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Long-term influence of fluid inertia on the diffusion of a Brownian particle
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We experimentally measure the effects of fluid inertia on the diffusion of a Brownian particle at very long time
scales. In previous experiments, the use of standard optical tweezers introduced a cutoff in the free diffusion of
the particle, which limited the measurement of these effects to times comparable with the relaxation time of the
fluid inertia, i.e., a few milliseconds. Here, by using blinking optical tweezers, we detect these inertial effects
on time scales several orders longer up to a few seconds. The measured mean square displacement of a freely
diffusing Brownian particle in a liquid shows a deviation from the Einstein-Smoluchowsky theory that diverges
with time. These results are consistent with a generalized theory that takes into account not only the particle
inertia but also the inertia of the surrounding fluid.
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I. INTRODUCTION

Often a single parameter is key to the description of
the motion of a Brownian particle: the particle’s diffusion
coefficient D. Its correct estimation assumes therefore a pivotal
importance in many soft matter systems that are characterized
thanks to the observation of the motion of a microscopic probe,
such as the measurement of nanoscopic forces [1–3] and of the
thermodynamic properties of microscopic systems [4–7].

In the original picture conceived by Albert Einstein,
microscopic particles undergo a never-ending random motion
due to collisions with the molecules of the fluid where they
are immersed [8]. This picture is formalized by the original
Langevin equation [9,10]:

mẍ(t)︸ ︷︷ ︸
inertia

= −γ ẋ(t)︸ ︷︷ ︸
friction

+ γ
√

2DW (t)︸ ︷︷ ︸
diffusion

, (1)

where x(t) is the particle’s position; m, γ , and D are, respec-
tively, its mass, friction coefficient, and diffusion coefficient;
and W (t) is a Gaussian white noise [11,12]. The motion
of a microscopic particle is, therefore, governed by two
counteracting forces: the friction between the particle and the
surrounding viscous fluid modeled by the Stokes drag and the
random thermal force modeled by the white noise. Einstein’s
relation

D = kBT

γ
, (2)

connects these two forces to the particle’s average kinetic
energy per degree of freedom, i.e., kBT/2, where kB is the
Boltzmann constant and T is the absolute temperature. The
relation in Eq. (2) shows that the particle’s kinetic energy is
limited by the dissipation associated to its collisions with the
surrounding fluid molecules [8].

When dealing with particles in the low Reynolds number
regime [13], the inertial term in Eq. (1) is often neglected.
This introduces an error in the estimation of D, which
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nevertheless, decreases exponentially in τ with a characteristic
time dictated by the momentum relaxation time τm = m/γ .
Thanks to this exponential decay, considering that τm is
in the order of microseconds for small colloidal particles
and typical experiments are performed on time scales of
milliseconds and longer, this error can be safely ignored in
most experiments, and the motion of the particle is often
considered overdamped [14]. The particle’s motion, however,
is also influenced by the surrounding fluid that has to move in
order to refill the space left free by the particle’s displacement
[15–19]. This second inertial effect, known as hydrodynamic
memory, develops over the time scale of the fluid momentum
relaxation time τf = R2ρf/η, where ρf is the density of the
fluid and η its viscosity [19]. The effect of the fluid inertia
only decays polynomially with τ−1/2 and, therefore, has a
long-term influence on the determination of D.

In previous experiments, the use of standard optical
tweezers limited the measurement of these inertial effects
at very short time scales, i.e., t ≈ τm,τf , because of the
cutoff in the particles free diffusion introduced by the optical
trap [20–24], while the polynomial weak decrease of the
hydrodynamic memory means that these effects can have
influences at time scales that are comparable to those of
standard experiments, i.e., up to several seconds. Here, by
measuring the diffusive motion of a Brownian particle over
several seconds with a blinking optical tweezers setup [25,26],
we experimentally demonstrate that the polynomial weak
decay of the correction to the diffusion coefficient due to
the presence of hydrodynamic memory produces measurable
effects on time scales several orders of magnitude longer than
those previously reported, up to a few seconds.

II. THEORY

In order to formalize the above discussion, we consider
the mean square displacement (MSD) of a particle. The MSD
quantifies how far a particle moves from its initial position and
is an experimentally measurable quantity closely related to the
particle’s diffusion coefficient D. In one dimension, the MSD
can be calculated as the time average of the particle’s position
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〈x2〉(τ ) = x(t + τ )x(t) [7,12], where the overbar represents
time average, and D can be estimated as

D = lim
τ→+∞

〈x2〉(τ )

2τ
≈ 〈x2〉(τ )

2τ
, (3)

where τ is large. In practice, τ in Eq. (3) cannot be taken to
infinity, as it is limited by the experimentally accessible data
range. For a massless particle (m = 0), whose motion obeys
Eq. (1), the estimation of the diffusion coefficient using Eq. (3)
is always exact at any τ and is not affected by experimental
limitations in the acquisition of long data series. For a particle
with inertia (m �= 0), this estimation leads to an exponentially
decreasing error in τ . Nonetheless, this error can be safely
neglected in most experiments as it decays on a time scale
given by the momentum relaxation time τm, which, as we have
seen, is on the order of microseconds.

However, the MSD for a particle whose motion obeys
the Langevin equation corrected to take into account the
hydrodynamic memory effect [15,16,19] is

〈x2〉(τ ) = 2Dτ

{
1 −

√
4τf

πτ
− 8τf

9τ
+ τm

τ
+ ε(τ )

}
, (4)
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FIG. 1. (Color online) (a) Error in the estimation of the �〈x2〉(τ )
in the case of a melamine particle (d = 8.1 μm) taking into account
its mass (dashed line) and taking into account also the fluid inertia
(solid line). While the former quickly reaches a plateau, the latter
diverges as a function of τ . (b) Error in the estimation of the diffusion
coefficient D for the same particle immersed in the various fluids
used in this work taking into account the presence of the fluid inertia
[Eq. (5)], which decays polynomially with τ−1/2. When only the
particle inertia is taken into account, the error on the estimation of D

decays exponentially with characteristic time τm so that the error is
negligible on the plotted scales.

where ε(τ ) is a correction term relevant only for very short
times, i.e., for τ 	 τf,τm, and thus can be safely neglected in
the following discussion. In this case, as shown by the solid
line in Fig. 1(a), the error on the MSD diverges as a function
of τ . The error in the estimation of D can be derived using
Eq. (3) and is

�Df (τ ) = D − Df (τ ) = D

(√
4τf

πτ
+ 8τf

9τ
− τm

τ

)
, (5)

which decays polynomially with τ−1/2. Therefore, this effect
can have an influence at time scales comparable to standard
experiments, as shown by the solid lines in Fig. 1(b) for
the different fluids used in the experiments shown in this
article.

III. EXPERIMENT

The experimental setup that we used in order to measure
these inertial effects at long time scales is schematically shown
in Fig. 2(a). It consists of an optical tweezer built on a high-
stability homemade inverted optical microscope equipped
with a high-numerical-aperture water-immersion objective
lens (Olympus, UPLAPO60XW3, NA = 1.20). The optical
trap was generated by a frequency and amplitude stabilized
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FIG. 2. (Color online) (a) The setup consists of a blinking optical
tweezer combined with a fast digital video acquisition system.
(b) Image and trajectory of a particle freely diffusing after being
released from the trap. (c) Example of the x component of the trajec-
tory acquired while the particle is trapped and released repeatedly by
the optical tweezers. The gray-shaded areas represent the periods of
time when the trapping laser is on.
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TABLE I. Properties of the particles used in the experiments.
Errors on diameters are reported by the manufacturers.

Material d (μm) ρ (g/cm3)

Polystyrene 5.0 ± 0.1 1.05
Melamine 8.1 ± 0.1 1.51
Licristar 3.10 ± 0.05 1.41
Silica 4.8 ± 0.2 1.80

Nd-YAG laser (λ = 1.064 μm, 500 mW maximum output
power, Innolight Mephisto). To measure the free motion of
particles, we employed the blinking optical tweezers technique
[25,26]. This technique allows us to track a single particle in
the same focal position for an extended amount of time and
for a large number of repeated measurements without moving
the sample cell, thus reducing experimental errors due to size
distribution or to hydrodynamic interactions among particles
in dense samples. The laser beam was switched on and off
using a homemade electronic shutter driven by an analog wave
form generator and positioned at the focus of the magnifying
telescope. The shutter ensures a switching time well below
the acquisition time of the CCD camera (i.e., 1 ms). The
modulation frequency varied between 0.1 Hz up to a few Hz
depending on the size of the particle used. Videos of the particle
motion were acquired using a fast CCD camera with a rate up
to 500 fps [see Figs. 2(b) and 2(c)]. We varied the relevant
parameters using four types of particle material—polystyrene,
melamine, silica, and Licristar (Merck)—and three different
fluids—water, acetone, and methanol. Different combinations
of these materials allowed us to study the inertial effects under
a range of densities and viscosities. The particles were highly
diluted to have about a few tens of them in the sample cell,
i.e., 5–10 particles/microliter. The relevant properties of the
particles and fluids used in this work are reported in Tables I
and II, respectively.

IV. RESULTS AND DISCUSSION

To demonstrate the polynomial increase of the error on
the measurements of the MSD, we estimated it from a large
number of recorded trajectories of a freely diffusing particle.
Figure 3(a) shows the difference of the MSD calculated using
the Stokes-Einstein relation with that obtained from experi-
mental values for different particle sizes in different fluids,
and Fig. 3(b) shows the corresponding errors in the estim-
ation of the value of D. The main contribution to the error in the
experiment is due to the fluid viscosity and the limited temporal
resolution: This can be understood looking at the relationship
for the relaxation time of the fluid τf that becomes longer, i.e.,

TABLE II. Properties of the fluids used in the experiments
(T = 25 ◦C).

Fluid ρ (g/cm3) η (mPa s)

Water 1.00 0.89
Methanol 0.79 0.58
Acetone 0.79 0.32
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FIG. 3. (Color online) Errors in the determination of the
�〈x2〉(τ ) (a) and of the diffusion coefficient D (b) for different
combinations of particles and fluids: 3.1 μm Licristar bead in acetone
(green squares and dotted line), 5.0 μm polystyrene bead in methanol
(brown circles and solid line), 4.8 μm silica bead in methanol
(yellow up triangles and dashed line), and 3.1 μm Licristar bead in
water (blue right triangles and dashed-dotted line). The experimental
errors are similar to those reported in Fig. 4 and are not shown for
clarity.

the error becomes bigger, for either bigger particles radii R or
lower fluid viscosities η. Our results confirm that going from
water to methanol to acetone, the error on the MSD increases.
This is due to the fact that in lower viscosity fluids, the particles
diffuse much faster than in higher viscosity fluids and the effect
of the fluid inertia, therefore, lasts longer. It is interesting
to note that the effect is clearly visible also in water where
most of the experiments relying on diffusion are done. The
particles’ density, instead, is not a crucial parameter. In fact,
the MSD deviation of the 5 μm polystyrene and silica particles
in the same fluid (methanol) lie on the same theoretical curve,
even though the density of silica is roughly twice that of
polystyrene.

The results presented in Fig. 3 are limited to 150 ms
since for heavy particles the frequency of the blinking optical
tweezers needs to be set high enough in order to limit the fall
of the particle due to effective gravity to a range where the
blinking optical tweezers is still able to retrap it. In order to
overcome this limitation and to measure the deviation for times
up to a few seconds, we used melamine particles (diameter
8.1 μm) in acetone. Due to their weight these particles
immediately reach the bottom coverslip, where they perform
a quasi-two-dimensional random motion. The particles are
prevented from sticking because of the presence of electrostatic
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FIG. 4. (Color online) The polynomial behavior of the error in
the estimation of (a) the �〈x2〉(τ ) and (b) of the diffusion coefficient
D for an 8.1 μm melamine particle up to a few seconds. The fitting
to the theoretical model (dashed lines) is used as a guide for the
eyes. In fact, the presence of a boundary introduces a change in the
polynomial order of the deviation at short time scales that was not
included in the model.

repulsive forces. It is worth noting that, since we recorded the
motion of the bead in the plane parallel to the surface the
anisotropic memory [21] effect does not affect our results.
Finally, we used the blinking optical tweezers technique to

place the particle at a given initial position and digital video
microscopy to record its trajectory. The blinking frequency
was set to 0.125 Hz. For each particle, we recorded about 5000
trajectories at 200 fps and calculated the corresponding MSD
for each trajectory and then the average. We then averaged
the results obtained with five different particles. The resulting
deviation between the experimentally measured MSD and
the one corresponding to the free diffusion of a massless
particle, corrected to take into account the hydrodynamic
interaction with the wall [27], is presented in Fig. 4. Although
a change in the polynomial order of this deviation is expected
at short time scales because of the presence of a boundary
[21,28], these experimental data show that the polynomial
increase of the error is still an appreciable effect up to a few
seconds.

V. CONCLUSION

In conclusion, we have demonstrated experimentally that
a Brownian particle is subject to inertial effects at long time
scales, extending the range of previous experiments by several
orders of magnitude up to a few seconds. The measured
MSD of a freely diffusing Brownian particle in a liquid
shows a deviation from the Einstein-Smoluchowsky theory
that diverges with time. These results are consistent with a
generalized theory that takes into account the displacement of
the fluid surrounding the particle. This can lead to a bias in
the estimation of the diffusion from finite-time measurements,
as the decay of the relative error is polynomial and not
exponential.
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