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Abstract

We present a class of games with a pure strategy being strictly dominated by an-
other pure strategy such that the former survives along solutions of the Brown–von
Neumann–Nash dynamics from an open set of initial conditions.
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1 Introduction

Let π : S = S1×· · ·×SN → RN be the payoff function of a finite strategic game,
extended N–linearly to the polyhedron ¤(S) = ∆(S1)×· · ·×∆(SN) of mixed
strategy profiles x = (xi)

N
i=1 = (xi, x−i). Then the Brown–von Neumann–Nash

dynamics is given by the system of differential equations on ¤(S)

ẋis = ki(s, x)− xisk̄i(x), i = 1, . . . , N, s ∈ Si (BNN)

with ki(s, x) = max[0, πi(s, x−i) − πi(x)] and k̄i(x) =
∑

σ∈Si
ki(σ, x). ki(s, x)

is the excess payoff for strategy s of player i over his average payoff. For two
person symmetric zero–sum games this differential equation was introduced by
Brown and von Neumann (1950) as another numeric device (besides fictitious
play) to compute optimal strategies. For general N person games it is the
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continuous time analog of the map that Nash (1951) used in his existence
proof of equilibria.

Nash’s map has been fundamental for the development of economic theory by
inspiring a whole literature on existence of general equilibrium, starting from
Arrow and Debreu (1954). A generalization of (BNN) has already been used
by Nikaido (1959) as a price adjustment process. In game theory, however,
(BNN) had to wait forty years for its comeback finally paved by Maynard
Smith’s (1982) creation of evolutionary game theory. It entered stage again
as ‘dynamics of rational deliberation’ in Skyrms (1990), as ‘canonical dynam-
ics’ in Swinkels (1993), and as the archetype of an ‘innovative dynamics’ in
Weibull (1994b). Berger (1998) studied the stability of Nash equilibria un-
der this dynamics, and Hofbauer (2000) showed global stability of completely
mixed ESS. Sandholm (2001) uses it as prime example in his study of poten-
tial games, and Sandholm (2004) shows a fascinating relation of (BNN) to the
regret-based decision rules of Hart and Mas-Colell (2001).

One can give a rough evolutionary interpretation of (BNN): Suppose there are
N player populations (each of constant size) in which there is steady influx and
outflux. New players joining the game use only strategies that are better than
average, and better strategies are more likely to be adopted. More precisely,
strategy s ∈ Si is adopted with probability proportional to the excess payoff
ki(s, ·). On the other hand, randomly chosen players leave the game.

It is instructive to compare the BNN dynamics with two other, well-known
dynamics. The replicator dynamics is the fundamental selection dynamics in
evolutionary biology and in the social sciences. 1 Of similar importance in
economic theory is the best response dynamics , which is (up to a rescaling of
time) mathematically equivalent to the continuous time fictitious play learning
process. 2 Both these dynamics are ‘myopic adjustment dynamics’ as defined
by Swinkels (1993): Each player population moves towards a better reply
against the current state of the other player populations.

From the viewpoint of classical game theory, however, both these dynamics
have their drawbacks. The replicator dynamics is a selection dynamics (a once
unused strategy will never occur), which in particular implies that every pure
strategy profile is a stationary state. The best response dynamics, on the other
hand, is an innovative dynamics (at least one of the (possibly unused) pure
strategies with higher than average payoff grows in population share), implying

1 See Maynard Smith (1982), Weibull (1995), Hofbauer and Sigmund (1998), or
Fudenberg and Levine (1998).
2 The best response dynamics was introduced by Gilboa and Matsui (1991) and
Matsui (1992), and fictitious play is due to Brown (1951). For stability results see
Gaunersdorfer and Hofbauer (1995), Hofbauer (1995, 2000), Fudenberg and Levine
(1998), or Berger (2004).
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that its constant solutions agree with the Nash equilibria, but in general it
suffers from nonuniqueness of solutions.

What makes the BNN dynamics so interesting in evolutionary game theory is
that it picks out the attractive features 3 of both the replicator and the best
response dynamics:

• (BNN) is a myopic adjustment dynamics, as follows from its definition.
• Its stationary states are precisely the Nash equilibria, since it is an innova-

tive dynamics.
• It has unique solutions by Lipschitz continuity.

2 (Ir)rationality

The present note deals with the following question. Does the BNN dynamics
asymptotically lead to rational behavior?

Consider a game with a pure strategy q that is strictly dominated by a (pos-
sibly mixed) strategy p. A basic rationality postulate is that a player would
never use q. It is easy to see that in the best response dynamics (or fictitious
play), strategy q will eventually vanish from the population. Along interior
orbits, q will also go extinct in the replicator dynamics, see Samuelson and
Zhang (1992). More generally, Hofbauer and Weibull (1996) characterized the
selection dynamics for which elimination of (even iteratively) strictly dom-
inated strategies holds as ‘convex monotone’. Basically, these dynamics are
interpolations between the replicator and the best response dynamics. Their
crucial property is that any pure strategy which is used and performs below
average strictly decreases its frequency. 4 The BNN dynamics — though not a
selection dynamics — obviously shares this property. This might suggest that
(BNN), just like the replicator or the best response dynamics, asymptotically
behaves ‘as if’ the population were a rational player (compare Weibull, 1994a).
We show below that this is not the case.

Note that there are well known examples, e.g. Dekel and Scotchmer (1992)
or Hofbauer and Weibull (1996), of strictly dominated strategies surviving
in certain games under certain dynamics. However, in all these examples the
dominating strategy p is mixed. For (BNN) the situation is worse: here the
dominating strategy may itself be pure.

3 There are even arbitrarily smooth variants of (BNN), see Weibull (1994b), Hof-
bauer (2000), or Sandholm (2004), which share its crucial properties.
4 A property called ‘seeking the good’ by Skyrms (1990) and ‘weakly sign preserv-
ing’ by Ritzberger and Weibull (1995).
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We begin by studying the degenerate case of games with two equivalent strate-
gies. For simplicity we consider symmetric two person games played within one
population, with finite strategy set S = S1 = S2, payoff matrix π : S×S → R,
and x ∈ ∆(S) denoting a mixed population profile. Suppose there are two
equivalent pure strategies, say p, q ∈ S, such that π(p, x) = π(q, x) and hence
k(p, x) = k(q, x) for all x. Then (xp − xq)

. = −(xp − xq)k̄(x). In particu-
lar, the subset {x ∈ ∆(S) : xp = xq} is invariant under (BNN). Consider a
trajectory x(t), t ≥ 0, which stays away from the set of equilibria, so that
k̄(x(t)) ≥ δ > 0. 5 Then xp(t)− xq(t) → 0 as t →∞.

Hence the BNN dynamics tends to equalize the proportions of equivalent
strategies, at least along nonconvergent trajectories. 6 This equilibration prop-
erty looks perfectly reasonable. It can be seen as an evolutionary version of the
‘principle of insufficient reason’: in case of indifference between two options,
use each with equal probability. However, as we will show now, this property
is incompatible with the elimination of strictly dominated strategies.

For this we need a game with nonconvergent trajectories. The obvious choice is
a rock–scissors–paper game with S = {r, s, p} and payoffs 0, 1,−3 for a draw,
win, or loss, respectively. This game has a unique equilibrium E at which play-
ers put weight 1

3
on each option. A short calculation, compare Hofbauer (2000,

section 4.3), shows that the nonnegative function V (x) = 1
2

∑
σ∈S k(σ, x)2 at-

tains its unique minimum at E and satisfies

V̇ = π(ẋ, ẋ)− k̄π(ẋ, x) =
∑

σ∈S

ẋ2
σ − k̄

∑

σ∈S

k(σ, x)2.

Near E the first term is of order k̄2 and the second term of order k̄3. This
implies that V̇ > 0 near E. Hence V increases along trajectories near E, and
E is a repellor for (BNN). 7 By the Poincaré–Bendixson theorem, orbits near
E spiral outwards to some limit cycle. On the other hand, orbits starting
on the boundary spiral inwards and approach some (possibly different) limit
cycle. These two limit cycles bound an asymptotically stable annulus L. 8

Consider now the augmented game with S = {r, s, p, q} and payoff matrix

5 Note that k̄(x) is nonnegative and vanishes precisely at equilibria, hence it is a
measure for the distance of x from the set of Nash equilibria.
6 This behaviour is quite different from that of the replicator dynamics, where the
ratio xp/xq remains constant along solutions, or the best response dynamics, for
which arbitrary drift between the equivalent strategies is possible.
7 This holds more generally for payoffs a, b, c (instead of 0, 1,−3) satisfying c < a <
b and b + c < 2a. For a different proof based on Poincaré maps see Berger (1998).
8 Numerical simulations suggest that L is a unique limit cycle.
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Fig. 1. The oscillating attractor for ε = 0.2.

given by 


0 1 −3 −3

−3 0 1 1

1 −3 0 0

1− ε −3− ε −ε −ε




with ε ≥ 0. Strategies r, s, p play rock, scissors, paper, as before, while q is an
ε-close variant of p which is strictly dominated by p for ε > 0. The oscillating
attractor L for the {r, s, p} game appears in the augmented game for ε = 0
on the invariant subset {xp = xq}. This asymptotically stable invariant set L
attracts all trajectories in ∆(S), except the stationary solutions corresponding
to the line of Nash equilibria 1

3
(λp + (1 − λ)q + r + s), with λ ∈ [0, 1]. For

ε > 0 this line is still invariant and consists of an orbit converging to the
unique equilibrium 1

3
(r + s + p). Since (BNN) depends continuously on the

parameter ε, the oscillating attractor L continues for small ε to a nearby
asymptotically stable invariant set Lε (again a periodic orbit according to
numerical simulations, see Figure 1) which still attracts all orbits except those
starting in a small neighborhood of the invariant line.

For the perturbed game with ε > 0, strategy p strictly dominates q, but for
small values of ε, xp and xq are almost equal along the attractor 9 Lε, and
hence the strictly dominated strategy q survives.

3 Conclusion

We showed by means of a simple 4 × 4 game that a pure strategy which is
strictly dominated by another pure strategy may survive along a large set of

9 According to numerical simulations, this limit cycle reaches the face xq = 0 only
for ε ≈ 0.47.
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solutions of the BNN dynamics. Indeed the construction works more generally
for any game with an asymptotically stable attractor that is disjoint from the
equilibrium set, and the argument also applies to other innovative dynam-
ics. While (BNN) and its relatives are presently establishing themselves as a
promising third type of evolutionary dynamics besides the replicator and the
best response dynamics, they do not share one of the crucial properties of
these two: ‘as if’ rationality.
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