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Supplemental Figures

Figure S1, related to Figure 4. The regions-of-interest used for small-volume correction

(A) A bilateral set of regions thought to be important for head- direction coding was combined into
a single mask for the geocentric direction searchlight small-volume-correction. This included the
hippocampus, subiculum, entorhinal cortex, retrosplenial cortex, posterior cingulate cortex, and a
portion of the thalamus including anterior and lateral dorsal regions. (B) A bilateral set of parietal
regions thought to be important for egocentric direction coding was combined into a single mask
for the egocentric direction searchlight small-volume-correction. This included the intraparietal

sulcus, Brodmann area 7, and the precuneus.
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Figure S2, related to Figure 4. Dissociation between visual cortex and entorhinal/subicular region

(A) Visual scene processing in the extrastriate cortex was investigated with a bilateral anatomical
ROLI. (B) The entorhinal/subicular region does not contain visual information about the four distal
scene cues. By contrast, extrastriate displays significant coding of visual scene information. A
region by information-type ANOVA revealed a significant interaction effect, suggesting a double-
dissociation between the neural coding in these two regions, with the entorhinal/subicular region
selectively coding for geocentric direction. However, we note that while the entorhinal/subicular
region displays the expected simple effect (t(15)=3.34, p=0.005), the extrastriate cortex simple
effect was not significant (t(15)=0.98, p=0.39). Thus, while the pattern of results is consistent with
a functional double dissociation, the data do not conclusively demonstrate this. Nevertheless, our
data do firmly support the conclusion that visual scene information is not present within the
entorhinal/subicular region, which was the main purpose of this control analysis. Standard error

bars are displayed.



Figure S3, related to Figure 4. BOLD signal in the entorhinal region.

(A) The result of the geocentric direction searchlight analysis, displayed against the group mean
average structural image. The result is displayed on a coronal slice at y=-25, which contains the
peak of the geocentric searchlight result. (B) The entorhinal portion of the structural mask used for
small volume correction of the geocentric direction searchlight analysis. This is displayed against
the group mean average structural. (C) The outline of the entorhinal mask is displayed against the
group mean average EPI image, based on normalized, unsmoothed data. While signal dropout is
apparent in more ventral portions of the medial temporal lobe, the region within the entorhinal
mask still displays a good signal (D) The outline of the entorhinal mask is displayed against the
mean EPI image for three example participants. These three participants were chosen in order to
display the full range of tSNR signals (based on the functionally defined entorhinal ROI). The EPI
series with the highest mean tSNR value of 52 (maximum voxel snr = 102, minimum = 15) is
displayed on the left, the middle image has a mid-range mean tSNR of 41 (maximum = 82,

minimum = 11), and the right image has the lowest mean tSNR of 29 (maximum = 62, minimum =



9). While there is variation in the extent of dropout in more ventral MTL, all three participants

display minimal or no signal dropout within the entorhinal mask.

Supplemental Experimental Procedures

Participants
Sixteen healthy right-handed participants (7 female) were recruited from University of London
institutions. All had normal or corrected-to-normal vision and gave written consent to participant

in accordance with the local research ethics committee.

Virtual environment

This environment was created using the Vizard VR Software Toolkit. The environment consisted of
four paths arranged in a square, with a goal object at each corner of the square (phone box,
statue, lamppost, and flowerpot). At the four edges of the environment we placed four distinct
scenes (forest, mountain, desert, sea) in order to provide clear, unambiguous information about
the four cardinal directions of the environment. Effectively these four scenes provide a clear cue
for environment-centred orientation, equivalent to North, South, East, and West. In the centre of
the square was a fountain, to provide additional visual information for orientation, and at each of
the corners, between the distal scenes, was a tall stone pillar, to provide clear separation of the
different scenes. Similarly, the four paths were not functionally relevant to the task itself, but
could provide additional visual information for orientation. The participants were not restricted to
the paths during initial learning, but could freely explore the entire environment. This specific
environment was created in order to create the simplest possible experimental design that would
allow us to investigate goal direction information. Four objects arranged in a square is the

minimum spatial arrangement required so that there are two potential goal-direction vectors in



each of four cardinal directions, thereby allowing us to look at generalized representation of
direction across the specific vectors. By minimising the simplicity of the design, we were able to
maximise the number of trials within each condition, thereby maximising the power of our

analysis.

Using VR to investigate navigation

Under normal circumstances, both visual and vestibular inputs play an important role in
determining the activity of head-direction populations. However, when navigating within a virtual
environment, the vestibular input will be uninformative for guiding navigation. Given this, is virtual
reality a viable method for investigating head direction representations [S1]? We suggest that it is
reasonable to assume that, in the absence of informative vestibular input, head-direction neurons
will be dominated by visual information instead. This assumption is supported by previous results
indicating that reliable place and grid cell activity can be detected in humans while they navigate
within a virtual environment, where vestibular input is uninformative [S2-S5]. We think it unlikely
that these specialized spatial neurons would be active in isolation from any input from head-
direction cells. Indeed, Doeller et al. [S4] used extensive modelling of their data, based on
electrophysiological recordings in the rat entorhinal cortex, to demonstrate that their results
depend on intact conjunctive grid cell populations. Given that conjunctive cells receive their
direction input from head-direction cells [S6, S7], this result provides evidence that head-direction
signals remain intact within a virtual environment. Furthermore, facing direction coding has been
found within human presubiculum and retrosplenial cortex [S8]. These results fit very well with
the known location of head direction populations. Put together, there is now strong evidence to
suggest that virtual reality taps into the same spatial mechanisms as during real-world navigation,

including head-direction populations.



Experimental design

Prior to scanning, the participants learned the spatial layout of a simple virtual environment
(Figures 1A and 1B) through twenty minutes of free exploration. While they explored this
environment, participants were instructed to pay particular attention to the location of the four
goal objects, as we would later be testing their memory for this information. To aid our description
of the experiment, we will subsequently refer to these cardinal directions as NSEW, based on our
own arbitrary labels of the layout (see Figure 1B), but note that we never referred to compass
directions during the actual experiment, and never asked the participants to refer to compass
directions. Interspersed with free exploration time, we presented eight probe trials to the
participant to ensure that they were learning the environment. These probe trials were identical
to the goal direction questions in the main scanning task, described below. After the learning
session, but prior to entering the scanner, the participants completed one block of the full
experiment in order to ensure they were well practised at the navigation task, and to try and

minimize any effects of learning during scanning.

The structure of a single trial of the task is shown in Figure 1C. There were four components to
each trial: first there were two control tasks, then two varieties of goal direction task. First we
describe the goal direction tasks, before explaining the purpose of the control tasks. For the goal
direction tasks, the participant was presented with a view taken from within the virtual
environment (Figure 1C). This view was always taken from one of the four goal object locations,
but with all objects now removed from the environment. The view was in one of the four cardinal
directions within the environment, and the pictures were cropped to ensure that they included
only the distal scene that was directly in front of them, and not any of the other scenes. This

picture indicated the “start location” for the trial, and the participant had to determine exactly



where this view was located within the environment, and which direction they would be facing in,
based on the depicted view. Above this view, a picture of one of the four goal objects was
presented against a white background. Participants were instructed to recall where this object was
located within the environment, and this acted as the “goal location” for the trial. The goal
location was never at the start location, and was also never located diagonally across from the
start location — it was always directly towards one of the cardinal directions from the start. The
task was to judge the direction the goal was from the given start location, and this could be one of
two types of direction: environment-centred (geocentric) or body-centred (egocentric). For the
geocentric question, participants were asked to decide which of the four distal scenes the goal
location was toward from their start location (i.e. if they were to draw an arrow between the start
and goal locations, which scene would it be pointing towards?). This choice was made by pressing
a button corresponding to the scene label (the first letter of the corresponding scene) underneath
the start view. While the focus of this study was on geocentric direction coding, we also included
an egocentric question, where the participant was asked to decide whether the goal location was
located to the left, right, forward, or backward from the start location. Importantly, as we could
independently manipulate start location, start view, and goal location, we were able to
decorrelate geocentric and egocentric goal direction over trials. The two goal direction questions
(geocentric and egocentric) were both presented on every trial, and the order of the questions
was randomized across trials. Each of the four tasks on each trial was self-paced, and there was a

1s inter-stimulus interval between each trial.

On each trial, prior to these goal direction tasks, there were two control tasks: a geocentric control
and an egocentric control. The geocentric control involved the presentation of the same start view
that would be used in the later goal direction tasks. However, no goal object was presented, and

the task was simply to name the scene category featured in the view by pressing a button



corresponding to the scene label. This task therefore involved visual and semantic representations
of the distal scene cues, but did not require any navigation processing. This condition allowed us
to ensure that any geocentric directional information was not simply based on visual or semantic
representations of the distal scenes. The egocentric control also featured this same view, but in
addition, a red dot was presented on this scene. The task was to decide whether the dot was to
the left, right, above, or below the centre of the scene. This task therefore involves egocentric
spatial decisions that are not navigationally relevant. These two control tasks were both presented
on every trial, and were always presented prior to the goal direction tasks. The order of the two
control tasks was randomized across trials. Each task block included 32 trials (which comprised the
combination of each start location, start view, and goal location) presented in a random order. The
participants completed three task blocks in the scanner, each collected in a separate functional

run.

While the response to each component of each trial was self-paced, we report the mean response

times for each of the four tasks:

Geocentric goal direction —4.52s (sd = 1.41s)
Egocentric goal direction — 3.58s (sd = 0.86s)
Geocentric control — 2.30s (sd = 0.75s)

Egocentric control — 1.91s (sd = 0.41s)

Participants all had very high levels of accuracy in both goal direction tasks (geocentric mean
accuracy = 97% [sd = 0.02]; egocentric mean accuracy = 97% [sd = 0.02]), and in both control tasks
(geocentric control mean accuracy = 99% [sd = 0.01]; egocentric control mean accuracy = 98% [sd

= 0.02]), demonstrating that they had learned the virtual environment very well. Notably, despite



the fact that all participants performed near ceiling on both tasks, there was nevertheless
adequate variance to detect a strong positive correlation between geocentric and egocentric task
performance (r(15) = 0.77, p = 0.00047). This suggests that the individual variance in both decision
tasks may be due to common cognitive and neural components. These two scores were therefore

pooled for the purposes of investigating the neural correlates of overall navigation performance.

MRI scan details

All MRI data was collected using a Siemens Avanto 1.5 tesla MRI scanner with a 32-channel head
coil at the Birkbeck-UCL Centre for Neuroimaging (BUCNI) in London. The functional data was
acquired using a sequence that has been optimised for medial temporal lobe coverage by the
physics team at BUCNI. This was a gradient-echo EPI sequence in an ascending sequence, with a
slice thickness of 2mm and a 1mm gap, TR=85ms, TE=50ms, slice tilt=-30°, field of view 192mm,
and matrix size 64x64. The whole brain was acquired with 40 slices, leading to a volume
acquisition time of 3.4s. The precise slice tilt was chosen as a compromise between sensitivity,
coverage, and speed [S9, S10]. Three functional runs were collected for each participant. Following

functional imaging, an anatomical image was acquired for each participant (T1-weighted FLASH, TR

=12ms, TE =5.6ms, 1mm3 resolution).

Imaging the entorhinal region

It is well known that parts of the medial temporal lobe are susceptible to BOLD signal dropout,
making it a difficult region in which to reliably detect effects of interest [S11]. In order to reduce
such problems, we used a scan sequence that was optimized to minimize signal dropout. In
particular, both thin acquisition slices and slice tilting have been shown to reduce dropout [S9,
S10]. As displayed in Fig S3, the scan sequence used in this study was able to detect a reliable

BOLD signal within the entorhinal region despite some signal dropout in the ventral portions of the



medial temporal lobes. We further investigated the strength of the entorhinal BOLD signal by
calculating the temporal signal-to-noise ratio (tSNR) within our functionally defined
entorhinal/subicular region of interest [S12]. This was calculated from the normalized,
unsmoothed EPI images. For each session separately, the voxel-wise tSNR was calculated as the
mean/standard deviation of each voxel time-series. Then for each subject the three sessions were
averaged to create a single summary tSNR value at each voxel within the ROI. We calculated the
mean tSNR across voxels, as well as the maximum and minimum voxel tSNR for each subject. At
the group level, the overall mean tSNR was 43.3 (sd = 6.7), indicating that a BOLD signal was
reliably present within this region. The mean of the maximum tSNR was 89.3 (sd = 12.0), and the
minimum was 9.9 (sd = 3.0), which demonstrates that there was substantial variation in tSNR

across voxels within the ROI.

fMRI pre-processing

The first six functional volumes were discarded to allow for T1 equilibration. The remaining
functional volumes were spatially realigned to the first image of the first functional series. Each
participant’s structural image was co-registered to the first functional image. The structural
images were segmented and normalized to the DARTEL template using the VBMS8 toolbox. The
warps from this procedure were then applied to the functional data. This procedure normalized all

MRI data into MNI space. Note that this procedure also resliced the functional voxels into a new

interpolated resolution of 1.5mm3. For the main analyses, each trial-type (unique start-view-goal
combination) was modelled with a different regressor including its instance in each of the three
functional runs. Each trial was modelled with a boxcar regressor which started from the response
to the first goal-direction question, and ended at the second response. The reasoning was that
both geocentric and egocentric goal direction information should be required regardless of the

type of goal direction response required, and so the specific modality of explicit goal response was



not differentiated in these models. Furthermore, we expected the information to be maximally
present at, or just before the first goal direction decision, and to continue to be strongly
represented up until the second decision. We therefore elected to model this specific period of
time during the trial. This provided a parameter estimate at each voxel for each of the 32 trial
types. These were converted to t-statistics by dividing the parameter estimate by the estimate of
the standard error, thereby normalizing the responses of each voxel [S13, S14]. For each control
analysis, the same general approach was used, with the difference that each unique trial-type was
modelled using an event-related regressor locked to the time of the responses, rather than a
boxcar regressor. The resulting t-statistic images were left unsmoothed to preserve any fine-

grained spatial information [S14].

Small-volume correction regions-of-interest

For the purposes of hypothesis-driven small-volume correction of the searchlight analyses, we
created two anatomical masks. The first was for the geocentric direction analysis, and consisted of
the combination of a bilateral network of regions thought to contain head direction neuronal
populations. This included the hippocampus [S15] and entorhinal region [S16], retrosplenial and
posterior cingulate cortex [S17], and a region of the thalamus approximately covering the anterior
and lateral dorsal nuclei. This mask was created by manually delineating each of these regions on
the average T1-weighted structural image, and then combining all regions into a single mask. As
many of these regions have also been implicated in coding for spatial location within an
environment [S3, S8, S18], we used this same small-volume mask for the analysis of start location
information. The second small-volume mask was for the egocentric direction analysis, and
consisted of the intraparietal sulcus (IPS) and precuneus bilaterally. This mask was based on a

combination of regions BA7 and the IPS taken from the SPM Anatomy toolbox [S19], but was



manually adjusted to include a greater extent of the precuneus [S20]. See Figure S1 for images of

each of these ROls.

Searchlight pattern similarity analysis

We used a searchlight analysis in order to search across the whole brain for regions containing
specific neural representations [S21]. This involves stepping through each voxel in the brain, and in
each case running a pattern similarity analysis on the cluster of voxels surrounding that central
voxel (for all analyses, we used a 10mm radius spherical searchlight). This provides a measure of
information at every single voxel, and a group-level statistical analysis can determine whether
there are any regions containing a significant amount of information across the group of
participants. For the pattern similarity analysis itself, the similarity between each pair of trials was
measured using a Pearson correlation between the patterns of fMRI voxel activation within the
ROI across each pair of trials. This results in a similarity matrix, with each point in the matrix
representing the pattern similarity between a pair of trials. For the primary analyses we used a
multiple binary regression approach [S8]. Each regressor specifies a contrast of one part of the
similarity matrix against the rest (Figure 3B). By using this approach, it is possible to test the
contrast of interest while controlling for variance that is attributable to other variables. The
multiple regression included four regressors: geocentric direction, egocentric goal direction, start
location, and goal location. Geocentric direction was our primary regressor of interest, and
specified a combined contrast of three similarity conditions (facing, goal, and cross match) against
the null condition (Figure 3A). Any region with head direction simulation properties should include
all three of these conditions, and the geocentric direction regressor should therefore detect any
such region. Egocentric goal direction specified all trial pairs where the egocentric direction to the
goal was the same (e.g. left), against those where they did not. This was our regressor of interest

for the secondary egocentric analyses. Start location specified all trial pairs where the start



location matched against those where they did not, and similarly, goal location specific all trials
pairs where the specific goal location matched. While these additional regressors were not
completely uncorrelated with the geocentric direction regressor, r* was very small in each case
(0.01 for both start location and goal location, and 0.03 for egocentric direction), and well within
tolerance limits for multiple regression analysis. Thus, this analysis fully controlled for these

extraneous factors.

This searchlight pattern similarity multiple regression analysis results in a beta parameter estimate
for each regressor at each voxel. The brain-wide set of parameter estimates for each participant
was passed to a group-level nonparametric statistical analysis for each condition of interest (see
next section). Small-volume correction was applied separately to each searchlight analysis, based
on strong a priori predictions about the neural regions involved in processing each type of

information (see above and Figure S1).

Nonparametric searchlight statistics

Parametric assumptions regarding the spatial distribution of data may not hold with unsmoothed
data. Nonparametric statistical approaches do not make such assumptions, making them more
suitable for use with unsmoothed data. We therefore analysed the group-level data using
statistical nonparametric mapping [S22]. We used 10mm variance smoothing and 10,000 random
permutations. A cluster-based threshold was used to assess statistical significance, using an initial
cluster threshold of Pseudo-t = 3. Results were considered significant at a family-wise-error-
corrected cluster threshold of p<0.05. This method of FWE correction proceeds as follows. Over
10,000 permutations, each searchlight beta image is randomly assigned to be multiplied by either
1 or -1. Under the null hypothesis, we expect that the set of beta values at each voxel should be

symmetric about zero, and hence for a single subject, the observed data can be flipped without



altering its distribution. Thus, under the null hypothesis, randomly flipping the sign of a single
subject’s beta-map will leave the joint distribution unchanged. At each voxel, the pseudo-t statistic
(more on this below) is calculated for both the observed data, and each set of permuted data. In
order to apply cluster correction for multiple comparisons, an initial voxel-level threshold is
applied to each dataset (in this case set to t=3, as suggested by [S22]) Based on this initial
threshold, the permutation distribution of the maximal suprathreshold cluster size can be derived.
This is accomplished by noting, for each permuted statistic image, the largest size of cluster above
the initial voxel-level threshold. Corrected p-values for each suprathreshold cluster in the
observed statistic image are obtained by comparing their size to the permutation distribution. By
forming the null distribution from the maximal statistic in each permuted image, this ensures that

any resulting p-values are fully corrected for multiple comparisons.

The use of nonparametric statistics in fMRI allows the use of variance smoothing, whereby the
variance estimate at each voxel is based on a pooled estimate, spatially smoothed across
neighbouring voxels. This new, pooled variance is then used to compute a more reliable statistic at
that voxel. The resulting statistic does not have a Student’s t-distribution under the null
hypothesis, hence the term Pseudo-t statistic. Overall this procedure will somewhat increase the
smoothness of the statistic image, but only through a reduction in high-frequency noise. Any fine-
grained differences in signal between neighbouring voxels will be preserved, making this approach

entirely suitable for MVPA analysis.

Regions-of-interest from the searchlight analyses
Following the searchlight analyses, we ran a series of follow-up analyses within each region. For
each functional cluster (entorhinal/subicular region and precuneus), we defined the region of

interest using a threshold of Pseudo-t > 2, in order to provide enough voxels for ROI-based RSA



analysis. Notably, at this more liberal threshold, the precuneus cluster is bilateral in nature. The

bilateral extrastriate cortex ROl was defined using the SPM Anatomy toolbox [S19].

ROI statistical tests

For all ROIl-based tests, each correlation coefficient was normalized using Fisher’s r-to-z
transformation, in order to allow parametric testing at the group level. Group-level statistics were
performed on either the set of beta parameters or correlation coefficients from a given region or
regions across participants. When determining whether a region contains significant information
(i.e. testing beta parameters against zero, or testing correlation coefficients against the null match
condition), one-tailed t-tests were used as recommended by current methods guidelines for
pattern similarity analysis [S23]. The reason for this is that, given our experimental hypothesis, we
expect an increase in pattern similarity in our experimental compared to null condition, but the
same hypothesis does not provide any explanation for a significant drop in similarity compared to
the null. Note that this is in contrast to a similar analysis of univariate data, where it is always
possible that there could be a task-driven deactivation, meaning that two-tailed tests in this case
are to be preferred. When comparing information across two conditions of interest (e.g.
geocentric direction vs. visual scene information), or across two regions (e.g. entorhinal/subicular
region vs. precuneus), two-tailed t-tests were used, as here a significant result could reasonably be

expected in either direction.

Pattern similarity contrasts in the entorhinal/subicular region

The geocentric direction analysis used in the searchlight analysis consisted of the combination of
three conditions (facing, goal, and cross match). In theory, any one of these conditions could have
driven this response without the contribution of the other two — for example, the response could

be driven purely by information about current facing direction, which we know to be present



within the presubiculum (which forms a part of our functional cluster) from previous work [S8]. To
infer the existence of a genuine head direction simulation system, we need to demonstrate the
presence of each of these three types of direction information independently. Within the
entorhinal/subicular ROl we looked at each type of directional information separately, in each
case contrasting the pattern similarity against the null condition using a one-tailed paired t-test.
Note that any similarity pair that fell into more than one condition (e.g. facing and goal direction)
was excluded, to ensure specificity within each condition. Furthermore, as we were specifically
interested in directional information that generalizes across specific location, we also excluded
similarity pairs that shared the same start location. Thus, any residual information could only
represent a generalized direction representation. Significance was assessed using a Bonferroni-

corrected a threshold of p<0.0167 to control for the three separate statistical tests.

Pattern similarity correlation with behavioural variables

We investigated correlations between both facing direction and goal direction
entorhinal/subicular neural representations and individual variation in task accuracy. We
particularly focussed on task performance, as a previous study has found that entorhinal
processing predicts variation in navigation performance across individuals [S4]. Due to the high
correlation between geocentric and egocentric task performance (see above), we used accuracy
pooled across both tasks. A Pearson correlation was used in each analysis, and a significance
threshold of 0.025 was used, Bonferroni-corrected for the two correlation analyses. Results are
reported in the main text, but in brief, a significant positive correlation was found between
accuracy and facing direction, but not goal direction. Task accuracy and reaction time were found
to be highly correlated (r(15)=-0.76, p=0.0007), and so we predicted that we should find a similar
pattern of results in the reaction time data as with accuracy —i.e. a correlation between reaction

time and facing direction information, but not goal direction information. Given this clear



prediction, we used a significance threshold of p<0.05 to assess the correlation between facing
direction information and reaction time (although we note that the result would also be significant

using a more stringent p<0.025 threshold).

We repeated each of the correlation analyses with facing direction information based on the
unpooled accuracy and reaction time data, in order to check that the results still held. These
analyses found that facing direction information correlated significantly with egocentric task
accuracy (r(15)=0.64, p=0.008) and reaction time (r(15)=-0.53, p=0.035), and trended to
significance with geocentric task accuracy (r(15)=0.46, p=0.07) and reaction time (r(15)=-0.49
p=0.055). Thus, even using unpooled data, both tasks produced either significant results, or
trended toward significance in the expected direction. We therefore conclude that pooling the

behavioural data across these tasks did not make a substantial impact on the resulting data.

Visual control analysis

In the visual control condition of each trial, we presented the start view, but instead of requiring a
navigation decision, participants simply had to categorize the displayed scene (Forest, Mountain,
Desert, or Sea). This condition should activate purely visual neural representations, but not more
abstract directional representations. Thus, this condition allowed us to search for the presence of
purely visual information. Visual control data were preprocessed using a first-level GLM to fit a
regressor for each of the 32 trial types, as with the navigation decision data. However, in this
analysis, the regressors were event-related, and modelled the onset of the visual scene in the
visual control component of each trial. In order to ensure that these regressors captured BOLD
signal that was specifically related to the visual processing of each scene prior to the navigation
decision period, we also included regressors for each of the 32 navigation decision periods, using a

boxcar regressor in each case (exactly as used in the main analysis). Note that the inclusion of



these additional regressors in the GLM was necessary for this control analysis, but was not
necessary in the main analysis, as visual scene information was always present within each
navigation period in any case, and was not confounded with the key goal direction analyses. A
visual control pattern similarity analysis was applied to the 32 voxel patterns representing the
visual scene information on each trial. This analysis was a multiple binary regression analysis as
described above, matched as closely as possible to the navigation decision analysis. The contrast
regressor of interest specified the visual scene present on each trial, and three additional
regressors-of-no-interest specified start location, goal location, and egocentric location for that
trial. For a given ROI, beta parameters for the visual scene regressor were calculated for each
participant, and compared against zero with a one-tailed t-test in order to determine the presence
of purely visual scene information. This analysis was applied both to the left entorhinal/subicular
ROI and also an anatomically defined ROl in bilateral extrastriate cortex. The scene information in
both regions was compared with the geocentric direction information as measured in the main

analysis in a 2x2 repeated measures ANOVA, with factors of region and information type.

There were two elements of the experimental design that provided sufficient temporal separation
between the visual scene control and the navigation portions of each trial to make this control
analysis feasible. First, each condition and trial-type occurs once in each of three functional
sessions, and the first level GLM was set up to estimate a single response pattern expressed across
all three sessions. Second, temporal jitter between the different components was a natural part of
the design partly due to the self-paced nature of the task, but more importantly due to the
randomized order of the different components. On each trial the order of the two control
conditions was randomized, ensuring a degree of temporal jitter across trials. When measuring the
response patterns over the three functional sessions, this allowed us to temporally separate the

different signals of interest.



Egocentric control analysis

While investigating egocentric goal direction was not our principle aim in this study, we
nevertheless included an additional egocentric control condition. In this condition, the same visual
scene cue was presented as in the main navigation task, and a red dot was presented near this
image. Participants simply had to indicate whether the dot was above, below, to the left, or to the
right of the presented image. This task includes simple egocentric judgments that are not
navigationally relevant. Thus, if a region contains information about this control task, then it is a
more general egocentric representation rather than any specific representation related to
navigation-guided behaviour. Egocentric control data were preprocessed using a first-level GLM to
fit a regressor for each of the 32 trial types, as with the navigation decision data. However, in this
analysis, the regressors were event-related, and modelled the onset of the red dot in the control
component of each trial. Notably, unlike the visual control analysis described above, it was not
necessary to additionally include the 32 navigation decision regressors. This is because the
egocentric directions in the control task and the navigation task were both randomized, and
therefore not confounded with one another across trials. An egocentric control RSA analysis was
applied to the 32 voxel patterns representing egocentric direction onscreen on each trial. This
analysis was a binary regression analysis contrasting trial pairs where the egocentric direction
matched against those where the direction did not match. Within the precuneus ROI, beta
parameters for this egocentric control regression were calculated for each participant, and
compared against zero with a one-tailed t-test in order to determine the presence of simple
egocentric direction information in the absence of navigation. This was directly contrasted with

the beta parameters from the egocentric goal direction analysis with a two-tailed t-test.



Supplemental Results

Entorhinal lateralization analysis

The geocentric direction searchlight result found a result selectively within the left
entorhinal/subicular region, suggesting that the head direction simulation effect may be left
lateralized. In order to test this idea, we directly compared the geocentric direction information
between the left and right entorhinal region, using anatomically defined regions of interest. These
were manually delineated on the group average structural image using [S15] and [S16] for
guidance. It should be noted that, as these ROIs were delineated on the group average structural
image, not all anatomical landmarks were clearly visible. The ROl is therefore only an anatomical
approximation of the entorhinal cortex (hence the term “entorhinal/subicular region”).
Importantly, the same guidelines were used in both hemispheres, so this gives us an unbiased
method of assessing any lateralized functionality. The analysis used the same pattern similarity
multiple binary regressor as was used in the searchlight, but now specifically focusing on the two
ROIs. This revealed that both hemispheres independently contain geocentric direction information
(Left: t(15) = 3.22, p = 0.0028; Right: t(15) = 1.89, p = 0.039), and while the left does show a greater
effect (consistent with the searchlight result), this difference was not statistically significant (t(15)
= 1.53, p = 0.15). Thus we find no evidence for a hemispheric specialization, but instead find that

both hemispheres independently process geocentric goal direction.

Precuneus lateralization analysis

While the original significant precuneus cluster is confined to the left hemisphere, the ROl used for
all further analyses was based on a more lenient threshold, in order to ensure that sufficient
voxels were included for the RSA analyses (see above). Notably, this larger cluster was bilateral in

nature, and therefore all ROI-based results reported in the main text were based on bilateral



precuneus. Nevertheless, it is possible that these results were based largely on just the left
hemisphere voxels. To investigate this, we formally tested for hemispheric specialization of the
precuneus in our dataset. In order to do this, we divided the bilateral precuneus ROI into two at
the midline, creating left and right precuneus ROIls. We applied the same multiple regression
pattern similarity analysis to both independently, and found that both sides independently contain
significant egocentric goal direction information (Left: t(15) = 3.05, p = 0.004; Right: t(15) = 3.26, p
=0.0026), with no significant difference in the strength of coding between the two (t(15) = 0.0061,
p = 0.995). We therefore find no evidence for hemispheric specialization in egocentric goal

direction coding in our data.

Start and goal location analyses

While the main aim of this study was to investigate direction representations, the experimental
design also allowed us to investigate spatial representations, both for the start location and the
goal location. We note, however, that for the latter analysis, goal location itself is completely
confounded with the visual object used to cue this location on each trial. This cue is not a
confound with respect to any of our primary effects of interest, but is for goal location. Therefore
any results of this particular analysis should be interpreted with caution. No voxels survived
whole-brain FWE correction for either the start or goal location analyses (see below for results
using a more liberal threshold). Similarly, follow-up analyses in the functionally defined ROIs
revealed no significant effect of either type of spatial information in either the
entorhinal/subicular region or the precuneus. Thus, in the context of this study, we only find
evidence relating to direction coding, not spatial location coding. This suggests that we were not
able to detect grid cell representations, in contrast to previous investigations of the entorhinal
region [S4, S5]. However, these previous studies sampled a much larger range of spatial locations

in order to detect these representations, while our study was instead optimised for detecting



direction representations. In addition, in the current study, each trial required participants to
represent both their own location within the environment, and the goal location, which could

have added considerable noise to the self-location analysis.

Exploratory searchlight analyses

While we focus primarily on results that are statistically rigorous based on the relevant SVC region,
it is also informative to ask whether any additional regions in the brain might show an equivalent
effect that would otherwise not show up due to being outside our predicted region of interest. We
therefore conducted additional, exploratory searchlight analyses of each condition in order to
determine whether this might be the case. While any such results are not statistically robust, they
are nevertheless useful for determining whether other regions outside the SVC regions might also
be involved, and therefore targets for future research. In order to do this, we used the same initial
voxel thresholding of pseudo-t > 3 in each case, and then where possible took the cluster extent
threshold that was used to determine significance within the SVC of the relevant analysis. For the
geocentric direction analysis, this threshold was k>88, and for the egocentric direction analysis it
was k>49. For the start location analysis, no voxel within the SVC mask survived the initial pseudo-
t threshold, and only a single cluster of three voxels survived this across the entire brain. It is clear,
therefore that we find no evidence for spatial location representations within our data. The
geocentric direction analysis similarly produces no additional regions outside the SVC mask with
cluster size greater than the SVC threshold (k>88). However, the egocentric analysis revealed two
addition clusters at this threshold, in the cerebellum (MNI coords: 0, -46, -41; cluster size k = 91)
and the precentral gyrus (MNI coords: -56, -3, 34; cluster size k = 68). It is therefore possible that
these additional regions may also contain information about egocentric goal direction. The

(confounded) goal location analysis revealed two clusters at this liberal threshold, in bilateral



dorsolateral PFC (right MNI coord: 33, 9, 26; cluster size 254; left MNI coord: -26, 15, 27; cluster

size 73).

Grey matter control analysis

To ensure that the reported results within the entorhinal/subicular region were not primarily
driven by voxels falling within the white matter, we performed an additional control analysis
restricted to grey matter voxels. During preprocessing, each participant’s T1-weighted structural
image was segmented into grey and white matter images, each of which has normalized values
between 0 and 1, with higher values indicating higher likelihood of that voxel containing grey
matter. These grey matter images were normalized into MNI space, as described above. We
repeated the analysis of each condition (facing direction, goal direction, crossmatch) within the
entorhinal/subicular ROI, but this time restricting the analysis to grey matter voxels, using subject-
specific grey-matter masks (with a conservative grey threshold of 0.8). For all three conditions we
again found a significant result within the entorhinal/subicular region (Facing: t(15) = 3.48, p =
0.0017; Goal: t(15) = 1.88, p = 0.04; Cross: t(15) = 2.89, p = 0.0056). It is very unlikely, therefore,

that these effects are driven by activity taking place within the white matter.

Pattern construction analysis

In order to specifically test the hypothesis that a linear mixture of both facing and goal direction
information is present on each trial, we applied a second analysis method based on “pattern
construction” [S24-S27]. The logic of this analysis is simple: On a trial consisting of a North facing
direction and an East goal direction (a N+E trial), we hypothesize that representations of both
North and East will be active, and will be expressed as a linear combination of the voxel patterns
for North and East. Within our data, we have a proportion of trials where the facing direction and

goal direction are identical. On these trials, only one direction signal should be present within the



entorhinal/subicular region, and these we refer to as “pure” direction trials. We can take
advantage of these trials in order to explicitly test the linear combination hypothesis. For the
above example, we would do this by taking the average pattern across all “pure” North trials (both
facing and goal direction are North), and the average pure East pattern, and summing these two
patterns to create a prediction of what a N+E trial pattern should look like if the linear
combination rule holds. We then simply correlate the actual N+E trial with our predicted N+E
pattern to assess how well our prediction matches the data. We applied this logic to the voxel
patterns within the entorhinal/subicular region of interest. The full analysis involved creating pure
direction patterns for each of the four cardinal directions, as described above. From these we then
constructed the full set of possible combined patterns by summing the different combinations of
the pure directions. For each individual, we correlated the pattern for each trial against the
predicted combined pattern for that trial (Note that these trials were completely independent of
the data used to construct the pure and combined patterns). We also correlated the pattern for
each trial against each of the non-predicted combined patterns for that trial, and averaged these
correlation coefficients to provide a baseline null for that trial. The predicted and baseline
correlation coefficients were averaged across all trials to form a summary for each participant.
These were then statistically compared at the group level using a one-tailed paired t-test. This
analysis revealed that the voxel pattern on each trial correlated significantly better with the
predicted pattern than the unpredicted baseline patterns (t(15) = 3.68, p = 0.0011). This
demonstrates that the constructed pattern, formed by a linear combination of both goal and
facing direction, significantly predicts the pattern of voxel activity expressed on trials containing
those two directions. Importantly, the predicted combined patterns also correlated with the trial
voxel patterns significantly better than either the pure facing direction (t(15) = 2.76, p = 0.015;
two-tailed t-test) or the pure goal direction pattern (t(15) = 2.39, p = 0.03; two-tailed t-test) for

that trial, demonstrating that this result cannot be explained by either one of these alone —



instead, it is the linear combination of the two direction patterns that best explains the voxel
pattern expressed on any given trial. These results provide further support for the conclusion that

both facing and goal direction information are present within the entorhinal/subicular region.

Exploring the “pure” direction trials

As described above, we refer to those trials where both the facing direction and goal direction
match as “pure” direction trials, as only one single geocentric direction representation should be
active on these trials. We might expect that these trials should have a stronger representation of
this direction compared to trials where two different directions are represented. In order to test
this idea, we specifically assessed the correlation between the matching “pure” direction trials for
each participant, and compared this against the facing direction and goal direction conditions
(after excluding the pure direction trials). We found no evidence for a significantly greater level of
similarity in the pure direction trials compared to either facing direction (t(15)=-0.76, p=0.46) or
goal direction (t(15)=-0.60, p=0.55), as assessed with a two-tailed paired t-test. This therefore
suggests that “pure” trials do not have a stronger directional representation. Indeed, we found
that the similarity was somewhat lower in this condition than both the facing and goal direction
conditions, although this was not significant in either case. We attribute this lower similarity score
to the fact that the “pure” condition is based on just four correlation datapoints per subject, as
opposed to 40 and 24 datapoints for facing and goal direction respectively. The small data sample
for each subject is likely to have produced a much less reliable estimate of the true effect in the
“pure” condition compared to either other condition. To examine the impact of sample size, we
performed a bootstrap analysis using the facing direction correlation datapoints. The full sample
includes 40 correlation datapoints per subject, which produced a significant effect compared to
the null match condition (t(15)=3.48, p=0.0017). However, when we randomly sampled 4 of these

correlation pairs per subject over 10,000 repetitions, the probability of detecting a significant



effect was found to be just 28%. When we increased the number of samples to 24, this probability
increased to 94%, showing that sample size for each individual subject has a substantial impact on
power at the group level. This therefore suggests that our “pure” direction analysis was
substantially underpowered to detect our effect of interest, and this result should be interpreted

accordingly.

Pattern construction visual control analysis

We applied a second method of checking whether the visual scene information could explain our
data, this time using the pattern construction method (see above). The method was identical to
that described above, with the exception that the “pure” direction patterns were now constructed
from the visual scene data rather than the navigation data. In this case all visual scenes for each
direction were averaged together to form each “pure” pattern. These were then used to construct
each of the combined patterns that would be predicted if the neural patterns expressed on each
navigation trial were the linear combination of a visual scene response in the facing direction, and
an imagined visual scene in the goal direction (as opposed to representations of geocentric
direction). Based on these predicted combined patterns, the pattern construction analysis was
repeated. In this case, we found that the voxel pattern on each trial did not correlate significantly
better with the predicted pattern than the unpredicted baseline patterns (t(15)=-1.11 p=0.86).
Furthermore, the difference between predicted and unpredicted correlation was significantly
greater in the navigation condition than this visual control condition (t(15)=3.57, p=0.0028).
Overall, therefore, this analysis provides confirmatory evidence that our results cannot be
explained on the basis of basic visual scene representations, but instead are likely to be based on

representations of geocentric direction.



Associative learning control

The navigation task used in this experiment could not be solved by any simple paired association
strategy between goal location and the correct direction (or scene), as the correct answer on each
trial depended on the spatial relationship between the start location and the goal location.
However, is it possible that, rather than a simple paired association, participants have encoded a
more complex association between start location, goal location, and direction/scene? If
participants were able to learn these associations through simple associative learning, then they
would be able to solve the geocentric task without the need to use any spatial simulation.
Critically, participants did not have the chance to explicitly learn all 32 of these sets of associative
triads, as the learning of the virtual environment was accomplished through free exploration prior
to scanning. However, 8 trials were explicitly presented, with feedback, as these “probe” trials
were used to assess how well participants were learning the environment. While we note that
these probe trials themselves could not have been solved through associative learning, it is in
theory possible that exposure to these trials could have led to subsequent associative encoding of
these 8 associative triads. To ensure that our results are not primarily due to these 8 trials, we ran
an additional pattern similarity analysis controlling for these 8 probe trials. This was accomplished
using the multiple binary regression approach described above, with the additional of one further
regressor that indexed those trial pairs that included one or more probe trials. This additional
regressor effectively captured variance associated with the probe trials in particular, and ensured
that any remaining variance associated with geocentric direction could not be due to associatively
learned probe trial information. This analysis revealed a significant effect for geocentric direction
coding within the entorhinal/subicular region ROI (t(15) = 3.47, p = 0.0017), providing evidence

that our results cannot be explained by associative learning.



Supplemental Discussion

Conjunctive grid cells

Given that previous studies have demonstrated the presence of grid cell representations within
the entorhinal region, is it possible that our results could be due to grid cell rather than head-
direction cell activity? Classical grid cells are not sensitive to direction information, and so it is not
clear how they be responsible for our results. Conjunctive grid cells, on the other hand, do show
modulation by heading direction. Thus, it is possible that the direction signal we detect in the
entorhinal/subicular region is partially driven by conjunctive cell simulation of intended future
vectors [S28]. However, entorhinal conjunctive cells are highly interconnected with head-direction
cells, and indeed are assumed to receive their directional input from them [S6, S7]. It is therefore
unlikely that conjunctive cells would be recruited for simulation without the connected head-
direction cells also being recruited. Indeed, it is more likely that this simulation begins with head-
direction simulation, which then drives conjunctive cell simulation [S29]. Notably, even a recent
model of vector navigation based on conjunctive cell ensembles assumes a stable head-direction
input to those conjunctive cells [S28]. This therefore implies that head-direction simulation must
precede the conjunctive cell simulations of specific vectors for any direction other than current
heading. We therefore argue that it is unlikely that conjunctive cell populations alone can explain
our results. The most parsimonious explanation is that the goal direction representation is
generated by head-direction simulation, but we cannot rule out that conjunctive cell simulation

also contributes to this signal.

Attentional influence on entorhinal/subicular correlations
While we cannot completely rule out that differences in attention across subjects may have

contributed to the correlation we found between entorhinal/subicular facing direction and task



performance, the fact that the results are specific to facing direction information, and not goal
direction, makes this unlikely. Such global differences would be expected to produce a correlation

in both facing and goal direction information.
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