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Sir,

Thank you for the opportunity to reply to the correspond-

ence concerning our recent publication in Brain,

‘Parkinson’s disease in GTP cyclohydrolase 1 mutation car-

riers’ (Mencacci et al., 2014). We read with great interest

these letters and we thank the authors for their insights.

Guella et al., 2014 report the screening of GCH1 in 528

Canadian cases with Parkinson’s disease and atypical par-

kinsonism and 290 matched controls. They identified two

variants, the known pathogenic p.K224R (�2) and the

novel variant p.A99D (likely pathogenic according to in

silico prediction tools and interspecies conservation) in

three unrelated cases with Parkinsons’s disease and the

two benign variants p.P23L and p.P69L in one single con-

trol individual. The mutational frequency, excluding the

aforementioned benign variants, was 0.56% (3/528) in

cases versus 0% (0/290) in controls, consistent with the

frequency we observed in our study (0.75% in cases

versus 0.1% in controls).

This result is relevant as it represents the first independ-

ent confirmation that rare deleterious GCH1 variants are

enriched in patients with Parkinson’s disease compared to

control subjects. Furthermore, they describe the post-

mortem findings of one of the mutated patients, who pre-

sented at the age of 82 with DOPA-responsive asymmetric

rest tremor. This showed a combination of brainstem

Lewy body pathology together with the presence of tau-

immunoreactive neurofibrillary tangles. To date, the only

available brain pathology analysis of a GCH1-associated

neurodegenerative parkinsonism case showed severe nigral

neurodegeneration and Lewy bodies in surviving nigral cells

and in the locus coeruleus (Gibb et al., 1991; Segawa et al.,

2004). Further studies are needed to establish if the tauo-

pathy described by Guella and colleagues in their case rep-

resents simply an incidental finding.

The finding that GCH1 loss-of-function variants are not

only responsible for childhood-onset DOPA-responsive dys-

tonia, but are also associated with adult-onset neurodegen-

erative parkinsonism, is strengthened by the recent

identification, through the meta-analysis of genome-wide

association studies (GWAS) data deriving from �13 000

cases and 95 000 controls, that GCH1 is also a low-risk

susceptibility locus for Parkinson’s disease (Nalls et al.,

2014). This finding potentially extends the role of GTP

cyclohydrolase 1 (GCH1) deficiency in the pathogenesis

of Parkinson’s disease beyond carriers of rare deleterious

coding mutations.

The causal link between GCH1 and Parkinson’s disease

remains a matter of speculation. Ryan et al., 2014 ex-

pand the discussion of our manuscript and add insight
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into the possible pathogenic mechanisms that predispose

GCH1 loss-of-function mutation carriers to nigrostriatal

degeneration.

In our paper we proposed various hypotheses whereby

GCH1 and BH4 deficiency and consequent chronic reduc-

tion of dopamine levels may predispose carriers of GCH1

mutations to nigral cell degeneration.

Ryan and colleagues point out that different cellular

mechanisms secondary to BH4 deficiency, other than

reduced dopamine levels, could contribute to the death of

nigral dopaminergic neurons. BH4 acts as an antioxidant

itself and is an essential cofactor for nitric oxide synthases

(NOS) activity. Furthermore decreased BH4 levels have

been demonstrated to lead to NOS uncoupling, which re-

sults in increased oxidative and nitrative stress (Chen et al.,

2014). The authors previously described that a haplotype

of three SNPs (rs8007267, rs3783641 and rs10483639) at

the GCH1 genomic locus influences plasma GCH1 activity

and BH4 levels (Antoniades et al., 2008) and identified BH4

as a vascular defence mechanism against inflammation-

induced endothelial dysfunction (Antoniades et al., 2011).

Consequently the authors propose that a link between BH4

levels, oxidative stress, and neuroinflammation could rep-

resent the mechanism underlying GCH1-associated

Parkinson’s disease.

Fitting well with this model, and possibly supporting

Ryan et al.’s view, we found that the GCH1 SNP

(rs11158026), recently identified as a risk variant for

Parkinson’s disease (Nalls et al., 2014), is in moderate link-

age disequilibrium (r2 0.457; D’ 0.932) with the SNPs con-

stituting the functional haplotype. This possibly suggests a

potential functional basis for the association of this variant

to Parkinson’s disease.

The authors have also demonstrated the existence of an

interaction between �-synuclein, mitochondrial function

and GCH1 activity. Their work may support the compel-

ling hypothesis that a pathogenic cascade occurs in nigral

neurons, whereby increased levels of �-synuclein and mito-

chondrial dysfunction lead to decreased GCH1 activity and

BH4 levels, which in turn may result in increased oxidative

stress and cell death (Ryan et al., 2014).

We believe that one of the outstanding questions is

whether patients with DOPA-responsive dystonia eventu-

ally develop nigral neurodegeneration, or whether neurode-

generation can be avoided by dopaminergic replacement

therapy. Answering this question will help to understand

to what extent low dopamine levels play a role in nigral cell

death, with obvious therapeutic implications for asymptom-

atic carriers of pathogenic variants.

Dopaminergic imaging studies performed in a few cases

with classic DOPA-responsive dystonia (mostly genetically

not confirmed) have shown no evidence of reduced nigros-

triatal innervation (Snow et al., 1993; Jeon et al., 1998).

This is consistent with post-mortem analysis of four extra

cases showing normal nigral cell count (Furukawa et al.,

1999; Grotzsch et al., 2002; Segawa et al., 2013).

However, Sawle and colleagues (1991) report that six

cases with DOPA-responsive dystonia displayed modest

but significant reduction in the uptake of 18F-fluorodopa

into both caudates and putamen. Furthermore, Tadic and

colleagues (2012) report that in DOPA-responsive dystonia

cases parkinsonian signs are a relatively common residual

motor sign following treatment, possibly suggesting under-

lying neurodegeneration.

With regards to this, the case report of Terbeek et al.,

2014 is of great interest. They describe a 41-year-old pa-

tient carrying a known pathogenic GCH1 variant (p.Y75S)

with onset of classic DOPA-responsive dystonia at age 11.

He was treated with L-DOPA (300 mg/day) from the age of

20 with good and sustained response. At age 41, because of

rapid recurrence of dystonia after skipping a L-DOPA dose,

dopaminergic imaging (123I-FP-CIT SPECT) was performed

and showed severe bilateral and asymmetric reduction of

putaminal tracer uptake, a pattern typical of idiopathic

Parkinson’s disease. However, clinical examination, per-

formed after withdrawing L-DOPA, revealed purely dys-

tonic features without any obvious sign of parkinsonism.

In agreement with the interpretation of Terbeek and col-

leagues, we believe that this case may indeed represent a

case with overlapping DOPA-responsive dystonia and

asymptomatic, as yet, nigrostriatal degeneration, possibly

arguing against a neuroprotective role of dopamine replace-

ment in GCH1 mutation carriers.

Lastly, with regards to the letter by Furukawa and Kish

(2014), we agree it is not easy to reconcile the evidence of

nigral neurodegeneration that we and others have demon-

strated in several individuals with GCH1-related parkinson-

sim and the intact dopaminergic innervation showed in

some other cases (Nygaard et al., 1992; Kang et al., 2004).

However, the phenotype of these latter cases, character-

ized by excellent and prolonged response to very small

doses of L-DOPA and no motor fluctuations or dyskinesias

in spite of decades of treatment, is very different from what

we observed in the ‘neurodegenerative’ cases. It is therefore

possible that there may exist two different types of adult-

onset parkinsonism associated with GCH1 mutations; on

one side, a benign non-degenerative form, part of the

phenotypic spectrum of metabolic GCH1-related striatal

dopamine deficiency; on the other, a progressive form of

parkinsonism with underlying nigral degeneration.

In conclusion, we anticipate that post-mortem analysis

and longitudinal clinical, neuroimaging, and metabolic stu-

dies of larger series of GCH1 mutation carriers—including

asymptomatic carriers, individuals with classic DOPA-

responsive dystonia and cases with adult-onset parkinson-

ism—will give way to important understandings of the

pathogenesis of GCH1–associated Parkinson’s disease.
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