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1. INTRODUCTION

The aim of this paper is the construction of a distributional model which enables us to

study the evolutionary dynamics that arise in the case of symmetric games, and the equi-

librium selection mechanisms that originate from such processes. Recent approaches to

equilibrium selection have focused on models employing stochastic difference or differ-

ential equations; equilibrium selection being determined by the ’’low-noise’’ limit of such

processes. One branch of this literature employs continuous time continuous state repre-

sentations of the relevant stochastic process, ; within this group we note in particular the

papers by Foster and Young(1990), Fudenberg and Harris(1992), and Cabrales(1993). An

alternative approach was taken by Kandori, Malaith and Rob(1993) and Young(1992), us-

ing z-tree techniques (see Freidlin andWentzell(1983)). Subsequent papers byKandori and

Rob(1991), Samuelson(1993), Noldeke, Samuelson and Van Damme(1993), and Binmore

and Samuelson(1993) use z-tree analysis in a wide variety of applications. The connection

between these two approaches is not completely transparent. For example, the papers by

Cabrales(1993), Binmore and Samuelson(1993), Binmore,Samuelson and Vaughan(1994)

obtain equilibrium selection properties that do not coincide with those of Kandori, Malaith

and Rob(1993). Study of these papers warn us that the outcome of the equilibrium selection

process are sensitive; firstly to whether we deal with discrete or continuous models both in

time and state space; secondly, as to the choice of the dynamic adjustment process, inclu-

sive of the stochastic component; and thirdly, as to the nature of the boundary conditions

that are imposed on the selection process.

The methodology of the present paper is distinct from that followed by the two ap-

proaches above, insofar as it is based on the evolution of probability distribution over the

relevant state variables induced by the appropriate stochastic difference or differential equa-

tions. For the processes studied here we are led to a formulation employing the Fokker-

Planck or diffusion equation. Such processes are well known in the statistical and physical

sciences literature, including evolutionary biology, but have not appeared thus far in the

game theoretic literature applied to equilibrium selection.

2. THE DISTRIBUTIONALMODEL FOR THE SYMMETRIC 2x2 GAME

We begin with the analysis of the 2x2 symmetric game. A population a time t of size
N(t) consists of two distinct phenotypes; each phenotype is associated with a fixed strategy,
si; i = 1; 2; and the proportion of the population playing strategy si at time t is pi(t). When
an individual of type i meets an individual of type j, the payoff matrix aij is defined by,

A =
a; a b; c

c; b d; d
(1)
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where a; b; c; d 2 R. Generic types of 2x2 games defined by the relative magnitudes of the
payoffs will be considered further below.

The proportions playing each strategy are assumed to change over time. In the deter-

ministic evolutionary case the relative rate of increase in the frequency of i is assumed to

be governed by the replicator equation,

1

pi

dpi

dt
= (Ap(t))i ¡ p(t)

0Ap(t) (2)

where A = [aij ] and p(t)
0 = [p1(t); p2(t)]. Letting p = p1 and p2 = 1¡ p1, then (2) may

be written as,

dp

dt
= G(p; A) (3)

where,

G(p) = ([a+ d]¡ [b+ c])p(1¡ p)(p¡
d¡ b

(a+ d)¡ (b+ c)
(4)

Associated with (3) we define the stochastic replicator dynamics by the introduction of an

additional random term. Different dynamics are generated according to the choice of this

term; one of the simplest which has been used in the existing literature is the introduction

of a Wiener process, with the stochastic counterpart of (3) being defined by,

dp = G(p;A;N)pdt+ ¾(p; A;N)dz (5)

where dz denotes a Wiener process of zero-mean and unit variance, and ¾2(p;A;N) > 0.
In formulating (5), we note the following,

(i) The drift term G(p; A;N) may be formally dependent on the proportions in the
population playing each strategy, the payoff matrix of the game, and the size of the total

population. The appearance of N would rule out the replicator formulation (4). From the

point of view of the present analysis the assumption of a replicator dynamic is not essential;

indeed best response or other types of dynamic may be defined by the drift term.. In the

present paper we shall assume N is fixed and of sufficient magnitude to allow us to view

p as a continuous variable.

(ii) The diffusive term ¾(p; A;N) may also be dependent on the payoffs and size of total
population, as well as the proportions playing any particular strategy. For sections 2-6, we

shall assume that ¾2(:) is strictly positive over the interval [0; 1].
One method of approach to the solution of (5) is via the Ito stochastic calculus; in the

present paper however we shall follow the approach of analysing directly the distribution

function over p implied by an equation such as 4.

Let f(p; t) denote the probability distribution function resulting from the stochastic
dynamics implied by (5). As is well known, and shown in Appendix I, the evolution of

f(p; t) is governed by the Fokker-Planck equation,

@f(p; t)

@t
= ¡

@

@p
(G(p)f(p; t)) +

1

2

@2

@p2
(¾2(p)f(p; t)) (6)

subject to appropriate initial and boundary conditions.
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In the present interpretation each separate p reflects a different ’’world’’ with a given

proportion of the population playing strategy s1; since p defines the proportion of the pop-

ulation following strategy s1, then 0 · p · 1; and boundary conditions at p = 0; 1 have
to be imposed. If we look at the deterministic replicator dynamics equation (2) we see

that any strategy not played by any individuals in the population, can never reappear in

that population. In terms of population evolution this assumption reflects extinction of any

phenotype, with no possible subsequent reappearance. In the present case however, even

with G(p) identical to (2), reappearance of a strategy may be possible due to the influence
of the stochastic component ¾(:). Put simply, assume that the proportion of the population
playing strategy s1 is zero, and that the deterministic component of the stochastic differen-

tial equation is also zero at p = 0; i.e. G(0) = 0; then provided ¾2(0) > 0 then a stochastic
perturbation could result in the reappearance of strategy s1. A similar result exists if the

proportion playing strategy s2 becomes zero, a stochastic perturbation could reintroduce

strategy s2. As will be seen, the values that G(:) and ¾
2(:) take at the boundaries are cru-

cially important in determining the subsequent evolution of the system, as indeed are the

accessibility or otherwise of the boundaries themselves.

Categorisation of boundaries is well known in the study of partial differential equations

of the Fokker-Planck type. The first distinction is between accessible and inaccessible

boundaries. If a boundary is accessible, we can further categorise it in terms of a reflecting

or absorbing boundary.

(i) Inaccessible boundaries. In this case, if the process starts off from any interior point

in (0,1), the boundary can never be reached. Formally, if limp!0;1 ¾
2(p) = 0; andG(p) >

0; at p = 0; whilst G(p) < 0 at p = 1; then the boundaries are inaccessible. The intuition
is clear, for any ’’world’’ with proportion p at a point close to either boundary, the drift

coefficient G(p) sets up a repulsive movement away from the boundary; against this must
be set the stochastic component ¾2(p). Such a term may act either in support of the drift
coefficient, or act against it, driving the ’’world’’ at point p closer to the boundary. However

if the stochastic component becomes progressively weaker as the boundary is approached,

then the drift term becomes progressively more dominant, thus leading to the impossibility

of a ’’world’’ ever reaching the boundary.

(ii) Absorbing Boundary. If we drop the assumption that limp!0;1 ¾
2(p)= 0, then both

boundaries become accessible, irrespective of the sign of G(:) in the locality of the bound-
ary. Once the boundary is reached it is perfectly reasonable to change the dynamics of the

system, to reflect the requirements of the model. An absorbing boundary would reflect the

perpetual extinction assumption; once a phenotype becomes extinct it forever remains thus.

Stochastic perturbations at the boundary are thus ruled out.

(iii) Reflecting Boundary. The technical definition of ’’reflecting’’ in this case follows

from the usage of this model in statistical physics. In the present context the terminology

may be somewhat misleading since it seemingly implies that no ’’worlds’’ may be found

at the boundary; this is not the case. ’’Worlds’’ may stick at the boundary and only depart

if either a stochastic perturbation, in conjunction with the working of the drift coefficient,

generates movement away from the boundary and back into the interior of [0; 1]

In order to proceed further a mathematical specification of these boundary conditions
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is required.

We find it convenient to introduce the notion of a probability flow in terms of the dis-

tribution f(p; t).
Consider (5) defined over the entire real line, ¡1 < p < +1. Integrate (6) from p to

+1; then we have,

@F (p; t)

@t
= ¡G(p)f(p; t)¡

1

2

@

@p
(¾2(p)f(p; t)) +C (7)

where C is an arbitrary constant of integration and,

F (p; t) =

Z
1

p

f(p; t)dp (8)

F (p; t) denotes the probability mass at and above p, therefore @F (p; t)=@t denotes the
change in this mass with respect to time; since this mass cannot be destroyed, i.e. no

outflow of probability mass at or above p except back through p; @F (p; t)=@t also defines
the probability flow through p. Probability flow can only be induced via the stochastic

equation (5), and thereforeC in (6) must be zero. We thus have the definition of probability
flow as,

F(p; t) = G(p)f(p; t)¡
1

2

@

@p
(¾2(p)f(p; t)) (9)

Reflecting boundaries can now be easily expressed in terms of these flows, namely,

F(0; t) = F(1; t) = 0 (10)

Whilst absorbing boundaries may be expressed in terms of the boundary conditions as,

f(0; t) = f(1; t) = 0 (11)

The initial condition that we impose on the distribution f(p; t) at t = 0 is,

f(p; 0) = fo(p) (12)

and the normalization condition,

Z
1

0

f(p; t)dp = 1; t ¸ 0 (13)

The complete statement of the problem is therefore to find f(p; t) for t ¸ 0;which satisfies
the Fokker-Planck equation (6), the initial condition (12), together with the appropriate

boundary conditions, for example, either , (10), or (11).

3. THE ERGODIC DISTRIBUTION

In the present paper our main interest will centre on the limiting distribution,

lim

t!1
f(p; t) = f¤(p) (14)

The distribution is deemed to be ergodic if it is independent of the initial distribution f(p; 0).
An ergodic distribution may not always exist, however sufficient conditions to guarantee

ergodicity are the assumptions:
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(A1) The boundary conditions are reflecting,

(A2) G(p) is bounded on [0,1], and ¾2(p) > 0 on [0,1].

Such conditions are also sufficient to guarantee uniqueness of f(p; t) on [0; 1]; t ¸ 0:
Existence of f¤(p) is usually shown by construction; the conditions for uniqueness are well
known in the literature (see e.g. Friedman(1964), Risken(1984)). For the remainder of this

section we shall assume that (A1) and (A2) hold.

The determination of the functional form which satisfies the condition of time invari-

ance is relatively easy to determine from the flow condition (9). If f¤(p) is independent of
t, then in equilibrium h(p)must satisfy,

F(p; t) = G(p)f¤(p)¡
1

2

@

@p
(¾2(p)f¤(p)) = 0 (15)

i.e. stationarity of the distribution must imply a zero probability flow not only at the bound-

aries of the interval [0; 1] but also at every point in its interior.
Solving (15) for f¤(p) we thus have,

f¤(p) =
C

¾2(p)
e'(p) (16)

where,

'(p) = 2

Z p

po

G(x)

¾2(p)
dx (17)

po < p is an arbitrary constant, however upon integrating (17), and subst. into (16),
this constant can be subsumed in the constant of integration C; which will be determined
by the normalization condition (13) i.e.

C¡1 =

Z 1

0

e'(x)

¾2(x)
dx (18)

The function '(p) has an important role in linking the stochastic dynamics to the equi-
librium distribution eventually generated; in the statistical and physical sciences literature

'(p) is called the potential function.
In the case where the variance ¾2(p) is assumed to be constant over the interval of

p, the relationship between the distribution f¤(p) and the properties of the original deter-
ministic dynamical system are particularly straightforward. Letting ¾2(p) = V > 0; and
differentiating (16) successively with respect to p we have,

@f¤(p)

@p
= f¤(p)'0(p) =

C

V
e'(p)'0(p) (19)

@2f¤(p)

@p2
= f¤(p)['00(p) + ('0(p))2] =

C

V
[e'(p)'00(p) + e'(p)('0(p))2] (20)

Now from (17) we have,

'0(p) = 2G(p)=V (21)
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'00(p) = 2G0(p)=V (22)

When G(p) = 0 we have a rest point of the original deterministic system, and these rest
points correspond to stationary points of '(p) and f¤(p). Further, from (20) and (22) we
note that at these stationary points of f¤(p),

@2f¤(p)

@p2
= f¤(p)'00(p) = f¤(p)

2

V
G0(p) (23)

and for f¤(p) strictly positive at the stationary points, unstable rest points ofG(p); G0(p) >
0; correspond to the minima of f¤(p); with stable rest points, G0(p) < 0 corresponding to
the maxima of f¤(p).
As an example consider the replicator dynamics, with a payoff matrix given by equation

(1);G(p) is a polynomial of order 3, thus with a constant ¾2(p) = V; a typical relationship
is represented by Fig 1.

Fig.1

We may note that:

(a) The positions of the stationary points of '(p) and f¤(p) are unaffected by the value of
V ; this follows from eq. (21).
(b) The ranking by value of '(p) and f¤(p) at these stationary points are unaffected by
the value of V . This can be seen by evaluating (16) defined at any two stationary points
and then taking the quotient of these two values, remembering to evaluate (17) using the
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constant variance.

(c) The absolute values of '(p) and f¤(p) will vary with V . Apparent from equations (16)
and (17).

The case of the non-constant variance is considered in Sections 4,7 and 8 below.

4. THE EQUILIBRIUM SELECTION PROCESS

In the case of the existence of an ergodic distribution, starting off from an initial distri-

bution of worlds playing in different proportions the strategies s1 and s2, then we would
expect to find after some period of time this distribution approaching f¤(p). The time
taken to approach this equilibrium will be considered elsewhere. In this section we shall

be concerned with the process of equilibrium selection, or ’’low-noise’’ limit of the system

(16)-(18).

Equilibrium selection means that the distribution function converges to a single point on

the interval [0; 1], leading to possible selection of mixed or single strategies. Provided the
assumptions (A1) and (A2) hold, convergence to such a single point is not possible for the

system (16)-(18). However, if we take the limit of the distribution f¤(p) as the stochastic
term ¾2(p)! 0, then the distribution does collapse, either to a single or multiple points.
We return to the case where ¾2(p) is allowed to vary over p, but still retain the assump-

tion that ¾2(p) > 0:We propose to determine what happens to f¤(p) as ¾2(p) uniformly
tends to zero. We therefore assume that ¾2(p) can be represented in the form,

¾2(p) = ¯V 2(p) (24)

where ¯ > 0 is some constant.
We are then interested in,

lim
¯!0f

¤(p) =lim¯!0

C

¯V 2(p)
eÃ(p)=¯ (25)

where,

¯'(p) = Ã(p) = 2

Z p

0

G(x)

V 2(x)
dx (26)

The basic theorem relating to (25) appears to have originated with Pontryagin, Andronov

and Witt(1934).

Theorem 1. Distributional Dominance.

If f¤(p) exists and if Ã(p) attains a unique maximum at p¤ in the closed interval [0; 1]
then,

lim
¯!0f

¤(p) = f¤(p¤) (27)

where f¤(p¤) is the distribution centred on p¤, such that for any " > 0; f¤(p) = 0 for
p > p¤ + ", and p < p¤ ¡ ".
Proof: Appendix 2.

Corollary 1.
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If h¤(p) exists and Ã(p) attains nmaxima in the closed interval [0; 1] at points p¤i such
that Ã(p¤i ) = Ã

¤ for i = 1; : : : ; n ; then,

lim
¯!0f

¤(p) = f¤(p) (28)

where f¤(p) is a function such that f(p¤i ) = f(p¤j ) all i; j = 1; ::; n; and for any " > 0;
f¤(p) = 0 for p > p¤i + ", and p < p

¤

i ¡ " for all i = 1; : : : ; n.

5. THE PRIMARY SELECTIONMECHANISM: MAXIMUM POTENTIAL

vs BASINS OF ATTRACTION

In the above section we have seen that the equilibrium selection mechanism, i.e. the

low noise limit distribution is determined at that point at which '(p), is at its maximum,
i.e. equivalent to the maximum of the equilibrium frequency distribution. In the paper by

Kandori, Malaith and Rob (1993), an alternative criteria for equilibrium selection in terms

of the ’’low-noise’’ limit is specified, that of the largest basin of attraction. In this section

we consider the relationship between these two criteria, and determine whether one or the

other should be the primary role of equilibrium selection.

We should of course note that the formulation of the KMR is quite different from the

present case, being specified in terms of discrete space and discrete time; furthermore the

equilibrium selection is formulated in terms of z-tree analysis, rather than in terms of the
solution to the FPE subject to appropriate boundary conditions. Nevertheless, it may be

argued that the formulation of a selection mechanism should be impervious to whether

discrete or continuous time formulations are adopted. In order to pursue the matter, we

shall consider the definition of basins of attraction in the present model, and establish their

relationship, if any, with the distribution ultimately selected.

The ’’basin of attraction’’ is defined in relation to the deterministic dynamics of G(p).
Consider the set of n rest points of G(p):0 · po < : : : :: < pn · 1: Then for any two such
points (i < j) the ’’basin of attraction’’ is defined by (pi ¡ pj) with the attractor being pi
if G(p) < 0; and pj ifG(p) > 0: KMR show under their assumptions that the ’’low noise’’
limit distribution converges to the rest point pm with the largest basin of attraction.
Let us apply this theory to the present model. For replicator dynamics we have at most

three rest points of G(p). In the case of two rest points, the basin of attraction is the entire
unit interval, where the attractor is either of the end points depending on the payoff ma-

trix. Quite clearly in this case the conditions for the limit distribution are identical whether

specified in terms of the maximum potential or the largest basin of attraction.

In the case of three rest points, if the interior rest point is a stable point, then the entire

unit interval is the basin of attraction, and so again we arrive at an identical prescription for

the low noise limit in terms of the maximum potential or the largest basin of attraction.

The only case where possible differences could occur is therefore the three rest point

case, with an unstable interior rest point. In this case if the ’’basin of attraction’’ approach

could be correctly applied to the present model, then the low noise limit converges either

to 0 or 1 depending on the relative magnitude of p¤and (1 ¡ p¤). Whereas the maximum
potential approach requires knowledge of '(0) and '(1).
For the case of constant variance, the potential for the replicator dynamics is given by,
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'(p) = (2=V )

Z p

G(p)dp = (2=V )([a+ d]¡ [b+ c])

Z p

p(1¡ p)(p¡ p¤)dp (29)

where p¤ =
d¡ b

(a+ d)¡ (b+ c)
and 0 < p¤ < 1

Thus

'(p) = (2=V )([a+ d]¡ [b+ c])f
1

3
(1 + p¤)p3 ¡

p

4

4
¡ p¤

p

2

2
g (30)

and so,

'(0) = 0;'(1) = (2=V )([a+ d]¡ [b+ c])f
1

3
(1 + p¤)¡

1

4
¡ p¤

1

2
g (31)

Thus '(0) > '(1) if 1
3
(1 + p¤)¡ 1

4
¡ p¤ 1

2
= (1=12)(1¡ 2p

¤

) < 0; i.e. if p¤ > 1=2:
But if p¤ > 1=2 then p = 0 has the largest basin of attraction, and so both themaximum po-
tential and basin of attraction approaches lead to the same low noise equilibrium selection.

Indeed , once this equivalence has been shown there is no subsequent need to calculate the

potential, knowledge of p¤ alone is sufficient to determine the low noise limit distribution.
However, there still remains a problem with the basin of attraction result; we have only

shown equivalence for the case of constant variance. In this case the deterministic dynamics

are sufficient to determine the low noise limit. Once the variance is dependent on p then the
potential becomes '(p) = 2

R
[G(p)=¾2(p)]dp and it becomes apparent that equivalence

between the basin of attraction and the maximum potential approach no longer coincide. In

this case using the basin of attraction approach would usually lead to the wrong prediction

concerning the low noise limit; this point is considered further in Section 7.

6. EXAMPLES OF EQUILIBRIUM SELECTION

In this section we consider equilibrium selection, utilising Theorem 1, for the 2-person

symmetric binary choice games; and then look at five particular examples; the ’’Stag-

Hunt’’game, the ’’Prisoners’ Dilemma’’, ’’Hawk-Dove’’ also known as ’’Chicken’’, ’’Pure

Co-ordination’’, and ’’Battle of the Sexes’’. Discussion of the nomenclature and raison d’e-

tre for these games may be found in a variety of sources, e.g. Binmore( ),* ),( ) and is not

considered here.

The general payoff matrix is given by (1), and in this case,

G(p) = ([a+ d]¡ [b+ c])p(1¡ p)(p¡
d¡ b

(a+ d)¡ (b+ c)
) (32)

In this section we also assume a constant variance over the unit interval,

¾2(p) = V (33)

The equilibrium distribution is given by,

f¤(p) =
C

V
exp'(p) (34)
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where '(p) = (2=V )

Z p

0

G(x)dx

= (p2=6V )f(a+ 2(d¡ b)¡ c)4p¡ 3((a+ d)¡ (b+ c))p2 ¡ 6(d¡ b)g (35)

There are a possible maximum of three stationary points of G(p) on the interval [0; 1].
Provided, 0 < d¡b

(a+d)¡(b+c) < 1; then Case 1 and Case2 exist:

Case 1

a > c; d > b;a ¸ d

Stable rest points of G(p) are to be found at p = 0; p = 1; and an unstable rest point at
p = d¡b

(a+d)¡(b+c) . To apply Theorem 1 we therefore need to compare '(0) and '(1).

'(0) = 0;'(1) = (1=6V )[(a+ 2(d¡ b)¡ c)4¡ 3((a+ d)¡ (b+ c))¡ 6(d¡ b)]

= (1=6V )((a+ b)¡ (c+ d)) (36)

Thus, if (a+b) > (c+d) then '(1) > '(0) and limV!0f
¤(p) = ±(p¡ 1), i.e. s1 is selected.

and if (a+ b) < (c+ d) then '(1) < '(0) and limV!0f
¤(p) = ±(p), i.e. s2 is selected.

Case 2

a < c; d < b

Unstable rest points of G(p) are to be found at p = 0; p = 1; and a stable rest point at
p = d¡b

(a+d)¡(b+c)
: Since there exists only one stable rest point we can apply Theorem 1 and

note that,

lim
V!0f

¤(p) = ±fp¡
d¡ b

(a+ d)¡ (b+ c)
g (37)

where ±f:g is the Dirac delta function; i.e.. the mixed strategy is selected.
If d¡b

(a+d)¡(b+c)
lies outside the interval [0; 1] then there two stationary points at p =

0 or 1: and we thus have,
Case 3.

'(0) = 0;'(1) = (1=6V )[(a+ 2(d¡ b)¡ c)4¡ 3((a+ d)¡ (b+ c))¡ 6(d¡ b)] (38)

= (1=6V )((a+ b)¡ (c+ d)) (39)

Thus, as in Case 1 above,

if (a+ b) > (c+ d) then '(1) > '(0) and limV!0f
¤(p) = ±(p¡ 1), i.e. s1 is selected.

If (a+ b) < (c+ d) then '(1) < '(0) and limV!0f
¤(p) = ±(p), i.e. s2 is selected.

Alternatively equilibrium selection may be expressed as follows. If,

sgn[(a+ d)¡ (b+ c)] = sgn[p¡
d¡ b

(a+ d)¡ (b+ c)
] (40)

then the stable rest point is at p = 1, i.e. s1 is chosen; otherwise the stable equilibrium is
at p = 0.
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Case 4

A knife-edge case exists when (a+ d) = (b+ c): If (a+ d) = (b+ c) and d 6= b then
stationary points of G(p) are to be found at p = 0; p = 1;a third stationary point does not
exist. If (d¡ b) > 0; then p = 0 is the stable equilibrium, whilst if (d¡b) < 0; then p = 1
is the stable equilibrium. If (a+ d) = (b+ c) and d = b; then G(p) = 0; and a continuum
of stationary points p exist for 0 · p · 1:

We can now note examples of the above solutions for a number of well-known games,

(i) The Stag-Hunt Game

The payoff matrix is given by,

s1 s2
s1 ®; ® ®; 0
s2 0; ® 1; 1

(41)

where 0 < ® < 1: Thus s1 is the ’’safe strategy; irrespective of what the other player does,
® is guaranteed. If s2 is played it might yield the superior payoff of 1, but only if the other
player also plays s2; it only yields 0 if the other player plays s1. Two strict Nash equilibria
exist [s1; s1] and [s2; s2]; which equilibrium should be chosen ?
Let us apply Th. 1; we have from (4),

G(p) = ([a+ d]¡ [b+ c])p(1¡ p)(p¡
d¡ b

(a+ d)¡ (b+ c)
) (42)

and thus with regard to (1), we have the identification,

a = b = ®; c = 0; and d = 1: Thus subst. in (42),

G(p) = [(®+1)¡®]p[1¡ p][p¡ (1¡®)=((®+1)¡®)] = p[1¡ p][p¡ (1¡®)] (43)

We shall assume that the variance is constant over the interval of p, i.e. ¾2(p) = V .
Note first that since ® < 1; then we have three rest points in the interval [0; 1]. Since

a > c; d > b; a ¸ d, under the present identification, Case 1 above applies,
The equilibrium distribution is given by,

f¤(p) =
C

¾2(p)
exp'(p) (44)

where ¾2(p) = V and,

'(p) = 2

Z p

p0

G(x)

¾2(x)
dx (45)

=
2p2

V
[(2¡ ®)

p

3
¡
p2

4
¡
(1¡ ®)

2
] (46)

Stable rest points ofG(p) are to be found at p = 0 and p = 1; and an unstable rest point
at p = (1¡ ®). To apply Th.1 we therefore need to compare, '(0) and '(1):

'(0) = 0; and '(1) = (1=6V )(2®¡ 1) (47)

Thus if ® < 1=2 then '(1) < 0; and if ® > 1=2 then '(1) > '(0) and so if,

® > 1=2 then limV!0f
¤(p) = ±(p¡ 1) (48)
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and if

® < 1=2 then limV!0f
¤(p) = ±(p) (49)

where ±(:) is the Dirac delta function.
Thus s1 is selected if ® > 1=2 and s2 if® < 1=2 according to this equilibrium selection

process; i.e. we have the same solution as the equilibrium selection process suggested

by Harsanyi and Selten(1988). The selection theories of Guth and Kalkofen(1989), and

Carlsson and Van Damme(1993a) are known to coincide with Harsanyi and Selten for this

case ( see also Carlsson and Van Damme:(1993b)).
It should however be stressed that this selection is not only dependent on the speci-

fication of the payoff matrix, but also on the choice of the stochastic dynamic variables.

In particular by changing the specification of ¾2(p) we are able to switch the equilibrium
choice at will between s1 and s2 as shown in Section 7. The replicator dynamic and the
potential function for V = 1, and ® = 0:6 are shown in Fig.20.

Fig.2. Replicator Dynamic and Potential for the Stag-Hunt game.

(ii) Hawk-Dove also known as Chicken

The payoff matrix for Hawk-Dove is given by,

s1 s2
s1 a; a b; c
s2 c; b 0; 0

(50)

where b < a < c. Since a < c; d < b and (b=(b+ c¡ a)) lies within the unit interval, then
Case (ii) above applies, and unstable rest points of G(p) are to be found at p = 0; p = 1;
and a stable rest point at p = b

b+c¡a :Since there exists only one stable rest point we can
apply Theorem 1 and note that,

lim
V!0f

¤(p) = ±(p¡
b

b+ c¡ a
) (51)

i.e.. the mixed strategy is selected.
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Fig.3. Replicator Dynamic and Potential for the Hawk-Dove Game.

The replicator dynamic and the potential function for V=1, and the payoff matrix

s1 s2
s1 3; 3 1; 4
s2 4; 1 0; 0

(52)

are shown in Fig.3.

(iii) The Prisoner’s Dilemma

The payoff matrix for the Prisoner’s Dilemma is given by,

s1 s2
s1 a; a b; c
s2 c; b d; d

(53)

where c > a > d > b; (a+ d) > (b + c), and (d¡ b) > (a+ d)¡ (b+ c). Only two rest
points exist in [0; 1], one of which is stable. Since

sgn[(a+ d)¡ (b+ c)] 6= sgn[p¡
d¡ b

(a+ d)¡ (b+ c)
] (54)

the only stable rest point occurs at p = 0; and since there is only one stable rest point we
can apply Th.1 and note that strategy s2 is selected.
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Fig.4. Replicator Dynamic and Potential for the Prisoner’s Dilemma.

The replicator dynamic and the potential function for V=1, and the payoff matrix

s1 s2
s1 5; 5 0; 7
s2 7; 0 3; 3

(55)

are shown in Fig.4.

Fig.5. Knife-edge Prisoner’s Dilemma

The replicator dynamic and the potential function for V=1, and the payoff matrix

s1 s2
s1 3; 3 0; 4
s2 4; 0 1; 1

(56)

for the knife-edge case are shown in Fig.5.

(iv) Pure Coordination
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The payoff matrix for the pure coordination game is given by,

s1 s2
s1 a; a 0; 0
s2 0; 0 d; d

(57)

where a R d: In this case the potential function is,

'(p) = (p2=6V )f(a+ 2d)4p¡ 3(a+ d)p2 ¡ 6dg (58)

and so '(0) = 0 and '(1) = (1=6V )(a¡ d); and hence if a > d; then s1 is selected, and
if a < d; then s

2
is selected.

Fig.6. Replicator Dynamic and Potential for the Pure Co-ordination Game

The replicator dynamic and the potential function for V=1, and the payoff matrix

s1 s2
s1 4; 4 0; 0
s2 0; 0 2; 2

(59)

are shown in Fig.6.

(v) Battle of the Sexes

The payoff matrix for the battle of the sexes game is given by,

s1 s2
s1 0; 0 b; c
s2 c; b 0; 0

(60)

where b Q c:
Case (ii) above applies, and unstable rest points ofG(p) are to be found at p = 0; p = 1;

and a stable rest point at p = b
b+c :Since there exists only one stable rest point we can apply

Theorem 1 and note that,
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lim
V!0f

¤(p) = ±(p¡
b

b+ c
) (61)

i.e . the mixed strategy is selected.

Fig.7 Replicator Dynamic and Potential for ’’the Battle of the Sexes’’.

The replicator dynamic and the potential function for V=1, and the payoff matrix

s1 s2
s1 0; 0 2; 1
s2 1; 2 0; 0

(62)

are shown in Fig.7.

7. NASH EQUILIBRIA AND EQUILIBRIAOF STOCHASTIC REPLICATORDY-

NAMICS

In the previous section we may note that the stationary points of the deterministic repli-

cator dynamics are the Nash equilibria of the associated game. In the case where we have

assumed a constant variance over the unit interval the set of maxima and minima of the po-

tential function correspond to the stationary points of the deterministic replicator dynamics.

By taking the ’’low noise limit’’ of the stochastic replicator system, a point or points of the

deterministic replicator, and thus a Nash equilibrium or equilibria are selected. We now turn

to the case where the stochastic component is not a uniform function over the unit interval.

A number of initial questions may be posed?

(i) Are the stationary points of the deterministic evolutionary process identical to the

maxima and minima of the potential function ?

(ii) What is now the relationship between the points selected by the ’’low noise’’ limit

(LNL) and the stationary points of the deterministic evolutionary process ?

(iii) Does the LNL still select one or more Nash equilibria ?

(iii) Does the nature of the stochastic term affect the Nash equilibrium that is chosen by

the LNL ?
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First we establish that in the case of a non-constant variance, the equivalence between

rest points of the deterministic replicator system, and maxima and minima of the equilib-

rium distribution no longer holds. We assume that ¾2(p) > 0.over the unit interval for
p.

We then have, differentiating equation (44),

@f¤(p)

@p
= f¤(p)['0(p)¡

1

¾2(p)

@¾2(p)

@p
] (63)

and,

@2f¤(p)

@p2
= f¤(p)['0(p)¡

1

¾2(p)

@¾2(p)

@p
]2 + f¤(p)['00(p)¡

@

@p
(
1

¾2(p)

@¾2(p)

@p
)] (64)

whereas from (17),

'0(p) = 2G(p)=¾2(p) (65)

'00(p) = [2=¾2(p)][
@G(p)

@p
¡
G(p)

¾2(p)

@¾2(p)

@p
] (66)

Stationary points of f¤(p) thus occur either when f¤(p) = 0 or when,

'0(p)¡
1

¾2(p)

@¾2(p)

@p
= 0 (67)

i.e. subst. (65) into (67), when,

G(p) = (1=2)
@¾2(p)

@p
(68)

The second order condition for a maximum, f¤(p) > 0; requires, from (64) and (66),that,

[2=¾2(p)][
@G(p)

@p
¡
G(p)

¾2(p)

@¾2(p)

@p
]¡

@

@p
[
1

¾2(p)

@¾2(p)

@p
] < 0 (69)

Thus the maxima of f¤(p) on the interval [0; 1] cannot be determined solely in reference to
the deterministic dynamics as reflected inG(p) but also on¾2(p). Indeed, by an appropriate
choice of ¾2(p) the maxima of f¤(p) can be shifted, a property which will be considered
in Sections 6 below.

We now however have to consider the LNL. Again we assume that ¾2(p) can be written
in the form,

¾2(p) = ¯V 2(p) (70)

where letting ¯ ! 0 we take the variance uniformly to zero over the unit interval. From
equation (68) we see the reappearance of the coincidence of the roots of G(p), the determin-

istic replicator dynamic with the maxima and minima of the potential function , provided

¯ @V
2(p)
@p

! 0 as ¯ ! 0:

We have thus established the equivalence of the Nash equilibria with the equilibria of

the stochastic replicator dynamics for a positive population dependent variance. We have

however not established that the equilibrium chosen is independent of this variance at the

18



LNL, the problem to which we now turn.

8. SWITCHING EQUILIBRIA

In this section we show that the equilibrium selected will be dependent on the functional

form of the ¾2(p) that is chosen:We give an example of such equilibrium switching for the
Stag Hunt game.

We shall take as the definition of the variance the constant elasticity form,

¾2(p) = V0e
gp (71)

where g; V0 are arbitrary constants, V0 > 0:
From (16) the equilibrium distribution is defined by,

f¤(p) =
C

¾2(p)
e'(p;g) = (C=V0)e

('(p;g)¡gV0p)=V0 (72)

where for the stag hunt game we define,

'(p; g) = 2((a+ d)¡ (b+ c))

Z
p(1¡ p)(p¡ p¤)e¡gpdp (73)

Interior rest points for a given V0 will occur if there exist p such that '
0(p; g) = gV0.

Our particular interest however centres on the values of the potential function after the low

noise limit has been taken, i.e. as V0 ! 0: In this case the relevant values of the potential
function are determined by those values of p for which '0(p; g) = 0:
In the case where g = 0 then,

'(0; 0) = 0 and '(1; 0) = (1=6V )(2®¡ 1) (74)

i.e. s1 is selected if ® > 1=2 and s2 if ® < 1=2; i.e. the risk dominant equilibrium is
always selected by the distributional dominance theorem

The case of equilibrium switching can be easily demonstrated by comparing values of

the potential '(p; g) for values of p = 0 and 1; for different values of g. Let us assume
that ® > 1=2; so that s1 is selected when g = 0; i.e. '(0; 0) < '(1; 0). For positive g
we have to compare the values of '(1; g) and '(0; g). Since '(0; g) remains constant as
g varies but '(1; g) converges asymptotically to zero as g increases then there must exists
some positive g such that '(1; g) < '(0; g), i.e. for which the equilibrium s2 is selected.
How large must g in order for the switch to take effect ? This value of g depends upon the
values of the payoff matrix. For example, letting ® = 0:6, a switch from s1 to s2 can be
accomplished by letting g ¸ 2:06:
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When g = 0, the potential is greatest at p = 1, i.e. s1 is selected as V ! 0:; the
normalized distribution function for this case is as illustrated in Fig.8.

Fig.9. Normalized distribution function for the Stag-Hunt game with ® = 0:6 and
g = 2:4:

For g = 2:4; the potential is greatest at p = 0, i.e. the strategy s2 is selected as
V ! 0:the normalized distribution function for this case is as illustrated in Fig.9.
The intuition is clear, the larger the variance in the largest basin of attraction compared to

the smaller, the ’’easier’’ it is to get out of that basin, and hence the possibility that the largest

basin is not the correct indicator for the equilibrium selection process. The importance of

noise in the equilibrium selection process has been studied in the context of the Kandori,

Mailath, Rob (1993) paper by Bergin and Lipman(1994) and Blume(1994)..

9. NON-ERGODICITY ANDMUTATIONS

In all the models considered thus far we have assumed that the variance ¾2(p) does
not vanish on the interval [0; 1]. However, a number of existing models in the literature,
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e.g. Fudenberg and Harris(1993), Cabrales(1993) do have the property that this variance

vanishes at the ends of the interval.

In this section we shall assume that the variance is represented by,

V p(1¡ p) (75)

where V is some positive constant. A number of possibilities exist for a solution in this
case:

(i) In the first case we restrict the stochastic replicator dynamics to the interval [0 +
"; 1 ¡ "], where " is some arbitrary constant 0 · " · 1=2: Given appropriate boundary
conditions, e.g. reflecting boundaries, then an equilibrium distribution of the following

type is generated,

f¤(p) =
C

V p(1¡ p)
e'(p) (76)

where '(p) is the appropriate potential function determined with reference to the specifi-
cation ofG(p) and ¾2(p). The theory and equilibrium selection processes of the preceding
sections therefore go through without alteration. Of course the drawback to such a solution

is the motivation for the arbitrary imposition of the boundaries a small distance " away from
the end points of [0; 1]. For a discussion of such " boundaries see Foster and Young(1990).
(ii) In the second case we have the non-ergodic solution. The distribution does converge

to some limiting form, but this limit is dependent on initial conditions, i.e. the initial choice

of p. In this case a solution of the form (76) does not exist. The non-ergodic solution has
been discussed in this context by Fudenberg and Harris(1992). An intuitive explanation of

the results can be made in terms of the deterministic dynamics, G(p), allied with the term
V p(1 ¡ p); assume that the deterministic dynamics are such, that dependent on the initial
condition p, the world is either pushed towards 0 or 1; at it gets closer to the end points
of the interval the stochastic term V p(1¡ p) becomes less and less significant, and thus a
smaller and smaller chance of escaping from the deterministic pull. Applied to some initial

distribution of worlds therefore, we have a build up of points at the ends of the unit interval.

(iii) In the third case we have the ergodic solution. The existence of a variance of type

(75) need not preclude the generation of an ergodic distribution. Such a case exists if the

deterministic dynamics are inward directed at the boundaries, i.e. towards some interior

stable rest point. The distribution that results is given by (76), with the additional properties

that,

lim
p!0f

¤(p) =limp!1 f
¤(p) = 0 (77)

However, if we propose to use these models for equilibrium selection, then (ii) and (iii)

cause some problems. If (ii) applies then selection is determined by initial conditions, and

stochastic replicator dynamics adds little to the deterministic solution. If (iii) applies then

we only have a mixed strategy solution, and again the stochastic component appears to add

little to the deterministic solution. The solution suggested in the literature is to modify the

basic replicator dynamics by the addition of mutation rates between strategies. The addi-

tion of such mutations allows a change in the deterministic component, and an appropriate

choice of functional form, allows the generation of an ergodic solution. The mixed strat-
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egy equilibrium is dependent on the rate of mutation between strategies, and allowing these

mutations to tend to zero along with the stochastic term ¾2(p) is an appropriate equilibrium
selection process. Of course the order and relative magnitude of the limiting processes may

be crucial to the selection process, and it is to these problems we now turn.

To the deterministic replicator term (4) we shall add two additional terms to reflect

mutation rates as between the two strategies. We shall assume thatG(p) can be written as,

G(p) = ([a+ d]¡ [b+ c])p(1¡ p)(p¡
d¡ b

(a+ d)¡ (b+ c)
) + ¸(m1(p) +m2(p)) (78)

where ¸ > 0 is some constant, and the mutation rates are functions which modify G(p)
such that,

lim
p!0G(p) > 0 and

lim
p!1G(p) < 0 (79)

We shall assume that,

lim
p!0¾

2(p) = 0 and limp!1¾
2(p) = 0 (80)

and that the Gihman Skorohod (1972) conditions for a stable equilibrium distribution are

satisfied. The above theory for the equilibrium selection process goes through unaltered.

In this case there may be more than one interior stable rest point; so for given ¾2(p); '(pi)
at each of these rest points is calculated, and letting ¾2(p) tend uniformly to zero we end
up with a point mass centred on that pi at which '(pi) attains a maximum. However this
particular pi will be dependent on themutation functions, and ¸. Of particular interest is the
additional selection process of letting ¸ tend to zero. We also have to consider the problem
of the order in which the limits of ¾2(p) and ¸ are taken.
As an example, consider the case which satisfies the conditions (79),

G(p) = Ap(1¡ p)(p¡ p¤) + ¸(1¡ p)¡ ¸p (81)

where A = (a+ d)¡ (b+ c) and p¤ = (d¡ b)=A, and ¸ > 0:We take,

¾2(p) = V p(1¡ p); V > 0 (82)

the resulting potential function which results is given by,

'(p) = 2

Z
f[(Ap(1¡ p)(p¡ p¤) + ¸(1¡ p)¡ ¸p]=V p(1¡ p)gdp

= (2=V )(Ap(
p

2
¡ p¤) + ¸ log(p) + ¸ log(1¡ p)) (83)

and so the limiting distribution is,

f¤(p) = (C=V p(1¡ p)) expf(2=V )(Ap(
p

2
¡ p¤) + ¸ log(p) + ¸ log(1¡ p))g

= (C=V ) expf(2=V )(Ap(
p

2
¡ p¤) + (¸¡

V

2
) log(p(1¡ p))g (84)

where C is the normalization constant.
The Pontryagin theorem can now be applied by taking the limits of V and¸ in the fol-

lowing strict order. Holding the mutation rates fixed, take the variance uniformly to zero;
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the equilibria are then selected by the maxima of the function,

Ap(
p

2
¡ p¤) + ¸ log(p(1¡ p)) (85)

Then taking the mutation parameter ¸ to zero, we note the consequent change in the
value of p that is selected. If the order of the limits were reversed, then taking ¸ to zero
for fixed V; would result in the violation of the Gihman Skorohod (1972) conditions for a
stable equilibrium distribution to exist.

As an example of the methodology, consider the case of the Stag-Hunt game, with the

payoff matrix„

s1 s2
s1 0:6; 0:6 0:6; 0
s2 0; 0:6 1; 1

(86)

Taking the Variance to zero, the function,

Ap(
p

2
¡ p¤) + ¸ log(p(1¡ p)) (87)

determines the value of p that is selected, Fig.1 provides the values for this function for
¸ = 0:005:Aswe take themutation parameter¸ closer to zero so we see that the proportion
of the population playing strategy s1 increases to unity.

Fig.10. Mutation Potential Function for Stag-Hunt Game ® = 0:6

Changing the payoff ® = 0:4; we note the change in the potential as in Fig.11.
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Fig.11. Mutation potential for alpha=0.4.

10. BEST RESPONSE AND REPLICATOR DYNAMICS

As was noted in Section 1, the use of the potential function and the Pontryagin low

noise limit is not limited to the use of the Replicator Dynamic. However the use of a

particular dynamic may be expected to strongly influence the potential function, and hence

the equilibrium that is selected in the low noise limit.

We propose to compare the outcomes generated by the Replicator Dynamic and the

Best Reply Dynamic, and use the Stag-Hunt game to exemplify the equilibrium selection

as between the two dynamics.

The replicator equation is given by,

1

pi

dpi
dt

= (Ap(t))i ¡ p(t)
0Ap(t) (88)

where A = [aij ] and p(t)
0 = [p1(t); p2(t)]. Letting p = p1 and p2 = 1¡ p1, then (2) may

be written as,

dp

dt
= G(p; A) (89)

where G(p; A) is defined by eq.(3).
The best response dynamic is defined by,

1

pi

dpi
dt

= (Ap(t))i ¡ (Ap(t))j (90)

which in terms of the proportion p playing s1 may be written as,

dp

dt
= H(p;A) =

G(p; A)

(1¡ p)
(91)

where G(p; A) is as defined by eq.(3).
The potentual function for the replicator dynamic is, as we have seen, given by,
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'rep(p) = 2

Z p

po

G(x)

¾2(p)
dx (92)

whereas the potential function for the best response dynamic is,

'br(p) = 2

Z p

po

G(x)

(¾2(p))(1¡ p)
dx (93)

Assuming the Gihman-Sokhorod conditions are satisfied, the equilibrium distribution

is then given by eq.(16), with appropriate use of either (92) or ,(93).

A comparison of the potentials might suggest that the equilibrium selection for the

Replicator and the Best response dynamic might not select the same equilibrium, and to

this question we now turn using the Stag-Hunt game as an example. The replicator dy-

namic for the replicator stag hunt game is given by eq.(43) ,i.e.,

G(p) = p[1¡ p][p¡ (1¡ ®)] (94)

and hence the potential is given by eq.( ) as,

'rep(p) =
2p2

V
[(2¡ ®)

p

3
¡
p2

4
¡
(1¡ ®)

2
(95)

The best response dynamic for the stag-hunt game is given by,

H(p) =
G(p)

(1¡ p)
= p[p¡ (1¡ ®)] (96)

and hence the potential is given by,

'br(p) =
2

V
[
p3

3
¡
p2

2
(1¡ ®)] (97)

For the case ® = 0:4 Fig.12 illustrates the two potentials,

Fig.12. Stag Hunt Potentials, red BR;Black, Rep.alpha =0.4

As can be seen, equilibrium selection as between replicator and best response is not the
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same, replicator selects s2whilst best response selects s1: The inadequacy of the basin of
attraction approach as a method of equilibrium selection can be clearly seen by noting the

replicator G(p) and best response function H(p) in Fig.13.

Fig.13. Replicator and Best Response G(p),H(p) functions

Both Replicator and Best Response have identical size basins of attraction for s1 and s2 ,

and thus since the basin of attraction for s2 is greater than s1 would predict that s2 is selected.

The potential approach predicts s2 for the Replicator dynamic but s1. We should note that

in some instances the basin of attraction approach does not always lead to contradicitions

as between BR and Replicator, thus for the case ® = 0:6:

11. TRAVERSAL TIMES

A well developed literature on the expected transition times between states exists for

the diffusion system considered in the previous sections. Our main interest will centre on

the expected transition time between multiple Nash equilibria (when such exist).We shall

take as an example of multiple equilibria the Stag-Hunt game, and calculate the expected

transition times between the Risk-Dominant and Payoff Dominant equilibria.

For the system (6), (10), the expected transition time from the equilibrium where the

proportion playing strategy s1 is zero to the equilibriumwhere all play strategy s1, i.e. from

p = 0 to p = 1, is given by,

T (0! 1) =

Z p=1

p=0

½Z z=p

z=0

2

V
exp(¡'(z))dz

¾
exp('(p))dp (98)

whilst the expected transition time from the equilibrium p = 1 to p = 0 is given by,

T (1! 0) =

Z p=1

p=0

½Z z=1

z=p

2

V
exp(¡'(z))dz

¾
exp('(p))dp (99)

The above formulae usually require numerical integration for solution. Approximations to

the above equations which require less onerous computation are given by,
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T (0! 1) =

½Z p=p¤

p=0

2

V
exp(¡'(p))dp

¾½Z p=1

p=0

exp('(p))dp

¾
(100)

T (1! 0) =

½Z p=1

p=p¤

2

V
exp(¡'(p))dp

¾½Z p=1

p=0

exp('(p))dp

¾
(101)

where p¤ is the value of the unstable root ofG(p) = 0, i.e. the boundary between the basins
of attraction for the two equilibria. Further details of these approximations are given in

Appendix 3.

Eq. (100) and (101) have a clear interpretation in terms of the equilibrium probability

distribution (34). Subst. (34) in (100), (101), we have,

T (0! 1) =
2

V

½Z p=p¤

p=0

f(p; V )dp

¾½Z p=1

p=0

1

f(p; V )
dp

¾
(102)

T (1! 0) =
2

V

½Z p=1

p=p¤

f(p; V )dp

¾½Z p=1

p=0

1

f(p; V )
dp

¾
(103)

An example of the transition times between multiple equilibria, we note the case for the

Stag-Hunt game with parameter ® = 0:6 in Table 1.

V = 1 V = 0:1 V = 0:01 V = 0:001
T (0! 1)(exact) 0.9869177616 8.894299545 85.42426051 0.2850x109

T (0! 1)(approx:) 0.7929783316 7.416742 83.9263 0.2850x109

T (1! 0)(exact) 1.013590232 11.619484 1677.067376 0.6749x1023

T (1! 0)(approx:) 1.207529680 13.09701 1678.565 0.6749x1023

Table 1

Note the asymmetry in the transition times between the basins of attraction, fig 14 shows

the relevant deterministic replicator potential function, and Fig.15 the potential function for

the case of V = 0:01.
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Figure 14. The deterministic replicator function for ® = 0:6

Figure 15. The potential function for the Stag-Hunt game with ® = 0:6

In addition to calculating the mean first passage time between the Nash equilibria, we

may also derive the mean first passage time between any two proportions ,p0; p1of the

population playing strategy 1.

In this case,

T (p0 ! p1; p1 > p0) =

Z p=p1

p=p0

f

Z z=p

z=0

2

V
exp(¡'(z))dzgexp('(p))dp (104)

and in Fig 16. we show the transition time from p = 0 to p = p¤, for values of p¤ from 0
to 1. V = 0:001 and ® = 0:8.

Figure 16.The transition time from p = 0 to p¤, for values of p¤ from 0 to 1. The case of
the Stag-Hunt game with ® = 0:8 and V = 0:001:
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Appendix 1. Derivation of the Equation Governing the Evolution of the Probability

Distribution Function f(p; t).

Let f(p; t) denote the probability distribution function resulting from the stochastic
dynamics implied by (4). In order to derive the equation governing the evolution of f(p; t)
we proceed as follows:

Let,

H(p; t) =

Z p

0

f(p; t)dp (1.1)

i.e. the probability mass at or below p at time t; i.e. the normal definition of the cumulative
distribution function of p. We assume that within a given interval of time ±t, changes in
f(p; t) are determined by the transition kernel, ¡(p; p¤; ±t; t); defining the proportion of
probability mass at p¤ at time t, which at the end of period ±t ends up at or below p.
The equation governing the evolution ofH(p; t) is then given by,

H(p; t+ ±t) =

Z +1

¡1

h(p¤; t)¡(p; p¤; ±t; t)dp¤ =

Z 1

0

h(p¤; t)¡(p; p¤; ±t; t)dp¤ (1.2)

Note that values of p are restricted to the unit interval; this would ordinarily impose restric-
tions on the transition kernel ¡(p; p¤; ±t; t); e.g. ¡(p; p¤; ±t; t) = 0; for p outside the unit
interval. However, in keeping with the FPE literature, restrictions are imposed not on the

¡(:) directly, but in terms of the boundary conditions defining the solution. Note further,

that p T p¤, i.e. that the transition kernel may induce zero, positive or negative jumps.
Equation (1.2) is the well known Chapman-Kolmogorov equation; the Fokker-Planck

or diffusion equation may be derived by taking a Taylor series expansion of (1.2) around

(p; t).
Expanding H(p; t) in a Taylor series about the point (p; t), then differentiating with

respect to p, we arrive at,

@f(p; t)

@t
±t = ¡f(p; t) +

Z
f(p¤; t)°(p; p¤; ±t; t)dp¤ + o(±t) (1.3)

where °(p; p¤; ±t; t) = @¡(p; p¤; ±t; t)=@p; and o(±t) represents a series of terms in ±t such
thatlim±t!0

o(±t)=±t = 0:
Equivalently, (1.3)may bewritten in terms of the size of the jump in p; letting q = p¡p¤,

we have,

@f(p; t)

@t
±t = ¡f(p; t) +

Z
f(p¡ q; t)°¤(p; p¡ q; ±t; t)dq + o(±t) (1.4)

Expanding h(p ¡ q; t) and °¤(p; p ¡ q; ±t; t) in Taylor series about the points (p; t) and
(q; p) respectively, and letting,

¹j =

Z +1

¡1

qj°¤(q; p; ±t; t)dq; j = 1; 2; : : : : (1.5)

i.e. the j th moment of the jump function, we may show,
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Z +1

¡1

f(p¡ q; t)°¤(q; p¡ q; ±t; t)dq = f(p; t) +
1X

j=1

[
(¡1)j

j!

@j

@pj
(¹jf(p; t))] (1.6)

Hence substituting (1.6) in (1.4) we have,

@f(p; t)

@t
±t =

1X

j=1

[
(¡1)j

j!

@j

@pj
(¹jf(p; t))] + o(±t) (1.7)

The particular case of (1.7) we consider is where we assume °¤(q; p; ±t; t) to be a normal
distribution in the size of the jump, q, with mean and second moment defined respectively
as,

¹1 = u(p; t)±t ; ¹2 = ¾2(p; t)±t (1.8,1.9)

Since °¤(q; p; ±t; t) is assumed normal, all odd moments higher than the first are zero;
whilst for the even moments we have,

¹2j =
(2j)!

j!2j
(¹2)j ; (1.10)

j = 1; 2; ::::::
Hence all moments of °¤(q; p; ±t; t) higher than the second are either identically zero,

or of order o(±t). Dividing through both sides of (1.7) by ±t, and letting ±t! 0; we arrive
at the Fokker-Planck equation (6) with appropriate definitions for the mean and variance.
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APPENDIX 2

Theorem 1. Distributional Dominance .

If f¤(p) as defined by (16) exists and if '(p); as defined by (17) attains a unique max-
imum at p¤ in the closed interval [0; 1] then,

lim
¾2(p)!0

f¤(p) = ±(p ¡ p¤) (2.1)

where ± is the Dirac delta function, i.e. ±(p ¡ p¤) = 1 if p = p¤; and ±(p ¡ p¤) = 0 if
p 6= p¤.

Proof

We have in equilibrium,

G(p)f(p; t) =
1

2

@

@p
(¾2(p)f(p; t)) (2.2)

and thus the equilibrium distribution,

f¤(p) =
C

¾2(p)
e'(p) (2.3)

where C is the normalization constant, and,

'(p) = 2

Z p

0

G(x)

¾2(x)
dx (2.4)

What happens to f¤(p) as ¾2(p) decreases uniformly ? Let ¾2(p) = ¯V 2(p) where ¯ is a
parameter which we shall allow to tend to zero. Then,

f¤(p) =
C

¯V 2(p)
eÃ(p)=¯ (2.5)

where,

Ã(p) = 2

Z p

0

G(x)

V 2(x)
dx (2.6)

We also have the normalization condition,
Z +1

¡1

f¤(x)dx = 1 (2.7)

Thus subst. (2.5) in (2.7) we have,

¯

C
=

Z +1

¡1

1

V 2(x)
eÃ(x)=¯dx (2.8)

and so,

f¤(p) = eÃ(p)=¯=V 2(p)

Z +1

¡1

1

V 2(x)
eÃ(x)=¯dx (2.9)

Let Ã(p) attain a unique maximum at p¤; and let Ã(p¤) = J ; then we can define Ã¤(p) =
Ã(p)¡ J , and note that,

f¤(p) = eÃ(p)=¯=V 2(p)

Z +1

¡1

1

V 2(x)
eÃ(x)=¯dx
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= e(Ã(p)¡J)=¯=V 2(p)

Z +1

¡1

1

V 2(x)
e(Ã(x)¡J)=¯dx

= eÃ
¤(p)=¯=V 2(p)

Z +1

¡1

1

V 2(x)
e(Ã

¤(x))=¯dx (2.10)

and we thus ensure that at p¤; Ã¤(p¤) = 0: In order to continue we require Lemma 1 ;

Lemma 1

lim
¯!0

Z +1

¡1

1

V 2(x)
e(Ã

¤(x))=¯dx = B(¯) (2.11)

where ¯1=nA(k00=M2 · B(¯) · ¯1=nA(k0)=M2;M = Min V 2(p) and A(k00); A(k0) are
constants independent of ¯.

Proof
Z +1

¡1

1

V 2(x)
eÃ

¤(x)=¯dx =

Z p¤+h

p¤¡h

1

V 2(x)
eÃ

¤(x)=¯dx+

Z p¤¡h

¡1

1

V 2(x)
eÃ

¤(x)=¯dx

+

Z +1

p¤+h

1

V 2(x)
eÃ

¤(x)=¯dx (2.12)

where h is some small positive constant. The maximum of Ã¤(p) occurs at p¤ when
Ã¤(p¤) = 0; thus the first integral on the R.H.S. of (2.12) contains a term which is in-
dependent of ¯. Outside the interval [p¤ + h; p¤ ¡ h] we have Ã¤(p) < 0; and thus each
term in the second and third integrals on the R.H.S. of (2.12) tend to zero as ¯ tends to zero;
thus,

lim
¯!0

Z +1

¡1

1

V 2(x)
eÃ

¤(x)=¯dx =

Z p¤+h

p¤¡h

1

V 2(x)
eÃ

¤(x)=¯dx (2.13)

Now consider the function Ã¤(p) in the interval [p¤ ¡ h; p¤ + h]; the function is such that
we can choose positive integers k0; k’’, and an even integer n, such that,

¡ k0(p¡ p¤)n ¸ Ã(p) ¸ ¡k00(p¡ p¤)n (2.14)

where k00 > k0 > 0: Thus,

1

V 2(p)
e¡k

0(p¡p¤)n=¯ ¸
1

V 2(p)
eÃ

¤(p)=¯ ¸
1

V 2(p)
e¡k

00(p¡p¤)n=¯ (2.15)

Now,
Z +1

¡1

1

V 2(x)
e¡k

0(p¡p¤)n=¯dx =

Z p¤+h

p¤¡h

1

V 2(x)
e¡k

0(p¡p¤)n=¯dx

+

Z p¤¡h

¡1

1

V 2(x)
e¡k

0(p¡p¤)n=¯dx+

Z +1

p¤+h

1

V 2(x)
e¡k

0(p¡p¤)n=¯dx (2.16)

The last two integrals on the R.H.S. of (2.16) tend to zero as ¯ tends to zero, and therefore,

lim
¯!0

Z +1

¡1

1

V 2(x)
e¡k

0(p¡p¤)n=¯dx =

Z p¤+h

p¤¡h

1

V 2(x)
e¡k

0(p¡p¤)n=¯dx (2.17)

32



LetM2 = Min V 2(p) > 0; then,

Z +1

¡1

1

V 2(x)
e¡k

0(p¡p¤)n=¯dx ·
1

M2

Z +1

¡1

e¡k
0(p¡p¤)n=¯dx (2.18)

Letting z = (x¡ p¤)=¯1=n then,

Z +1

¡1

e¡k
0(x¡p¤)n=¯dx = ¯1=n

Z +1

¡1

e¡k
0zndz = ¯1=nA(k0) (2.19)

and so,
Z p¤+h

p¤¡h

1

V 2(x)
e¡k

0(p¡p¤)n=¯dx =

Z +1

¡1

1

V 2(x)
e¡k

0(p¡p¤)n=¯dx

· ¯1=nA(k0)=M2 (2.20)

We may similarly show that,

Z p¤+h

p¤¡h

1

V 2(x)
e¡k

0(p¡p¤)n=¯dx ¸ ¯1=nA(k00)=M2 (2.21)

and so,

lim
¯!0

Z +1

¡1

1

V 2(x)
eÃ

¤(x)=¯dx = B(¯) (2.22)

where ¯1=nA(k00)=M2 · B(¯) · ¯1=nA(k0)=M2;M =Min V 2(p) andA(k00); A(k0) are
constants independent of ¯. Thus,

f¤(p) = eÃ
¤(p)=¯=V 2(p)B(¯) (2.23)

will tend to zero as¯ ! 0 for every value of p except p = p¤, when it will become infinitely
large. From the normalization condition

R
f¤(p) = 1; therefore we characterise,

lim
¾2(p)!0f

¤(p) = ±(p ¡ p¤) (2.24)

Appendix 3. Traversal Time

Let us define T (p) as the expectation of the exiting time, the time needed for a world
represented by some initial proportion p in the interval [a; b], to leave the interval through
one of its endpoints. It is well known that the equation governing T (p) is,

¡
1

2
b(p)

@2T (p)

@p2
+G(p)

@T (p)

@p
+ 1 = 0 (3.1)

In the case where p must lie in the unit interval, the boundary conditions for the case of
movement from a to b where 0 · a < b · 1, are

@T (p)

@p
= 0 for p = 0 and T (p) = 0 at b (3.2)

and the boundary conditions for the case of movement from b to a are,
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@T (p)

@p
= 0 for p = 1 and T (p) = 0 at a (3.3)

For the system (??), (105), the expected transition time from the equilibrium p = a to
p = b, is given by,

T (a! b; b > a) =

Z p=b

p=a

f

Z z=p

z=0

2

V
exp(¡'(z))dzgexp('(p))dp (3.4)

whilst the expected transition time from the equilibrium p = b to p = a is given by,

T (b! a; b > a) =

Z p=b

p=a

f

Z z=1

z=p

2

V
exp(¡'(z))dzgexp('(p))dp (3.5)

In the Stag-Hunt game we are interested in the transition times between the risk domi-

nant and payoff dominant equilibria. The traversal time from 0 to 1, is given by,

T (0; 1) =

Z y=1

y=0

f

Z z=y

z=0

2

V
exp(¡'(z))dzgexp('(y))dy (3.6)

whilst the traversal time from 1 to 0, is given by,

T (1; 0) =

Z y=1

y=0

f

Z z=1

z=y

2

V
exp(¡'(z))dzgexp('(y))dy (3.7)

The calculation time for such integrals may be quite lengthy, we therefore propose to

facilitate the calculation by using a well known approximation for small V .
For constant V , we note that,

'(:) = (2=V )(

Z p

0

G(x)dx = (2=V )U(p) (3.8)

where,

U(p) =

Z p

0

G(x)dx (3.9)

Hence,

T (0; 1) =

Z y=1

y=0

f

Z z=1

z=0

2

V
exp(¡2U(z)=V )dzgexp(2U(y)=V )dy (3.10)

Now consider Fig.1, in which the central stationary point is indicated at k2. If this cen-
tral minimum of ¡2U(p) is large and V is small, then exp(¡2U(z)=V ) is sharply peaked
at p = k2, while exp(2U(z)=V ) is very small near x = k2. Therefore,

Z z=y

z=0

2

V
exp(¡2U(z)=V )dz (3.11)

is a very slowly varying function of y near y = k2. This means that the value of the integral
will be approximately constant for those values of y which yield a value of exp(U(y)=V )
which is significantly different from zero. Hence in the inner integral we can set y = k2
and remove the resulting constant factor from inside the integral with respect to y. Thus
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we can approximate (105) by,

T (0; 1) = fC

Z z=k2

z=0

2

V
exp(¡2U(z)=V )dzg(1=C)

Z y=1

y=0

exp(2U(y)=V )dy (3.12)

where C is the normalizing constant of the distribution. From the definition of the equilib-
rium distribution we can see that the first term in the integral (105),

C

Z z=k2

z=0

2

V
exp(¡2U(z)=V )dz (3.13)

therefore defines the long run probability distribution to the left of the stationary k2.
Equivalently we can define the approximation to (105), as,

T (1; 0) = fC

Z z=0

z=k2

2

V
exp(¡2U(z)=V )dzg(1=C)

Z y=1

y=0

exp(2U(y)=V )dy (3.14)

Since the latter integral is a common factor in both (105) and (105 ), we can see that the

length of the traversal time varies directly with the mass of the probability distribution to

the right and left of the point k2. Intuitively therefore, the greater the probability mass, the
greater the deterministic forces implied with respect to that basin of attraction, and hence

the greater the time taken to traverse from the attractor in that basin. Of course as the

variance approaches zero, so the expected traversal time becomes infinite.
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