann because of its 
relation to entropy in thermodynamic systems. Some say this use of the term is fortunate because it 
captures similar phenomena, but others say it is unfortunate, because the two types of entropy are only 
related to a certain extent – they are only somewhat isomorphic. Simply put, entropy in thermodynamics 
measures disorder. But information entropy is a measure of uncertainty in terms of the unpredictability of 
a piece of information. Information that is highly probable hence more predictable has a lower entropy 
value than less distributed information, and therefore tells us less about the world.  One example is that 
of a coin toss. On the one hand, the toss of a fair coin that may land heads or tails with equal probability 
has a less predictable outcome, higher entropy, and thus a greater ability to decrease our ignorance about 
a future state of affairs. On the other hand, a weighted coin that is very likely to fall “Heads” has a very 
predictable outcome, lower entropy, and therefore is unable to tell us anything we do not already know. 
 
The significant aspect of Shannon information is that a produced message is selected from a set of possible 
messages. The more possible messages a recipient could have otherwise received, the more surprised the 
recipient is when it gets that particular message. Receiving a message changes the recipient’s circumstance from 
not knowing something to knowing what it is. The average amount of data deficit (uncertainty or surprise) of 
the recipient is also known as informational entropy (Floridi, 2011c, Chapter 3). The higher the probability of a 
message to be selected, the lower the amount of Shannon information associated with it is.1 
 
The importance of uncertainty to Shannon information is significant. Although Shannon is not concerned with 
what messages mean to us, the amount of Shannon information conveyed is as much a property of our own 
knowledge as anything in the message. If we send the same message twice every time (a message and its copy), 
the information in the two messages is not the sum of that in each. The information only comes from the first 
message, while the second message is redundant. Still, for Shannon the semantic aspects of messages carrying 
meaning are ‘irrelevant to the engineering problem [of communication]’ (Shannon, 1948, p. 1). This, then, is 
how Shannon showed us what could be done with the concept of information. 

1.4 Extension of the concepts 

From Turing and Shannon we get the idea of an artificial machine that can process information, and the 
basic language of information necessary to build such a machine – to build a computer. The creation of 
computers and everything that has followed is a dramatic change in the world. But the profound 
importance of the language of information is that it has altered the way we think forever. 
 
The key to this alteration is in the abstraction away from the peculiarities of a particular unique physical 
object in front of you. Turing began the separation between the unique and particular machine before you 
(your shiny red laptop, with the dent on the case from where it nearly departed this world in a freak skiing 
accident, with the photos on it from that skiing holiday), and the multiple other machines very like it, and 
the many processes they can perform. Shannon pushed that even further by giving us the language to 
                                                                        
1 Shannon information is defined as the base two logarithm of the probability of selecting a message s:  Info(s) = Log2(Prob-1(s)). 
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describe the information being processed, independently of what is doing the processing. The 
information revolution has been thriving on this separation ever since. 
 
Once these refined concepts of information were established, they were applied to many things. The idea 
of information, and the multiple mathematical formalisms now available to quantify information, proved 
enormously fruitful in creating shared conceptual schemes that allowed our investigations to leap forward 
in so many different fields. To this day, many thinkers from disciplines far removed from mathematics, 
science and engineering find use for the notion of information. Psychologists, sociologists, anthropologists, and 
historians have each turned to the notion of information to see what it has to offer their own disciplines, and 
often this occurred through the curious probing of philosophers. Today, topics as diverse as biopolitics (which 
studies things like the power of statistics to control human populations over time) and ontology (the 
philosophical study of being) gain something by considering the many facets of the notion of information.  It is 
this wide applicability of these notions that meant that something that started as maths became relevant 
to multiple scientific fields, helped us build a new world, and began shaping our society, our ethics, how 
we understand knowledge, and everything else. 
 
We will now introduce two groups that greatly influenced what the philosophy of information would become 
at the turn of the twenty-first century, leaving current philosophers of information for the rest of this book. The 
first of these groups remained closely tied to the original insights of Turing and Shannon, slowly adding to them 
bit by bit (no pun intended), while the second, it could be said, sought instead to ask what the notion of 
information might mean ontologically in terms of more “macro” discourses (economics, politics, sociology, 
etc.). While some of these thinkers were not mathematicians or scientists in the proper sense, they knew 
enough about the theoretical significance of Turing and Shannon’s ground-breaking work to be able to think 
through its consequences. While this might be oversimplifying a bit, these two groups remained related, 
producing thinkers who sought to ponder the consequences of information after the initial contributions from 
Turing and Shannon in the twentieth century. Though some were less concerned with mathematical proofs and 
empirical observations than others, each sought to  consider the implications of information for realms beyond 
those of numbers and theorems proper.  

1.5 Cybernetics 

The first group was a loose-knit collective of American scientists, communication theorists, and psychologists 
that focused on work that, for the most part, came to be grouped under the label of “cybernetics”. Cybernetics, 
simply put, became a way to talk about systems and structures of information as applied to “larger”, “closed” 
ecological fields, such as biology, society, nature, psychology, or economics, rather than in terms of, say, a 
rudimentary telephone system. In many ways, cybernetics was synonymous with control. It dealt with 
constraints, and in so doing attempted to demarcate systems whose channels of feedback (both “positive” and 
“negative”) amounted to the proper or improper functioning of the overall system. A brilliant American 
mathematician named Norbert Wiener (1894-1964) was largely responsible for the initiation of this field, 
writing a book with the word “cybernetics” in the title (Wiener, 1948), in large part because he considered the 
application of Shannon’s theories to the fields of biology, ecology, and society.2 The notion of information 
feedback in nature was one of Wiener’s favourite topics. The reason for this was that he was interested in seeing 
the “measure of reality,” as it were. He was interested in its constraints and the degree by which nature might be 
controlled. 

                                                                        
2 Another important figure is Jay Wright Forrester, known as the founder of systems dynamics, but for our purposes he will not accompany us on this 
journey. 
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Other individuals who sought to use the concept of 
information in a cybernetic sense included the psychologist 
Charles E. Osgood (1916-1991), the scientist and 
mathematician Warren Weaver (1894-1978), the 
communications scholar Wilbur Schramm (1907-1987), and, 
perhaps most importantly, the mathematician John von 
Neumann (1903-1957).  
 
Von Neumann can in many ways be considered the spiritual 
guide of this group. Without diving into a detailed history 
(many already exist, and the reader is encouraged to review 
them, particularly (Dyson, 2012; Gleick, 2011)), von 
Neumann oversaw the development of a machine that 
would eventually become the physical realisation of Turing’s 
thesis at the Institute for Advanced Study at Princeton. von 
Neumann (1958) was a speculative book, which unfolded a 
comparison of information and computation in the area of 
human biology, specifically the brain. In this book, which 
initially stemmed from notes for the Silliman Lectures that 
were to be delivered at Yale in 1956, von Neumann outlined 
his theory of the brain by comparing it, piece by piece, bit by 
bit, with the schematics of a digital computer. Before this 

text, no one had explicitly compared the functions of the 
human brain to functions associated with the computer. 
Topics such as memory, sense, and processing in human 

biology were interpreted as being analogous to computational functions (for more on cognition, see Chapter 
10; for more on computation, see Chapter 13). Although von Neumann is not a household name, the 
comparison between the natural brain and the digital computer is intuitively appealing, and today, many people 
understand the analogy that refers to the brain as a type of “hardware”, which can be seen as running a type of 
“software” called the mind, and this insight (although it is now controversial) flows from the comparison made 
by von Neumann. 
 
Although von Neumann was centrally important to the development of information as a worldly phenomenon, 
Wiener became, in some sense, the next guiding light that championed the theoretical complexity of 
information beyond the sender-receiver model illustrated by Shannon. His contribution largely came in the 
form of a book (Wiener, 1948), in which Wiener sought to introduce the notion of information to the study of 
everyday encounters. Wiener saw communication as information just as Shannon did, yet where Shannon 
stated that he attempted to explain only an engineering approach to information and communication 
theory in his paper of 1948, Wiener sought a way that would allow Shannon’s mathematical theory of 
information to lay the groundwork for a much more fluid and diverse conception of communication, 
developed from these connective underpinnings. Wiener wanted to explain how information made the 
world “tick”. 
 
The most interesting figure among the group of cyberneticists (the famous Cambridge philosopher 
Bertrand Russell had a few not-so-nice things to say about him), Wiener articulated further that 
cybernetics should seek to find the difference between information as an entity that can be sent and 

Figure 5: Norbert Wiener (1894–1964) (Courtesy of 
Konrad Jacobs) 
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received (the “transmission” model) from one that is semantically constituted in the flux of interpersonal 
communication. Here he predates Dretske, while also arguing for a non-probabilistic approach to 
semantic information. In a book originally published in 1950, Wiener wrote:  
 

It seems necessary to make some sort of distinction between information taken brutally and bluntly, 
and that sort of information on which we as human beings can act effectively or, mutatis mutandis, on 
which the machine can act effectively. In my opinion, the central distinction and difficulty here arises 
from the fact that it is not the quantity of information sent that is important for action, but rather the 
quantity of information which can penetrate into a communication and storage apparatus sufficiently 
to serve as the trigger for action 
(Wiener, 1988, p. 93). 

 
Wiener developed an approach that was philosophically distinct from that of Shannon, one that 
articulated a world where semantic information remained different from, yet still tied to, traditional 
notions of communication, where the amount of data sent mattered perhaps less than the type of data 
that could ‘penetrate into a communication and storage apparatus sufficiently to serve as the trigger for 
action’. (Wiener, 1988, p. 93) He helped to establish that there are different types of information. Diverse 
styles of informing mattered to the cyberneticists, as any careful reading of their work will show. Current 
debates on everything from psychiatry to philosophy of mind remain deeply tied to this distinction in 
terms of information, yet many, it would seem, are unable to account for the interplay between what 
Wiener called “brutal” or “blunt” information and the ‘sort of information on which we as human beings 
can act effectively’. (Wiener, 1988, p. 93). This might be one of the most important problems that the 
philosophy of information seeks to uncover. Current philosophers such as Floridi (who we will introduce 
in Chapter 2) are attempting a systematic philosophy that might define the interaction between these two 
levels of information (and many more). Indeed, the emergence of philosophy of information as a 
recognised field is long overdue.  
 
The tradition of separating these different types of information was extended by Osgood. He was an 
American psychologist whose work lay close to cybernetic concerns, and who is most famous for 
developing the connotative meaning of concepts known as the “semantic differential”. Osgood (1952) 
acknowledged that there was a field beyond the strictly informational-theoretic terms developed in the 
area of engineering such as “sending” and “receiving”, particularly in his description of “choice-parts”. 
He intended these to be moments where the information-theoretic content of a message (in the 
transmission-probabilistic model) gives way to something not entirely predictable. This would be a theme 
throughout Osgood’s career. He saw communication sequences as informational in the engineering sense, 
but also as something that might bring meaning in terms that are not directly related to the sharing of 
quantitative information, even in Dretske’s sense of probabilistic semantic information. In 1952, Osgood 
said that “choice-points” were ‘points where the next skill sequence is not highly predictable from the 
objective communicative product itself’ (Osgood, 1952, p. 197.). To explicate this, he uses the simple 
example of having to explain that it is better to wait to wash a car. He writes:  ‘The dependence of “I'd 
better not wash the car” upon “looks like rain today,” the content, of the message, reflects determinants 
within the semantic system which effectively “load” the transitional probabilities at these choice-points’. 
Osgood would go on to describe a theory that lay beyond the “predicative” model; however, this 
remained strongly tied to the transmission model of communication. Like the theorists of cybernetics, he 
theorized the way a semantic notion of information might be predicated on a strictly engineering 
perspective of communication, yet he reserved space for a non-connective realm.  
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The idea that the transmission model undergirds semantics and other modes of information and 
communication techniques makes sense given the utility of its wartime origins. Developed in the Bell 
Labs in New York City during the Second World War, its inventor and one of the individuals with which 
we began this chapter, Claude Shannon, was a brilliant young thinker who spent the better part of his 
academic life at MIT. His Master’s thesis on Boolean algebra and what he called a “logic machine” 
(Shannon, 1938, p. 471) would lay the foundations for the design of computer circuits. One of Shannon’s 
oft-quoted passages is the following, taken from his landmark paper:  
 

The fundamental problem of communication is that of reproducing at one point either exactly or 
approximately a message selected at another point. Frequently the messages have meaning; that is they 
refer to or are correlated according to some system with certain physical or conceptual entities. These 
semantic aspects of communication are irrelevant to the engineering problem. The significant aspect is 
that the actual message is one selected from a set of possible messages. The system must be designed 
to operate for each possible selection, not just the one which will actually be chosen since this is 
unknown at the time of design.  
(Shannon, 1948, p. 1.) 

 
This distinction between what we can call “data” and “semantic information” would be explicated by 
cyberneticists and others, including Weaver, Wiener, Osgood, and Schramm, each of whom believed that 
communication is, first and foremost, the flow of information. Clearly, the idea for Shannon is that the 
transmission approach does not have much to do with semantic information. Osgood and Wiener were 
equally vocal about the transmission model’s inability to account for semantic information. The idea was 
not that the transmission model had nothing to do with semantics, but rather that, while it might underpin 
semantics, it cannot account for it on its own. The absence of this important distinction is unfortunately 
reproduced in general discussions that feed the popular imagination of what information theory and 
cybernetics is all about. Any number of cybernetic texts speak to the open place left within information 
theory that would later be taken up by many philosophers, some of whom will now be introduced. 

1.6 Dretske 

The philosopher Fred Dretske was a central figure in the (re-)establishment of interest in the concept of 
information in current Anglo-American analytic philosophy. He was not the first analytic philosopher to 
offer a systematic treatment of information. Prior to Drestske, most prominently, in the 1950s, Rudolf 
Carnap (1891–1970), together with the Israeli mathematician and linguist Yehoshua Bar-Hillel (1915–
1975), attempted to develop an account of semantic information based on Shannon’s theory. Much like 
the rest of Carnap’s later technical work on formal semantics and inductive reasoning, the work on 
information was mostly ignored by his contemporaries. Mainstream analytic philosophy had turned away 
from formal languages and towards “ordinary language philosophy”. Dretske’s work on information, 
developed most fully in his book Knowledge and the Flow of Information (KFI) (Dretske, 1981), came at a time 
when the tides of analytic philosophy were changing. There was renewed interest in formal modelling 
from scholars working in areas such as epistemology, the philosophy of mind and the philosophy of 
language. Dretske’s work was not in philosophy of information proper, or at least this is how he saw it. 
Even in his last days, he was expressing scepticism about the PI project – a view that, we believe, was 
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reversible.3 His was a project in epistemology. As he described it (paraphrasing): “I was trying to develop 
an externalist theory of knowledge. I thought that what the engineers were doing with the concept of 
information may be very useful for philosophers and for the problem of knowledge.”4 What allowed 
Dretske to be successful in bringing (back) the concept of information to philosophy was the fact that he 
managed to link it to the way philosophers (at the time) discussed other problems. He did this through a 
skilful use of intuitive examples intertwined with formal theory. He was, indeed, a master of this. The 
success was, however, only partial. The epistemological theory that he suggested was quite controversial, 
mostly because externalism fell on hard times. In the mind of many philosophers, Dretske’s attempt to 
use information to understand knowledge was seen as more or less a failure – information was tried, it did 
not work, so we should not bother. Dretske’s own work moved in the direction of philosophy of mind. 
While the ideas from KFI were clearly under the surface of his work, they did not recur prominently. It 
was not until the epistemological work of Floridi twenty years later that the concept of information re-
entered the discussion of the same problems – in a quite different and more fundamental way.  
 
Now let us look more closely at the key ideas of Dretske. They will be developed more fully in many of 
the other chapters of this book. The driving idea behind the connection between information and 
knowledge for Dretske is really rather simple. When we want knowledge, what it is that we really want? 
What is it that we value? What are we willing to pay money for? The answer for Dretske was: we want 
information. Information is the prime epistemic resource. This is not truth, or justification, or something that 
reliably causes your beliefs about the world, or to be infallible, or to know that you know. Many of these 
are important, but they are secondary or implicit. We go to a train station and want to know at what time 
the train departs. We need to find information about this, so we go to the information booth. This (or 
other similar places) is where the valuable resource can be gotten.  
 
Dretske held the view, known as the strongly semantic view of information (see Chapter 7), that one 
cannot have information if it is not true. It wouldn’t be an epistemic resource otherwise. When we ask at 
the information booth for the train time we do not expect a statement on the topic of train times. We 
expect the truth about the train. Anything else means incompetence. Dretske’s famous expression 
captures this idea: ‘False information and mis-information are not kinds of information—any more than 
decoy ducks and rubber ducks are kinds of ducks.’ (Dretske, 1981, p. 55).  
 
Dretske never even attempted a theory of justification. His view was that, first, it was not necessary for 
(an externalist conception of) knowledge, at least for basic perceptual knowledge – the main goal of his 
theory. Second, a proper theory of justification would be too messy. About the question of knowledge of 
knowledge, his view was that only philosophers are interested in such questions. Ordinary people only 
want knowledge – they want information.5  
 
How, then, can such an idea of information as an epistemic resource be made precise? First it must be 
clear that this conception of information must be semantic, as knowledge is a semantic phenomenon. 
Second, being an account of knowledge, the conception of information must provide a means for 
                                                                        
3 Interestingly, the very last undergraduate lecture that he delivered on April 17, 2013, as a guest in one of the authors’ epistemology classes, 
was precisely on his informational account of knowledge. He was as enthusiastic about it as ever. Prior to the class, over lunch, he remarked 
that this was the very first time he had ever taught this material to undergraduate students. 
4 Here is a more direct quote: “Maybe – or so we may hope – communication engineers can help philosophers with questions raised by 
Descartes and Kant. That is one of the motives behind information-based theories of knowledge.” (Dretske, 2008) 
5 This was important because for many philosophers the question of justification and epistemic reflexivity were central and decisive aspects 
of knowledge. The unwillingness, or inability, of Dretske to deal with them made his information approach appear too weak to resolve the 
philosophical problems of knowledge. 
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understanding how one may have beliefs. (Note that Dretske is dealing with the standard conception of 
knowledge that assumed that the vehicles of knowledge are beliefs. This is the so-called “doxastic” 
approach to knowledge. We will see later, in Chapter 8, that some philosophers, most prominently 
Floridi, adopt an informational approach precisely to avoid a doxastic approach.) Dretske thinks that 
there are enough resources in Shannon’s communication theory to capture the needed ideas. His strategy 
is the following: (1) View the problem of A knowing that s is F (A having a belief of propositional 
content F(s) that meets some conditions of being an instance of knowledge) as a problem of there being a 
special kind of communication channel between a source and a receiver of information (a known and a 
knower). Knowledge is obtained by the receiver getting a special kind of message m from the source. (2) 
Provide the needed condition on the communication channel to allow a message to have the needed 
propositional content for the receiver. Beliefs are intentional states, yet the condition of the 
communication channel cannot offer the correct kind of intentionality for mental states needed for 
knowledge. Thus, (3) provide the needed further condition for intentionality for beliefs. Once this is 
done, knowledge can be defined as the agent having a belief that s is F generated (or supported) by the 
correct kind of information that s is F. 
 
Step (1) is primarily a way of reconceptualising the problem of knowledge as a problem about 
information in the Shannon sense. The real work is related to step (2) and step (3). The details will be 
developed in later chapters. A proposition of the form s is F has an “object” (what it is about), and 
“properties” (what is ascribed to the object). So, s is the object and F is the property. In a communication 
channel, the object is fixed. It is the source of the information. The message we get from the source is 
about which of the possible properties (or states) the source may be in. The problem of Shannon’s theory 
is that messages give us only a probability of the source being in one of the possible states. For Dretske, 
what is missing from the Shannon story is not the components needed to provide meaning (the object 
and the qualities), but the under-specification of the meaning. The solution is natural. Given some 
background information k, “a [message m] carries the information that s is F = The conditional 
probability of s being F, given m (and k) is 1 (but given k alone is less than 1).” This is called the 
“information content” of a message. In other words, a message has information content if it uniquely 
determines the state of the source. Note that not all messages have information content. 
 
Such a conception of content has a well-known problem. If a message m has the content s is F, and s 
being F implies the s also has the property G, then m has the content s is G. This is because if the 
probability of s being F given the message is 1, then the probability of s being G will be 1 as well. Here is 
the problem: one may know that s is a square but one may not know that s is a rectangle. One may not 
even know what a rectangle is, as many children do not. If all that was needed for knowledge were to 
have information with some content, then children will not only have to know about rectangles as soon 
as they learn about squares, but they will automatically have to know all of mathematics. This difference is 
related to the issue of intentionality. Dretske’s solution is to consider how information is carried by various 
states to the mind. He makes a distinction between a state’s carrying information in digital and in 
analogue form. A message carrying information of content s is F is in digital form if it does not carry any 
further information content than s is F. If it carries more, it carries it in analogue form. With this, Dretske 
can separate the information content s is F from s is G, because only one of them may be carried in digital 
form. The message “s is a square” carries the information about squareness in digital form, while it carries 
information about rectangleness in analogue form. He thus defines another kind of content – “semantic 
content”. This is the content carried in digital form. Only some information carriers carry information in 
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digital form. Dretske then uses this idea to provide an account of beliefs. The proper notion of content 
for beliefs is not information content, but semantic content. (See Chapter 3 for more on Dretske.) 

1.7 French Philosophy of Information 

The American cyberneticists were only one group born from the theories of Turing and Shannon. Another, 
more distanced group, was a closely-related team of predominantly French philosophers. They were 
responsible for expanding certain themes as well as the philosophical consequences of Turing and Shannon’s 
ideas in the very early stages. The first of these thinkers were Raymond Ruyer (1902-1987) and Gilbert 
Simondon (1924-1989), who published mainly in the 1940s and 1950s, closely followed by Gilles Deleuze 
(1925-1995), Michel Foucault (1926-1984), and Jean Baudrillard (1929-2007), in the latter half of the twentieth 
century.  
 
This second group practices something that is often popularly referred to as “continental philosophy” – a 
philosophy somewhat different from others that will be presented in this book.  However, this distinction is 
quickly falling by the wayside in current debates. One key characteristic that tends to remain true of continental 
philosophy, however, is that it seems to focus more on the invention of concepts and terminology, which are 
expected to be used in future debates on whatever issue is at hand. The second characteristic is that continental 
philosophy tends to have a predilection for articulating problems and attempting to find the theoretical 
missteps in preceding theories, rather than in the simple prolongation of already established theoretical customs. 
Though this approach has been occasionally derided as contrarian, today many see the value of its aims and 
methods. While continental-type concepts such as “hyperreality” (the inability to distinguish between reality and 
a simulation) and “immanence” (the absence of hierarchy) might have appeared far-fetched to more 
mainstream branches of philosophy in the twentieth century, today topics such as these are no longer viewed as 
the domain of continental philosophers alone. Indeed, many continental theories appear to be completely 
compatible with the more analytic notions inherent in the philosophy of information. 
 
While the current approach to the philosophy of information has begun by analysing the texts of 
philosophers whose work relied heavily on philosophy of mind and epistemology – perhaps most 
importantly the work of Dretske – the French philosopher Gilbert Simondon remains a key figure in the 
history of the articulation of a robust philosophy of information. As we have seen, the American 
cyberneticists knew that there were areas yet unexplored by the concept of information as  expressed in 
semantics. Simondon knew this as well, and his approach to information was, in a way, an extension of 
these concerns. While he remained deeply critical of some of the cyberneticist approaches to information, 
he did not disagree with the engineering notion of information entirely. Like some contemporary 
philosophers of information, he sought to push the notion of information to an even more “naturalistic” 
extreme. 
 
Simondon’s approach to what we can call “informational ontology” is a type of phenomenological 
(subjective, observable) extension of the mathematical theory of communication, but also one that 
accounts for the indeterminacy (openness, unpredictability) of information’s interactive existence in terms 
of biological and technical structures, thus furthering the concerns of the earlier cyberneticists. Simondon 
approached information from a perspective that allowed for the interoperability of different types of 
information, leaving space for an indeterminacy that would remain a fundamental component of 
Simondon’s open informational schema. Where the cyberneticists argued for control, Simondon argued 
against the automation of phenomena. A simple way to think of the difference is this: where the 
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cyberneticists thought about information as a bunch of “closed” systems in the world, Simondon’s 
approach held that there are no systems “as such”, but only the differences that information introduces in 
a universe that can be thought of as one giant, single system of information in action. 
 
These two factors – interoperability and indeterminacy – would allow Simondon to apply the notion of 
information to fields beyond pure mathematics, and to mix and match various forms of information in 
order to come to some understanding of informational and technological genesis. He sought, for 
example, to think of the evolution and genesis (change) of objects, technology, and the world, in terms of 
information. Indeed, his two main theses (Simondon, 1958, 1964), originally defended in 1958, are 
chockfull of metaphysical ideas pertaining to a naturalized understanding of informational genesis. 
 
Another simple way to understand this is in Simondon’s example, used throughout his work, of the 
difference between an air-cooled and a water-cooled engine. In the water-cooled engine, the water serves 
a single function in the “closed” field that is the engine. If we thought of things in this way, that is, if we 
thought of the engine as a closed system unto itself, we would forever be adding sections to it since to 
increase its operability we would have to consider elements that it does not contain, and then add them to 
it. But things do not really work this way. A different way to think about this is when we consider the air-
cooled engine. In this engine, the air serves a variety of functions all without adding anything to the 
operation of the machine; it is an example of the technical artefact interacting with another “milieu” (as 
Simondon would put it). The information that air can change the engine not by addition but by 
introducing new informational properties that redefine the interoperability of the engine’s components 
serves to introduce one moment of technological change. Simondon viewed all phenomena in the world 
in this way, including natural biological processes. Thus, it can be said that he sought a naturalized 
account of information (a notion that is still controversial today – see Chapter 3).  
 
Simondon’s sensitivity to contingency, lack of probability, and openness to the informational 
multimodality inherent in communicative processes are traits that he felt were equally important to the 
philosophy of information and to an understanding of its more phenomenological underpinnings. Indeed, 
he would take it one step further by introducing these features – which were until then associated with 
semantic information only – to information in the “hard” sense, that is to say, information as an entity. To 
put it in terms of a helpful distinction made by Floridi, information can exist in three ways: information 
“as” reality, information “for” reality, and information “about” reality. Where the cyberneticists thought 
the interoperability and indeterminacy of information “about” and “for” reality, Simondon thought these 
concepts in terms of information “as” reality. The key to Simondon’s importance is his outlining of the 
metaphysics of information in a “hard” sense that remained “open.” He provided a number of useful concepts 
and terms with which to talk about change and information in action. His concept of “disparation,” for example, is 
used to describe the way two milieus (planes) of information interact with each other without ever really 
coming into contact (he uses the examples of left and right retinal imaging). 
 
One of Simondon’s contemporaries who deserves mention is another philosopher named Raymond Ruyer. 
Ruyer wrote on a great many topics far beyond the field of information, but it is worth noting that he penned 
one of the first philosophical treatments of this topic in his book (Ruyer, 1954).  The text deals explicitly with 
cybernetics and information, but it also theorizes communication and reason by probing the nature of 
different types of machines, a field previously known as “mechanology” (this term is becoming popular 
once again). Ruyer, like Simondon, criticized the notion of automation, proclaiming instead that 
automation, rather than being a higher degree of perfection, actually reflects a certain disadvantage in the 
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form of information being cut off from the surrounding environment (again, what Simondon would have 
called a “milieu”). In short, the book represents a very early philosophical analysis of cybernetics and the 
philosophy of informatics, especially that of Shannon and Wiener. 
 
The last of the early continental philosophers of information is Andre Leroi-Gourhan (1911-1986), who trained 
as a professional anthropologist. Another thinker of technology and information, Leroi-Gourhan wrote a book 
about technology titled Gesture and Speech (Leroi-Gourhan, 1964-65). In it, Leroi-Gourhan philosophized 
that the informational properties inherent in tools and different forms of technology actually serve as a 
type of extension of our minds. The book is filled with examples from his anthropological excursions 
where he unpacks the nature of tools, including bodily ones, and how they aided different societies 
mentally throughout history. He offers a variety of concepts to help him think through his findings, 
particularly in the section titled “The Expanding Memory”. One of his most notable concepts is called 
“exteriorization”, and is meant to describe when a piece of technology acts “in place” of a function that 
previously was only carried out by the mind. Leroi-Gourhan uses the intermeshing of tools and motive 
gestures, symbols, and our erect posture as examples, but today we could easily find many more, 
including but not limited to external hard drives, apps, and smart phones. Leroi-Gourhan was a 
philosopher-anthropologist who explained technology as exterior memory, and so even today some of his 
observations are completely relevant. Discussions about so-called “Big Data,” memory implants, cloud 
computing, and wikis, are all completely in line with Leroi-Gourhan’s early theories because he saw 
technology as a way to expand our knowledge and to act in place of biological memory. This can be also 
be seen as an early precursor to something like the “extended mind” thesis (Clark & Chalmers, 1998). 
 
As we continue to explore our continental heritage in the philosophy of information, we will now turn to some 
of the later philosophers of information after Ruyer, Simondon, and Leroi-Gourhan. One of the more well-
known philosophers in this tradition is Gilles Deleuze. Deleuze’s contemporary Michel Foucault once said that 
one day the twentieth century might be referred to as “Deleuzean”. Whether history will be kind to Foucault’s 
proclamation or not is beside the point, but for the philosophy of information, Deleuze is certainly one of our 
key players. 
 
Deleuze took many pointers from Simondon and, following his lead, expressed a politics of information along 
ethical lines. Though he is known much more for his work in ontology, a short text of his titled “Postscript on 
the Societies of Control” (Deleuze, 1990) was one of the first texts that articulated a (critical) political economy 
of information. In this short yet complex work, Deleuze ponders the relation of information systems to the 
function of society at large, and what control of these systems might mean (in the cold, hard, political sense) for 
notions such as democracy and politics. He coined the termed “dividuals” in this text (rather than “individuals”) 
in order to express how human communication is divided among information systems. Alternatively, in some 
of his more metaphysical works, particularly in his magnum opus, Deleuze expanded on Simondon’s work by 
investigating concepts such as the virtual/actual distinction (Deleuze, 1968).  
 
Difference and Repetition is a dizzying book, due to the complex material and also Deleuze’s opaque writing 
style. Nevertheless, the book’s main thesis (that difference is internal to metaphysics; that it is not 
something between entities or representative of some type of unknown “gaps” in the world) popularized 
the notion, coming from Simondon, which holds that information really is the “stuff” of our world. What 
we perceive as “difference”, then, is actually simply the interlocking of informational structures. Deleuze 
philosophized the virtual and multiplicity, control and communicability, all within this context of 
informational “immanence”. Many since have followed Deleuze’s lead and produced whole books on 
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“protocol” or “algorithmic culture”, flat-ontology and information, adding to our understanding of the way that 
information can be used to understand the universe.  
 
Continental philosophers after Simondon (such as Deleuze) added to our understanding of information. It 
should be noted, however, that while Simondon was working out of the tradition known as metaphysics, the 
other tradition from which many philosophers of information conduct their work is semiotics. While the 
continental philosophers of information concerned with metaphysics largely built on the ideas of Baruch 
Spinoza (1632-1677) and other European philosophers (Edmund Husserl, Martin Heidegger, etc.), those 
working in semiotics built on the ideas of the American philosopher Charles Sanders Peirce (1839-1914, see 
Chapter 6.6)) and the Swiss linguist Ferdinand de Saussure (1857-1913). For now, we will stick with Saussure, 
who seems to have made a greater impact with the European continental philosophers of information. 
Saussure’s approach to semiotics was based on a theory that the notion of “meaning” consisted of three 
elements: a “signifier” (such as a rose) and a “signified” (love) which together produce a “sign” (rose + love). 
Some continental philosophers, Deleuze among them, thought that this distinction was too simple, and that the 
notion of difference, in a strictly philosophical sense, did not fit well with this semiotic distinction. 
 
One of the first philosophers after Simondon who theorized information beyond semiotics from a variety of 
perspectives and in terms of how meaning changes throughout history was Michel Foucault. While Foucault 
wrote on a number of subjects – so much so that discussing his work could fill many volumes – some of the 
most significant concepts that he articulated in terms of the philosophy of information are “episteme” and 
“historical a priori”. Foucault, more than any other of the continental philosophers of information, sought to 
think about information in terms of history and the archive. He asked such questions as “how does knowledge 
change throughout history?”, “what is an archive?”, and “how is meaning constructed socially?” He theorized 
the effects of information on things like society and the human body. 
 
The ideas – episteme and historical a priori – systematically laid out in two major books (Foucault, 1966, 1969), 
are meant to denote the fact that anything we say and do, particularly when it comes to research, are in fact 
articulated within a field of “pregiven” information in the shape of discourses; that is, they are informed by 
meanings that have already been established. Foucault is thus most famous for analysing the social role of 
information for society and history, and even for the body (a practice he called “biopower”). For 
example, his research on the history of medical classifications helped show that certain fields related to 
illness and disease increased as classifications became available, thus enabling governing political powers 
to organize different groups of populations in certain ways (“madmen” in hospitals, lepers in 
“leprosariums”, and so on).  
 
Episteme and historical a priori, for their part, are meant to denote a certain “lower” level of meaning 
(Foucault often used the word “unconscious”), one that discursive fields depend on implicitly, without 
formally acknowledging their existence. Foucault often referred to the “positivity” of knowledge in this 
way, implying that certain knowledge is “spoken” and “made visible” through discourses, while deeper 
structures remained hidden beneath these discourses that are, essentially, taken for granted. This helps 
explain why Foucault was so interested in information in terms of archives, and why he wrote a whole 
book of original philosophy dedicated to the methodology of what he called “the archaeology of 
knowledge” that lay beyond positivism proper. Many have followed this lead. The philosopher Ian 
Hacking, for example, was inspired by Foucault when he wrote his well-known essay “Biopower and the 
Avalanche of Printed Numbers” (Hacking, 1982), a short text on the history of statistics. 
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Foucault understood information as a type of representative of organization – as an epistemology – and as 
what Foucault (1969) called “the system that governs the appearance of statements”. In a very famous 
passage in the same book, Foucault says that individuals, people, networks, and texts are  
 

in a web of which they are not the masters, of which they cannot see the whole, and of whose breadth 
they have a very inadequate idea—all these various figures and individuals do not communicate solely 
by the logical succession of propositions that they advance […] they communicate by the form of 
positivity of their discourse, or more exactly, this form of positivity (and the conditions of operation of 
the enunciative function) defines a field in which formal identities, thematic continuities, translations 
of concepts, and polemical interchanges may be deployed. Thus positivity plays the role of what might 
be called a historical a priori.  

 
When Foucault says that positivity plays the role of a “historical a priori” he is trying to get us to 
understand that we all play out the story of information, meaning, and communication according to 
determinate discursive fields. The important thing to take away from the passage mentioned above is that 
Foucault wants us to think of knowledge in informational (and, even more specifically, archival) terms 
where knowledge is less a progressive field of knowing according to successive inferences in the world 
than an architectonic system upon which we are able to express the current state of things via 
interventions and interpretations. In a way, he is suggesting that we cannot directly access something like 
“pure” knowledge or even history; that we do not communicate solely by the logical succession of 
propositions – this would exclude claims to universality made by certain positive discourses and in 
Foucault’s time we can assume that he had certain linguistic theories in mind – and that we instead must 
play out the “positivity” of discourse even as we seek to circumvent, break away from, or create new 
styles of knowing. This is not some type of new age metaphysics or a type of analytic philosophy that 
theorizes the a priori in the vein of logical positivism. Put simply, Foucault, challenging the early 
Wittgenstein, is telling us that whereof one is silent, thereof one must speak. He is claiming that although 
we cannot but deal with the things themselves, we must do so in a new and interesting way that 
acknowledges their hidden underbelly. 
 
This brings us to the next difficult philosopher of information, Jean Baudrillard, who is perhaps most closely 
associated with what some people refer to as “postmodernism”. Baudrillard, the most controversial member of 
this group (just as Wiener was the most controversial member of the last), argued that the invention of 
information theory inaugurated the final division between the notion of “value” as tried to some physical thing 
and the notion of value for value’s sake. He is the figure that is most associated with so-called postmodern 
philosophy due to his (at the time) esoteric theories concerning virtuality, simulation, and value. During his 
lifetime, many criticised Baudrillard’s philosophy for being untenable, resembling science fiction, and seeming 
unrelated to contemporary concerns with culture and politics.  
 
In retrospect, much of what Baudrillard had to say, from his neologisms concerning simulation to his 
philosophies on value, can now be understood as wholly in line with contemporary, albeit critical, debates on 
political economy. Perhaps the most well-known concept proposed by Baudrillard comes from (Baudrillard, 
1976). Here, Baudrillard develops the concept of the “hypereality of floating values”. The thesis here is that 
value is no longer tied down to anything “real” and that we have now entered an era of purely “symbolic 
exchange”. Baudrillard wrote three other books on the subject of information, communication, and technology 
(Baudrillard, 1981, 1987, 2001), all of which theorized concepts such as “hyperreality”, “simulation”, 
“simulacra”, and “symbolic exchange”. Like Foucault, Baudrillard stems from the Saussurean branch of 
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philosophers who were more interested in deconstructing the semiotic apparatus of the sign in favour of 
a more abstract notion of meaning that was disassociated from any physical, tangible roots. Baudrillard 
also remained the preeminent postmodern philosopher of information for the way he problematized 
history in similar terms. 
 
Finally, the last two continental philosophers of information on our list are the Stanford-based Jean-Pierre 
Dupuy and Michel Serres. They are the last of the living great French philosophers of information who are still 
publishing today. Dupuy (2000) is essentially an intellectual history of how Wiener and the rest of the 
cyberneticists laid the groundwork for cognitive science and AI, and also for modern debates on chaos and 
complexity theory, and how these relate to long-standing debates in the philosophy of mind. Serres, for his part, 
wrote a book (Serres, 1995) that is almost entirely devoted to the philosophical conception of “noise” as 
handed down to us by Shannon. Serres probed notions such as protocol, code, and atomism, as well as 
outlining different philosophical definitions of “noise”, including “bruit noise” and “belle noiseuse” 
(“beautiful noise”). He analysed the different meanings of noise as a concept, and was a philosopher of 
early physics and atomism. Here we will end our early history of the cybernetic and continental versions 
of the philosophy of information.  

1.8 Conclusion 

While these uses of information are different from each other, they are all in some way related to the core idea 
of information separated from the peculiarities of the physical system sustaining that information at any 
particular place and time. And they all advance their fields by allowing concentration on what is happening to 
that information. This is what is fundamental to the information revolution: we can see things as similar that we 
never did before, while things that used to be separate – almost barricaded off from each other – can now be 
connected and interact. 
 
In this chapter we have seen how vital the concept of information has become to the world, and 
understood where it has come from. These multiple profound new concepts originated in what were 
originally mathematical concepts. And note how Turing gave us only an idea – a new idea. He designed a 
new concept. 

1.9 Exercises 

1. Make a serious effort to imagine a world that had never thought of anything like Turing’s universal 
machine. Now reconsider whether Turing’s idea was mundane, or profound. 

2. Imagine that we had Turing’s idea, but still could not build a computer. How would the world have been 
different? 

3. Try to think about different types of information. What would you call them? Can you provide examples? 

4. Is information abstract or physical? Can it be both? Provide an example. 

5. Are “meaning” and “information” separate? Why? 
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1.10 Further reading 

Floridi (2011c, Chapters 2 and 3), Gleick (2011, Chapters 7 and 8), Wiener (1948, Chapter 8), Dupuy (2000, 
Chapter 1). 
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2. WHAT IS THE PHILOSOPHY OF INFORMATION TODAY? 

Information first 

 

2.1 Introduction 

Alongside academic philosophy, and the philosophical 
work commonly done in many other disciplines, 
Philosophy of Information (PI) is concerned with 
concepts. To communicate and co-operate successfully 
in pursuit of any goals, communities of people need 
shared conceptual schemes. When the world changes, 
because we find out about or create new things, those 
conceptual schemes need to change. For example, we 
needed to invent a new concept “spin” to develop 
quantum mechanics, and we need to understand how a 
Facebook “friend” is different from the usual kind of 
friend. For many working in PI, the purpose of 
philosophy is to help build the required conceptual 
scheme or schemes, to engage in conceptual design. 
And philosophy is most useful when it aims to build a 

conceptual scheme in response to the problems of a particular time and place. 
 
In this chapter, we address the question of what PI is now by looking at what philosophical questions to 
ask today, and how to answer them. We will outline an approach to philosophical questions that 
influences a significant group of current philosophers of information – although it is not shared 
universally by current philosophers of information.  
 
It seems to be human to ponder difficult questions. What is the soul? Is there a God? What is a lemon? Is 
there an essence of lemony-ness? There’s nothing wrong with wondering about these kinds of questions. But if 
you want to do serious philosophical work, many current philosophers of information recommend that 
you think very carefully about your question, because some questions might be a waste of your time. 
 
In this chapter, we examine how to discriminate between questions that are fruitful and questions that are 
not. It can require serious philosophical work to choose and refine a good question. One key idea to 

Chapter 

2 

‘Evans had the idea that there is a much 
cruder and more fundamental concept than 
that of knowledge on which philosophers 
have concentrated so much, namely the 
concept of information. Information is 
conveyed by perception, and retained by 
memory, though also transmitted by means 
of language. One needs to concentrate on 
that concept before one approaches that of 
knowledge in the proper sense.’ (Dummett, 
1993, p. 186) 
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grasp will be that we interact with the world at a particular Level of Abstraction (LoA), and failing to 
respect that can lead to a conceptual mess.   
 
We will also begin to see why PI focuses so much on information, presenting the way Luciano Floridi, as a 
prominent current philosopher of information, sees PI as demanded by the “information revolution”. 
The key idea is that, as our investigations of the world change, our understanding of both the world and 
ourselves changes too, and philosophy helps us come to terms with these changes, and to design new 
conceptual schemes to deal with them. We will explain how a vitally important recent change that 
demands new conceptual schemes has been the creation of the “infosphere”. 

2.2 The information revolution alters our self-understanding 

It is not difficult to see that the progress of science has given human beings a radically different 
understanding of the world over the centuries. Could we ever have expected that time and space would 
be relative to a frame of reference? Who would have predicted the bizarre claims of quantum mechanics? 
Science changes our understanding of the world. But science does something else too – it changes our 
understanding of ourselves as human beings. 
 
Science changing our self-understanding may be rare, but it can be a shattering experience. Consider three 
examples of scientific revolutions (as presented by Floridi, drawing on ideas by Freud) that were so 
profound that they altered forever how human beings see themselves and their place in the universe. 
 
We might choose Copernicus as the standard-bearer for the first revolution, as he speculated that the 
earth was not the stationary centre of the universe, around which the planets, sun and fixed sphere of the 
stars revolved. Instead, the earth is just one planet of several in our solar system, itself orbiting the sun at 
an extraordinary speed. From a modern perspective it is difficult to understand how shattering it was to 
humanity’s self-understanding when the empirical data eventually became so strong that the Copernican 
view became generally accepted as true. At least a large section of humanity had believed themselves to be 
so privileged that they existed at the very centre of a universe created entirely for them, so focused on 
them that it literally revolved continuously about them. 
 
A natural standard-bearer for the second revolution is Darwin. While people had to accept that they lived 
on one speeding rock among many others, they considered themselves profoundly different from other 
animals on the planet. They were so clearly superior to other animals in their abilities to shape the world 
around themselves that they thought they must have had a quite different origin from even the most 
intelligent animals. Darwin destroyed all that. The theory of evolution showed how all life on earth could 
have descended from a few common ancestors, by gradual modification over many millions of years. 
 
Recovering from this revolution with ill grace, humanity consoled itself with the view that people had 
changed so much since their common origins with animals that now they were different from other 
animals. They had rationality, and higher thought, which gave them independence from their baser 
emotions and instincts, quite unlike any other animal. Then humanity stumbled into the third revolution, 
spearheaded by Freud. He, and many thinkers since, convinced us that human beings are not entirely 
rational, nor are our minds perfectly transparent to ourselves. We do still have animal urges, and instincts, 
and sometimes our minds are opaque to us, so that we cannot always be sure why we are acting the way 
we are. 



THE PHILOSOPHY OF  INFORMATION — AN INTRODUCTION 

 

30 

 
Together these three revolutions radically transformed our understanding of ourselves, to something 
much more like the current conception of humanity, and it is not possible to go back to how things were 
before. But science has not stopped. Our understanding of the world is still changing, and even the world 
itself is changing – because we are changing it. 
 
Pioneering work on information by such giants as Turing and Shannon (see Chapter 1) led to the creation 
of information and communication technologies. The information revolution began with extraordinarily 
large, clunky computers in the 1950s, but it has recently exploded into a vast array of hardware that most 
people use every day (computers, laptops, tablet computers, MP3 players, e-readers, smart phones), and 
corresponding software, web services and apps that are also part of daily life (email, Skype, Facebook, 
Google). Without them, you could not be reading this e-book now. 
 
The creation of the internet has had an extraordinary impact on human life, with many daily tasks 
(booking cinema tickets and flights, for example) and working life (email) transformed by it. The internet 
can be seen as the creation of an entirely new aspect of the world, accessed by newly available hardware 
and facilitated by the new software and services. This new aspect of the world might be called the 
information sphere, or infosphere (Floridi, 2011c, p. 14ff.). 
 
Accompanying these dramatic changes in daily experiences has been the creation of vast amounts of data. 
Managing that data is now a large part of most jobs in the richer part of the world, and a large percentage 
of the GDP of advanced countries such as Canada, France, Germany, Italy, Japan, the UK and the USA 
is now made up of informational goods like music, novels, computer software, and other patented 
inventions such as drug formulae (as opposed to material goods that are made or grown in manufacturing 
or agriculture). This is why people talk of the new “knowledge economy”.   
 
So far all we have said is that the world and our understanding of it have changed. But revolutions of the 
kind we are interested in are revolutions so profound that they also change our self-understanding. Many 
philosophers of information believe we are currently in the throes of such a revolution: the information 
revolution. PI holds that we are coming to see the world and our place in it in a profoundly different way. 
We are coming to see that it is not just the internet that is the infosphere. The whole world is the 
infosphere, and we are informational organisms, or inforgs within it (Floridi, 2011c, p. 110ff.). 
 
This is because our understanding of the world is changing from a world filled with very different and 
unique members of different kinds of things – the physical, like rocks and particles; life, like trees and 
rabbits; artefacts, like tables and cars. First, the boundaries between kinds of things are blurring, as we see 
their basic, most general nature as informational. Things of different kinds can interact, and even 
different kinds of interactions can be seen as fundamentally similar. The smashing of a rock falling off a 
mountain and the editing of software to change the action of a computer program when the “save” icon 
is clicked certainly have their differences. However, they can both be understood as informational 
interactions, changing data structures, as we have seen in the examination of the new language of 
information in Chapter 1, and as we will see in the discussion of naturalized information in Chapter 3. 
Second, the idea of a unique and irreplaceable individual object is also fading. An object like 
Michaelangelo’s David is unique. Other objects very similar to it are not it, and do not share many of its 
properties – most notably its value, both aesthetic and monetary. But more and more our lives are 
concerned with non-unique objects. We no longer have to listen to a one-off, unique performance of a 
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piece of music, or buy a record that is initially identical to many others, but quickly scratches and acquires 
its own individual characteristics. We buy and download an MP3 file of a song, which remains 
interchangeable with all the other MP3 files of that song. This is the shift from material – unique and 
irreplaceable – to informational. In these ways, we are coming to see the whole world as the infosphere.  
Floridi calls this process re-ontologizing (Floridi, 2011c, p. 113ff.). 
 
This new understanding of the world goes along with a new understanding of us and our place in that 
world. As in previous revolutions, the distinction between ourselves and others is being broken down. 
We are becoming freer of the constraints of our physical location and biological bodies. For example, our 
agency is no longer limited to our physical location, with most people having access to multiple means of 
acting at a distance, such as email, phone, Skype, Facebook, and so on. We cope increasingly seamlessly 
with multiple means of interaction, with interfaces like tablet computers and smart phones allowing us to 
move fluidly between distant action, and face-to-face action. Because of this, we can no longer see the 
internet and these multiple means of acting as alien and other, but as a seamless part of our lives, as just 
other methods for doing the things we normally do. There are fewer differences between processors and 
processed, online and offline. For example, a person driving using GPS is not clearly either online or 
offline. In these ways, categories developed in what we easily recognize as a new and special infosphere – 
the internet – are expanding naturally into the rest of our experience. Floridi calls this new status “onlife” 
(Floridi, 2011d, p. 550). It is because of this that we are coming to see the whole world as the infosphere 
and ourselves as inforgs. 
 
This process is still happening. The current generation has not completely changed and can still see and 
experience the change. We are not yet fully-realized inforgs. But the babies currently learning to use iPads 
before they have the manual dexterity needed to turn the pages of a book will grow to become inforgs 
quite unaware of the change – they are the real children of the information revolution. 
 
Just as for the previous revolutions, it isn’t possible to go back. While we could lose the technology and 
have to return to a pre-Information and Communication Technology world, we will not soon lose the 
altered understanding of ourselves that the information revolution has created. 

2.3 The philosophy of information as a field 

Since the information revolution, there is a lot more information around than there used to be. And 
handling information takes up an increasing amount of time of increasing numbers of people, in both 
working and in leisure time. The scientific and mathematical study of information is now very important 
to the progress of information and communication technologies that affect all our daily lives. 
 
As well as altering our self-understanding, this growth in information itself and in the science of 
information has done two things. First, it has opened up many more interesting problems, concerning 
what information is and how we are to understand it. Second, there has also been the creation of novel 
tools and methodologies ripe both for further conceptual investigation, and for plundering – to carry off 
novel concepts to help solve other problems. 
 
This is what Floridi means when he writes:  
 

http://www.youtube.com/watch?v=aXV-yaFmQNk
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The philosophy of information (PI) is the philosophical field concerned with (a) the critical 
investigation of the conceptual nature and basic principles of information, including its dynamics, 
utilization and sciences, and (b) the elaboration and application of information-theoretic and 
computational methodologies to philosophical problems.  
(Floridi, 2010c, p. 46.) 

 
We live in the “information age”; we are members of an “information society”; we read “information” in the 
papers; we can gather “information” on, say, the salt gradients of the currents in the Pacific Ocean; and we can 
talk about the amount of “information” that can be delivered over a wireless connection or stored on a 
memory stick. Because the term “information” is tossed about casually in common language with no clear 
meaning, it is useful to begin by clarifying its definition. So a core question for philosophy of information is 
“what is information”? Given that “information” is also used differently across different fields of study 
(biology, communications, computer science, economics, mathematics, etc.), it is a hallmark of the philosophy 
of information to undertake this task, if the term “information” is to be informative at all. So, first, on Floridi’s 
understanding, PI is the research area that examines the concept and phenomenon of information in its many 
meanings and occurrences, and tries to clarify its many uses. 

In asking the question “what is information?” this first goal of PI is a classic philosophical goal. The 
“what is x?” kind of question has been a core philosophical format since Socrates, who asked questions 
like “what is virtue?” and, “what is knowledge?” The aim of asking such a question is a unified theory of 
x – in this case, a unified theory of information. Although it is a classic kind of question, the “what is 
information?” question is timely because information is so vital to current work across the sciences and in 
mathematics and computing, so a unified theory of information would be of interest to many. Notice that 
it is worth trying to find a unified theory of information, even if such a theory is never found, as it is only 
by searching that we will realise there is no such theory. Philosophy has a role to play in attempting to 
construct such a theory.  
 
PI is, however, much more than this. Given the information revolution and our radically changing 
understanding of the world as the infosphere and ourselves as inforgs, “information” is a foundational concept. 
So, some have attempted to overhaul philosophy by putting information first in philosophical enquiry, making 
the philosophy of information a new prima philosophia – a first philosophy.  Traces of a developing field have 
been clear for some time, as described in Chapter 1. However, the most extensive overhaul of philosophy along 
informational lines comes from Luciano Floridi, starting with a series of articles beginning in 1995 and 
culminating (so far) in his 2011 The Philosophy of Information, published by Oxford University Press. In this book, 
he addresses several outstanding philosophical problems by borrowing concepts from the computational 
sciences and putting them to new use. Indeed, Floridi argues that there is a crisis at the heart of current 
philosophy that can only be addressed by looking at information as more foundational than the traditional 
categories of knowledge and existence. Other philosophers of information employ the notion of information 
simultaneously in biological, mathematical and philosophical terms, to address questions regarding the 
emergence of mind from a physical substrate up to and including consciousness. We will see how modern PI 
addresses many philosophical issues in the later chapters. 

The second goal of PI is innovation: to develop an information-theoretic philosophical method in order 
to examine how ideas coming from the explosion of work on information might usefully be applied to 
philosophy, to develop new philosophical questions, and perhaps answer old philosophical questions. 
There are lots of ideas in the study of information, and it is worth thinking about what might be relevant 
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to philosophy. The results of this work to date will be presented throughout this book. We shall see in 
sections 2.5-2.7 that PI sees the method of Levels of Abstraction as one of the most important ways of 
importing information-theoretic ideas to philosophy. 
 
Finally, it is worth noting that Floridi distinguishes between what he calls a “minimalist” and “maximalist” 
interpretation of PI. Floridi claims that everything is information. The whole universe and everything in it 
is made of information – the universe is the infosphere. Broadly, this is because information is the 
broadest Level of Abstraction (which we shall meet shortly) at which to describe everything. This may 
seem a bit much to swallow – especially if you are not familiar enough with Shannon and the multiple 
uses of information in science to have any idea why anyone would make such a claim! The maximalist 
approach to philosophy of information takes this idea seriously. PI is the philosophy of information 
design. As, according to this view, the world is made of information, this is a foundational philosophy. PI 
is the philosophy of everything.  
 
However, accepting this claim is not necessary to find something interesting and important in PI. Information 
is clearly a very important concept, and it is one that has been neglected within much of academic philosophy. 
There are conceptual problems arising in ICTs. Even if the whole world is not the infosphere, the internet is. 
And the internet and related technologies and how we use them really are revolutionizing our lives. The 
conceptual investigation of information, and application of information-theoretic methods, is still very 
interesting. The choice of maximalist or minimalist approach to PI is up to you. There is a great deal to discover 
either way. 

2.4 Open and closed questions 

Floridi (2010c) identifies and discusses open problems in 
detail. What we examine here is the idea of an open 
question. This idea is important to PI, and can be useful 
to you in any philosophical (indeed any academic) 
studies. 
 
In brief, the idea of an open question is a question that is 
open to informed, intelligent and reasonable 

disagreement. You can see that quite a lot of questions are open: how should Alice wear her hair? Which 
film should Alice and Bob go to watch? Which party should Carol vote for? Interesting open questions 
are about subjects of current concern. They should be precise enough that we can expect substantive 
progress within a reasonable time period. A reasonable time period depends on how important the 
question is, and how long it is likely to remain important. But as a rough guide PI is looking for progress 
in less than a century – and hopefully less than a decade!  An open question is also related to the idea of 
Levels of Abstraction (LoAs). An open question is not asked independently of specifying its LoA, which 
we will examine in sections 2.5-2.7. An open question is framed for a purpose, in the context of 
consideration of what kinds of things are relevant to answering it. 
 
This is in contrast to a closed question. A closed question is one that can in principle see disagreement 
resolved once and for all, by some facts, or some calculations. A bad question – whether open or closed – 
is unanswerable not because we may disagree on the answer, but because there is no satisfactory way of 

‘It is precisely this that marks out a 
problem as being of the true scientific spirit: 
all knowledge is in response to a question. 
If there were no question, there would be no 
scientific knowledge.’ (Bachelard, 2002) 
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both accepting how the question is framed – including the assumptions that are implicit in the question – 
and answering it on its own terms. 
 
So the first step in identifying good open questions is to ask whether they are of current concern. Do they 
matter? For example, “What is the soul?” might be a question of current concern, as is the question “Can 
machines have souls?”, at least in the sense that many people currently care about these questions. An 
answer to these questions might be important. In contrast “Is there an essence of lemony-ness?” seems 
less important, and actually concerns very few people. We abandon that question as failing the first step. 
 
The second step is to ask whether the question is answerable. “What is the soul?” and “Can machines 
have souls?” are difficult. How are we supposed to go about answering them? What are the 
considerations that we bring to bear on deciding how to answer them? These questions, in these forms, 
are vague. One at least is a question that philosophy has been addressing for millennia – without a great 
deal of progress. This is a reason to proceed cautiously, to ask yourself whether you can contribute 
something new. These questions fail step two. 
 
You may reject the initial question entirely if it fails step two. As an example of a bad question to help 
guide your understanding, consider “what is the real nature of buggles?”  This is clearly unanswerable for 
you, as you have no idea what a buggle is, or why anyone should pose such a question, and so no idea 
how to begin to answer it. More seriously, the debate over scepticism, which you may know, has been 
running, without satisfactory answer, for millennia. Floridi argues that it is a bad question, forever 
unanswerable, because if you accept the requirements for an answer, you will see that they cannot be met. 
Floridi also argues that the Gettier problem cannot be answered, unless the way the question is framed is 
changed. This is examined further in section 8.3. It is possible that rejecting a question as bad is the right 
path to take if it fails step two. 
 
However, there is a third step in identifying good open questions. It is to wonder whether the original 
vague question can be reframed in more specific terms – turning an unanswerable question into an 
answerable one. Questions can be made more specific – refined – in multiple ways. The best way to 
choose a more specific question is to think, “why does the question matter?” and, “why does it matter now, 
and is this different from why the question mattered – if it did – a decade ago, a century ago, and a 
millennium ago?” 
 
After asking why it matters, we might change the question “What is the soul?” into “Can we conceive of 
the human psyche mechanistically, so that we can understand how the mechanistic accounts of various 
cognitive tasks of parts of the psyche that psychology, cognitive science and neuroscience attempt to 
provide relate to the nature of the whole psyche?” There may be many ways to create more specific 
questions; this is merely one example. But it is timely, and open. It is framed in terms of a particular 
purpose, and indicates relevant considerations for answering it, and literature to draw on. It is seeking to 
reconcile the mechanistic approaches of (some) sciences to (some) explanations of (some) human abilities 
to the way ordinary human beings conceive of human mental life. There is already a great deal of 
philosophical work on understanding the elements of this question, and there is source literature that 
makes it possible to understand them, and to understand what an answer to the question means. Like any 
philosophical question, better formulation of the question continues to be a concern in attempting to 
answer it. But this question has already made an important step away from the vagueness of “What is the 
soul?” 
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Take the second question “Can machines have souls?” In trying to make this question more precise, we 
might come to the question “Can machines think?” One of Turing’s profound contributions to thought is 
his revolutionary recasting of an unanswerable question in answerable terms.  Lost in the complexities of 
Turing machines (see Chapter 1), it is easy to forget that Turing refused to try to provide an answer to the 
question “can a machine think?” because he considered it a problem too meaningless to deserve 
discussion. He objected that the question involved vague concepts such as “machine” and “thinking”. So 
he suggested replacing it with the Imitation Game, which is more manageable and less demanding 
because it fixes a rule-based scenario that is implementable and controllable. The basic idea of the 
Imitation Game is to provide a test for, rather than a definition of, consciousness – or some aspect of 
consciousness. Turing’s idea is that we have reason to believe that machines can think, if a person asking 
questions – say over the internet – cannot tell which of two respondents is the person, and which is the 
machine (Turing, 1950).  
 
Turing’s idea of this kind of test provides a new question that contains specification of what is to count as 
an answer. Turing chose to compare “machine intelligence” to human intelligence. In testing whether 
computers can imitate us in answering questions, we are testing only whether machines can answer questions 
like us. The comparison could have been to something else, from animal intelligence to human creativity, 
as many other versions of the Turing imitation game have shown. What is important is that Turing asked 
a new question, which may be summed up as “may one conclude that a machine is thinking, by finding 
that one cannot discriminate between human beings and machines in the imitation game?” After half a 
century, philosophy is still learning the crucial lesson that asking the right question is a vital part of the 
philosophical battle. This is one of the greatest and lasting contributions of Turing’s famous test, far more 
important than the inaccurate predictions about when machines would pass it, or what conclusions one 
should draw if they did. Other thinkers through the ages have pressed us to rethink questions – often 
thinkers who were subversive and destabilising in their own time, with their true power being realized 
only later. Within philosophy, one example is Wittgenstein. 
 
The difference between open and closed, good and bad questions is very tricky. The only way to get it 
really clear is to look at philosophical questions for yourself, and start trying to assess whether they are 
open or closed, good or bad. We will also find out more about how to frame good philosophical 
questions in sections 2.5-2.7 below. So the best idea is to bear the distinction between open and closed 
and good and bad questions in mind while you read the other chapters of the book. For example, we will 
see how PI’s approach to ethics (Chapter 4), knowledge (Chapter 8), and personal identity (Chapter 15) 
differs from traditional approaches. PI aims to identify good open questions in traditional philosophical 
debates, and to avoid bad or closed questions. Think about which kinds of questions you prefer. It might 
help you to re-read this chapter after having really studied some of the others. 
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2.5 The idea of a Level of Abstraction (LoA) 

Take a blank sheet of paper and a pen. Take five minutes, and observe. Really, try it. No, we mean it. 
 
If you really tried it, you will have come to understand something very important. Think about what you 
wanted to ask. To help you complete your task, you almost certainly wanted to ask two questions: 
Observe what? Why? You wanted to know what things you were supposed to observe, and what things to 
ignore. Am I to observe the people in the room? What about them: is it their behaviour, their height, their 
gender ratio, or what? Or am I supposed to note the décor, the temperature, or the function of the room? 
Knowing what to observe might have allowed you to guess why you were observing. Am I investigating 
the ratio of male to female students on philosophy courses? Am I worried about funding cuts to 
universities leading to declining facilities? Am I worried that the heating is broken and students can’t learn 
effectively if they are too cold? If you know why you are observing, this will help you guess what to 
observe. 
 
For many philosophers of information, we need answers to these questions whenever we interact with 
the world in any way – when we think about it, talk about it, look at it, much less do anything to it! We 
don’t usually make explicit the answers to what we are observing and why, but nevertheless assume them 
when we think, talk, look, or act. Details about what to observe are Levels of Abstraction (LoAs) and 
making them explicit avoids mistakes. 
 
Suppose Alice and Bob are leaving a party, and Alice tells Bob her address is “56B Whitehaven Mansions, 
Charterhouse Square”. Bob makes assumptions about that address. Since they are in Oxford, he assumes it is 
an Oxford address. But later when he tries to check it on an online Oxford map, no address is found. Bob 
makes the false assumption that the right LoA at which to consider that address is as an Oxford address. The 
same happens if Bob switches his LoA to “England”, and then to “UK”. Eventually, Bob Googles the address. 
Now the LoA has completely changed. It is wider in scope, and allows many more types, which is just to note 
that now Google will produce lots of different kinds of information online related to that address. The first 
entry makes Bob feel like a fool: “56B Whitehaven Mansions, Charterhouse Square” is indeed a place in 
Smithfield, London W1. But it is the address of a fictional retired Belgian police officer, Monsieur Hercule 
Poirot. Alice unkindly used the LoA of a novel to mislead him. 

The idea of LoAs is crucial to handling any information process, and so to how we think about and perform 
our interactions with the world, and therefore in how we develop our philosophy of information. LoAs are 
important whether they are made explicit or not, as we see in Alice’s reply to Bob. Because of this, the only way to 
avoid mistakes in important cases is by making LoAs explicit. 

The Method of Abstraction comes from modelling in science, where the “variables” in the model correspond 
to the things chosen to be observed in reality. The term “variable” is commonly used throughout science to 
stand for an unknown or changeable value of something measured. So people’s height is a variable that can take 
many values we can measure, such as 152cm, 163cm, 1.6m, 5 feet 5” and so on. The variables are measured; 
everything else is ignored. The choice of variables – and the implicit choice of what to ignore – depends on the 
purpose of the observations, and in the end, the model you are making. The terminology of LoAs has been 
influenced by an area of computer science called Formal Methods, in which discrete mathematics is used to 
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specify and analyse the behaviour of information systems. Despite that origin, the idea is not at all technical and, 
for the purposes of this chapter, no mathematics is required. 

2.6 The definition of a level of abstraction 

Suppose we join Alice, Bob, and Carol earlier on at the party. They are in the middle of a conversation. We do 
not know the subject of their conversation, but we are able to hear this much:  

 Alice observes that its (whatever “it” is) old engine consumed too much, that it has a stable market value 
but that its spare parts are expensive.  

 Bob observes that its engine is not the original one, that its body has recently been re-painted but that all 
leather parts are very worn; and 

 Carol observes that it has an anti-theft device installed, is kept garaged when not in use, and has had only a 
single owner. 

Alice, Bob and Carol view whatever “it” is according to their own purposes, which guide their individual 
choices of what to pay attention to, their LoAs. We may guess that they are talking about a car, or perhaps a 
motorcycle, but it could be an airplane, since any of these three objects would fit the descriptions provided by 
Alice, Bob and Carol above. Whatever the object is, it is the source of information under discussion. We shall 
call it the system. But they talk about it differently. Perhaps Alice is an insurer, Bob tinkers with engines, and 
Carol is a collector and potential buyer. They all view the object at different LoAs. An LoA consists of a 
collection of observables, each with a well-defined possible set of values or outcomes.  

This is what Floridi means when he gives a more formal account of levels of abstraction: 
 

A level of abstraction is a finite but non-empty set of observables possibly moderated by transition 
rules.  
An observable is a typed variable with a label, that represents the name assigned by the epistemic agent 
to a feature of the system under consideration. 
A typed variable is (i) a place-holder for an unknown or changeable referent; and (ii) a set, called its 
type, that consists of all the possible values that the variable may take.  
A transition rule is a predicate that provides the trajectory of change of the observables inside its type. 
(Floridi, 2010c, extracted from Chapter 3) 

 
We can state the key idea the simple way: people using different LoAs concentrate on different features 
of the object, observe those features, and so describe the object very differently. Or we can say the same 
thing more scientifically: people using different LoAs concentrate on different features of the system, 
different observables, choosing different variables to measure those observables, and so model different 
aspects of the natural system. 
 
Variables are used ubiquitously in science. But the example above can also show how using variables to 
track observables might be of interest even in informal conversation. Suppose Alice, Bob, and Carol are 
talking about a plane. Alice’s LoA might consist of observables for running costs, market value and 
maintenance costs. Suppose Alice insures the object. If she wished to support the claims she makes about 
it, she could choose variables to measure features of, say, running costs, such as a variable to measure the 
engine’s fuel consumption. Bob’s LoA might consist of observables for engine condition, external body 
condition and internal condition. Suppose Bob is a mechanic, in which case his job will require him to 
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pay attention to some rather more precise variables, such as day to day oil and fuel levels. Carol’s LoA 
might consist of observables for security, method of storage and owner history. Suppose Carol is the 
owner. She, too, might choose variables to measure some of her observables accurately. Each of Alice, 
Bob and Carol’s LoAs makes possible a determinate analysis of the system, and we call what such an 
analysis yields a model of the system. 
 
So it can be seen how different purposes lead people to pay attention to some features rather than others 
of the same system. The observable is simply something that the observer chooses to pay attention to, 
while variables are used to measure more accurately the state of that observable. Note that you had better 
pay attention to the right features for your purpose! If Bob, as the mechanic, worries mainly about the 
shiny paint, sooner or later the plane will crash. Note also that, since the system investigated may be 
entirely abstract or fictional – recall the example of Poirot’s address – the term “observable” does not 
mean “empirically perceivable”. Ultimately, an observable is just an interpreted typed variable; that is, a typed 
variable together with a statement of what feature of the system under consideration it represents e.g. a 
set of data could have millilitres as a type and oil level as an observable of the system. 
 
This brings us to typed variables. Everyday conversation seldom requires typed variables, but from time 
to time this need can intrude even into informal conversation. Perhaps Alice and Bob got into a furious 
argument over the value of the plane, because Alice, being British, was using pounds, while Bob, being 
American, was using dollars. Had they specified the type of the variable, they could have avoided an 
entirely useless argument – and Alice may have given Bob the right address! In science, typed variables 
might not be explicitly stated if there is a standard unit of measurement always used in a particular field. 
But NASA lost the 1999 Mars Climate Orbiter because the US team used the metric system of units of 
measurement standard in the US, while the UK team used the imperial units of measurement standardly 
used in the UK. Leaving types of variables implicit can cause mistakes. 
 
So far we have only worried about looking at a system at a particular time – measuring a set of variables. But 
things change over time. Often science has to pay attention to how sets of variables measuring observables of a 
system change over time, so that they can learn how the system changes over time. That is what transition rules 
are, telling you how one or more observables change over time. The most familiar example in our case is fuel 
levels in the plane. If the plane is unused, they remain stable. As the plane is flown, fuel levels can be expected 
to decline steadily. When the plane is prepared for flight and re-fuelled, fuel levels jump quickly from low back 
to high again. 

The same object, such as the plane, can be viewed from many different LoAs, and they might be related 
to each other. Floridi calls a relation among LoAs a “Gradient of Abstraction” (Floridi, 2010c, see 
Chapter 3). The relation can vary a lot along a continuum, but there are two ends of that continuum. Two 
LoAs are disjoint when they are just unrelated, even though they are about the same object. We can state 
this precisely now: two LoAs are disjoint when they share no observables. So for example, a child’s view 
of the plane might consist of only “It goes so fast and it’s so loud!” The child’s LoA has only two 
observables: fast and loud. This might share nothing with Bob’s far more complex LoA, containing many 
observables necessary to a mechanic. At the other end of the continuum, two LoAs are strongly 
connected when they are nested. This is the case, for example, if we suppose that Carol, the owner’s, LoA 
for the engine consists of only one observable: engine condition. Her variable to measure engine 
condition may be very simple, so suppose it takes only three values: good, ok, and bad, depending entirely 
on the opinion of Bob, who we now suppose is her mechanic. Then all of Bob’s more detailed variables 
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for aspects of the engine’s condition are all related to – indeed, they generate – Alice’s cruder choices of 
good, ok, and bad. 
 
In summary, we have seen that in spite of the technical language used to describe them, the core idea of 
LoAs remains a very simple one: whenever we think, talk, look, or act, we interact with the world for a 
particular purpose, paying attention to certain features of the world, certain observables, and completely 
ignoring other features. We may wish to specify variables to measure observables more carefully, and 
giving their type and transition rules for how they change over time can also be very helpful. In doing this 
we build a model that extracts some information from the world, and in the process of doing that, 
ignores a great deal of other information. 

2.7 The implications of LoAs 

The simple fact that we always interact with the world 
via an LoA has implications for many debates in 
philosophy, and we will see this fact playing out in many 
later chapters of this book. Here, we focus on two main 
ideas. First, we will see that LoAs imply a certain kind of 
pluralism, but only a very modest kind, rather than a 

form of relativism. Second, we will make explicit what the discussion of LoAs should tell us about 
avoiding useless questions. The first involves taking care not to overestimate the implications of LoAs, 
while the second involves taking care not to underestimate their implications. 
 
We hope it is quite clear by now that there can be many different ways to look at the same object. There 
were many different – and perfectly sensible – LoAs at which to consider the same plane described 
above. This is a kind of pluralism. But it is a mistake to think that any LoA would do. Consider Bob, the 
mechanic, choosing to use the child’s LoA: “it’s fast, and loud!” The plane would soon crash, as Bob 
ignored vital observables. Bob is forced to choose observables, and variables and their types, appropriate 
to his purpose. As an insurer, Alice should pay attention to some of the same observables that concern 
Bob, but she will soon lose money, and her job, if she does not also pay attention to things Bob might try 
to hide from her, like frequency of maintenance, and also things that are of no interest to Bob, such as 
anti-theft devices on the plane. LoAs may be relative to purpose, in the sense that it is your purpose or 
goal that guides your choice of observables, but they do not imply any arbitrariness in the subsequent 
choice. To say the same thing more scientifically, different interfaces – LoAs – may be correctly ranked 
depending on how well they satisfy modelling specifications such as informativeness, coherence, elegance, 
explanatory power, consistency with the data and so on, and the purpose orienting the choice of the LoA.  
Recall that even in cases where the LoA is usually left implicit, there can be good reason to assume a 
particular one. Bob was perfectly entitled to assume that the address Alice gave him was an Oxford, or at 
least a real UK, address. Since Alice knew that he would make that assumption, her game with the LoA 
was not a clever trick, but a cruel deception. NASA’s Orbiter crashed because the types of the variables 
for a key component were left implicit. It would not have crashed if the units were made explicit, or if 
metric units of measurement were standard worldwide. 
 
The modest nature of the pluralism above has implications for what we conclude about the world, when we 
model it using LoAs – which is to say, it has ontological implications. A theory commits itself ontologically by 
opting for a specific LoA, because by adopting an LoA a theory commits itself to the existence of some specific 

‘But  do  not  ask  absolute  questions,  for 
they  just  create  an  absolute mess.’ 
(Floridi, 2010c, p. 149.) 
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types of observables characterising the system and constituting the LoA. Consider choosing a car to buy. At the 
stage at which you have decided to buy a Honda Jazz, but you haven’t bought one yet, you are committed to 
the existence of that kind of car. Next, by adopting the models that the LoA allows, the theory commits itself to 
the corresponding tokens. You are committed next to the factory having managed to produce some actual 
physical cars of that kind (that make and model). Finally, a theory is ontologically committed in full by its 
model, which is therefore the bearer of the specific commitment. At the stage of buying a particular car, which 
is an instance of the type ‘Honda Jazz’, one commits oneself to the existence of that particular car, light blue, 
with a particular registration number, parked outside your house. You gradually commit yourself to there being 
various things in the world that support the model you are building. 

So while there are lots of ways of looking at things, each in some way commits you to there being something 
that you are looking at or talking about or interacting with. This is why your LoA or LoAs cannot be arbitrarily 
chosen. If you do not choose well, the model you are building of the world will cease to help you. Try going to 
a car dealership and asking to buy a spaceship just like the Millenium Falcon – unless they have the new model 
Starship Enterprise from the reboot universe available, of course. Ultimately, LoAs have modest pluralist 
implications for our view of reality. 

It remains only to spell out what LoAs tell you about philosophical questions, and here it is important not to 
underestimate the importance of LoAs. Recall from section 2.4 that PI recommends looking for open 
questions, questions that are timely and important and phrased in such a way to be answerable. PI recommends 
rejection of philosophical questions that don’t matter, or are out of date, or unanswerable. We are now in a 
position to specify more carefully one kind of surprisingly common unanswerable question: an absolute 
question. 

An absolute question is a question that demands an LoA-independent answer, such as: “What is the One True 
Essence of Lemony-ness?” or, “What is the Real Ultimate Value of the plane?” These are a problem because, if 
we always interact with the world at an LoA, there is never an LoA-independent answer to any question! 

This is why Floridi says that to ask absolute questions creates an absolute mess. It is because only questions 
asked within a shared LoA can be effectively answered. Suppose there is an argument about the value of our 
plane. The participants need to specify whether they are talking about monetary value, aesthetic value, or 
functional value for travel, for example. Once they have decided that the argument concerns the plane’s 
monetary value, they still need to type the variable by specifying what currency they mean. Care might even yet 
be required. For example, is the issue what price the plane should be to buy, or its insurance value? They can be 
different. Until you have settled these questions, there can be no meaningful discussion. Any discussion without 
these questions settled is probably a waste of everyone’s time. This is what is meant by saying that only 
questions asked within a shared LoA count as open questions, because only these have a possible answer. 
According to PI, these are the kinds of questions philosophy ought to concern itself with. 

We can return briefly to the examples used in section 2.4 to illustrate how to find open questions, or 
refine existing questions to make them open. The first example was: “Do people have souls”. At stage 
one, we said that it matters to many people now, so it could count as of current concern. But as it stands, 
it fails stage two, because it is so vague we can’t see how to answer it. Reconsider the questions we asked 
at stage three in order to make the question more specific. The questions we recommend you ask yourself 
are: “Why am I asking this?”, “Why does it matter?” and “What considerations would help me decide one 
way or the other?” You can now recognize these as precisely the questions aimed at making explicit the 
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purpose of the LoA you are trying to specify, and home in on what aspects (of, in this case, people, and in 
the earlier example, the plane) to pay attention to, to decide the question. 
 
The second example of section 2.4 was “Can machines think?” We said that this is of current concern, 
but noted that Turing rejected it as too vague to answer. It was certainly much more difficult in Turing’s 
time, before recent developments in computing and AI and so on, to try to specify relevant observables 
and variables to measure them. We had no idea what kinds of things might be useful to observe! An 
important aspect of Turing’s imitation game was to condense possible observables into a much simpler 
test – can we tell whether the thing answering our questions over the internet is a person or a machine? 
This is a dazzling trick, condensing a lot of possible observables into one: can you tell the difference, 
which can only take two values of yes or no. The genius of this is that you hope that what you ignore – in 
this case because you don’t know about it – won’t matter. So Turing showed that you can be quite 
inventive in changing a bad question to an open and good one when you have a problem specifying the 
LoA! In short, LoAs help you diagnose questions that aren’t worth your time, and they also positively 
guide you in creating useful open questions. 
 
We have finished the extended introduction to what philosophy of information is now. We are in a time 
of rapid technological change, which is straining our shared conceptual schemes. Philosophy – in the 
academy and elsewhere – has a great deal to contribute in designing concepts for our time. The 
information revolution means that much of the conceptual strain is related directly or indirectly to 
information. In this chapter we have seen why it is important to be careful about which philosophical 
questions to devote real effort to. LoA-independent questions might be fun to worry about, but they are 
not likely to reward hard work with fruitful progress. But understanding LoAs also helps in a positive way 
to get questions into good order so you can seriously answer them. They should help you take those 
philosophical irritations, those issues that really get to you, and start making serious progress on them. 

2.8 Exercises 

1. Think about your technological ability and compare it with the technological ability of an elderly relative.  
Do you have a grandmother who doesn’t know how to text, for example? What do you think might be 
different in the way you understand yourselves? 

2. Imagine what kind of technological abilities infants learning to use iPads now will have once they reach 
adulthood. Do you think they will understand themselves differently? 

3. Pick a philosophical question that really bothers you, and work through steps 1-3 described above. Do you 
think you have refined the question in a useful way? 

4. If you abandoned the first question after steps 1 or 2, try again with another! 

5. Describe the same object at three different levels of abstraction. 

6. If you are familiar with the concept of a computer interface, think about what is the difference, if any, 
between a level of abstraction and a computer interface? 

7. Does the adoption of the method of levels of abstraction commit you to some form of relativism? 
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2.9 Further reading 

Chapter 1 of Floridi (2011c) expands on what is philosophy of information; Floridi (2010c, Chapter 2) 
examines philosophical questions; and Floridi (2010c, Chapter 3) explains LoAs. 
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3. NATURALISED INFORMATION 

Objective aspects of information 

 

3.1 Semantic vs. natural information 

When we say that someone becomes informed of an 
event, say by receiving an e-mail containing the news of 
a successful job application, we would most likely 
construe this process as the recipient’s learning 
something from the message. The sender – the possible 
new employer – wants to convey the news to the 
applicant, and in order to achieve that, she makes use of 
a language that is understood both by her and by the 
applicant. 
 
Typically, a language is quite an arbitrary construction. 
Both in our written and spoken language, a word and its 

corresponding object hardly resemble each other. Still, the information is successfully communicated, 
because the receiver knows the general meaning of the language’s symbols, which enables him to access 
what is called the content of the message. The content of a message is not what you actually see when you 
read something, but the things the message refers to. Content is extrinsic both to the collection of signs of a 
message, and to their physical carrier, which can be dots on a printed piece of paper, or the collection of 
pixels on a computer screen. The sender encodes the content of a message before sending it, and the 
receiver decodes the information after receiving it, thereby getting access to the content. 
 
When asked to give an example of information transfer, a lot of people would probably think of a 
situation similar to the one involving the notification about the outcome of the job interview via email. 
Such examples will likely involve persons who communicate via languages like English. They will involve 
information that is cast into a symbolic form in order to be communicated. The persons who make sense 
of these symbols are called “semantically enabled agents”, since the semantic aspects of the message, or, 
what the message refers to, is of concern to them.  
 
However, we also observe that the use of the word “information” is not confined to such cases involving 
semantically enabled senders and receivers of messages. For example, we speak of information being 
transferred when referring to the exchange of data between fax machines, or between clients and servers 

Chapter 

3 

‘The higher-level accomplishments 
associated with intelligent life can be seen as 
manifestations of progressively more efficient 
ways of handling and coding information. 
Meaning, and the constellation of mental 
attitudes that exhibit it, are manufactured 
products. The raw material is information.’ 
(Dretske, 1981, p. vii.) 
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that transmit data by means of internet protocols. In both cases, the machines involved do not 
understand the information in the way we do. Moreover, we use the word “information” even for 
systems that are not constructed by human engineers, like the transfer of genetic information between 
chromosomes of the cell nucleus and the ribosome that produces the polypeptides according to the 
information encoded in the messenger RNA. In a wider sense, the fact of the past existence of animals 
can be communicated to a sedimentary layer, which preserves this fact as a fossil, or, in other words, as a 
record, which in turn can be considered as a kind of information. Likewise, the life story of a tree is 
communicated to its rings, and thereby they hold information about the tree’s age. In these examples 
there are no senders and receivers making sense of symbolic language, but we still comfortably describe 
the examples by referring to “information transfer”.  
 
The naturalization of information is the research programme that tries to explain how the transfer and 
utilization of information is possible, where the reference of information comes from, whether concepts 
like meaning and content, and ultimately mental concepts like belief and knowledge, can be based on 
information. Crucially, by developing such an account, we do not want to presuppose the existence of 
semantically enabled agents, which can make sense of information by virtue of “understanding the 
language” into which the information is cast. If there is natural information, and if systems devoid of 
understanding can transfer and store information, then it does not solely reside in the heads of human 
beings, but has a status of its own. We examined this idea initially in Chapter 1, introducing Alan Turing 
and Claude Shannon, but here we examine it in much more detail. The chapter’s main focus will be on 
the transfer of information and aspects of its semanticisation, but not on further aspects of natural 
information processing. (For information processing, particularly the concept of a Turing machine, see 
Chapter 13 on computation.) Also, this chapter will consider the relevance of natural information to 
mental concepts only in so far as it is relevant to understand how it gives rise to semantic structures. For 
more detail about the mental aspects of information, you might want to look at Chapter 10 on cognition 
and Chapter 11 on mind. 
 
One of the central questions concerning the transfer of natural information is the problem of reference: 
how can one physical structure refer to what has happened with another physical structure at a different 
time and at a different place, so that information is retained while travelling through time and space?  If 
something like this is possible, one can argue that more than the current physical state of the universe 
exists. A subsequent question concerns what else is needed for the process of “becoming informed”, next 
to the fact that the information has to travel from the source to the receiver. We will see that this next 
step is fundamentally different from being a kind of transfer. The chapter will look at three different 
accounts of naturalization of information. Fred Dretske, the pioneer of this project, will receive the most 
attention, and his account will be contrasted with that of Radu Bogdan. Finally, we will look at another 
famous “naturalization” project, Quine’s naturalization of meaning. Understanding the fundamentals of 
this problem is beneficial to appreciate current debates on neuro-physiology (“When does the 
transduction of information stop and when does the interpretation start within the brain?”), artificial 
intelligence (“Can we build semantically enabled artificial agents?”), and metaphysics (“Is information the 
ultimate substance of the universe?”). 
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3.2 Information channels and semanticisation 

We will see that a concept that is crucially connected to naturalized information is so-called 
“environmental information”, which is a particular coupling of two systems connected by a channel that 
can be considered as a conceptual extension of the Shannon communication channel, as introduced in 
Chapter 1, and described in (Shannon, 1948). Shannon-information is encoded and decoded: it is 
transmitted through a physical channel, the way a mobile phone signal is sent, and sender and receiver are 
usually situated in different places. But these constraints are not necessary for the idea of information 
transfer – what is necessary is that information is communicated through time to a system that 
subsequently holds the information, as with the case of the animal and its fossilisation. And as the tree 
ring example shows, the systems communicating do not even have to be distinct.  
 
The first step in the naturalization of information therefore is to identify the physical process that 
produces the event at the receiving end of the channel construed in this more general sense. The second 
step consists in the subsequent interpretation of the information that is held at the receiving end of the 
channel. This is what is called the semanticisation of the information: the information comes to have 
meaning. Think about the example of becoming informed about the outcome of the job interview: you 
open the email on your computer screen and the pixels assume a certain pattern of combinations of black 
and white. So far, all the information generated at the source is preserved. But there will be a point when 
this ceases to be the case. Maybe you will browse the content of the e-mail quickly in order to get to the 
important bit about the employment decision, and this will trigger a further reaction of yours. This 
process is an extraction of one part of the total information contained in the message; the rest will have 
been dropped and ceases to exist if the e-mail is deleted after reading it. 

3.3 Environmental information 

Before turning to some details of semanticisation, let’s look at the relevance of environmental information to 
the naturalization of information:  

Approaches to semantic information also seek to connect it to other relevant concepts of information and 
more complex forms of epistemic, mental and doxastic phenomena, in order to understand what it means 
for something, e.g. a message, to be informative. For instance, Dretske (1981) and Barwise and Seligman 
(1997) attempt to ground factual semantic information in environmental information. The approach is also 
known as the naturalization of information.  
(Floridi, 2011c, p. 54.) 

 
In this formulation, “environmental information” is to be understood as follows: ‘Environmental information 
=def. two systems a and b coupled in such a way that a’s being (of type, or in state) F is correlated to b being 
(of type, or in state) G, thus carrying for the observer of a the information that b is G.’ (Floridi, 2011c, p. 32.) 

So for example, the tree trunk having a certain number of rings (a’s being F) is correlated with the age of the 
tree, so that an observer who counts the rings also knows the tree’s age (b’s being G). Alternatively, a ribosome 
produces the polypeptides from those amino acids that correspond to the base pairs that the messenger RNA 
carries. 
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But how is this coupling connected to the information transfer through a Shannon channel? Note first that 
successful information transfer does not depend on a preceding agreement on a code. The information resides 
in the environmental states of the carrier, not in the semantics that are assigned to these states. That is why the 
coupling of the systems, constrained by the formula for environmental information, fulfils its role as a medium 
for information transfer. However, the formula conspicuously contains a reference to an “observer” – probably 
a semantically enabled one. Environmental information covers the first part of the naturalization, the natural 
transfer of information. The tree’s age is communicated to its own physical structure. But an observer must still 
interpret the structure to extract the information. In order to succeed in that, he must know about the 
correlation between age and number of rings. What the extraction of this piece of information amounts to will 
be considered a bit later. For now, the difference between environmental information and semantic 
information as ordinarily understood is of relevance. 

3.4 Equivocation 

We can start by looking at an example of environmental information in human behaviour, which shows 
that even semantically enabled agents, while communicating, do not necessarily produce semantic 
information: 

On the other hand, an event or state of affairs that has no meaning in any conventional sense may 
carry substantial amounts of information. An experienced poker player can read the signs; he can tell, 
or be reasonably certain, when a bluff is in progress. His opponent’s nervous mannerisms, excessively 
high bet, and forced appearance of confidence reveal, as surely as would a peek at his last card, that he 
did not fill his inside straight. In such a situation information is communicated, but the vehicle that 
carries the information (opponent’s behaviour and actions) has no meaning in the relevant 
conventional or semantic sense.  
(Dretske, 1981)  

Having noted that pre-assigned meanings are inessential to information transfer, it must be noticed next 
that if the observation that a is F, such as the player’s excessively high bet, carries the information that b 
is G, that a bluff is in progress, it is implied that the coupling of the two states is unequivocal. This is a 
crucial feature of Dretske’s interpretation of a Shannon channel. Equivocation occurs if several different 
events at the source are conflated into one observed event with the receiver, thereby rendering it 
impossible to infer exactly which event at the source produced the event with the receiver. For example, 
if the player’s excessively high bet could be caused by a lapse in concentration, then perhaps the player is 
not bluffing. This idea constitutes the difference between a causal transfer and an information transfer. 
Every information transfer is a transfer of a causal influence, in the sense that the event observed at the 
receiver is brought about by the event at the source. (This is a simplification of Dretske’s view. We do not 
need the complexities for this introduction.) Whether the high bet is caused by an attempt at bluffing, or 
by inattention, it is caused by something, so these are causal transfers, even if the equivocation – the 
inability to tell which is the cause – means that it is not an information transfer. So, not every transfer of 
causal influence is an information transfer. On the other hand, we also have to contrast systems that are 
unequivocally correlated with informationally coupled systems. This contrast will be dealt with again 
during the discussion of Dretske’s intentional states. At any rate, it should be clear by now what it means 
for environmental information to pass through a channel that is equivocation-free: it means that 
information is not irreversibly lost. In the poker case, it is the combination of nervous mannerisms, 
forced confidence, and the high bet that makes the experienced player sure that his opponent is bluffing. 
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In what we have considered thus far, we are still looking at a case where a signal has been transferred 
through time to a system that holds the information in the signal in its structure. If we consider the 
different question of what an observer can learn from looking at the resulting structure, such as the tree 
rings, or the fossil record, we are no longer concerned with information channels. For now, we can 
recapitulate that information transfer does not require pre-assigned meaning of two coupled events, such 
as the words in a language, and that the coupling must be unidirectionally unequivocal (the signal at the 
receiver must be coupled with only one signal from the source). The absence of equivocation guarantees 
the truthfulness of the informational content. If we are supposed to learn about a contingent matter of 
fact, we must receive truthful information about this in order to know. A contingent fact is one that could 
have turned out differently as far as the laws of nature or laws of logic are concerned. The current 
whereabouts of my neighbour’s cat is an example of such a contingency. I cannot possibly derive it from 
anything else I know (if I haven’t just seen the cat, and assuming I haven’t had the chance to study the 
behavioural patterns specific to this animal), so in order to know I have to receive this information via a 
(Shannon) channel. We need truthful information because we have no (or few) means of deriving 
contingent matters of fact from some prior knowledge. If the justification whereby we account for 
knowing something is decoupled from a channel that has the matter in question as its source, truth and 
justification can become desynchronized (Floridi, 2004a). Equivocation-free transfer of information 
therefore prepares the way for the extraction of the content from the signal. 

3.5 Digitalization and semanticisation  

Following Dretske’s account of naturalization of information further, we must now become acquainted 
with his concept of “digitalization”: 

A signal (structure, event, state) S carries the information that s is F in digital form if and only if the 
signal carries no additional information about s, no information that is not already nested in s’s being 
F. If the signal does carry additional information about s, information that is not nested in s’s being F, 
then the signal carries this information in analogue form.  
(Dretske, 1981, p. 137.) 

“Nested information” is to be understood as follows: the information that t is G is nested in s’s being F = 
s’s being F carries the information that t is G.  

A general example of the analogue/digital distinction is that of a picture that contains, among others, the 
representation of a woman. The statement “the picture contains the image of a woman” is the digital 
representation of this very fact, whereas the complete picture carries this fact in analogue form, since 
other pieces of information can be derived from the picture that are not nested in the proposition that the 
picture contains the image of a woman, such as information about her height and hair colour. Notice that 
the proposition, the digital representation, can carry some other facts as nested information, e.g. the fact 
that the picture shows the image of a human being, since all women are human beings. The more 
conventional reading of “digitalization” that you may be familiar with involves the discretisation of 
continuous numbers. This is actually covered by the above definition: if we discretise an interval of real 
numbers to an integer that represents the interval’s median, the median does not carry the information 
about which of the numbers within the interval has been discretised. However, the real number does 
carry the information about which median it belongs to, therefore this latter piece of information is 
nested within the real number, and the real number is an analogue representation of the median. For 
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example, we consider a list of real numbers ranging from 0 to 5, say 0.1, 1.7, 2.2, 2.7, and 4.1. All numbers 
are rounded to their closest integer. Then the numbers 1.7 and 2.2 are rounded to 2, and they are, in the 
given context, analogue representations of the integer 2, but not vice versa.  

During digitalisation information is irreversibly destroyed. If Alice writes down “the picture contains the 
image of a woman”, but destroys the actual picture, we lose information. When Bob looks at what Alice 
has written, he cannot reconstruct the rest of the information in the picture. In this sense a digitalisation 
is similar to a deduction. Although Alice might learn something by deducing a conclusion from the set of 
premises, the conclusion does not enable Bob to infer back to the premises from Alice’s conclusion, since 
the proposition at the end of the deductive chain is generally weaker than the propositions of the 
premises. The process is irreversible, just like the digitalisation of information. 

The next relevant concepts are the three orders of intentionality. These Dretske defines as follows: 

1st order of intentionality: 

All Fs are G as a matter of fact 

S has the content that t is F 

S does not have the content that t is G  

(Dretske, 1981, p. 172.) 

For example, suppose it happens to be the case that all cars on the road that Alice is currently driving 
along are hybrid vehicles. But it does not follow that a signal S that carries the information that vehicle A 
is on the road also carries the information that A is a hybrid vehicle. 

2nd order of intentionality: 

All Fs are G according to natural law 

S has the content that t is F 

S does not have the content that t is G  

(Dretske, 1981, p. 173.) 

All water expands when it freezes. If Alice knows this, she knows that when water is freezing in front of 
her, it is expanding. But suppose Bob does not know this fact, and his belief state S has the content “the 
water in this glass is freezing”. His belief does not necessarily also have the content “the water in this 
glass is expanding”. 

3rd order of intentionality: 

All Fs are G according to analytic necessity 

S has the content that t is F 

S does not have the content that t is G  

(Dretske, 1981, p. 173.) 
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Alice might be able to tell whether a geometrical figure is a square; however, she might not be able to 
account for this judgement by stating that the figure has four sides of equal length, even though the latter 
would follow by analytic necessity from the fact that the figure is a square. 

The second order of intentionality is not relevant to our present considerations, but the difference 
between the first and the third order is important. Initially, let’s look at the first order to understand the 
importance for information processing systems in general. We mentioned earlier that correlated systems 
are not necessarily informationally coupled systems. In order to clarify this difference, consider the 
following situation: Alice and Bob work for two different companies. Carol implemented a scheme at 
Alice’s company that determines when exactly workers are allowed to take a break from work and go to 
the canteen to have lunch. This is signalled by a little pop-up window in each employee’s electronic 
calendar. Carol previously worked for Bob’s company and implemented the same scheme there. So we 
define event A as “noon break starts for Alice” and the informationally coupled event B as “electronic 
signal pops up on screen”. Events C and D are defined correspondingly for Bob. So, whenever D 
happens and Bob is thereby signalled that the noon break has started at his place, he can also tell that 
noon break has started for Alice. But this conclusion hinges on the coincidental fact that it was Carol who 
was responsible for the policy at both companies. The correlation between D and A is a spurious one and 
not genuinely informational. Contrast this with a situation where Bob has managed to wiretap event A, 
the beginning of the noon break at Alice’s office, because he wants to have a little chat with Alice each 
time they both go to the canteen. Bob synchronizes event A with an event in his electronic calendar, let’s 
call this event D*. D* now informs Bob about A via an information channel, and it has acquired an 
intentional state of the first order with respect to A. We can confirm this by applying the criteria above: 
D* has as content A, but not B. The signal D* does not tell Bob how the employees of Alice’s company 
are informed about the noon break, since this is not part of its informational content, although B and D* 
are perfectly synchronized. In Dretske’s words: 

To describe a physical state as carrying information about a source is to describe it as occupying a 
certain intentional state relative to that source. If structure S carries the information that t is F, it does 
not necessarily carry the information that t is G even though nothing is F that is not also G. The 
information embodied in a structure defines a propositional content with intentional characteristics. 
(Dretske, 1981, p. 172.) 

Now, an intentional state is not sufficient to form a semantic structure, i.e. one that is capable of forming 
a belief state. We just saw that an intentional state with the first order of intentionality is just enough to 
distinguish informationally coupled systems from systems that are coincidentally correlated. Opposed to 
both of these, a genuine semantic structure must be capable of having as its propositional content one 
that is subject to the third order of intentionally: ‘Any propositional content exhibiting the third order of 
intentionality is a semantic content’. (Dretske, 1981, p. 173.) 

One can believe that one is shipwrecked in the Pacific Ocean without believing that one is shipwrecked 
somewhere between the western coast of America and the eastern coast of Asia and Australia. This is 
essentially Dretske’s reading of a belief state. By means of the equivocation-free channel and the 
intentional states, we already understand better how reference is possible, how one structure can carry 
information about another structure. For example, the experience of a sound we hear is intentional with 
respect to the object that produces the sound, not with respect to the vibration of our ear drums, 
although the latter is implied by our having the experience. Now, with regards to how natural information 
can give rise to symbolic communication, another important idea is required: the difference between a piece 
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of information about a particular matter of fact, and the corresponding content the information has on a 
type level. Propositions of the form “s is F” require the concept of F. Knowledge of concepts is a form 
of type-level knowledge, and that is what is required for symbolic communication. The evolution of a 
symbolic system is connected to the problem of explaining how false beliefs can arise. If an individual s is 
falsely predicated by F, the concept of F, which has been acquired on informational (thus truthful) 
grounds relative to other individuals, is applied to the individual s without there being any information 
tokens, i.e. pieces of information belonging to a specific situation, that sustain the corresponding 
judgement. A false belief has arisen with respect to s. A meaning is a symbol connected to a concept on 
type level. The symbol can represent a concept in the sense of a genuine convention, but this is not 
necessarily so, since a symbol can gradually acquire its meaning.  

The reader might still wonder why certain systems like digital measuring devices are not capable of 
carrying semantic content. Dretske discusses the example of a digital voltmeter whose gauge shows 
discrete numbers. This information, according to Dretske, is not “completely digitalised”. The 
informational content embedded in the display carries information about what brought the displayed 
number about, via nested causal information between its inner components. By contrast, a genuine belief 
carries only the information (if truthful) that it bears in virtue of its meaning, the exact circumstances of 
how the belief was brought about are not accounted for, since the latter would concern different beliefs 
that are opaque against the belief’s content. The fact that we have to, as it were, “forget” these 
circumstances, represents another aspect of the information loss that is crucial to the process of 
semanticisation. 

3.6 Other approaches  

Dretske solves the problem of explaining reference by means of his intentional states. Although several events, all 
part of a longer causal chain, precede the reception of a signal, the signal carries information about one primary 
event for the receiver. Radu Bogdan follows a similar strategy to Dretske, but bases the semantics of 
information more explicitly on teleology. We will outline his approach, before having a look at the more 
sceptical result from Quine’s analysis. While pursuing his project of naturalization of epistemology in general, he 
came to the conclusion that meaning cannot be given an ontological status on a par with other real objects like 
the objects of physics. 

3.6a Radu Bogdan’s teleological approach 

One can interpret Dretske’s semantics in such a way that they are teleological, i.e. information is semantic if it is 
relevant to a goal that the receiver of the information has. Ragu Bogdan (1988) has an account of semantic 
information that is outright teleological. He starts with considering “material information”, which is constituted 
by physical structures that causally influence each other in such a way that a certain quantity, which can later be 
identified with information, is preserved. For the sake of our overview, the concept of material information can 
be identified with evidential information. In both cases, at this stage we are still considering the flow of 
information, not its interpretation or utilization. In an attempt to give a naturalized account of the interpretation 
and utilization, we first encounter, again, the problem of reference. Material information is a causal concept, so 
how does an event at the receiving structure refer to one of the several events from preceding the causal chain? 

Bogdan distinguishes “vital goals” and “active goals” of life forms. A vital goal would be the consumption of an 
apple, whilst the active goal would be to find out where the apple is situated, such that it can be grasped in order 
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to be consumed. The reference, the selection of which of the preceding causes of a signal is relevant, comes 
from the role the active goal plays for the vital goal. The information that is the satisfaction of the active goal is 
not yet the satisfaction of the vital need of the life form, but it enables the selection of the relevant cause: it is 
the whereabouts of the object, not the light that transports the information to the eye, which is significant. Such 
a goal-directed alignment of input and output is needed if we want to have a semantic artefact. A thermostat 
processes information (ambient temperature) and makes use of the information by turning on or off a radiator, 
such that it controls the ambient temperature. Still, it does not count as a semantically enabled artefact. The 
stimulus-reaction scheme (basically a causal scheme) of the thermostat must be extended by an intermediate 
step that semantically encodes the input. By this intermediate step, which comprises what Bogdan calls internal 
selectivity and intentional alignment, a fact that is relevant to the goal of the semantic system becomes active 
and triggers behaviour that leads to achieving the goal. 

3.6b Quine’s naturalization of meaning 

Quine is famous for his project of naturalising epistemology, an endeavour that seemed necessary to Quine 
after he thought he had shown that no predication of a subject term follows analytically and by necessity from 
the meaning of the term (Quine, 1960).  This hinges on an interpretation of meaning as an indefinite term. Here 
we will briefly summarize how he arrived at such a view. Quine demonstrated the ideas of a naturalised 
semantics by means of a thought experiment he called “radical translation”. (Quine, 1960, p. 26.) Radical 
translation is an in-the-field technique of acquiring a foreign language when the translator has no prior 
knowledge of the other language. Instead, the translator must try to build up his grasp of the language by 
exposing himself to situations shared with a native speaker and by prompting assent or dissent to verbal 
utterances that are hopefully connected to the shared situation. Since assent or dissent refers to whole sentences 
uttered, the meaning of terms that are part of a sentence can be revealed only by an analytical process that is 
somewhat speculative and has no definitive endpoint. The speculative outcomes of such an activity Quine 
called “analytic hypotheses”. He chose this model of language acquisition because he asserted that it is – to all 
intents and purposes – a faithful reconstruction of a child’s learning of a language, and therefore how meaning 
arises with respect to terms handled by native speakers. Also, an inter-subjectively observable situation is a good 
starting point for an epistemology if its point is to come up with an ontology of things that really exist, as 
opposed to what is merely fancied to be true by single persons. 

Unfortunately for meaning, the outcome of Quine’s analysis did not admit it in such an ontology of real things. 
Meaning cannot be fully naturalised according to Quine – unlike the physical representation of what bears the 
meaning, i.e. the symbol. That is because the translation manuals that two different in-the-field translators come 
up with can be very different from each other, if they have worked independently of each other. Fundamental 
differences in meaning of sentences can arise even if the predication by truth values of two possible translations 
matches the truth value of a native sentence, or, in other words, two different translations of a native sentence 
of assent with respect to a situation would likewise each prompt assent within the community of native 
speakers of the translated language, although the two translated sentences differ in meaning. For Quine, things 
must be identifiable in time in order to grant them the status of existing things. Since meanings are indefinite 
and, a fortiori, not identifiable, they cannot be granted such a status. 

What about the other aforementioned semantic structures, the bearers of intentional states (in particular, 
belief)? We can best compare their treatment by Quine if we look at his analysis of what Bertrand Russell called 
“propositional attitudes”. If Alice believes that the evening star is a planet, but is unaware of the identity of the 
evening and morning star (see Chapter 6), she might fail to acknowledge that the morning star is a planet. 
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Frege’s treatment of the propositional attitude of belief was to consider it a binary relation of a believer and the 
content of the belief, something generally called a proposition, which is taken to be independent of the language 
in which the proposition is expressed. Treating the proposition as a whole entity forbids the substitution of 
“morning star” for “evening star” in the aforementioned belief of Alice’s, an operation that would render the 
statement untrue. Quine, however, cannot resort to Frege’s solution of the problem because of lacking a 
criterion of identity of propositions. Propositions are allegedly identical if they have the same meaning, but 
meanings are, according to Quine, themselves not subject to such a criterion. Instead of using the notion of a 
proposition, his treatment of belief contents resorts to direct quotation: “Alice believes that the evening star is a 
planet” becomes “Alice believes ‘the evening star is a planet’”. “The evening star is a planet” is taken as a 
sentence, and sentences in turn are considered linguistic forms – it is not their actual utterance that matters but 
their belonging to linguistic forms, i.e. the classes6 of utterances that would all have the same extension and 
would therefore all prompt assent if expressed in a language that the one whose assent is prompted 
understands. As opposed to Dretske’s informational account, Quine’s negative result in naturalising 
propositional attitudes therefore questions the reality of intentional states.  

3.7 Summary 

The process of becoming informed can be decomposed into the flow or transfer of information via a 
Shannon channel, and the semanticisation of the information. The first can be described on the basis of 
environmental information, whereas the second is not an instance of information transfer at all, since it 
involves information loss that contradicts the absence of equivocation, a necessary criterion for the 
transfer of information. To explain what happens during the semanticisation of information is a much 
more controversial aspect than the flow of information, and there is some doubt that the former can be 
naturalized at all. 

3.9 Exercises 

1. Revisit the poker game example of environmental information in human behaviour. Now assume two 
players work together against the other participants of a card game (not necessarily poker) by exchanging 
information about the cards in their hands between each other. Before the game, they agree on faking 
typical gestures of nervousness to signal their hand, picking a unique gesture for every card considered. 
Why is this not an example of environmental information? 

2. How is environmental information related to the question of truth? 

3. How is environmental information related to instructional information (see Chapter 13)? 

3.10 Suggestions for the exercises 

1. Environmental information is a natural coupling of two events. In contrast, the communication between 
the two players is a gestural language that can only work if the semantics of the gestures is agreed upon 
before the game starts. Every gesture encodes a specific card, therefore semantic information is transferred. 
Unlike this language by gestures, the natural reaction of players when looking at their hands is not semantic. 
Although it is true that the causal connection between the hand and the reaction is established by the 

                                                                        
6 Quine’s naturalistic ontology admits physical objects as real entities, but also abstract objects like classes, if positing them simplifies our 
overall scientific theory of the world. 
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semantics of the cards (what they mean in the context of the card game), it is not the case that the reaction 
is itself a symbolic representation, i.e. a code, of the cards that the player holds. 

2. Truth is not a property applicable to environmental information because it is a naturally established link 
between two systems, rather than a symbolic representation. Therefore, environmental information cannot 
misrepresent a state of affairs. The event observed at the receiver is dependent only on the mechanism of 
the information channel and the way it is measured (the level of abstraction). 

3. The example of genetic information shows that instructional information is not necessarily semantic 
(symbolic) information. We must bear in mind, however, that it depends on our interpretation to see a 
realised “instruction” in a ribosome synthesizing exactly the proteins according to the genetic code. This 
interpretation, in turn, depends on our notion of a “natural purpose” that is fulfilled by the protein 
synthesis. 

3.11 Further reading 

A detailed description of the relevance of Shannon information to the flow of information, as well as 
explanations of the concepts of digitalization and a discussion of concept formation and adequacy of 
behaviour, is given in Dretske (1981). 

A newer collection of essays by Dretske continues his programme of naturalizing the mind, with a focus on 
belief state formation Dretske (2000). 

Quine’s naturalization of epistemology is described in (Quine, 1960)
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4. ETHICS 

The ethical implications of  information 

 

4.1 Introduction: Ethics and information 

The literature on ethics is vast and articulated and even a 
brief review would be well beyond the scope of this 
chapter. Therefore, instead of focusing on a definition of 
ethics as given by an author or in the context of a specific 
ethical theory, here the reader is presented with some 
general concepts to support the analysis offered in the next 
sections of this chapter. 

Ethics (or moral philosophy) is that branch of philosophy 
that investigates the concepts of right and wrong, good and 
evil, both in themselves and in relation to human 

behaviour. Ethics is subdivided into sub-fields, the three most influential being metaethics, normative ethics 
and applied ethics. Meta-ethics is concerned with the nature of ethical concepts, judgements, propositions and 
dispositions. Typical meta-ethical questions are: “What do we mean by right and wrong?”, “Are there ethical 
propositions?”, “Do ethical judgements have a universal or relative scope?”, and “What is the relationship 
between right and wrong, feelings and reason?” 

Normative ethics focuses on ethical behaviour and on the criteria that should be adopted in order to behave 
ethically. In this context, several ethical frameworks have been devised, some of the most well-known being 
virtue ethics, deontology and consequentialism. Each normative framework defines a different way of 
identifying ethical behaviour. Virtue ethics defines good behaviour as one that promotes virtues (e.g. wisdom, 
courage, temperance) and avoids vices (e.g. cowardice, insensibility, and injustice). Deontology focuses instead 
on principles that have to be respected with no exception in order for one to be right. Depending on the type 
of deontological theory adopted, duties vary from being healthy to the Kantian moral imperative.7 Finally, 
consequentialism discriminates between ethical and unethical behaviour by looking at the consequences of 
one’s action. When the positive consequences outweigh the negative, an action is ethical; otherwise, it is 

                                                                        
7 A moral imperative in Kant is a categorical imperative, a requirement for every human being to act only in accordance with those principles 
that would always be valid for every rational human being. In Kant’s words: “Act only according to that maxim whereby you can, at the same 
time, will that it should become a universal law.” (Kant, 2002). 

Chapter 
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unethical. As with deontology, there are several types of consequentialist theories, depending on the type of 
consequences or on the recipients of the actions (patients) that should be considered.8 

Now that we know that ethics and specifically normative ethics is concerned with right or wrong and our 
behaviour, it becomes relevant to ask whether there is a relationship between right or wrong, behaviour and 
information. Think, for example, about buying groceries at the supermarket. In the UK, often one of the first 
questions asked by the cashier, either human or mechanical, is whether the customer has a loyalty card. But 
what are the implications of using a loyalty card? Is recording information about when, where and how often 
every single item is bought ethically neutral? Is there a problem with customer privacy? What about whether 
and how the customer data are shared with other companies? Is it right or wrong for the supermarket to share 
customer data? Analogously, is posting personal information on one’s Facebook profile morally neutral? What 
about sharing and tagging pictures online? Information is produced – commenting on an event, taking a picture 
– and publicly shared. Does the individual to whom the shared information relates – what we call the ‘patient’ 
of that sharing action – have the right to be asked for permission for such a sharing? The very same question 
applies to the paparazzi and the celebrities that they target. What about spamming or hacking? Is there 
something like a right not to be spammed? Is spamming right or wrong? Should the defacement of a website or 
the breaking of an electronic mailbox be considered immoral – aside from being illegal? What about sharing 
information about a company’s balance sheets or, more subtly, accessing metadata9 about electronic 
communications? 

All these questions pertain to several domains but all share a similar characteristic: they all involve information 
and whether such information plays or should play a moral role. Specifically, the problem underlying all these 
questions is how one should behave when information is, for example, collected, shared, produced or 
destroyed. This is the general question to which Information Ethics shall give an answer. Looking at the 
different fields of ethics, it is clear that information ethics poses questions of normative ethics and metaethics: 
the issues are about how one should behave (normative ethics) and how right and wrong should be defined 
when information and its dynamics are considered (metaethics). Looking at the questions posed above, it is also 
clear that information ethics might span multiple domains and then be part of several branches of applied ethics 
– computer ethics, medical ethics, business ethics, librarian ethics and so on. 

The following sections of this chapter offer an overview of how a unified approach to information ethics has 
emerged from research in multiple areas of applied ethics. The unified approach proposed by Luciano Floridi, 
the current mainstream information ethics theory, will be described, outlining its key characteristics and 
challenges. A section will be then dedicated to some of the most common misconceptions involving 
information ethics. Exercises and suggestions for further reading will close the chapter. 

                                                                        
8 For a general introduction to ethics see Baggini and Fosl (2007) or Blackburn (2002). 
9 The literal meaning of the word ‘metadata’ is data about data. In this context, it refers to data about a communication as opposed to the 
content of the communication itself. For example, the metadata about a phone call could include time, location, duration, caller and receiver 
identification numbers of that call. 
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4.2 Historical overview 

Information ethics is a relatively young research field that is enjoying a rapid and prolific expansion. In order to 
understand the theories that are being developed today in this field, it is necessary to look at its history and at 
how it has evolved from multiple disciplines. 

The origins of information ethics can be traced back to the 
1940s and 1950s and are intertwined with the development 
of computer science and the information and 
communication technologies (ICTs). Information ethics 
began with the work of Wiener, a mathematician and 
professor at the Massachusetts Institute of Technology 
(MIT) who, for the first time, pointed out the social and 
ethical implications of developing electro-mechanical 
devices. Wiener fathered what he called “cybernetics” 
(Wiener, 1948), an interdisciplinary research field dedicated 
to the study of information feedback both in natural and 
artificial systems (see Chapter 1). While studying and 
envisioning the creation of machines capable of autonomy 
and information processing, Wiener developed a clear and 
mature understanding of the potential impact of such 
technologies on humankind and society. As a consequence, 
he was among the first to stress the need for specific ethical 

principles to guide the design and the deployment of such new systems. In his words, ‘Long before Nagasaki 
and the public awareness of the atomic bomb, it had occurred to me that we were here in the presence of 
another social potentiality of unheard-of importance for good and for evil’ (Wiener, 1948, pp. 27-28). 

The ethical concern raised by Wiener remained marginal and largely ignored for more than a decade, before 
being brought to the fore again between the 1960s and 1970s when “Computer Ethics” emerged as a new field 
of study. Questions concerning computer-based crime (i.e. cyber-crime), disasters caused by computer errors or 
failures, or breach of privacy by accessing computer databases started to be noticed, and perceived as ethical 
issues. Computer ethics originated as a type of professional ethics, which inherited from cybernetics the 
concern for establishing ethical guidance (i.e. ethical policies) for the design and use of computers. For this 
purpose Parker wrote Rules of Ethics of Information Processing (Parker, 1968), which collected a set of 
examples of illegal and unethical uses of computers, providing the ground for the Code of Professional 
Conduct for the Association of Computing Machinery (Council, 1992). At the time, computers were providing 
new professional roles and offering new ways to create and manage information. There was a need for these 
new activities to be regulated, both legally and ethically. 

The scenario changed between the 1980s and 1990s. In those twenty years, what we know today as the 
information revolution had begun. Personal computers were becoming ubiquitous, and the internet was starting 
to develop into a new global space for information sharing and commerce. The “vision” that computers would 
change the way in which people interacted with each other and with the environment became a reality, and in 
the span of just twenty years, individuals not only learned about, but became more and more dependent on, 
networked computing technologies to communicate, buy and sell goods, work and entertain themselves. This 

Timeline 

1940-1950  Cybernetics and first notes 
about the ethical implications of 
technologies for automation. 

1980-1990 Computer Ethics and focus on 
the ethical issues associated with 
computers and, later on, with 
networking technologies. 

1990-2000 Information Ethics fragmented 
and developed in the context of 
other ethical frameworks.  

2000-2010 Information Ethics grows into 
an independent discipline. 
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was a major change in the ordinary lives of men and women and it also engendered a major change in the way 
the ethical problems related to the use of computers were regarded by computer ethicists. 

In the middle of the 1980s, while some scholars still regarded the problems posed by the dissemination of 
computers as ‘[...] new versions of standard moral problems and moral dilemmas, exacerbating the old 
problems, and forcing us to apply ordinary moral norms in uncharted realms’ (Johnson, 1985), others started 
pointing out that the problems related to the uses of computers were not simply a new version of old ethical 
conundrums but radically new problems engendered by the specific nature of computers and ICTs. 

In this respect, the analysis proposed by Moor (1985) was ground-breaking. Moor stressed that there was 
something truly revolutionary about the social role of computers. According to Moor, computing machines 
were universal tools, for they could potentially perform any operation as long as the operation was defined in 
terms of input, output and logical operators. Moor stressed that after an initial phase of “technological 
introduction” (that is, the development and refinement of computing technologies), a phase of permeation 
would have followed in which we would have witnessed the capillary diffusion of computing technology in 
everyday life, thanks to the ability of computers to perform a vast number of useful operations. According to 
Moor, this spread would have induced radical changes in the way we worked, interacted and considered 
fundamental concepts like money or education. Such radical changes unveiled, for the first time in the history 
of computer ethics, the need to provide a tailored conceptual ground for defining the ethical principles to guide 
the use of computing technologies. 

Moor, along with scholars working in the field of computer ethics, indicated that the dissemination of 
computers generated a “policy vacuum”. There was a gap in the existing laws and policies of western countries, 
which were unprepared for regulating the design and use of such new technologies. By the end of the 1980s, it 
had become clear that the policy vacuum rested on a conceptual muddle, and that filling the vacuum required 
first a clear understanding of the nature of the ethical problems posed by the use of computers. In Moor’s 
words:  

One difficulty is that along with the policy vacuum there is often a conceptual vacuum. Although a problem 
in Computer Ethics may seem clear initially, a little reflection reveals a conceptual muddle. What it needed in 
such cases is an analysis that provides a coherent conceptual framework within which to formulate a policy 
for action.  
(Moor, 1985, p. 269) 

By the 1990s, it was clear that Moor, and many others, were right. The ethical problems engendered by the use 
of ICTs were not simply old problems in new shoes. Computers and computing technologies were starting to 
change the way individuals acted in the world, affecting social, political and economic infrastructures. It had also 
become clear that computing technologies raised new ethical problems, which required new theoretical 
approaches to define ethically-sound policies. Information was at the core of the ethical issues created by 
computers. Computing technologies were a new, powerful medium that pushed information processing to an 
unprecedented scale to such an extent that the ethical dimension of information impacted society and 
individuals with unprecedented strength. The “greasiness” (Moor, 1985, p. 269) of computing technology 
combined with the power of information was finally recognised and Information Ethics was born. 
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4.3 Towards a unified approach to information ethics 

The previous section showed how the ubiquitous use of information technologies and the growth of the 
internet contributed to exposing the importance of the ethical dimensions of information. Following this 
impulse, information ethics developed across multiple research areas, often as part of ethical theories concerned 
with specific domains as, for example, medical, business, professional or librarian sciences. Altogether, the 
contributions coming from these fields can be classified as information ethics but the lack of a unified approach 
and, to some extent, of a metaethics grounded on purely informational principles hindered further 
developments. This section offers a review of different approaches to information ethics and an analysis of 
their strengths and limitations. 

Floridi (2010a) distinguishes different approaches to information ethics depending on three ways of considering 
information: information as resource, information as product and information as target.10 Information can be 
seen as a resource when an individual acquires and possesses information, a process that is often relevant from 
an ethical point of view. For example, in medical ethics informed consent is possible only in the presence of 
complete and understandable information. Analogously, accurate diagnoses are possible only when access to 
patients’ information is available. Conversely, acquiring and possessing information is not always a means of 
behaving morally; sometimes it is actually quite the opposite. In professional or computer ethics, respecting 
anonymity – so avoiding acquiring information about someone’s identity – is often necessary to guarantee a fair 
and impartial treatment of individuals. Think about the importance for students of submitting their essays 
anonymously in order to be marked fairly.11 

Information is a product when it is elaborated, managed and shared by agents such as individuals, companies or 
institutions. Also in this case, the act of producing information may have ethical consequences and is a subject 
for ethical enquiry. Again, the quality and quantity of the information produced may be used to define whether 
a single individual, a group of people, companies or even states are behaving ethically. So, for example, in 
business ethics companies are considered to behave ethically – and legally – when they make available untainted 
balance sheets to the public and to the rating agencies. In professional ethics, students behave ethically – and 
legally – when they hand in original essays instead of cut and pasted patchworks obtained from the internet. 
Politicians and citizens debate whether states behave ethically when promoting free and independent press 
agencies instead of fostering propaganda. 

Information becomes a target when we consider an environment that is made of information. Informational 
environments are more common than might be initially thought. Consider, for example, the operating system 
of a computer. It consists of a set of programs, some useful to drive the physical components of the computer, 
others necessary to interact with the user or to communicate across the internet. Applications allow for the 
creation of documents, pictures, or movies, all stored in the storage unit alongside the other components of the 
operating system. Altogether, these applications and files constitute an informational environment. Even better, 
an informational environment does not need to be digital. A library, an archive, or a land registry are all 
examples of analogue informational environments. How individuals should behave in such environments or 
how these environments should be preserved and managed is a matter of ethical investigation. In computer and 
environmental ethics, for example, hacking, piracy, filtering, vandalism, or archive preservation are all ethical 
issues that stem from considering information as a type of target. 
                                                                        
10 The rest of this section and the following one are an adaptation of the material published in (Floridi, 2010a). Permission from the author 
has been granted. 
11 Note that from a metaethical point of view, the quantity and quality of available information is directly linked to the concept of moral 
responsibility. After all, poorly informed individuals might behave unethically even with the best of intentions. 
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Approaching information ethics by means of these three ways of defining information is useful. It allows many 
fields to recognise the ethical relevance of information – see medical, professional, business, environmental, and 
computer ethics in the examples above – and clearly shows the important role played by technology when 
considering the moral sphere of information. Nonetheless, grounding information ethics only on consideration 
of information as a resource, as a product or as a target, and fragmenting it across multiple research areas leads 
to two main limitations. On the one hand, this approach is still too simplistic. Arguably, several important 
ethical issues belong mainly, but not only, to the analysis of just one way of considering information. On the 
other hand, the approach is insufficiently inclusive. There are many important ethical issues that cannot easily 
be placed on the map at all, for they really emerge from, or supervene upon, the interactions that go on through 
acquiring, producing or targeting information (see examples below).   

As soon as we consider ethical concepts that involve articulated dynamics of information, the simplistic nature 
of an ethics that focuses only on one way of considering information becomes clear. Consider, for example, 
censorship, misinformation and free speech. Censorship affects an individual both as a user and as a producer 
of information by forbidding not only the publication but also the acquisition of information. Misinformation 
(i.e. the deliberate production and distribution of misleading, false content) is an ethical problem that concerns 
all of the three ways of considering information. Freedom of speech affects not only the production of 
information but also the availability of offensive content (e.g. violent content and socially, politically or 
religiously disrespectful statements) that might be morally questionable and should not circulate. 

Coming to the lack of inclusiveness, ethical issues involving some properties of information that are not 
connected to the dynamics or flow of information cannot be addressed by ethical theories that consider 
information only as a resource, a product or a target. These theories prescribe whether some individual should 
receive or share some information, what characteristics such information should have, whether and how 
holding information relates to the individual duties or to the consequences of the individual’s behaviour. If the 
information does not flow, is neither received nor shared, then these theories can say little about how the 
individual should behave or what ethical principles should apply in a given situation. So, for example, when the 
ownership of some information is considered, the relevant problem becomes whether that information has 
been created by an individual not whether that information should be received or shared. 

The information ethics proposed by Floridi aims at addressing these limitations. It does so by endorsing an 
inclusive definition of information, by acknowledging the moral relevance of the dynamics of information and 
by introducing a radical, universal notion of an informational entity. In this way, Floridi proposes a unified and 
independent theory of information ethics that extends well beyond the limitations in scope and inclusiveness 
suffered by those theories that endorse a single way of looking at information. 

4.4 Floridi’s information ethics 

Floridi’s information ethics is built on three fundamental concepts: information ontology, the agent/patient pair 
and the infosphere. These concepts need to be clarified before we come onto the details of Floridi’s ethical 
theory. 

Floridi’s information ethics looks at information as an entity, thereby endorsing an ontological approach. 
Imagine looking at the whole universe from a chemical perspective. Every entity and process will satisfy a 
certain chemical description. A human being, for example, will be between 45% and 75% water. Now consider 
an ontological informational perspective. The same human being will be described as a cluster of data, that is, as 
an informational entity. Please note the words “will be described as”. They are important as they stress that the 
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entity is described in those terms, not that a human being – or any other entity – is only or essentially a cluster 
of data. It is just a way of looking at entities or, more correctly, the explicit choice of a Level of Abstraction (see 
Chapter 2). 

The agent/patient pair stands for any informational entity that either produces some effects on the 
environment (an agent) or is the recipient of such a change (the patient). The ontological approach just 
described implies a very inclusive definition of an entity. An informational entity does not need to be alive, let 
alone conscious or even embodied. Therefore, at a given level of abstraction, an informational entity, either as 
an agent or as a patient, can be a person, animal, and plant but also anything that exists, from a painting and a 
book to a star and a stone; anything that may or will exist, like a future generation; and anything that was but is 
no more, like one of our ancestors or an old civilization, or even an ideal, intangible or intellectual object. From 
this perspective, informational systems, rather than just living systems in general, are raised to the role of agents 
and patients of any morally relevant action, with environmental processes, changes and interactions equally 
described informationally. 

The infosphere is the sum of all the informational entities and of their relations. It can be thought of as the 
informational equivalent of the biosphere as long as we remember that at a given level of abstraction the 
biosphere can also be considered informationally. 

We are now ready to look at Floridi’s definition of information ethics (Floridi, 1999):  

Information Ethics is an ontocentric, patient-oriented, ecological macroethics 

An intuitive way to unpack this definition is to compare information ethics to other environmental approaches.  
Biocentric ethics usually grounds its analysis of the moral standing of bio-entities and eco-systems on the 
intrinsic worthiness of life and the intrinsically negative value of suffering. It seeks to develop a patient-oriented 
ethics in which the patient may be not only a human being, but also any form of life. Any form of life is 
deemed to enjoy some essential moral rights that deserve and demand to be respected when contrasted to other 
interests. So biocentric ethics claims that the well-being of the living entities ought to contribute to guiding the 
agent’s ethical decisions and constraining the agent’s moral behaviour. In this context, patients are placed at the 
core of the ethical discourse, as a centre of moral concern, while agents are moved to its periphery. 

Now substitute “life” with “existence” and it should become clear what information ethics amounts to. 
Information ethics is an ecological ethics that replaces biocentrism with ontocentrism and suggests that there is 
something even more elemental than life, namely being – that is, the existence and flourishing of all entities and 
their global environment – and something more fundamental than suffering, namely entropy. The latter is most 
emphatically not the physicists’ concept of thermodynamic entropy. Entropy here refers to any kind of 
destruction or corruption of informational objects (mind, not of information), that is, any form of 
impoverishment of being, including nothingness, namely the not being. More specifically, destruction is to be 
understood as the complete annihilation of the object in question, which ceases to exist, while corruption 
stands for a form of pollution or depletion of some of the properties of the informational object. 

Floridi’s information ethics holds that being/information has an intrinsic worthiness. He substantiates this 
position by arguing that any informational entity has a right to persist in its own status, and a right to flourish, 
i.e. to improve and enrich its existence and essence. As a consequence of such “rights”, information ethics 
should evaluate the duty of any moral agent in terms of contribution to the growth of the infosphere and any 
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process, action or event that negatively affects the whole infosphere – not just an informational entity – as an 
increase in its level of entropy and hence as an instance of evil (Floridi, 2003; Floridi & Sanders, 1999, 2001). 

When so conceived, information ethics is impartial and universal because it holds that every entity, as an 
expression of informational being, has a dignity which deserves to be respected by every agent of the 
infosphere. This ontological equality principle means that any form of reality (any instance of information), 
simply by the very fact of being what it is, enjoys an initial equal right to exist and develop in a way that is 
appropriate to its nature. 

The conscious recognition of the ontological equality principle presupposes a disinterested judgement of the 
moral situation from an objective perspective, i.e. a perspective which is as non-anthropocentric as possible. 
The application of the ontological equality principle is achieved whenever actions are impartial, universal and 
“caring”. 

The crucial importance of the radical change in ontological perspective cannot be overestimated. Bioethics and 
environmental ethics fail to achieve a level of complete impartiality, because they are still biased against what is 
inanimate, lifeless, intangible, or abstract (even land ethics is biased against technology and artefacts, for 
example). From their perspective, only what is intuitively alive deserves to be considered as a proper centre of 
moral claims, so a whole universe escapes their attention. This is precisely the fundamental limit overcome by 
Floridi’s information ethics, which further lowers the minimal condition that needs to be satisfied, in order to 
qualify as a centre of moral concern, to the common factor shared by any entity, namely its informational state. 
Since any form of being is in any case also (but not only) a coherent body of information, to say that 
information ethics is infocentric is tantamount to interpreting it, correctly, as an ontocentric theory. 

4.5 The fundamental principles of Floridi’s information ethics 

Floridi’s information ethics determines what is morally right or wrong, what ought to be done, what the 
duties, the “oughts” and the “ought nots” of a moral agent are, by means of four basic moral laws: 
1. entropy ought not to be caused in the infosphere (null law); 
2. entropy ought to be prevented in the infosphere; 
3. entropy ought to be removed from the infosphere; and 
4. the flourishing of informational entities as well as of the whole infosphere ought to be promoted by 

preserving, cultivating and enriching their properties. 
 
The moral question asked by information ethics is not “why should I care, in principle?” but, “what 
should be taken care of, in principle?” Approval or disapproval of an agent’s decisions and actions should 
be based on how the latter affects the well-being of the infosphere and hence the informational entities 
involved. The duty of any moral agent should be evaluated in terms of contribution to the sustainable 
blooming of the infosphere, and any process, action or event that negatively affects the whole infosphere 
– not just an informational object – should be seen as an increase in its level of entropy and hence an 
instance of evil. 
 
The four laws clarify, in very broad terms, what it means to live as a responsible and caring agent in the 
infosphere. The laws are listed in decreasing order of importance. Breaking rule number 3 is less 
depreciable than breaking rule number 2. Breaking rule number 0, the null law, is the worst an 
informational agent can do, so the blame is the highest. Accordingly, an action is unconditionally 
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commendable only if it never generates any entropy in the course of its implementation; and the best 
moral action is the one that succeeds in satisfying all four laws at the same time. 
 
Most of the actions that we judge morally good do not satisfy such strict criteria, for they achieve only a 
balanced positive moral value; that is, although their performance causes a certain amount of entropy, we 
acknowledge that the infosphere is in a better state on the whole after their occurrence. It should be 
noted that a process that satisfies only the null law – the level of entropy in the infosphere remains 
unchanged after its occurrence – has no moral value, that is, it is morally irrelevant. 

4.6 Common misconceptions and further analysis 

Floridi’s information ethics endorses a fairly innovative approach to the problem of the moral dimension of 
information and is still under development. An innovative nature and a degree of incompleteness are a very 
good recipe for misunderstandings and misconceptions. Here we highlight some of the most common mistakes 
in addressing information ethics so as to shed some light on the misconceptions and, in doing so, to clarify 
what may otherwise seem controversial aspects of Floridi’s theory. 

We will focus on misconceptions concerning: 

 the informational nature of entities; 

 the “overridable” nature of the informational rights; and 

 the ethical status of spam and viruses. 

Typically, two misunderstandings can happen when considering the informational nature of entities. The first is 
the identification of what Floridi calls informational entities with any other piece of well-formed and 
meaningful data such as news, emails, the Britannica, or Leibniz’s De Arte Combinatoria. It should be remembered 
that Floridi’s information ethics is grounded on an ontological premise, namely that given the right level of 
abstraction the entirety of reality can be seen informationally. It is not just about meaningful data – i.e. semantic 
information (see Chapters 3 and 7) – but also about everything that exists, that can be seen informationally and 
that can be affected by the action of another entity. So, yes, a newspaper is an informational entity and, as such, 
it is worthy of moral consideration; but so is also a future generation, your ancestor, your garden and Bob’s 
Ficus Panda bonsai. 

Bob’s bonsai brings us to the second misconception that is often associated with the informational nature of 
entities, namely the idea that considering an entity informationally is akin to reducing it to just a cluster of data. 
To address this misconception, it is enough to note that even if at a proper level of abstraction a bonsai can 
indeed be seen as a cluster of data, this does not exclude that at a more inclusive level the bonsai can also be 
seen as a living entity. Let us consider yet another example to refresh our understanding of what a level of 
abstraction is. Suppose Alice has just turned eighteen and that she has saved enough money finally to buy a car 
to travel across Europe during her summer vacation. She buys a cheap second-hand car, which, naturally, 
requires some fixing. To Alice, the car is the symbol of her achievement, autonomy and freedom; to the 
mechanic, the car is just an object with some broken parts; to its maker, the car is a set of engineering 
blueprints. After considering this scenario, suppose someone asks you: “what is a car? Is it a symbol of 
autonomy, an object to be fixed or an engineering blueprint?” The correct answer would be: “it depends”. 
Depending upon the level of abstraction embraced, a car may well be something to be fixed or a bunch of 
blueprints, but this does not deny the possibility of it also being a symbol of autonomy and freedom for Alice. 
The whole point of information ethics is that everything can be described as an informational entity because the 
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informational level of abstraction is the lowest common denominator among all entities.12 As in the case of 
Alice’s car, focusing on the informational perspective does not deny the possibility of adopting other 
perspectives, such as, for example, a more human-centred one. 

The clarification of the role played by ontology in Floridi’s information ethics is a good starting point to cast 
some light on the second misconception, the one about the overridable nature of the informational rights. The 
misconception goes as follows: if all entities share the same nature, all have informational rights as 
informational entities, and all are potential patients in the infosphere, then we have a moral impasse because it is 
not possible to determine the relative moral value among a piece of software, Leibniz’s writings and the kids 
playing in the park. All informational entities are equal when considered from the perspective of information 
ethics. The impasse is overcome when considering that all entities have some initial minimal rights to exist and 
flourish and that such rights can be waived (overridden) depending on the effect – consequences – that they 
have on the other informational entities. An example should help to make this more evident. Every citizen born 
in a democratic country enjoys by default some rights, for example that of being free, as in not imprisoned. This 
right is shared among all citizens and lasts as long as the citizen behaves according to the laws approved by a 
democratically elected government. Any citizen who may be proved to have breached the law loses the right to 
be free and is incarcerated. In the same way, all entities come into existence enjoying the right to exist and 
flourish as long as they do not cause entropy in the infosphere. 

We are finally ready to consider the last misconception, concerning entropic information entities such as spam 
and computer viruses. In this case, someone might mistakenly argue that because all informational entities share 
some minimal initial rights and spam and computer viruses are indeed informational entities, then according to 
Floridi’s information ethics, destroying or corrupting spam and viruses would be unethical. It should be clear by 
now that according to information ethics all entities have some initial minimal rights but that such rights are lost 
if the entities increase the amount of entropy in the infosphere. When this happens, Floridi’s information ethics 
prescribes that the entity’s initial rights should be overridden and that the offender should be altered or 
destroyed in order to stop it from inflicting entropy on the infosphere. It should also be noted that bringing 
entropy into the infosphere can and should be balanced by looking at how the same entity promotes and 
fosters the flourishing of the infosphere. If the entity contributes more to the infosphere than it destroys, then 
its initial rights should not be overwritten. In the case of spam and viruses, the trade-off is clearly biased 
towards entropy and as such, it would be ethical to prevent them from further damaging the infosphere. 

4.7 Exercises 

1. What is the difference between metaethics, normative ethics and applied ethics? 

2. How would you classify computer ethics? 

3. What is the difference between cybernetics and computer ethics? 

4. What is the difference between professional ethics and Moor’s computer ethics? 

                                                                        
12 The careful reader may wonder about how such a claim should be justified. Floridi’s information ethics is grounded on an informational 
approach to metaphysics. Departing from a Newtonian perspective in which reality is made of concrete, static entities that are “outside and 
inside” the perceiving/knowing subject, Floridi embraces a metaphysics where reality is everything that interacts with us, both concrete and 
abstract, material or immaterial. Such a reality is made of relationships, interactions, transitions or fields called “informational structures”. 
For this reason, being in information ethics can always be reduced to its (minimal) informational nature. It is such an informational nature that 
has an intrinsic value, a value that can be overwritten depending on the effects that the interactions of informational structures have on the 
whole – i.e. the infosphere. 
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5. What is the difference between computer ethics and information ethics? 

6. What are the three ways to consider information that underline many different approaches to information 
ethics? 

7. What are the benefits and limitations of a unified approach to information ethics? 

8. What are the three concepts on which Floridi’s information ethics is grounded? 

9. Do you agree with Floridi’s position that every entity can be described at an informational level of 
abstraction? 

10. Do you think Floridi’s information ethics offers a way to categorise informational entities by order of moral 
relevance? 

11. It has been written that information ethics is still under active development. What is missing, in your 
opinion? 

12. What is the metaphysical assumption of Floridi’s information ethics? 

13. Offer three examples of how Floridi’s information ethics could be applied to everyday situations. 

4.9 Further reading 

Baase (2012), Epstein (1996), Thomson (1999), Floridi (forthcoming-b). 
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5. SOCIETY 

How does information affect society? 
 

5.1 Introduction  

The information revolution concerns the increase in 
information and communication technologies (ICTs). 
During the past two decades such technologies have 
developed fast and acquired a crucial role both in 
individuals’ daily practices and in the social, political and 
economic processes of current societies. Consider, for 
example, how many of our social interactions and how 
much of the weekly working or studying schedule we 
manage through ICT-based devices, like smartphones, 
laptops or computers; or think about how many 
resources and infrastructures of our societies depend on 
ICTs. The information revolution is deemed to be the 
origin of radical changes concerning the way we interact 
with others, with the environment, and with the very 
structure of the reality in which we live. Such changes 
reshape current societies, so much so that they are now 
referred to as the information societies. 

In the rest of this chapter we will first recall details of 
the information revolution. We will consider the historical relevance of this phenomenon and its social 
and philosophical implications. We will then turn our efforts to the ethical problems that such a 
revolution engenders, and we will analyse the problems of online trust (Turilli, Vaccaro, & Taddeo, 2010) 
and information warfare (Taddeo, 2011). The conclusion will allow us to pull together the threads of the 
analysis developed in this chapter.  

5.2 The information revolution, history and society 

To some extent the information revolution could be compared to a piece of music that starts quietly and 
builds up slowly, beat after beat, until it explodes in a blast. The information revolution started around 
3000 BC with the Sumerian pictographs. From that moment on, the information revolution has 
accompanied the history of mankind. Among the milestones of the information revolution are 

Chapter 

5 

Imagine that Alice has the goal of finding 
the cheapest hotel near JFK airport in 
New York. She has different choices: (a) 
she personally calls all the hotels in the 
JFK area asking for prices, (b) she trusts 
her travel agent and refers to him to find 
the cheapest hotel, or (c) she trusts a search 
engine, she types the query “cheap hotel 
JFK” and goes for the cheapest hotel 
mentioned in the answers. Can we say that 
Alice trusts the travel agent in the same 
way she trusts the search engine? What 
does this example tell us about the reality 
in which we live? 



THE PHILOSOPHY OF  INFORMATION — AN INTRODUCTION 

 

67 

Gutenberg’s invention of the printing press in 1455; the work of Augusta, Lady Byron, Countess of 
Lovelace and Babbage on the Analytic Engine in the early 1830s; the invention of the first telephone 
during the 1870s; Turing’s work during World War II; the development of ARPANET by the US 
Department of Defense in the 1960s; the first versions of the UNIX Operative System in the late 1960s; 
and the progressive dissemination of personal computers, laptops and smartphones begun in the late 
1970s and continuing until today. 

More than an information revolution, it seems that humankind is experiencing a long-lasting turn 
concerning the development of technologies able to create, transmit and store information. At first glance 
there seems to be nothing revolutionary about this development, but a more attentive analysis and the 
consideration of two aspects allows us to understand the revolutionary nature of the informational trend. 
The two aspects are: (i) the extensive dissemination of ICTs, so-called “ubiquitous computing”; and (ii) 
the profound changes that such dissemination creates in our societies. Let us consider them in more 
detail. 

We witness the dissemination of ICTs every day. You may think of personal usage of computers for 
working or entertainment purposes as an example of such dissemination, but this is only the tip of the 
iceberg. ICTs provide the ground for the economic and industrial growth of our societies; they constitute 
one of the fundamental tools for the progress of experimental science and provide the means for storing 
and managing historical, economic, and legal information. Slowly and ineluctably ICTs have grown to the 
point of becoming necessary for societies and individuals to live and prosper. They provide new modes 
for creating and managing information, which lead to new means of interaction with other individuals 
and with the environment. Consider, for example, the way in which we perceive distances and time 
nowadays, when we can talk and see someone on the other side of the world or when we can exchange 
documents in a matter of seconds, rather than in the days or months it used to take only a few decades 
ago. Not only do such changes affect our personal experience, they contribute to redesigning the very 
structure and rules of our societies as well. 

A noteworthy analysis in this respect has been provided by Castells (2000). The proposed analysis 
highlights a networking logic as the distinctive characteristic of information societies. According to this 
analysis, ICTs facilitate the organisation of social interactions in the shape of (complex) networks, and 
such networks constitute the backbone of current social and economic processes. The networking logic 
leads to a set of social changes, e.g. decentralization within firms, remote-working and interactions, 
development of the virtual community, and globalization.  

Social networks, as Castells describes them, can expand without limits by integrating new nodes and are 
much more flexible and plastic, as they are not organised in any institutional shape. Societies organised 
according to the networking logic are radically different from their predecessors and for this reason they 
experience a policy vacuum concerning the management of social, political and economic phenomena 
that are governed by the networking logic.  

Philosophers and ethicists argue that the new policies and regulations required to fill such a vacuum need 
to be grounded on a clear understanding of the nature of the information revolution and on new ethical 
principles prescribing whose and which rights to preserve while ruling the information society. Let us 
continue our analysis by describing the nature of the information revolution (see also Chapter 2). 
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5.3 The information revolution as the fourth revolution  

In a nutshell, the information revolution radically changed the way in which human beings perceive themselves, 
the universe, and how they interact with the rest of the world. In this sense the information revolution is a truly 
philosophical revolution. 

A philosophical analysis of the information revolution has been provided by Floridi, who refers to the 
information revolution as the fourth revolution (Floridi, 2007b, 2009). The information revolution is the latest 
revolution in the history of western culture to bring to the fore radical changes in the way human beings 
understand themselves and their place in the universe. Following an analysis already proposed by Freud (1917), 
Floridi argues that three conceptual revolutions occurred following the works of Copernicus (1473–1543), 
Darwin (1809–1882) and Freud (1856–1939). Each of these revolutions repositioned humanity with respect to 
the universe. (See section 2.2.) 

The Copernican revolution revealed that humanity inhabited one planet among many orbiting the sun; the 
Darwinian revolution showed that humanity is not at the centre or at the top of the biological kingdom; and the 
Freudian revolution showed that our mind is far from being transparent to itself. If considered in succession, 
these three revolutions show a trend: they progressively dismantle the anthropocentric understanding of the 
universe, displacing humanity from a special position. 

For Floridi, the information revolution, which we might think of as the Turing revolution, for his refinement of 
the concepts of algorithm and computation with what came to be called a Turing machine (Petzold, 2008; 
Turing, 1936) is the next step. Turing also contributed the Turing test to the debate concerning the possibility 
of developing conscious and thinking machines in Artificial Intelligence (Turing, 1950). The Turing test is the 
latest step in the trend of dismantling the anthropocentric approach to the universe. The test introduced for the 
first time the idea that thinking and being conscious, which had been considered human prerogatives for 
millennia, could to some extent be attributed to non-human entities, like machines. 

It is clear that the information revolution triggers profound changes both in the way we conduct our lives and 
in the way we perceive ourselves as human beings. Such changes pose important conceptual and ethical issues 
(see Chapter 4). We will describe the former in the next section, by considering how individuals and the 
environment in which they live are conceived after the information revolution. We will continue treatment of 
the latter in section 5.4. 

5.3a Informational organism and informational environment 

We now need to reintroduce a philosophical word in our analysis. This is re-ontologization (see section 
2.2), which refers to a process of redefinition of the (ontological) properties of the existing entities and 
their environment. In the rest of this chapter we will use this word to refer to this process that follows the 
information revolution. 
 
The dissemination of ICTs drives the re-ontologization process. The process occurs in two steps. The 
first is the creation of a new domain in which new entities exist and new modes of interactions with and 
among those entities are made possible. This is the non-physical domain, constituted by virtual or digital 
entities interacting both with other non-physical entities, such as two computer programs interacting with 
each other, and with physical entities, such as completely automated software interacting with its users. 
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The second step is the merging of this new domain with the “old” physical one. This step of the process 
is known as “ubiquitous computing” or “ambient intelligence”; it has been occurring for a while and is 
now close to completion. Consider, for example, the latest smartphones, which can wait for you walk into 
the supermarket to remind you of the need to buy milk and which can alert you that you need to go to a 
10am meeting as soon as you step into your office building.  
 
Entities of the non-physical domain are part of reality and exist to the same extent to which the entities of 
the physical domain exist. The two domains are conceived of as integrated: they are both part of the 
infosphere, i.e. of the environment in which we live and with which we interact (see Chapters 2 and 4). This 
becomes evident if we think, for example, about how personal information that we post on an online 
social network affects our life offline or how much time we spend online while waiting for the next train 
to arrive or the dentist to be ready to see us (see Chapter 15).   
 
The re-ontologization concerns both human beings and the environment. With the four revolutions, 
human beings were dethroned from their central position in the universe. The idea of humanity as a 
superior and unique species was demolished by biological and scientific studies, and now the erosion of 
the anthropocentric approach allowed the unveiling of the informational nature of human beings, who 
discover their nature as connected informational organisms, or inforgs. In Floridi’s words: 
 

[The] fourth revolution is the process of dislocation and reassessment of humanity’s fundamental 
nature and role in the universe. We do not know whether we may be the only intelligent form of life. 
But we are now slowly accepting the idea that we might be informational organisms among many 
others, significantly but not dramatically different from natural entities and agents and smart, 
engineered artefacts.  
(Floridi, 2007b, p. 62) 

 
Despite being a trendy word, “inforgs” does not stand for the characters of the next sci-fi bestseller, nor 
should inforgs be mistaken for cyborgs, i.e. human beings with implanted ICT devices or avatars or 
online alter-egos. Inforgs are human beings understood as informational entities (see Chapters 4 and 15), 
who are enjoying a fully connected life in the informational environment. 
 
In respect of the environment, the re-ontologization occurs because a substantial part of the environment 
in which we live is shaped by the creation, management and utilisation of information, communication 
and computational resources. 
 
The re-ontologization process is the core of the fourth revolution. It is the source of some of the most 
profound transformations and challenging problems that information societies are experiencing and will 
experience in the near future, as far as technology is concerned. Now that we have a clear grasp of the 
nature and of the conceptual effects of the information revolution, we will consider in more detail two of 
the ethical problems that it engenders. 
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5.4 Ethical problems of the information society 

Many of the ethical problems of the information society are often mentioned in the media or in everyday 
conversation with friends and colleagues. Most of us have at least a superficial understanding of the issues 
concerning privacy, the digital divide, online trust, online identity, information warfare and information crime, 
to mention just a few. One of the reasons why these problems are so popular is because they concern our 
everyday activities, from the information we make available online on, say, Facebook, to the security we are 
guaranteed while using online banking. 

The solutions to these problems hinge on both a policy-oriented and an ethical approach. In the rest of this 
chapter we will focus on the ethical approach and analyse two problems: online trust and information warfare. 
These two problems have been selected because they concern two important aspects of our information 
society: online trust affects personal interactions occurring in the informational environment, while information 
warfare constitutes a new mode for information societies to interact with each other as a whole.  

5.4a Online trust 

The problem of online trust arose during the last decade with the dissemination of Web 2.0 and the 
consequent development of online social interactions. The problem arose because trust is considered as a 
characterising aspect of social interactions: as internet users started to develop online social behaviours, 
some scholars wondered whether trust could also emerge in online contexts (see for example 
Nissenbaum (1998)). In this section, we will first consider a brief overview of the debate on this topic; 
then we will analyse what online trust is and what role it has in online interactions. 
 
Trust is generally understood as a decision taken by an agent (the trustor) to rely on another party (the 
trustee) to perform a given action. This decision rests on the assessment of the trustee’s trustworthiness. 
The trustor’s decision implies some risk that the trustee will behave differently from expected, and hence 
betray the trust in her. In order not to take too high a risk of betrayal, the trustor usually seeks some 
guarantees of the trustee’s behaviour, i.e. he assesses whether the trustee is or is not trustworthy 
(Gambetta, 1998; Luhmann, 1979). 
 
The debate concerning online trust is polarised by two positions. One advocates that trust cannot emerge 
online, because online interactions do not satisfy two necessary conditions for the occurrence of trust 
(Nissenbaum, 1998): (i) the presence of a shared cultural and institutional background, and (ii) 
unequivocally assessing the trustee’s physical identity. The other position gathers those who argue in 
favour of the presence of online trust (see for example Weckert (2005)) by showing that either (i) and (ii) 
are not necessary conditions for the emergence of trust, or that it is actually possible to satisfy (i) and (ii) 
in online interactions.  
 
According to the detractors of online trust a fundamental aspect to consider in deciding whether or not 
to take the risk of trusting another individual is the kind of social norms, cultural and moral values 
characterising the social environment. Following this thesis, trust emerges only if the trustee shares the 
same set of norms and values with the trustor. Such a shared background provides the guarantee that the 
trustee will behave as she is expected to do and, consequently, lower the risk of betrayal. Two reasons are 
presented in support of this thesis. First, the shared background provides a set of parameters recognised 
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both by the trustor and the trustee for assessing what correct behaviour is; and second, the trustee feels a 
social pressure to behave according to the shared norms and values, which will prevent her betraying the 
trustor.  
 
Several theses have been provided in defence of the occurrences of trust online (Taddeo, 2009). All of 
them agree in considering trustworthiness the ground on which trust rests: ‘trustworthiness is the 
guarantee required by the trustor that the trustee will act as it is expected to do without any supervision’, 
(Taddeo, 2010, pp. 246-247). The differences arise when considering what trust is and what its role is in 
online interactions. 
 
For example, Taddeo argues that when trust is present, the trustor decides to delegate the performance of 
a given task to the other agent i.e. the trustee, and not to supervise the trustee’s actions. According to the 
author, delegation and absence of supervision of the way the delegated action is performed are the main 
characteristics of the occurrence of trust. So if Alice trusts Bob to buy some milk, Alice delegates the task 
to buy some milk to Bob and will not supervise or check whether Bob is actually buying some milk, nor 
does she supervise the way in which Bob buys the milk. The same happens for online interactions, when 
we trust an online retailer to sell the advertised products or to post them in the estimated time. 
 
According to this analysis, trust is not a relation, but a property of a relation; that is, something that 
qualifies (changes) the way the relation occurs. The previous example will help to clarify this. Alice and 
Bob are in a relation even if Alice does not trust Bob to buy the milk, but Alice still asks Bob to go and 
buy the milk. The only difference is that in the circumstances in which Alice trusts Bob, Alice will not 
supervise Bob while Bob is supposed to perform the delegated action (Figure 6). 

 

Figure 6: Trust as a property of a relation 

This analysis unveils the fact that trust is advantageous for the trustor: when the trustor trusts the other agent 
she can delegate the performance of a given task without having to supervise the trustee’s actions. In this way 
the trustor minimises her effort and commitment in achieving her own goal. This is true also for online 
occurrences of trust. Imagine, for example, Alice who aims to find the cheapest hotel near JFK airport in New 
York. She has different choices: (a) she trusts no-one and looks by herself for the telephone numbers of all the 
hotels in the JFK area and calls all of them asking for prices; (b) she trusts her travel agent and allows him to 
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find the cheapest hotel; or (c) she trusts a search engine i.e. she types the query “cheap hotel JFK” into the 
engine and goes for the cheapest hotel mentioned in the answers. Both (b) and (c) are relations characterised by 
trust and in both cases our agent has saved time and energy in achieving her goal. 

This analysis of trust also allows us to understand the role of online trust. Online interactions are grounded on 
the communication of information (Corritore, Kracher, & Wiedenbeck, 2003), where “information” should be 
understood in the general sense of meaningful content that can be transmitted from a sender to a receiver (for 
the sake of simplicity in this chapter we will disregard the debate concerning the truthfulness of semantic 
information discussed in Chapter 7). So online trust occurs when in online relations of communication between 
Alice and Bob (recall the example of the agent looking for the cheapest hotel near JKF), the receiver of the 
information trusts the sender of the information (the search engine in our example) and therefore accepts the 
communicated information without checking its truthfulness and relevance or supervising the actions 
performed by the sender. 

We can define online trust as a particular case of trust, characterised by two factors: it occurs in online 
interactions and it only qualifies relations of communication. Like trust, online trust is also grounded on the 
trustee’s trustworthiness. Since online trust is successful when the communication between the sender and the 
receiver is honest and transparent, honesty and transparency are the criteria that should be endorsed in the 
assessment of the potential trustee’s trustworthiness.  

Online trust makes interactions advantageous for the trustor, hence providing an incentive for the trustor to 
interact with other individuals. As a consequence, online trust increases the interactions and the social network 
of the individuals in the system. Furthermore, individuals refine their social intelligence – i.e. they learn to 
evaluate the trustworthiness of the other correctly – to avoid risky interactions. This initiates a virtuous circle 
that leads to a selection process, according to which trustworthy individuals are involved in a growing number 
of interactions, whereas, in the long run, untrustworthy individuals are progressively marginalised and excluded 
from the social system. These dynamics are quite evident when considering on-line communities, such as those 
of e-Bay or Amazon’s customers and sellers.   

5.4b Information warfare 

Information warfare is one of the most compelling examples of the effects of the information revolution on 
current society. The design of data banks and software, the ability to blindside an opponent’s informational 
infrastructures, and ensure the superiority of informational infrastructures of a state, are as important as the 
superiority of weaponry and military force. This is the reason why, in the last two decades, several states have 
devoted huge effort and resources in order to improve their informational infrastructures and to educate 
experts in the relevant fields. ICTs prove to be effective and advantageous war technologies, as they are 
efficient and relatively cheap compared to the general costs of traditional warfare (Arquilla & Borer, 2007). 

Information warfare is not only about using ICTs as new weapons: it is also about the need for states to 
establish their authority in the new domain, i.e. the non-physical one, described in section 5.3a. Information 
warfare engenders so many changes that it is deemed to reshape the very concept of war as we have known it 
for centuries. We may readily imagine that such changes also bring to the fore new and important ethical 
problems. In the rest of this section we will analyse the nature of information warfare and the ethical problems 
that it poses. 
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War is understood as the use of a state’s violence through the state military forces to determine the conditions 
of governance over a determined territory (Gelven, 1994). The choice to undertake a (traditional) war usually 
involves a substantial commitment, as it has heavy economic and political costs, borne mainly by the civil 
society.  

These features of war have been radically changed by information warfare, which provides the means to carry 
out war in a completely different manner. In this scenario, the changes brought about by information warfare 
are of astounding importance as they concern both the way militaries and politicians consider waging war, and 
the way war is perceived in civil society. Like traditional warfare, information warfare is very powerful and 
potentially highly disruptive; however, unlike traditional warfare, information warfare is potentially bloodless, 
cost-effective, and is not a military-specific phenomenon.  

Let us first stress that it would be a mistake to consider information warfare simply as a non-sanguinary, cheap 
and less military-based version of traditional warfare. Information warfare can be as bloody and violent as 
traditional warfare, as it may determine damages and casualties comparable to traditional warfare. In other 
words, information warfare may range from a non-destructive phenomenon to a highly violent and bloody one. 
We may refer to this aspect as the transversality of information warfare. 

Information warfare is transversal not only with respect to the level of violence, but also with respect to the 
domain in which it can be waged and the kinds of agents involved in it. Such transversality represents the 
ultimate difference between information warfare and traditional war, and it is the aspect of information warfare 
from which conceptual and ethical problems arise. 

Let us consider domain transversality. In section 3.3a it was argued that, with the information revolution, the 
environment in which we act is extended to include both the physical and non-physical domains. Information 
warfare may originate in one domain and affect both of them.  

The transversality of information warfare also has a bearing on the kind of agents involved in the warfare 
scenario. In this respect, two issues need to be highlighted: the ontological and the social status of the 
combatants. The ontological status ranges over quite a large spectrum, as combat actions undertaken in 
information warfare are performed both by artificial agents, such as viruses, drones and robots, and human 
agents. The heterogeneous nature of combat agents is an important aspect to consider when dealing with 
ethical issues. Typical problems concern, for example, ethical responsibility for the actions performed by 
artificial agents. In information warfare artificial agents and human agents may have the same role in achieving a 
given goal; their actions are equally relevant and important, despite their ontological differences. Therefore it is 
of paramount importance to define criteria for establishing the responsibilities in combat actions. 

The transversality of information warfare with respect to the social status of the combatants follows from the 
fact that information warfare does not require military-specific skills and techniques. This aspect has the side 
effect of allowing skilful civilians to participate in combat actions in information warfare. Besides the image of a 
nerdy guy sitting in his room and blowing up a far distant nuclear power plant, this aspect of information 
warfare has an important consequence for current society, as it leads to the blurring of the distinction between 
civil society and military organisation. 

When considered from an ethical standpoint this aspect of information warfare leads to new ethical issues such 
as whether it is acceptable from an ethical and political perspective to allow the distinction between military 
personnel and civilians to vanish, for this blurring of boundaries may eventually lead to holding civilians 
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responsible for combat actions and to considering civilian public and private infrastructure legitimate targets in 
warfare. So, for example, it may become acceptable to disrupt the civilian supply chain for food and water and 
to control civilians’ private networks and computers. 

Having analysed the nature of information warfare we can now provide a definition of this phenomenon.  

Definition. Information Warfare is the use of ICTs within an offensive or defensive military strategy 
endorsed by a state and aiming at the immediate disruption or control of the enemy’s resources, and which 
is waged within the informational environment, with agents and targets ranging both on the physical and 
non-physical domains and whose level of violence may vary upon circumstances  
(Taddeo, 2011) 

Now that we have clarified the nature of information warfare, we can move on and consider the applied ethical 
problems that it poses. Such problems are grouped under three categories on which both policy-makers and 
ethicists focus their attention. The three categories of problems are risks, rights and responsibilities. They can be 
referred to as the 3R problems.  They are concisely described as follows. 

Risks. The risks involved with information warfare concern the potential increase in the number of 
conflicts and casualties. ICT-based conflicts are virtually bloodless for the army that deploys them. This 
advantage has the drawback of making war less problematic for the force that can implement these 
technologies, and therefore making it easier, not only for governments, to engage in ICT-based conflicts 
around the world so increasing the risk of escalation and therefore for casualties.  
(Arquilla & Borer, 2007) 

Rights. Information warfare is pervasive for it not only targets civilian infrastructures but may be launched 
through civilian computers and websites as well. This may initiate a policy of higher levels of control 
enforced by governments in order to detect and defend their citizens from possible hidden forms of attacks. 
In this circumstance, the ethical rights of individual liberty, privacy and anonymity may come under sharp, 
devaluating pressure.  
(Arquilla, 1999; Denning, 1999) 

Responsibilities. This category concerns the assessment of responsibilities when using semi-autonomous 
robotic weapons and cyber-attacks. In the case of robotic weapons, it is becoming increasingly unclear who, 
or what, is accountable and responsible for the actions performed by complex, hybrid, man-machine 
systems on the battlefield (Matthias, 2004; Sparrow, 2007). The assessment of responsibility becomes an 
even more pressing issue in the case of cyber-attacks, as it is potentially impossible to track back to the 
author of such attacks (Denning, 1999). 
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5.5 Conclusion 

In this chapter we focused on the information revolution, its conceptual implications and the changes and the 
ethical problems that it engenders in current societies. We analysed two ethical problems brought to the fore by 
the information revolution: online trust and information warfare.  

Online trust has been described as a property of the relations of communication occurring online. It has been 
stressed that it facilitates the occurrences of such relations and determines some advantages for the trustor, as it 
allows the trustor to achieve a goal while saving effort and commitment.  

Information warfare has been defined as a new kind of war, which has the peculiarity of being transversal with 
respect to the domain in which it is waged, the nature and the social status of the agents deployed in it and the 
level of violence it may generate. The analysis concluded by describing three categories of ethical problems that 
information warfare poses and that are currently debated by ethicists and policy makers. 

5.6 Exercises 

1. Describe other ethical problems afflicting our society due to the information revolution. 
 

2. Provide an argument in defence of the occurrence of trust in online interactions. 
 
3. Indicate three more ethical problems that may concern the waging of information warfare and that 

have not been described in this chapter. 

5.7 Suggestions for the exercises 

1. Think about your studying and social activities of the past week and consider how many times you trusted 
an artificial agent and whether you trusted it more than a human agent. 

2. Make a list of advantages and shortcomings that may follow from trusting artificial agents. 

3. Compare your studying experience with that of a student from the previous generation. What are the 
aspects that changed due to the information revolution? 

5.8 Further reading 

For an overview of the most recent literature on online trust see Ess and Thorseth (2011). For a more in depth 
analysis of issues related to information warfare see Arquilla and Ronfeldt (1997). For a business-oriented 
analysis of ambient intelligence see 
http://www.research.philips.com/technologies/projects/ami/breakthroughs.html#Context_awareness. 

 

http://www.research.philips.com/technologies/projects/ami/breakthroughs.html#Context_awareness
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Part III: Knowledge and language
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6. MEANING 

What does information mean? 

 

6.1 Introduction 

We mean many things by “information”. The 
anthropologist and cyberneticist Gregory Bateson defined 
information as ‘a difference which makes a difference.’ 
(Bateson, 1972, pp. 320-321.) This might make 
information sound like almost anything. To some extent 
this is true. We are used to hearing the word “information” 
used in so many contexts from freedom of information, to 
the information age, to the information superhighway, to 
information overload and so on. This chapter looks more 
closely at the relation between information and meaning: 
both how information gets its meaning – in other words, 
what makes information meaningful – and how we can 
explain meaning using the conceptual tools of information 

theory. In previous chapters we have asked “What is information?” The question that concerns us in this 
chapter is how information can be meaningful. 

6.2 The theory of meaning and the symbol grounding problem 

The theory of meaning is an enormous topic in the philosophy of language that also reaches into many other 
areas of philosophy. In its most general form, it is the attempt to explain how our language connects to the 
external world; that is, the relation between what we say and what we are speaking about. The issue is not as 
straightforward as it sometimes appears at first glance. At the start of the twentieth century, Ludwig 
Wittgenstein wrote: 

The difficulty of my theory of logical portrayal was that of finding a connection between the signs on paper 
and a situation outside in the world. I always said that truth is a relation between the proposition and the 
situation, but could never pick out such a relation.  
(Wittgenstein, 1961, 19e-20e.) 

Chapter 

6 

How can the semantic interpretation of a 
formal symbol system be made intrinsic to 
the system, rather than just parasitic on the 
meanings in our heads? How can the 
meanings of the meaningless symbol tokens, 
manipulated solely on the basis of their 
(arbitrary) shapes, be grounded in anything 
but other meaningless symbols?  (Harnad, 
1990, p. 335.) 
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We might intuitively think that the meaning of a symbol or word consists in the relation between that symbol 
or word and the thing to which the symbol or word refers. However, it’s not at all clear what that relation is, 
especially when we consider how varied are the symbols that can be meaningful and how protean and fickle is 
the relation between symbols and meanings. Can an informational approach to meaning solve some of these 
age-old philosophical questions? 

Consider, for example, the problem of how the same thing can have different names. The philosopher of 
language, Gottlob Frege, remarked that one of the planets (Venus) was known by two names: those who saw it 
at sunrise knew it as “the Morning Star,” and those who saw it at sunset called it “the Evening Star.” He 
concluded that the thing that a word refers to is not necessarily the same as the meaning of the word. Frege 
distinguished two aspects of meaning which he called Sinn (or “sense”) and Bedeutung (usually translated as 
“reference”) (Frege, 1892). Those two names – “the Morning Star,” and “the Evening Star,” – have the same 
reference – viz. the planet Venus – but a different sense. This reference-based theory of meaning was followed 
by numerous attempts to find the “hook” that connects our words to the things they are about. An 
informational approach widens this claim considerably. Theories that explain meaning have been limited by 
their focus on language, specifically on speech and writing. This informational approach tries to explain 
meaning by referring to a broader phenomenon than language: information. This gives rise to two central 
questions: (i) how information acquires its meaning (and consequently, to the question of what meaning is); and 
(ii) how the theory of meaning can be illuminated by concepts from information theory.  

Let us take each of these in turn. The first question has been called the “meaning grounding problem” and it 
concerns where meaning comes from or how an entity can acquire meaning. We recognize some marks, 
symbols, sounds, gestures, signs, and so on as meaningful, yet others are meaningless. But just knowing the 
relationship between symbols or sounds does not ever amount to knowing the meaning of those symbols and 
sounds. Consider a subspecies of the meaning grounding problem which concerns how symbols or data 
acquire meaning: the symbol grounding problem. It can be illustrated with a familiar example. Suppose that you 
have just arrived in a foreign country with no knowledge of the local language and you are attempting to find 
your way to your hotel. You notice a sign with some letters printed on it, you hear people speaking and 
gesticulating, you see traffic directions and symbols. All of this is more or less unintelligible to you. You buy a 
dictionary but it is entirely written in the local language. Nevertheless, you persevere and look up the word on 
the sign. You then begin to look up the words in the definition; and then the words in that definition, and so 
on. Of course, you will never be able to derive any meaning from this dictionary as the mere relations between 
symbols cannot provide you with the “hook” that connects those symbols to the world which they seem to 
refer to. 

Stevan Harnad used Searle’s Chinese Room Argument (Searle, 1980) to demonstrate the symbol grounding 
problem (see also Chapter 11). The person in the Chinese Room appears to have no access to the meaning of 
the symbols it can successfully manipulate syntactically. Similarly, a robot or artificial agent (AA) will inevitably 
be unsuccessful since the mere physical shape and syntactic properties of a symbol provides no information as 
to its corresponding semantic value (Taddeo & Floridi, 2005). 

Harnad described the problem thus: 

How can the semantic interpretation of a formal symbol system be made intrinsic to the system, rather 
than just parasitic on the meanings in our heads? How can the meanings of the meaningless symbol 
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tokens, manipulated solely on the basis of their (arbitrary) shapes, be grounded in anything but other 
meaningless symbols?  
(Harnad, 1990) 

For example, the symbols in the Venus case are the words themselves: “the,” “Evening”, “Star”, 
“Morning” and the other English words written in the Roman alphabet that have meaning to a speaker of 
that language. The formal symbol system is a combination of a number of things but essentially includes 
these symbols and the rules required to form new complex symbols – combinations of the basic, atomic 
symbols e.g. ‘the Evening Star is the same as the Morning Star’. Now suppose you are not an English-
speaker and nor are you familiar with any Indo-European languages or alphabets. In that case, the 
symbols have no more meaning to you than the alphabets of any other language you do not understand. 
The problem is that there is nothing in the marks themselves or in their relation to other marks that can 
give you that meaning. If we do understand it, we are dependent on the meaning generated by our own 
minds. If we find meaning in the symbols – for example, the particular colour pattern before our eyes and 
the spatial relationships between the marks – then are we not just imposing the meaning that we already 
have in our minds onto the environment? If so, where did the meaning in our heads come from in the 
first place? We seem to run into a regress. 

Some cognitive scientists and AI researchers have argued that cognition can be reduced to a kind of 
symbol manipulation. Consider the discussion of computationalism (Chapter 10.3). It discusses how a 
general model of cognition emerged out of von Neumann’s three-stage computational model: input 
processingoutput. Jerry Fodor called this the horizontal architecture of cognition (Fodor, 1983). In essence, 
the cognitive system receives an input from the environment; it then processes the input, and selects an 
action based on the input, current state, and its history. We can similarly describe this as a three-stage 
sequential pattern: perceivethinkact. Fodor argued that the meaning of symbols is grounded in the 
relationship between the formal symbol system and the world. If correct, this is promising as we can 
theoretically simulate cognition in artificial agents by equipping them with the right rules for manipulating 
symbols. In humans, this symbol manipulation is subconscious and autonomous and once the brain 
receives symbols, then, assuming it is functioning properly, it will acquire the relevant meanings. Recent 
research in cognitive science, however, highlights the interpretative and problematic nature of picking out 
the objects, events, and states of affairs that symbols refer to and so the ‘symbolist’ account seems to 
simplify the function of cognition. There is more to it than symbol manipulation. 

So how ought we to resolve the symbol grounding problem? One option is to look more closely at the 
processes of perception. We can say that when we learn a language, for example, we learn how to 
appropriately map symbols to specific referents. Suppose that, in the illustration given above, you 
abandon your dictionary and try to work out what the people around you are saying. You listen to their 
words, observe what they point to, and construct a small bilingual dictionary of your own. Each time 
someone points to an object and appears to refer to it you write down what they say and translate it into 
your own language. Unfortunately, you sometimes hear someone say a word and seem to refer to a 
completely different object or situation. Again, no matter how close and detailed your observations, it 
seems that you will never completely understand what the meaning of the word is just by noting the 
structural relations between words, symbols and gestures.  

What is more, whilst symbols are usually discrete, self-contained entities, the external world for the most 
part is not. If we go along with this approach we are either sorely lacking in symbols if we want to 
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describe the world well or we conflate many things when using the same symbols. What is more, as 
described by Hilary Putnam, just as a set of mathematical equations can be mapped onto a near-infinite 
number of structures in the world, a system of relations between symbols can be mapped onto a near-
infinite number of structures in the world. Hence, there is no non-arbitrary way in which symbols acquire 
meaning (Lakoff, 1987; Putnam, 1981). 

A second approach is to abandon our assumption that there is a direct relation between symbols and referents. 
Such an alternative approach might be found in research in embodied cognition, which takes cognition to be 
dependent on the physical capacities and actions of an agent. Specifically, we can view meaning as a way of 
coordinating action to achieve certain goals. According to this approach, the meaning of a particular situation 
for the agent is the combination of actions available to it. For example, the meaning of being close to a car, for 
a human, might be travel, but for a cat it might be shelter. Consequently, the symbol grounding problem is 
dissolved rather than solved. There is no need to look for the “hooks” that connect references and referents, 
speech and what we speak about. Rather, what ought to be matched is goals and affordances: what the agent 
wants to achieve and what opportunities are afforded by a situation to achieve that goal. This approach is 
considered further in Chapter 10 and we will return to it in this chapter in section 6. 

6.3 Statistical approaches: Shannon and Weaver, Bar-Hillel and 

Carnap 

Recall Shannon’s landmark paper “The mathematical theory of communication” discussed in Chapter 1.3, and 
subsequent research by Shannon and Weaver. Shannon described an information-generation system with five 
essential components: an information source, a transmitter, a channel, a receiver, and a destination. (Shannon, 
1948, p. 4; Wiener, 1948, p. 79). Their model defines what have become the main components of many 
subsequent mathematical or probabilistic approaches to information, such as those proposed by Bar-Hillel and 
Carnap, and Dretske discussed below. This model has been applied not just to describe the external processes 
between two cognitive agents but also the internal processes of the mind. Sperling (1963), for example, 
described how environmental sounds are processed through cognitive systems and transformed until they reach 
the conscious level. Shannon’s analysis of information, however, is not an analysis of meaning but of the 
correlations between messages, variables, etc. (see Chapter 1.3). Although there have been further statistical 
models based on Shannon’s work, let us look at the Bar-Hillel and Carnap model, which sought to do justice 
specifically to the problem of meaning which Shannon and Weaver had set aside. 

Bar-Hillel and Rudolf Carnap developed a probabilistic approach and applied it to the meaning of propositions. 
Their approach was based on what is called the inverse relationship principle. According to this principle, the 
amount of information associated with a proposition is inversely proportional to the probability associated with 
that proposition. The core idea is that the semantic content of p is measured as the complement of the a priori 
probability of p, 

CONT(p) = 1 – P(p) 

where CONT is the semantic content of p. Crudely, CONT(p) is a measure of the probability of p not 
happening, or not being true. This means that the less probable or possible p is, the more semantic information p 
is assumed to be carrying. Tautologies, like “all ravens are ravens”, have to be true. So they are assumed to carry 
no information at all.  Since the probability that all ravens are ravens is 1, P(p) is 1, so CONT(p) is 1-1, i.e. 0. By 
extension, we might presume that contradictions – statements which describe impossible states or whose 
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probability is 0, such as “Alice is not Alice” – contain the highest amount of semantic information. Thus we 
seem to run into what has been called the Bar-Hillel-Carnap paradox: the less likely a statement is, the greater its 
informational content, until you reach a certain point at which, presumably, the statement contains no 
information at all since it is false. As Bar-Hillel and Carnap state: 

It might perhaps, at first, seem strange that a self-contradictory sentence, hence one which no ideal receiver 
would accept, is regarded as carrying with it the most inclusive information. It should, however, be 
emphasized that semantic information is here not meant as implying truth. A false sentence which happens 
to say much is thereby highly informative in our sense. Whether the information it carries is true or false, 
scientifically valuable or not, and so forth, does not concern us. A self-contradictory sentence asserts too 
much; it is too informative to be true  
(Bar-Hillel & Carnap, 1953, p. 229) 

6.4 Probabilistic approaches: Dretske 

Fred Dretske was one of the earliest philosophers formally to connect the Mathematical Theory of 
Communication (MTC) to the problem of knowledge. In a theory he called Indicator Semantics he wrestled 
with the problem of how data and information can be “upgraded” to knowledge. Dretske supposed that the 
relationship between data and meaning was central to resolving this puzzle and key to this relationship was the 
further connection between signal and receiver. As part of Dretske’s effort to use the concept of information to 
explain and develop problems of knowledge, perception, and meaning, several other philosophically interesting 
issues are tackled. He firstly gives an account of the propositional content of a signal (events, structures, 
situations) and develops a semantic theory of information. For Dretske, information is an informee-
independent, objective phenomenon that occurs in a multitude of ways and which existed before the 
development of agents (e.g. humans) with the ability to selectively utilise it. Regularity and law-like or non-
accidental correlations are crucial to information flow; without a lawfully regular universe, no information 
would flow. 

Dretske uses the MTC as a starting point before establishing its limitations and departing to develop his 
theory of semantic information for philosophical use. The first thing to note is that MTC is a syntactic 
treatment of information and is not, at least directly, concerned with the semantic aspects of information 
– with what the information means. It is really an account of data quantification and transmission, as 
opposed to a theory of information as it is commonly understood. The quantity of data a signal carries 
can provide some information about its content. For example, say that a jug will either contain 1 litre of 
milk or 2 litres of water. Learning that the jug contains only 1 litre of liquid provides information about 
what type of liquid the jug contains, namely milk. Ultimately, MTC is an insufficient tool for the analysis 
of semantic information. Secondly, MTC is concerned with the statistical properties of transmission, with 
the average amount of information generated by a source. However information as it is commonly 
understood, and for Dretske's purposes, is something associated with individual events. It is only 
particular signals that have content which can be propositionally expressed. 

So Dretske therefore must adapt the ideas of MTC for his purposes. After some toil, he comes up with 
the following definition of a signal’s (structure’s) information content:13 

                                                                        
13 See Chapter 13.5 where Dretske makes an important distinction between ‘information content’ and ‘semantic content’. See also Dretske 
(1981, pp. 171-189.) 
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A signal r carries the information that s is F = The conditional probability of s’s being F, given r (and 
k), is 1 (but, given k alone, less than 1) 

Here k is a variable that takes into account how what an agent already knows can determine the 
information carried (for that agent) by a signal. For example, Alice’s utterance that she is from England 
does not carry the information that she is from London (for she could be from Birmingham, Manchester, 
etc.). But if you already know that Alice originates from a capital city, then for you her utterance does 
carry the information that she is from London. Although the k variable which occurs in Dretske’s 
definition relativizes information to what the receiver already knows concerning the possibilities at the 
source, this relativization is only meant to accommodate the way information is thought about, that the 
information one can get from a signal depends on what one already knows; it does not undermine the 
essential objectivity of information. 

As an example of how the use of probability works here take the information-bearing signals of a clock. 
The signal from a correctly functioning clock carries the information that the time is such-and-such. In 
accordance with the above definition, if one looks at a correctly functioning clock that reads 6:30pm, then 
the conditional probability that the time is 6:30pm given the clock’s signal of 6:30pm is one. If the clock 
were malfunctioning, things would be different. Say that the clock stops working at 6:30pm and the next 
day someone happens to look at the clock when it is 6:30pm. Even though the time indicated by the 
clock happens to be the actual time, the clock here does not give the information that the time is 6:30pm 
because the conditional probability that it is 6:30pm given that the clock shows this is less than one.14 

Here are three reasons given by Dretske for his stipulation that the value of the conditional probability in 
his definition of information be one and nothing less: 

 One basic principle of information flow that should be satisfied is the conjunction principle: if a 
signal A carries the information that B and A carries the information that C, then it also carries the 
information that B and C. If the conditional probability requirement was relaxed and made lower than 
one, then this principle does not hold.15 

 Another principle of information flow Dretske holds is what he terms the Xerox principle: if A 
carries the information that B, and B carries the information that C, then A carries the information 
that C. So information flow is transitive. Once again, if the conditional probability threshold is set to 
anything less than one, then this intuitive principle does not hold.16 

 Finally, and as Dretske frankly acknowledges, there is no non-arbitrary figure at which to impose a 
threshold. If information can be obtained from a signal involving a conditional probability of less 
than one, then information loses its “cognitive punch”. To use an example of Dretske’s, think of a 
bag with ninety-four red balls and six white balls. If one is pulled out at random, you cannot know that 
it was red. Hence, why suppose you have the information that it is red? 

                                                                        
14 Since there are 1440 minutes in a day, the probability that the time is 6:30pm given the non-functioning clock’s signal of 6:30pm is in fact 
1/1440. 
15 Here is how this can happen: Pr(B|A) stands for the probability of B given A. Where x stands for a probability value below 1 that is the 
minimum threshold at which the information relation would hold, according to probability it can be the case that Pr(B|A) ≥ x and Pr(C|A) 
≥ x but Pr(B & C|A) < x. 
16 Once again, where x stands for a probability value below 1 that is the minimum threshold at which the information relation would hold, 
according to probability it can be the case that Pr(B|A) ≥ x and Pr(C|B) ≥ x but Pr(C|A) < x. 
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A major concern against setting the required conditional probability to one is that, since there are very 
few conditional probabilities of one out there, very little information ever flows. Dretske deals with these 
concerns by introducing the idea of fixed channel conditions and relevant alternatives. The basic idea is that the 
conditional probability requirements are made relative to a set of possibilities relevant to the 
communication channel. This is a more flexible and realistic way of thinking about the conditional 
probabilities defining information flow. That calculations are made within a background of stable or fixed 
circumstances is not to say that circumstances cannot change. Rather, it is only to say that for the 
purposes of determining conditional probabilities, if conditions are normal and there is no significant 
chance of something happening, such changes are set aside as irrelevant. 

For example, take our previous scenario in which a functioning clock is accurately correlated with the 
time and is thus transmitting information about the time. Now, there are scenarios alternative to this one, 
such as cases where the clock has flat batteries, in which the clock’s signal is not correlated with the time 
and it therefore fails to transmit information about the time. If these alternatives are factored into the 
probability calculations, then the probability that it is time x given that the clock shows x is not equal to 
one. Consequently, in the actual scenario the clock would not meet the requirements of Dretske’s 
information flow definition and so would be judged as not carrying the information that the time is such-
and-such. But the idea is that, if the batteries in the clock are in good working order and the clock is 
functioning correctly, even if there is a minute probability that the new batteries could become defective 
or a mechanism in the clock could break just before someone looks at the clock, these possibilities are 
ignored in calculating the information the clock is delivering. Possible (non-actual) but far-flung or 
improbable alternatives such as these are deemed irrelevant in considering the set of relevant alternatives 
against which probability calculations are made. Even if there is technically a non-zero probability that 
they could occur, if these issues have not actually occurred, then they are dismissed. 

There is no determinate method to decide what counts and what does not count as a relevant alternative. 
In general the selection will depend upon the knowing agent and their environment and will also be a 
pragmatic decision. Particularly due to this lack of clear determination the notion of relevant alternatives 
has been a point of philosophical contention and from one point of view its application is seen to be 
somewhat ad hoc. Nonetheless, it is a valuable idea that can serve as a foundation for accounts that afford 
a way to realistically talk about information (and knowledge). 

One piece of support for this strategy of employing channel conditions/relevant alternatives can be 
found in analysing the application of absolute concepts. The concept of information here, like the 
concept of knowledge to which it will be applied, is absolute: A either carries the information that B or it 
doesn’t. Now, we legitimately apply absolute concepts all the time, even though at some extremely 
magnified level they might fail. For example, we might say that an apple box is empty because it contains 
no apples, even though in some sense it is not empty since it still contains dust and air molecules. Of 
course, when attributing emptiness to the box, we rightly do not include dust and air molecules in our 
consideration; they are “irrelevant alternatives” as it were. In this way, we can legitimately apply absolute 
concepts. 

It is important to note that a signal’s informational content is not unique. Generally speaking, there is no 
single piece of information in a signal or structure. For example, anything that carries the information that 
x is the number 7 also carries the information that it is an odd number, that it is a prime number, that it is 
not an even number and so on. This non-uniqueness is one characteristic of information that 
distinguishes it from meaning; if I say that x is the number 7, I mean just that. Also, whilst the meaning of 
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a signal is independent of its truth, its information is not. Thus information and meaning are two distinct 
things and it is important that the two are not confused. In Chapter 3 we also examined how Dretske’s 
theory relates to his theory of how symbols acquire meaning based on information-carrying tokens.  

6.5 Semantic approaches: Levels of abstraction, and syntax 

The fourth approach we will look at is known as the General Definition of Information (GDI) (Floridi, 2005b). 
This theory proposes a tripartite definition of information:- 

The General Definition of Information (GDI) 
p is an instance of information, understood as semantic content, if and only if:  
(GDI.1) p consists of one or more data; 
(GDI.2) the data in p are well-formed; 
(GDI.3) the well-formed data in p are meaningful. 

In other words, if what you have is not a well-formed combination of meaningful data, then you do not 
have information.17 Here, “well-formed” means that the data are correctly structured according to the 
relevant syntax. The question that falls out of this statement – viz. when is data correctly structured? – is 
problematic enough. We have already discussed the importance of a relevant syntax. The question raised 
by (GDI.3) is the primary concern of this chapter – namely, when is well-formed data meaningful? In 
other words, how can data acquire their meaning? No doubt, we often attribute meanings to data. We can 
point to a datum on a graph and infer that the datum means that, say, the recorded temperature at a 
certain pressure is 50˚C. We can read a weather report and infer that the data in the report mean that it is 
likely to rain tomorrow. But what are needed are general principles which would be exportable across 
conceptual platforms. What allows us to make these inferences is the structure of the data and the syntax 
that we use to interpret it. Here, syntax means something broad. It is the system, structure, code or 
language that determines the form, construction or composition of information. It is not necessarily 
linguistic – think, for example, of an instruction diagram for building flat-pack furniture, or Morse code 
signals. Bateson, in the work quoted at the head of this chapter, notes that on a map, only differences in 
altitude, and not consistencies in altitude, would be represented (i.e. as contours). But if we do not 
understand the syntax of the contour lines – the differences – we may misunderstand what they 
represent.  

Consider the following illustration from Dretske: an airplane pilot uses altimeters to determine the plane’s 
altitude. An altimeter is essentially a pressure gauge – it responds to changes in air pressure and the pilot 
takes this to represent changes in altitude. Note that we must say “takes this to represent” here as what is 
crucial is not just what the device measures but what those measurements are taken to represent. 
Conflating the two can lead to bad inferences being drawn from the altimeter’s movements. For example, 
if the aeroplane strays into an environment that has an unusual air pressure, and the pilot takes its 
movements to represent altitude, he will acquire false beliefs about the altitude. Similarly, if we take the 
altimeter out of the plane and place it in a depressurized container, the altimeter will register a much 
higher altitude than is, in fact, the case. In such examples, it is not that the altimeter is malfunctioning – it 
is doing its job perfectly well – but that we have incorrectly understood the syntax of the information it 
provides. We do not understand what this information means. When the altimeter responds to external 

                                                                        
17 Note that this is not Floridi’s view due to his veridicality thesis (see Chapter 7.2). Also see Floridi (2010c, pp. 227-258) for more on 
Floridi’s approach. 
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changes in its environment it is not actually generating any information per se. What is generated might 
instead be called data. We need a syntactical structure – what philosophy of information calls a Level of 
Abstraction (see Chapter 2) – to give that data meaning and determine its informational content. We 
often hear people say, and have no doubt said ourselves, things like, “It looks cloudy. Does that mean it 
will rain?”, “What does irascible mean?”, “That’s the third time a black cat has crossed my path. What 
does it mean?” and so on. What we are saying when we use the word “mean” is given by the kind of 
answers that we expect to satisfy the question. The answer that clouds are often used in literature to 
symbolise the coming of rain would not be a helpful answer to the first question, but that the presence of 
certain types of cloud indicates that it is likely to rain would. The answer that it means that a feline animal 
with dark fur has travelled in such a manner as to move adjacently to your own trajectory would not be a 
helpful answer to the last question, whereas the answer that black cats crossing your path give you luck 
might be satisfying (to the superstitious amongst us). We might conclude from this that the meaning of a 
bit of information depends on our interests or goals. 

6.6 Pragmatic approaches 

We receive a lot of stimuli or signals in our day-to-day lives – either through newspapers, television, and the 
internet, or just the stimuli and signals we receive from all the objects we pass as we walk down the road. Our 
minds need a way of managing all that data and selecting only the meaningful, informative, and – hopefully -- 
true. One of the first steps in this process is deciphering what this putative information means. Charles Sanders 
Peirce was an American philosopher in the late nineteenth century who co-founded the Pragmatist movement 
with William James and John Dewey, and who also provides insight into the problems we face in deciphering 
the meaning of various signals (De Tienne, 2006). Peirce thought that this problem of the meaning of signals, 
what he called Semiotics, was in fact something of a prima philosophia. He wrote, ‘[I]t has never been in my power 
to study anything, – mathematics, ethics, metaphysics, gravitation, thermodynamics, optics, chemistry, 
comparative anatomy, astronomy, psychology, phonetics, economics, the history of science, whist, men and 
women, wine, metrology, except as a study of semiotic.’ (Peirce, 1977, pp. 85-86). Clearly, Peirce thought 
semiotics could help with quite a range of studies! 

Recapitulating Peirce’s work on information into a complete account is something that has to be done through 
understanding a series of lectures, manuscripts, texts, and notebooks as Peirce himself did not compose a 
summation of his work in any one text. For our purposes, we will focus on the key elements of his theory of 
information and how it relates to the theory of meaning. Central to this is his analysis of propositions which he 
argued had two qualities: extension and comprehension. Peirce argued that any proposition consisted of an 
ordered triplet of references: 

1. A direct reference to its object (the real things that it represents), 

2. An indirect reference to the characters common to these real things, and 

3. An indirect reference to an interpretant defined as the totality of facts known about its object.  
(De Tienne, 2006) 

For Peirce, each of these references is “informational” in nature. The first refers to the “informed breadth” of 
the proposition, the second to the “informed depth” of the proposition, and the third to the “information” 
concerning the proposition. By “informed breadth”, Peirce meant that the proposition must be predicable of 
real things, ‘with logical truth on the whole in a supposed state of information.’ (Peirce, 1984, p. 79.) “Informed 
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depth” is measured not by the number of “mere names” that can be attached to the subject, but to the number 
of distinct properties that can be said to belong to the subject by induction. Information comes about as the 
product of these two logical quantities, breadth and depth. 

Peirce argued that in order to understand the meaning of a signal, we are not concerned with every aspect of 
the signal but only the signifying element. For example, in order to understand that smoke means fire, we do not 
need to know everything about the smoke – its shape, the particular way its fumes form, its precise colour, and 
so on – but only that element of it that signifies the presence of fire. Peirce used a lot of different terms for the 
signifying element of a signal – “sign”, “representamen”, “representation”, and “ground”. We will just call them 
signs. Consider a beehive in your garden as a sign that there are bees in your garden. It is not every single 
characteristic of that beehive that signifies that there are bees in your garden. The colour, size, or shape of the 
hive is not particularly important and plays what Peirce calls a “secondary signifying role”. The primary 
signifying role in this case is the causal connection between the type of object that a beehive is and the presence 
of bees. This relationship is the sign. The meaning of this sign is “there are bees here”! There may be other 
signs that there are bees in the garden: the pollen count, a bee-sting on a child that unfortunately bothered one 
of the garden’s residents, and the noise that bees make perhaps. What makes these things signs is their capacity 
to indicate the presence of bees. The colour of the stripes on a bee, its gender or age, are not essential to 
indicate the presence of the bee and so are not signs that there are bees. A second element to this connection is, 
in Dretske’s terms, that receiver’s interpretation of the sign. Roughly, this is the meaning we take from the 
relationship between the sign (the beehive) and the object (the bees). Peirce thought that signs determine their 
interpretation. That is, the beehive draws our attention to the connection between beehives and bees and in so 
doing determines that we will believe that there are bees. 

In his later writings, Peirce considered the conditions that synthetic propositions must meet in order to be 
considered genuinely informative. (See De Tienne (2006) and Robin (1967, pp. 9-10).)  He proposed the 
following five conditions: 

1. An informative proposition must convey a truth. That is, it must not be dependent on human ideas and 
thoughts but on a real event independent of our interpretation. 

2. The truth conveyed must not be novel. That is, the listener or receiver of the information must be 
affected by it in some non-trivial way. 

3. The truth conveyed must be relevant. It must relate to a universe that actually concerns the listener or 
receiver. 

4. The truth conveyed must not only be of interest to the receiver but must actually drive it to generate 
further interpretants sharing a similar purpose. 

5. Finally, the truth conveyed must involve an actual possibility. The information is being stated not just 
for the sake of it but for the sake of the consequences that are entailed by it. Stating, for example, that 
‘This bridge is weak’ is informative because it entails that it will break if sufficient pressure is exerted. 

A more modern pragmatic theory of information can be found in MacKay (1969). MacKay defined 
information as ‘that which does logical work on the organism’s orientation’ (MacKay, 1969, pp. 95-96). Under 
this view, information is related to an organism’s cognitive structures as it reacts to its environment. It is 
consequently a much broader approach to information than, for example, Shannon information, since it also 
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includes natural sources of information. Some of these more recent pragmatic theories are discussed in Chapter 
10.5a. 

6.7 Intention-based semantics and computational systems 

In section 6.6, we considered whether the meaning of information depends, in some sense, on what kind of 
answer we might expect to satisfy a question. Call this a causal account of meaning. Formally, a causal account 
states that “x is meaningful iff x tends to produce such and such a psychological state in a hearer and to be 
produced by a corresponding state in a speaker.” The philosopher of language H. P. Grice argued against such 
an account. He noted that, for example, my picking up an umbrella tends to make whoever sees me think that it 
is raining outside and I may pick up an umbrella because I think it is raining outside. However, my picking up 
an umbrella does not mean that it is raining outside. Grice argues that the causal account ignores the 
“intentionality” of meaning. That is, the important element is not the effect that tends to be produced but the 
effect that the speaker intends to produce. Secondly, the causal account relies on a conventional or common 
meaning always being the meaning, whereas in reality speakers may mean many things by the same utterance on 
various occasions. Instead, Grice subscribed to intention-based semantics (Grice, 1957). According to this 
theory, the meaning of a sentence is determined by the psychological state it is intended to produce in the hearer.  
He distinguished between natural (non-cognitive) and non-natural (communicative) meaning. Natural meanings 
are those that, roughly speaking, could be given a naturalistic explication such as “That body temperature 
means that she has a fever,” or “The code doesn’t mean anything to me, but to the computer programmer it 
means that there is a software error.” Non-natural meanings include those that cannot be given naturalistic 
explications such as “Those three rings on the bell mean that the bus is full,” or “When Bob said that he didn’t 
have a leg to stand on he meant that he had no support for his position.” 

Grice proposed two tests for each kind of meaning: an entailment test and a quotation test: 

Entailment. In cases of natural meaning, x means that p entails that p. In cases of non-natural meaning, x 
means that p does not necessarily entail that p. For example, “That body temperature means that she has a 
fever,” entails that she has a fever. “That body temperature means that she has a fever, but she hasn’t got a 
fever” is self-contradictory. 

Quotation. In cases of natural meaning, the verb “mean” cannot be followed by a quotation. In cases of 
non-natural meaning, it can. For example, one cannot write, “The code doesn’t mean anything to me, but to 
the programmer it means that ‘there is a software error.’” To write this might be to imply that you were 
being sarcastic and there really was no software error. On the other hand, one can write, “When Bob said 
that he didn’t have a leg to stand on he meant that “he had no support for his position.”” 

When we talk about meaning in this communicational form, we often imply two concepts: intention and 
understanding. When Alice tells Bob that she is currently in Edinburgh, Scotland, she intends to transmit the 
information contained in what she says. She also intends that Bob is her audience and she assumes or predicts 
that he will understand what she says. Furthermore, in order for Bob to receive this information he must 
understand what Alice meant, at least to some degree. If he understands by her sentence something radically 
different from what Alice intended for him to understand then there has been a “failure to communicate”: a 
failure, in other words, to transmit meaningful information.  

In Chapter 8 we discuss themes in A.I. that draw parallels between computers and our own brains and minds. 
We can consider that question as it relates to meaning and the capacity or lack of capacity to mean what one 
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says: can computers mean what they say in the same way that humans do? Does meaning require intention? If 
computers can mean what they say or display then we might be more tempted to say that they are functioning 
like human brains (and vice versa if they cannot). If you find Grice’s account convincing, you may want to ask 
whether a computer can intend to say things. And if you prefer the causal account you may want to think about 
whether the counterexamples apply to computers that purport to transmit meaning.  

6.9 Conclusions 

In this chapter we have looked at research which tries to answer the question of how data or information 
acquires meaning. We looked at statistical approaches such as Shannon and Weaver’s mathematical theory of 
communication; probabilistic approaches such as Bar-Hillel and Carnap’s or Dretske’s theory of meaning; 
semantic and pragmatic approaches. We also looked at several specific problems in the philosophy of 
information such as the symbol grounding problem and the Bar-Hillel-Carnap paradox. Finally, we looked at 
intention-based semantics and asked what it would mean for non-animal agents to communicate or transmit 
meaning. 

6.10 Exercises 

1. What is the difference between the question of whether information is meaningful and the meaning 
grounding problem? Describe in your own words the symbol grounding problem. 

2. What is paradoxical about the inverse relationship principle? 

3. What kinds of things can carry an informational signal? 

4. Think of three advantages that pragmatic approaches have over probabilistic approaches. What 
disadvantages are there to the pragmatic approach? 

6.11 Suggestions for the exercises 

1. Consider the following as two separate questions: is information meaningful? What is the meaning 
grounding problem? Now consider how the two differ in terms of the problems they aim to solve. Re-read 
section 6.2 to remind yourself of the symbol grounding problem. Be careful about the subtle difference 
between the meaning grounding problem and the symbol grounding problem. 

2. Re-read 6.3. Recall the definition of the inverse relationship principle and consider why it may be called a 
paradox. Is it really paradoxical? 

3. Write a list of things that can carry an informational signal, or, in other words, provide information to you 
or others. These are sometimes called ‘information vehicles’. What qualities do these things share that might 
group them together as information vehicles? 

4. Familiarize yourself with the probabilistic approaches and the pragmatic approaches. You may need to use 
the further reading to tackle this problem fully. Think about what problems in the philosophy of 
information each tries to solve and how successful they are in doing so. 



THE PHILOSOPHY OF  INFORMATION — AN INTRODUCTION 

 

89 

6.12 Further reading 

Dretske (1981), Floridi (2005b), MacKay (1969), Peirce (1977), Wilson and Foglia (2011). 
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7. TRUTH 

Must information be true? 

 

7.1 Introduction 

In Chapter 6 a general definition of semantic 
information (GDI) as well-formed, meaningful data 
(semantic content) was given. Another aspect of 
semantic information to consider is the alethic (of or 
relating to truth) nature of information: does semantic 
content need to be true in order to qualify as semantic 
information, or does any semantic content, true or false, 
count as information? According to Fox: ‘‘x informs y 

that p’ does not entail that p [and since] ... we may be expected to be justified in extending many of our 
conclusions about ‘inform’ to conclusions about ‘information’ [it follows that] ... informing does not 
require truth, and information need not be true.’ (Fox, 1983, pp. 160-161, 189, 193.) 

Fox thus advocates some form of the Alethic Neutrality (AN) principle: meaningful and well-formed data 
qualify as information, no matter whether they represent or convey a truth or a falsehood or have no 
alethic value at all. 

In the discussion that follows we will not consider factual semantic content that has no alethic value (has 
no truth value, so is neither true nor false). The prime issue here is whether or not information requires 
truth.18 

7.2 The veridicality thesis 

According to AN, since information does not have to be true, semantic content already qualifies as 
semantic information.  So the GDI is sufficient for information – information is well-formed, meaningful 
data. However, there has recently been some debate on the alethic nature of semantic information that 
questions whether these conditions are sufficient. This debate was initiated by Floridi’s advocacy of a 

                                                                        
18 Although it is not the focus of this chapter, the nature of truth itself is a central subject in philosophy. Put simply, the problem of truth 
concerns determining what truths are and what, if anything, makes them true (Glanzberg, 2013). Correspondence, coherence, and pragmatist 
theories are the main theories of truth. In ‘Open Problems in the Philosophy of Information’ (Floridi, 2004b), one of the open problems is 
‘Can information explain truth?’ Floridi (2010e) develops an alternative theory of truth for semantic information, namely a ‘correctness 
theory of truth’. 

Chapter 

7 

Suppose Alice asks Bob, “What is the 
capital city of France?” Bob, who is prone 
to lying, responds with “Rome.” Has Bob 
provided Alice with a genuine piece of 
information? 
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veridicality requirement for semantic information – he claims that information must be true.19 According 
to the veridicality thesis (VT), in order for semantic content to be counted as information it must also be 
true: semantic information is well-formed, meaningful and veridical (truthful) data. In other words, only true 
propositions count as genuine semantic information; false semantic content or “misinformation” is not 
genuine information. Bear in mind that this veridicality requirement applies only to factual semantic 
content, such as “that is a pizza” and not instructional semantic content, such as “go and make a pizza” 
which is neither true nor false – it is not alethically qualifiable. 

Other notable advocates of a veridicality condition for information are Dretske (1981), Barwise and 
Seligman (1997), Graham (1999), and finally Grice (1989), who offers the following direct characterisation 
of this position: ‘false information [misinformation] is not an inferior kind of information; it just is not 
information’ (Grice, 1989, p. 371). Thus, according to VT, the prefix “mis” in “misinformation” is treated 
as a negation – “misinformation” is “not information”.  

There may very well be no objective fact about the world that could decide whether the veridicality thesis 
is true. But whilst it might seem that the debate is just a trivial terminological one, there is arguably more 
to it. Each side has reasons to offer and one’s position can be motivated by what one wishes to do with 
the resulting notion of information. 

Those who reject VT might say that, since semantic content in general plays a role in the cognitive 
activities of semantic agents, it should be classed as information. Suppose that Bob says to Alice that 
Rome is the capital city of France. Alice can process this false semantic content and use it. She can use it 
to answer (incorrectly) a quiz question asking for the capital city of France. Or she could use it to deduce 
unsoundly the information that Rome is a European capital city.20 Denying that false information 
(misinformation) is a genuine type of information would unnecessarily restrict the range of cases in which 
the term “information” is legitimately applied. 

Those who support VT might say that they want an account more in line with a certain ordinary 
conception of factual information, the sense in which information is a success word.21 Data is data, 
semantic content is semantic content, false semantic content takes the term “misinformation” and true 
semantic content takes the term “information”. 

There are three positions one could adopt in this debate: 

A. Genuine semantic information requires truth; 
B. Any legitimate conception of semantic information will not have truth as a requirement; or 
C. There is more than one legitimate conception of information. Some require truth and others 

don’t. 

By the end of this chapter you will hopefully have a better idea of the issues involved and which position 
you prefer.22 

                                                                        
19 See Floridi (2010c, Chapter 4) for more. Floridi himself acknowledges that this veridicality requirement is hardly a novel idea (some 
precedents are listed below). Nonetheless, (re)ignition of the debate shows that discussion of the issue remains to be had. 
20 Although the conclusion that Rome is a European capital city is true, the deduction is unsound because one of its premises was false. 
21 A success word is a word whose application to an embedded proposition implies the truth of that proposition. For example, I remember, 
know, realize, perceive that p all imply the truth of p (Blackburn 1994). 
22 Chapter 8, on information and knowledge, will also help to elucidate this matter. 
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7.3 Arguments for the veridicality thesis 

Since the VT camp adds the extra condition that needs to be argued for, we will proceed by outlining 
some of their reasons intermixed with reasons and responses from the non-VT camp. 

VT advocates maintain at least several technical or practical reasons for adopting VT. One prime reason 
is that a veridical conception of semantic information will provide an informational basis for knowledge 
(see Chapter 8). A core condition in the definition of propositional knowledge is that if one knows a 
proposition p, then p is true; one cannot know what is false. Alice can know that Paris is the capital of 
France but she cannot know that Rome is the capital of France. Since knowledge requires truth, attempts 
to define knowledge in terms of information will benefit from a conception of information that also 
requires truth. 

Fred Dretske’s work exemplifies this rationale. Under his information-theoretic epistemology, 
information is a necessary element of knowledge, so his aim is to formulate a theory of information 
where information, like knowledge, entails truth. He intends to respect some ordinary intuitions about 
what information is, where meaning (semantic content), which need not be true, is distinguished from 
information, which must be true. In his own words: 

As the name suggests, information booths are supposed to dispense information. The ones in airports 
and train stations are supposed to provide answers to questions about when planes and trains arrive 
and depart. But not just any answers. True answers. They are not there to entertain patrons with 
meaningful sentences on the general topic of trains, planes, and time. Meaning is fine. You can’t have 
truth without it. False statements, though, are as meaningful as true statements. They are not, however, 
what information booths have the function of providing. Their purpose is to dispense truths, and that 
is because information, unlike meaning, has to be true. If nothing you are told about the trains is true, 
you haven't been given information about the trains. At best, you have been given misinformation, and 
misinformation is not a kind of information any more than decoy ducks are a kind of duck. If nothing 
you are told is true, you may leave an information booth with a lot of false beliefs, but you won't leave 
with knowledge. You won't leave with knowledge because you haven't been given what you need to 
know: information.  
(Dretske, 2008, p. 2) 

As pointed out by Dretske, other disciplines such as the computing and information sciences freely 
employ the term “information” to refer to data or statements in general. In these cases truth seems to be 
irrelevant and anything that can be processed or stored in a database is counted as information. One 
reason is: 

to maintain that nonnatural [semantic] false information is information too mirrors our reason to posit 
nonnatural information in the first place: it allows us to capture important uses of the term 
“information”. It is only by tracking such disparate uses that we can make sense of the central role 
information plays in the descriptive and explanatory activities of cognitive scientists and computer 
scientists, which partially overlap with the descriptive and explanatory activities of ordinary folk. 
(Scarantino & Piccinini, 2010, p. 323)  

While this may be the case, bear in mind that “important uses of a term” are not necessarily justified or 
correct uses of the term. The term “vegetable” has important culinary and cultural uses, although 
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technically it is incorrectly applied in some cases. For example, botanically speaking aubergines 
(eggplants) and tomatoes are fruits, not vegetables. So perhaps it is preferable to develop a concept and 
terminology hierarchy in which data, semantic content and information are distinct. Under such a 
framework, cognitive, computer and information scientists would, generally speaking, traffic in data and 
semantic content. Although for computational purposes the data “Germany is in Europe” and “Mexico is 
in Europe” might be indistinguishable (they will be input, stored, manipulated and retrieved in the same 
way), it does not follow from this that the true datum counts as information if and only if the other does. 
Such an approach to information: 

blithely skates over absolutely fundamental distinctions between truth and falsity, between meaning 
and information. Perhaps, for some purposes, these distinctions can be ignored. Perhaps, for some 
purposes, they should be ignored. You cannot, however, build a science of knowledge, a cognitive 
science, and ignore them. For knowledge is knowledge of the truth. That is why, no matter how 
fervently you might believe it, you cannot know that Paris is the capital of Italy, that pigs can fly or 
that there is a Santa Claus. You can, to be sure, put these “facts”, these false sentences, into a 
computer’s database (or a person’s head for that matter), but that doesn’t make them true. It doesn’t 
make them information. It just makes them sentences that, given the machine’s limitations (or the 
person’s ignorance), the machine (or person) treats as information.  
(Dretske, 2008, p. 2) 

Michael Dunn responds to the line of argument exemplified in the above quotes from Dretske with a 
clever counterexample: 

I have heard a similar defence in a story of the “Information Booth” in a railway station and how it 
would be misnamed if it gave out false information. But note that I said “false information” in a very 
natural way. I think it is part of the pragmatics of the word “information” that when one asks for 
information, one expects to get true information, but it is not part of the semantics, the literal meaning 
of the term. If there is a booth in the train station advertising “food”, one expects to get edible, safe 
food, not rotten or poisoned food. But rotten food is still food.  
(Dunn, 2008, p. 582) 

As noted by Dunn, “false information” can be said in a very natural way. So what should we make of the 
term “false information”? Well, Dunn’s point can be addressed with an argument made by Floridi 
(2005b), which offers a way to explain how it is that “false information” can be said in a very natural way 
whilst adopting VT and maintaining that “false information” is pseudo-information. The crucial 
distinction to make is that between attributive and predicative uses of “false”. Whilst there are some 
technicalities to this strategy, its gist is easy to appreciate. Consider the following two compound terms: 

1. false proposition 
2. false economy 

A false proposition is still a proposition; it is something that is both false and a proposition. On the other 
hand, when we say that an action, say, buying cheap shoes which soon fall to pieces, is a false economy, 
we are in effect saying that ultimately it is not an economy. Similarly, a false start in a race is not really a 
start. 
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With 1 “false” is being used predicatively to describe a property of the proposition. With 2 “false” is 
being used attributively to negate its subject; in effect it means “not an economy”. Given this distinction, 
the idea is that we treat the term “false information” like “false economy”: when we say that something is 
false information, we are in effect saying that it is not information. 

It might strike the reader that this argument does not really settle much. For example, take the 
proposition “the earth has two moons”. According to Floridi’s analysis, this is a false proposition in the 
predicative sense and a piece of false information in the attributive sense. But this 

requires the brute intuition that that the earth has two moons is not information. The content of this 
intuition is nothing but an instance of the general thesis to be established. Thus, the argument is 
question-begging. No independent reason to reject instances of false information as information is 
given. Whether false information passes [this test] depends on whether we accept that a false p can 
constitute [semantic] information. We do!  
(Scarantino & Piccinini, 2010, p. 321) 

This seems a fair point. Furthermore, note that there is a difference between “false economy” and “false 
information”. With “false economy”, we have established that “false” is used attributively and is in effect 
a negation. If “false” were to be used predicatively, then this would be a category mistake, as “false” is 
being applied to economies, which cannot really be true or false, but are instead real economies or not 
economies at all. However if false were to be used predicatively in “false information”, this would not 
necessarily be a category mistake, since information as semantic content is the kind of thing that can be 
true or false. 

So the claim that “false” is attributive as opposed to predicative when it is applied to “information” is 
unsettled and does not provide a conclusive argument for VT in its own right. It does though provide a 
way for proponents of VT to legitimately account for the term “false information”. Given such a 
definition adhering to VT, “information” would be more like “tautology”. In logic a tautology is a type of 
statement that is always true. For example, statements of the form “A or not-A” are instances of 
tautologies. Replace A with any proposition, for example “Bob is in Australia”, and you will come out 
with a statement that is always true; “Bob is in Australia or Bob is not in Australia”. “False tautology” in 
the predicative sense is a contradiction in terms, since tautologies are by definition true. With “false 
tautology” in the attributive sense, this means “not actually a tautology”, in the way that an intuitionist 
might say that A or not-A is a false tautology.23 

As we have briefly mentioned (and as the following chapter will discuss in detail), one reason to embed 
truth into the definition of information is that it makes it easier to give a definition of knowledge in terms 
of information. On top of this connection between the truth of information and knowledge, some 
definitions of information and being informed that are used for knowledge imply truth further, due to 
another requirement. According to these definitions, holding true semantic content is insufficient for 
being informed. To hold some piece of information p, it is important that the true semantic content “that 
p” was acquired in a reliable way that in some sense guarantees the truth of p. For example, imagine that 
Alice guesses the number of jellybeans in a jar to be 214 and luckily turns out to be correct. Although 
Alice’s belief that there are 214 jellybeans is true, since it was not generated via a reliable method and 
could easily have been false, the content of her belief is not information and she has not been informed. 

                                                                        
23 Intuitionistic logic (Moschovakis, 2010) denies the law of excluded middle, the law which says that A v ~A (A or not-A) is always true. 
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On the other hand, if she emptied the jar and counted each jellybean, then since this method guarantees 
that she comes to the correct result, the true belief’s content counts as information and she is informed 
that there are 214 jelly beans in the jar. Another way to put this is that to be informed that q, one must 
receive some signal which carries the information that q. If p carries the information that q, then every 
time p happens q happens; the occurrence of p guarantees the occurrence of q. As we shall see in Chapter 
8, one form of information-theoretic epistemology incorporates such a definition of information and 
being informed in order to secure its definition of knowledge. 

This relates to another point that the VT advocate could make. Floridi stresses the “relational” nature of 
information by comparison with food. Something does not count as food in general, but only for a certain 
type of organism. In this sense we could claim that food that isn’t edible by some organism just isn’t food 
for that organism. Similarly, misinformation just isn’t information for a cognitive agent interested in 
knowledge. 

7.4 Reasons to reject the veridicality thesis 

Beyond using information to define knowledge, there are other reasons to consider VT that have to do 
with the satisfaction of certain intuitions and adequacy criteria one might expect from a definition of 
information. We shall look at some of these soon. But firstly let us look at some active reasons for not 
accepting VT. 

Recall the Alethic Neutrality (AN) principle: meaningful and well-formed data qualify as information, no 
matter whether they represent or convey a truth or a falsehood or have no alethic value at all. 

From an unrestricted Alethic Neutrality principle it follows that: 

TA) tautologies qualify as semantic information 
FI) false information or misinformation (including contradictions) are genuine types of semantic 
information, not pseudo-information 

The acceptance or rejection of TA could go either way. Recall that tautologies have to be true. So 
tautologies are not informative in that they do not provide any new information about the world; but 
neither do they misinform. Furthermore, in some sense tautological deductive inferences can also be said 
to yield information. So whilst one option is to reject TA because tautologies are never informative, it is 
perhaps also reasonable to represent tautologies as ‘instances of information devoid of any 
informativeness’. (Floridi, 2007a, p. 36). 

Apart from passively defending FI based on it being the side that does not require a modification to the 
general definition of information as semantic content, there are some specific reasons for supporting FI. 
The following sample list is from (Floridi, 2005b): 

False information can include genuine information 
False information can entail genuine information 
False information can support decision-making processes 
If false information does not count as information, what is it? Assuming that p is false ‘if S only thinks 
he or she has information that p, then what does S really have? Another cognitive category beyond 
information or knowledge would be necessary to answer this question. But another cognitive category 
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is not required because we already have language that covers the situation: S only thinks he or she has 
knowledge that p, and actually has only information that p.’ 

In advocating VT, Floridi (2005b) argues against these reasons for supporting FI. 

Treating false semantic content as information does lead to some counterintuitive results and certain 
problems. One issue concerns the quantification of information. With one standard account, semantic 
information is treated as semantic content (true or false) and the quantity of information given by a 
statement is inversely related to its probability; the less probable a statement, the more informative it is. 
In most cases this is plausible. Given the roll of a standard six-sided die, the statement “the die landed on 
4” is more informative than “the die landed on an even number” since the former is less probable than 
the latter. Taking this to one extreme, since the tautological statement “either the die landed on 4 or it did 
not land on 4” has a probability of one, it has an information measure of zero. However taking this to the 
other extreme, since contradictions have a probability of zero, they are problematically assigned maximal 
informativeness. It seems rather bizarre to say that the statement “Paris is the capital of France and Paris 
is not the capital of France” yields more information than the statement “Paris is the capital of France 
and Berlin is the capital of Germany”. VT paves the way for a method to measure information 
quantitatively in terms of verisimilitude and thus avoid such issues (D'Alfonso, 2011; Floridi, 2004c). 

Contradictions, such as “Paris is not Paris” are necessarily false. They are a general problem for FI. One 
option is to exclude them, to say that only contingently false statements count as information. This 
strategy however does not completely free FI of contradiction-related issues. 

An important question is how to measure the informativeness of contradictions. One standard practice is 
to assign them an informativeness measure of zero. But take the following principle of information 
aggregation, according to which the informativeness [info()] of two combined pieces of information is 
never lower than the informativeness of either single piece: if I1 and I2 are instances of information, then 
info(I1 + I2) ≥ info(I1) and info(I1 + I2) ≥ info(I2). Now, if I2 is the negation of I1, then their addition 
forms a contradiction. But if contradictions are assigned a measure of zero, then this principle of 
information aggregation is violated. Thus, in order not to violate this principle of information 
aggregation, it seems that the info() measure would have to be a partial function such that info(C) is 
undefined when C is a contradiction. 

On a similar note, it is fair to say that information follows a principle of conjunction: for any two 
propositions A and B, if A is information and B is information, then the compound proposition A & B 
is information. However, this principle, together with the modified FI leads to the problematic result that 
when A is information and not-A is information, A & not-A is both information and not information. 
These are just some technical considerations for a quantitative account of semantic information. 

Continuing on, there are other potential problems for any FI. Floridi argues that if any type of well-
formed, meaningful data counts as information then we miss out on one important sense in which 
information can be destroyed: ‘information becomes semantically indestructible and the informative 
content of a repository can decrease only by physical and syntactical manipulation of data’ (Floridi, 
2005b). Take a tourist information pamphlet. If it were to be shredded, then the information contained in 
the pamphlet would be destroyed by physical manipulation – the bearer of the information, the paper, is 
physically destroyed. If the text of the pamphlet were to be jumbled up and randomly rearranged, then 
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the information contained in the pamphlet would be destroyed by syntactical manipulation – the 
sentences that convey the information would be jumbled up. 

However, it would also seem that information can be semantically destroyed. Consider, for example, the 
changing of a datum in a database, and how this change can affect the alethic value of another datum. If, 
on Tuesday January 1 2013 it is actually raining and a database contains the datum “today is Tuesday 
January 1 2013” and “today it is raining”, both pieces of data count as information. If on Wednesday 
January 2 2013 it is not raining and the database contains the datum “today is Wednesday January 2 2013” 
whilst still holding the unrevised datum “today it is raining”, then the latter is no longer information, and 
if nothing else changes there is an information decrease. The point here is that collections of 
data/information should be sensitive to factual changes, with the possibility of semantic decrease as well 
as increase, rather than just any piece of data indiscriminately being considered information. 

Some good points can be taken from this argument. If information has to be true, this gives information 
a special significance, which it would not otherwise have. Without this qualification, information becomes 
synonymous with data, a synonymy arguably to be avoided in the case of semantic information. Semantic 
information is a dynamic quantitative and qualitative phenomenon and these aspects of information 
should be decreasable as well as increasable. A full accommodation of this fact is made possible when 
information is treated as true semantic content. 

An attempt to account for this semantic loss whilst not accepting VT is given by Scarantino and Piccinini 
(2010). Under their approach the notion of semantic loss can be accommodated if treated as a qualitative 
rather than quantitative phenomenon. They give an example where all the true propositions in a chemistry 
manuscript are transformed into their negations. According to their approach, such a situation would 
involve loss of the original information, in that ‘the information-carrying vehicles in the repository no 
longer carry the same information they used to carry’ (Scarantino & Piccinini, 2010, p. 322). Although 
there would be the same amount of new information, there would also be a qualitative semantic loss of 
information. Also, the resulting information would be of a lower epistemic value: negating a true proposition 
causes information loss by semantic means since false information is epistemically inferior to true 
information. As they sum up: 

rejecting VTNN [the veridicality thesis for semantic information] is compatible with accounting for 
information loss “by semantic means” in the two senses – the qualitative and epistemic-value senses – 
that matter most for epistemic purposes. Moreover, our distinctions allow us to neatly distinguish 
between physical and syntactic information loss on the one hand and semantic information loss on the 
other. In the first two cases, information is destroyed but not replaced with any new nonnatural 
[semantic] information. There is information loss in the quantitative sense, in the qualitative sense, and 
in the epistemic-value sense. In the third case, information is destroyed and replaced with new (false, 
and thus epistemically inferior) nonnatural information. There is information loss in the qualitative 
sense and in the epistemic-value sense, though not in the quantitative sense.  
(Scarantino & Piccinini, 2010, p. 323) 

It would seem then that we are once again at a stalemate; there are those such as Scarantino and Piccinini 
who think that misinformation is just an inferior kind of information, and those such as Floridi and Grice 
who think that misinformation is not an inferior kind of information, it is just not information. 
Depending on the position, information loss by semantic manipulation can be characterised as 
quantitative or qualitative. For those adhering to VT, quantitative semantic loss occurs when true 
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semantic content is replaced by false content or when certain semantic content is logically weakened, for 
example, when a true conjunction is replaced by its corresponding disjunction. Qualitative semantic loss 
would occur when one truth is replaced by another truth which is less valuable in some sense. For those 
rejecting VT, quantitative semantic loss occurs only when semantic content is logically weakened. On the 
other hand, qualitative semantic loss would occur when one truth is replaced by another truth that is less 
valuable in some sense, or when true content is replaced by false content. 

7.5 Final assessment 

As can be seen, both the acceptance and rejection of VT have their pros and cons. One point that the 
reader might appreciate by now is that although “information” is a flexible term, this flexibility is not 
unbounded. Caution must be exercised in its employment lest it become an indistinct “wildcard word” 
and any appeal to the notion of information should be justified through argument and application. 

Let us close with a summary of key points for each of the two sides and ways that they counter use of the 
term “information” by the opposing side. 

Those who advocate alethic neutrality and oppose VT can say that the truth condition it places on 
information is unduly restrictive and too much is lost if information requires truth. We already use the 
term “information” to refer to semantic content in general irrespective of its truth value and get along just 
fine, so why modify things? Also, it is information as semantic content in general (and not just true 
semantic content) that is processed by, and fuels the activities and actions of, semantic agents. 

One consequence of this position is a certain asymmetry. Whereas the terms “misinform” and 
“misinformation” require falsity, the terms “inform” and “information” require neither truth nor falsity. 
Thus “information” and “misinformation” would not be strictly antonymous. If p is true, then it is 
information but not misinformation. But if p is false, then it is both information and misinformation. 

This does seem counterintuitive. As Fox comments, ‘it still seems that a claim to the effect that X informs 
Y that P has about it the suggestion that P is true, rather than being indifferent about the truth of P, as we 
might expect’ (Fox, 1983, p. 159). He accounts for this counterintuitive consequence of rejecting VT by 
appealing to what are known as Grice’s maxims of conversation. Paul Grice proposed four conversational 
principles that people observe in order to communicate cooperatively and effectively with each other 
(Grice, 1975). It is the first and fourth of these that Fox appeals to. The first is the maxim of quantity, 
which says that a contribution to conversation should be as informative as required but not more 
informative than is required. The fourth is the maxim of manner, which says that a contribution should 
avoid obscurity, avoid ambiguity, be brief (avoid verbosity) and be orderly. 

As Fox puts it, ‘in situations in which one is inclined to state that X has told Y that P, it is generally, or at 
least often, to the point to indicate as well whether P is true or false. If P is believed to be false, then in 
accordance with [the first and fourth maxims], it is most appropriate to use ‘misinform’, since this carries 
with it the proper aspersions regarding the truth of P.’ (Fox, 1983, pp. 159-160). If Bob were to use 
“inform/information” instead of “misinform/misinformation” when Bob believed P to be false, then 
Bob would either violate the first maxim, because he was not being as informative as he could be and as 
is required, or he would be obliged to further state that P is false, which would violate the fourth maxim 
because he was not being as brief as he could be (misinformation is more efficient than further stating 
that P is false). It thus follows that in cases where the speaker believes P to be true, they use 
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“inform/information”. This for Fox explains why “information” is by default generally associated with 
truth and misinformation requires falsity, despite a definition of “information” that does not strictly entail 
truth. 

For those who advocate VT, we have seen that there is a good collection of principled and pragmatic 
reasons for maintaining a definition of semantic information that requires truth. On top of this, one 
might appeal to the terminological benefits involved. VT can be associated with the following 
conceptual/terminological hierarchy: Data -> Semantic Content -> Information (True) | Misinformation 
(False). The term information here unambiguously implies one alethic value and it is important that the 
category of true semantic content be given a direct term. Furthermore, a terminology whereby false 
semantic content has a direct term, but true semantic content does not, would be undesirably asymmetric. 

Whilst people can loosely use the term information, and false information is not a contradictory or 
nonsensical term, under VT its use can be accounted for and does not mandate the classification of 
misinformation as a genuine type of information. A good guide to explain and accommodate usage of 
non-veridical conceptions of semantic information can be found in the following quote: 

 
[In other cases, people are] talking about information in a non-semantic sense; some other times, they 
may just be using a familiar synecdoche, in which the part (semantic information) stands for the whole 
(semantic information and misinformation), as when we speak in logic of the truth-value of a formula, 
really meaning its truth or falsehood. Often, they are using information as synonymous for data, or 
representations, or contents, or signals, or messages, or neurophysiologic patterns, depending on the 
context, without any loss of clarity or precision. (Floridi, 2010c, p. 406.) 

When those who endorse VT speak of semantic information in the sense that it is a valuable concept to 
be used in the philosophy of information, they are talking about meaningful data that is also truthful. 

7.6 Exercises 

1. Is it better to characterise information loss by semantic means as quantitative or qualitative? 
 

2. Are the reasons for FI given above good enough to defend FI successfully or can they be 
adequately addressed by the VT advocate? 
 

3. Is Fox’s explanation of the association between information and truth satisfactory? 
 

4. Can you think of any further reasons to support or reject VT? 

7.7 Further reading 

Scarantino and Piccinini (2010), Sequoiah-Grayson (2007), Dretske (1981), Floridi (2005b), MacKay (1969), 
Peirce (1977), Wilson and Foglia (2011). 
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8. KNOWLEDGE 

How can information be used to define/explain knowledge? 

 

8.1 Introduction 

Information and knowledge are commonly associated 
with each other: colloquially and in dictionaries, the two 
terms are often treated as synonymous. Within 
philosophy however, information-theoretic or 
informational epistemology goes beyond this casual, 
colloquial association. It involves the development of 
specialised accounts of information and attempts to 
define knowledge with such accounts, to show how 
information causes or leads to knowledge. From this 
perspective, ‘information is a commodity that, given the 
right recipient, is capable of yielding knowledge’ 
(Dretske, 1981, p. 47). 
 

8.2 Some background 

Epistemology is the branch of philosophy that studies knowledge. One of the main tasks of epistemology 
has been the analysis of propositional knowledge. Propositional knowledge is knowledge of the form “S 
knows that p”, where S stands for the knower and p stands for the proposition that is known. An example 
of such knowledge is given by the statement “Alice knows that Berlin is the capital of Germany”, or “Bob 
knows that there is beer in the fridge”. A central task of epistemology concerns finding a definition of 
propositional knowledge: what are the necessary and sufficient conditions for propositional knowledge? 

Traditionally, knowledge has been defined as justified true belief. According to this justified true belief 
(JTB) analysis of knowledge, S knows that p if and only if: 

1. p is true; 
2. S believes p; and 
3. S is justified in believing p. 

Chapter 

8 

You are driving your car and look at the 
speedometer. It indicates 80 km/h and as 
a result you believe that the car is travelling 
at 80 km/h. As it happens, the car is 
travelling at 80 km/h but unknown to 
you the car’s speedometer has stopped 
functioning and is stuck on 80 km/h. 
Does your true belief that you are going 80 
km/h count as knowledge? 
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Something like this definition can be found discussed as far back as Plato’s Theaetetus. To see how this 
definition works, we will look at each of its three parts separately. The truth and belief components are 
straightforward. Firstly, if a proposition is known, then it is true; false propositions cannot be known. For 
example, Alice can know that Berlin is the capital of Germany but she cannot know that Paris is the 
capital of Germany (though she can falsely believe that Paris is the capital of Germany and she can think 
that she knows that Paris is the capital Germany if she is unaware that her belief is false). Bob can know 
that there is beer in the fridge, but he cannot know that fridges fly. Secondly, if a proposition is known by 
a subject, then the subject must believe that proposition. It might be true that Bob is standing in front of 
a fridge containing beer, but unless he comes to form this belief, Bob cannot know this fact. Finally, 
although an account of the notion of justification is not straightforward, the basic idea in incorporating 
this requirement is that knowledge involves something beyond mere true belief, and a condition is 
required that excludes true beliefs which are not formed by a methodical or responsible process and so 
just happen to be true. If Bob guesses that there are four bottles of beer in the fridge then although his 
belief happens to be true we might say that it was lucky and is not strong enough to constitute 
knowledge. If, on the other hand, he formed his belief after opening the fridge and counting the number 
of bottles on the shelf then his belief is justified and is a case of knowledge. 

As mentioned, this JTB analysis of knowledge was traditionally widely accepted, and it already involved 
the view that true but lucky beliefs cannot count as knowledge. The second half of the twentieth century 
saw a conclusive challenge to the JTB analysis which prompted a revision in epistemological theorising 
and spawned a wave of new work on defining propositional knowledge. In 1963 Edmund Gettier 
published a short landmark paper titled ‘Is Justified True Belief Knowledge?’ (Gettier, 1963), in which he 
refuted the JTB account of knowledge by providing a couple of simple examples showing that there are 
clearly cases of justified true belief that are not knowledge. Here is one of those examples. It is supposed 
that a person Smith has strong evidence for the following proposition: 

(A) Jones is the man who will get the job, and Jones has ten coins in his pocket. 

Say, as Gettier does, that this evidence consists of the president of the company telling Smith that Jones 
would get the job, and Smith having counted the coins in Jones’s pocket ten minutes ago. 

Now, (A) entails the following: 

(B) The man who will get the job has ten coins in his pocket. 

Based on this evidence and reasoning, Smith comes to believe (B). As it turns out, (B) is true: the man 
who will get the job does have ten coins in his pocket. So Smith has the justified true belief that (B). 

Now imagine the following is the case. Smith, who is unaware that he also has ten coins in his pocket, 
actually gets the job. Suppose that the boss made a mistake or changed his mind about who was getting 
the job. Although Smith’s true belief is justified, it does not appear to be a genuine case of knowledge. 
Smith’s true belief has been “Gettierised”. This is when, in general, a justified true belief is not knowledge 
because it is lucky, or the truth of the belief is not connected with the justification/evidence in the right 
way. 

Interestingly, another Gettier-style example of justified true belief that is not knowledge can be found in 
the pre-Gettier writings of Bertrand Russell. His example, which will be used later on, involves someone 
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who consults a clock at time x. The clock displays time x and as a result the person comes to form the 
justified true belief that the time is x (since looking at a clock is a justified way of telling the time and the 
time that the clock tells is in fact the correct time). The twist is that unbeknown to this person, the clock 
broke down at time x on the previous day. Given this, it seems right to say that the person does not know 
that the time is x.24 

Whilst the extent to which the subjects in these examples are justified can be debated, it is fair to say that 
these examples suffice to show that truth, belief and justification are not sufficient conditions for 
knowledge. In Gettier’s example the justified true belief comes about as the result of a deduction that 
uses a justified false belief, namely the false belief that “Jones will get the job”. This led some early 
responses to Gettier to conclude that the definition of knowledge could be easily adjusted, so that 
knowledge was justified true belief that depends on no false premises. This solution did not settle the 
matter, however, as more general Gettier-style problems were then constructed in which the justified true 
belief does not result from using a chain of reasoning from a justified false belief.25 

Much work has been done in epistemology since Gettier’s paper in order to try to find an adequate 
definition of propositional knowledge that can, amongst other things, deal with Gettierisation. The 
common goal is to search for what needs to be added to true belief in order to get knowledge. There is a 
variety of proposals concerning just what this addition might be and there can be more than one way to 
flesh out a proposal.26 

8.3 Floridi’s attack on justified true belief 

Despite some of this work, it is argued by Floridi (2004a) that an account of propositional knowledge 
which tries to salvage the JTB account is doomed. This is because the Gettier problem is not solvable by 
any attempt to define knowledge that p by adding a property (or properties) X to true belief, where having 
property X does not entail that the belief that p is true. Regarding the JTB account, that X is justification. 
Although justification makes it likely that a resulting belief is true, it does not entail or guarantee its truth. 
In fact our justification methods are fallible and we can have justified false beliefs. 

Floridi argues that a solution to the Gettier problem for JTB requires coordination between the truth of P and the 
justification for P. Such coordination would ensure that we can’t have one without the other (truth and 
justification can’t be accidentally coordinated), and then there is no possibility of a Gettier problem. 

A natural response to this realization is to try to add a fourth condition to the justified true belief account that 
says “the truth of p and the justification that p are coordinated”. However, adding such a condition is 
tantamount to adding a condition that says “Gettier problems are impossible”. This hardly solves the original 
problem of rescuing the justified true belief account of knowledge from Gettier problems. It gives only 
“justified true belief in the absence of Gettier problems” is knowledge. 

Floridi argues that this shows us something rather important about the justified true belief account of 
knowledge. We cannot just add a condition stipulating coordination between the truth of p and justification for 
believing p. So we can see that what the justified true belief account is seeking is an account whereby the truth 

                                                                        
24 Russell’s passage can be found in his book (Russell, 1948), in Section D of the chapter ‘Fact, Belief, Truth and Knowledge’ (Chapter 11). 
25 See Hetherington (2005) for an article on Gettier Problems. 
26 See Steup (2006), Fieser and Dowden (2007) for some literature on the matter. 
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of p and the justification for p remain logically and empirically independent, but that nevertheless they cannot – 
ever – be accidentally coordinated. 

Floridi says that this is not possible. Either we link truth and justification empirically (or logically), or we accept 
that various things follow. If truth and justification are empirically independent, which we are committed to if 
we accept that justification of a belief does not guarantee its truth, we will sometimes have one without the 
other. And we will sometimes have both truth and justification, but in a way in which the coordination between 
them is accidental – i.e. we will sometimes have Gettier cases.  

Floridi concludes that Gettier has shown that the justified true belief account is irreparable in principle. We should 
stop trying to fix it, and look for a different account. 

As alluded to in Chapter 7, a conception of information where information must be true can help here. If 
the additional property were to be something like the property of being based on information, then since 
this property entails that the relevant belief is true (because information is true), such an analysis would 
deal with this issue. This type of solution does not aim to fix the JTB account; it eschews the traditional 
notion of epistemological justification altogether. Dretske and Floridi are two philosophers who have 
used information to construct accounts of knowledge that, amongst other things, overcome the Gettier 
problem.  

Dretske’s information-theoretic epistemology has been quite influential. It involves a definition of 
information that encapsulates truth and then defines knowledge as information-caused belief. In this way, 
S’s belief having the property of being information-caused entails that it is true. 

Floridi offers an account of knowledge that differs from standard approaches to defining knowledge, 
abandoning them in favour of an informational approach that is non-doxastic; that is, it is not based on 
belief. In short, information is true semantic content and knowledge is information that has been 
correctly accounted for. 

So under both of these accounts information is a fundamental precursor to knowledge. Truth is 
embedded into knowledge because knowledge is based on information, which itself is also veridical (i.e. it 
entails truth). We shall now look at these accounts in more detail. 

8.4 Dretske’s information-theoretic epistemology 

Dretske’s approach to information is discussed in detail in section 6.4, which can be reviewed if necessary. 
Here, we deal with Dretske’s approach to knowledge.  

8.4a Dretske on knowledge 

With his definition of information in hand, Dretske gives the following definition of knowledge: 

K knows that s is F = K’s belief that s is F is caused (or causally sustained) by the information that s is 
F. 

The account given is restricted to perceptual knowledge of contingent states of affairs (i.e. states of affairs 
having an informational measure of something greater than zero given Dretske’s definition of 
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information) and deals with only knowledge de re, not knowledge de dicto. Roughly, knowledge de re is 
knowledge of a particular thing, whereas knowledge de dicto is knowledge that something is the case. For 
example, if one sees the flag of Switzerland, without knowing that it is the flag of Switzerland, one can 
come to know de re that the flag of Switzerland has a cross without knowing it de dicto. 

Since Gettier cases have exposed the shortcomings of the justified true belief account of knowledge, an 
account that is not based on this tripartite foundation was, and still is, sought. With his information-
theoretic account of knowledge Dretske attempts to do away with, or at least reduce the importance of, 
the “philosopher’s usual bag of tricks” such as justification, reasons and evidence (Dretske, 1983) in order 
to provide a more viable account of perceptual propositional knowledge. Gettier-like difficulties arise for 
accounts that make knowledge a product of some justificatory relationship between the agent and what 
the agent believes and this could relate one to something false. The information-theoretic account, on the 
other hand, relies on certain things external to the knower working out, which deals with the problem 
because although an appropriate justificatory relationship might lead to a false belief, an information-
caused belief cannot be false. Also, such an approach allows for a more general, less anthropomorphic 
account of knowledge that could provide a way to attribute knowledge to infants, animals and even 
artificially intelligent agents, without having to suppose that they are capable of sophisticated human 
operations such as introspection, reasoning and justifying. 

Given Dretske’s definitions of information and knowledge, it might seem that his analysis is viciously 
circular. Recall that in his definition of information k stands for the background knowledge the epistemic 
agent already has about the source. If knowledge is analysed in terms of information, and information is 
in part analysed in terms of knowledge, a seeming problem is that the reference to k prevents the 
definition of knowledge from getting off the ground; one would already have to have a definition for 
knowledge in order to apply it. 

Dretske argues that this is only an apparent vicious circularity and that his definition of knowledge is 
intended to be recursive in nature. Although the definition is circular, it is not viciously so, and recursive 
application of the definition will in all cases terminate. To make this clearer, consider the following 
example, an adaptation of one of Dretske’s own. 

Shell Game: There are three shells and a peanut is located under one of them. You investigate shell 1 
and find that the peanut is not under it. Given what you already know, two possibilities remain. You 
subsequently investigate shell 2 to discover that it also doesn’t contain the peanut. At this point you 
deduce that the peanut is under shell 3. 

For you, the observation of shell 2 carries the information that the peanut is under shell 3 given what you 
already know about the situation. Now, let us go through this example backwards. You know that the 
peanut is under shell 3 because you receive the information that it is not under shell 2 by inspecting shell 
2 and you already know that it is not under shell 1. How did you come to know that it is not under shell 
1? Well, you came to know that it is not under shell 1 purely through visual signals, without any 
background knowledge. It is at this stage that the analysis must come to an end and no appeal to 
background knowledge is required. 

With this out of the way, the next question to ask is how can beliefs be caused by information? Dretske 
explains this with a simple example. Suppose that you are waiting for your friend at home and that the 
two of you have pre-established that the action signalling their arrival will be three quick knocks on the 
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door, followed by a pause, followed by another quick three knocks. It is that particular signal, that 
particular rhythmic pattern, which constitutes the information that your friend has arrived. Things like the 
knock having a certain pitch or amplitude are irrelevant. When it is this particular rhythmic pattern of 
knocks that causes you to believe that your friend has arrived, then we can say that the information that 
your friend has arrived causes you to believe he has arrived. The knock might have other incidental 
consequences; a loud knock might frighten away a nearby mouse or cause the window to vibrate, but 
what causes these things is not the information, because these things would have occurred with any loud 
rhythmic pattern. 

Also, the causally sustained qualification in the definition of knowledge is an important one. Imagine the 
football team you follow play a game of which you do not yet know the result. You take a guess and 
come to form the mere true belief that they won the match. The following day you consult the scores in 
the newspaper which gives you the information that they won and your mere true belief that the team 
won then becomes knowledge. Although this piece of knowledge was not initially caused by the 
information, it was causally sustained. 

Before closing this section, let us look at some philosophically interesting consequences of Dretske’s 
account that have provoked much discussion. Dretske’s account of knowledge is a form of 
epistemological externalism, according to which knowledge depends on factors external to the knowing 
agent. As he puts it: 

Externalism is the name for an epistemological view that maintains that some of the conditions 
required to know that P may be, and often are, completely beyond the ken of the knower. ... The idea 
is that the information required to know can be obtained from a signal without having to know that 
the signal from which you obtain this information actually carries it.  
(Dretske, 2008, p. 39) 

So if you look at a clock and it is working properly, then you can come to know the time, irrespective of 
whether you can be sure that it is working properly. You don’t need to stick around for another minute to 
make sure that the clock moves, or open up and inspect the clock to verify that it is working. As long as it 
is working the clock is giving you information, from which you can form knowledge. 

Thus such an informational epistemology defines knowledge, while allowing us to fail to know when we 
have knowledge. As a consequence a seemingly plausible general principle in epistemology known as the 
“KK principle” or “positive introspection” fails. According to the KK principle, if one knows that p, then 
one knows that one knows that p (Hemp, 2006). But since with Dretske’s account the conditions required 
for information flow and knowledge do not themselves need to be known, it follows that one can acquire 
knowledge without knowing that one has done so. In order for Alice to know that she knows that p, she 
would need the information that the signal carrying the information that p is carrying the information that 
p. In the clock scenario, Alice has the information that the time is such-and-such, but without getting 
some meta-information about the clock, that it actually is working, she doesn’t know that she knows that 
the time is such-and-such. 

Another related consequence of Dretske’s account is that knowledge closure fails (see (Collins, 2006; 
Luper, 2010) for more information on epistemic closure). There is a variety of ways to construct a precise 
definition of knowledge closure, but the following broad formulation captures the gist of it: 



THE PHILOSOPHY OF  INFORMATION — AN INTRODUCTION 

 

106 

If S knows that p, and comes to believe that q by correctly deducing it from her belief that p, then S 
knows that q.  
(Collins, 2006)  

The closure principle is quite intuitive. Take the following example: Bob knows that lunchtime is 1pm. 
From this he knows that if it is 12:30pm, then lunch is half an hour away. By looking at a functioning 
clock Bob comes to know that it is 12:30pm. Bob correctly deduces and therefore knows from all of this 
that lunch is half an hour away. 

However, as Dretske would argue, there are some propositions that you cannot come to know like this. 
Dretske’s zebra-mule example demonstrates this point (Dretske, 1970): 

Zebra: Alice is at the zoo and goes to the enclosure marked “zebras”, where there is actually a zebra. 
She sees the zebra and comes to form the belief that the creature before her is a zebra.  

According to Dretske, the visual signal of a zebra provides Alice with the information that there is a zebra 
and so Alice knows that there is a zebra. Alice also knows that something being a zebra entails that it is 
not a cleverly painted mule disguised to look like a zebra. If she correctly deduces and comes to believe 
that the animal before her is not a disguised mule, does this count as knowledge? Dretske is going to say 
no, because the visual zebra-like signal that Alice receives is not enough to distinguish between an actual 
zebra and such a fake zebra; for all Alice’s information it could be a mule. But if this is the case, how can 
Alice know that it is a zebra in the first place? 

The details are not straightforward, but basically Dretske’s idea of relevant alternatives comes into play here. 
Assessment of the zebra proposition is made against a certain set of relevant alternative scenarios. 
Amongst these relevant alternatives are standard zoo scenarios such as one where there is no animal in 
the enclosure, one where there is an ostrich in the enclosure, one where there is a giraffe in the enclosure, 
etc. The alternative in which a disguised mule is in the enclosure is far-flung and not relevant. Since the 
visual zebra-like signal suffices to rule out all the relevant alternatives, it carries the information that there 
is a zebra. In other words, in all the relevant alternatives, we would not come to believe that there is a 
zebra were it not for the visual zebra-like signal that we receive. Assessment of the not-mule proposition 
does, however, have amongst its relevant alternatives ones in which there is a disguised mule; whilst 
“disguised mule” is not relevant to “zebra”, it is relevant to “mule”. Since the zebra-like visual signal 
cannot rule out these relevant alternatives, it does not carry the information that the animal is not a 
disguised mule. 

As another example to help convey this idea in a different way, suppose that you read a book which 
provides you with the information that Bertrand Russell was born in 1872. As a result you come to know 
this fact. You also know analytically that the occurrence of this event implies that the world is older than 
a few minutes and that the world did not spring into being five minutes ago complete with a simulated 
history. But the book cannot provide the information that the world did not come into being five minutes 
ago. The book provides information about the historical event given that the past is real. It doesn’t 
provide the information that the past is real. In this way, you can have the right information to know that 
Russell was born in 1872 (given that the past is real and it did actually occur), without having the 
information to know that you are not living in a world that sprang into being five minutes ago. 



THE PHILOSOPHY OF  INFORMATION — AN INTRODUCTION 

 

107 

Dretske’s rejection of closure offers a way around skepticism. A standard skeptical argument in 
epistemology goes something like this. You start off by claiming that you do not know that it is not the 
case that some skeptical hypothesis SKEP is true (e.g. that it is actually a disguised mule in the zoo; that 
the world sprang into being five minutes ago, etc.). This is fair enough; for example, there is nothing in 
your experience to distinguish being in the actual world to being a world five minutes old with a 
simulated history. Secondly, you make the claim that you know some ordinary proposition P that implies 
not-SKEP. For example, let P stand for “Russell was born in 1872” and let SKEP stand for “the world 
sprang into being five minutes ago”. You then have the following reasoning: 

1. not know not-SKEP 
2. Know P 
3. Know (P then not-SKEP) 

It follows from 2 and 3 that 

4. Know not-SKEP 

But this means that you both know and do not know SKEP; 1 and 4 contradict each other. Given that 
contradictions are unacceptable, the skeptical challenge claims that this shows we cannot come to know 
ordinary propositions such as P in the first place. Dretske gets around this by denying closure, that is, by 
denying that 4 can be inferred from 2 and 3. 

Thus for Dretske information and knowledge are not closed under informed/known entailment. This 
rejection of closure is a somewhat radical idea and has proved quite controversial. It is important to note, 
though, that it is not an outright rejection of the possibility of gaining knowledge by deducing from what 
we already know. In most cases closure does hold. For example, if you see a zebra at the zoo, then since 
the visual signal can distinguish between zebra and tiger, you can use your knowledge that the animal in 
the enclosure is a zebra to deduce that it is not a tiger. It is only when we go from knowledge of ordinary 
propositions to knowledge of skeptical ones like disguised mule or simulated history that closure fails. 

There are other ways to employ the notions of information and relevant alternatives without denying 
closure. One option is to adopt some form of contextualism (Black, 2006; Rysiew, 2011). Contextualism 
is a name given to a group of theories that were initially inspired by Dretske’s relevant alternatives theory 
and the desire to preserve the principle of epistemic closure as well as deal with the problem of 
scepticism. Put generally, epistemological contextualism is the view that the truth-value of an attribution 
of knowledge varies according to some context. Attributions of “knows that” are made relative to 
contexts, so that they might be true in some more relaxed contexts and false in some stronger contexts. 
Applying contextualism to an account of knowledge involves identifying some parameter of that account 
and varying it according to context. In the case of information-theoretic epistemology, this parameter can 
be the set of relevant alternatives. You can shift contexts, but each knowledge statement being considered 
at one time is judged in the same context. Reusing the zebra example above, the contextualisation works 
something like this. In a lower standards context, scenarios in which there is a disguised mule in the 
enclosure are ruled out as being irrelevant. In this context, Alice both knows that the animal is a zebra 
and that it is not a disguised mule given closure. In a higher standards context, alternatives in which there 
is a disguised mule are considered relevant. In this context, Alice does not know that there is a zebra 
before her and so the deduction of closure doesn’t come into play. 
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8.4b Applying Dretske’s account of knowledge to some cases 

Dretske’s account can easily deal with the above example from Gettier, where Smith believes, correctly 
and with justification, that the man who will get the job has ten coins in his pocket, although Smith falsely 
believes that Jones will get the job. On Dretske’s account, Smith has not received the information that the 
man who will get the job has ten coins in his pocket. Clearly the boss’s word is not a source of 
information and one of the premises used in the deduction is false. There are two ways of looking at this. 
The first is to say that if some piece of non-information is used in deducing some truth then that truth is 
not information. The second is to say that the signal consisting of the boss’s word and counting Jones’ ten 
coins does not carry the information that the person who will get the job has ten coins in his pocket. 

As can be gathered by now, this account also easily explains why knowledge is not present when one 
forms a justified true belief that the time is such-and-such based on looking at a broken clock that 
happens to be stuck on the right time. The clock’s signal does not carry the information that the time is 
such-and-such because its signal is not reliably correlated with the time when the clock is broken. 

Other examples of epistemic luck further demonstrate the workings of this information-theoretic 
epistemology. Consider Alice who, upon looking into a sheep’s field, sees something that looks like a 
sheep and forms the true belief that there is a sheep in the field. Unfortunately for Alice, however, what 
she is looking at is not a sheep but a sheepdog that looks like a sheep. Nevertheless, her belief is true 
since there is a sheep in the field, hidden from view behind the dog. This example is different from the 
ones provided by Gettier, but nonetheless involves an element of luck that precludes knowledge. 

In terms of information-theoretic epistemology, we can say that the sheep-like visual signal does not carry 
the information that there is a sheep in the field. This is because there are relevant alternatives in which 
the dog’s presence results in a sheep-like visual signal even though there is no sheep present. Since this 
signal causes the belief in question, the belief that there is a sheep is not caused by the information that 
there is a sheep. 

Next take the barn-facades example, which Alvin Goldman uses, but attributes to Carl Ginet (Goldman, 
1976). Suppose Bob often drives through an area in which there are many fake barn facades, although he 
is not aware they are fakes. Amongst the fakes is one real barn. Usually when driving through this area 
Bob will form a false belief that there is a barn in front of him when he is in fact looking at a barn facade. 
Nevertheless, since Bob has no reason to suspect that he is the victim of such a setup, his beliefs are 
justified. Now suppose further that on one of those occasions when he believes there is a barn in front of 
him Bob happens to be looking at the one and only real barn in the area. This time his belief is justified 
and true, but since he could very well have been duped as he often is, Bob can be considered lucky that 
he was in front of the one real barn at the time. Thus it is fair to say that his belief is not an instance of 
knowledge.27 

For this case Dretskean information-theoretic epistemology would say that Bob’s true belief that there is 
a barn in front of him is not based on the information that there is a barn in front of him, since in this 
context the belief-causing visual signal of a barn does not carry the information that there is a barn. Given 
the context, there are relevant alternatives where the visual signal of a barn results from a barn facade 

                                                                        
27 Note that some epistemologists do not regard the fake barns case as being a genuine Gettier case. There is a touch of vagueness in what 
counts as a Gettier case. See Hetherington (2005) for more. 
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being in front of Bob, so it is possible amongst the relevant alternatives that “barn-like signal” and “not-
barn”. 

These last two examples in particular demonstrate a benefit of such an externalist epistemology. If the 
conditions external to the knowing subject are not right, the absence of the right conditions can easily be 
used to account for the absence of knowledge. 

There is a range of purported counterexamples and objections to Dretske’s account of knowledge. The 
usual strategy is to provide an example where it is correct to say that the subject does not know that p and 
claim that Dretske’s account is committed to saying that the subject does know that p. The objections 
generally fail because the cases they give would not actually be classed as knowledge given a genuine and 
correct application of Dretske’s account, but some objections are better than others and some compel us 
to reconsider Dretske’s definition. See Doyle (1985), Dretske (1983), Adams (2005) for some critical 
discussion of Dretske’s account. 

8.5 Floridi’s informational epistemology 

Recall that at the start of this chapter we came across the definition of knowledge as justified true belief (JTB). 
According to this definition, Bob knows that there is beer in the fridge if and only if: 

1. It is true that there is beer in the fridge; 
2. He believes that there is beer in the fridge; and 
3. He is justified in believing that there is beer in the fridge. 

 
For example, suppose that Bob bought a box of beer during the day and put it in the fridge upon returning 
home. That night, knowing that there is beer in the fridge, he goes to the fridge and gets a bottle. He knows 
that there is beer in the fridge because he believes this fact and his belief is justified given the day’s events. 

Or as another example, Einstein knew that the General Theory of Relativity is a good theory if and only if: 

1. It is true that the General Theory of Relativity is a good theory; 
2. Einstein believed that the General Theory of Relativity is a good theory; and 
3. Einstein was justified in believing that the General Theory of Relativity is a good theory. 

 
Well, Einstein worked out the General Theory of Relativity. He also knew about its vast empirical success, 
beginning with the light-bending experiments and going from there. Therefore his true belief is justified and 
counts as knowledge. 

Despite these plausible explanations, we saw earlier how the Gettier problem created problems for the  justified 
true belief account of knowledge, so much so that Floridi argues that the JTB account cannot be mended, and 
should be abandoned. Briefly, this was because the account seeks both to keep justification and truth logically 
and empirically independent, and also ensure that they cannot be accidentally coordinated, which Floridi says is 
impossible.  
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8.5a The network theory of account 

Recall Floridi’s amendment of the General Definition of Information (GDI) from section 7.2. According to the 
GDI, something is an instance of semantic information if and only if: 

1. that something consists of one or more data, 
2. the data are well formed, 
3. the well-formed data are meaningful, and 
4. the well-formed meaningful data are truthful. 

Criterion 4 is Floridi’s addition and results in what is known as the veridicality thesis, which was covered in 
Chapter 7. So, according to Floridi, when a person holds a piece of semantic information, that person holds 
something that is meaningful and truthful. However, Floridi holds that although Bob’s belief that “There is beer 
in the fridge” might well be both meaningful and truthful, this is not yet enough for it to count as knowledge. 

Floridi’s network theory of account (Floridi, 2012b) tells us what the extra thing is that a person with semantic 
information needs in order to have knowledge. It can be stated briefly: knowledge that p is correctly accounted 
for semantic information that p. To be accounted for, semantic information needs to be embedded in a 
network of questions and answers that sufficiently answers certain “How come?” questions that the semantic 
information raises. 

Floridi uses network theory to give a formal account of networks of relations among information.  However, 
we will examine the basic idea here without going into network theory. Floridi takes a major step beyond many 
standard epistemological approaches to hold that knowledge is essentially integrated.  We don’t “know that p” 
all by itself! Whenever we know something, we know a bunch of related things. Bob can’t just “know that there 
is beer in the fridge”.  He also has to know what beer is, what drinks are, what fridges are, and what they are 
for. He wouldn’t get far without knowing what kitchens are, and why we have them in houses. If you pause to 
consider that for a moment, you will see that this also involves a great deal of knowledge of human beings, why 
they need shelter and food, and our normal cultural practices for meeting those needs that lead to us building 
houses with kitchens – and putting fridges in them.   

So each piece of information poses certain questions that can be correctly answered by other pieces of 
information. For the semantic information that p to be knowledge, it needs to be embedded in a network of 
related information that correctly and sufficiently answers certain questions it raises. This links it, as it should, to 
its potential role as evidence, its potential value for prediction, inferential processes, explanation and so on. 

The idea of knowing agents having a network of information is the first idea. The second element is that of 
accounting. The network of related semantic information accounts for the semantic information that is to 
become knowledge. For Floridi the informational level of abstraction (LoA, see Chapter 2, and Chapter 4) is 
the most general way of considering and describing all things. In this sense, the world is made of information – 
it is all data. 

The basic idea of accounting is that the semantic network, the information that a knowing agent has, is in 
connection with the data in the world. The data in the world is the source of semantic information, which has to 
be sensitive to the data, and stay sensitive to the worldly data. Accounted for semantic information changes, in 
connection with data, so that information flows correctly from the source through the network. For someone 
with a network that accounts for their semantic information, the world is the source of their semantic network, 
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their model of the world.  As a result that model is generated by the world, models the world correctly, and 
stays correct by being sensitive to ongoing changes in the world that is the source of the information in the 
network. Such a person would seem to have knowledge! 

Thus Floridi has a definition of knowledge according to which an epistemic agent S knows that p if and only if: 
i) p qualifies as semantic information (it is well-formed, meaningful and truthful data); 
ii) q accounts for p; 
iii) S is informed that p; 
iv) S is informed that q; and 
v) S is informed that q accounts for p. 

To make this clearer by going back to our examples, Bob knows that there is beer in the fridge when he has 
accounted for semantic information that there is beer in the fridge. That there is beer in the fridge is a piece of 
information that itself raises certain questions, such as how did the beer get in the fridge? It is when Bob has a 
network of related semantic information about the beer that can answer questions such as these that he has the 
knowledge that there is beer in the fridge. This network is in connection with the data source. In a scenario 
where Bob has just bought the beer and placed it in the fridge, his information has the right kind of relations to 
evidence (such as he bought the beer and put it there, and has seen it there since buying it). His information has 
the right kind of relations to other beliefs: his fridge is in the kitchen, it is keeping things cold. His information 
has the right kind of relation to his future actions, such as his action of going to the fridge to find beer, and into 
the kitchen to find the fridge. 

Our second example about Einstein knowing that the General Theory of Relativity is a good theory is 
particularly interesting. It is very clear that knowing any scientific theory is good requires both having 
information about a lot of related things, and being in touch with the world – the data source – in the right way. 
(See also Chapter 9.) Examples from science are not commonly used in epistemology, even though scientific 
knowledge is arguably our most important kind of knowledge. On Floridi’s view, Einstein had such knowledge 
if and only if he had accounted for semantic information regarding the General Theory of Relativity being 
good. This network of information means the theory has the right kind of relations to evidence. Einstein 
worked on it, and knew very well the empirical evidence and its significance. His information had the right kind 
of relations to other beliefs, such as information about odd empirical results and many other physical and 
mathematical theories. His information had the right kind of relation to his future actions, such as he will 
continue to work on problems, and have expectations about new empirical work, on the basis of the General 
Theory. 

Recall that the Gettier problem arose by allowing the justification and truth of a belief to be logically and 
empirically independent, which allows the coordination between the justification and truth to be accidental, 
such as there still being beer in the fridge only because Bob and Alice’s teenage daughter Carol drank the old 
beer and replaced it with new beer. 

Floridi uses a constructive strategy to break away from the constraints that make the problem unsolvable. If an 
epistemic agent has a network that accounts for the information that p, then the information is coordinated to 
the source that correctly accounts for it. So there can’t be accidental accounting, and so no Gettier-type 
counterexamples. If the world changes, due to Carol drinking the beer, Bob’s network ceases to account for the 
information. He might be able to answer whether there is beer in the fridge correctly (there is because Carol 
replaced it), but his network can no longer correctly answer the relevant question concerning how it got there. 
His model is no longer sensitive to the world in the right way, and he no longer counts as having knowledge, on 
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this account, unlike on the JTB account. His former information that the beer is in the fridge because he put it 
there becomes misinformation. 

Einstein knowing that the General Theory of Relativity is good is an excellent example of how the integration 
of semantic information is the right way to avoid Gettier problems. The core idea is that the “justification” for 
believing p just is all the integrated network of related information, connected to the data source. This is 
information about the problems with prior physical theory, like Newton’s. This is information about many 
empirical observations such as the movements of planets and stars, and also of physical things on the earth. 
This is information about related physical theories such as electromagnetism and so on. But all this information, 
the connection to the data source, is just what makes the theory good. The truth of the claim cannot disconnect 
from the “justification” for the claim. One could not “accidentally” come to have this kind of network of 
accounted for semantic information that the General Theory of Relativity is good. 

This solution might look like a cheat. Recall that Floridi says that proponents of the JTB account cannot add a 
fourth condition to say “and the truth of the belief and its justification are coordinated”, as this is merely to say 
“Gettier cases are impossible”.  But while proponents of JTB are precluded from coordination – tying together 
the truth of p and its justification – as a solution, Floridi is allowed to seek this kind of solution. Attempting to 
maintain the JTB account of knowledge commits you to maintaining truth and justification as logically or 
empirically independent. This is why you cannot solve the problem. Floridi, however, does not accept the frame 
of the justified true belief account, and so is not precluded from coordinating truth and justification. 

A final point to make is that Floridi’s approach takes an unorthodox turn when it comes to dealing with basic 
perceptual knowledge and testimonial knowledge. Take an example involving a car which has a red light that 
flashes when the engine temperature exceeds a certain threshold. Alice is driving the car, visually perceives that 
the red light is flashing and thus we can say comes to know that the red light is flashing. If she knows what the 
light indicates, then she will probably stop the car and check the radiator. If she is unaware of the light’s 
purpose, then she may very well continue driving. Either way, she knows that the red light is flashing. Dretske’s 
account will explain this knowledge straightforwardly; the red light signal carries the information that the red 
light is flashing and this causes the belief that the red light is flashing. Likewise, other prominent accounts of 
propositional knowledge will accommodate this example as a case of knowledge. 

As Piazza (2010) discusses, if, as the network theory of account has it, knowledge is information that has been 
correctly accounted for, then how can this analysis explain perceptual or testimonial knowledge? For example, it 
would seem that a basic perceptual experience of the light flashing is not enough to know that the light is 
flashing; it does not suffice to give an account and answer relevant questions about why the light is flashing. 
Floridi deals with this by reinterpreting perception and testimony as data providers rather than full-blown cases 
of knowledge (Floridi, forthcoming-c). Thus if Alice sees the red light flashing but cannot explain the context or 
why it is flashing, then she does not have a sufficient account to know that the red light is flashing; at best she 
merely holds the semantic information that the red light is flashing. 
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8.5b Criticisms and benefits 

Floridi acknowledges that he has not answered any sceptical question. We could think we have accounted for 
semantic information, and yet be brains in vats. This is in accord with his stated aims for the philosophy of 
information. Sceptical questions have been unanswered for at least two millennia. Floridi thinks that they are 
not answerable, and so they are bad philosophical questions. Attempting to answer sceptical concerns is 
fruitless, he thinks, and so should be abandoned (see Chapter 2).28 

A more important natural worry is whether Floridi has moved beyond a sophisticated coherentism. You might 
recall from other philosophical studies that foundationalism about knowledge involves looking for certain 
fundamental pieces of knowledge, and building all further knowledge on them. Descartes uses the cogito.  
Empiricists use sense-data, or some more modern empirical observations. Coherentists deny that this search for 
privileged foundations for knowledge – pieces of knowledge so strong that they can, as it were, hold up all the 
rest – is necessary. Indeed, they often deny that there are any such privileged pieces of information.  For 
coherentists, you have knowledge when you have an integrated web of coherent beliefs. Clearly, Floridi’s view 
has something in common with coherentism, although of course Floridi’s network is one of information, not 
belief. However, Floridi has moved beyond coherentism in the idea of having the network accounted for.  This 
means it must be in the right kind of contact with the data source – the world. We build our networks of 
information by repeated interaction with the world, and so gradually correct them over time. 

It might also be thought that Floridi’s account is circular. Floridi notes that an open problem in the philosophy 
of information is the information circle. This is the problem that we check information with other information, 
and it looks as though that is precisely what Floridi does. Naturally, Floridi’s philosophy of information is 
committed to this - there is nothing else to check information with! But is this a serious problem? Consider in 
comparison the same kind of question pressed against traditional accounts of knowledge. A question 
sometimes asked is: do you have to know the justification for p before you know p? If you think about it, there is 
nothing stronger that we can check knowledge with except knowledge. Does this mean that knowledge is also 
stuck in a knowledge circle? It seems that the problem is not as serious as it first appears. If you think that this is 
reasonable, and that we still have knowledge at least sometimes, then you need to try to produce an account of 
how some pieces of information – or beliefs – amount to knowledge, while others don’t. Floridi has certainly 
given us that. 

A very good aspect of the view is that it seems to offer a much better approach to scientific knowledge than 
traditional epistemological approaches. It is an excellent point that generally knowledge of a single proposition, 
isolated from related propositions, is impossible. This is clearly true in science. So the basic starting point of the 
account has to be right – knowledge has to be about integration. Indeed, our most important current 
knowledge, scientific knowledge, is clearly highly integrated. Interestingly, the account also allows knowledge to 
come in degrees. On traditional accounts, knowledge is all-or-nothing: you either have it or you don’t. But you 
can have a more or a less extensive network. And this allows two people both to know something, but one to 
know it better than the other. That person has a more extensive accounting network. 

Note also that the network theory of account affords us a natural way to see how a community of people can 
hold knowledge communally. A community of people can build a network of account, and different people can 

                                                                        
28 See also (Floridi, 2010b, forthcoming-a) for some papers on this matter. In the former Floridi investigates the sceptical challenge from an 
information-theoretic perspective, contending that informational scepticism is not a problem. In the latter paper Floridi defends, contra 
Dretske, a principle of information closure. 
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hold different bits of it, so long as it is accessible to other people.  Such an application of the network theory of 
account brings in related issues such as trust and testimony. 

Interestingly, we can apply this philosophical account of knowledge to explain scientific knowledge, which is 
essentially the knowledge of a very large community. In scientific papers, both written and oral, and in large and 
small databases containing the results of experiments, different individual scientists hold some parts of the 
network of information. And the increasing availability of much of this online allows the network of scientific 
information to be built faster and disseminated further than ever before. 

8.6 Exercises 

1. Two suitable formulations of the principle of information closure are: (1) if S holds the information 
that p and the information that p implies q, then S holds the information that q; and (2) if S is informed 
that p and p carries the information that q, then S is informed that q. Is it plausible to suggest, as Dretske 
does, that this principle can fail in certain cases? 

 
2. Suppose that your car is moving at 80 km/h. Dretske’s account explains why if you look at your car’s 

functioning speedometer showing 80 km/h you can come to know that this is its speed, whereas if 
the speedometer is not working and just happens to be stuck on 80 km/h, any true belief you form as 
a result of looking at the speedometer does not count as knowledge. Imagine the following scenario. 
Your speedometer works perfectly up until 100 km/h at which point it malfunctions and cannot 
move any further up. When your car is going 80 km/h, does the speedometer’s correct signal 
indicating 80 km/h provide you with the right information for knowledge, or does its range of 
unreliability above 100 km/h affect its general information-carrying potential? 

 
3. Can you think of any examples that are problematic for Dretske’s definition of knowledge? 
 
4. Consider the difference between a coherentist account of knowledge, which has beliefs connected 

only to other beliefs, and Floridi’s account, which has a network of information also connected to the 
data that is the ultimate source of that information. 

 
5. Do you know that the General Theory of Relativity is good? Do you know it as well as Einstein did? 

What is the difference? 

8.7 Further reading 

Dretske (1983), Bremer and Cohnitz (2004), Floridi (2012b). 

Apart from Dretske’s and Floridi’s applications of specialised accounts of information to analyses of 
propositional knowledge, there are other pockets of work in philosophy on information and epistemology. 
Two examples are Fallis (2002), Harms (1998). 
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Part IV: (Information in the) Sciences 
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9. SCIENCE 

Evidence and expert knowledge 

 

9.1 Introduction 

We read a lot in the news, on blogs, and on social network 
sites about the advancements, achievements, and even the 
failures of science. Think about the recent experiments at 
CERN. Scientists thought they had found neutrinos that 
travel faster than light, and then they had to retract the 
claim. Another recent piece of news from CERN is the 
discovery of Higg’s boson. Higg’s boson, they claim, has 
been “found” using two different experimental set-ups. 
This is a milestone in the history of physics, not just 
because it confirms a whole theoretical apparatus, but also 
because it opens up new paths of research. Consider also 
something we are all concerned with: health. We want to 
be cured when we are ill and we hope that the drugs 
available are effective and do not produce bad side effects. 
Examples abound of drugs that provoked disaster – think 

about the famous Thalidomide scandal. And examples abound of drugs that are effective – the acid 
acetilsalicilic, also known as aspirin, has been used for centuries. Science often produces major news headlines. 

In this chapter, we examine science, in its efforts to explain, predict and control our world, via modelling the 
world. Traditional philosophy of science, coming out of the work of the logical positivists, focused on the 
language and logic of scientific methodology. We look at what light the Philosophy of Information (PI) can 
shine on traditional philosophical issues concerning science as it is practiced now. First we examine how science 
finds things out, looking at the importance of model validation in science, linking that with Levels of 
Abstraction (LoAs) from Chapter 2. Then we examine what counts as evidence for the things we discover, 
seeing how understanding evidence as information can deepen understanding. This allows us to move on to 
look at what kind of knowledge science gets after model validation and gathering of evidence, seeing how the 
idea of knowledge as a network of accounted for information fits well with science. This last idea is developed 
extensively in Chapter 8, and comparing this chapter with that shows what the problem of scientific knowledge 
has in common with the problem of knowledge in general. 

Chapter 

9 

‘We must not forget that when radium was 
discovered no one knew that it would prove 
useful in hospitals. The work was one of 
pure science. And this is a proof that 
scientific work must not be considered from 
the point of view of the direct usefulness of 
it. It must be done for itself, for the beauty 
of science, and then there is always the 
chance that a scientific discovery may 
become like the radium a benefit for 
humanity’.  Marie Curie 

https://en.wikipedia.org/wiki/Thalidomide
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So far these are traditional issues in philosophy of science, focused on science discovering things in the world.  
But what about making the world? Making is a core concern of philosophy of technology. After the 
information revolution, PI sees us more than ever as creators of our world, creators of the infosphere. 
Traditional approaches in philosophy of science neglect this aspect of what science does, treating technology as 
if it were merely an application of science. But with the creation of advanced technology such as the large 
hadron collider at CERN now essential to our pursuit even of fundamental science, design and creation cannot 
be treated as an afterthought to science, as they are deeply embedded in the practice and success of current 
science. This chapter closes by looking at the philosophy of technology idea of homo poieticus – people as makers. 

9.2 Science and reality: Model validation 

What is science? This is an old, hotly-disputed philosophical question. What makes astronomy scientific, unlike 
astrology? Why do we believe the claims of experimental medicine more than those of homeopathy? The 
problem of demarcation was famously set up by Karl Popper. For Popper (1963), science is about the 
possibility of falsifying hypotheses. Thus while we can test – and possibly falsify – a hypothesis about the 
motion of a planet, it is hard to think about how we could test – and possibly falsify – the hypothesis that all 
Gemini are stubborn. Popper’s proposal is to examine which data and which methods allow us to make 
decisions about the hypotheses that science formulates.  

Many others in history and philosophy of science have addressed problems of scientific method. Some names 
of pioneer methodologists will be familiar to you: Galileo and Newton, Francis Bacon and William Whewell, 
John Stuart Mill.  These scientists (and philosophers, for that matter) primarily wanted to understand the world 
around them and to “codify” procedures to do this effectively. Why would they need to “codify” such 
procedures? Because to explain, predict and control phenomena, especially when little background knowledge 
is available, is a challenging enterprise. So, if we find that one method proved successful on several occasions, 
we may want to mainstream it. 

We shouldn’t underestimate the importance of the attempts to develop methods for scientific research. In 
accordance with the Copernican, Darwinian and Freudian revolutions (see Chapter 2) science changed our 
understanding of the world, and also of ourselves. But science also had to create science. Science creates labs, and 
research groups, and large hadron colliders, and ultimately science develops, examines, and revises its own 
methodology as well as its conceptual baggage. While we all have some knowledge and understanding of 
gravitation from school, Newton had to make up an explanation for the phenomena he was observing. We are 
now used to understanding that individuals’ histories are affected by their socioeconomic contexts, but Emile 
Durkheim, a pioneering methodologist in sociology, was revolutionary in trying to explain differences in suicide 
rates according to different situations people live in. Galileo beautifully explains his reasoning and experiments 
about moving objects, and he changed the way we see the surrounding world, so that many of the motions he 
described are now part of a generally understood folk physics. All these pioneering methodologies tried to say 
what relations hold between their observations, the methods they used to analyse such observations, and what 
conclusions they could draw from them. If our current science is so advanced, it is thanks to these scientists 
sharing and codifying their research. 

In this chapter we will take up the idea of looking at scientific method, but in a modern context, looking at 
three issues that play a key role in the dynamics of science, namely model validation, as a great deal of the 
activity of current science involves building models, such as climate change models; evidence, which is a subject 
of intense debate in many sciences; and expert knowledge. We will see what light the philosophy of information 
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can shed on these issues. To understand what really allows scientists to confirm their claims we would need to 
look deeply at a specific science’s state of the art, at its methods of analysis and evaluation of data. We will take 
a more general stance in this chapter, but there is still something we can say about the scientific method in 
general.  

PI makes an important observation about the relation between the activity of modelling phenomena and the 
claims we formulate about these phenomena. While traditional philosophers of science investigated the relation 
between our claims (or propositions) and reality, current philosophy of science is much more interested in 
modelling in the practice of science and its relation to claims we make about the world. This creates room for 
useful interactions between philosophy of science and PI. 

So let’s start from modelling practices in science. There is something that is common to many different 
scientific enterprises: modelling phenomena to describe the world, understand it, predict what will happen, and 
intervene to make something happen. This is in accord with the Method of Levels of Abstraction (LoAs) used 
by PI, and introduced in Chapter 2. 

Let us consider an example from the biomedical sciences. Oncologists and epidemiologists are interested in 
whether or not exposure to asbestos causes cancer, and if it does to what extent. To answer such a question we 
need a lot of data about people who have been exposed to asbestos and about those who developed cancer, so 
that we can examine whether more of those who have been exposed to asbestos developed cancer, when we 
examine similar age groups, socioeconomic classes, and so on. We need data about exposure and development 
of disease. Some current studies go even deeper and gather information about the biochemical changes that 
happen in the body in response to asbestos exposure and lead to cancer development. Epidemiological and 
biochemical models are currently being integrated in the hope of contributing to our understanding of disease 
and to developing cures. But whether asbestos causes cancer is also crucial in legal contexts. One case has just 
become famous world-wide. This is the ‘Eternit trial’. Eternit was an asbestos factory active in the north-west 
of Italy. Epidemiological data showed a massive epidemic of asbestosis and lung cancer in the surrounding area. 
A trial lasted for decades, to ascertain the responsibilities of Eternit managers in failing to implement 
appropriate safety measures. If it is true that asbestos causes cancer, and if there were health safety measures 
available, then the Eternit managers are guilty of having ignored them, as negligence of such safety measures 
caused cancer in many workers. This is the essence of the reasoning. The decision of the judges in Turin has 
historical importance: they convicted the managers. 

However, questions like whether asbestos causes cancer don’t have a simple yes or no answer. This is 
unfortunate. In our daily experience we often wish or expect answers to be simple. To find out whether a claim 
– a proposition – is true, we simply go and find out. Is it true that it is roughly half past two now? If you don’t 
know, you can check your watch, or the clock on your laptop. Is it true that CERN scientists found the Higg’s 
boson? Well, let us Google it – we’ll surely find some information that confirms or refutes it. Science doesn’t 
really work in this day-to-day way, however. Consider scientific claims like this: “42% of Americans could be 
obese by 2030” (just Google “obesity forecast” and you’ll hit plenty of these examples). How do we make such 
predictions?  How do we find out whether such things are true? 

PI is very much in accord with new ways of looking at questions like this:  

For in order to understand whether a model is correct, a scientist looks at the data set and considers whether 
the model can successfully reproduce and/or predict the behaviour of some aspect of the system being 

http://asbestosinthedock.ning.com/
http://www.google.com/search?q=obesity+forecast&safe=off
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modelled (Davison (2003)). The better the model, the smaller the disagreement between its implementation 
and/or forecast and what happens in the observed system.  
(Floridi, 2010c, p. 364) 

Scientists formulate a hypothesis (which is just a claim, or a proposition, after all, such as the prediction about 
growth in obesity above), then build and test a model. There are a number of things we need to know about 
models. First of all, the models mentioned in the quote above and used by science are “empirical models”, 
namely models that use data coming from observations or from experiments. Scientific research is not all 
empirical. For instance some physicists never work in a lab and what they do is so conceptual that you can’t tell 
the difference between their physics and the purest maths you can imagine. But let’s stick to empirical research, 
as our concern was the relation between models and reality. Models are generally not treated as true or false. 
Instead, they are valid or invalid, useful or useless. Validity and usefulness don’t have rigorous definitions, 
unfortunately. But we can try to grasp their meaning nonetheless.  

Validity. A model is valid to the extent that the story being told using that model holds. Let us formulate 
the following model validation view. Scientists have a data set with observations on a phenomenon X to 
study, say, rates of asbestos and cancer. Scientists analyse the existing literature on the issue, then examine 
the data, formulate hypotheses such as “asbestos causes cancer”, build and test a model and finally tell us 
whether they think the hypotheses are confirmed or not. Different considerations are involved here: what 
background knowledge is available, what type of analysis has been run on the data, what results came up 
from the tests, etc. All this narrative, namely the explanation of the work (data collection, data analysis, 
interpretation) that led to the result of the study contributes to making the model valid. Such practices also 
ensure inter-subjective control in science: other scientists, peers, can challenge results or conclusions, or ask 
for more details and justification, on each of the elements involved in modelling (Russo, 2011). We will 
come back to this point later when discussing expert knowledge. 

Usefulness. Imagine you have never been to London and when you arrive at St Pancras station you go to 
the tourist information desk and you are given a big map of the whole of the UK. How useful would that be 
to travel around London? Pretty useless. You would need a map that doesn’t cover the whole UK, but has 
street names for all areas in London, and possibly a tube and bus map, too. Then you can find your way 
around. Modelling works pretty much the same way. You may have heard of Genome-Wide Association 
Studies (GWAS). These studies collect information about genes and diseases, the people who have and 
don’t have them, and other information such as where they live, their life habits, etc. These studies give a 
great descriptive picture of populations and some of their genetic characteristics. How much do we learn 
about gene expression or gene mutation? Very little. But for that different problem we have lab experiments 
in biochemistry, for instance. We build different models for different purposes. So it is extremely important 
to define the research question and to identify the modelling procedures to best address it. Models are not 
true or false, but useful or useless depending on the research question (Giere, 2006). 

So, to wrap up: hypotheses formulated in science are not true in virtue of some kind of simple correspondence 
with facts or things that hold or are out there in the world. These hypotheses are true to the extent that the 
models built and tested tell us something valid and useful about the reality we are studying. This idea can be 
further examined by reading Chapter 8 on knowledge and Chapter 7 on truth. 
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9.3 Information and evidence 

The implications of this view of model validation are numerous. An important one concerns evidence. Let’s 
begin with an example. Suppose you say: “I am a very good student”. How do we know that? You can then 
point to your marks of last year and of this year. You never failed an exam and always had high marks. Wow. 
This is evidence that lends support to your claim. Consider now more complicated cases, such as the scientific 
claims mentioned above about asbestos exposure and cancer or about the Higg’s boson. You can always ask: 
how do we know that? What established such and such a result? When you tackle questions like these, you are 
providing the evidence for the claim. As you can imagine, in science it is not as easy to find evidence as it is to 
show your marks from last year.  

Not surprisingly, “evidence” is the subject of a lively debate in philosophy and in the sciences. There is an 
immense literature trying to provide conceptual analyses and methodological approaches for evidence. For 
instance, there are probabilistic approaches to evidence, trying to spell out how evidence lends support to a 
hypothesis. When a hypothesis h is formulated, scientists also attach some probability p to it. After running the 
experiments, suppose the results are positive, so that now the probability of the hypothesis, given the results 
from the lab, is higher. Very recent approaches in medicine coined the name “evidence-based” because they 
want scientific results to be based on “scientific tools” rather than, for instance, on anecdotal information and 
expert opinion. A particularly important movement is “Evidence Based Medicine” (EBM). 

We will examine issues of evidence using the discussions of the “evidence hierarchies” of EBM, and show how 
thinking of evidence as information can help. In the next section, we show how thinking of evidence as 
information that a community gathers and processes collectively can also help. 

EBM movements (Sackett, Rosenberg, Gray, Haynes, & Richardson, 2007) organise possible evidence into a 
hierarchy, beginning with the best evidence, which is generated in (1) randomised controlled trials (RCTs) (2) 
observational studies (3) case reports, and at the bottom of the pyramid we find (4) expert opinion. We explain 
briefly what these methods are before we go on. 

(1) Randomised controlled trials. Suppose you wonder whether getting drunk just before an exam would 
be a good idea, since when you are drunk you are more inspired and you may produce a more original essay. 
You talk to a scientist and s/he decides to run an RCT to establish whether your hypothesis holds. Suppose 
in your class there are 200 people; they will be divided in two equal groups at random. So each group will 
contain males and females, bad and good students, students from different nationalities and so on. Then the 
scientist decides that for the next five exams, one group will always get drunk before the exam, and the other 
will never get drunk. After the five exams the scientist collects the results and compares the two groups. If 
the “drunk” group performed better than the “sober” group, perhaps there is a point to drinking before 
exams. If the “sober” group performs better, then perhaps, as we suspect, drinking before exams is best 
avoided! You will have realised why we picked such an extreme case: we already have a lot of background 
knowledge about behaviour, about individual response to alcohol consumption etc. So you can imagine how 
difficult it must be to set up a RCT when there is the marketing of a new drug at stake, or the 
implementation of a new surgical technique. Medical people have to deal with tough problems and RCTs try 
to cope with such difficulties.   

(2) Observational studies. Let us continue with the example above. Suppose the scientist thinks that it is 
unethical to force people to drink, even for the sake of science. (There are also ethics boards like the 
Institutional Review Boards in many universities and funding bodies to prevent scientists from doing studies 
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like this even if they would like to.) So s/he will try the observational route. Perhaps there is already a 
database with information about drinking behaviour and exam performance, or a new study can be set up 
asking students about their experience. This can be done in the form of questionnaires, or interviews, or 
focus groups etc. The point is that this data is collected without running “experiments” of the type of RCTs. 
Statistics will then help detect links – correlations – and possibly causal relations between drinking 
behaviour, exam performance, individual response, etc. It is quite a complicated story to say whether and to 
what extent studies of this type really can detect causal relations, but for the time being it suffices to note 
that it is a difficult task, albeit one that can be managed. 

(3) Case reports. Let us continue with the same example. Here we can imagine that university teachers or 
doctors at the university medical centre came across a student who regularly took exams while drunk, and 
collected as much information as possible about that student. For instance, age of the student, number of 
exams passed or failed, in what circumstances and so on – you can list all the factors that may play a role 
here. A case report is a “study” on one single event of the type we are interested in. There are a number of 
conclusions one may draw from just one case, but it is difficult to decide how much one case can tell us 
about what would happen to other people.  We have to judge whether the student studied might be atypical 
in important respects, such as in having an unusually high tolerance for alcohol. 

(4) Expert opinion. At the bottom of the pyramid we find expert opinion. This includes knowledge that 
people “in the field” accumulated over time. It may or may not be supported by RCTs or other types of 
study; it is largely based on background knowledge available in the field and on personal, direct experience. 
For example, an expert might advise you that drunkenness makes you less alert, careless, and possibly even 
sleepy, or inclined to walk out of the exam and go to the cinema instead, and that these would all be bad for 
your exam performance.  

Now you have an idea of what EBM evidence hierarchies often share, although you may have noticed that 
strictly speaking it is a hierarchy of methods for gathering evidence, rather than of evidence itself. The point of 
the evidence hierarchy is that RCTs are superior to studies that “just” collect data, which are superior to studies 
that analyse one case, which are superior to the opinion of experts. 

PI can bring a new perspective to thinking about evidence, and hierarchies of methods of gathering evidence, 
because evidence presented in different ways, generated by different kinds of trials, can all be seen as 
information. Simply put, the evidence generated by a randomised controlled trial is information about the 
probability of an outcome given the presence or absence of a treatment. The evidence produced by a lab 
experiment is information about biochemical processes. The evidence produced by expert opinion is 
information about the person’s experience of the given topic. There is some exchange of information that 
occurs between individuals who apply methods to generate evidence and individuals that evaluate the 
generation of evidence. We will also see below some characteristics of this “exchange of information”. 

We now try to make this idea a bit more formal. Here, Floridi’s version of the general definition of information 
(GDI) can be useful (see also section 6.5 and Chapter 7): p is semantic information if (i) it consists of data, (ii) 
data are well-formed, (iii) well-formed data are meaningful, and (iv) the meaningful well-formed data are 
truthful. “True” here means ‘providing true contents about the modelled system’ (Floridi, 2010c, p. 201).  

Let us now see how, in scientific contexts, “information” in the above sense can shed light on the notion of 
“evidence”. More precisely, we can spell out the notion of evidence in terms of the notion of information.  
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Any of the studies briefly presented above and included in the evidence hierarchy generate evidence; that is, 
information that is needed to back up or to refute a hypothesis. Information (in the sense above) comes from 
the data used in the study and such data has to have the characteristics mentioned in GDI or otherwise the 
study will be flawed in many respects. If data are not well-formed, for instance the variables used are not 
comparable with each other and it is not possible to run any analysis on them. Recall that this is what crashed 
NASA’s Mars Space Orbiter in 1999 (see Chapter 2). Or, if data are not meaningful the study will suffer from 
serious conceptual weaknesses – for instance, years of schooling can measure education levels, but not 
motivation to study. Likewise, data have to be truthful, in the sense that measurement error, in these contexts, 
has to be minimised. We are using an idea of truth, in accordance with the idea of model validation, which is 
explained in (Floridi, 2010e). 

You can now see how PI can contribute to debates on EBM. It is worth noting that evidence in terms of the 
GDI does not fix the kind of data that is analysed. So far as the GDI is concerned, statistical information can be 
evidence, experimental information can be evidence, expert opinion can be evidence. Sources of evidence are 
treated on an equal footing. What discriminates between good and bad evidence is the information being well-
formed, meaningful, and truthful. 

9.4 Information and expert knowledge 

We just saw that according to the EBM evidence hierarchy, expert knowledge is at the very bottom of the 
pyramid. Why so? In medicine, there are excellent historical reasons why knowledge of experts has been 
downgraded: advancements in science showed that large parts of “established” and “undisputed” expert 
knowledge was actually wrong. But it may be too quick to dismiss “expert knowledge” altogether for this 
reason. Let us see what kind of assumption is made in such a move. 

Traditional epistemology (see Chapter 8) tends to focus on situations where a single person (atomic agent Alice) 
believes in or knows a single claim (an atomic proposition P such as “it is raining”). Then the question asked is 
what makes this belief knowledge. But this focus neglects important considerations, about the type of agent, the 
type of proposition and its source, and about the interactions between agents, particularly the multi-agent 
dimension of scientific knowledge. 

Interestingly enough, there is also a long tradition in the philosophy of technology discussing expert knowledge. 
Philosophers of technology paid more attention to issues such as the nature and scope of acquisition of skills 
that makes experts “experts”; or the extent to which it is important how expert knowledge is “embodied”, 
worrying about whether artificial expert systems – such as machines that make diagnoses – are expert in the 
same sense as doctors are. So there are plenty of fascinating issues that arise from a reflection on expert 
knowledge. 

Again, PI is not meant to settle all these issues, but to provide new ways of looking at expert knowledge. There 
is a “spill-over” effect: once we adopt GDI, we then re-analyse evidence in terms of information, then the next 
level is to rethink expert knowledge in terms of the interactions between agents. Such interactions form a 
network of information (see section 8.5). Networks of information exist in labs, conferences, publications, etc. 
Nothing is done in isolation. Expert knowledge is a collective effort. There is a sharing of information that 
takes place in many ways: collaboration in producing or even criticising a paper, running experiments as a 
group, communicating scientific results to different audiences, and of course teaching the next generation of 
scientists. Moreover, the network is dynamic. Expert knowledge (i.e. the network of information) is constantly 
changing as data changes, or as interactions between agents alter over time, etc.  In this way PI reconciles the 
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agent-based approach of epistemology with the communal or network-based approach of philosophy of 
technology. The core idea of information, and the idea of knowledge as a network of information, do this very 
well. 

Once we see expert knowledge this way, it appears plain that it shouldn’t be at the bottom of the pyramid for 
deciding on medical treatment, or policy decision-making. If we adopt the view above, we see that expert 
knowledge is a very complex phenomenon, and the traditional concept of expert knowledge does not capture 
its real sophistication. For example, expert knowledge is needed to set up an RCT, an observational study, and a 
case report. It is needed to decide what to study, what variables to observe, and for how long. It is then needed 
to integrate the information from these various studies into a model, and ultimately to come to conclusions 
about medical matters. Expert knowledge is not something separated from the rest, but inheres in the whole of 
science – even in very different scientific practices. 

9.5 Science and poiesis 

We have discussed traditional philosophical issues of the sciences, looking at how PI can shed new light on 
how scientists discover things, on evidence for those discoveries, and on the nature of scientific expert 
knowledge. We have seen that traditional approaches to epistemology miss the essentially collective, 
collaborative nature of scientific knowledge-gathering. Finally, we look at another aspect of science that 
philosophy of science largely misses: we don’t just find out about the world; we also create it. The scientist is a 
maker, a homo poieticus, and therefore a techno-scientist, as the word is used in philosophy of technology.  Here, 
we follow ideas of Luciano Floridi, which are influencing some other philosophers in the PI tradition (Demir, 
2012), and we continue with the aim of bringing together philosophy of science and philosophy of technology. 

You will remember from previous chapters that PI is motivated by the “information revolution” (see Chapter 
2). Science has repeatedly changed how we understand the world, and also ourselves. Now it is revolutionising 
our abilities as makers of the world. Let us see why. In a nutshell, the information revolution revitalises ancient 
questions about the relation between nature to be passively observed and known (which the ancient Greeks 
called physis) and practical science or art that interferes with the world (techne, from which we derive 
“technology”). 

To understand this, we need to take a step back and see what vision of the world is presupposed in ancient and 
in modern science. What follows is not a detailed historical reconstruction but is nonetheless useful to get a feel 
for the size of the change PI can bring. 

Philosophy and science start with the Greeks, their way of looking at the world and of drawing conclusions 
from their observations. For the Greeks the natural world is known by passive observation. For the Aristotelian 
scientist, experimentation was not a means to acquire knowledge but just a means to illustrate knowledge 
already acquired (for a discussion, see Harris (2005, Chapter 1)). The scientist, according to Aristotle, aims to 
establish “first principles” – science is knowledge of the physis through its contemplation. So science and techne 
are different for Aristotle, because science is not practically oriented. Poiesis, or making, concerns only the arts, 
the techne. This is in sharp contrast to the modern philosophical conception of science and of scientific method, 
most of all in the modern use of new tools to acquire knowledge, particularly during experimentation.  

Let us now make a very long jump forward in time. Since the Scientific Revolution (c. 1550-1700), the natural 
world is a world that the scientist actively interacts with and manipulates in order both to know and create. The 
shift is from an “organic” view of the cosmos, typical of the Greeks and perpetuated in the Middle Ages, to a 
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“mechanical philosophy” which pioneering scholars such as Francis Bacon, René Descartes, Galileo Galilei and 
Isaac Newton started to develop. The change has been so profound that “science” no longer connotes merely 
“knowledge” and “understanding”, but now also embodies practical skills. It was with Bacon that science 
became a scientia operativa (Klein, 2008, 2009): this means that to come to know about the world the scientist 
does not just passively observe the world, but also interacts with it. The modern scientist is a maker; among 
other things, she performs experiments, she actively manipulates factors to find out what causes what 
(Ducheyne, 2005). Experiments, in Bacon’s view, are tools to acquire new information, but they are also tools 
to test theories, according to Galileo. 

Performing experiments is thus a way to make, to build, or to construct knowledge. This requires 
carefully controlling the study, and often requires building specialised equipment, including whole 
environments such as at CERN. You can easily see how much this differs from an ancient understanding 
of physis (nature), as being discovered simply through passive observation of the world.  
 
We can now summarise the two major innovations introduced by scholars of the Scientific Revolution as 
follows: 

(i) in order to know we need to make; and  
(ii) what we know is going to be of some practical use. 

 
These are, in short, the strongholds of the concept of technoscience. A large part of current science is 
indeed technoscience. Scientists at CERN can run their experiments only thanks to the very sophisticated 
technology of the collider, and the extraordinary data-processing functionality of supercomputers. 
Molecular epidemiologists and biologists can study biomarkers thanks to complicated machines that 
analyse samples of blood, urine etc. and detect immensely small entities. Astrophysicists can study 
Martian rocks only thanks to the machines that can travel in space and collect samples (those that don’t 
crash). So it is difficult to distinguish fundamental science (knowledge of the basic principles of nature 
and life) from the technologies that both stem from it and participate in it. We have to include 
understanding our technological interfaces with nature in our understanding of the practice of science. 
There is also another aspect to consider. Neither science nor technology, alone, makes any progress. 
Behind science and technology there always is a scientist, a technologist, or indeed a technoscientist. So 
let us try to understand what kind of agent is the technoscientist. 
 

The homo poieticus. Before we reveal who is the technoscientist and what s/he does, we need to 
introduce a more general concept: the homo poieticus. We see elsewhere in the book how PI offers an 
alternative framework to traditional ethical theories (see Chapters 4 and 5). We add here a discussion 
of what agent the ethical agent is, in the era of technology. The homo poieticus is the ethical agent in the 
era of technology: s/he is the creator of the situations subject to ethical appreciation. This already 
delineates a constructionist framework: the ethical agent, i.e. the homo poieticus, constructs the situations 
s/he is in. For example, in constructing the internet, we create a whole system. This step goes beyond 
traditional ethics, where we discuss what is right or wrong or whether the consequences of an action 
are acceptable or not, but do not discuss who is the ethical agent and how s/he got there. This should 
make clear why a “constructionist framework” is better suited to the new environments created by 
technology: technology creates environments and the homo poieticus is their creator. Now we know who 
the agent is. The advantage of a constructionist ethics lies in the fact that, unlike traditional ethics, it 
does take into account the various circumstances that led the agent to be in the situation s/he is facing. 
Instead, traditional ethical accounts, whether in the framework of consequentialism or virtue ethics, 
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take the situation as “given”, so to speak. The philosophy of information redresses this aspect: 
traditional ethical frameworks neglect what is perhaps the most important feature of the ethical agent 
in the information era, namely her poietic skills. In creating a new system like the internet, homo poieticus 
can make many more choices about who the system favours – and who it may disadvantage. These 
need to be addressed. Here comes the link with science and technology: the technoscientist is a homo 
poieticus too. 
 
Homo poieticus as technoscientist. There are two things that the technoscientist creates: crafts and 
knowledge. Let us examine these in turn. 
 
The creation of crafts. The technoscientist produces the “objects of technology” e.g. computers, 
nuclear weapons, medical devices. In general, these are humanly fabricated artefacts. Traditionally, 
Lewis Mumford proposed a categorisation of technological objects that included utensils, apparatus, 
utilities, tools and machines (see for instance (Mumford, 1934)). Later on Mitcham (1994) added to 
Mumford’s categorisation the following: clothes, structures, and automata or automated machines. 
This list of technological artefacts includes “tools of doing” and “tools of making” alike. Needless to 
say, there are interesting remarks to make about the distinctions between “tools of doing” and “tools 
of making”. Also, a lot can be said about alternative categorisations of technological tools. The 
phenomenology of artefacts is invaluable in providing tools to investigate, for instance, their personal 
or societal effects, or the way artefacts may extend human capabilities and, consequently, alter our 
experience with the external world (Ihde, 1979). But this is not our concern at the moment. What 
interests us the most is that technological objects – crafts – are the products of the poietic activity of 
the technoscientist. In other words, the technoscientist is essentially a homo poieticus. The philosophy of 
information initially conceived of the homo poieticus as the creator of e-nvironments, but we can now 
extend the notion to the technoscientist because he creates too. 
 
The creation of knowledge. There is another aspect of the poietic activity of the technoscientist that 
is of relevance here: the technoscientist creates knowledge. The insights about the technoscientist and 
his poeitic activity in constructing knowledge can be found in the kind of epistemology that is part of 
the philosophy of information. The philosophy of information investigates the relations between the 
natural world and information (Floridi, 2011c). Such relations will be specified within the network of 
information, what we might call “constructionist epistemology”. Let us step back. 

 
Recall that the information revolution is about our coming to see that we are informational organisms, or 
inforgs in the information sphere or infosphere. This means that information is key in understanding 
ourselves, the world, and ourselves-in-relation-with-the-world. Consider now the relation between 
information and the natural world. The question ultimately concerns the localisation of information: 
whether there can be information without informee, and whether information can be naturalised in the 
sense of the semanticisation of data (see Chapter 3). This is a concern for epistemology, and not a new 
one. There is a sense in which Kant, the German idealists, and the British empiricists were trying to do 
just that: to understand how we know what we claim we know about ourselves and about the external 
world (if there is one). 
 
So the technoscientist creates knowledge because it is through our conceptual and experimental tools (in 
short, our scientific practices) that we make up and systematize our observations (passive and active) 
about ourselves, the world, and ourselves-in-relation-with-the-world. 



THE PHILOSOPHY OF  INFORM ATION — AN INTRODUCTION 

 

 126 

 
The technoscientist embodies all these aspects of poiesis at once: the creation of crafts, of knowledge, 
and also of the situations we are in and that are subject to ethical evaluation. After all, many results of 
scientific discoveries have an important ethical dimension. We have the knowledge and the technical 
ability to build nuclear and chemical weapons – but should we? We have the knowledge and the ability to 
help women over 60 years of age get pregnant – should we? We can test drugs and cosmetics on animals 
– should we? And so on. 

9.6 Conclusion 

We have looked at how PI can illuminate existing debates in philosophy of science, including modelling, 
evidence and expert knowledge, before moving on to show how the understanding of the homo poieticus that PI 
yields extends interesting issues to address regarding science. You might be one of the many scientists interested 
in the conceptual design done by the sciences. But if you are a philosophy student, this does not mean that 
science has nothing to do with you. First, you will encounter science more often than you think. It is often the 
source of the conceptual change that calls for philosophers as conceptual designers, and there is also a lot 
philosophy can do with science: building concepts and methods together. The philosophy of information 
makes a contribution to this when it rethinks subjects such as model validation, evidence, or expert knowledge. 
One last thought about poiesis. The technoscientist creates knowledge, we said. But the philosopher is not very 
different, in a sense, because the philosopher creates concepts. In a lot of this book we have done conceptual 
design, which is philosophy. It is this poietic activity that unites ethical agents, technoscientific agents, 
philosophers, and in the end unites all of us: the poietic dimension inheres in every aspect of our lives.  

9.7 Exercises 

Find one or two articles in the news (e.g. bbc.co.uk/science), read them, and answer the following questions: 

1. What kind of language does the article use to describe research findings? Is it in terms of cause-effect 
relationships? Is it in terms of hypotheses? 

2. Can you retrieve information about the methods used from the article? 

3. If ethical issues are raised, is there any information about alternative methods to carry out the same 
research? 

4. Does the article mention the debate in which the research is included? Can you figure out whether there is 
support, dissent, or interests at stake from the scientific community? 

5. What do you think is the greatest achievement of science? Is it figuring out the movement of the planets, 
putting a man on the moon, or putting a smartphone – i.e. a mini computer – in every hand? 

9.8 Suggestions for the exercises 

1. Look for words like “hypothesis” and “cause” of course, but also look for closely related words like 
“produces” or “increases” and so on. Watch out for the word ‘link’. It is usefully vague, which makes it easy 
for the media to use. Every time you see it, ask yourself what it means, and what the evidence given for it 
could support. 
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2. For instance, does the article mention whether Randomised Controlled Trials or some kind of 
observational studies were conducted? 

3. For example, you might see an explanation that using a Randomised Controlled Trial was impossible, and 
this is why an observational study was conducted. 

4. Look for the names of research groups and funding bodies. Do they agree or disagree? 

5. Figuring out the movement of the planets is observational, discovering the world as it is. Putting a man on 
the moon is partly an attempt to discover nature as it is, by reaching parts of it we could not reach 
previously, but is also partly poietic, because we had to build the technology to make the journey. Putting a 
miniature computer in every hand is entirely poietic. Which do you think is most important, and why? 

9.9 Further reading 

Olsen, Pedersen, and Hendricks (2009), Russo (2012). 
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10. COGNITION 

Information processing and thinking 

 

10.1 Introduction: What is cognition? 

What is cognition? This is a difficult question to answer 
precisely. It is a question similar to what is life? or what is society? 
Answers to such questions have been proposed, but they 
barely affect how biology or sociology is done. For many 
scientific goals an intuitive, imprecise idea is sufficient. The 
same is true for cognition. Cognitive science does not need 
an absolutely precise answer. It can get by with prototypical 
examples, and several basic ideas for most problems. We will 
do the same here. Let us look at some of the simpler 
organisms that cognitive scientists investigate. 

Meet Portia from Australia (portia fimbriata), a kind of jumping 
spider, who is hunting another web-laying spider that we’ll 
call Orba. Most jumping spiders have amazingly good 
eyesight, unlike other web-laying spiders who rely mostly on 
senses of touch. Portia uses a very unusual and sophisticated 
tactic to hunt Orba. You see, Orba’s web is not only its 
(temporary) home and catch net; it is an extension of her 
sense organs. Orba can locate and identify various objects on 
the web based on the nature of the vibrations and the way 
the vibrations propagate along the strings of the web. Portia 
must climb the web of Orba, and thus she is bound to be 
detected. What is worse, Orba wouldn’t mind snacking on 
Portia herself. Here comes the strategy: Portia initiates 
vibrations on the web in an attempt to control Orba’s 
behaviour. Portia, of course, hunts many types of spiders, so 
she does not know what signals Orba can discriminate 
between and what behaviour they induce. So, Portia initiates 
a random sequence of vibrations and observes Orba. Once a 
signal has attracted Orba’s attention, Portia starts repeating it. 

Chapter 

10 

‘A human conversation depends on many 
processes which a scientist would call 
‘mechanical’, in the sense that only physical 
categories of cause and effect are needed to 
describe and explain them. … Now, until 
the chain of explanation reaches the 
nervous system, nobody minds its 
mechanistic flavour. True, it has made no 
reference to the meaning of what is being 
said; but this, we might say, would 
obviously be premature. Questions of 
meaning need not arise until we bring in 
the human links in the chain. … It looks 
as if the meaning of a message can be 
defined very simply as its selective function 
on the range of the recipient’s states of 
conditional readiness for goal-directed 
activity; so that the meaning to you is its 
selective function on the range of your states 
of conditional readiness. Defined in this 
way, meaning is clearly a relationship 
between message and recipient rather than 
a unique property of the message alone.’ 
(MacKay, 1969, pp. 20-24) 
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If the behaviour is not conducive to a successful hunt (or may lead to the reversal of the direction of the hunt), 
the random vibrations are initiated again, until a new behaviour-modifying signal is found.29 The goal is to make 
Orba come sufficiently close so that Portia can jump and stab the prey with her venomous fangs – yummy 
indeed! 

Scientists studying insect cognition get very excited by such behaviour because it hints at many cognitive skills 
we “higher” creatures possess – learning, representation, attention, memory, strategic pursuit of remote goals. It 
is, of course, too easy to speculate about the “mental life” of such creatures, and the use of such concepts may 
or may not be fruitful. Let us agree on this much: such creatures possess the rudimentary blocks of cognition 
and are of interest to cognitive scientists. They belong to the realm of cognition. We want to focus on another 
aspect of the story: the role of information.  

Let’s look at Orba first, because her skills are also quite remarkable. Orba’s small brain (400K – 600K neurons) 
can discriminate a significant set of distinct patterns of vibrations. The discriminating networks of neurons 
cause other networks to initiate distinct behavioural patterns. Some of these patterns are further modulated by 
other sense organs or by the internal metabolic state of the spider. There may be a pheromone discriminated by 
the spider’s olfactory system, or the spider may be hungry. Some behavioural patterns change the relation 
between the spider and the sources of the vibrations. This may help the spider position the source and initiate 
an attack or mating behaviour (or something else). The spider’s nervous system, together with the behaviour it 
generates, generates a level of abstraction (see Chapter 2) that structures its environment, and allows it to identify 
remote objects and let their properties influence its behaviour.  

Portia pushes such complex relations between the environment and the organism, mediated by the complex 
structure of neural connections in its brain, a step further. The brain, when recognizing the context of the hunt 

                                                                        
29 The behaviour of spiders from the genera Portia is actually more sophisticated. For example, they may approach the prey faster if wind 
disturbs the web, causing too much noise and blocking the vibration signal. Or, they may abandon the attack via the web, and using some of 
the observations from the web, initiate an aerial attack, dropping from a nearby branch at the optimal angle to avoid detection. See Wilcox 
and Jackson (2002) for more discussions. 

Figure 7: Jumping spider 
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for an unfamiliar spider, with the discriminatory capacities of the visual pattern recognition system, initiates 
behaviour (the random vibrations) whose consequences for Orba are monitored through the visual system, and 
adjusted (by switching to a repeated vibration pattern) when Orba’s neural control mechanisms are hacked. In 
the process, Portia generates a level of abstraction not only to the properties of Orba, but to the properties of 
Orba’s behaviour. Portia discovers a relationship between vibrations and the behaviour of the type of spider 
Orba is (according to the level of abstraction defined by the prey recognition mechanisms). The discovered 
relationship is “recorded” in new neural connections that link patterns in the environment detected by its 
sensors to behaviour. This is the result of the complex mechanism in the spider’s brain that “processes and 
integrates” the input patterns into new sets of distinctions and control relationships between senses and 
behaviour. 

We were careful not to use informational language in the description of the situation; however, we see that the 
important elements of an informational story are staring us in the face. The story suggests that thinking of the 
spiders as organisms extracting, processing and using information (but not only information) in their 
interactions with the environment allows us to understand their behaviour more fully. Indeed, the sensory 
system and neural pattern recognizers structure the environment into data sets based on the levels of 
abstraction. The feedback mechanisms use external objects as sources of information to which the data sets 
apply. When Orba senses vibrations as belonging to a stable datum coming from a given direction, and when 
Orba’s own movement reveals that the source of the vibrations is independent of her, then she can be 
described as extracting information from an external source and using that information to control her 
behaviour. When Portia relates the information about the behaviour of Orba to the information about the 
vibrations she produces, she obtains information about how Orba can be controlled. In this case, Portia can be 
said to convert one kind of information (with one set of data based on one level of abstraction) into a different 
kind of information (with a different set of data, based on a different level of abstraction). Portia is processing 
information and extracting latent information about the environment from limited information inputs. 

In this story, the informational description has semantic elements – elements concerning the meaning of 
information. In current debates in the philosophy of information, the question about the exact conditions 
leading to semantic information is not settled. It is not agreed upon whether the spiders would count as using 
semantic information. We will return briefly to this problem in the last section of this chapter. The nature of the 
meaning of information was discussed in more depth in Chapter 8. For now, it is sufficient to recognize that 
this level of cognitive organization is a contender for semantic information, even if the use of semantic language 
is only metaphorical. The fact that it is useful and revealing, even if metaphorical, suggests that cognitive 
systems are the right home for information. 

This is the attitude of the majority of cognitive scientists. Informational language is freely used in describing 
cognition in general and the operations of specific cognitive mechanisms. Little attention is paid to the precise 
conditions of use and the appropriateness of informational locutions. As philosophers, this should bother us. 
However, we should be careful not to throw the baby out with the bathwater. We should not end up at a place 
that denies the concept of information to cognitive science. If philosophy of information sterilizes the concept 
so much as to make it applicable only to a limited domain of human behaviour, it is more likely that the sterile 
philosophical theories will be made irrelevant, than that the language of cognitive science would change. The 
concept of information is simply too useful. 

So what is cognition? Let us leave it to cognitive scientists for the moment and offer a few attempts to define it: 
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Cognition refers to the mechanisms by which animals acquire, process, store, and act on information 
from the environment. These include perception, learning, memory, and decision-making. 
(Shettleworth, 1998)  

[A]ll organisms, including bacteria, the most primitive (fundamental) ones, must be able to sense the 
environment and perform internal information processing for thriving on latent information 
embedded in the complexity of their environment.... We then propose that by acting together, bacteria 
can perform this most elementary cognitive function more efficiently as can be illustrated by their 
cooperative behavior (colonial or inter-cellular self-organization).  
(Ben-Jacob, Shapira, & Tauber, 2005) 

Here the term cognitive refers to processes of acquiring and organizing sensory inputs so that they can 
serve as guides to successful action. The cognitive approach emphasizes the role of information 
gathering in regulating cellular function.  
(J. A. Shapiro, 2007) 

Such definitions are too vague, but they clearly demonstrate the importance of the concept of information. The 
relationship between information and cognition is still unclear (we will examine it in more detail in the following 
sections), but it is evident and undeniable. Cognition is the home of semantic information – we have the 
address. Now we need to open the door! 

10.2 The birth of cognitive science 

The birth of cognitive science was the result of an unhappy marriage between the Freudian and the Turing 
revolutions (see Chapter 2 and a different treatment of the importance of Turing in Chapter 13). Further, it was 
baptized by the early development of the mathematical theory of communication and cybernetics. As such, it 
was the first genuine natural science of the informational turn. By the 1930s, the revolutionary idea of Sigmund 
Freud, that most of the operation of the mind is the result of a hidden layer of subconsciousness, inaccessible 
to reflection, had run into difficulties. The difficulties were not related to the idea that there is something hidden 
in the mind, but to the way Freud and his followers in the psychoanalytic tradition had theorized about the 
subconscious. The problem was that psychoanalysis had grown so speculative and void of empirical content 
that it began to be regarded as unscientific. The scientific community was disillusioned by trying to understand 
the working of the mind and had converged on the idea that science has no business venturing into the mental 
black box. The only scientifically acceptable domain of investigation was human and animal behaviour. This 
was the birth of “behaviourism”, which between the 1930s and the 1950s was the predominant school of 
psychology. The behavioural approach achieved its most systematic prominence with the work of B. F. Skinner 
(Skinner, 1938; Skinner & Ferster, 1997), who never accepted cognitive science, claiming that ‘cognitive science 
is the creation science of psychology.’ (Skinner, 1990). 

It is important to note that early neural science was developing alongside both psychoanalysis and 
behaviourism. Before the turn of the twentieth century, the work of Camillo Golgi and Santiago Ramón y Cajal 
led to the careful description of the structure of the neuron and the hypothesis that the neuron is the basic 
functional unit of the brain. This work resulted in a shared Nobel Prize in Medicine in 1906. Unfortunately, 
neither Freud’s followers nor Skinner’s could connect the study of the neuron and the neuronal networks in the 
brain to psychology. It was not clear how to connect the neuron to the idea of mental or cognitive function. 
This is the first place where the informational approach became relevant. Already in the late 1930s and 1940s 
cyberneticists, like Norbert Wiener and Warren McCulloch, attempted to understand the functioning of the 
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mind on the basis of structural principles of control and information. McCulloch and Pitts (1943) developed 
the first functional model of artificial neural networks. Some of this work happened alongside the work of 
Shannon in information theory. But the conceptual marriage between the work of Turing, the work on formal 
theories of information, and the work on theories of neural science, took place with the work of John von 
Neumann, arguably one of the great scientific geniuses of the twentieth century. In a set of lectures in 1955 
shortly before his death, which became the book The Computer & the Brain, von Neumann (1958), suggested that 
the neurons in the brain may be interpreted as performing digital computation. Thus, Turing’s work on the 
theory of digital computation had direct significance for understanding the mind. The hypothesis was that the 
brain is a digital computer that is implemented by the brain’s neuronal structure. The model is as follows: the 
brain receives information from the environment through the senses. This can be regarded as input data to the 
system. The brain takes this input and processes it to produce an output. The idea of digital computation can be 
used as a framework for investigation of what happens between the inputs and the outputs. This is what was 
missing from behavioural theories, which focus only on stimulus and response relations – the inputs and 
outputs, in the new terminology. The brain, then, according to this new model, has a specific function – 
information processing – which has the effect of connecting stimulus to response, but now the function may be 
investigated on its own terms, as a computational process.  

This union of the theory of computation, ideas from the formal theories of information, and neural science, 
defined a new research program for investigating what happens in the black box of the mind that is rigorous 
and scientifically respectable, unlike the psychoanalytic tradition. The program initiated by von Neumann did 
not turn the tide of psychology on its own. It is important to mention the work of yet another twentieth 
century genius, Noam Chomsky. In 1959, Chomsky published a review of Skinner’s book Verbal Behavior 
(Skinner, 1992), which became better known than the book itself (Chomsky, 1959). In it, he outlined the major 
problems with behaviourism, and made a compelling case for the importance of studding the internal workings 
of cognition. This, together with Chomsky’s then recently published book Syntactic Structure (Chomsky, 1957) 
which revolutionized linguistics, became the last nail in the coffin of behaviourism, and opened the doors for 
cognitive science. Chomsky’s influence became more important for linguistics and empirical cognitive 
psychology, while Turing and von Neumann’s work became central for the emergence of the field of 
computational cognitive science and artificial intelligence. Chomsky’s work did not contribute directly to 
theories involving the idea of information, so it will not be discussed further here. 

The new science of cognition, fuelled by a renewed courage to venture inside the mind (and a good deal of 
enthusiasm), branched in two directions. One direction was the new link between psychology and neuroscience 
(which until that point was viewed as a branch of physiology). The simultaneous development of computer 
science led to the development of computational neuroscience. A second direction was the program of artificial 
intelligence (AI). Both branches made use of notions of information. Here, however, we shall focus on the 
foundational problems related to AI as they link more directly to the problem of the philosophy of information.  

10.3 Computationalism 

The program of AI has always had two goals: (1) to produce a machine that may exhibit general or human-like 
intelligence, and in the process (2) to reveal something general and fundamental about intelligence and 
cognition. The first goal is mostly related to engineering. Of course, it is deeply connected to philosophical 
problems related to what intelligence is, how it can be recognized (remember the discussion of Turing’s test in 
Chapter 2), and whether AI is achievable in principle. Here we focus on the second goal. 
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The von Neumann model quickly became entrenched in the work in AI. Target AI systems were organized as 
follows: the system is given an input state of the environment (e.g. the position of pieces on a chess board), the 
system performs operations on the input state (e.g. explores different combinations of moves and evaluates the 
new possible states of the board), and selects a desired output operation (e.g. a next move). In other words, the 

von Neumann architecture for computation follows the pattern: inputprocessingoutput. This model was 
translated into a general model of cognition: the cognitive system receives an input from the environment; it 
then processes the input, and selects an action based on the input, current state, and its history. This is 
described as the “horizontal architecture” of cognition (Fodor, 1983), and follows the general three-stage 

sequential pattern: perceivethinkact. The cognitive system takes information from the environment (i.e. 
perceiving), the information is processed (i.e. thinking), and an action is produced. For this reason, this model is 
also described as the “information processing” model of cognition, as the most important stage of the model, 
thinking, is associated with the processing of the information.  

As a matter of fact, the information processing, horizontal model is more general than early AI assumed. We 
shall see alternative versions below. Early AI adopted a more specific principle, described as the “physical 
symbol systems hypothesis” (Newell & Simon, 1972, 1976).30 The input to the system is given as a collection of 
symbolic expressions depicting the state of the environment, and the system transforms the expressions by 
following rules for transformation. Then, using methods of heuristic search31, it explores the space of possible 
representations of the environment with symbolic expressions to determine the best outcomes of its actions 
compatible with the input expressions. This guides the system in selecting the next action. Consider the 
problem of chess again. In a chess-playing system the environment is the state of the chess board. It is 
represented by some data structure (say, an 8x8 matrix of figure positions – a kind of symbolic expression). The 
goal is to generate a move that will lead eventually to a checkmate. The system would search the space of 
possible sequences of moves that will lead to a win. Such a space, however, is hyper-astronomically large. The 
system must by necessity find ways to reduce its explorations dramatically. It will explore only a limited number 
of possible game developments: it will use rules of thumb, databases of known games, even information about 
opponents. These are all search heuristics. In the process, the system will use many axillary data structures 
(symbolic expressions) that do not represent the environment. The difference between the chess-playing app 
on your cell-phone and Deep Blue, the system that beat the world champion Garry Kasparov, is in the 
heuristics and axillary data structures. 

To explain further, in the current language of philosophy of information, the hypothesis of early AI was that 
cognition is analyzable at a specific level of abstraction, distinct from its physical implementation. This idea 
proved a methodological maxim for investigating the operation of actual cognitive systems, outlined most 
succinctly by the computational neuroscientist David Marr (1954-1980). In his posthumously published, highly 
influential book Vision: A Computational Investigation into the Human Representation and Processing of Visual Information 
(Marr, 1982), Marr recommends that cognitive systems in an organism, such as the visual system, should be 
investigated at three levels: “function”, “algorithm”, and “implementation”. The level of function is a level of abstract 
description of what task the system has to perform. Thus, the chess-playing system has to identify an optimal 

                                                                        
30 The “physical” in the physical symbol system hypothesis is the idea that intelligent, cognitive systems, as physical systems situated in the 
world, are intelligent because they implement (as hardware) the operation of an abstract symbol system (as software). 
31 The space of possible representations of the environment can be astronomically huge. For example, if the environment can be described 
by 400 binary parameters (a one mega-pixel image from a cheap digital camera is described by 3,000,000 binary parameters), then there will 
be 2400 possible representations of the environment. This is more than number of elementary particles in the visible universe (primarily 
photons and neutrinos). It is impossible in practice for a physical symbol system to explore all representations. The search needs to be 
guided by heuristics (rules of thumb, roughly) that only explore a limited set of possibilities. The idea of heuristic search was central for the 
practicality of physical symbol system hypothesis as proposed by Newell and Simon. 
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(or very good) move from the current state of the board. The level of the algorithm is a description of the 
specific procedures and representations (i.e. expressions) that the system uses to compute the function. At this 
level one specifies how the chess board is represented, and what steps the system takes to discover the optimal 
move. When one programs a chess-playing system, this is the level at which one works. The level of 
implementation is a description of how the physical system implements the steps of the algorithm. This could 
be a description of how a computer is built, or (as it is interesting for cognitive systems) it could be a 
description of how the neurons in the brain decode and perform the algorithms. Such three-level analysis is 
natural for human-designed software systems, but Marr’s claim is that it is necessary for all cognitive systems, 
including biological ones. Our goal now is to see how the idea of information enters the picture. Later, we shall 
look at objections to this program of AI, and we should be able to evaluate whether informational ideas transfer 
to the suggested alternative approaches to cognition (and AI). 

The idea of information enters at two places. One is related to the input, the other to the processing. It is 
assumed that the input to perception is not just anything, but some information about the environment. 
Consider the pattern of photoreceptors on the retina of the eye. Photons are reflected from an object in the 
environment; as a congruent stream they enter the eye and are focused on the retina. The variation of incoming 
photons is imprinted on the patterns of photoreceptors, in such a way that structure from the object is 
preserved. We can think of the photoreceptors as cells in a linear array, and their variable excitation levels as the 
values of the cells. If we think of the possible excitation levels as being of discrete values, the array can be 
viewed as a digital array of bits. This array of bits, then, is correlated with the objects in the environment. The 
upshot is that if a vase is in the visual field of the eye, one pattern of bits is present. If a dog is in the visual field, 
a different pattern is present. Following this analogy, it is possible to think of the relationship between the retina 
and the objects in the environment in terms of Shannon’s model of communication (see Chapters 2 and 3). 
The environment is a source of information, the retina is the receiver of information, and the intermediate medium 
(the photons) is the messages.32 (As we shall see below, this model of perceptual input is criticized by some, such 
as Gibson, but in early AI it was considered the natural model of cognitive input.) 

The cognitive system, physically, is set up in such a way that its perceptual system enters into an appropriate 
“informational relation” with external objects by taking advantage of natural physical regularities (e.g. the 
physics and geometry of light). In virtual artificial systems, such regularities are assumed in the background, 
while one works directly with inputs. The model assumes that any semantic role of the internal data structures is 
specified by the “informational relation”. If a data structure is regarded as representing a dog, it is because of its 
connection to input patterns that track dogs in the world. The actual work of the AI researcher and the 
cognitive scientist, however, should be focused on what happens after: processing.   

This is primarily why the model is called the information processing, rather than the “information acquisition”, 
model of cognition. 

Now let us turn to the question of processing. Remember that von Neumann’s suggestion, connecting Turing’s 
theory of computation to neuroscience, was based on the idea that the network of neurons in the brain 
implements a computing device working on the sensory input. Strictly speaking, this is a tall order. To say that a 
system implements a computing device is to say that the natural dynamics of the system (whatever happens 
internally and as a result of external influences) is sensitive only to distinctions in the inputs – what we have 
called data – and any other perturbations, somehow, get absorbed or filtered out. It is not that the dynamical 

                                                                        
32 The precise location of the receiver, naturally, can be moved further into the brain. It could be a part of the visual cortex, in which case the 
retina will be a part of the message. 



THE PHILOSOPHY OF  INFORMATION — AN INTRODUCTION 

 

135 

behaviour of the system – its behaviour over time – is entirely controlled by the distinctions in the inputs; many 
interesting things may happen in the system. But the system keeps the distinctions from the inputs, and 
anything that happens as a result, separate from other influences. For example, neurons in the brain engage in 
active metabolism, consuming vast quantities of nutrients and oxygen. Yet, the idea is, these metabolic 
processes of the neurons (what they do to stay alive) are kept separate from the computation processes (what 
they do to transmit information). 

If we think of the internal working of the system as a computing device, then we can think of the system as a 
device that processes the input (i.e. data) to generate some output. The idea of “information processing” is 
really the idea of “data processing”, with the added assumption (at least in the case of cognition) that the data 
are associated with the external environment.  Marr’s three-level analysis assumes that the story of cognition 
includes a level (the level of algorithm) that is entirely based on data processing. 

There are two things we should notice about the way the idea of information enters the early AI program. First, 
while both Shannon’s communication model (see Chapter 2) and the idea of data processing (called 
information processing) are present, the actual mathematical theory of information does not play a central role. 
Second, the observation that cognitive information processing is really data processing makes it more difficult 
to understand the role of semantic information for cognition. The question is: how can performing processing 
operations on input data to produce output data involve the idea that the data is meaningful? Where is the 
meaning coming from? The chess-playing system operates on various abstract data structures, such as matrices, 
that may be regarded as representing chess pieces on a board by us, the designers. But why should they be 
regarded as chess pieces by the system? Is there a sense in which their representing chess position makes a 
difference for the actual information processing? It seems that semantics cannot come from data processing 
alone. It must come from somewhere else.  

A possible place for semantics is the relation between the input and the environment. This is more difficult to 
see in the case of a chess-playing system, as chess is an abstract game. Consider again a system for computer 
vision. These were the kinds of systems Marr was studying. The input of such a system is given by a camera 
that digitises an image with a CCD chip. A horse is grazing in a field; light reflected from the house enters the 
camera, exciting electrons on the chip and little zeros and ones are produced. It could be argued that the 
meaning of the data inside the system comes from the causal process connecting the horse to the input. (We 
looked at causal theories of meaning more closely in Chapter 6.) Can this suffice as an account of semantics for 
the information processing model? Not really! The problem is that the internal operations of the system depend 
only on the state of the input. The causal origin of the input is actually irrelevant for the operation of the 
system. The system does not care that the input was generated by a horse. This is because there is no sense in 
which the connection between the horse and the image can influence the operation of the system independent 
of the input. The problem is not of causality alone. It springs from the entrapment of the information 
processing system between its inputs and outputs. 

10.4 The connectionist alternative 

In the 1980s there (re-)emerged a different architecture for the operation of cognition: the “connectionist 
architecture”. This attempted to stay closer to the physiological structure of the brain as a network of neurons. 
It was based on the idea of an “artificial neural network”. As we noted earlier, theoretical investigations of 
biologically-inspired network systems date back to the 1930s, coming from early work in cybernetics. The 
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1980s, however, brought new techniques for constructing such neural networks that can accomplish complex 
tasks.  

The basic idea of a neural network (as used in AI research) is a network of elements called neurons, which are 
connected to other neurons by links. Each neuron may have a bunch of input links from other neurons, and a 
bunch of output links to other neurons. Neurons that have no input links are called input neurons, and neurons 
that have no output links are called output neurons. Each neuron can be excited to a given level, and how excited 
a neuron is depends on the input links it receives. We think of the links as channelling excitation from one 
neuron to another, and each link has a weight that determines how much excitation it propagates to the next 
neuron. 

Typical neural networks are organized in layers (see Figure 
8).  On one side is the input layer; the middle contains the 
hidden layer(s); and the other side is the output layer. The 
network operates by setting the input neurons to a pattern 
of excitation values, and letting the excitations propagate to 
the output. The network, thus, connects patterns of input 
to patterns of output. Such a network can be used for all 
sorts of tasks. For example, the network may classify 
pictures into conceptual categories – the input layer may 
encode a bitmap, and the output layer may encode 
concepts, such as “horse”, “house” “tree”, etc. The 
amazing thing is that relatively simple networks can make 
very subtle pattern recognitions.  

In the 1980s, people like James McCelland and David 
Rumelhart discovered methods for building networks that 
can accomplish practical tasks. If the links between 
neurons are fixed, the propagation of excitation may be modulated by specifying the weights of the links. The 
behaviour of the network can be “programmed” by changing the weights. The methods involve training a 
neural network on inputs that produce known outputs, and modifying the weight, using special algorithms, so 
that the network gets better and better at the task. When the network gets quite good at the training set (which 
may be quite large) it also performs correctly on unknown inputs. It turns out that such networks exhibit many 
types of learning and performance behaviour seen in biological cognitive systems. Such observations have been 
used by some to argue that cognitive systems are essentially special kinds of neural networks, and the theory of 
neural networks should be regarded as the foundational theory for cognition (Churchland, 1992). This strong 
view is generally not accepted, but it is acknowledged that artificial neural networks are an important research 
tool, not only for AI, but also for biological cognitive science. In any case, we will not venture deeper in the 
foundational debate about the scope of connectionist networks. Instead, we should consider how the idea of 
information connects to this cognitive architecture. 

What has changed in the move from early AI to connectionism, and what has remained the same? The general 

pattern of the horizontal architecture has remained the same. The structure is still inputprocessingoutput. The 
change is in the way we conceive of processing. Thus, the relation to information as input being correlated to 
the environment is essentially the same. Neural networks are not naturally physical symbol systems (although a 
symbol system may be implemented on a neural network). They process information in a different way. The 

Figure 8: A neural network 
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main difference is that they distribute the information along the entire network, or large parts of it, and operate 
in parallel. For this reason, they are often described as performing “parallel distributed processing” (PDP). In 
the typical programmed symbol systems, information-carrying data structures are clearly specified. Expressions 
are local structures, internally organized by rules of syntax. The transformation rules operate on local properties 
of the expressions. It is usually clear from the outset (at the design level) what stands for what – what carries 
what information and how the information is encoded. This is exactly what is not readily available in neural 
networks. Whatever internal structure emerges to act as information carrier in a neural network, emerges in the 
process of training, and needs to be discovered post factum. In fact, there is an entire field of theoretical neural 
network research dedicated to the analysis of how information is encoded and processed in PDP systems.  

Informational analysis of PDP systems has taken two approaches, one purely syntactic and another with some 
semantic elements. The first approach is based on applications of Shannon’s mathematical theory of 
information (or more advanced extensions) to the analysis of the operation of neural networks or to the 
learning algorithms that train the networks. For example, measures such as mutual information can be used to 
understand whether individual neurons perform similar or different tasks in the information processing. Such 
measures can be used to adapt network. Similarly, such measures can be used to understand the relation 
between input and output neurons, with the idea that, in a well-trained network, the information the outputs 
contain about the inputs is maximized. This approach usually relies on other statistical tools that are used in 
conjunctions. It is safe to say that, while information theoretic ideas are useful in such analysis, they do not have 
an indispensable or even central role, beyond the probability theory hidden in them.  

The second approach attempts to provide semantic analysis of the operation of the neural networks. Unlike the 
classable symbolic AI, where the carriers of sematic and representational content are clear, in PDP cognitive 
architectures the carriers of content are more difficult to identify. The neural network researcher and cognitive 
scientist Paul Smolensky (1986) argued that in a PDP architecture it is possible to have information processing 
and representations, only at a “sub-symbolic” level. The sub-symbolic level is identified using abstract 
mathematical techniques, where the activation state of the network is interpreted as a vector in a 
multidimensional vector space, and regions in the space are interpreted as the content carriers. Smolensky has 
developed a sophisticated theory for this analysis called harmony theory. The theory has clear connections to 
Shannon’s theory of information. Some philosophers, like Jerry Fodor (1997), have criticized this semantic 
analysis of the PDP architecture because it is not clear what causal role such “semantic carriers” have in the 
working of the cognitive system, as they exist only in the abstract mathematical spaces. As a result, Fodor 
thinks, they have no real explanatory function. 

Harmony theory, like Shannon’s theory of information, is not a genuine semantic theory. It allows us to 
understand how information is processed, but not where the information comes from. There is no claim that 
neural networks, as cognitive architectures, operate with information because they may be analysed effectively 
with the formal techniques of information theory. Semantic information, if present at all in the architecture, still 
depends on the relation between the input and the environment. In this sense, connectionism is no better than 
symbolic AI. The theory, whether harmony theory or some alternative, is still only a theory of data processing. 
There have been alternative approaches to cognition, however, that have taken a different approach to the 
input problem.  
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10.5 Embodied cognition 

Remember Orba, the spider who was about to become lunch. Remember we said that Orba’s web was a part 
of her sensory apparatus. Can we realistically expect to understand the operation of Orba’s cognitive system if 
we surround the brain with an imaginary box, call everything outside “the environment”, call everything inside 
“the cognitive system”, and call all transitional processes “inputs” and “outputs”? There has been a growing 
movement of cognitive scientists, philosophers and AI researchers who think that such a box would be 
arbitrary and scientifically unfruitful. They believe that, except for specially designed cases, like a chess-playing 
program, the cognitive system is closely dynamically connected to the environment and the physical 
characteristics of the body of the organism. Any scientific explanation of the working of the cognitive system 
must include an essential contribution of the body and the dynamical interaction of the body with the 
environment. Some stronger versions of this approach literally claim the environment is a part of the cognitive 
system (Brooks, 1991; Chemero, 2009; Thelen & Smith, 1994). What this boils down to is a rejection of the 
horizontal architecture of cognition. This is replaced by an embedded architecture. In the embedded architecture, 
cognitive processes are not trapped between the screens of inputs and outputs. They enter into more complex 
relationships with the world. 

The earliest more systematic attempt to understand the mind as an embedded system was developed in 
the Phenomenological tradition between the 1920s and the 1960s, by philosophers like Martin Heidegger, 
Maurice Merleau-Ponty, and Hans Jonas. These philosophers did not have a direct influence on the 
development of cognitive science, but in recent years there has been a renewed interest in connecting 
foundational problems about cognition to ideas from the Phenomenological tradition. At the moment, 
such investigations make little use of the ideas of information, so we will not discuss them further. 

10.5a Ecological approach 

The earliest attempt to develop a theory of embodied cognition (although the term was not used at the 
time) influential in cognitive science is the so-called ecological approach to psychology developed by 
James J. Gibson (1986). Gibson rejected the horizontal architecture and the “information processing” 
model. In his theory of perception, he insisted that the bi-directional relation between the environment 
and the organism is central for understanding how organisms perceive their worlds and how perception 
controls action. The idea of information was absolutely central for Gibson’s theory of perception; much 
more so than it was for the early AI model. As we saw above, in the early AI model, information enters 
the system only through the input. The natural counterpart in psychology is the theory of senses. In early 
post-behaviouristic psychology, perception was viewed as the process where the world acts on the senses 
(sets the inputs) and then the brain analyses the inputs to generate an internal representation of the 
environment (it processes the information). This was the basis of Marr’s account of perception. Gibson 
rejected this view. He argued that perception is an active process, where the organism extracts and 
acquires information from the environment by tracking invariances and systematic changes in the sensory 
array – the stream of excitations a sense organ receives from the environment. In perception the organism 
constantly maintains dynamic contact with the environment and latches onto and utilizes the invariances 
directly. The acquisition of information, and thus perception, is not something that passively happens to 
the organism – it is not an input – but it is something that the organism does, actively, through work – it 
is a kind of output. We can therefore call Gibson’s model the information acquisition model of cognition. 
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Let us look at Gibson’s conception of information more closely. First, Gibson rejects the Shannon 
communication model (which is not the same as Shannon’s formal theory of information discussed in 
Chapter 2) as appropriate for understanding how information comes from the environment to the 
organism. According to the Shannon communication model, a source sends a message to a receiver, and 
then the receiver tries to recover the (probability distribution for the) state of the source based on the 
message and history of other messages. But the environment doesn’t send us messages. There is no sense 
in which the cognitive system receives something from the environment and then focuses only on the 
received object. The point of the message, after all, is to encapsulate the information, so that you can put 
it in your “pocket” and go. Second, in Gibson’s conception of information, the source of the information 
is not independent of the agent. Because the invariances on the sensory array are directly linked to the 
actions and uses the agent has of its environment, the agent perceives the objects directly as affording 
certain actions. Space is not just a geometric void; it is something that affords unrestricted movement. 
Space is different for a land animal and for an aerial animal. A branch is perceived as graspable for a 
primate, “landable” for a bird, and edible for an elephant. Gibson coined the term affordance to capture 
this idea. Perception, thus, gives us not objects but affordances. Affordances are organism-dependent. 
Thus, the sources of information for organisms – what may be regarded as data in the world and the 
levels of abstraction at which the data is analysed – depend on the organism and its interaction with the 
environment. 
 
Where is information for Gibson? This question does not have an easy answer. On the one hand, Gibson 
talks about information being in the environment. The light coming to the eye contains information 
about the world. On the other hand, information is only present in the sensory array when the organism 
extracts it dynamically from its interaction with the environment. The best way to understand Gibson 
consistently is to interpret the first claim as about potential information, and the second claim about actual 
information. The environment has certain dynamically changing distinctions, which can propagate to 
dynamically changing distinctions in the organism by various media, such as light. The distinctions are 
then channelled to the behaviour of the organism – they make a difference – in a way that the behaviour 
modulates the sensory array and allows the organism to identify more precise distinctions. Only some 
distinctions are, of course, relevant for the organism; only those are potential information. The potential 
information gets realized when it is integrated into the organism’s behaviour. Actual information requires 
an organism while potential information does not.  
 
Gibson seems to be holding (implicitly) a view of information reminiscent of a pragmatic theory of 
information. Pragmatic theories have been formulated by (MacKay, 1969; Nauta, 1970; Vakarelov, 2010). 
Pragmatic theories of information hold that semantic information requires an agent interacting with an 
environment in a goal-directed way, and that information modulates the agent’s behaviour. The semantic 
aspect of information depends on the role information states play in goal-directed behaviour and on the 
way they connect to the external environment. In contrast, in the model assumed by early AI, only the 
connection between the states of the environment and the input is relevant for semantics. In a pragmatic 
theory the connection is important, but it is not the only thing. Accounts of semantic information that 
rely only on a connection to the environment have one major problem: too many phenomena in the 
environment are connected. For example, if an input to a system is correlated to air temperature, the 
input is also correlated to air pressure. This is because temperature and pressure are correlated. Thus it is 
not clear, looking only at the correlations, what is the correct connection: is it to temperature, or is it to 
pressure? In a pragmatic theory, the internal role may discriminate between the two connections because, 
either, pressure and temperature affect the organism in different ways and thus involve different 
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behaviour, or the behaviour may be insensitive to the distinction and thus the level of abstraction of the 
information state may not distinguish between pressure and temperature. The aim here is not to go into 
any depth discussing the different theories of meaning for relational and pragmatic theories of semantic 
information. Instead, it is to observe that in a conception of information appropriate for an embodied 
architecture, different opportunities exist for understanding the natural place of semantic information. 
The syntactic level of analysis of the algorithmic level forces all semantic distinction to be somehow 
channelled through syntactic relations. The embodied architecture can take advantage of the dynamical 
relation of the organism and the environment to offer opportunities for an alternative conception of 
semantic information.  

10.5b Dynamical approach 

Some proponents of embodied architecture insist that we need an alternative descriptive framework for 
cognition that moves away from the idea of information processing and towards dynamical systems theory (Beer, 
2000; Gelder, 1998; Thelen & Smith, 1994). Dynamical systems theory is a mathematical framework commonly 
used in physics. It describes a system in terms of a collection of variables (again, a kind of level of abstraction) 
and differential equations among these variables. The possible values of the variables form a state space for the 
system and the change of the behaviour of the system in time is represented by trajectories in the state space (see 
9). The differential equations, essentially, determine the trajectories. Dynamical systems theory offers new 

Figure 9: The famous Lorenz attractor is an orbit in a state space. 
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methods for describing dynamical phenomena that are based on how the system flows through its state space, 
and on how the flow changes with the change of the initial condition of the system. For example, some 
collection of states may act as attractors in their neighbourhood. When the trajectory of the system enters near 
the attractor, it tends towards the attractor no matter where it came from. An attractor, therefore, may be used 
to explain why the system exhibits some stable behaviour. Figure 9 shows the famous Lorenz attractor. 
Sometimes, the flow of trajectories about a point may diverge in two different directions, a bit like a river 
splitting in two. Very small differences in the initial conditions of the trajectory may result in big differences in 
behaviour. There are many other related concepts definable in a dynamical system that are difficult to define 
otherwise (other examples include chaos, periodic orbit, strange attractor, etc.) 

There are two places where the use of dynamical systems theory in describing cognition differs from the other 
approaches, including the symbolic and connectionist, but also the ecological: first, of course, the use of new 
methods; but also, second, the liberal choice of variables – the variables used to describe a system may be 
arbitrary. For example, a variable may be the average mass of the system, the distance between two objects, the 
period of a repeated movement, as well as more typical variables, such as the position of an object, the 
excitation level of a neuron, or the frequency of light at a photoreceptor. A dynamical system theoretic 
description usually looks for the smallest number of variables needed to describe the interesting aspects of 
some behaviour (without prejudice about what these variables are), and regards the discovery of such a small set 
as explanatorily important. In many interesting cases of cognitive behaviour, the variable may track complex 
aggregate properties of systems that include parts of the body and environment. These observations have been 
especially important for proponents of the embodied program. The fact that the effective description of the 
cognitive system involves variables that amalgamate the brain, body and environment, suggest that cognition 
cannot be shoved in a brain, while the world is reduced only to inputs to the brain and a space for actions. It is 
argued that cognitive behaviour cannot be effectively understood by looking at the brain, body and 
environment as distinct units connected by input/output relations. Instead, cognition emerges as the joint 
interaction, a joint dynamical dance, of the different components. 

Some proponents of the dynamical approach to cognition aim explicitly to eliminate concepts such as 
information or representation from the study of cognition. A movement, describing itself as radical embodied 
cognition, holds that all cognitive phenomena, including high-level thought and language, may and should be 
investigated only with dynamical systems theory (or similar non-informational techniques (Chemero, 2009; 
Gelder, 1998). A more moderate movement insists that many lower-level cognitive tasks may be completed 
without information and representation, but some representation-hungry problems require representation and 
symbolic processing (Clark, 1998). Examples of such problems include: high-level abstract reasoning, reasoning 
about non-existent objects, or about alternative states of affairs (counterfactual reasoning). 

Much of the debate between the different movements of embodied cognition centres on the idea of 
representation. However, the idea of information is carried along. We will not go further into the question 
about whether and how representations enter into cognition. The question of representation will be explored in 
more detail in the next chapter. The question about information is important, however. One problem with this 
debate is that the notion of information is too readily connected with the notion of symbol processing used in 
early AI. Thus, the objection is to “information processing” as used in the version of the horizontal architecture 
exemplified by the physical symbol system hypothesis. As we saw in the discussion above, the notion of 
information is more general than, and fundamentally distinct from, symbols. An important alternative is not 
considered: that a more general notion of information and “information processing” may be needed to 
investigate the operation of complex dynamical systems, the kind of systems we expect to see in cognitive 
agents. 

http://en.wikipedia.org/wiki/Lorenz_system
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In dynamical systems research there is a growing interest in informational analysis of the operation of cognitive 
systems (Williams & Beer, 2010). Such research spans both artificial intelligence and neuroscience. The research 
is based on mathematical techniques from more advanced versions of information theory than that developed 
by Shannon. Such techniques use various information measures to track how information enters the system, 
how it propagates among different parts of the system, how it is integrated from and split into different 
informational streams, and how it modulates the system’s behaviour. The approach uses information theoretic 
concepts to define operation principles for such systems: for example, entropy minimization (or maximization), 
redundancy reduction, or encoding optimization.33 The idea is to understand how the system learns from the 
environment and manipulates or transforms its input by regarding the system as performing such informational 
operations. The lesson should be that the idea of information is not only compatible with the dynamical 
approach, but is actually essential for understanding the complex dynamical systems inside the brains of 
cognitive agents. The idea of information promises to bridge the gap between the lower-level analysis of 
neurons and dynamics and the higher-level world of the mind. 

10.6 Conclusion 

In this chapter we looked at how the concept of information has been relevant for the investigation of 
cognitive architectures. We saw that the birth of cognitive science was deeply entangled with the concept of 
information. The first systematic attempts to investigate cognition abstractly were closely related to the study of 
AI based on symbolic operations. Such an approach conserved cognition as a computation process and thus 
there was a natural connection between cognition and information processing. Alternative cognitive 
architectures not based on symbolic processing were also proposed. We considered connectionism and several 
types of embodied approaches. We observed that the idea of information plays an important role in such 
alternative approaches. Attempts to dismiss the importance of information for cognition rely on a narrow 
conception of information related to symbol processing and digital computation. An important lesson of PI has 
been that the idea of information is more general than the idea of digital computation. It is this more general 
and more fundamental idea of information that is most important for the study of cognition. In a sense, 
information as a fundamental concept becomes more important once cognitive science moves away from the 
symbolic approach. This is because the symbolic approach only really needs the narrower idea of digital 
computation. 

Another lesson of this chapter was the difficulty of capturing the idea of semantic information in cognitive 
architectures. We saw that both the symbolic and the connectionist, horizontal architectures cannot provide 
basic theory of semantic information for cognition. Semantic information gets presupposed but not explained. 
Only the embodied approaches have a hope of explaining semantic information as a natural phenomenon. We 
did not offer such an explanation. One of the most exciting live debates in the philosophy of information has 
to do exactly with the question of how semantic information emerges in cognition. We saw some of this debase 
in the chapters on natural information and meaning, and we will re-examine the problem of meaning in the 
following chapter.  

We will end with a short note on a few important omissions that have seen much interest in PI and cognitive 
science. In this chapter we did not discuss evolutionary accounts of semantic information in cognition. Such 
accounts attempt to use the idea that biological systems evolve based on mechanisms of natural selection. Such 
evolution allows formulation of teleological explanations of biological (including cognitive) organization, that is, 

                                                                        
33 Such measures are important for harmony theory. In neuroscience, such measures have been proposed for investigation of cognitive 
phenomena since the 1960s (Barlow, 1961). 
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explanations where parts of the systems are regarded as having a proper function for the organism. For example, 
the proper function of the heart is to pump blood (and not to make pumping noises.) We can say this because 
the heart was selected for this function (and not the other). Some philosophers have suggested that this idea can 
account for the phenomenon of semantic information, where the proper function is to represent.  

We also did not discuss the role of information in the empirical and theoretical studies of modern neuroscience. 
This is a complex and fascinating subject that demands a chapter of its own. Stay tuned for future editions of 
this book for such a chapter. 

10.7 Exercises 

1. Research how bees navigate their environment. What aspect of bees’ behaviour can be described in 
informational terms? Do you think that such a description adds something useful? 

2. What do you think are the most important differences between human and animal cognition? Are the most 
obvious differences also the most important? Which of the identified differences are informational in 
nature? 

3. Imagine a simple example of a chess-playing machine. What would make you say that the information 
processing by the system contains some meaning? What would make you suspicious that it contains 
meaning? 

10.8 Further reading 

For a simple introduction to philosophical problems of cognition see Andy Clark (2001). For important 
readings on architectural and representational debates about cognition John Haugeland (1997). 
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11. MIND 

Consciousness, intentionality, and information processing 

 

11.1 Introduction 

Philosophy of mind has historically dealt with, roughly, 
three issues: rationality, intentionality, and consciousness.  
The problem of rationality focuses on what it is to be 
intelligent and to behave rationally. A great deal of progress 
has been made in our understanding of rationality by 
studying cognition, the topic of the previous chapter. So in 
this chapter we will turn our gaze towards intentionality 
and consciousness (although as we’ll see, the three are 
often interconnected).  

The problem of intentionality focuses on how our 
concepts come to be “about” the things they represent, 
how words are associated with meanings, and what it is for 
us to come to have an understanding of those meanings. 
The problem of consciousness is the most difficult of the 
three, perhaps because it is so difficult to even say what it 
is. Consciousness is often described as a kind of awareness 
or higher-order sense of one’s identity and perceptual or 
mental experiences. Another way to put it is that our 
experiences have a certain qualitative, subjective, or 
personal aspect – they have a “phenomenology”. Nagel 
(1974) most famously described our consciousness of 
being in a state of mind as the experience of “what it is like 
to be” in that state. 

In this chapter, we will cover three representative examples of how the information turn has influenced debates 
in philosophy of mind. The first example focuses mainly on intentionality and is probably the most famous. It 
is known as Searle’s Chinese Room Argument. Searle (1980) develops a thought experiment in which he 
purports to show that how we understand the meanings of symbols or words – what we will call semantic 
understanding – cannot simply amount to the processing of information (where information processing is 

Chapter 

11 

‘Consciousness is the biggest mystery. It 
may be the largest outstanding obstacle in 
our quest for a scientific understanding of 
the universe…It still seems utterly 
mysterious that the causation of behavior 
should be accompanied by a subjective inner 
life. We have good reason to believe that 
consciousness arises from physical systems 
such as brains, but we have little idea how 
it arises or why it exists at all. How could 
a physical system such as a brain also be 
an experiencer? Why should there be 
something it is like to be such a system? 
Present day scientific theories hardly touch 
the really difficult questions about 
consciousness. We do not just lack a 
detailed theory; we are entirely in the dark 
about how consciousness fits into the 
natural order.’ (Chalmers, 1996) 
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understood in terms of a horizontal architecture, i.e., input – processing – output). Although the thought 
experiment received widespread attention and is still taught in philosophy of mind courses today, it rests on an 
impoverished understanding of information processing (even given the architecture Searle describes). So one 
purpose of presenting this example is to correct this by helping the reader understand why this pervasive 
argument doesn’t work, and we will do so by actually appealing to aspects of information processing itself.  

In the second example, we will look at how information processing has been used to formulate a view about 
what consciousness is. One of the earliest standard views is the computational theory of consciousness, which 
claims that conscious experiences, like the pain of a toothache or the pleasure of a massage, are just instances of 
the right kind of algorithm being implemented on the right kind of input. We will look at an argument that 
suggests this information-processing view of consciousness (the computational view) is wrong. The purpose of 
presenting this example is to expose the reader to one of the sharpest criticisms that consciousness is mere 
computation. 

The third example turns our attention to a more recent development in the study of consciousness. The main 
issue is about whether – and how – you can know that you are not a zombie. We don’t mean whether you are 
not one of the “undead” as portrayed in popular culture – of course you’re not that kind of zombie. What we 
mean by zombie here is a philosophical zombie: a human that is functionally and behaviourally equivalent to 
you or I, but has no consciousness. One of the main philosophical issues about zombies is whether you can 
know you aren’t one of them, and in particular, how you would know that. How do you know that, unlike 
zombies, you are conscious of things?  We will look at an argument by Floridi (2005a) which says that, contra 
Dretske (2003), it is possible to explain how we know this. 

One last point before we proceed. Philosophy of mind has been dramatically impacted by the computational 
notion of information processing. This is because it allowed the introduction of questions that could not have 
been asked before. We can now ask how concepts that are precisely defined in the theory of computation, like 
the concept of an algorithm, relate to questions about different aspects of the mind (be it rationality, 
intentionality, or consciousness). That’s not to say, however, that there haven’t been nuanced developments in 
our understanding of information processing, especially when it comes to the relevance of cognitive 
architecture (see Chapter 10). The point is just that the computational notion of information processing is a 
tried and true point of departure for tracking various dialectics in the philosophy of mind. 

With that said, the reader is asked to have some basic familiarity with the theory of computation, which can be 
found in Chapter 10. Although it is not required, it is also helpful to have some idea how algorithms would 
work by manipulating strings.  

11.2 Semantic understanding 

Consider the following story: 

“Alice went golfing on a hot sunny day in California. She was wearing shorts and a tank top, but to her 
dismay, she forgot to bring sunblock. At the end of the day, Alice went to the store to pick up some lotion 
with aloe vera to help relieve some of the pain. In a few days, the back of her neck and her shoulders began 
to peel.” 

Did Alice get sunburnt while golfing? The natural answer is “yes”. But how do we come to this answer? If you 
go back to the story, you'll notice that it does not explicitly say that Alice got sunburnt. We get the answer by 
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“reading between the lines”. That is, we use our understanding of the meaning of phrases like “hot sunny day”, 
“tank top”, “forgot to bring sunblock”, “aloe vera”, “began to peel”, etc., to infer that Alice must have got 
sunburnt. This inference is so natural and easy to us that we hardly notice we do it. Our ability to make such 
inferences is attributed to the fact that we have semantic understanding i.e. we understand the meanings of 
words and sentences. 

Despite such ease, however, we do not have a clear understanding of how we make such inferences. Given the 
information in the story, the inference appears to be next to trivial to us, but it turns out that building 
information-processing machines to make the same inference is non-trivial.  

One of the earliest develops in artificial intelligence (AI) research was to build programs that can “read between 
the lines”. Roger Schank and his associates for example, built a program called SAM, which stands for Script 
Applier Mechanism (Schank & Abelson, 1977).  SAM is given a story like the one above and then is asked to 
answer some comprehension questions. The idea behind SAM is that it can extract information that is not 
explicitly contained in stories by following scripts – data structures that contain stereotypical information about 
a situation. For example, SAM might have a restaurant script that divides into more specific scripts called tracks: 
the fast food track, the buffet track, the French restaurant track, etc. The French restaurant track may be 
divided into scenes such as entering, waiting to be seated, being seated, selecting drinks, etc. SAM can then 
“read between the lines” when asked questions about going to restaurants because scripts help fill in missing 
details.    

What is interesting about how SAM “reads between the lines” is that it does so just by manipulating strings of 
symbols. SAM does not understand what the letters, punctuation marks, and words are supposed to represent. 
SAM is not programmed to know how to associate a string of symbols, like the ones that make up the words 
“teacup” or “tea”, to the things that are referred to by the string of symbols i.e. teacups and tea as we find them 
in the world (notice that we used quote marks to indicate we mean the word or symbol, not what the word 
refers to). What SAM is programmed to know is how to associate a string of symbols, again like the string of 
symbols “teacups”, to other strings of symbols like “are objects that can hold tea”. In other words, SAM is a 
syntactic machine. It is programmed to recognize and make inferences about strings of symbols at the syntactic 
level. SAM is not programmed with semantics, the meanings of certain strings of symbols like “teacup”. 
Nevertheless, despite being just a syntactic machine, SAM appears to exhibit a great deal of behaviour that we 
tend to associate with semantic understanding. 

So a natural question that arises is whether genuine semantic understanding can be exhausted by the right kind 
of syntactic manipulations like that of SAM. (The reader may recall that a brief discussion about the relation 
between the syntactic and semantic level was had in section 10.5.) It seems plausible to think that our 
understanding of a story is explained by the claim that we also have SAM-like scripts and that our minds are 
algorithms that make use of them on a syntactic level. It’s this kind of thinking that inspired John Searle to 
develop an argument that no algorithm, no matter how sophisticated its capacities in manipulating syntax, will 
amount to semantic understanding. We turn to that argument now.  
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11.3 Searle’s Chinese room 

To appreciate the argument that semantic understanding is not just the running of the right program, we shall 
briefly discuss the kind of architecture on which programs like SAM can be based. This architecture we 
describe is associated with the fathers of modern day computing: Alan Turing and John von Neumann. 

We can think of SAM, and just about any digital computer, as having three parts: executive unit, store, and 
control. The executive unit is nowadays often called the central processing unit (CPU) and it is the part that 
does the actual work: it reads and writes from storage space. In SAM, the executive unit is the microprocessor 
in the computer where the SAM program is running. In the storage space we find the other two parts, the store 
and the control. The store contains the data structures that the executive unit manipulates and updates. Today, 
we think of files as being part of the store. In SAM, the store contains the scripts, the story under consideration, 
and the latest input question. The control is the program that guides the behaviour of the machine. In modern 
terms, the control consists of the applications that are currently running. In SAM, the control is the list of 
instructions that direct the machine to interact with the scripts and input in a certain way that eventually leads to 
the output answer.  

Using this kind of architecture, the philosopher John Searle has developed an argument for why programs like 
SAM cannot be true understanders (Searle, 1980).  He has us imagine the following kind of system, which he 
calls “The Chinese Room”. Here, we have a large closed room with two slots, one for input and the other for 
output (notice that this is the horizontal architecture we discussed at the beginning of this chapter and in 
Chapter 10). The system has three components like the ones we described above. John Searle is in the room 
and acts as the executive unit. It will be an important fact that John Searle does not speak Chinese. The store 
consists of a warehouse of scripts written in Chinese, a story written in Chinese, and an input question that is 
also written in Chinese. Lastly, the system also has the control, which is a list of instructions written in English 
that tell Searle how to treat the structures in the store. 

The system begins to run when a story is input into the store. Searle, who lives inside the system, effectively 
implements the SAM program by a process of pattern matching. He does not understand any of the Chinese 
characters in the input, but the instructions, which are written in English, tell him what to do with them. By 
following the instructions, Searle eventually writes down a string of Chinese characters that the instructions tell 
him to send through the output. Searle, not knowing any Chinese, has no idea that he is expanding a story that 
happens to be written in Chinese. To him, he is just boringly manipulating characters that he does not 
understand. 

Searle (the real one, not the one we are imagining in the machine!) claims that no understanding occurs when 
the Chinese Room implements SAM. The executive control (the imagined Searle in the room) does not 
understand what he is doing. And surely, it seems ridiculous to say that the instructions and the books of 
Chinese characters add understanding – they are just ink marks! In fact, it doesn’t matter whether the Chinese 
Room is implementing SAM or some other program. Searle’s point is that because any program can be 
implemented in this manner (this happens to be a provable fact about the kind of computer architecture we’ve 
described, which we discuss below), and because no understanding whatsoever occurs in the room, no genuine 
understanding can be had in virtue of running a program.  

To be clear, the point of the argument is not to show that the kind of information processing in the Chinese 
Room is not important to semantic understanding. In fact, Searle thinks that humans are a kind of computer, 
and so since humans are intelligent and have semantic understanding, some computers do too. Searle’s point is 
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that intelligence is not the result of merely instantiating the right computer program – he contends there must 
be more to it than that. The Chinese Room, and computer programs in general, are simply doing syntactic 
symbol manipulation: there is no mastery of semantics or understanding of what the symbols mean. 

11.4 Response to Searle 

There have been numerous responses to Searle’s line of argument (you will find further reading at the end of 
this chapter). We shall discuss a particular version of a response which says that, although no component of the 
Chinese Room has semantic understanding, the room as a whole does (also known as the systems response). In 
particular, we will briefly discuss what has been called the virtual machine response. 

The virtual machine response is motivated by the very sort of architecture we’ve covered above. Recall that the 
storage space is divided into two parts, the control and the store. The control can consist of a particular 
program that runs on the input data in the store. We could in principle build a machine that does not have an 
executive unit (CPU), but such a machine would only be able to run that one program on the given input. By 
introducing an executive unit, we can build a computer that can simulate any other computer whatsoever! For 
this reason, we call them universal machines. Your modern day computer is a universal machine: you just need 
to give it a description of the program you want it to run, and it can simulate it for you – no need for you to buy 
a new machine every time you want a new program! The program that is being run by the universal machine is 
referred to as the virtual machine for exactly this reason. 

This feature of computers leads to an interesting and relevant fact: a universal machine will be in two states at 
any one time. One of the states will be of the universal machine as a whole; the second state is that of the 
machine it is simulating i.e. the state of the program that it is running. For example, the universal machine 
might be in state that tells the executive unit what to do next, given the state of the virtual machine. Why is this 
interesting? It turns out that some things that are true of the universal machine are not true of the virtual 
machine that is being run. For example, what counts as input is different for the two machines. For the 
universal machine, the entire storage space (which includes both the store and the control) counts as input. For 
the virtual machine, however, only the store counts as input – the data in the control is, in a sense, the virtual 
machine. So both the universal and the virtual machine are on the same physical device, but they have different 
inputs. For example, the virtual machine might be an adding machine. It takes as input two numbers in the 
store, and then returns the sum of those two numbers. The corresponding universal machine however, is not 
an adding machine. Its input is not just two numbers, but also the code for the adding program, which it then 
simulates. So there are different truths about these two machines. 

Why is this fact about universal machines interesting?  Since we imagined the Chinese Room to have the same 
kind of architecture as the computing machines we discussed (it has an executive unit, a store, and a control), 
the same lessons about the universal machine transfer over to the Chinese room. In fact, in the exact same way 
that a universal machine runs a virtual machine, the Chinese Room runs a virtual machine: a Chinese speaker!  
Although the input to Searle (the one in the room) is a list of instructions that tell him what to do with Chinese 
symbols that he does not understand, the input to the Chinese Room is entirely different. The inputs to the 
Chinese Room are Chinese questions. 

To make the point even clearer, imagine that the virtual machine is called Soo Lin. If you ask the Chinese 
Room what its name is, it will respond with, “My name is Soo Lin.” Searle, who is playing the role of the 
executive unit, would never say his name is Soo Lin. For one, his name is not Soo Lin! But more importantly, 
this is because Searle is never asked what his name is. This is because, as we just pointed out, the input to Searle 
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is different to the input to the Chinese Room. Moreover, it is not just the inputs that are different, but the 
outputs as well. Searle put together a string of Chinese characters that he does not understand, but Soo Lin, the 
Chinese speaker that is the virtual machine, does understand Chinese.   

We can turn this around. Suppose we were to ask Soo Lin a question in English, a language which Soo Lin does 
not understand. Searle obviously does understand English, and so he will understand the input. However, 
because Searle is the executive unit, he will look up in the instructions what he should do with English 
questions. The instructions will tell him to write down some Chinese characters and then output them. What 
Searle doesn’t know, since he doesn’t understand Chinese, is that he has written down a message that says, in 
Chinese, “I'm sorry, I do not understand English”.  That’s exactly the kind of response we would expect from 
Soo Lin!   

In sum, the point of the Virtual Machine Response is that the Chinese Room argument rests on an 
impoverished understanding of computation. It is perfectly fine to admit that no component of the machine 
has understanding, in the same way that no component of the Chinese Room has understanding. The question 
about whether there is semantic understanding going on is about the virtual machine, the running of the 
program.  It seems quite plausible that Soo Lin has semantic understanding of Chinese, since “she” will do just 
as well as any human Chinese speaker would.  So it seems that semantic understanding might be the result of 
running the right program after all.34 

11.5 Is consciousness the result of information processing? 

We have covered an argument by Searle which attempted to show that semantic understanding cannot be just a 
matter of the right kind of information processing, and we also showed that Searle’s argument can’t be right if 
we have a more complete understanding of computation. We will now look at an idea that conscious 
experience is the result of information processing.    

What do we mean by consciousness? Philosophers have in mind what is called phenomenal or experiential 
consciousness. A person is said to be experientially conscious if there is something that it is like to be them.   
Our experiences of colour, sounds, the awareness of the thoughts in your head, etc., are examples of 
experiential consciousness. There is something it is like to have these experiences. In fact, this kind of 
consciousness is a state you can be in even when you’re asleep, for there is something to be like for you to have 
a dream! However, paper, pencils, and pens, do not have experiential consciousness because there is nothing 
that it is like to be them. 

But what about machines? Could they ever be conscious? This is a difficult question. Maybe if machines run 
programs that are complex enough, they will be conscious. Then again, it seems that no matter how complex 
we make a machine, it won’t come to have experiences of pain or pleasure, for example. Making things more 
complex doesn’t seem to answer the question. 

The philosopher Tim Maudlin has argued that consciousness cannot arise merely in virtue of running the right 
program, regardless of complexity (Maudlin, 1989).  For experiential consciousness to occur, more than mere 
computation is required. Maudlin’s argument has the structure of a reductio ad absurdum. That is, Maudlin 
assumes (for the sake of argument) that consciousness arises by simply running the right program. He then 

                                                                        

34 If you are interested in learning more about this debate, have a look at (Copeland, 1993). 
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goes to show that this assumption leads to absurdity. Hence the assumption must be false. Consciousness is not 
just the mere running of the right program (no matter how complex). 

The argument starts with the claim that experiential consciousness of a human at a particular time is determined 
entirely by our brain state at that time. It also seems possible for creatures with non-human brains to have 
experiential consciousness as well. In that case, an instance of their experiential consciousness will be 
determined entirely by their physical state at that time. But what if two creatures (either human or non-human) 
have the exact same physical states? Maudlin suggests that when two creatures are going through the same 
physical states, then they have the same conscious experiences through that period (if they are having conscious 
experiences at all). Maudlin calls this the Supervenience Principle.  

Maudlin suggests that the Supervenience Principle is very plausible. However, when we combine this principle 
with another condition, we end up with some very strange results. What is this other condition? It is motivated 
by the reductio assumption. Consider an instance of human experiential consciousness, such as your experience 
of a toothache. The reductio assumption says that experiential consciousness is merely a matter of running the 
right program. That means that your conscious experience of a toothache is a matter of your brain running a 
“toothache algorithm”. More generally, whenever the “toothache algorithm” is being run, whether by you or 
something else, there is a conscious experience of having a toothache going on. Maudlin calls this the 
Sufficiency Condition. 

To see how the Supervenience Principle and the Sufficiency Condition lead to conflicting results, we need to 
explain a few more facts about computation. One interesting fact is that computation is medium independent. 
That means that the running of a program or algorithm is not determined by the medium that is doing the 
running.  The ADD algorithm, for example, can be run by silicon chips arranged in the right way to manipulate 
electrical inputs (where the values of bits are high and low voltages). But the ADD algorithm isn’t limited to 
silicon chips! We can build machines made out of other things that still implement the ADD algorithm. We 
could use a mechanical system (made out of metal gears, for example) that uses punchcards to encode the 
instructions for adding two inputs. Or even better, consider yourself: you are not made out of silicon or metal 
gears, and yet you can implement the ADD algorithm (and you might have done so by trying the exercise 
above). The point is that it doesn’t matter what a system is made of when we say that it is running an algorithm.   

So medium independence in the context of information processing means that it doesn’t matter what a system 
is made of when it comes to running algorithms. But now consider the claim that your conscious experience of 
a toothache is a matter of running a “toothache algorithm”. That means that there is another system, made of 
something other than the stuff of your brain and body, that can run that same “toothache algorithm”. In fact, 
this other system could be a very complicated arrangement of water troughs! It could be built so that a trough 
full of water encodes for 1, an empty trough encodes for 0 and the running of an algorithm is a matter of trolley 
that runs back and forth along a line of troughs, following instructions on how to fill and empty troughs 
(instead of writing down a 1 or 0, it fills a trough with water by using a hose, or it momentarily tips the trough 
over to empty it). Let’s give the name Klara to this other system that runs the same “toothache algorithm”. 

The Sufficiency Condition (that a run of the “toothache algorithm” is sufficient for producing a conscious 
experience of a toothache) now gives us a slightly strange result. Every time Klara runs the “toothache 
algorithm”, Klara will experience a toothache; or better, the virtual entity that Klara generates will experience a 
toothache (recall our discussion of Soo Lin and Searle above). This is somewhat odd because neither Klara nor 
the virtual entity have any teeth. Though strange, that doesn’t actually matter. We can imagine that a toothless 



THE PHILOSOPHY OF  INFORMATION — AN INTRODUCTION 

 

 151 

person could still have conscious experiences of toothache – it is well documented, for example, that people 
can experience pain in limbs they have lost (known as phantom pain).    

Still, it may seem a little strange that a system like Klara can have conscious experiences. After all, it is a system 
just made of a line of troughs and a trolley that runs back and forth filling and emptying troughs. But 
strangeness alone is not enough reason to rule out this possibility. Klara’s dynamics, the sequence of moves that 
the trolley makes filling and emptying troughs, might be very intelligent, even though we do not recognize it as 
such. So to refute our assumption, we need a result that is truly absurd. 

To do that, Maudlin builds a very dumb version of Klara through a series of reconstructions. We can skip over 
the details here.35 The main idea is that every newly constructed machine will either: i) undergo the same 
physical activity as the previous machine, and so by the Supervenience Principle will have the same conscious 
experience as the previous machine; or ii) run the same program as the previous machine, and so by the 
Sufficiency Condition will have the same conscious experience as the previous machine. The resulting system, 
called Armature, is simply a series of troughs lined up on a hill from top to bottom and a trolley that rolls down 
alongside the troughs. Armature is a system that runs the same “toothache algorithm” as Klara, except that the 
troughs have been rearranged so that for a particular run of the algorithm, no troughs need to be filled or 
emptied. It is like an instance of running the ADD algorithm where all the appropriate 1s and 0s for the answer 
have already been written down, but now the 1s and 0s are troughs full or empty of water, and the algorithm 
that is being run is the “toothache algorithm”.  

The truly absurd result we get with Armature is that it (or the virtual entity being generated) will experience a 
toothache just as Klara would, except that, where Klara seems to be some kind of intelligent system, Armature 
is just a trolley rolling down a hill alongside a series of troughs! Something has gone wrong, but what? At each 
step of the reconstruction from Klara to Armature, either the Supervenience Principle or the Sufficiency 
Condition was used. In order to say that Armature is not experiencing a toothache, we must give up one of 
these. Maudlin suggests that we have to give up the Sufficiency Condition because the Supervenience Principle 
is more plausible. Giving up the Sufficiency Condition, however, means that conscious experiences like 
toothaches are not just the result of running the right program. Consciousness, according to Maudlin, is not just 
the result of information processing. 

11.6 How do you know you're conscious? 

By the time you finish reading this sentence, you’ll be aware that you’re conscious. So we’ll take it as a given that 
you know you’re conscious. That much seems obvious. But now here is a rather difficult question: how do you 
know that you’re conscious? What is it about consciousness that tells you that you are conscious? Is there 
anything you can be aware of, either externally or internally, that helps you tell that you are not a zombie? After 
all, a zombie is functionally equivalent to you. It walks and talks just like you. It responds to pains and pleasures 
just like you. It may even think it’s conscious just like you. But it isn't.  

Fred Dretske (2003) argued that there is no way for you to know that you know you are conscious. Again, the 
claim isn’t that you don’t know you are conscious. Of course you know that. What Drestke is trying to figure 
out is whether there is a way of knowing that, unlike zombies, we are conscious of things. His answer is that 
there isn’t: there is nothing you are aware of that tells you that you are aware of it. So it may be impossible to 
answer the question “how do you know you are not a zombie?” 

                                                                        

35 If you wish to look up the details, they are in the original paper (Maudlin, 1989). 
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Luciano Floridi (2005a), however, argues that it is possible to explain how it is that you know that you are a 
conscious agent and not a zombie. To do this he develops a reliable and informative test called the knowledge 
game. There are four different versions of the game, each building on the previous, but we can skip ahead to the 
fourth version to get the general idea. 

The game involves three agents that are offered five pills. Three of these pills don’t do anything, but two of 
them make the agents completely dumb. Now suppose the first agent, Bob, takes one of the pills. A few 
moments later Bob is then asked which pill he took, i.e., whether he is in a dumb state or a non-dumb state. Is 
there a way for Bob to know this? 

We can rule out a few things. First, in line with Drestke, we’re ruling out that Bob has some special kind of 
access to his own mental states – what Bob is aware of does not come with a special internal label that tells him 
what he’s aware of. So Bob can’t come to know which pill he took that way. Second, Bob can’t know which pill 
he took based on externally inferable information – all the pills look the same. And no one else has taken a pill 
yet, so he can’t rule out the possibility that the other two agents took the dumb pills (at least then he could see 
that they suddenly went dumb and infer he took an innocuous pill). Nor can Bob know which pill he took by 
some kind of “bootstrapping” i.e. the pills don’t have any properties other than making an agent dumb, so they 
don’t make Bob feel any different than an innocuous pill would.  

In short, there is no way for Bob to know or infer that he is in a dumb state. But now Bob can make at least 
one inference. Since he cannot rule out the possibility that he is in a dumb state, Bob will say that he is ignorant 
about which state he is in. For all he knows at that moment, he might be in a dumb state or he might not be. 
Now after Bob makes this inference, there are two things that could happen. Either Bob’s report fails to trigger 
any further reaction in himself, or his report spawns a series of counterfactual reasoning. If Bob’s report doesn’t 
trigger any further reactions, then Bob has failed the test and thereby lost the knowledge game. Bob remains in 
his state of ignorance about whether he is in a dumb state or not. 

In the second case, Bob hears his own report that he is in a state of ignorance. This leads him to the following 
kind of reasoning: “If I'd taken the pill that makes me dumb, I wouldn't have been able to report that I was 
ignorant about which state I'm in.  But I did report it and I know that I did because I heard myself speak and 
saw the guard acknowledge my report. The only way I could have reported my ignorance is if I hadn't taken the 
dumbing pill. So, now I know that I can't be in a dumb state, which means I have to be in a non-dumb state. 
The only way I'm in a non-dumb state is if I took a non-dumbing pill, so I know that I took the non-dumbing 
pill. Since I know all of this, I can go back and revise my previous report that I am in a state of ignorance, 
because I am no longer in a state of ignorance and I know this. Moreover, by having gone through this whole 
process of reasoning and passing the test, I can also report, correctly, that I am in a state of knowing how I know 
both that I didn't take the dumbing pill, and that I know I didn't take the dumbing pill.” In sum, shortly after his 
report on his state of ignorance, Bob corrects himself and reports, accurately, that he is not in a dumb state (and 
that he knows this, and that he knows how he knows this). 

Let’s think about what it takes for Bob to be able to correct himself and thereby pass the test. Bob has to be 
able to identify that it was he who was the agent reporting his state of ignorance of his state in question, and that 
it was he who was playing the game and that the guard asked him the question after he took the pill. So Bob can 
pass the test only if he recognizes that it is himself in the game. The same is true for any agent that plays the 
game: they have to be able to capable of this subjective reflection. 
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Why does passing the test turn on the capacity of subjective reflection? Because that is a hallmark difference 
between zombies and humans. Subjective reflection not only requires the capability of understanding semantics 
– something that zombies also have – but it also requires consciousness. An agent that isn’t conscious doesn’t 
have an experience of what it is like to be in a certain mental state, and isn’t aware of its own personal identity 
and mental experiences. If Bob were a zombie, he wouldn’t be conscious, which means he wouldn’t have the 
capacities needed to correct himself after reporting his state of ignorance, which means he would fail the test. 
So passing the test – and thereby winning the game – means you have to be conscious.36  

In sum, by developing the knowledge game, Floridi has argued that, contra Dretske, there is a possible way of 
knowing that we aren't zombies. Of course, there may not be such dumbing pills around for us to use (and they 
probably wouldn't pass any ethics boards anyway). But that's not the point. Rather, what we wanted to figure 
out is whether there is any way of telling the difference between zombies and conscious agents like ourselves. 
The knowledge game demonstrates that there is a possible way of obtaining such information. 

11.7 Conclusion 

We considered three examples where the notion of information has impacted developments in philosophy of 
mind, particularly with respect to intentionality and consciousness. Searle’s Chinese Room thought experiment 
attempts to establish the claim that semantic understanding cannot be merely a matter of running the right 
program. But we showed that Searle’s argument is based on an impoverished understanding of computational 
information processing. This example clearly demonstrates how philosophy of information enriches our 
understanding of the mind. Here’s another way to think about it: from the perspective of information, the 
criterion for something to exist is not that it has to be immutable, as a physicalist metaphysics might suggest. 
Rather, existent things are potentially subject to interaction, even if they are intangible! (Floridi, 2011c). That is 
precisely what the response to Searle highlights. When one presents questions to the room in Chinese and 
receives answers in return, one is not interacting with Searle (who is inside the room), or the books in the room, 
or the system as a whole. Rather, one is interacting with a virtual entity, Soo Lin, and it is the virtual entity that is 
answering the questions. The fact that this is a viable solution to a difficult problem in the philosophy of mind 
is testament to the fruitfulness of the perspective of philosophy of information. 

In the second example we looked at Maudlin’s argument that conscious experiences are not just the 
implementation of a “toothache” algorithm (or some other “experience” algorithm). The way to understand 
what is meant by “the running of a program” or “the implementation of an algorithm” in this example is in 
terms of a kind of information processing that is computational. So one might ask whether something like our 
response to Searle would work in the case of Maudlin. The fact that Klara behaves like an intelligent system 
might suggest that there is a virtual mind having an experience of a toothache. But then again, we can build 
Armature, a system just like Klara, except all it does is roll down a hill alongside a series of troughs. It is hard to 
see how a virtual mind could be generated by simulation if there is nothing intelligent happening in the system. 
So the problem of understanding conscious experiences continues to be an open one. 

That said, the third example, Floridi’s knowledge game, demonstrates that it is possible to explain how we 
know that we are conscious and not zombies. This counters the pessimism of Dretske, who thought that there 
is no way for us to know how we know that we are conscious. Floridi’s knowledge game gives us such an 
informative test, even if such a test is difficult to carry out in the real world. 
                                                                        

36 Note that you might fail the test for other reasons besides not being conscious, e.g. you might not have the means to speak. So failing the test 
doesn’t mean you aren’t conscious. The knowledge game is a sufficiency test (much like Turing’s Imitation Game): winning the game means you have 
the feature in question – consciousness – but losing the game doesn’t tell you anything.  
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11.8 Exercises 

1. Searle’s argument uses a particular kind of computational architecture consisting of an executive unit 
(CPU), a store, and a control. In the chapter on cognition, we considered other architectures of information 
processing. How much does Searle’s argument rest on the particular architecture that he picked? Could he 
try to make the same argument using a different architecture? And would that avoid the objection we gave, 
or would it still be pretty much the same? 

2. Suggest how one might respond to Maudlin’s argument, particularly the “truly absurd result” we presented 
at the end. Hint: in the final remarks we suggested that it is “hard to see” how a virtual mind could be 
generated when nothing intelligent appears to be happening in a system (i.e. no physical changes are taking 
place). Might there be a reason to doubt our intuitions here, given that the “intelligence” of Klara resides in 
something other than physical activity? 

3. Floridi’s knowledge game turns on the notion of subjective reflection. This means he has a certain 
conception of what it means to be conscious: “a state in which the agent and the I merge and ‘see each 
other’ as the same subject.” Can you think of other convincing ways of characterizing consciousness that 
do not require the notion of subjective reflection, or does it seem like this is an essential feature of any 
characterization of consciousness? For example, is it possible for an agent to experience the painfulness of 
pain without recognizing that it is her pain? 

11.9 Further reading 

Copeland (1993) is a great introductory text that goes into more detail than this chapter. The original paper 
(Maudlin, 1989) is significantly more difficult, but will reward study. Penrose (1989) is a very interesting text that 
still inspires controversy. For a comprehensive overview of the computational approach to rationality, 
intentionality, and consciousness, see Rey (1997). Chalmers (1996) is a good way into the debates surrounding 
consciousness and zombies. 
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Part V: Formal foundations 
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12. LOGIC 

Logic in PI and information for logic  

 

12.1 Introduction 

When we study logic, our primary aim is to separate good 
arguments from bad arguments. If, for instance, Alice 
promises that if Bob does the job he will get a reward, Bob 
can, once he has completed the job, argue that he should 
get his reward. In that case, Bob used a good argument 
form called modus ponens. Similarly, if Carol knew about 
Alice’s promise, but also heard Bob complain that he didn’t 

get a reward, she could conclude that Bob didn’t do the job. Here, Carol used the good argument form called 
modus tollens. Yet, if Carol had heard Bob brag about not having done his job, and thus concluded that Bob 
didn’t get a reward, her reasoning would have been fallacious. She would have used the bad argument or fallacy 
called denying the antecedent. 

But why is this last argument not acceptable, and what makes good arguments good? Here, several answers are 
possible. One answer is that good arguments are just those arguments whose conclusions cannot be false 
whenever their premises are true, whereas bad arguments leave open the possibility of the conclusion being 
false. Thus, for instance, Bob’s failure to complete his job together with Alice’s promise that he would get a 
reward for doing the job doesn’t make it impossible for Bob to get a reward for some entirely different reason. 

The view that arguments are good because (and only because) the truth of their conclusion is ensured by the 
truth of their premises is the primary (but not the only) criterion we use to evaluate arguments. Equally often 
we will say that an argument is good because the information in the conclusion of that argument was already 
part of the information in the premises. A good argument is an argument whose conclusion does not “go 
beyond” its premises. Both criteria hint at an important feature of good arguments. The truth-based criterion 
emphasises the fact that if we only reason with good arguments, we will never step from true premises to false 
conclusions; the information-based criterion emphasises the fact that we can use arguments to extract 
information from what we already accept. 

Within the philosophy of information, logic can both be a topic and a part of our methodological toolbox. In 
this chapter we will highlight both these aspects. After a brief prelude in which the key technical notions are 
explained, we first relate logic to the three core methods of the philosophy of information (minimalism, 

Chapter 

12 

‘Logicians have apparently failed to relate 
their subject to the most pervasive and 
potentially most important concept of 

information.’ (Hintikka, 1973)                                                      .                                                                                                                                       
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constructionism and levels of abstraction), and then take a closer look at the previously introduced idea of logic 
as a tool for information-extraction. 

12.2 Prelude 

This prelude aims to introduce the minimum amount of formal logic that is required for getting through this 
chapter. It is built around the introduction of a number of key concepts in formal logic.37 

By a formal language, we mean a schematic language that is introduced by, first, specifying what the logical and 
non-logical symbols of our language are, and, second, by enumerating the different ways in which these 
symbols can be put together (so-called formation-rules) to obtain the set of all the admissible expressions of our 
language. We often refer to these expressions as well-formed formulae. 

Example 1: The language of propositional logic. In a propositional language, the only non-logical symbols are atomic 
propositions of the form p, q, r …, while the standard logical symbols of propositional logic include:38 and, or, 
implies, and not. Using these building blocks, we say that: (i) all atomic propositions are well-formed formulae; (ii) 
if A and B are well-formed formulae, then A and B, A or B, and A implies B (sometimes written as if A then B) 
are well-formed formulae; (iii) if A is a well-formed formula, then not-A is also a well-formed formula; and (iv) 
nothing else is a well-formed formula. 

Once we have these guidelines, we can always find out whether or not a given string of logical and non-logical 
symbols is a well-formed formula of the language of propositional logic. This is the language that allows us to 
say things like “A and B” or “(A and B) implies C”. Specifically, we could use a propositional language to express 
our example from the introduction, for the promise made by Alice has the form “Bob does the job implies Bob 
gets a reward” where both “Bob does the job” and “Bob gets a reward” are atomic propositions. 

Example 2: The language of first-order logic. A predicate language relies on more than one type of non-logical 
symbols, namely predicates and relations of the form P, Q, R …, variables of the form x, y, z …, and constants 
of the form a, b, c …. For the logical symbols, we only need to add the quantifiers All and Some to the logical 
symbols we already introduced for the propositional language. Using these building blocks, we say that: (i) when 

P is a predicate and α is either a constant or a variable, then Pα is an atomic formula;39 (ii) when P is a predicate, 
x a variable, and A(x) a formula that may or may not contain x, then Forall x A(x) and Some x A(x) are also 
well-formed formulae; and (iii)  if A and B are well-formed formulae, then A and B, A or B, and A implies B are 
well-formed formulae; (iv) if A is a well-formed formula, then not-A is also a well-formed formula; and (v) 
nothing else is a well-formed formula. 

The language of first-order logic allows us to say things we couldn’t yet say in our purely propositional language. 
We can, for instance, say that “All computers have processors,” (Forall x (Cx implies Px)) or that “Some 
computers are fast” (Some x (Cx and Fx)). 

Once we have a formal language, we can exploit the precise way in which we defined that language to do at 
least three things. First, we can say what it means for a formula of a given language to be true (or false); second, 
we can say what it means to be able to obtain (or deduce) one formula from one or more other formulae; third, 
we can use features about truth or about deducibility to give a general account of what it means for some 

                                                                        
37 Readers who would like to know more are encouraged to take a look at the further reading section at the end of this chapter. 
38 It is customary to use symbols to refer to the logical symbols. Here, we stick to the natural language counterpart of these symbols. 
39 Generally, when R is an n-ary relation, Rα1…αn is also an atomic formula. 
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formula A to follow from a (possibly empty) set of formulae B1 …, Bn. Formulae that are deducible from an 
empty set of formulae are called theorems; formulae that are always true are said to be valid. 

When we say that logic explains what it means for a formula to be true or false, we do not mean that logic alone 
can help you to determine whether or not a certain formula is true. Instead, it will show you how, given the 
structure of a language, the truth or falsity of a formula can be reduced to the truth or falsity of the components 
of that formula. To that end, logicians give a definition of truth-in-a-case that exploits the systematic structure of a 
formal language by, for instance, stipulating that “A and B” is true in a case c if and only if “A” is true in c and 
“B” is true in c, or by stipulating that “not-A” is true in c if and only if “A” is false in c. Such rules can then be 
used to systematically reduce the question of the truth of a formula A to questions concerning the truth or 
falsity of the atomic formulae that occur in A. Finally, the truth of an atomic formula in a case is something that 
cannot be further reduced. This means that, at least for our purposes, we can think of cases as things that decide 
which atomic formulae are true, and which are false. 

In many ways, the existence and construction of proofs form the focal point of logic. By a proof, we mean a set 
T of formulae B1 … Bn that (a) are organised in a list, tree, or other type of structure, where (b) a possibly empty 
subset S of T is taken to be given (the premises of the proof); (c) all other formulae in T are obtained by applying 
certain rules to the formulae that are also in that list; and (d) a single formula A in T is called the conclusion. 
One standard form for a proof is just an ordered list of formulae, where the first n formulae are the premises, all 
other formulae are obtained by applying rules to the formulae higher up in the list, and the final formula is the 
conclusion. Here’s an example based on our Bob and Alice example: 

(1) Bob does the job implies Bob gets a reward (premise) 

(2) Bob does the job     (premise) 

(3) Bob gets a reward    (concluded from lines 1 and 2 by modus ponens) 

Whenever we have such a list, we say that A can be deduced from S. Furthermore, when this S is empty, we 
will say that A is a theorem (it can be deduced from zero premises). 

Obviously, if we use sensible rules to deduce A from S, having a proof will be sufficient to judge that A follows 
from S. Another way to think about what it means for A to follow from S refers to the notion of truth: if all 
premises in S are true, then A will be true as well. This analysis of follows from is usually called truth-preservation, for 
it guarantees that the truth of the premises carries over to the truth of the conclusion. Given our prior analysis 
of truth, we can make this idea of truth-preservation more precise by stipulating that A follows from S if and 
only if: 

(Cases) Every case where all members of S are true is also a case where A is true. 

Here too, when S is empty, we say that A is valid (it is true in all cases). Both our accounts of “follows from” 
are meant to capture the same connection between premises and conclusions. Specifically, we care about the 
following two features. First, we want our proofs to be sound, which means they have to preserve truth; second, 
we want our rules for the construction of a proof to be complete, which means they have to capture all instances 
where truth is preserved. 



THE PHILOSOPHY OF  INFORMATION — AN INTRODUCTION 

 

159 

Logicians do care a lot about soundness and completeness, and spend a lot of time proving that certain systems 
indeed have these properties. Fortunately, the details of soundness and completeness proofs belong in an 
advanced logic course, and are well beyond the scope of this chapter. We will mainly be concerned with the fact 
that by being more or less restrictive about what counts as a case, we can tell several different stories about what 
it means to follow from. Basically, the following inverse relationship holds: if we are fairly restrictive about what 
counts as a case, more things will follow from our premises, whereas if we are quite liberal about what counts as 
a case, it will be easier to find a case where all the premises are true and yet a certain conclusion is false. 

The traditional way of delimiting what counts as a case is based on the following criterion: c is an admissible 
case if and only if for every atomic formula A (of a propositional or first-order language) c makes A either true 
or false, but not both. When all and only such cases are taken into account, the resulting logic is called classical 
(propositional or first-order) logic. Quite often, we will say that classical logic only takes into account cases that 
consistently decide every issue. In almost all cases, non-classical logics are obtained by relaxing this demand. 
That is, by allowing for cases that leave the truth or falsity of some (atomic or other) formulae undecided, by 
allowing for cases that make some (atomic or other) formulae both true and false, or even by dropping both the 
requirements of exhaustiveness (everything is either true or false) and exclusiveness (nothing is both true and 
false). 

12.3 Logic in the Philosophy of Information 

As explained in the introductory chapters, the philosophy of information (PI) isn’t just defined by its subject-
matter, the nature and dynamics of information, but also by its method, namely the use of information-
theoretic and computational methodologies. A substantial part of this methodology, including the method of 
levels of abstraction that was described in Chapter 2, is inherited from the use of models in scientific practice, 
and from an area of theoretical computer science called Formal Methods. Logical methods are often used by 
philosophers of science and theoretical computer scientists, and so we can expect that the same logical tools 
will also be part of the toolbox of the philosopher of information.  

The main purpose of this section is to illustrate how logical methods can be put to work within the philosophy 
of information. It is structured around the three core methods of the philosophy of information: minimalism, 
constructionism, and the method of levels of abstraction. For each methodology we shall highlight how it is 
related to logic and the use of logical tools. 

12.3a Minimalism 

The method of minimalism (Floridi, 2011b; Greco, Paronitti, Turilli, & Floridi, 2005) deals with the common 
difficulty that philosophical problems are rarely independent of each other, and that the answer to almost any 
philosophical question presupposes answers to other outstanding questions. For instance, problems in 
epistemology may presuppose answers to several questions in metaphysics or in the philosophy of language, 
which in their turn may presuppose answers to questions in logic or formal semantics, which again may or may 
not depend on certain metaphysical issues, etc. When the solution to a certain problem overtly or tacitly relies 
on the existence of answers to other problems, the proposed solution is radically weakened. It is only good if 
the answer it relies on also works. Minimalism aims to provide stronger answers by relying on fewer 
outstanding questions. This leads to the following methodological maxim: 

(Minimalism) Do not presuppose the answers you do not have. 
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As a method, the role of minimalism is to provide criteria that allow us to choose tractable problems and to 
keep track of the interdependence between several sub-problems. As such, the goal of minimalism is closely 
related to what we try to achieve with the method of levels of abstraction (questions are always formulated at a 
certain level of abstraction), and with constructionism (good answers are conceptual artefacts or models). 

Minimalism also explains the importance of logical methods in the philosophy of information, and this is why 
we begin with it here. On a traditional conception of logic, we can use logical methods and tools without 
thereby presupposing the existence of answers to other problems. Logic, in other words, is a safe starting point, 
and relying on it is consistent with minimalism. This is especially true when it comes to fundamental principles 
of logic, like the law of non-contradiction (no contradiction is true). Such laws, according to David Lewis 
(Lewis, 2004), are among the most certain principles that can be assumed in a debate: they constitute a common 
ground that one shouldn’t give up lightly. 

Within the philosophy of information, the law of non-contradiction plays a similar role. This will become clear 
when we relate consistency to constructability, and when we take a closer look at the role of consistency in the 
method of levels of abstractions. 

The use of logic isn’t merely consistent with minimalism: it is actually presupposed by the method of 
minimalism. Minimalism is about keeping track of commitments, and understanding the relation between 
different problems within a broader problem-space. Such relations are inferential, and are therefore logical 
and/or probabilistic relations. As a consequence, we cannot select tractable problems without already 
presupposing a minimum of logic and probability theory. 

In summary, because logic (but also probability theory and perhaps some more mathematics) is both consistent 
with minimalism, and presupposed by minimalism, it plays a crucial role within the philosophy of information 
and its methodology.40 

12.3b Constructionism 

Constructionism is both a general philosophical attitude that emphasises the maker’s knowledge tradition (see 
Chapter 9), and a philosophical methodology. The philosophy of information, as put forward in Floridi (2010c), 
emphasises constructionism in both these senses: it sees philosophy as conceptual engineering and argues that 
theories need to be tested by implementing them in a conceptual model. Here too, we can formulate a 
methodological maxim: 

(Construction) Only rely on what you can actually build. 

It is at the stage of the implementation that logic comes into play. We highlight the role of logic in conceptual 
engineering by contrasting it with its role in conceptual analysis. 

The purpose of conceptual analysis is, according to a highly influential conception of what this means,41 to 
make sense of our everyday thought or to provide cleaned-up versions of our best folk theories. That is, the 
process of conceptual analysis should not create novel concepts, but should merely elucidate existing concepts 
(Beaney, 2012). Conceptual engineering, by contrast, is ‘engaged with creating, refining, and fitting together our 

                                                                        
40 While this may suggest that PI is biased towards classical propositional and first-order logic, this need not be so. It is only claimed that 
minimalism presupposes the use of logic, but this may very well be some non-classical logic. 
41  The so-called Canberra Plan put forward by Frank Jackson and David Lewis. 
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conceptual artefacts in order to answer open questions’ (Floridi, 2011b, p. 293), and is therefore not constrained 
by pre-existing concepts. 

Logic is essential to both conceptual analysis (especially when understood as logical analysis) and conceptual 
engineering. This is, first, because we want to eliminate imprecisions (and fill in the gaps) of our informal 
concepts; and, second, because we want to arrive at something coherent. With regard to the aim of precision, 
the difference between conceptual analysis and conceptual engineering is negligible. With regard to the aim of 
coherence, the difference between them is more marked. In the former case, the result of analysis needs to be 
logically coherent or consistent because if we assume that the existing concepts are essentially correct or rational 
then—as per the principle of charity—its analysis should at least be consistent, and thus comply with the laws 
of logic.42 In the latter case, since the construction of concepts does not presuppose pre-existing concepts, there 
is no comparable assumption that the concepts we start from are already on the right track. Here, the need to 
come up with logically coherent concepts has a different source, namely the need to obtain conceptual artefacts 
that function correctly. In other words, because inconsistency is just a form of malfunctioning, logically 
incoherent artefacts are unacceptable; they do not deliver what they promise (Floridi, 2010d).  

Does this also mean that constructionism, or conceptual analysis for that matter, is committed to the canons of 
classical logic? Here, the answers may diverge, and one way to make this clear is in terms of two notions of 
consistency, namely absolute consistency and negation consistency.  

A set of formulae S is negation consistent if and only if there is no formula A such that both A and not-A 
follow from S; it is absolutely consistent if and only if there is at least one formula A that doesn’t follow from S. 
Conversely (and more intuitively), S is absolutely inconsistent if and only if everything follows from it (we call 
such sets trivial, for they make everything trivially true, including such absurdities as “the moon is made of 
green cheese”), and simply inconsistent if and only if it contradicts itself. 

Because in classical logic any formula follows from a contradiction,43 both notions of consistency (and 
inconsistency) are classically equivalent. This isn’t so for paraconsistent logics, where negation-inconsistency 
does not collapse into triviality. The disagreement between classical and paraconsistent logic can be explained as 
follows: according to classical logic, every contradiction (i.e. every expression of the form p and not-p) is absurd 
and therefore necessarily false. While paraconsistent logicians agree that all absurditities are necessarily false, 
they will also claim that some contradictions are not absurd. A particular type of paraconsistent logician, namely 
the dialetheist, will even make the stronger claim that some contradictions are true (and false as well). 

Whether it is the result of conceptual analysis or of conceptual engineering, a theory that is trivial is clearly 
unacceptable. It cannot be rational (Priest, 2006), and can’t be considered as a properly functioning artefact (in a 
sense, it doesn’t function at all since it declares that everything is true, and thus also declares that everything is 
false). Of course, when all theories that are negation inconsistent are also absolutely inconsistent, the foregoing 
automatically also applies to theories that merely contradict themselves. This is no longer so in a paraconsistent 
logic, and in that case a different argument against theories that are negation inconsistent is needed.  

The traditional view is that contradictions cannot be accepted because they are necessarily false; not just 
because they lead to triviality. This is the Tarskian orthodoxy (Tarski, 1944). Dialetheists agree that all 
contradictions are false, but also claim that some of these contradictions are true as well. Floridi follows the 

                                                                        
42 See e.g. Quine (1960) on the maxim of translation. 
43 The reasoning goes as follows: assume that both “p” and “not-p” are true. Because “p” is true, “p or q” is also true. Yet, because both “not-
p” and “p or q” are true, it is “q” that must be true. Since “q” could be any formula, every contradiction entails any formula. 
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Tarskian diagnosis, but additionally argues that even if a demiurge could create an inconsistent artefact, the user 
of that artefact wouldn’t experience the artefact as a correctly (though inconsistently) functioning artefact, but as 
a plainly malfunctioning artefact. When we design a model of the world, we want to use that model as an 
interface for successful interaction with the world. Yet, an inconsistently functioning artefact is antithetic to 
such successful interaction, and therefore doesn’t function correctly (Floridi, 2010d). 

The disagreement between Floridi and the dialetheist is interesting in its own right, for the dialethist can point 
to a hidden assumption in how Floridi understands correct functioning: an artefact functions correctly 
whenever it (a) does all that one expects it to do, and (b) refrains from doing what one doesn’t expect it to do. 
In Floridi’s argument, it is clause (b) that does the work, but the dialetheist will almost certainly reject this 
clause.  

We can illustrate how this disagreement bears on a difference between conceptual engineering and conceptual 
analysis by looking at a few well-known conceptual paradoxes. Let’s start with the barber, a paradox formulated 
by Bertrand Russell. The paradox concerns the barber of Tombstone who, according to the story, shaves all 
and only those men in Tombstone who do not shave themselves. Assuming that this barber is himself a man 
who lives in Tombstone, we can ask who shaves the barber. Since he either shaves himself or doesn’t shave 
himself, we need to consider two cases. If we assume that he shaves himself, then by the above description of 
who is and isn’t shaved by the barber, we have to conclude that he doesn’t shave himself after all. If we assume 
that he doesn’t shave himself, then by the same description we have to conclude that he does shave himself. 
Conclusion: the barber shaves himself if and only if he doesn’t shave himself, but since he either does or 
doesn’t shave himself he both does and doesn’t shave himself. 

The standard diagnosis of this paradox is that there cannot be such a barber. A contradiction was reached 
because we started out with a description of something (or someone) that cannot exist. In Floridi’s terminology, 
this barber is an artefact we cannot construct. 

Our next paradox is the liar. A liar sentence is a sentence that claims its own falsity, and which, given an 
intuitively plausible assumption about truth, allows us to derive a contradiction. We start from two basic 
principles, one about liar sentences, the other about the truth-predicate: 

(1) A sentence L is a liar-sentence if and only if it is logically equivalent to not-True “L” 

(2) “True” is a truth-predicate if and only if (for every A) A is logically equivalent to True “A”. 

As we did for the barber, we can then ask whether the liar-sentence is true or false. We start with the hypothesis 
that “L” is true, and follow a similar pattern: 

(3) True “L”      (hypothesis) 

(4) L       (by principle 2) 

(5) not-True “L”     (by principle 1) 

Next, we start from the hypothesis that “L” isn’t true, and reason analogously: 

(6) not-True “L”     (hypothesis) 
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(7) L       (by principle 1) 

(8) True “L”      (by principle 2) 

Jointly, these two simple pieces of reasoning show that the liar-sentence is true if and only if it is not true: 

(9) True “L” if and only if not-True “L”  (by 3-5  and 6-8) 

Yet, by classical logic, this is just the same as saying that “L” is both true and false: 

(10) True “L” and not-True “L”   (from (9)) 

The traditional diagnosis of this paradox is in part analogous to that of the barber. One of the basic principles 
we started from must be false, but in contrast to how we evaluated the barber, we do not say that liar-sentences 
do not exist, but rather reject the existence of a truth-predicate that complies with the following general 
principle or truth-schema: 

(Truth) “p” is True if and only if p 

From the perspective of classical logic it is obvious that there cannot be such a truth-predicate, for including it 
in our language would lead to triviality. What is more interesting is that from the perspective of a paraconsistent 
logic there is no need to stick to the same diagnosis for both paradoxes. Even if the barber of Tombstone 
cannot actually exist, there are fewer good reasons to assume that we cannot have a non-trivial truth-predicate 
with paradoxical properties. This indicates an important point of disagreement between the orthodox view 
Floridi adheres to and the position adopted by many dialetheists. According to Floridi, semantic artefacts 
should meet the same logical requirements as real (physical) artefacts, and this is enough to dismiss the semantic 
machinery that leads to paradox. According to the dialetheist, semantic artefacts with inconsistent properties are 
perfectly legitimate because they capture essential features of our informal understanding of truth. It is therefore 
sensible to accept some of the unintended consequences – Beall (2008) calls them spandrels – to retain the full 
strength of our naive notion of truth. Here, the difference between conceptual engineering and analysis comes 
to the surface: prototypical arguments for dialetheism are grounded in conceptual analysis, and therefore accord 
much importance to pre-existing concepts. From a constructionist perspective there is no need to preserve 
such concepts, and therefore less pressure to embrace inconsistency. 

12.3c Levels of abstraction 

When logic is understood as the study and codification of correct inference, it is tempting to think that logic 
aims to separate the arguments that are really valid from those that aren’t. That is, logic is meant to provide the 
final word on which arguments are good and which are bad. Such descriptions are misleading, as they ignore 
the fact that because logicians use formal techniques to determine which arguments in a formal language are 
valid, their results do not obviously relate to arguments that are formulated in natural language. When the gap 
between a formal model and the natural language phenomenon it is a model of is properly acknowledged, it 
becomes much harder to think of (formal) logic as the final arbiter on issues surrounding correct inference: 
Logic then becomes a modelling tool as is any other formal method employed in the sciences. This “logic-as-
modelling” view was most explicitly defended by Stewart Shapiro. He claims that: 
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… with mathematical models generally, there is typically no question of ‘getting it exactly right’. For a given 
purpose, there may be bad models–models that are clearly incorrect–and there may be good models, but it is 
unlikely that one can speak of the one and only correct model. There is almost always a gap between a 
model and what it is a model of.  
(S. Shapiro, 2006) 

This insight allows us to cross the line between the use of logical methods and the method of levels of 
abstraction. 

The primary methodological maxim of the method of levels of abstraction is that philosophical questions 
cannot be answered when the LoA at which they are formulated (and at which the answer should be given) 
isn’t made explicit: 

(Levels) Always make the relevant level of abstraction explicit. 

In the prelude we have seen that we can define different kinds of formal languages. In a first-order language, 
the alphabet or non-logical part of the language will consist of individual constants, individual variables, and 
predicates (and relations). The atomic expressions that can be formulated on that basis are much like the typed 
variables used in the method of the levels of abstraction; they are the basic entities that can acquire a meaning. 
Given an interpretation for that language, which is a way of assigning individual constants to members of a 
domain (the objects we can talk about) and predicates to their extension in that domain (the objects that satisfy 
the predicate), the atomic expressions can acquire a meaning. As such, interpreted atomic expressions are much 
like the observables used in the method of levels of abstraction; they are the basic entities that have meaning. 

Take for instance the plane example from Chapter 2. For every relevant feature of the plane, we can introduce a 
corresponding predicate e.g. “P” for expensive, “I” for internal condition, or “E” for external condition, etc. 
Similarly, the level of abstraction for each agent could then be modelled as the non-logical part of the language 
that the agent in question uses to describe the plane they are talking about.   

Given this natural correspondence between the basic building blocks of the method of abstraction and the 
atomic expressions of first-order languages, formal languages (and by extension formal consequence relations) 
are an excellent tool for making the LoA at which one operates precise. 

12.4 An informational perspective on logic 

The development of an informational perspective on logic can be framed as an answer to the following 
question: 

(Q) To what extent do the truth-based and the information-based criterion we use to evaluate arguments 
agree? 

Despite the traditional view that “not going beyond one’s premises” and “not moving from true premises to 
false conclusions” are really the same criterion, certain principles of classical logic are a good reason to doubt 
this type of identification. Consider the following arguments: 

(1) If q, then (p or not-p). Or, if Alice smiles Bob blushes or Bob does not blush. 
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(2) If (p and not-p), then q. Or, if Bob does and does not blush, Alice smiles. 

(3) If p, then (if q, then p). If Alice smiles, then if Bob blushes Alice smiles. 

These are known as paradoxes of material and strict implication or implicational paradoxes (Read, 1995), and 
expose several limitations of classical logic.  

The first one is valid because the conclusion is always true; whether or not Alice smiles, Bob will always either 
blush or not blush. The second is true because its sole premise is contradictory and hence can never be true; 
Bob can never both blush and not blush, so it doesn’t matter whether or not Alice smiles. The third one is true 
because the truth of “p” guarantees its own truth, and hence also the truth of the implication “if q then p”. If 
Alice is already smiling, it is still true that she smiles if we additionally assume that Bob blushes.  

As such, each of these principles complies with the requirement that valid arguments can never have true 
premises and a false conclusion: (1) always has a true conclusion, (2) always has a false premise, and (3) can 
never have a false conclusion without also having a false premise. 

Yet, these principles have been called paradoxes because in each case there is no connection whatsoever 
between p and q. Indeed, q is entirely arbitrary, and this clashes with the initial suggestion that, for instance, the 
content of “p or not-p” should be contained in the content of “q”. This is not a knock-down argument against 
the validity of the principles (1)–(3), but it does reveal that the happy coincidence of truth-preservation and the 
inclusion of conclusions in premises may just be a peculiar feature of classical logic. The reason is that, 
according to how classical logic functions, the content of a logical truth like “p or not-p” is null, and therefore 
included in any other content; and that the content of a logical falsehood like “p and not-p” is maximal, and 
therefore includes any other content. If one already accepts classical logic, one might not be troubled by this 
diagnosis, but if one finds the paradoxes of material and strict implication disturbing, the classical analysis of the 
content of logical truths and falsities isn’t reassuring either. We make these insights more precise by taking a 

closer look at the metaphor of logical space. 

Consider once more our example where Alice promised Bob a 
reward if he completed the job. Before Alice made this promise, 
4 situations were possible: Bob did the job, but didn’t get a 
reward; Bob did the job and did get a reward; Bob didn’t do the 
job, and didn’t get a reward; and Bob didn’t do the job, but did 
get a reward. We can depict this as follows in Figure 10. 

Once Alice announced that Bob would get a reward upon 
completion of his job, the upper-left situation—job, but no 
reward—is no longer a possibility. This is depicted in Figure 11. 

Diagrams like those in Figure 10 and 11 can be used to reason 
about what does and does not follow from Alice’s promise: We 
can “see” that once the upper-right possibility is removed: 

 the only possibility where Bob does the job is also a possibility where he gets a reward, 

 the only possibility where Bob doesn’t get a reward is also a possibility where he didn’t do the job, and 

Figure 10: Logical space with four 
possibilities 
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 there is still a possibility of getting a reward while not doing the job. 

It is easy to see that these three points nicely match the good and bad arguments with which we started out this 
chapter (see also the exercises at the end of this chapter). 

In addition to being a tool to evaluate arguments, the same diagrams also provide us with a nice model to think 
about information. As was already explained in one of the introductory chapters, Dretske proposed to extend 
one of Shannon’s main insights and claimed that the informativeness of a piece of information decreases with 
the probability of it being true. When we use diagrams to depict the possibilities that are available in a given 
logical space, we rely on an analogous, but non-probabilistic relation (we call such approaches qualitative, as 
opposed to the quantitative approach of probability theory) between informativeness and likeliness. This 

relation is summarized by the Inverse Relationship 
Principle (e.g. (Barwise, 1997)): 

(Inverse Relationship Principle) Whenever there is an 
increase in available information there is a corresponding 
decrease in possibilities, and vice versa. 

Given this principle, we can identify the content of A or 
the information in A, with a set of possibilities, and note 
that more information means fewer possibilities. Let us 
now take a closer look at what possibilities are, and what 
the logical space metaphor amounts to. 

Possibilities and sets of possibilities play a central role in 
many theories of meaning. The notion of a proposition or 
propositional content is a close relative of the notion of 
semantic information. We often say that the information 
conveyed by A is just the proposition expressed by A. To 

focus on the propositional content of A is to ignore certain syntactical specificities of how A is formulated. For 
instance, we do not care whether A is in fact “Alice smiles and Bob blushes” or “Bob blushes and Alice 
smiles”; both express the same proposition. One highly influential way of looking at propositions is as sets of 
possibilities or proportions of a logical space (Stalnaker, 1984). On that account, the proposition expressed by 
A is just the set of cases in the logical space where A is true. As we have seen in the technical prelude, cases are 
just things where formulae can be true (or false), and a logical space is just the set of all acceptable cases. What 
counts as an acceptable case is something that is open to debate. The most popular account takes cases to be 
possible worlds: cases that, just like the complete and consistent cases we introduced in the technical prelude, 
decide every issue. 

When we use sets of possibilities to represent the content of pieces of information, this has certain non-trivial 
consequences. One such consequence is that if two formulae A and B are true in exactly the same set of 
possibilities, they express the same proposition. This will also mean that if fewer cases are acceptable, we will be 
able to distinguish fewer formulae, for if we want to distinguish A from B, we will need a case where one is true 
and the other one false. 

Figure 11: Logical space with three possibilities 
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When possible worlds44 are the only acceptable cases, we do not only miss out on many potentially interesting 
distinctions, but we also end up with the implicational paradoxes. Unsurprisingly, if we are less restrictive in our 
inclusion of cases, we cannot only deal with the implicational paradoxes, but we can also say something about 
how logic is related to information-extraction. 

Given a logical space, the information conveyed by A can be understood in two ways: (1) as the proposition 
expressed by A, or (2) as the relative complement of  that proposition in the whole logical space (the 
possibilities excluded by A; see Figure 12). Either way, the result is a proportion of  the total logical space. On 
the former account, a smaller proportion means more information; on the second account, a larger proportion 
means more information. 

Consider again the implicational paradoxes. If cases consistently decide 
every issue, a logical truth will be true all over the logical space, and a 
logical falsity will be false all over the logical space. Since the 
complement of the total space is the null-space and vice-versa, the 
information in logical truths and logical falsities are, respectively, the 

null-space and the total space. Logical truths do not exclude anything; 
logical falsities exclude everything. These features are associated with 
classical logic, but also with how we think about logical spaces. As long 

as logical truths are all-over true, and logical falsities are all-over false, similar features will arise. We do not only 
have “If q, then (p or not-p)” because “p or not-p” is true anyway, but also because it is entirely uninformative 
and thus no more informative than any q. Analogously, we do not only have “If (p and not-p) then q” because 
“p and not-p” is false anyway, but also because it is maximally informative and therefore more informative than 
any q. So presented, the implicational paradoxes can also be understood as informational paradoxes. Principles 
(1) and (2) are related to, respectively, the “scandal of deduction” (logical truths cannot be informative) and the 
Bar-Hillel Carnap Paradox (contradictions are maximally informative).45 

A standard way out is based on the dilution of the logical space: by including cases where logical truths can fail, 
and often also cases where logical falsities can obtain (these can, but need not be, the same cases), the above 
reasoning is blocked. If, moreover, one stipulates that logical truths need not be true across the whole space, 
but only need to be true in a subset of that space (the “logical” cases), a logical space can even be diluted 
without a change in logic. Talking about information might require some cases that are not required for logical 
theorising, and the dilution of logical space is the most straightforward way of avoiding the conclusion that 
logical truths and logical falsities convey, respectively, minimal and maximal informational content. Of course, if 
one also wants to avoid the implicational paradoxes, it is best to adopt a uniform solution for informational and 
implicational paradoxes. 

An additional virtue of the dilution of a logical space is related to our ability to distinguish between the content 
of different pieces of information. 

The problem with a classical or possible-worlds account of information and consequence, one might say, isn’t 
so much that logical falsities are replete with information or that logical truths are devoid of information, but 

                                                                        
44 Or some other type of case that consistently decides every issue, like for instance the state-descriptions used by Carnap and Bar-Hillel 
(1952). 
45 Floridi (2004c) proposes a solution to the Bar-Hillel Carnap paradox that is based on the veridicality of information (see Chapter 7): since 
contradictions cannot be true, they cannot be informative either. Needless to say that this solution also requires us to give up the simple 
logical space metaphor we described in this section.  

Figure 12: Proposition expressed by A (left) 
and possibilities excluded by A (right) 
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rather that in either case they do not merely convey the same amount of information, but can be regarded as 
the same piece of information. As far as the classical theory goes, there is just one contradictory content, and 
just one logical content. Again, this property of our theory of informational content is the pendant of a well-
known feature of classical logic: logical truths are logically equivalent, and so are logical falsities. The problem, in 
both cases, is a failure to discriminate between logical contents, or between counter-logical contents. Even if 
one agrees that, come what may, logical truths are true, and logical falsities are false, we often want to resist the 
conclusion that, for instance, two inconsistent theories like the infinitesimal calculus of Leibniz and Newton 
(Brown & Priest, 2004; Norton, 1987) and the old quantum-theory  have the same informational content. This 
redirects the initial worry about the null content of logical truths and the maximal content of contradictions, to 
a more general worry about what can be told apart in terms of informational contents. Because from a purely 
formal perspective the inability to discriminate between certain contents is just a different guise of the initial 
paradoxical features of classical logic and the classical theory of informational content, the dilution of logical 
space solves both problems at once. Still, by focusing on the distinctions that become available by diluting the 
logical space, we can come up with a more balanced diagnosis of the use of possible worlds. It isn’t necessarily 
mistaken (just as classical logic isn’t necessarily mistaken), but it is surely inadequate for certain purposes, 
namely when we want to tell certain logical truths (or certain logical falsities) apart. This opens the door for a 
pluralist account of informational content, but also suggests an attractive picture of information extraction. We 
have seen that our ability to make distinctions is tied to the availability of the right kind of possibilities in our 
logical space. Highly simplified, many possibilities lead to many distinctions. At the same time, having many 
possibilities also makes it harder for arguments to be good. 

This type of  trade-off  is well-known, and arises for many types of  formal modelling. If  we make abstraction of  
more features of  the system under investigation, it becomes easier to arrive at conclusions, but our conclusions 
will be less precise or discerning. Conversely, if  we make fewer abstractions, our conclusions are potentially 
more discerning, but it is also harder to reach these conclusions. When deductive inference is made precise by 
making clear the LoA at which we operate (settling on an interpreted language, and thus also on a consequence 
relation), the situation is exactly the same as for any other modelling enterprise: We simply can’t have it all. 
When we evaluate a logical system, we first need to balance the opposite virtues of  logical discrimination and 
deductive strength, and then decide which logical system is the most appropriate for a given purpose. 

12.5 Exercises 

1. Take a new look at the three paradoxes of material implication, and try for each of them to find, first, an 
interpretation for p and q that makes the principle intuitively false, and, second, another interpretation that 
makes the principle intuitively true. 

 2. We already gave an example of inconsistent theories that we might want to keep apart. Can you also think of 
an example of logically true theories that we also might want to keep apart? Why would that be useful? 

12.6 Suggestions for the exercises 

1. Use the diagrams from the Figures to explain why modus ponens and modus tollens are good arguments, but 
denying the antecedent is a fallacy. 

2. Use qs that are utterly absurd. Experiment with ps and qs that are more or less related. Consider 
mathematical theories, or other theories that are true of necessity because they rely on proofs. 
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12.7 Further reading 

Good introductory reading includes Priest (2008) and Read (1995). Nice advanced pieces include Van Benthem 
and Martinez (2008) and Allo and Mares (2012). 
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13. COMPUTATION 

Theoretical and practical information processing 

 

13.1 Introduction: how are information and computation related? 

To many computer scientists as well as computer users 
the answer to the question of how information and 
computation are related may seem trivial: computers traffic 
in information. But to get to the bottom of this question, 
we first need to understand better what we mean by 
computation and what we mean by information. In 
some very loose sense, it is true that computers traffic in 
information: they are built to store, manipulate and 
exchange information. But when we dig deeper, this 
qualification may seem insufficient, if not incorrect. 

Consider the situation where Alice is checking on the internet for the shortest way to travel to meet her 
friend. Connected to the Railway Company Website, Alice is entering information: dates and hours, 
places, and discount options and she is expecting to obtain departure and arrival hours and prices. On the 
other side of her laptop is Bob, the server machine of the Railway Company, answering Alice’s enquiries, 
matching them against an optimal solution. What Bob is receiving and processing are really elements of 
certain lists of points in a graph; numbers associated by certain operations to some subsets of those lists; 
and subsets of those numbers when additional conditions are provided. For Bob these hardly are, 
respectively, locations, prices and discounts. In other words, what is the nature of the entries by Alice, 
and how are they related to the elements treated by Bob? This question can promptly be better qualified: 
how is the information entered (and required) by Alice related to the data processed by Bob? What kind of 
information is ultimately the object of computational processes? 

 

From this first example, it seems clear that “information” should be distinguished from “data”, although 
they are intimately related. In computer science, “raw” data typically refer to any variable or signal that is 
not an instruction. A computer program can be viewed as a mechanism that consumes, processes and produces data. 
One task of the present chapter is to clarify the fundamental operations of computing processes as data 
manipulators and to explain which theoretical and practical principles are at the core of a computer 
program. To better highlight the relation between data, instructions and programs, the next section 
provides some background on the conflation of information and digital computation. We then turn to 
discuss the theoretical foundations of computability, a research field in its own right, which has at its very 

Chapter 

13 

‘It would appear that we have reached the 
limits of what it is possible to achieve with 
computer technology, although one should 
be careful with such statements, as they 
tend to sound pretty silly in 5 years.’ John 
von Neumann, ca. 1949. 
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core the formal treatment of the question: what does it mean to compute? The answer to this question is 
directly relevant for understanding today’s information technologies, and for explaining this we shall 
introduce the basic concept of a digital computing machine developed by Alan Turing that is now known 
as a Turing machine. (A more basic introduction is also given in Chapter 1.) 

 

The second task of this chapter is to identify the (still) missing link between data and information i.e. the 
connection between quantifiable data and their meanings or, if you prefer, the explanation of how 
numbers and lists crunched by Bob become places, prices and times for Alice. This task has been a major 
problem for theories of semantic information. In Shannon’s information theory, data simply means 
signals or messages (Floridi, 2008, p. 119). In the context of conventional digital computers, data may be 
symbols or numerals, but also pictures and sounds. But, strictly speaking, the same “raw” data (say, a 
string) may be acted upon as both input data and an instruction (i.e. a part of the program) in a single run 
of some program. That is, some string (e.g. “exit”) may be entered as data by the user (and its value may 
be stored by some variable, e.g. var1 = “exit”) and subsequently that string can be processed by that 
program as an instruction. The meaning of the particular string seems to be context-dependent. 
 
From Alice’s perspective, informativeness corresponds to the data being precise, correct and timely; in 
other words, to be the information she expects. But from Bob’s measuring perspective, the output of its 
processing is dictated by instructions; hence, only surprising data can really be informative. Paradoxical as it 
may sound, contradictory timetables and a TV set emitting white noise are most informative, on some 
theories of information! In Section 13.4, we offer an overview of some approaches explaining what turns 
data into information and spell out how digital computation may be construed as the processing of 
information. 
 

However, there is no reason in principle to restrict computation just to digital computation, though it is 
certainly the most common type of computation used today. While the traditional dichotomy is between 
digital and analogue computation, other sorts include quantum computation (i.e. computation that makes 
use of quantum mechanical phenomena), neural computation (i.e. computation of whichever kind that 
happens in the brain), DNA computation (i.e. computation that takes advantage of DNA molecules for 
its processing) and natural computation (i.e. computation that employs natural materials for its 
processing). The remaining types may or may not fall under one of the two broad categories of digital and 
analogue computation. Our focus in this chapter is mainly on digital computation, though some attention 
is also given to analogue computation. Whilst the objects of computation constitute a fascinating topic on 
their own, for simplicity we shall assume that the traditional digital/analogue dichotomy suffices for 
classifying computing systems.46 In Section 13.5 we discuss the notion of analogue computation and 
explain how it differs from its digital counterpart. The subsequent section traces the relation between 
computing processes and artificial intelligence, explaining how “intelligent” machines use information 
(while the Terminator is not discussed here, game winners, such as Deep Blue and Watson, are). 
 

The main aim of this chapter is to illustrate the strong conceptual and practical relation between information 
and computation. We shall see that any computing process, from those executed by our digital devices (such as 
PCs, tablets and phones), to those executed by analogue devices (such as traditional watches and slide rules), 
can be understood and explained in terms of the data and information they process and the output they give us, 
in turn providing a new view of their nature. 

                                                                        

46 For some further discussion on this topic see (Copeland, 1996; MacLennan, 2004; Piccinini, 2008a). 
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13.2 A brief background on the conflation of computation and 

information 

The conflation of information and computation may be traced back at least as far as the early twentieth 
century. In Cybernetics (see Chapters 1 and 10), self-governance and control in mechanical and biological 
systems were explained by studying how they process and reuse information.47 On the one hand, this 
called for a mathematical definition of the object of such processes, which was offered by Shannon’s 
information theory (introduced in Chapter 1). On the other hand, it also required a precise understanding 
of the ways information can be processed, which was in turn offered by classical computability theory, 
whose forefathers include Alan Turing, Alonzo Church, Kurt Gödel and Emil Post. The motivation for 
conflating computability theory and information theory was the suggestion that the brain’s information-
processing capacities and its limitations could be measured quantitatively and not just compared 
qualitatively. The result of this venture was a fusion of information-theoretical language, notions of 
control and feedback from contemporary cybernetics, as well as notions (such as program, simulation and 
formal language) from computability theory. 

In what is presently known as cognitive science, ideas from information theory needed to be 
supplemented by ideas from computability theory. Experimental psychologists and some 
neurophysiologists in the mid-twentieth century adopted information-theoretical language, since it offered 
the right terminology (such as coding and transformation), tools and quantitative measurements. But 
since information theory in isolation was insufficient to explain mental processes in terms of internal 
representations, it had to be supplemented somehow (Boden, 2008, p. 744). This gap was bridged by 
importing computation-theoretic language into the cognitive scientific discourse. Computability theory 
offered two main advantages in this venture. Firstly, it seemed to provide the right mathematical tools for 
modeling neural activity in the brain. Secondly, it had the “right” language to describe cognition: 
programs, implementation, formal languages, logical formalisms and so on. These were the early 
foundations of cognitive science, as we know it today.  
 

We have already reviewed Shannon’s information theory in Chapter 1, and the formation of cognitive 
science is described in more detail in section 10.2. Let us now turn to survey the fundamentals of 
computability theory and the notion of a Turing machine. 

13.3a Computability: the theoretical basis of computation 

Computation and even more specifically, digital computation is by no means an unequivocal concept. 
There are many subtleties that require further discussion, but we only touch on a few of them here. To 
start with, we can, and should, distinguish computability from physical computation. Computability is an 
abstract concept and was the main focus of mathematicians such as Turing, Church, Post and Gödel in 
the 1930s. Physical computation, on the other hand, is the physical manifestation of a computing process 
in real-world systems. Clear examples are a conventional digital computer, an iPad, an Android 
smartphone or the system run by Bob that Alice is using to book her train travel.  
 
An informal and intuitive understanding of a computing process is described as follows. A computing 
process is a procedure executed in a finite number of steps, which at each step presents a finite and 

                                                                        

47 For an easy-to-digest introduction to cybernetics see (Cordeschi, 2008). 
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complete set of rules to be applied for any possible input, which allows no random choices in the 
execution of rules to establish its next step. In our simple example above, when Alice enters the departure 
and arrival stations in the Railway Company webform (i.e. the input data), Bob selects the subset of train 
connections corresponding to the requested departure-arrival selection (this operation only, rather than 
some random selection inverting departure and arrival stations, unless prompted otherwise) and outputs 
the relevant timetable (as the final step).  
 
Of course, a computing process can also be defined more formally, such as a computing process is an 
algorithm that instantiates a function (operation) over numerals. But even this definition is far from being 
conclusive. Other examples that explain precisely the same concept are simple computing with an abacus, 
the highly formal lambda-calculus by Church, and the fascinating idea of a machine performing any well-
defined routine of operations corresponding to numerical functions. 
 
 

To understand why there are many equivalent notions of computations, we need to explain in what sense a 
function constitutes a formal specification of a computing method. Think of a set of numbers, for 
example, the set of all natural numbers, or any subset thereof, like the set of odd numbers or the set of 
numbers corresponding to days Alice wants to take a train. A computing method would be a process that 
lists all and only those elements in any such set (such as Bob’s selection of all and only trains departing on 
the days chosen by Alice). In fact, a function is a mathematical object f(n)=m, which takes positive 
integers as arguments (n) and gives members of a certain given set as values m.  
 
For example, the successor function f(n)=n+1 lists the set of all natural numbers. It is the function that 
takes any number n as argument and returns the successive value. It is easy to see how f is the function 
that returns the whole set of natural numbers when n=0. For given 0 f returns 1, given 1 f returns 2, and 
so on. We also say that such a function codes an arrangement of the members of the set (of the natural 
numbers). In turn, any set whose members can be listed (i.e. are enumerable) by a definite method, is the 
result of applying some function to a set of positive integers. This shows that functions of positive 
integers represent a method to generate the content of any given well-defined set of numbers, by 
providing the set of rules, or instructions, to construct it.  
 

This notion of defining and executing instructions corresponds to the idea of effective computability: a function f is 
called effectively computable if a list of definite and explicit instructions can be given to compute the value of f(n), for any argument n 
in the range of positive integers. Hence, at each step and for each argument, there is an explicit formulation of 
instructions to be followed in order to obtain a result. External problems, such as time and energy, are 
irrelevant. One way to translate this is by saying that the entire process could be performed mechanically, without 
any human insight. If there is a function to extract the timetable of trains on the days Alice wants to travel, then 
Bob, the server, should be able to do it. This is what Turing was able to define so precisely and eloquently. 

13.3b Turing machines 

As already mentioned in Chapter 1, Turing is considered by many to be the father of computer science and his 
work is crucial for understanding the relation between computation and information.48  While Turing’s focus 
was computable numbers as well as mechanical procedures and not the concept of information per se, his work 

                                                                        
48 The roots of the first computing system may be traced back to Gottfried Leibniz’s calculating machine (and perhaps even earlier than 
that). To consider Turing the father of computer science is undoubtedly a gross simplification, but for our purposes here it is convenient to 
start the discussion with Turing. 
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reflects the intimate relation that exists among them. This relation is made particularly conspicuous in 
introducing the concept of universality, which unifies data and computer programs by way of the universal 
Turing machine. An important take-home message from this present section is the generality of Turing’s 
invention: if a specific problem can be solved by an algorithm49, then there exists a Turing machine that can 
solve it. But before discussing the concept of the universal Turing machine, let us begin with the problem that 
Turing was tackling and how it led him to inventing these machines. 

Turing’s work in the mid-’30s was inspired, as was Church’s, by the decision problem, which had been 
formulated by the mathematician David Hilbert in 1928. The decision problem could be formulated as follows. 
Does there exist an effectively computable procedure which, applied to any assertion of first order logic, could 
decide whether it is true? Both Church (1936) and Turing (1936) published papers independently, showing that 
such a procedure is impossible, and hence verifying the undecidability property of formal systems proved by 
Gödel. For his result, Turing came up with the automatic machine or a-machine (which we shall now refer to as 
a Turing machine) that mimics a human who is calculating using just pen and paper. This was the precise 
mechanical understanding of effectively computable procedure.  

According to Turing, the operations of the human computor (as distinct from an artificial computer) may be 
completely mechanised by breaking the rules of computation into a series of basic sub-rules. The human 
computor was seen to facilitate her calculations by using a notebook and focusing her attention at any given 
moment on a particular page. By following the instructions she may alter that page or turn to another page. The 
alphabet of symbols available to the human computor may be assumed to be finite and the content of each 
page can be replaced, in principle, by a single symbol. By envisaging a notebook large enough so that the 
human computor never reaches the last page, the result is an infinite running paper tape. A computation would 
be understood as a finite sequence of operations on symbols.  

The Turing machine was an abstract, idealised mechanical device representing a human computor, equipped 
with unlimited storage capacity (an infinite tape to write on), whose operations are determined by discrete, 
effective steps so that at each step it is entirely defined what the computor is allowed to do, and a limited set of 
possible actions (defined by its table of instructions). It was, perhaps surprisingly, proven that such a general 
and simple machine would be computationally equivalent to almost any conceivable digital computing system.  
Turing machines perform calculations on the tape, by way of a head (or a scanner), a state “register” and a table 
of instructions (Turing, 1936, p. 231). The tape is divided into squares, each of which may either be blank or 
bear a symbol. The head goes through the squares of the tape, scans a symbol, possibly erases that symbol and 
writes a new one and then moves one square either to the left or the right. The state “register” is the machine’s 
equivalent of the human computor’s “state of mind”, which is assumed to be in one of a finite number of states 
(Turing, 1936, p. 250). This “register” may be conceived as being part of the machine’s head. The machine’s 
table of instructions contains the state-transition rules or instructions. The first two columns of the table are the 
m-configuration and the scanned symbol. The m-configuration is a finite number of conditions, which the 
machine is capable of. The pair (m-configuration, scanned-symbol) is called the machine’s configuration and 
uniquely determines its behaviour. The last two columns are the operation the machine executes when it is in a 
particular configuration and the final m-configuration the machine enters upon completing its current operation 
(Turing, 1936, p. 234). In the next section we return to the distinction between data, broadly construed, and 
semantic content, and will show how the table of instructions becomes crucial. 

                                                                        
49 This is a notion that predates Turing’s work and can be roughly described as a “recipe” for performing a function-based calculation that 
can be followed “mechanically”. 



THE PHILOSOPHY OF  INFORMATION — AN INTRODUCTION 

 

 175 

To explain further how the Turing machine works, let us use an example of a machine that computes the 
successor function on some integer number n. The machine table below (figure 13) describes four transition 
rules that suffice for this computation, with some further assumptions about how the machine operates. For 
simplicity, this Turing machine may only have one number represented on the tape. The machine starts with its 
head scanning the leftmost “1” symbol of a sequence of a block of n 1s. The block of 1s representing the 
argument of the function is delimited by an occurrence of the symbol “0” at the end. The number zero is 
represented by a single “1”, the number one is represented as “11” and so forth: the sequence 01110 codes the 
input 2. Only the symbols “0” and “1” may appear on the tape. The machine’s head is positioned at the 
leftmost “1” symbol of the sequence when it halts. As for the other conventions used, state-1 is the initial state 
of the machine and state-3 is its terminating state. “1” in the operation column means erase the scanned symbol 
and replace it with a “1”. “R” in the operation column means move one square to the right and similarly for 
“L”.50  The Turing machine described in the table below is a special-purpose machine, that is, a machine that 
executes some specific, well-defined function. 

m-configuration Scanned symbol Operation Final m-configuration 

state-1 0 1 state-2 

state-1 1 R state-1 

state-2 0 R state-3 

state-2 1 L state-2 

Figure 13: An instruction table for a Turing machine that computes f(n)=n+1 

Besides the specific technical details of how a Turing machine works, Turing was able to show that effective 
computation can be formulated using an arbitrary machine that is subject to some finiteness restrictions: a finite 
number of states and a finite number of possible symbols on the machine’s tape. It is the generality of the 
Turing machine, rather than its particular design, that was such a crucial step in the evolution of theoretical 
computer science. A Turing machine can simulate any classical computing device, though perhaps not as 
efficiently in terms of its runtime. The thesis that effective computability is entirely satisfied by the mechanical 
procedure, as envisaged by Turing, is known as the Turing Thesis. It states that any effectively computable 
function is computable by a Turing machine. It is justified, on the one hand, by the fact that for any computable 
function, a procedure by a Turing machine can be defined. On the other hand, it is justified by the provable 
equivalence of mechanical, that is, effective, computation with other notions of computability, such as lambda-
definability (an equivalence that generates the so-called Church-Turing Thesis). One of the most interesting 
results in computer science is that Turing machines, lambda-calculus, Post’s production systems and other 
formalisms of computability are all extensionally equivalent in the sense that they all identify the same class of 
functions as computable.  

The relation between digital computation and information becomes even more obvious when considering 
universal Turing machines. The universal Turing machine exhibits another extremely important form of 
generality. Turing showed that it is possible to construct a single universal machine U that can be used to 
compute any function that is computable on a special-purpose machine M (Turing, 1936, pp. 241-242). If U is 
supplied with a tape on the beginning of which is the machine table of M, then U will compute the same 
function as M. The exact construction of U exceeds the scope of this chapter.51  Suffice it to say that the 

                                                                        
50 Several Turing machine simulators may be found on the Internet. Try one at http://ironphoenix.org/tril/tm/ 
51 The interested reader can find references for further reading at the end of the chapter. 
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operation of the universal Turing machine is explicable in terms of its execution of the instructions of some 
special-purpose Turing machine. While the latter may be conceived as an algorithm (i.e. an effective procedure) 
or a conventional computer program52  that was designed for a particular or special-purpose task, the universal 
Turing machine may be conceived as a general-purpose digital computer that executes programs (i.e., 
descriptions of other special-purpose machines). Unlike the special-purpose Turing machine, the universal 
machine is conceived as a soft-programmable system, which can simply be reprogrammed by erasing its 
existing program, of some special-purpose machine M1, from its tape and inscribing another program, of a 
different special-purpose machine M2, on its tape.  

For the purpose of our discussion of information and computation, an important consequence of the design of 
the universal Turing machine is the resulting distinction between “raw” data and programs, or sets of 
instructions. Turing’s concept of universality unifies “raw” data and programs. On the one hand, U takes M’s 
table of instructions (encoded on U’s tape) as a program to be executed. On the other hand, U takes the input 
data of M (also encoded on U’s tape) as the “raw” data, which are operated on by the program. Both the “raw” 
data and the program are encoded in a similar manner on U’s tape and the essential distinction between them is 
the functional role they play in the operation of U. In the following section, we elaborate on the type of 
information the program qualifies as. 

13.4 Digital computation as information processing 

Computation is often said to be a specific kind of information processing. But which notion of information 
processing can be used to analyse computation, and in particular digital computation, is controversial. This 
problem crucially depends on what we take information and its processing to be. This is yet another reminder 
of the crucial distinction to be made between data and information as discussed in section 13.1. It is one thing 
to claim that digital computation is the processing of data (that may, but need not, be structured and 
meaningful), and it is another to claim that it is the processing of truthful semantic content (the latter claim is 
harder to defend). 

There are several options for interpreting information, some more problematic than others, even outside the 
context of digital computation. Some simply equate “information” with “data”, for instance in Shannon’s 
interpretation of “information” as a message that is selected from a set of possible messages with a probability 
distribution over it. The question above then reads as “is digital computation the processing of Shannon 
information?” Despite the applicability of Shannon information to many aspects of digital computation, it is 
primarily concerned with data and data encoding relative to some distribution of probabilities and it is not 
suitable for accurately explaining the phenomenon of digital computation, broadly construed (Fresco, 
forthcoming; Piccinini & Scarantino, 2011). Digital computation need not have the fundamental probabilistic 
characterisation defining Shannon information. In fact most digital applications we are used to, such as 
calculator applications, text-editors and so on, are deterministic – at least in principle. 

But the real divide between “data” and “information” is the semantic interpretation of information. First, recall 
Alice and Bob. Alice enters some parameters concerning dates, hours, departure and arrival stations, as well as 
discount options. Bob, on the other hand, receives all these parameters as data, broadly construed. But a closer 
inspection reveals that not all the data have the same “role”. Dates, hours and the relevant stations can be 
construed as “raw” data operated upon by Bob. But when Alice selects: “find optimal route between departure 

                                                                        
52 An algorithm and a program are not the same thing. Roughly speaking, a program is an implementation of an algorithm in some specific 
programming language, such as C or Java. 
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and arrival stations” she instructs Bob to perform one computation. When Alice selects “calculate fares for the 
route found” she instructs Bob to perform yet another computation. If we equate semantic content with 
semantic information, then it is simply structured data that is meaningful for some potential agent or system 
(say, Bob). Semantic content is sufficient for what Floridi calls instructional information (Floridi, 2011c). It may 
be described as the directions to make something happen or accomplish some task, such as a recipe for making 
pizza. Some go one step further and insist that only truthful semantic content (what Floridi calls factual 
information) count as semantic information (see Chapter 7). Factual information represents facts or states of 
affairs (Floridi, 2007a).  

In the context of examining the plausibility of instructional information as a candidate for explaining 
(nontrivial) digital computation, the universal Turing machine comes in very handy. A universal machine, U, 
can process instructional information, by means of encoding the machine table of some other special-purpose 
Turing machine, T, on its tape as well as some other “raw” data as the input to T. In simulating T, U reads data 
from the tape and simulates T’s instructions on the “raw” data, which were T’s input. These instructions are 
processed in the course of U simulating T: they are read, modified and even erased. 

On the other hand, factual information as a candidate for explaining digital computation is problematic at best. 
In addition to the underlying data being non-empty, well-formed and meaningful (that is, the general definition 
of semantic information), they are also truthful. The processing of factual information by a digital computer, in 
the sense that is inherent to the computation performed, requires that the computer be sensitive to the truth of 
the semantic content processed. Some have argued that this is exactly what digital computers are good at 
(Newell, 1980; Pylyshyn, 1984), but others have argued against it (Piccinini & Scarantino, 2011). Whilst it is 
arguably implausible that digital computers inherently process factual (and hence true) information, they may 
still be deemed processors of digital data in accordance with finite instructional information (Fresco, 
forthcoming). For even if digital computers cannot evaluate truth, or ensure that truth is always preserved in the 
course of processing factual information, they are not required to do so in processing instructional information. 

13.5 Analogue computation and information 

Starting from the 1930s, digital machines were constructed in the UK (such as the Colossi or the Manchester 
machines) and in the USA (such as the Harvard Mark I, the ENIAC and the EDVAC) as mechanical 
implementations of the Universal Turing Machine. These machines would use punched cards, cathode and 
mercury tubes or valves as ways to input, preserve and access data in the memory. These proved to be quite 
inefficient methods, as they required very restrictive conditions: for example, a mercury tube would typically 
require the data representing a number to be positioned physically high on the tube at the moment where such 
a number was to be read. Digital computing improved in the 1940s and 1950s, and really got going when 
electronics came in, providing faster and more reliable ways to store and access data digitally, up to the 
introduction of transistors and integrated circuits. Today, physical limits still constrain digital machines. An 
interesting concept is then offered by the processing of data by analogue machines.  

Analogue computation can be defined in terms of the way it treats information; it is the process of operating on 
continuous physical signals, analogue to the actual data being computed. Such signals can be electrical (using 
switches, resistors, amplifiers etc.), mechanical (using slide rules, rotors, gears etc.) or hydraulic (using pipes, 
valves etc.). These measuring methods are used to input standard mechanical operations of summation, 
multiplication, logarithm etc. In the case of electric signals, these allow the representation of the variables of a 
problem within a certain continuous range of voltage values, which in turn can be added, subtracted or 
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multiplied by means of the electronic circuit. Non-linear operations (square-rooting, multiplication of two 
variables etc.) can also be implemented. The crucial difference with digital computing systems lies precisely in 
the way information is presented to (and processed by) the machine, in terms of continuous rather than discrete 
values. Analogue computation does not proceed with a binary translation of the data, preserving a much higher 
fidelity. Instead, it involves an increased complexity in treatment of operational transmission. What kind of 
information cannot be coded into a digital format, and thus may require an analogue treatment? 

The algorithmic model implemented by Turing machines is discrete in the sense that there is a minimal 
granularity of the input under which the computation cannot preserve changes in the output. For example, a 
digital computation in this sense might tell us if a certain point is within or without a certain space, and how to 
change such coordinates by moving inside or outside of the given space. A continuous function is, by contrast, 
one that is able to preserve small changes of the input into small changes of the output, so that, for example, a 
function continuous over space would be one that tells us how far a point is outside of a certain space, and how 
such distance changes with movement. To this aim, analogue computation needs in the first place to represent 
information by minimal quantities (for example, with real numbers rather than integers only); and a logical 
treatment of the information that admits a more fine-grained representation of states (e.g. by adding a third 
value to 1 and 0). In this way, analogue algorithms generalize computation by allowing continuous operations 
on space and time, by relying on parallel operations that maximize speed and provide more exact measurement. 

Analogue machines deal with information in a very different way at many levels: acquisition, encryption, 
manipulation, storage and distribution. At the first level, the machine acts on the information produced and 
transmitted by its physical parts, in a way that makes appropriate the analogy to physical parts reacting in nature 
according to mechanical laws. At the level of encryption for use by the machine, there is no intermediate stage 
of symbolic representation of data (e.g. in terms of binary coding) and the machine reads it in its full load by 
means of a larger range of values, including real numbers. Storage and distribution (by reproduction) are the 
aspects more affected by the limitations of the non-digital medium underlying analogue machines. The logic 
underlying such machines is in general defined by a closure of computable functions on real values with 
appropriate arithmetical operations. But the determination of a common computational model for analogue 
machines is far less evident. And although some computational identities are known (e.g. between Shannon’s 
General Purpose Analog Computers (Shannon, 1941) – a model based on Bush’s differential analyzer (Bush, 
1931) – and the computable fragment of analysis), no such thing as a version of the Church-Turing Thesis for 
analogue devices holds. 

A very interesting thesis holds that (at least) some (artificial) neural networks are analogue computers. The 
complication here too is that there is no univocal notion of analogue computation either (for more on this 
debate see for example (Fresco, 2010; Piccinini, 2008b)).  Perhaps even (some) neural networks (possibly also 
natural ones in animals) are typical cases of hybrid computers. A hybrid computer is understood as integrating 
the logical and functional aspects of digital machines with devices apt to solve differential equations from the 
analogue counterpart. These are in general fast machines, though with a somewhat low level of precision. The 
tentative analogy with (natural) neural networks is then maybe just another indication of the long-standing open 
problem at the basis of any direction of research in AI: can intelligence be mechanically reproduced? 

13.6 Intelligent machinery and information 

In addition to the Turing Machine and the Turing Thesis, Turing made another contribution to the theory and 
practice of artificial intelligence by way of the Turing Test. It was presented first in Computing Machinery and 
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Intelligence, published in 1950 in Mind, and since then has become a classic in the literature. Let us briefly 
outline the idea of this test, also known as the “imitation game” (see also Chapter 1). A questioner is connected 
to two respondents, one of which is human, the other a machine programmed to reply as a human (Turing, 
1950). The aim of the questioner is to find out which one of the respondents is the machine, by analysing their 
answers. If the machine were able to answer in a way that makes it impossible for the questioner to distinguish 
the machine from the human player, then, by Turing’s lights, it would be appropriate to assert that the machine 
is behaving intelligently, though, strictly, this would not necessarily mean that the machine displays any 
intelligence in the human sense. The literature on the adequacy of the test as a satisfactory criterion of 
intelligence, and on the effective possibility to have a machine passing the test is abundant and controversial. At 
various stages of the history of artificial intelligence, various tasks have been posed to machines, and at times 
that the machine passed the test, questions were subsequently raised about the extent to which this “success” 
implied true intelligence. 

Two familiar cases were Deep Blue, which was the first machine to win a chess game against a human 
champion,53 and more recently Watson, which was the first machine to win Jeopardy!, a question and answer 
game, against human competitors. But the difference between Deep Blue and Watson in their way of 
processing information may help explain how our understanding of ways of producing intelligent behaviour has 
changed. Deep Blue was a mechanical brain equipped with enough logical knowledge and calculating power to 
be ahead of its opponent (however good) in foreseeing possible states of the game, thereby anticipating the 
adversary’s possible (best) moves. Watson is a language processor, which is able to calculate the relevance of 
words in the hint (the form of questions in the game Jeopardy!) and has a vast database to search in order to 
produce a question (the form of answers, in that game) that it considers the most appropriate in the given 
context. There is of course a big difference between a manifestation of logical intelligence, combined with brute 
computational force, and one that is based on evaluating the relevance and interpretation of the many texts 
needed to be searched through. Each illustrates a typical way in which humans might be considered to act 
intelligently, though none of these ways can be taken to be an exclusive characterisation of intelligence. It seems 
appropriate in these cases to refer to the LoA (level of abstraction; see Chapter 2) at which we are considering 
intelligence. Similar examples show that machines have been able to face a certain task, and solve it 
appropriately, showing some form of intelligence, at a certain level. Besides the variety of levels at which human 
intelligence can be shown to act, such as logical, intuitive, semantic and analogical, there are more profound 
problems at stake here. Is a machine acting intelligently necessarily intentional? Is it necessary to ascribe 
semantic content to the source code (program) of a machine that seems to manifest intelligent behaviour?  

It is curious that robots built to engage in experiments, such as the Turing Test, often perform very poorly, and 
that shows an insufficient pseudo-semantic behaviour when interacting with human users.54 This is in striking 
contrast to the focused performances of machines, such as Deep Blue and Watson. The thesis that intelligence 
manifests itself at different levels, each presenting a certain way to process the relevant information relative to 
tasks and methods, gives us a far larger scope of possibilities to explore what intelligence is. However, it also 
explains why machine intelligence is still far away when measured in terms of interaction with human 
intelligence. If the intelligence of a mechanical system can be tested operationally in terms of LoAs on 
information, then it is not surprising that machines perform well at executing algorithms rapidly and selecting 
data, possibly, by probabilistic methods (i.e. tasks performed at the instructional level). On the other hand, what 
we identify as intelligent action in humans is, for example, accomplished by a method of goal-directed treatment 

                                                                        
53 Today, every appropriately equipped machine would always be able to beat many non-professional players at chess. 
54 Have fun exploring conversations with one such bot, the well-known ELIZA at http://www.masswerk.at/elizabot/. 
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of semantic information, and its counterpart methods of avoiding misinformation i.e. tasks performed at the 
semantic LoA.  

The connection between intelligence and information does not only (at least partially) explain such great 
difference of results, but also supports the failure of the so-called equivalence fallacy (Copeland, 2000). 
According to the Equivalence Thesis, a universal Turing machine always has the potential to be any other 
system of the same class, and hence it can become a generally intelligent system in that class (Newell, 1980). 
The truth of the premise was established by Turing where he showed that a universal Turing machine can 
simulate any other specific Turing machine (and in general any other digital system up to the same 
computational power). However, the conclusion of the argument is doubtful in the general sense when 
intelligence is coupled with the ability to process information at different LoAs. Provided that a mechanical 
computation will deal primarily with instructional information, its ability to process semantic information in a 
significant way becomes a more problematic task, for which the appropriate ability to manipulate meanings 
(rather than just meaningless symbols) is needed. 

13.7 Conclusion 

We have seen that the relation between computation and information is undeniable. Various computational 
models, both digital and analogue, can be understood properly in terms of them being information 
manipulators. Some form of computation (at the very least, encoding and decoding procedures) is needed for 
conveying information. As well, in the absence of information, at least when construed as data or instructional 
information, there is very little one can do with computation. It is common to find the view in cognitive science 
discourse that computation, analogue or digital, is equivalent to information processing. Connectionists, who 
believe that neural networks are analogue computers (see Chapter 10), typically assert that these networks 
compute by virtue of information processing. Some computationalists, who believe that digital computers are 
adequate models of cognition, typically assert that these computers process information in a manner analogous 
to human cognisers. 

Whether digital computation entails the processing of either Shannon information or factual information (and 
vice versa) is a deep and interesting question. It seems, at least prima facie, that digital computing systems are 
not up to the task of evaluating or ensuring truth, and if so, digital computation does not entail the processing 
of factual information. This is reminiscent of the symbol-grounding problem (see Chapter 6): digital computing 
systems only manipulate symbols and cannot reach out to the meaning of these symbols, let alone whether 
symbolic expressions (say, propositions) represent true state of affairs. As for Shannon information, it only 
makes sense in the context of a set of potential messages to be communicated and a probability distribution 
over this set. So, it seems problematic to argue that digital computation entails the processing of Shannon 
information. For digital computation can be either deterministic or not deterministic. Clearly, we cannot do 
justice here to assessing this problem.55 But what this problem teaches us is that before we assess the claim that 
digital (or analogue) computation entails the processing of information, we need to understand what is meant 
by “information”. Making such a claim, on the basis of a broad construal of information, leads to the 
paninformationalist view, according to which everything physical is information-theoretic in origin (see Chapter 
3). 

For our purposes, the main objective has been to illustrate the intimate relation between information and 
computation. Analogue computers operate on continuous physical signals and their counterparts operate on 

                                                                        
55 For more discussion see, for example, (Fresco, forthcoming; Piccinini & Scarantino, 2011). 
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discrete physical signals. This relation is fundamental for algorithmic information theory (see Chapter 14) and 
likewise important in the interactive process of questions and answers that is at the heart of the Turing Test, 
and the intelligent machinery which has since been developed in an attempt to pass this test. At this stage, we 
can only hope that our reader has in mind more questions than answers about computation. 

13.8 Exercises 

1. Starting from the axiom establishing that zero is a natural number (   ) and the successor function 

(if          ), one generates the set of natural numbers. The set of all arithmetical functions 
(multiplication, subtraction, power...) over integers is obtained by simple definitions over the basic set 
of computable functions (known as primitive recursive functions). Assume you have all such 
functions and can define any arithmetical operation. Now, using the latter, define new functions:  

   ( ) such that takes natural numbers as objects and it returns the whole set of even numbers; 

   ( ) such that takes natural numbers as objects and it returns the whole set of odd numbers; 

   ( ) such that takes natural numbers as objects and it returns the whole set of prime numbers. 

   ( ) such that takes the set of numbers 1-7 corresponding to weekdays as objects and it returns 
Monday-Wednesday-Friday as options chosen by Alice to take a train. 

 
2. A Turing Machine can be described as a mechanical device that is able to compute all the recursive 

functions. Given the assumptions on the exercise above, a Turing Machine will be able to compute 
any of the arithmetical functions described above. Consider now such a Turing Machine as able to do 
the following: starting with an empty tape it can write 1s or 0s on it (W), it can scan 1s and 0s already 
printed (S), and it can move left (L) or right (R). Assume now your Turing Machine starts by the 

following instruction  (     )  which means that it reads a symbol 1 on the first square of the tape 
and a symbol 1 on the second square of the tape. This is the way the Machine represents the numeral 

2. The operations of the Machine are described by a list of instructions of the form  (       ), 

where            , (   )        for the possible symbols on the tape and (   )          
for the numbered squares of the tape, so that such list gives the full behaviour of the Machine when 
executing a certain operation. Now define lists of instructions such that: 

 Starting from   (                 ) it finishes with  (              )  

 Which arithmetical operation has the machine implemented?  
 

3. You can now generalize to a machine whose instructions implement functions of the form 

 (     ), where             , (   )          i.e. each argument is a set of 1s (any of them 

possibly empty) and the two arguments are separated by at least one 0; and (   )     i.e. each 
argument takes n number of squares, where n=the number of 1s in each argument. The machine will 

end in a state  ( ), where   (   ) i.e. reading the output of applying the relevant function to the 

two arguments. Can you define such machines for the functions  ( ) of one argument defined in the 
previous chapter? 

4. Which examples can you name of systems (mechanical or human) displaying behaviour that can be 
defined as “intelligent” according to a description of actions at different levels of abstraction? 
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13.9 Further reading 

Boolos, Burgess, and Jeffrey (2002),  Hodges (1989),  Petzold (2008), Primiero (2007), Primiero (forthcoming), 
White (2008). 
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Part VI: Special topics 
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14. ALGORITHMIC INFORMATION THEORY 

Quantifying simplicity and randomness (Beta Chapter) 

 

14.1 Introduction 

If you have ever wondered if it makes any sense to ask 
whether a square can be said to be more or less complex 
than a squiggle, then algorithmic information theory is 
the theory that will allow you to answer, or at least to 
formulate, that question. Traditionally, ordinary 

information theory quantifies information by asking how many bits are needed to encode and 
communicate a message in a series of yes/no questions (bits). For example, it takes one bit to encode a 
single yes or no. (See introduction to Shannon in Chapter 1.) Algorithmic Information Theory (AIT) is of 
a very different character than ordinary information theory. AIT’s motivation is the question what does it 
mean for a sequence of 0s and 1s to be random? It provides an answer by focusing on the lengths of computer 
programs that describe or reproduce a sequence. For example, a finite sequence of bits (also called a 
string) with a repeating pattern can be more succinctly described. In plain English one may say that the 
string 0101010101 can be described as “zero and one five times”, while a more random-looking string 
would require a longer description, perhaps requiring spelling it out bit by bit. 
 
For ordinary information theory, epitomized by Shannon’s information entropy (see Chapter 1), the 
information content of a sequence is the number of bits needed to quantify each of the different sub-
sequences (of any length) contained in a message. For algorithmic information theory, however, it is the 
minimum number of bits needed to store a program that produces the sequence that constitutes the 
information content of the sequence. Shannon’s concept of entropy mirrors a concept in a field of 
physics called statistical mechanics, where Boltzman’s entropy is the central founding concept. Just like 
Shannon’s, Boltzman’s entropy counts the number of different microstates constituting a physical 
macrostate, such as the number of different particle arrangements in a room full of gas. If the gas is all 
concentrated in a small space, the entropy of the room is low, because the number of different particle 
arrangements is small compared to the larger volume of the room. However, as soon as the constraint is 
released and the particles of the gas start filling the room, the entropy of the room increases because the 
particles can be arranged in more places. However, the gas will eventually fill the entire room and one can 
statistically describe the state of each particle inside.  This is why the field was called statistical mechanics. 
 

Chapter 

14 

‘Plurality is not to be posited without 
necessity.’ William of Occam 
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Algorithmic information theory, on the other hand, draws heavily on the theory of computation as 
initiated by Alan Turing. Developed independently by Ray Solomonoff, Andrei Kolmogorov and 
Gregory Chaitin, with crucial contributions from Leonid Levin, Per Martin-Löf, Claus Schnorr, Peter 
Gács and Charles Bennett among others, AIT attempts to quantify concepts such as randomness, 
simplicity and complexity that otherwise would remain informal or undefined. In this way, AIT can help 
to formulate and tackle questions in the Philosophy of Information (PI) that traditional tools from 
information theory are poorly equipped to deal with. Unlike ordinary information theory, AIT can deal 
with some questions related to semantics and epistemology. More precisely, it can shed light on the limits 
of formal knowledge that can be mechanically or effectively accessed (or not), about the known and 
unknown, and also the knowable and the unknowable. 
 
For example, the string 01101001100101101001011001101001… may look random when viewed through 
the lens of Shannon’s entropy measure, but the sequence is simply generated by starting with 0 and then 
successively appending the “Boolean complement” (1 where there is a 0, or 0 where there is a 1) of the 
sequence obtained. Another look at the string may reveal this simple process 0,1,10,1001… where starting 
from 0 the next bit is 1, and the next two bits are thus the complement of 0 and 1, that is 10, and so on. 
Despite the infinite length of this sequence (known as the “Thue-Morse sequence”), there is a very short 
program of fixed length that can generate every bit, analogous to the short description we just gave in 
English. Such a program, however, would never be taken into consideration by Shannon’s entropy, which 
would assign it a large information entropy value because the number of different substrings keeps 
growing, in spite of the fact that the generating program remains the same small size. 
 
Although not everything is a bit string, bit strings are commonly chosen to illustrate AIT because they are 
simple, and because any message written in any alphabet can be rewritten in binary (although it is not 
always sensible to do so!). Returning to the example of the square and the squiggle, does it make sense to 
ask which shape is simpler? It does, because one can think of a minimal computer program producing the 
square, and producing the squiggle, and then ask which program is shorter. AIT will suggest that the 
simpler shape is the one produced by the shorter program. We know that a square can be described easily 
in a programming language. In fact, many programming languages already have a special purpose 
function to print squares and rectangles. But even writing a new function should not be difficult, as a 
square can be determined by a single number, specifying the height and the width. On the other hand, it 
is hard to simplify the description of a squiggle: probably the only way to describe it accurately to 
someone else would be to show them the squiggle itself. In some strong sense, therefore, one can expect 
a squiggle to require a longer computer program to be reconstructed, and therefore can be said to be 
more complex, or more random, than a square. Now you can see that although not everything is a bit 
string, in the end both the square and the squiggle can be generated by programs that are themselves bits 
inside a computer. So in general we will stay in the world of bits to describe AIT even though the claims 
of AIT are applicable to almost any object, no matter if it is an image, a graph or the blueprint of a car. 
 
Shannon’s important contribution of discovering that information could be quantified, using the concept 
of the bit, with no consideration of its semantic content (e.g. whether it is a car or a bike) is approached 
differently by AIT. Unlike the common belief that quantitative theories of information cannot shed any 
light on questions related to meaning, some of the concepts advanced by AIT are strongly related to 
epistemology. One of these concepts is the concept of comprehension, which has on several occasions 
been paired with various algorithmic information concepts, notably data compression. The theory of 
learning and optimal prediction can also be said to be settled in some formal sense by algorithmic 
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probability. Algorithmic probability is usually regarded as a formalization of a common paradigm in 
science, also known as “Occam’s razor”. One popular version says that ‘among competing hypotheses, the 
hypothesis with the fewest assumptions should be selected’, although it was originally stated by William of Occam as 
‘Pluralitas non est ponenda sine necessitate’ (‘Plurality is not to be posited without necessity’). Chaitin’s 
Omega number (see below) has also been called the “infinite wisdom number”, which contains all 
knowledge but whose content is unattainable.  
 
It seems that to compare descriptions of objects to determine which has the shortest description, one 
would need to specify some sort of “universal language” for this notion of “the shortest description” to 
make sense.  Otherwise one could always come up with a language in which any arbitrary message had a 
short encoding, no matter how random it first appears. For example, Alice and Bob could agree to 
compress all the content of the Encyclopaedia Britannica in a single bit, so when Alice presents Bob with 
that bit, Bob could unfold it into the whole Encyclopaedia Britannica. AIT would achieve little if the 
complexity of something could be determined so arbitrarily. It is thus necessary to find a general language 
to “describe” any object in a fair fashion. This fair language, suggested by AIT, is the language of 
computer programs. The reason is that computer programs not only “rename” things, but they fulfil the 
extra requirement of giving a description that can actually reconstruct the original object, no matter the 
recipient. Now one can see why the Encyclopaedia Britannica cannot be paired with a small “descriptor”, 
not to mention a single bit. Even Bob would need a computer program that already describes the 
Encyclopaedia Britannica to print all the volumes in their original form from the bit he is given by Alice. 

14.2 Plain Kolmogorov complexity 

Kolmogorov (1965) formally defined what is today known as the plain version of the Kolmogorov 
complexity (K) of a binary string, as the length of the shortest computer program (in bits) running on a 
universal Turing machine (that we will call U) that produces the string and halts (see Chapters 1 and 13). 
The Kolmogorov complexity, K, of a string such as 0101010101, is defined as the length in bits of the 
program printing out the string. In this case it can be produced by a short program implementing a 
printing loop of 01 five times. Any file in a computer is ultimately represented by bits, disregarding 
whether it is an image or a music file, or whether one measures its length in bytes or gigabytes (1 byte is 8 
bits). Hence the range of application of K to any data is very large and is not limited to binary strings in 
any way. A string is said to be algorithmically random if the shortest program producing the string is the 
same length as the original string; on the contrary, the shorter the program that can produce the string, 
the less Kolmogorov random the string is. 
 
As simple as it may sound, K is extremely powerful.  It can be proven that K is able to “see” any possible 
regularity occurring in a dataset s. Finding regularities can be important for many reasons.  One is for 
compressing data and saving precious resources by marking the regularity and producing instructions that 
reproduce it but occupy less memory space. One way to see K(s) is thus as providing the greatest 
possible compression rate for a perfect lossless compression algorithm compressing an object s. “Lossless” 
here means that the compressed version contains all the information of the original object, so that when 
decompressed the original object is fully recovered. (On information loss, see Chapter 3.) If an object has 
any type of pattern or regularity, K will make use of it to minimize the length of the computer program 
needed to describe it. A fair compression algorithm can be defined as one that transforms a string into 
two parts: one is the compressed version of the object, and the other the instructions to decompress the 
string, together accounting for the final length of the compressed object. In other words, one is adding 
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the decompression algorithm to the compressed string so that the compressed string comes with its own 
decompression instructions. Kolmogorov complexity establishes the ultimate limits of compression. It 
tells us why files cannot be compressed beyond certain limits and why they cannot be compressed to zero 
length (unless the file is empty). 

K can be very useful for all sorts of applications related to semantics and meaning, in spite of the fact that it 
treats information in a formal and quantifiable fashion. Imagine Alice gives Bob the sequence 0101010101 and 
asks him if he believes it is the output of tossing a coin (where 0 is heads and 1 is tails). Would Bob believe the 
sequence is fair or random? He would certainly not, even though classical probability theory would say that 
0101010101 has exactly the same chance of occurring than any other sequence of the same length. Classical 
probability theory does not help explain Bob’s suspicion of this apparently non-random sequence. What about 
Shannon’s information entropy? (See Chapter 1.) Shannon’s information entropy would say that 0101010101 
has a lower entropy than, say, 0110010100, but Shannon entropy cannot distinguish between 0101010101 and 
000000011111, which may look equally suspicious to Bob. In fact, if Alice shows Bob a sequence such as 
314159… and asks Bob whether the string looks random, Bob might recognize the 314159… digits as the first 

few digits of the mathematical constant . Then this sequence does not look at all random to Bob, because it is 

generated by a simple process. Shannon’s entropy, however, would assign maximum entropy to the digits of , 

because  is believed to be a normal number, which is a number that contains all possible sub-sequences of 
digits. For example, all sub-sequences of 3 digits such as 123, 234 or 098 would occur exactly the same number 

of times in , and the same for any other sequence of any length. This means that the Shannon entropy of the 

digits of  tend to maximal entropy for longer sequences of digits of . However,  would have a very low 

Kolmogorov complexity because  is the result of an algorithmic process that can be described in a very 

concise way as the result of dividing the circumference of any circle by its diameter. For AIT,  would not be 

random, just as Bob thought when he recognized the sequence. Even when an approximation of K() would 
be difficult to estimate in practice, perhaps with a compression algorithm, K is equipped precisely to see this 
kind of structure and discriminate it from randomness, in a way that classical probability theory or other 

measures such as Shannon information entropy will not. For a general compression algorithm to see , it would 
need to be “clever” enough, and, like Bob, it would need to have some knowledge about maths. 

Now one can see how AIT helps understand meaning in a formal way in this context. Meaning for Bob with 

respect to the digits of  means that a bell rang in Bob’s head when looking at  because he recognized that the 

digits have some meaning (ultimately, this is so even if Bob ignores it or fails to remember it, because  is a 

precise geometrical relation among all circles). The fact that Kolmogorov complexity can recognize  as a 
special object compared to, say, 0101010101 or 000000011111, seems to capture the idea of meaning and even 

of subjective meaning. Both the compression algorithm and Bob, if he had no knowledge of , would fail to 

recognize , but still they may eventually be able to see that  is the result of a simple, and highly compressible, 
calculation. 
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14.3 The founding theorem 

If the language of computer programs is to be the language used to measure the complexity of an object, 
one would wish to have some stability under changes of programming language for K(s) to have general 
application. A theorem guarantees the stability of K using different programming languages (or universal 
Turing machines). One way to think about the “invariance theorem”, as it is called, is to think of a 
program that translates between two programming languages or Turing machines U1 and U2 (U for 
Universal Turing machines; see Chapters 1 and 13). Because any Turing machine, particularly a universal 
one, can be implemented on any other universal Turing machine, the minimum length of a program on 
U1, plus the length of the translation program for U2 machine, will give the length of the program on U2. 
Think of a bilingual dictionary. The length of the dictionary is fixed and it may depend on U1 and U2 (the 
languages, in this case), but once we decide which language and which dictionary to use, the length of the 
dictionary remains the same for any word s in the dictionary, no matter how large or short s is. This 
invariance theorem is the foundation stone that established the field of AIT and is due to Solomonoff 
(1964), Kolmogorov (1965) and Chaitin (1966). The theorem establishes that there is a constant c that 
limits the difference of 2 measures as measured on 2 different Turing machines (or programming 
languages) U1 and U2, that is for all s,| KU1(s) – KU2(s) | ≤ c.  

The invariance theorem implies that the difference c between one measure of K under one computer 
language (or Turing machine) and another computer language is constant because it is the length in bits 
of the translator (or compiler) between U1 and U2 that matters and remains constant. The theorem says 
that c can be relatively large and have an impact if s is too small (small enough for this to happen), 
making the measurement of K potentially unstable for a while. However, as soon as s is longer than c, 
then the instability of K measured over different programming languages starts to become less and less 
important, eventually converging to the same K values. For example, imagine that under a programming 
language U the bit string s=0101010101 could be encoded by a program of length 10 bits, that is 
KU(s)=10, but for a programming language T it may take a program of length 15 bits to reproduce the 
same string, that is KT(s)=15. If the difference between KU(s) and KT(s) for all s is a constant c=5 bits 
that can be determined by writing a translator between U and T, then this means that for s the difference 
between KU(s) and KT(s) is proportionally larger than for a string s’=01…01 (100 times larger than s). 
Then, the resulting difference between KU(s) and KT(s) for s’ will be relatively smaller than for s, because 
it will remain at about c=5 bits. 

The theorem introduces a question, despite the positive meaning of the theorem. While the theorem 
guarantees the convergence of values when the length of s grows, the theorem says nothing about the 
rate of convergence. Indeed, c could be incredibly large, rendering the theory useless for short strings. 
Applications and recent reports suggest, however, that c is usually small enough in most natural cases to 
be neglected. The remaining philosophical question then is why in practice c remains small, and what 
does it mean for a computer language or a computer to behave in a natural way. 

One common way to approximate K is with the use of lossless compression algorithms such as those 
used in common computer formats such as gzip and rar. The usefulness of lossless compression 
algorithms as a method for approximating K derives from the fact that compression is a sufficient test of 
non-randomness. The lossless compressed length of an object s (e.g. a string) is therefore an upper bound 
on K(s), which means that while one cannot ever tell when a string is not compressible, if one succeeds 



THE PHILOSOPHY OF  INFORMATION — AN INTRODUCTION 

 

189 

in somehow shortening a string, one can tell that its algorithmic complexity cannot be larger than the 
compressed length. 

Now we can see why this discussion is important.  It is important because the Kolmogorov complexity of an 
object s, K(s), is related to how compressible s will be, and it is not only a matter of whether s is random or 
not, but whether it is relatively random or not, and if the relativisation is about the length of the constant c then 
one cannot tell much about the string’s randomness. The more regularities in s, the greater the compression 
rate. Because the compressed version of s together with the decompression instructions can be seen as a 
program compressing s, then K(s) is small if s is highly compressible. However, if the object is random, it also 
means it has no regularities and therefore it will be incompressible and will have a large K(s) value, in which 
case s will be said to be random (the less compressible, the more random). More generally, it is said that a string 
is c-incompressible or c-Kolmogorov random (or just c-random) if K(s) ≥ |s|– c. 

14.4 Most salient properties of K 

One observation from the definition of K is that most objects are random and are thus strings of 
maximal Kolmogorov complexity; we can see this in the following counting argument. First notice that 
the length of programs for K is always given in bits, and the strings themselves are given in bits. That 
both units are in bits is convenient in order to compare objects of the same type, but one can use any 
other base or convention. Nevertheless, most objects can be proven to be maximally random according 
to their generating computer programs. There are exactly 2n bit strings of length n, and there are 20 + 21 + 
22 + … + 2n-c = 2n – c bit strings of length n - c bits. It follows then that there are considerably fewer 
short programs than long programs. Thus, the number of strings of length n that can be paired with a 
program of c bits shorter vanishes exponentially. One can’t pair off all n-length binary strings with binary 
programs of much shorter length, because there simply aren’t enough short programs to encode all 
strings in shorter strings, even under optimal circumstances. In fact, by the same argument, it is clear that 
among all the strings of certain length, there is always one string that cannot be compressed at all, not 
even by a single bit. Take as an example all strings of up to length 3. There are 14 such strings: 0, 1, 00, 
01, 10, 11, 000, 001, 010, 101, 100, 011, 110 and 111, for which there are the same number of programs 
of the same length, and only six of shorter length (0, 1, 00, 01, 10 and 11). Thus most of the strings will 
be paired to programs of the same size and will have maximal Kolmogorov complexity. In other words, 
there are not enough bit programs of shorter length to pair all bit strings. 

Another salient property of K is also commonly seen as its greatest burden. That is its uncomputable 
nature. A function is uncomputable if there is no Turing machine that is guaranteed to produce an output 
for its inputs, or in other words, if the machine computing the function doesn’t halt for a number of 
inputs. For Kolmogorov complexity that means that the function s → K(s) has no effective procedure 
(or Turing machine). That is, there is no general function that, given a specific string, can generate the 
shortest program that produces that string. The fact that Kolmogorov complexity cannot be computed 
stems from the fact that we cannot compute the output of every program, hence the halting problem (see 
Chapter 13). 

This uncomputability of the function s → K(s) is, however, also the source of its greatest strength. 
Contrary to the common belief that the greatest burden of K is its uncomputability, it is its 
uncomputability that provides K with its great power. AIT proves that no computable measure will be up 
to the task in finding all possible regularities among all possible infinite sequences. This is because there is 
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an uncountable number of possible regularities, while there is only a countable number of possible Turing 
machines (or computer programs), so there are not enough of them to spot every possible regularity. 
However, it is more precise to refer to the uncomputability of the function s → K(s) as semi-
computability, because one can actually approximate K(s) from above i.e. one can calculate the upper 
bounds of K. One traditional way to calculate upper bounds on K is with the use of compression 
algorithms. A trivial upper bound on K for any string s is simply the program print(s). If a string s does 
not allow any other shorter program than print(s) then s is said to be incompressible or algorithmically 
random.  

A proof of the uncomputability of K is sometimes explained using Berry’s paradox. The Berry paradox is a self-
referential paradox arising from an expression of the type “consider ‘the smallest positive integer not definable 
in fewer than twelve words’”. Note, however, that the previous sentence has eleven words so that number 
could be defined in less than twelve words! Bertrand Russell (1906) was the first to discuss the paradox in the 
literature and he attributed it to G.G. Berry, a librarian at the Bodleian library in Oxford, who had suggested a 
similar but more limited paradox from the expression “the first undefinable ordinal”. The paradox with these 
phrases is that while any set of integer numbers that has some property also has an integer smaller than any 
other that has the property in the set (by what is traditionally called the “well ordering principle”), one should be 
able to find an integer not definable in less than twelve words. However, the sentence itself is of less than 
twelve words and is “defining” the integer; hence such an integer cannot be defined. The resolution of the 
paradox is by making precise the word “definable”. In the case of the measure K, “definable” was replaced by 
Chaitin (1995) with a computer program, and by doing so the sentence with K does not lead to a paradox but 
to a proof that K cannot actually be calculable. Or, put another way, if it were possible to compute the 
Kolmogorov complexity of any string, then it would also be possible to generate paradoxes of the Berry type 
systematically with K (that is descriptions shorter than they are supposed to be, rendering the notion of K 
meaningless). Both Chaitin’s approach and a version by George Boolos (1989) using the Berry paradox lead to 
a proof of Godel’s Incompleteness Theorem in a different and simpler way. The proof can be informally 
summarized by what is called “Chaitin’s heuristic principle”, that is, that axiom systems cannot prove the 
complexity of a formula if the formula has greater algorithmic complexity than the combined algorithmic 
complexity of the axioms in which the formula is intended to be proven. 

14.5 A convenient variation of K 

One interesting question is how often a string can be produced by a computer program whose 
instructions are picked uniformly randomly. One way to formulate the question is to ask for the 
probability of a string being produced by a universal Turing machine running a random program. 
However, the sum of the probabilities of all the computer programs that can produce a particular string is 
greater than 1 because there is an infinite number of computer programs that can produce the same 
string. The problem is that it is very easy to generate an infinite number of programs as an extension of a 
program that already produces a string. Take the program that prints s and then prints an extra 1 at the 
end, only to delete it before halting. The new program prints s, but it is only a spurious variation of a 
more compact program. For a measure to be called a probability, however, the sum of the probabilities 
has to be 1. 

To circumvent this problem Leonid Levin (1974) and Gregory Chaitin (1977) devised a way to consider 
only significant programs. These are programs that are not initial subprograms of any other valid 
program. These types of sets are called “prefix-free domains”. A classic example is the set of all telephone 
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numbers. The only way to reach a person by calling their telephone number is if no substring of its 
telephone number is a substring of any other telephone number. If Alice’s number is 0123456789 and 
Bob happens to have 0123 as his telephone number, then Alice would never be reachable because every 
time anyone tries 0123456789 the telephone company would connect to 0123, to Bob. Different ways to 
avoid this are possible; for example, if the telephone company enforced a longer time delay or a special 
character as an indication of a telephone number termination (for example, some online banking systems 
ask customers to use the # sign to indicate termination). A more practical way to do this for the 
telephone number system is simply to require all telephone numbers in the world to be of the same 
length, including country and area codes. Alternatively, if a shorter version of the phone number exists 
locally, the shortcut would never be part of the initial segment of any other telephone number. 

Prefix codes are guaranteed to exist for a countable set and the so-called Kraft (or Kraft-Chaitin) 
inequality guarantees that taking the sum of all the probabilities of the series will converge to 1, which is 
the necessary condition for a probability measure. To differentiate this variation of K we will denote it by 
C. Algorithmic (also known as Kolmogorov-Chaitin) complexity can now be rewritten as CU = |p(s)|. 
Where U is now required to be a universal Turing machine that only accepts self-delimited programs p, 
and U is called a prefix-free universal Turing machine.  

Most properties of K are inherited by the prefix-free variation C, such as its uncomputability and invariance, 
and hence we will invariably talk about K or C unless an explicit distinction is made. In fact, the difference 
between the two can be exactly quantified given that the number of extra bits that are needed to delimit an 
input string is small. By convention, when talking about K, we mean that the assertions apply both to K and C, 
but when talking about C it usually means that assertions only apply to C. 

14.6 Optimal predictability and algorithmic probability 

Algorithmic probability says that it is not the case that a single bit is the most complex random string, but 
actually the most structured possible one and, more importantly, that the complexity transition is smooth, more 
in accordance with intuition.  

It may be that it makes sense that a single bit can be regarded as both the most simple and the most complex of 
strings from different perspectives, and the advantage of the algorithmic probability approach is that it provides 
not only a different notion of the complexity of a single bit (one that is in keeping with intuition), but also that it 
generates a different outcome to the compressibility approach, even when the two measures are intimately 
related and asymptomatically produce the same results in the long term (for longer strings). The two views 
reflect different aspects of what a single bit represents. 

There is a measure m that describes the probability of a universal Turing machine producing a string s 
when running a computer program produced at random. m provides a distribution over the set of all 
strings that is known as the “Universal Distribution”, and its properties have even been described as 
miraculous in the literature. The notion behind m is intuitive and powerful. If one wished to produce the 

digits of  randomly, one would have to try time after time until one managed to hit upon the first 

numbers corresponding to an initial segment of the decimal expansion of . The probability of success is 
extremely small: 1/10 digits multiplied by the desired quantity of digits (for example, (1/10)2400 for a 

segment of 2400 digits of ). But if instead of shooting out random numbers one were to shoot out 
computer programs to be run on a digital computer, the result would be very different. A program that 
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produces the digits of  would have a higher probability of being produced by a computer program. 

Concise and known formulas for  could be implemented as short computer programs that would 

generate any arbitrary number of digits of . This measure can be written as follows: 
m(s)U = ∑U(p)=s 1/2|p|  

Where |p| is the length (in bits) of the programs that produce a string s running on a universal Turing 
machine U. In order to work U has to fulfil a minimal technical requirement, viz. that no valid computer 
program is the beginning of another valid computer program. It should be noted that the largest term in 
the sum of equation 1 is obtained when the denominator is the smallest, that is, when |p| is the smallest, 
namely the shortest length of program p in bits that produces s, but the length of the shortest program is 
nothing else but C(s). Hence we have found the precise beautiful connection between frequency of 
production of a string and its algorithmic complexity. 
 
The implications for the real world are broad and fascinating, if one speculates about the world as an unfolding 
algorithmic process. Suppose that all phenomena in nature can be carried out by a Turing machine as a 
computation. Then m(s) would be the algorithmic probability of an event s actually happening. In fact, m(s) 
can be used to explain the generation of structure out of randomness (random programs) at the smallest scale, 
generating order in the universe out of nothing. 

14.7 Complexity and frequency 

Algorithmic probability theory says that a string with low complexity (e.g. a repetition of “01” a hundred 
times) will be produced by a large number of random computer programs according to algorithmic 
probability. According to the Coding theorem, the string will also have a very short program among the 
programs producing it, short with respect to the string length when growing the string by repeating the 
same pattern. This in turn can be interpreted in the following way. If one is presented with a string that is 
assumed to be an ever-growing sequence from a source, asking what digits will come after the repetition 
of “01” a hundred times is determined, according to algorithmic probability, by the bits that preserve the 
(low) original Kolmogorov complexity of the string with the repetition of “01” a hundred times. In this 
case the answer is that algorithmic probability will say that the pattern “01” will be repeated again and 
again because it is the pattern that mostly preserves the original length of the generating computer 
program. So while the string “01” n times can grow very fast, the generating program will only grow very 
little, by about log2n. 
 
Now suppose that 0 represents sunlight and 1 represents night; one can encode the days of a year as a 
sequence of 365 digits repeating the pattern 01, if one does not live near the earth’s poles. Now one could 
formalize the question of whether the sequence of 01 will continue repeating after the 365th day. Classical 
probability alone would say that anything could happen (that a night can come after a night with no 
sunlight the next year, or that 10 sunlight days will come in a row followed by 3 nights). Instead, we see 
day after day a repeating pattern due to the movement of the Earth with respect to the Sun that will more 
likely repeat than stop. Ways to complement classical probability theory are traditionally of Bayesian 
nature, which gives some weight to previous observations. One can more naturally justify a repeating 
pattern and an expectation by way of algorithmic probability. In this case, the program behind a sequence 
of this type is governed by the laws of gravitation describing the rules of movement establishing the 
regular movement of the earth with respect to the Sun. Algorithmic probability is in this sense an optimal 
predictor that shows how theoretically reflecting on these measures and trying to estimate numerical 
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values can provide useful applications and understanding. Another application of algorithmic complexity 
can be subjective randomness testing, that is, how good humans are at perceiving and generating 
randomness. For example, most educated humans will favour sequences containing even and prime 
numbers because they may believe that even numbers look less random. Classical probability theory 
would say this is wrong, because odd, even or prime numbers are not more special than others. 
Algorithmic probability would say that producing one type of number is less random and may better 
quantify the failing. As it turns out, humans are poor random number generators in either case, but 
aspects could not be objectively quantified before. 
 
We have seen how m(s) relates to C(s), given that according to its definition, m obtains the greater 
summand from the shortest program that produces s. The Coding theorem further formalises the reverse 
relationship between C(s) and m(s), establishing that C(s) is about – log m(s). The theorem indicates 
that the algorithmic complexity of a string s is very close (up to the additive constant) to the negative 
value of the logarithm of the frequency of s. It tells us that if a string s is produced by many programs, 
then there is also a short program that produces s. Not by complete chance, this relation resembles 
Shannon’s information entropy formula, but unlike Shannon’s this other measure is related to a true 
measure of complexity in the sense that it is equipped to capture any regularity in s from inheriting the 
power of K, even though it means K is more difficult to estimate than Shannon’s entropy. One question 
of great importance is what distribution of computer programs is assumed for calculating m(s). While it 
is true that K(s), unlike Shannon’s entropy, is independent of probability distributions, this is no longer 
the case for m(s). A nice property of m(s) and the reason it is often referred to as the Universal 
probability distribution is because it can be proven that m(s) dominates any other probability measure of 
computer programs. This is something similar to the invariance theorem, meaning that if another m(s) is 
defined in some other way, the new measure will end up behaving exactly as m(s) would do. The measure 
m(s), however, assumes that the distribution of random computer programs is uniform, that is that every 
instruction in the computer program has equal chance of occurring. This assumption is a source of 
criticism as it makes a priori assumptions that can be thought of to be of the same type as traditional 
Bayesian approaches, invoking uninformative prior distributions (how a distribution looks or will look) 
that require caution. 
 
In this way m(s) and the Coding theorem reconnect K(s) to classical probability theory by means of the 
question of the distribution of computer programs, from the assumption that programs of the same length are 
equally likely and it might be argued that in real-world situations this may be not the case. In defence of the 
approach, however, one can argue that a uniform distribution is the simplest non-informative distribution 
according to the principle of indifference; that is, if n possibilities are indistinguishable then each possibility 
should be assigned an equal probability of 1/n. 



THE PHILOSOPHY OF  INFORMATION — AN INTRODUCTION 

 

194 

14.8 The infinite wisdom number 

We now move to the subfield of AIT that studies the algorithmic randomness of infinite objects where 
little, if any, real-world applications have been developed, but a rich foundational discussion arises. 
Algorithmic probability and the associated universal distribution function s→m(s) are closely related to 
another crucial concept in the theory of algorithmic information, that is, the Chaitin halting probability 
(Chaitin, 1975), also known as Chaitin’s Ω (omega) number defined by ΩU = ∑(p) halts1/2|p|. In this 
formula, every program p running on a (prefix-free) Turing machine U that halts contributes to the sum 
of the values 1/2|p|. The longer the program length |p|, the smaller the value of 1/2|p|, and therefore 
the smaller the contribution to Ω. Short programs, however, contribute largely to the most significant 
values of an Ω number. Just like K and C, Ω is also semi-computable, meaning one can estimate it (from 
below) by fixing a programming language framework and running random programs. 

Knowing the first n bits of Ω would enable you to decide whether or not each program up to n bits in 
length ever halts, so knowing all digits would enable you to decide the halting problem of all possible 
computer programs. That is why Ω can be seen as encoding all possible answers to any computable 
question. Given that one can always formulate questions in terms of whether a Turing machine will halt 
(yes and no answers), one would have the answers to all mathematical questions. One could think of an Ω 
number as an oracle reminiscent of the answer given by the Deep Thought computer to the Ultimate 
Question of Life, the Universe, and Everything in the Douglas Adams’s The Hitchhiker’s Guide to the Galaxy 
science fiction series. But just as in this science fiction story where the computer gave the answer “42”, 
answers given by an Ω number would be hard to understand and, in principle, impossible to follow. And 
again, just like in Adams’s story, one would need to rely on another more powerful computer to verify the 
answer, which in turn may provide a more puzzling and impossible-to-follow answer. 

Chaitin’s Ω is in fact a family of numbers because its digit expansion depends on the chosen universal 
Turing machine U or programming language. For every chosen U there is a different Ω number. As a 
probability measure the summands in Ω should not add up to more than 1 and therefore U is also 
required to be a prefix-free Turing machine (or a self-delimited programming language), as was also the 
case for m(s). Because Ω can never be 1, given that a number of Turing machines will never halt, Ω is 
more precisely called a semi-probability measure (as is m(s)). 

Indeed, Solomonoff-Levin’s semi-probability measure (or “semi-measure”) mU(s) provides an 
approximation to ΩU, for the same U, together with the frequency value of the strings produced by the 
random programs that halt, and from which the string algorithmic probability (and the string 
Kolmogorov complexity K(s) from the application Coding theorem) can be estimated. Also just like 
m(s), Ω is lower semi-computable, because one can numerically estimate lower bounds on both 
measures. Semi-computable measures like Ω and m(s) are also said to be computably enumerable (often 
shortened by c.e.).  

When thinking of Ω in terms of a wisdom number containing infinite knowledge, including the answers 
to all questions that can be formulated as a computer program (e.g. all open mathematical problems and 
more), it is very interesting to find out that the digits of Ω are unattainable and incompressible, meaning 
that there are no shortcuts to reach that knowledge. No process can overrun Ω because it cannot be 
derived by any means simpler than the sequence of bits in Ω itself. That doesn’t mean one cannot 
calculate a few digits of Ω for a number of cases. For example, if we knew that computer programs 0, 10 
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and 110 all halt (notice they are prefix-free), then we would know that the first digits of Ω are 0.111, 
which in turn, if we had started with 0.111 from this Ω number, we would know that the programs 0, 10 
and 110 halt. In this sense, Ω encodes and maximally “compresses” the information of the halting state of 
all possible computer programs. Therefore, by knowing Ω one could solve the halting problem (see 
Chapter 13). 

The problem is that the first n digits of Ω cannot be computed using a program significantly shorter 
than N bits long, which is also the basis of Chaitin’s incompleteness theorem using AIT, based on the 
idea that a set of axioms cannot prove a theorem containing more information than the combination of 
axioms themselves. In other words, Ω is itself not computable, because a fixed length program would 
only be capable of estimating a few finite digits of the infinite number Ω. Although Ω has a simple 
mathematical definition, the definition does not enable us to determine more than a finite number of its 
digits and Ω numbers have been constructed for which no bit can be determined, even with the full 
power of set theory, which is the most powerful classical theory commonly used in mathematics. 
However, it is known that some Ω numbers are easier than others. Remember there can be an Ω for 
every (self-delimited) programming language or (prefix-free) universal Turing machine that changes the 
digits and order of the bits in Ω. This could be thought of as reformulating the question in another 
programming language. The interesting thing is that it is also known that there is an Ω number (or a 
family of them) that is maximally complicated in the sense that none of its digits can be computed, not 
even one. So even when one can reformulate questions in the form of computer programs in order to try 
to get some information from Ω, not only will most questions remain unanswered, but in some cases (for 
an unfortunate question) no answer can be extracted from some Ω numbers.  

Algorithmic information theory can therefore make a surprising contribution to the philosophical 
discussion of the origins and limits of knowledge. According to Chaitin, AIT reveals that certain 
mathematical facts are true for no reason, a discovery that goes against Leibniz’s principle of sufficient 
reason, but along with Aquinas’ dichotomy of knowable and unknowable knowledge (that is knowledge 
or truths that can be known and have an explanation and knowledge or truths that are so for reasons that 
cannot be knowable or attained by any effective means). 

Indeed, as it turns out, from the Ω number an infinite number of mathematical facts are irreducible in the sense 
that no effective theory (computation) can explain why they are true; that is, the only way to “prove” such facts 
is to assume them as axioms, that is assumptions that do not need any explanation at all and are assumed to be 
true by definition. But even assuming new axioms, there is always an infinite number of facts left that cannot be 
proven true or false. In this sense Chaitin claims that, unlike the common belief that mathematics is strange to 
randomness, mathematics is in a profound sense random as it contains facts that are true for no (computable) 
reason. 
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14.9 Convergence in definitions 

One may ask whether all these measures can be taken seriously as fully characterising the intuitive notions 
of complexity and randomness once and for all. The most surprising result in AIT is what is known as the 
“convergence in definitions”. This is a phenomenon similar to the convergence in definitions of the 
notion of algorithm in the 1930s when people such as Gödel, Church, Turing, Post, Kleene and others 
characterised the notion of an algorithm by different independent approaches that turned out all to be 
equivalent in computational power, giving the sense that the concept of algorithm had been definitely 
mathematically grasped by all these formulations. Something similar has happened with AIT. 
Kolmogorov, Chaitin, Levin, Schnorr and Martin-Löf have independently conceived different approaches 
to randomness (compression, predictability, typicality) that have turned out to be equivalent in various 
fundamental ways, particularly for the finite case (the convergence in definitions of the case of infinite 
sequences is debatable): 

Incompressibility: we have explained how randomness can be characterised by incompressibility. 
According to Kolmogorov complexity, if an object is random then it is impossible to compress it. 
Incompressibility is a sufficient test for non-randomness; however the converse is not necessarily true 
as the power of lossless compression algorithms may be limited. 
 
Typicality: we have also examined the notion of a regularity and how one can take advantage of 
regularities in order to compress an object. The basic idea is to spot the places where the regularity 
occurs and then code it with a shorter marker. One can devise statistical tests for regularities, for 
example, a test for whether a sequence is made of an even number of 1s or whether the digits of a 

sequence are the digits of a mathematical constant (such as ) in binary. Random sequences can then 
be characterised by failing or meeting all possible (computable) tests. In fact, Martin-Löf proves there 
is a single (but uncomputable) universal statistical test for every possible regularity in a sequence. 
 
Unpredictability: another characterisation of a random sequence is by way of unpredictability. 
Schnorr shows that it is impossible to make money by guessing the next digits in a random sequence 
when using a computable betting strategy. One can intuitively see that if there are no predictable 
patterns and no regularities can be spotted in a random sequence, one can come up with a strategy to 
predict any digits. If this is actually the case, then the sequence is said to be random. 

 
The convergence in definitions means that each definition assigns exactly the same randomness as each of 
the other definitions. In other words, the extension of each definition is the same; they contain the same 
objects, hence strongly suggesting that each definition has proven itself (at least for the case of finite 
sequences). One can write this beautiful result in a compact manner as follows: 

incompressibility ↔ unpredictability ↔ typicality 

That is, something that is incompressible is unpredictable and is typical in a statistical sense. A series of 
universality results (both in the sense of general and in the sense of Turing universal, the latter concept being 
a version of the former (Kirchherr, Li, & Vitányi, 1997)) leads to the conclusion that the definition of 
random complexity is mathematically objective from the following results: 
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 Martin-Löf proves that there is a universal (but uncomputable) statistical test that tests for all 
computably enumerable statistical tests. His definition of randomness is therefore general enough 
to encompass all effective tests for randomness. 

 Solomonoff and Levin prove that algorithmic probability is a universal and optimal learning 
strategy with no prior knowledge. 

 Schnorr shows that a predictability approach based in Martingales leads to another 
characterisation of randomness, which in turn is equivalent to Martin-Löf randomness. 

 Chaitin proves that an algorithmically uncompressible sequence is also Martin-Löf random. 

 The confluence of all these definitions. 

When this happens in mathematics it is believed that a concept has been objectively captured (in this case 
the concept of randomness). However, some have raised concerns for convergence arguments in AIT, 
because the number of equivalent characterisations, compared to characterisations of the concepts of 
algorithm or computation, are much fewer and perhaps less strong (see Porter (2012)). 

Another concern about convergence arguments is raised by Georg Kreisel, suggesting a possible 
systematic error: that is, a collection of definitions that converge to the wrong extension. Regarding the 
Church-Turing thesis, Kreisel writes, ‘Equivalence results do not play a special role, simply because one 
good reason is better than 20 bad ones, which may be all equivalent because of systematic error’ (Kreisel, 
1971). The source of the systematic error, Kreisel seems to suggest, may be, for example, induced by 
historical factors, where a group of researchers trying to tackle the same problem find similar solutions 
that turn out to be equivalent only because they had similar (or identical) starting points and backgrounds. 
Nothing seems to suggest this is the case for the notion of algorithm (believed to be captured by the 
concept of computability) or for the notion of randomness (believed to be captured by AIT). However, it 
is very interesting to analyse the foundations of every approach, compare them and discuss the 
implications. 

14.10 Conclusion 

Algorithmic Information Theory (AIT) can be classified into two large subfields. One is concerned with 
the study of the algorithmic complexity of finite strings and the other is concerned with the study of the 
algorithmic randomness of infinite sequences (or sets of real numbers). They are deeply connected and 
carry rich content worth discussing, but at the same time they display important disagreement and 
incompatibilities that are also fascinating.  Is this because of some essential difference? Or is it that the 
disagreement is only transient? 

The convergence in definitions in AIT has brought together characterisations of randomness that were 
not believed to be so deeply formally connected, such as unpredictability, compressibility and regularity. 
In this brief account of AIT we have explained it as a powerful theory that provides a set of universal 
measures of complexity for individual data objects, particularly strings and sequences. These are universal 
in the sense that they were not advanced for any specific purpose other than quantifying a notion related 
to complexity, and, more importantly, they are proven to characterise all possible features in data. A 
common property of AIT measures are their various forms of uncomputability, which we have explained 
should not be taken as a barrier to make use of them, either theoretically or experimentally.  This is not 
only because some simple cases are actually computable, but more importantly because the measures are 
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not completely uncomputable, but are approachable with tools such as compression algorithms that are 
sufficient proof of the non-randomness of an object. 
 
We have also substantiated the claim that the quantitative treatment of information and information 
content by AIT (in the form of randomness) should not be taken as disqualifying AIT from providing 
important insights into deep philosophical questions of information, including the semantics of 
information. We have seen that its computability is also AIT’s greatest strength, which no computable 
measure can match, and that the algorithmic probability approach is deeply related to long-standing 
questions of inductive inference, epistemology and even psychology. 
 
A question that the reader may raise is whether randomness equals complexity. The intuitive concept of 
complexity usually means order and structure, something which does not entail the concept of Kolmogorov 
complexity, which means randomness. This is a fair point, and there is another important measure of 
complexity that the reader should be aware of that builds upon Kolmogorov complexity to grasp the intuitive 
concept of structural complexity, which we plan to cover in future versions. For the moment we should have a 
better view of what mathematics can do to quantify the notions of simplicity and degrees of randomness. 

14.11 Exercises 

1. Can you intuitively sketch ways to connect the concept of meaning to unpredictability, 
incompressibility and lack of regularity? 
 

2. Suppose you have 2 objects, one that you were able to compress highly and one that you couldn’t. 
What can you tell about them? Does it mean for certain that one is not algorithmically random but 
the other is? How could you prove one or another case? 

 
3. In what way would you say a living organism is less or more algorithmically complex than, say, a 

stone? Discuss. 
 

4. Does AIT imply that if most objects are algorithmically random, because one cannot pair all objects 
to shorter programs, then most physical phenomena will also lack a concise formula? 

14.12 Further reading 

Li and Vitányi (2008), Zenil (2011), Zenil (2013). 

. 
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15. PERSONAL IDENTITY 

Who am I? What am I? What makes me, me? 

 

15.1 Introduction 

There are many questions of personal identity, and they are 
not all the same. Asking “who am I?” might be seeking an 
explanation of what makes you an individual, different 
from all other persons. Asking “what am I?” may require 
an answer that defines what is meant by “person”, giving 
conditions for anything to be a person. These two 
questions are different, and the third is different again: 
asking “what makes me, me, the same person all my life?” 
This is the traditional question of personal identity, the 
persistence or diachronic identity question.  

In this chapter, we will look at several questions of personal 
identity, and consider whether some of them are more interesting than others. We will start from the traditional 
account of the problem in order to illustrate the identity problem. Then, we will look at four views of personal 
identity, which are still discussed in the current literature: Locke’s psychological criteria and Olson’s biological 
criteria, Schechtman’s narrative account, and Floridi’s 3Cs model. Ultimately, we will see how Floridi’s 3Cs 
model melds with Schechtman’s narrative account to give a rich framework for approaching multiple questions 
of personal identity from an informational perspective. 

15.2 The traditional personal identity question 

The traditional personal identity question, the persistence or diachronic (through time) identity question, 
arises because things change over time. What makes something the same thing, even though it changes? 
This is an ancient question, often introduced using the example of Theseus’ ship (recorded by Plutarch). 
Theseus’ ship is commissioned, built, and sails off on her maiden voyage. Theseus sails his ship for many 
years, and naturally things break, and are repaired. Every winter, the ship is hauled out of the water for a 
more thorough overhaul, and even weakened planks on the hull are replaced. Eventually, every part of 
the original ship has been replaced. Is it the same ship? What makes it the same ship?  Suppose that while 
this has been going on, a Theseus enthusiast has been carefully collecting all the discarded damaged parts. 

Chapter 

15 

‘The broader thesis I shall defend is that 
ICTs [Information and Communication 
Technologies] are, among other things, 
egopoietic technologies or technologies of self 
construction, significantly affecting who we 
are, who we think we are, who we might 
become, and who we think we might 
become.’ (Floridi, 2011d, p. 550.) 
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He has assembled them back into the original ship, to put in a seafaring museum. Is the ship in the 
museum Theseus’ ship? 

Persons also change through time. You have few surface properties in common with the baby that you 
once were. You’re a lot bigger, and your eyes and hair might have changed colour. Deeper properties also 
change. Childhood skills, such as spinning a hula-hoop or doing yo-yo tricks, may disappear; while you 
gain new ones, like changing the nappy of a squirming baby, or fixing a boiler. Knowledge, too, can be 
acquired, and lost. What makes a person the same person through all these changes? That is the 
persistence question of personal identity, and much of the literature on personal identity seeks to answer 
it. 

We will look at three views of personal identity, initially intended as answers to the persistence question.  
The first, and traditionally most highly-favoured answer, is that persons persist on the basis of some kind 
of psychological continuity over time. Locke is the most famous proponent of such a view, holding that a 
person is “a thinking intelligent being, that has reason and reflection, and can consider itself as itself, the 
same thinking thing, in different times and places” (Locke, 1894). 

While many agree that psychological features are the most important characteristics of persons, and so 
the basis for their continuity through change, it is tricky to say exactly which psychological features 
matter. One possible choice is memory, as memories do seem to be important to our sense of self. The 
problem is that we don’t remember many things that happen to us! Do you remember what you were 
doing at 11.23am last Tuesday morning? Do you remember your favourite coffee shop? You can 
remember many details about it, but do you remember every time you went there? Yet you are the same 
person who went there, every time. We forget most of the mundane things that happen to us, yet we are 
still the persons who do those mundane things. 

Other psychological features also change: you may not love or like the same people and things all your 
life, and you both gain and lose skills and other kinds of knowledge. So the basis for personal identity 
would have to be a cluster of psychological features causally related through time. Perhaps if you begin to 
learn the piano, become good at playing the piano, enjoy playing the piano, then gradually decline in skill 
so you cannot play very well anymore and so don’t enjoy playing any more, that is one of the 
psychological features relevant to your personal identity, in the normal kind of causal relationship over 
time. If you have children, suddenly a new and fierce emotion and focus comes into your life, which 
persists in their childhood, then matures and changes as they become adult and their relationship to you 
changes; that is the normal kind of causal relationship over time. If you remember the important 
happenings in your life, but forget doing the washing, and other frequent, mundane events, then that is 
the normal kind of causal relationship over time. This contrasts with, say, being brainwashed into 
believing you are a duck, which is not a normal causal relationship. But while it is easy to give examples of 
the “normal kind” of causal relationship over time, it is difficult to say what this is, and it might be 
different for different skills, attachments, memories, and so on. 

A second well-known problem with this account is that it seems at least possible that more than one 
person could have precisely this kind of causal psychological continuity with you. It is possible for a 
person to survive with half of their brain removed. But suppose half of your brain is removed and 
successfully transplanted into another body. Now we might have two distinct people who are 
psychologically continuous with you as you are now! They are both you. But if there was one thing we 
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believed when we set out to give an account of the persistence conditions for persons, it was that one 
person can only ever be one person. This is the fission problem (Parfit, 1971). 

In view of these problems, the second well-known view on personal identity is animalism. On this view, 
your persistence conditions are the persistence conditions of the animal you are (Olson, 1997). You are a 
whole functioning organism – your DNA, cells, organs, immune system, central nervous system and so 
on. What makes you the same person over time is the spatio-temporal continuity of your body. We can 
track that over time, and it can only ever be in one place at a time. For the fission case above, you are the 
original body, whatever happens to the half of your brain that has been removed. 

This agrees with what we actually think of as persons, and how we actually track them. We decide 
whether someone is the same person by tracking bodily continuity. Think of how we use fingerprints, and 
DNA. We regard these as more secure than the testimony of someone who claims to know the person – 
testimony that may be mistaken, or paid for. But very few people think this is a good view of personal 
identity, because they think that surely the psyche is as relevant as, or more relevant than, the body. 

This brings us to the third view, the narrative theory, which can be seen initially as a development, albeit a 
significant development, of psychological continuity theories. We will look at Schechtman’s Narrative 
Self-Constitution View (NSCV) (Schechtman, 2010). Schechtman holds that we constitute ourselves as 
persons by understanding our own lives as narratives, constructing the story of our lives. Persons all think 
about their own lives, and construct ideas of themselves as persons, and their lives as coherent over time. 
We think about ourselves as governed by norms – moral “oughts” like “I ought not to kill”, or value 
oughts like “I ought to phone my Mum”, or aesthetic oughts like “wearing purple and orange together is 
just not good” – and we build these into our narratives. Indeed, Schechtman thinks that thinking of 
ourselves as governed by such norms requires an autobiographical narrative. 

Note that persons don’t actually have to tell the story of their lives, even inside their own heads, to count 
as having a narrative. The stories are largely implicit, although of course bits of them get told at different 
points: when meeting new people, catching up with friends – even in job interviews and on CVs! Note 
that a person’s narrative might not be entirely coherent. People often seem to tell a slightly different 
version of their story to their mother than to their friends, or to their husband than to their colleagues. 

On the narrative theory, it looks like the right kind of causal continuity for psychological characteristics to 
form part of your personal identity is incorporation into your narrative. And this is partly a matter of your 
own choice. So it can be different for different persons. Success at work might mean more to some, and 
be a more important part of their personal identity; family links to another; friends to another; playing the 
piano to another, and so on. And this kind of variation seems absolutely right: one person can be a 
merchant banker; another is a pianist who just happens to work as a merchant banker. 

This concludes the brief summary of the traditional debate. Recall that the views presented here are supposed 
to be answers to the persistence or diachronic identity question. They are attempts to seek something which can 
be the basis of your persistence, even while you change over time. The issues raised in the traditional debate are 
still important nowadays, as they can take new forms. For example, there are platforms like DeadSocial or 
LivesOn that allow you to send tweets and Facebook messages after you kick the bucket, in an attempt to 
extend your persistence after death. 
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15.3 Other personal identity questions 

Notice that the persistence or diachronic identity question is an absolute question, looking for an absolute 
answer. You can remind yourself of problems with asking absolute questions by reading Chapter 2. That 
is, the question seeks an answer to what makes you the same person over time, seeking the same answer 
irrespective of who is asking the question, or why. But who is asking the question, and why, is important. 

For example, consider a building that was originally built as a hospital, but is now used as a school. We 
can ask the question, “Is it the same building now?” and this is the persistence or diachronic identity 
question. But its answer depends on the purpose for asking the question. If Alice is looking for a hospital 
in an emergency, then the building is of no use to her – it is not the same building for her purposes. If 
Bob is trying to pick up his niece from school, and knows the way to the old hospital, then the old 
hospital is of use to Bob as the location of the school he is looking for. For that purpose, it is the same 
building. 

The same is true of Theseus’ ship. If the person asking whether it is the same ship is Theseus, and what 
he wants to know is which ship he can safely sail off in without it sinking, or other ship-owners accusing 
him of theft, then the repaired ship is Theseus’ ship. Someone interested in history, with no intention of 
going sailing, would probably be very happy with the reconstructed version of the original parts of the 
ship to be found in the museum. For their purposes, that is Theseus’ ship. 

This is the lesson of applying the method of levels of abstraction (see Chapter 2). We always interact with 
the world for a particular purpose. In light of this purpose, we pay attention to certain features of what 
we are interacting with – such as the location of a building or the seaworthiness of a ship – and ignore 
other features – such as whether the building has 500 windows or fewer, or whether the ship has red sails 
or blue. For PI, there are no answers to questions that are absolute in the sense that they demand an 
answer independent of the level of abstraction at which the question is asked. 

For PI, the same is true of the persistence question for personal identity. The answer depends on who is 
asking the question, and why. Different features of you matter for different purposes. Naturally, you are 
interested in whether you are the same person! But your family, friends, employer or employees, the law, 
and even Bess your cat, also have an interest. They all need you to continue to behave consistently 
towards them. This insight can be applied to the question of whether your original body, with half your 
brain, or the new body, which now has the other half of your brain, is you. From the point of view of the 
two bodies, if psychological continuity is what they value, then they are both you, and there will be a 
terrible mess. Two bodies now think they have the same lover and family, the same job, and live in the 
same house. From the point of view of your loved ones, who value your behaviour, both bodies may well 
display a distressing familiarity of understanding, knowledge, skills, and even manner. But the original 
body with the well-loved face will almost certainly triumph. From the point of view of the law, both 
bodies will know many things that only you should know, like bank account details, and email passwords.  
But the fingerprints and DNA of the original body are likely to trump such factors. If you have been law-
abiding, the old body will get all your assets. If you have been a well-known international criminal, and 
the new body gets to the numbered Swiss bank accounts first, the new body might do very well. 

So just as for Theseus’ ship and the hospital-turned-school, there is no absolute answer to the question of 
who is you, independently of the purpose of asking the question, which sets the features relevant to 
answering the question. 
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This doesn’t mean that there is no interesting question of personal identity. The diachronic identity 
question can be debated, once an LoA is agreed. For example, diachroneity can be explained as the sum 
of synchronic identity snapshots on a timeline – see below. Further, if we feel there’s some kind of 
philosophical puzzle, there may well be a real philosophical puzzle, even if our first attempt at making the 
question more precise doesn’t lead us to the interesting answers we hoped for. This is an indication that 
we need to work our way through to a better, more precise question. 

Floridi suggests a further question for PI: “What keeps the self together as a whole and coherent unity: 
continuously existing and coherently behaving at any given time?” This question is also ancient, as Plato’s 
question in the Republic and the Phaedrus, where he presents the human psyche as having three parts that are 
often in conflict. There is the intellectual part which understands what is good for you, and can reason sensibly 
about health and nutrition and so on; the emotional but cooperative part; and the uncooperative animal 
passions part, which wants everything that is bad for you! Plato worries how one single person can be in 
conflict; can both want the chocolate and not want the chocolate – how can you disagree with yourself? Floridi 
calls this the “synchronic (at the same time) identity question” (Floridi, 2011d). It is the question of what makes 
a person a whole single person at one particular time. This distinguishes it from the diachronic identity 
question, which asks what makes a person the same person over time, and the two questions can be regarded as 
complementary. 

15.4 Answering different questions: Floridi’s 3Cs and NSCV again 

Floridi calls his view of personal identity the “three membranes model” – being the corporeal, the cognitive and 
the consciousness membranes – referred to simply as the 3Cs view (Floridi, 2011d). Remember that the 
psychological and the biological views of personal identity are competing attempts to answer the persistence or 
diachronic identity question. PI is only interested in addressing the persistence question when that question is 
asked for a specified purpose. Alternatively, PI is interested in the synchronic identity question, and Floridi’s 
view is a response to that. 

For Floridi, what is interesting is how we separate ourselves off from the rest of the world at all. The ancient 
Greeks sought to explain change, seeing stability at a time, but struggling to understand change across time. 
Floridi is reacting to our growing understanding of science, that it is stability that most needs explanation, not 
change. In our modern understanding, change just happens, and tends towards creating disorder, or entropy. 
For example, things break, get dirty, and decay. Things holding themselves together and resisting decay is what 
takes effort. Specifically, it takes incoming energy. The human body takes a lot of work to keep itself alive, 
which is why you need to eat, drink, and breathe. Floridi thinks persons are special because they are separated 
off from the rest of the world through three stages, or membranes, to create something very sophisticated. 
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In figure 14, among pre-biotic structures there are no persons or even organisms. There are physical structures, 
that is, patterns of physical data. This is just the most general way of understanding everything that exists, using 
the very general concepts of information theory. For Floridi, information is the underlying notion of every 
level of abstraction used to perform the analysis. Then comes the first C, which concerns the evolution of 
organisms. In the post-biotic realm, some structures in the environment become contained in a corporeal 
membrane – such as in a body, contained perhaps by skin or a cell wall. The containment separates off the 
inside of the body or cell from the outside world. Floridi’s example is a sunflower. The cognitive membrane is 
the second C. In the post-cognitive realm, data become encodable (in terms of Shannon’s communication 
model), and organisms begin to be able to use data, such as sounds, visual patterns, gestures, smells, behaviours, 
and ultimately more sophisticated language. This requires a cognitive membrane, allowing the separation of data 
from the physical body for processing and communication, such as in memory. Floridi’s example is a bird on 
the sunflower. The last C opens the door of the post-conscious or self-aware realm – i.e. where all information 
supported by consciousness can actually be constructed. Here, data become information and hence can be used 
for different purposes, and this includes assigning some data conventional meanings, such as making some 
sounds and words into a national anthem, which presumes a common, shared language and henceforth a public 
semantic. Floridi’s example is a gardener watching the bird on the sunflower. 

The language of the 3Cs view can be confusing for those who aren’t already familiar with these ideas. But 
what’s really fun is trying to work out what it implies. Filling out the core idea, using it to think with, is when we 
really get somewhere. 

Figure 14: Floridi’s 3Cs model 
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A nice way of doing that is connecting it with the narrative view. Schechtman says: ‘According to NSCV, the 
limits of a person are determined by the limits of a narrative, and the integrity of a single person consists in the 
unity of a narrative.’ (Schechtman, 2012, p. 336). First, the 3Cs view can be seen as giving the basis for being the 
kind of thing that can have a narrative, while also being the kind of thing that needs something to give it unity, 
including, ultimately, the continuous maintenance of that unity over time. We are not in control of our bodily or 
cognitive unity – these are gifts of evolution – but we can do something about our post-conscious unity. Then, 
instead of being an answer to the persistence question, the narrative view can be seen as giving an account of 
how the self-aware being goes about creating a person. Both views agree in respecting worldly constraints, 
seeing a person as continuously interacting with the world. So a narrative must respect the reality constraint, by 
conforming to basic facts, like people not living for 300 years, or being in two places at once; and the 
articulation constraint, by being able to be articulated locally, such as when someone asks how old you are, or 
about your family (Schechtman, 2012). 

With the melding of the two views in mind, we can go on and look at two interesting issues for personal 
identity: personal identity online, and whether your personal identity is all about you. 

15.5 Personal identity in an onlife world 

For both the 3Cs model, and NSCV, persons in some sense constitute themselves, creating their own unity and 
their environment during this ongoing process matters. For example, in coming to be self-aware on the 3Cs 
model, you need to have a kind of successful separation between the information you have about the world, 
and the world itself – although you do want that information to be continuously influenced by the world! For 
NSCV, your environment needs to impact continuously on your self-narrative in the right way. If this is right, 
then the creation of a whole new world for persons to go and play in might well have interesting effects on 
personal identity. Note also that neither the 3Cs model, nor NSCV, say that there is anything essential to 
personal identity in being human, having a “normal” history or birth or childhood or body, or a soul. Floridi 
writes: ‘If the self is made possible by the healthy development of all the three membranes, then any technology 
capable of affecting any of them is ipso facto a technology of the self.’ (Floridi, 2011d, pp. 560-561). What this 
means is that since online technologies are capable of affecting your post-conscious membrane, and online 
relationships are capable of affecting your self-narrative, then the online world can affect your personal identity. 

Floridi (2012a) argues that the rapid creation of the new world of the internet, the visible “infosphere”, has 
drastically changed the whole picture: in the world based on Gutenberg, technologies were used to record and 
transmit data as auxiliary tools, while nowadays data are processed at such a level that human societies became 
dependent on information – they cannot work anymore without computing technology. How has this affected 
personal identity? Rodogno writes: ‘Online contexts are novel and peculiar insofar as they afford prolonged 
disembodied and anonymous interaction with others.’ (Rodogno, 2012, p. 309). Rodogno summarises the case 
for this affecting personal identity: first, it is easier to deceive online, so you may misrepresent yourself, and be 
deceived in turn; second, you cannot monitor others’ reactions online in the way you can in person; third, 
entirely new possibilities are created online, such as the Facebook wall, which has no offline equivalent. You 
don’t walk up to your friends in the bar and slap a message on a post-it-note on their foreheads. Schechtman 
considers this issue herself with respect to Second Life (SL), a sophisticated online game where players create 
avatars for themselves, and can spend many hours every day interacting with other avatars. For many players, 
the game is a fun way of exploring aspects of their personal identity they either can’t explore offline, or are not 
ready to explore offline. For example, people can come out as gay in SL, long before they will tell offline 
friends. Or you can try out switching gender for a month! In these ways, SL can provide fascinating avenues for 
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exploring and choosing how to construct your own identity. Schechtman points out that SL and offline life 
interact with each other strongly. For example, SL avatars can design and make clothes, shoes, even skin, and 
build houses and so on in SL, and their offline users make offline money out of it. Couples can meet in SL and 
marry offline – and online. Offline couples have also divorced because of SL relationships, and successes and 
failures in SL affect offline sense of self, and vice versa. Schechtman thinks that sometimes the offline and SL 
narratives are both part of a broader, but single, person-narrative: 

sometimes the RL [real life] narrative of the user and the SL narrative of the avatar are, as it were, subplots in 
the more comprehensive narrative of the resident, a person who lives sometimes in RL and sometimes in 
SL. Both sets of adventures are part of the same life because, although distinguishable sub-narratives, they 
impact each other along the most fundamental dimensions of narrative interaction.  
(Schechtman, 2012, p. 341) 

The Preface to the Onlife Manifesto  summarises this interplay between online and offline with the new term 
onlife (Commission, 2013): now, the primacy of interactions rules over the primacy of entities i.e. the “Relational 
Self”.  If you don’t interact with me, you do not exist. This leads to the concept of “freedom with elasticity”, 
borrowed from economics: freedom exists in a complex environment where social constraints, technological 
artefacts, and nature defines our space of possibilities in acting as individuals in society. ‘The broader thesis I 
shall defend is that ICTs [Information and Communication Technologies] are, among other things, egopoietic 
technologies or technologies of self construction, significantly affecting who we are, who we think we are, who 
we might become, and who we think we might become.’ (Floridi, 2011d, p. 550.) Furthermore, the generational 
gap from digital immigrants to digital natives brings a different perspective on the relation between the physical 
world and the infosphere: for digital immigrants, they are ontologically separated – and so the personal identity 
is not defined by the ICTs actually used; on the contrary, digital natives will treat the physical world as 
immanent in the infosphere, so that any kind of separation will be perceived by the subject as dramatic, like a 
fish out of water (Floridi, 2014, p. 56). 

And we see again why seeking an account of the unity of a person is such an interesting problem. 

15.6 My personal identity: me, me, ME! 

We will finish by considering who is asking the personal identity question about you, and why? Traditional 
treatments of personal identity make it all about you, while we see that in PI the emphasis is on you and others 
in some context: from solipsism to onlife. Durante (2011) sees the definition of personal identity as a trade-off 
between trust (where individuals should reveal something of themselves, based on cooperation) and privacy 
(where individuals pursue “freedom of”, ultimately based on competition), but ICTs are changing the picture, 
so that digital natives implicitly seek “a balance between a traditional (based on settings and norms) and an 
informational idea of privacy (based on structural affordances)” (Durante, 2011, p. 613). 

Wherever you are a digital immigrant or a digital native, you are not the only person with an interest in your 
personal identity. Your family, your friends, your employer and employees, your legal system and so on, all have 
rather strong interests in who you are – that you are the same person as yesterday, and in your unity or 
reliability, and so on. And you have a matching interest in all their identities.  

We have seen that on the 3Cs model and NSCV, the environment of the person matters. And the most 
important environment of a person is other persons! And a lot of persons are using more and more ICTs to 
communicate and process information. Recall that although the self creates its own unity, and is continually 
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defining and redefining itself, the narrative must meet the worldly and articulation constraints, by respecting 
worldly facts, and being able to be articulated in parts, briefly and locally. Other persons and their relationships 
to you are important worldly facts, and constrain your ability to articulate your narrative. Floridi writes: ‘We 
‘‘identify’’ (provide identities) to each other, and this is a crucial (although not the only) variable in the complex 
game of the construction of personal identities’ (Floridi, 2011d, p. 555.) 

Because of this, other persons help create your narrative, and so your personal identity – for good or for ill. You 
might suffer a disappointment, and begin to see yourself as a failure, changing your narrative. But your friends 
and family might stubbornly refuse to react to you as a failure, continuing to celebrate your successes, and 
resisting your local “I’m a loser” articulations. Over time, they can alter your narrative, pushing it, and your life 
with it, back towards success. One of the interesting features of the combination of the 3Cs model and NSCV 
is that they show how important these kinds of experiences really can be to personal identity. On the other side 
of the coin, they help explain just why it is so exasperating when other people continue to articulate your 
narrative in a way that doesn’t suit you – the teacher who remembers when you couldn’t do ballet, and fell over 
during the school play to the amusement of absolutely everybody except you, or the ex who continues to 
believe, in spite of overwhelming evidence to the contrary, that you are still in love with him or her. Such 
people seize control of your own narrative, and attempt to re-write it. However temporarily, they are interfering 
with your identity. Of course it is annoying! But your friends are interfering too, when they refuse to see you as 
a failure. 

For good or ill, though, we should expect such conflict. We write other people into our narratives, and get 
written into theirs. Embarrassing childhood experiences for you might be vital identity-constituting episodes for 
your parents, and they will not forget them. And we should expect the continuing growth of the infosphere to 
continue to affect our interactions with other persons, and so our identities. Floridi again: ‘Online 
communities—understood as dynamic, interactive and distributed networks, in which the individual is never a 
stand-alone entity but always a participant—play a vital role in the creation of PIO [personal identity online].’ 
(Floridi, 2011a, p. 478). And we have seen that a central part of that is the importance of our relationships to 
others, just as it has always been: ‘The infosphere is not just a medium, but the new environment where groups 
and individuals continuously and increasingly define themselves.’ (Floridi, 2011a, p. 478). 

So with the melding of the 3Cs model and NSCV, we separate ourselves from the rest of the world, and we can 
reconnect with it in as many ways as we choose. This accounts for the variation in the answers to other 
questions of personal identity from person to person and from time to time. And other people are vital. They 
write themselves into our narratives, and us into their narratives. We can cooperate or resist, as we choose. 
Some people find this scary. Others find it liberating! 

15.7 Exercises 

1. What question of personal identity is of most interest to you, and why? 

2. Do you think you create your own identity?  How? 

3. Do you think you could ever see a Second Life avatar, or some other online creation, as a seamless part of 
your real life? 

4. Do you perceive yourself as a digital immigrant or native? How did your use of ICTs influence your 
answer? 
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5. How important are other people to your identity? 

15.8 Suggestions for the exercises 

1. For example, are you more interested in the question of what makes you the same person across time 
(diachronic identity), or what makes the aspects of your identity form a coherent whole at a particular time 
(synchronic identity)? What is your purpose in asking the question? 

2. Think about whether you have a narrative. Does it constitute your identity? Or is it irrelevant to your 
identity? Do you have multiple narratives? Do they ever conflict? 

3. Have a think about it. Perhaps have a go at it! Alternatively, there are various artists investigating the 
relationship between digital media and our identities. Have a look at Stelarc at 
http://stelarc.org/?catID=20247. 

4. Think about your first use of ICTs to process information relevant for your personal identity. How old 
were you? Did your peers have similar experiences? 

5. Think not only about the obvious candidates – family and close friends – but also daily acquaintances, 
colleagues, and even people you don’t know at all, such as in the media. 

15.9 Further reading 

Floridi (2011d) and Floridi (2011a) give Floridi’s arguments for the important constructive role of information 
technology for our personal identity. Floridi (2014) devotes Chapter 3 to how identity (at a personal and social 
level) is shaped in our world. Schechtman (2010) and Schechtman (2012) explore her narrative self-constitution 
view, and apply it to online contexts. Rodogno (2012) explores different questions of personal identity. Finally, 
the Onlife Manifesto (Commission, 2013) and the commentaries by scholars coming from different 
backgrounds is a reference for issues in personal identity and selfhood. 
 

 

http://stelarc.org/?catID=20247
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