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Abstract

Dynamic magnetic resonance imaging (MRI) consists of collecting multiple MR im-

ages in time, resulting in a spatio-temporal signal. However, MRI intrinsically suffers

from long acquisition times due to various constraints. This limits the full potential

of dynamic MR imaging, such as obtaining high spatial and temporal resolutions

which are crucial to observe dynamic phenomena.

This dissertation addresses the problem of the reconstruction of dynamic MR

images from a limited amount of samples arising from a nuclear magnetic resonance

experiment. The term limited can be explained by the approach taken in this thesis

to speed up scan time, which is based on violating the Nyquist criterion by skipping

measurements that would be normally acquired in a standard MRI procedure. The

resulting problem can be classified in the general framework of linear ill-posed inverse

problems. This thesis shows how low-dimensional signal models, specifically low-

rank and sparsity, can help in the reconstruction of dynamic images from partial

measurements. The use of these models are justified by significant developments in

signal recovery techniques from partial data that have emerged in recent years in

signal processing.

The major contributions of this thesis are the development and characterisation

of fast and efficient computational tools using convex low-rank and sparse constraints

via proximal gradient methods, the development and characterisation of a novel joint

reconstruction–separation method via the low-rank plus sparse matrix decomposi-

tion technique, and the development and characterisation of low-rank based recovery

methods in the context of dynamic parallel MRI. Finally, an additional contribution

of this thesis is to formulate the various MR image reconstruction problems in the

context of convex optimisation to develop algorithms based on proximal splitting

methods.
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Introduction
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1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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1.1 Motivations

Seeing inside the living body without the need for exploratory surgery has always

been a challenge in human history. This has been possible since X-rays were discov-

ered in 1895 by Röntgen, who produced the first picture showing bone structures

of his wife’s hand. From that time, a number of medical imaging techniques have

been developed, such as positron emission tomography, X-ray computed tomography

(CT), nuclear magnetic resonance imaging or ultrasound.

Nuclear magnetic resonance imaging, or simply magnetic resonance imaging

(MRI), is a medical imaging technique that is based primarily upon the sensitiv-

ity to the presence and properties of water. MRI uses magnetic fields and radio

electromagnetic waves to detect tiny changes in the magnetism of the nucleus of the

hydrogen atom which is found in abundance in the human body. MRI is a valu-

able diagnostic tool that is extensively used in radiology to examine the anatomy

and physiology of the body. It is generally regarded as a safe procedure because it

does not involve ionising radiation in contrast to X-ray CT for example. MRI can

also produce different types of images without any mechanical modification to the

MRI scanner, such as different image contrasts or images of the subject in various

orientations and positions.

In this thesis, we are interested in dynamic MRI, a technique that consists of

collecting MR images in time and thus generating a spatio-temporal signal. Dynamic
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MRI is used in multiple clinical applications, such as cardiovascular (or cardiac)

MRI, dynamic contrast-enhanced (DCE) MRI or functional MRI (fMRI). Cardiac

MR imaging is used to capture and study quantitative assessment of the heart.

A primary application is cine cardiac imaging, which assesses both structure and

function of the beating heart. Other applications include for example myocardial

perfusion imaging to detect coronary artery disease or phase contrast imaging to

quantify blood flow velocity through the heart. Regarding DCE MRI, it is used

to assess the passage and distribution of a contrast agent through organs and may

possibly be used as a source of biomarkers in oncology. An important example is

breast cancer imaging based on gadolinium contrast agent. In neuroimaging studies,

functional MRI is used to localise brain activities by detecting blood-oxygen-level-

dependent signals.

However, one of the fundamental limiting factor of MRI is its serial acquisition

procedure that is inherently slow due to various constraints. These include intrin-

sic nuclear relaxation times that generate the signal to acquire, how fast gradient

magnetic fields can be switched on and off without causing peripheral nerve stim-

ulations, how fast the oscillating radio frequency magnetic field can be turned on

and off to prevent tissue heating (specific absorption rate), and signal-to-noise ratio

constraints. Although it is possible to image static objects such as the brain with a

slow acquisition procedure, it is much more problematic to collect images of moving

structures such as the beating heart or in which contrast changes over time, as in

dynamic MR imaging.

This thesis is motivated by the benefits of reducing the acquisition time of dy-

namic MRI while maintaining the image quality. From the patient perspective, it

increases comfort, facilitates scans for problematic subjects such as the very young,

old or ill, and also limits patient exposure to magnetic fields and acoustic noise. From

an imaging aspect, obtaining faster scan times can benefit every dynamic MRI appli-

cations mentioned previously, since higher temporal resolution better characterises

dynamic processes, or trading the time saving for higher spatial resolution provides

greater anatomical details. Minimisation of the patient’s time in the scanner also

decreases the chances of motion artefacts such as blurring in the resulting images.

1.2 Problem statement

The main problem addressed in this thesis is the reconstruction of spatio-temporal

magnetic resonance images from a limited amount of samples acquired in the Fourier

domain, known as (k, t)-space in MRI. The term limited can be explained by the

approach taken in this thesis to speed up scan time, which is based on violating the

Nyquist criterion by skipping measurements that would be normally acquired in a

standard MRI procedure.
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Due to the physics of MRI, the spatio-temporal MRI signal S(k, t) can be mod-

elled mathematically through the Fourier integral as

S(k, t) =

∫
I(r, t)e−i2π(r·k)dr +N(k, t), (1.1)

where I(r, t) and N(k, t) are respectively the spatio-temporal image and noise func-

tions, and k and r are respectively the k-space and position coordinates. The image

reconstruction task can be expressed as: given a finite set of sub-Nyquist Fourier

measurements from Eq. (1.1), find the best discrete approximation of the spatio-

temporal function I(r, t). This represents a typical example of a linear ill-posed

inverse problem.

1.3 Thesis objectives and contributions

This thesis shows how incorporating prior information based on low-dimensional

signal models can help in the reconstruction of spatio-temporal images from a limited

amount of Fourier samples arising from a nuclear magnetic resonance experiment.

More specifically, this thesis investigates the use of low-rank and sparse signal

models through proximal splitting methods to help in the reconstruction of dynamic

MR images from partial data. Low-rank and sparsity models have contributed to

significant developments in signal recovery techniques in recent years in the fields

of signal processing and applied mathematics. These models can be classified as

low-dimension or low-complexity as they are related to the principle of parsimony,

also known as Occam’s razor, which states that the simplest among competing hy-

potheses should be preferred. The use of proximal splitting methods in this thesis

are encouraged by the requirement of reconstruction algorithms (i) to handle nons-

mooth penalties due to low-rank and sparse constraints, and (ii) to tackle relatively

large-scale problems due to spatio-temporal MR signals lying in high-dimensional

spaces. This thesis aims to provide an adequate trade-off between the theoretical

concepts of signal recovery and the practical aspects of the MRI reconstruction prob-

lem from limited Fourier measurements. In short, the major contributions of this

thesis are

• the development and characterisation of computational methods for low-rank

and sparsity constrained problems based on fast proximal gradient methods,

• the development and characterisation of a joint reconstruction–separation model

that goes beyond traditional reconstruction methods,

• the development and characterisation of low-rank based recovery methods in

combination with sub-Nyquist dynamic parallel MR imaging,
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• the formulation of the various MR image reconstruction problems in the con-

text of convex optimisation and proximal splitting methods.

These contributions are further explained in section 1.4 which presents the outline

of this manuscript. Some of the work presented in this thesis have been previously

published in journal article:

• B. Trémoulhéac, N. Dikaios, D. Atkinson, and S. R. Arridge. Dynamic MR

image reconstruction–separation from undersampled (k,t)-space via low-rank

plus sparse prior. IEEE Transactions on Medical Imaging, 33(8):1689–1701,

2014.

And in international conference papers:

• B. Trémoulhéac, D. Atkinson, and S. R. Arridge. Low-rank and (x-f)-space

sparsity via fast composite splitting for accelerated dynamic MR imaging. In

Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI),

pages 649–652, Beijing, 2014.

• B. Trémoulhéac, D. Atkinson, and S. R. Arridge. Fast dynamic MRI via

nuclear norm minimization and accelerated proximal gradient. In Proceedings

of IEEE International Symposium on Biomedical Imaging (ISBI), pages 322–

325, San Francisco, 2013.

• B. Trémoulhéac, D. Atkinson, and S. R. Arridge. Motion and contrast en-

hancement separation model reconstruction from partial measurements in dy-

namic MRI. In Proceedings of Medical Image Computing and Computer As-

sisted Intervention (MICCAI) Workshop on Sparsity Techniques in Medical

Imaging, Nice, 2012.

Work during this thesis has also resulted in other publications as co-author in inter-

national conferences, although not reported in this manuscript.

1.4 Outline

The necessary background on magnetic resonance imaging is introduced in chapter

2. We take care of describing the MRI signal path from the most simplest raw

nuclear magnetic resonance signal (nuclear magnets) to arrive at the Fourier integral

transform. Other important topics covered include image reconstruction, noise issues

and dynamic MR imaging.

Chapter 3 describes linear inverse problems, a fundamental topic not only in

medical imaging but in many other areas of science and engineering. Most of this

chapter is concerned with signal recovery from partial data. We emphasise the
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description of signal recovery methods through the use of low-dimensional signal

models that have gained much interest in the past decade. We then discuss state of

the art recovery techniques for the specific problem of dynamic MRI reconstruction.

Chapter 4 introduces succinctly proximal splitting methods, a general optimi-

sation framework that provides efficient and flexible algorithms to minimise certain

types of convex problems. This framework forms the basis to solve the different

formulated image reconstruction problems in this thesis.

Chapter 5 develops and characterises efficient computational tools based on prox-

imal gradient for MR image reconstruction that exploits sparse and low-rank struc-

tures. Characterisation of these methods are shown with multiple realistic datasets

and various comparisons with other state of the art methods.

Chapter 6 proposes a joint reconstruction–separation model that goes beyond

traditional reconstruction methods from partial observations. The model is based

on the low-rank plus sparse matrix decomposition to both regularise and intrinsically

separate reconstructed dynamic data. The proposed technique provides a competi-

tive reconstruction method, as well as the ability to separate clinically-relevant data

in the context of dynamic contrast enhanced MRI.

In chapter 7, we explore low-rank based recovery approaches in combination

with dynamic parallel imaging. Parallel imaging is the most widely used technique

to accelerate imaging scan in clinical practice. We show how low-rank based signal

recovery techniques can be combined with dynamic parallel imaging in various ways

to enable further improvement in image reconstruction.

We conclude this thesis in chapter 8 by providing a summary of contributions,

the current limitations and perspectives of this thesis.
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Chapter 2

Principles of magnetic

resonance imaging
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2.1 Introduction

In this chapter, fundamental concepts of magnetic resonance imaging (MRI) are

presented. Due to the complicated nature of an MRI system however, we only

present an overview of the physics of MRI. The reader is referred to Refs. [1–3] for

a more in-depth analysis.

This chapter is organised as follows. We discuss the nuclear magnetic resonance

(NMR) phenomenon in section 2.2. The concepts of signal detection, spatial locali-

sation and Fourier encoding are then described respectively in sections 2.3, 2.4 and
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2.5. Note that from section 2.2 to 2.5, we describe consecutively the various forms

and transitions of the MRI signal as

µ −→M −→M+(t) −→ V (t) −→ S(t) −→ S(k),

where µ represents the nuclear magnetic moment, M an ensemble of spins, M+(t)

the transverse magnetisation, V (t) the voltage signal, S(t) the nuclear magnetic

resonance signal, to finally S(k) the k-space signal. The transition from continuous

to discrete data is then explained in the image reconstruction section 2.6. Noise in

MRI is discussed in section 2.7, dynamic imaging in section 2.8 and we conclude this

chapter in section 2.9.

2.2 Nuclear magnetic resonance phenomenon

MRI relies on the nuclear magnetic resonance (NMR) phenomenon which involves

the interaction of atomic nuclei in a magnetic field. It was first observed indepen-

dently by Bloch and Purcell in 1946 for which they shared the Nobel Prize in Physics

in 1952. To understand the NMR phenomenon, we should in principle start at the

nuclear level using laws of quantum theory because the behaviour of atomic and

subatomic particles can only be accurately described in this framework. However,

the phenomenon can be explained more simplistically using the theory of classical

(Newtonian) mechanics. It is possible to do so because MRI deals with the collective

behaviour of a large ensemble of particles.

Atoms consist of nuclei (protons and neutrons) surrounded by their orbiting

electrons. A nucleus has a finite radius, mass and a net electric charge. Some

nuclei, depending on their atomic weights or numbers, possess an angular momentum

J often called spin, such as the nucleus of the hydrogen atom present in water.

This angular momentum combined with the electric charge of the nucleus induces

a magnetic field known as the nuclear magnetic moment µ. The nuclear magnetic

moment can be expressed as

µ = µxî + µy ĵ + µzk̂, (2.1)

where (̂i, ĵ, k̂) denote the unit directional vectors in the standard Cartesian coordi-

nate system and (µx, µy, µz) the scalar components of µ. The angular momentum

and the magnetic moment are related via µ = γJ, where γ is a nucleus dependent

constant known as the gyromagnetic ratio. Nuclei with nonzero µ are then regarded

as microscopic magnets. Nuclear spin can be visualised as a physical rotation of

the nucleus about its own axis, although it is a property characterised by quantum

mechanics.

If we consider an ensemble of spins, nuclear magnets can be added together. The
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total magnetic field M is referred to as the bulk magnetisation vector,

M =
∑
n

µn = Mxî +My ĵ +Mzk̂, (2.2)

where the nth nucleus has magnetic moment µn. Magnitudes of each magnetic

moment |µn| are known under any conditions, but their directions are completely

random due to thermal movements. This results in no net magnetisation, M = 0.

However, in the presence of an external magnetic field applied in the z-direction

B0 = B0k̂, nuclear magnetic moments for the hydrogen are restricted to two pos-

sible orientations: parallel to B0 (alignment, spin up) or antiparallel to B0 (anti-

alignment, spin down). On average, more nuclear spins align with the magnetic field

than against, which results in a net bulk thermal equilibrium magnetisation in the

z-direction

M = M0
z k̂ (2.3)

where M0
z represents the thermal equilibrium value for M in the presence of B0.

Apart from forcing them to align, each magnetic moment experiences a torque

from B0 causing it to precess about the k̂ axis. This phenomenon is called nuclear

precession and can be physically interpreted as the wobbling of a spinning-top about

the gravitational axis, or the precession of a spinning toy gyroscope. The precession

frequency of µ experiencing a B0 field is given by the Larmor equation

ω0 = γ|B0| = γB0. (2.4)

We consider now an oscillating magnetic field B1 in addition to the static B0 field.

(The strength of B1 is much weaker than B0.) The application of this oscillating

magnetic field causes M to tip away from the B0 field at a specific angle, known

as the flip angle. The B1 field is often referred to as radio frequency (RF) pulse

because it oscillates in the radio frequency range and it is turned on only for a

few milliseconds. The resonance condition in magnetic resonance imaging is that

B1 should rotate in the same manner as the precessing spins, i.e. rotating at the

Larmor frequency ω0 around the z-direction.

In the presence of the external magnetic field B1(t), the time-dependent be-

haviour of the bulk magnetisation vector M can be described according to the Bloch

equation
∂M

∂t
= γM×B− 1

T2
(Mxî +My ĵ) +

1

T1
(M0

z −Mz)k̂, (2.5)

where B = B0+B1(t) is the total magnetic field experienced by the nuclei; T1 and T2

are decay constants called relaxation times that characterise the relaxation process

after the spin system has been perturbed (they depend on the different tissues such

as white/grey matter or fat); and M0
z is the thermal equilibrium value for M in the
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presence of B0 only.

According to the laws of thermodynamics, and provided the RF pulse is turned

off and sufficient time is given, the spin system relaxes back towards its original

equilibrium state. This phenomenon is called relaxation and is characterised by a

precession of M about the B0 field, a recovery of the longitudinal magnetisation

Mz (longitudinal relaxation) and the destruction of the transverse magnetisation

M+ (transverse relaxation). From the solutions to the Bloch equation, the time

evolution for the longitudinal and transverse magnetisations are

Mz(t) = M0
z (1− e−t/T1) +Mz(0)e−t/T1 , (2.6a)

M+(t) = M+(0)e−t/T2e−iω0t, (2.6b)

where Mz(0) and M+(0) are respectively the magnetisation along the z-direction

and on the transverse plane after an RF pulse. The transverse relaxation M+ uses

the complex representation

M+(t) = Mx(t) + iMy(t), (2.7)

with

Mx(t) = e−t/T2

(
Mx(0) cos(ω0t) +My(0) sin(ω0t)

)
,

My(t) = e−t/T2

(
My(0) cos(ω0t)−Mx(0) sin(ω0t)

)
.

(2.8)

The complex formulation is useful because the main activity of the spin in a static

magnetic field is a rotation in the 2D transverse plane.

2.3 Signal detection

Signal detection relies on the Faraday law of electromagnetic induction. This law

states that a time-varying magnetic flux Φ(t) (in Webers) through an electric circuit

produces an electromagnetic force E(t) (in Volts). More specifically, the electromag-

netic force E(t) induced in the circuit is equal to the negative of the time rate of

change of the magnetic flux,

E(t) = −∂Φ(t)

∂t
. (2.9)

According to the principle of reciprocity, the magnetic flux in MRI can be expressed

as

Φ(t) =

∫
Br(r) ·M(r, t)dr, (2.10)

where Br(r) = Br
x(r)̂i + Br

y(r)̂j + Br
z(r)k̂ is the magnetic field received in the coil

and M(r, t) is the bulk magnetisation vector, both at position r = x̂i + yĵ + zk̂.
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Hence, the electromagnetic force is given by

E(t) = − ∂

∂t

∫
Br(r) ·M(r, t)dr. (2.11)

The voltage signal V (t) induced in the MRI system coil is proportional to

Eq. (2.11) depending on the characteristics of the measurement system. Explic-

itly, it can be written as

V (t) ∝ − ∂

∂t

∫ [
Br
x(r)Mx(r, t) +Br

y(r)My(r, t) +Br
z(r)Mz(r, t)

]
dr. (2.12)

To develop expression (2.12), first note that the previous static-field solutions (2.6a)

and (2.6b) hold for each r,

Mz(r, t) = M0
z (1− e−t/T1(r)) +Mz(r, 0)e−t/T1(r), (2.13a)

M+(r, t) = M+(r, 0)e−t/T2(r)e−iω0t = |M+(r, 0)|eiφ0(r)e−t/T2(r)e−iω0t, (2.13b)

where the phase φ0 and magnitude |M+(r, 0)| are determined by the initial RF pulse

conditions in Eq. (2.13b). We now address the computation of the time derivatives

in Eq. (2.12). For ∂tMz, we have

∂Mz(r, t)

∂t
=

∂

∂t

(
M0
z (1− e−t/T1(r)) +Mz(r, 0)e−t/T1(r)

)
= e−t/T1(r)

( M0
z

T1(r)
− Mz(r, 0)

T1(r)

)
.

(2.14)

For ∂tMx and ∂tMy, it is useful to employ the complex representation (2.7) with the

fact that Mx = <{M+} and My = ={M+},

∂Mx(r, t)

∂t
=
∂<{M+(r, t)}

∂t
= <

{ ∂
∂t
M+(r, 0)e−t/T2(r)e−iω0t

}
= −<

{
M+(r, 0)

( 1

T2(r)
+ iω0

)
e−t/T2(r)e−iω0t

}
,

(2.15)

∂My(r, t)

∂t
=
∂={M+(r, t)}

∂t
= −=

{
M+(r, 0)

( 1

T2(r)
+ iω0

)
e−t/T2(r)e−iω0t

}
. (2.16)

However, since the Larmor frequency ω0 is generally orders of magnitude larger

than typical values of 1/T1 and 1/T2, the time derivatives ∂tMx and ∂tMy can be

approximated to

∂tMx(r, t) ≈ −ω0e
−t/T2(r)<{iM+(r, 0)e−iω0t}, (2.17a)

∂tMy(r, t) ≈ −ω0e
−t/T2(r)={iM+(r, 0)e−iω0t}, (2.17b)
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and expression (2.12) can be simplified to

V (t) ∝ −
∫ [

Br
x(r)∂tMx(r, t) +Br

y(r)∂tMy(r, t)
]
dr. (2.18)

The above expression shows that the dominant signal induced in the receiver coil is

due to the transverse magnetisation and not the longitudinal magnetisation. Sub-

stituting the approximated derivatives (2.17a) and (2.17b) into (2.18) yields

V (t) ∝ ω0

∫
e−t/T2(r)

[
Br
x(r)<{iM+(r, 0)e−iω0t}+Br

y(r)={iM+(r, 0)e−iω0t
]
dr.

(2.19)

Using the fact that M+(r, 0) = |M+(r, 0)|eiφ0(r) from Eq. (2.13b), the above expres-

sion reads

V (t) ∝ ω0

∫
e−t/T2(r)|M+(r, 0)|

[
Br
x(r) sin(ω0t− φ0(r)) +Br

y(r) cos(ω0t− φ0(r))
]
dr.

(2.20)

This expression can be further simplified to

V (t) ∝ ω0

∫
|Br

+(r)||M+(r, 0)|e−t/T2(r) sin(ω0t+ φr(r)− φ0(r))dr (2.21)

by defining the magnetic field received components as

Br
x(r) = |Br

+(r)| cos(φr(r)), (2.22a)

Br
y(r) = |Br

+(r)| sin(φr(r)), (2.22b)

where φr(r) is the reception phase angle.

At this stage, V (t) is a high-frequency signal because the transverse magneti-

sation vector precesses at the Larmor frequency ω0, which is about 42.5 MHz per

Tesla for hydrogen protons. To avoid potential problems in later stages, this signal

is moved to a low-frequency band in order to be free of the high Larmor oscillation.

In practice, it consists of multiplying the time signal V (t) by a complex exponential

with frequency Ω = ω0 + δω where δω is a small offset frequency, or equivalently

multiplying V (t) separately with a cosine and sine signals at the frequency Ω. Each

separate signal then results in two components, one close to the offset frequency and

the other nearly twice the Larmor frequency. Both signals are then low-pass filtered

to remove frequency around (2ω0 + δω), resulting in signals oscillating only at the

offset frequency δω. This procedure is called quadrature detection and the outputs

of such technique are two demodulated and filtered signals denoted VP(t) and VQ(t),

oscillating at frequency around δω, that are put together in complex form

S(t) = VP(t) + iVQ(t), (2.23)
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where VP represents the in-phase signal (real part) and VQ the quadrature signal

(imaginary part). After quadrature detection, the resulting NMR signal can be

expressed as

S(t) ∝ ω0

∫
|Br

+(r)||M+(r, 0)|e−t/T2(r)e−i(δωt+φr(r)−φ0(r))dr. (2.24)

From Eqs. (2.13b) and (2.22), we have

M+(r, 0) = |M+(r, 0)|eiφ0(r), (2.25a)

B̄r
+(r) = |Br

+(r)|e−iφr(r), (2.25b)

where B̄r
+ denotes the complex conjugate of Br

+. Eq. (2.24) can be further simplified

to

S(t) ∝ ω0

∫
B̄r

+(r)M+(r, 0)e−t/T2(r)e−iδωtdr. (2.26)

Eq. (2.26) is here a function of T2 only but the use of different combinations of RF

pulses and gradient fields can condition the signal to be a function of the proton

density, T1 relaxation, T2 relaxation, T ∗2 relaxation and several other tissue proper-

ties.

2.4 Spatial localisation

Spatial localisation refers to applying additional spatial and time-varying magnetic

fields on top of the static magnetic field, to allow spins to be excited at different

frequencies at different locations, and hence making possible the representation of

an object that is spatially inhomogeneous. These magnetic fields are referred to as

gradient magnetic fields or simply as gradients. The use of gradients to spatially

encode information was first proposed by Lauterbur in 1973 [4].

The first step of spatial localisation is to select the slice by using a gradient in

the z-direction, referred to as slice selective gradient and denoted Gz. Once the

RF pulse has been made spatially slice selective, the rest of the process is in-plane

localisation and known as spatial encoding. This is achieved with a phase-encoding

gradient in the y-direction (Gy) and a frequency-encoding (or read-out) gradient in

the x-direction (Gx).

By defining the offset frequency δω = γ(Gxx+Gyy+Gzz) (with γ the gyromag-

netic ratio) in Eq. (2.26), it yields

S(t) ∝ ω0

∫
B̄r

+(r)M+(r, 0)e−t/T2(r)e−iγ(Gxx+Gyy+Gzz)tdr. (2.27)
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Furthermore, if we introduce the vector notation

k(t) =
γ

2π

GxtGyt

Gzt

 =
γ

2π

(
Gxt̂i +Gy t̂j +Gztk̂

)
, (2.28)

we can write the final expression as

S(k) ∝ ω0

∫
B̄r

+(r)M+(r, 0)e−t/T2(r)e−i2π(r·k)dr. (2.29)

In general, note that gradients also vary in time and should take the form

k(t) =
γ

2π


∫ t

0 Gx(t′) dt′∫ t
0 Gy(t

′) dt′∫ t
0 Gz(t

′) dt′

 . (2.30)

The information about how gradient magnetic fields should behave in order to pro-

duce the trajectory k(t) is contained in the pulse sequence. This sequence also gives

the number of RF pulse to generate the NMR signal: the basic types of pulse se-

quences in MRI are gradient-echo which uses a single RF pulse and spin-echo which

uses two RF pulses.

2.5 Fourier encoding

Eq. (2.29) can be rewritten as

S(k) =

∫
RD

I(r)e−i2π(r·k)dr = F{I(r)}, (2.31)

with the following assumptions: (i) the decay constant T2(r) is space-independent,

(ii) the coil receives a spatially homogeneous magnetic field such that Br = 1, (iii) the

scaling constant ω0e
−t/T2 is omitted, and (iv) the change of variable from M+(r, 0)

to I(r). In Eq. (2.31), I(r) : RD → C represents the image function, S(k) : RD → C
the MRI signal and F the Fourier integral transform operator. This expression makes

explicit the relation between the image function (transverse magnetisation) and

measured signal through the Fourier transform. This representation is commonly

referred to as Fourier encoding, which stipulates that the detected NMR signals

constitute a spatial frequency and phase representation of the object being imaged.

This dual representation between the MR image and Fourier domain was described

independently in the early 1980s by Ljunggren [5] and Twieg [6]. Note the frequency

domain S(k) is usually referred to as k-space in MRI.
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More generally, Eq. (2.31) can be expressed as

S(·) =

∫
RD

I(r)E(r, ·)dr, (2.32)

where S, I and E refer respectively to the MRI signal, image and encoding func-

tions. The encoding basis function takes the form E(r,k) = e−i2π(r·k) in the case of

Fourier encoding. Non-Fourier encoding methods have also been developed based on

encoding basis functions such as wavelet [7,8] or singular value decomposition [9,10],

but we will not discuss them in this dissertation due to the widespread of Fourier

imaging in current MR technology.

Finally, it is important to emphasise at this point that both the NMR raw signal

S and image function I are complex-valued. Although magnitude images are usually

only displayed because it contains most of the relevant information, quantitative

information can be obtained from the phase. For example, the phase can be used

in cardiac imaging to assess cardiovascular flow measurement or in MR angiography

to image velocity of moving blood.

2.6 Image reconstruction

The ideal goal of the MR image reconstruction problem would be to find the unknown

continuous function I from the discrete measurement vector y ∈ CM ,

ym = S(km) =

∫
RD

I(r)e−i2π(r·km)dr, m = 1, . . . ,M. (2.33)

Of course, any finite set of Fourier samples cannot uniquely determine I because

there are infinitely many feasible image functions that agree exactly with the given

measured data [2, 11].

There are multiple approaches to tackle problem (2.33) depending whether a

continuous or discrete model is considered for both the data and object. A complete

discussion is however out of scope of this dissertation; we refer the reader to the

work of Fessler [11] for a thoughtful discussion. The continuous-data/continuous-

object model is adopted hereinafter, which is the most common approach to explain

the MR reconstruction problem. In this model, the hypothetical case of infinite

sampling is considered (the function S is assumed to be known for all k) to derive

the analytical inversion formula, which is nothing else than the continuous inverse

Fourier transform. Then, the fact the measurements can only be finite and discrete

is taken into account, which leads to the inverse discrete Fourier transform.

To simplify the discussion in this section, only the one-dimensional case will be

treated and the separability of the multidimensional Fourier transform is invoked

to extend the procedure to multiple dimensions. Note that the discussion about
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quantisation is also skipped. Quantisation is the post-sampling procedure that con-

verts the measured values of the continuous function into a preassigned, finite set

of number known to the computer. The reader is referred to Refs. [2, Chapter 6]

and [12, Chapter 8] for more details.

2.6.1 Sampling

For the historical aspects, pioneering works on the sampling theory can be attributed

independently to Kotelnikov, the Whittaker, Nyquist and Shannon in the first half

of the 20th century. In particular, the sampling theorem was introduced to com-

munication engineers by Shannon in two seminal papers [13, 14] that founded the

field of information theory. Today, it is most often known as the Nyquist-Shannon

theorem. Its origins have been described in details in Ref. [15].

We assume uniform sampling in what follows. In one-dimension, Eq. (2.33)

reads

S(kn) = S(n∆k) =

∫
I(x)e−i2π(n∆k)xdx, (2.34)

where x represents the coordinate of spatial position, k the coordinate of spatial

frequency and ∆k is the sampling interval. The function I(x) can be reconstructed

from S(n∆k) according to the Poisson summation formula,

∞∑
n=−∞

S(n∆k)ei2π(n∆k)x =
1

∆k

∞∑
n=−∞

I
(
x− n

∆k

)
. (2.35)

This equation simply shows that the periodic summation of the function I (with

period 1/∆k) is completely defined by the Fourier coefficients S(n∆k).

We now consider that the function I(x) has bounded support, i.e. there exists

a finite W such that I(x) = 0 for |x| ≥ W/2. The region |x| < W/2 is known as

the field of view (FOV) in MRI. To avoid aliasing artefacts, we assume that the

Nyquist-Shannon sampling theorem is satisfied: if I(x) has bounded support, its

Fourier transform can be perfectly reconstructed from its sample values S(n∆k) if

W <
1

∆k
or ∆k <

1

W
. (2.36)

It is said that the samples are taken at the Nyquist rate when W = 1/∆k or ∆k =

1/W . Sampling at a lower rate is called undersampling, while sampling at a higher

rate is called oversampling. Since the Nyquist criterion is satisfied, there is no

overlap in the various periodic replicas. Hence, the reconstruction formula for infinite

sampling {n∆k,−∞ < n < +∞} can be written as

I(x) = ∆k
∞∑

n=−∞
S(n∆k)ei2π(n∆k)x, |x| < 1

2∆k
. (2.37)

42



Image reconstruction

where I(x) is evaluated only within the FOV.

For finite sampling {n∆k,−N/2 ≤ n < N/2}, the feasible reconstruction is

not unique anymore. Assuming additional minimum norm constraint, the Fourier

reconstruction formula for finite sampling can be derived which is in a form of a

truncated Fourier series,

Î(x) = ∆k

N/2−1∑
n=−N/2

S(n∆k)ei2π(n∆k)x, |x| < 1

2∆k
. (2.38)

Î is a (continuous) approximation of the true function I subject to ringing artefacts

resulting from the truncation. Due to finite sampling, I(x) is actually a band limited

function, i.e. S(k) = 0 for |k| > (N/2)∆k. Therefore, recovering I(x) from Î(m∆x)

is possible only if the Nyquist criterion is satisfied,

∆x ≤ 1

N∆k
. (2.39)

If we choose ∆x = 1/(N∆k), we obtain

Î(m∆x) = ∆k

N/2−1∑
n=−N/2

S(n∆k)ei2π(n∆k)(m∆x)

= ∆k

N/2−1∑
n=−N/2

S(n∆k)ei2πnm/N .

(2.40)

With some modifications including the change of notations Î(m∆x)→ xn, S(n∆k)→
yk, a shift in the index set and normalising with the factor ∆x = ∆k = 1/

√
N to

ensure that the transform is unitary, we obtain the one-dimensional inverse discrete

Fourier transform (IDFT),

xn =
1√
N

N−1∑
k=0

yke
i2πkn/N , (2.41)

and the forward operation, the discrete Fourier transform (DFT),

yk =
1√
N

N−1∑
n=0

xne
−i2πkn/N . (2.42)
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Figure 2.1: From left to right, standard Cartesian (rectilinear), radial and single shot
spiral k-space trajectories in 2D.

2.6.2 Algebraic formulation

Eqs. (2.41) and (2.42) can be respectively expressed more compactly using a matrix-

vector product

x = F−1y, (2.43a)

y = Fx, (2.43b)

where F represents the DFT matrix,

F =
1√
N



1 1 1 · · · 1

1 e−i2π/N e−i4π/N · · · e−i2π(N−1)/N

1 e−i4π/N e−i8π/N · · · e−i2π2(N−1)/N

...
...

...
. . .

...

1 e−i2π(N−1)/N e−i2π2(N−1)/N · · · e−i2π(N−1)(N−1)/N


∈ CN×N .

(2.44)

Since the matrix is unitary, we have FHF = FFH = I (where I is the identity matrix),

and equivalently F−1 = FH. The advantages of formulation (2.43) is that it provides

a convenient compact mathematical notation and the image reconstruction problem

becomes one of solving a system of linear equations.

In practice the DFT and IDFT are actually never or rarely computed by explicitly

defining such matrices as in Eq. (2.44). In fact, the N -points DFT and IDFT are

most of the time not even computed using the naive definitions (2.42)-(2.41) that

requires O(N2) operations, but using the well known fast Fourier transform (FFT)

algorithm that necessitates only O(N logN) operations.

2.6.3 Cartesian and non-Cartesian sampling

The conventional way to acquire Fourier samples in MRI is along a uniformly sam-

pled Cartesian space, also known as rectilinear sampling. It is also possible to collect
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ky

kx

Figure 2.2: Non-Cartesian sampling illustrated with two radial projections. The
problem is to generate uniform samples onto the Cartesian grid from nonuniformly
spaced samples (black dots).

data on a non-Cartesian space by using radial or spiral trajectories as illustrated in

figure 2.1. The k-space sampling trajectory is determined by the pulse sequence

that contains information about gradient magnetic fields as discussed in section 2.4.

In non-Cartesian sampling, data are not collected on a rectangular grid which

results in nonuniformly spaced samples acquired in the frequency domain. The

problem of non-Cartesian reconstruction is then to generate uniformly space sam-

ples in the image domain. The gridding technique is a well established procedure

that interpolates nonuniform samples onto a uniform rectilinear grid, generally via

convolution of each data point with a Kaisser-Bessel convolution kernel. The grid-

ding technique is a particular case of non-Cartesian reconstruction that treats the

nonuniform (source) to the uniform (destination) case. Whether the source, des-

tination or both data are nonuniform is a more general case that can be treated

with the nonuniform Fast Fourier transform, see Refs. [16–19]. The non-Cartesian

reconstruction problem is illustrated in figure 2.2.

Another possibility in case of radial sampling consists of considering image re-

construction from Radon transform samples, also known as image reconstruction

from projections. Image reconstruction algorithms from Radon transform samples

include

• direct backprojection and filtered back projection algorithms which approxi-

mate implementations of the inverse Radon transform,

• direct Fourier reconstruction that needs to convert the projection data to

Fourier data using the projection slice theorem1, interpolate the Fourier data

1 The projection slice theorem stipulates that the one-dimensional Fourier transform of a pro-
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to obtain a rectangular grid, and then use a standard Fourier reconstruction,

• algebraic reconstruction techniques where the image reconstruction is formu-

lated as a set of algebraic equations.

In this dissertation, non-Cartesian sampling refers to pseudo non-Cartesian sam-

pling in the sense that non-Cartesian trajectories will be directly approximated onto

a Cartesian grid. This allows to simulate and test potentially many different types

of sampling strategies without requiring actual non-Cartesian sampling from MR

scans. A standard, real world, non-Cartesian acquisition would comprise a density

compensation function that corrects for oversampling of the k-space centre and a

gridding procedure to interpolate non-Cartesian data onto a Cartesian grid.

2.7 Noise

The principal source of noise in MRI is the thermal noise, also known as Johnson–

Nyquist noise [20, 21], which is generated by random thermal agitation of charge

carriers inside the receiver coil. Those random fluctuations primarily come from the

patient’s body, but also from the receiver coil itself and electronics [1, Chapter 15]

[22].

Due to the nature of the thermal noise, the noise samples in k-space can be

reasonably modelled by an additive normal distribution on both real and imaginary

parts with independent and identically distributed random variables. The probabil-

ity density function of the normal distribution reads

f(x, µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(2.45)

with mean µ and variance σ2, and is written more compactly as N(µ, σ2). Hence,

instead of Eq. (2.31), the signal equation becomes

S(k) =

∫
RD

I(r)e−i2π(r·k)dr +N(k), (2.46)

where N represents the noise function. For discrete data, the additive noise vector

will be denoted by n and will obey

∀j, <{nj},={nj} ∼ N(µ, σ2). (2.47)

Since the Fourier transform is a linear transformation, the noise in a (complex-

valued) MR image reconstructed through Fourier transform is also normally dis-

tributed. In fact, if normally distributed noise is assumed in each real and imaginary

jection taken at angle θ is equal to the central radial slice at angle θ of the two-dimensional Fourier
transform of the original object.
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Figure 2.3: Dynamic magnetic resonance imaging. Left figure shows the k-space in
time, often referred to as (k, t)-space. Right figures represent common dynamic imaging
data: functional, cardiac and dynamic contrast enhanced MRI.

parts, Gudbjartsson and Patz [23] showed that the noise in the magnitude of the

MR image (absolute value of complex-valued data) were distributed according to

the Rician distribution, whose probability density function is

f(x, ν, σ) =
x

σ2
exp

(
−(x2 + ν2)

2σ2

)
I0

(xν
σ2

)
, (2.48)

where x represents the measured pixel intensity, ν the image pixel intensity in the

absence of noise, and I0(z) is the modified Bessel function of the first kind with order

zero2. In regions where no NMR signal is present, they showed that the noise was

governed by the Rayleigh distribution, a special case of the Rician distribution with

ν = 0. The general expression of the distribution for the phase image (argument of

complex-valued data) is more complicated and omitted here.

Finally, note that Gudbjartsson and Patz [23] have also shown that a normal

distribution of the noise for both magnitude and phase images is approximately valid

when the signal-to-noise ratio (SNR) is larger than two. The SNR can be defined

in the reconstructed image as the ratio of signal amplitude to the noise standard

deviation, and it is a common measure to quantify the noise. In MRI, the SNR

depends upon several imaging quality parameters such as spatial resolution and

the number of acquired samples, and as such there is often a compromise to make

between these parameters.

2.8 Dynamic imaging

The work presented in this dissertation focuses on dynamic MRI and the reconstruc-

tion of dynamic MR signals from sub-Nyquist sampling. Dynamic MR imaging refers

to the acquisition of a series of MR images in time, resulting in a spatio-temporal

MR signal where both spatial and temporal informations are available. Intuitively,

the spatio-temporal signal can be seen as a sequence of images where dynamic events

2I0(z) =
∑∞
m=0

1
m!Γ(m+1)

(
z
2

)2m
where Γ is the Gamma function.
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in the scene become visible much like a video, see figure 2.3. Dynamic MRI is an

essential imaging modality to study and observe various dynamic phenomena.

Formally, dynamic MRI is based on an extension of the k-space definition with

an additional time variable [24]. Instead of Eq. (2.46), the imaging equation can be

written as

S(k, t) =

∫
RD

I(r, t)e−i2π(r·k)dr +N(k, t), (2.49)

where S, I and N represent respectively the (k, t)-space signal, the spatio-temporal

image and noise functions.

2.9 Conclusion

We have given an overview of the core principles of the magnetic resonance imaging

experiment in this chapter. The NMR phenomenon involves the alignment of the

spin system in the presence of a static magnetic field, and the perturbation of this

alignment by employing a second oscillating RF electro magnetic field at a specific

frequency. The spin system relaxes back towards its original equilibrium state in the

form of a rotating magnetisation that is detected and converted into an electrical

signal via a receiver coil. Gradient magnetic fields are used to spatially encode

information and make possible the formation of an image. Given a finite set of

Fourier samples, image reconstruction is about finding a discrete approximation of

the true continuous image function. Additional difficulties arise due to noise in

MRI, that should be considered additive, complex-valued and normally distributed

in k-space. Dynamic MR imaging involves a supplementary temporal dimension to

image structures changing over time.

MRI is a sophisticated imaging modality, but the complete procedure is sum-

marised in the technique’s name. Indeed, magnetic refers to the interaction of nu-

clear magnetic moments in an assortment of magnetic fields; resonance relates to the

matching of frequency between the RF pulse and the precession of the spins; finally,

imaging refers to the process by which the signal is measured and then converted

into an image.
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Linear inverse problems
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3.1 Introduction

In this chapter, we discuss finite-dimensional linear inverse problems, a very common

topic in many areas of science and engineering, and in particular in signal processing,

imaging sciences and machine learning.
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This chapter is organised as follows. We dicuss the general concepts of inverse

problems in section 3.2. Signal recovery techniques from partial data are presented

in section 3.3 as typical examples of inverse problems. We discuss state of the

art methods for dynamic MRI reconstruction methods from undersampled (sub-

Nyquist) data in section 3.4. A brief discussion on inverse crimes is provided in

section 3.5 before concluding this chapter in section 3.6.

3.2 Generalities

3.2.1 Forward and inverse problems

Consider the finite-dimensional, linear, forward MRI model

y = Ex, (3.1)

where y ∈ CM represents the k-space measurements vector, E ∈ CM×N is the

MRI encoding matrix that models the acquisition procedure, and x ∈ CN is the

signal/image to recover.

In this context, the forward problem is to find y given x, that is to determine

the observations from the object. The inverse problem is to find x given y, or in

other words to reconstruct the object from the measurements. There are three cases

to consider to determine x from Eq. (3.1), depending whether M = N , M > N or

M < N .

1. M = N . The MRI encoding matrix models the sampling at Nyquist rate

and Fourier operation, and is therefore the DFT matrix as in Eq. (2.44), i.e.

E = F. The equation is invertible and the solution is given by E−1y = EHy.

2. M > N . The MRI encoding matrix models over-Nyquist sampling and Fourier

operation. In this case, there are more observations than unknowns. The

system is said to be overdetermined and in general has no solution, although

in some cases it may have a unique solution or infinitely many solutions. The

least squares approach can be used to find an approximate solution (or exact

solution if it exists) using the Moore–Penrose pseudoinverse E†,

x? = arg min
x
{F (x) ≡ ‖Ex− y‖22}

= (EHE)−1EH︸ ︷︷ ︸
E†

y. (3.2)

Indeed, we have ∇F (x) = 2EH(Ex− y) = 0, and hence x? = (EHE)−1EHy.

3. M < N . The MRI encoding matrix models sub-Nyquist sampling and Fourier

operation. This can be expressed as E = AF where A represents the sampling
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matrix (sub-Nyquist) and F the Fourier transform. In this case, there are less

equations than unknowns. The system is said to be underdetermined and the

solution of the system is not unique (infinitely many solutions). The minimum

norm can be used when a system has multiple solutions,

min
x
{F (x) ≡ ‖x‖22} s.t. y = Ex. (3.3)

The solution of (3.3) can be derived via Lagrange multipliers and is given by

x? = EH(EEH)−1︸ ︷︷ ︸
E†

y. (3.4)

Note from Eqs. (3.2) and (3.4) that the pseudoinverse E† has a dual definition.

3.2.2 Ill-posedness

We can characterise more formally the nature of an inverse problem with the fol-

lowing definition. A problem is said to be well-posed when it satisfies the following

conditions [25–27]:

• a solution exists (existence),

• the solution is unique (uniqueness),

• the solution is stable with respect to small change in measurements (stability).

The problem is said to be ill-posed if it violates one or more of these requirements.

The idea of a well-posed problem can be traced back to a short paper by Hadamard

[28] in 1902 in the context of mathematical physics and boundary-value problems

for partial differential equations.

From the above definition, it should be clear that the ideal MR image recon-

struction problem (2.33), that is trying to find the true image function from a finite

set of samples, is fundamentally an ill-posed inverse problem since there are in-

finitely many solutions. As for the finite-dimensional MRI reconstruction problem

(3.1) from sub-Nyquist samples when M < N , this is a typical example of a linear

discrete ill-posed inverse problem because there is no unique solution.

3.2.3 Optimisation and regularisation

Many inverse problems, and in particular MR image reconstruction problems, can

be generally stated in the context of mathematical optimisation where an objective

function F (x) : CN → R is minimised,

x? = arg min
x∈CN

F (x). (3.5)
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When an inverse problem is ill-posed, a very common approach is to regularise

the problem to reduce the space of candidate solutions. This translates into impos-

ing additional constraints in the optimisation problem formulation. From a Bayesian

point of view, this is equivalent to adding prior information based on a priori knowl-

edge on the signal to reconstruct. This prior information can range from simple

to more sophisticated knowledge of the signal one wish to recover. The objective

function is then formulated as

min
x
{F (x) ≡ D(Ex,y) + αR(x)}, (3.6)

where D is a data fidelity criterion (observation model) and R represents the reg-

ularisation or penalty functional (prior information). The nonnegative parameter

α is called regularisation parameter and controls the solution between the data fi-

delity term and the regularisation term. When α → 0 (resp. α →∞), the solution

favours the data fidelity term (resp. the regularisation term). The formulation (3.6)

is often referred to as Tikhonov regularisation in the inverse problems literature.

Equivalent constrained optimisation forms, under mild conditions, include Morozov

regularisation

min
x
R(x) s.t. D(Ex,y) ≤ ε, (3.7)

and Ivanov regularisation

min
x
D(Ex,y) s.t. R(x) ≤ γ, (3.8)

where ε and γ are nonnegative parameters.

In practice, optimisation problems are solved through iterative algorithms where

the solution is updated iteratively starting from an initial guess because closed-form

solutions do not exist in general. Even when a closed-form solution exists, it is often

better to use an iterative method in terms of computational cost.

3.3 Signal recovery via low-dimensional models

In this thesis, we are mainly interested in the reconstruction of a discrete signal from

only a limited amount of noisy Fourier samples. Without any additional information,

this problem seems difficult, if not impossible.

However, the signal of interest often lies in a much lower dimensional space than

its original domain. This is generally true because most often the signal presents

some form of redundancy or inner structure that can be exploited, unless for ex-

ample the signal is pure noise. Many techniques exist to reduce the dimension of

signals, often referred to as dimensionality reduction methods, such as principal

component analysis, factor analysis or sparse models. When the signal lies in a
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lower-dimensional space, the recovery of the signal from only a small amount of

data may become possible.

In the following, recovery methods that exploit signal low-dimensionality are de-

scribed. We first introduce compressed sensing (CS), an efficient signal acquisition

and reconstruction method for the recovery of sparse (or approximately sparse) sig-

nals. We then describe low-rank matrix recovery, low-rank plus sparse decomposition

and low-rank tensor recovery.

3.3.1 Compressed sensing

Compressed sensing (CS) finds its origins in a paper by Candès et al. [29] published

in 2006. They showed that it was possible to perfectly reconstruct a signal from a

limited amount of Fourier samples, using a priori information about the sparsity of

the signal. The same year, Donoho [30] showed that an exact reconstruction was

possible not only in the Fourier domain but in any other transform that could sparsify

the signal of interest. He introduced the term compressed sensing which literally

means the acquisition (sensing) of compressed data. The fundamental concepts

underlying the CS theory, namely sparsity, a specific sensing procedure and nonlinear

reconstruction, are described hereinafter.

Sparsity

A N -dimensional signal s is said to be sparse if it has only a few nonzero K co-

efficients compared to its intrinsic dimension N , i.e. K � N . A signal is said

approximately sparse when it has only a few significant nonzero K coefficients com-

pared to its intrinsic dimension N . The latter definition is useful because most

often the signal is not purely sparse. A simple and intuitive measure of the signal’s

sparsity is the `0 pseudonorm,

‖s‖0 = #{n : sn 6= 0}, (3.9)

which counts the number of nonzero elements in s (see also appendix A.1).

A signal x might not be sparse naturally, but it may be possible to transform it

into a domain where it can be considered sparse by using a sparsifying transform.

Specifically, if we consider a unitary sparsifying transform Ψ that correctly sparsifies

the signal x, then we can write

s = Ψx, x = ΨHs, (3.10)

because the unitary property implies that

ΨHΨ = I, (3.11)
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Original Wavelet coefficients ~20% ~5%

Figure 3.1: Two images converted into a sparse domain using a wavelet transform,
and reconstructed with about 20% and 5% of their wavelet coefficients.

where I is the identity matrix. Sparsifying transforms are employed in image com-

pression algorithms, such as JPEG2000 that uses a wavelet basis. Sparsity is related

to compression because when a signal is sparse, only the nonzero coefficients and

their locations need to be stored. Figure 3.1 illustrates the use of a wavelet basis as

a sparsifying transform for images.

Sensing procedure

Consider the product of the sparse signal s ∈ CN with a sensing matrix Θ ∈ CM×N

with M � N . The product results in the underdetermined system of linear equa-

tions

y = Θs, (3.12)

where y represents the M -dimensional measurement vector. Note that when we

have s = Ψx, we should consider Θ as the product between an M × N matrix Φ

and sparsifying transform matrix ΨH, i.e.

y = Θs = ΦΨHs = Φx. (3.13)

To ensure that compressed sensing algorithms perform well, the sensing matrix Θ

should either satisfy incoherence properties, restricted isometry properties (RIP) or

null space properties (NSP). For example, the matrix Θ should have a low coherence

whose definition and bounds are

µ(Θ) = max
1≤i 6=j≤N

|〈θi,θj〉|, µ(Θ) ∈

[√
N −M
M(N − 1)

, 1

]
, (3.14)
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assuming Θ has normalised columns. Alternatively, it is said that the matrix Θ

satisfy the RIP [31] of order K and isometry constant 0 ≤ δΘ
K < 1 if

(1− δΘ
K )‖s‖22 ≤ ‖Θs‖22 ≤ (1 + δΘ

K )‖s‖22 (3.15)

for all K-sparse vectors s ∈ CN . This will be futher discussed in section 3.3.3.

Nonlinear reconstruction

Since the system (3.12) is underdetermined, there are in general infinitely many

solutions. The minimum norm can be used, but its solution is unlikely to be sparse.

To constrain the solution to be sparse, the problem can be formulated by using the

`0 pseudonorm,

min
s
‖s‖0 s.t. y = Θs. (3.16)

However, the use of the `0 pseudonorm makes this minimisation problem compu-

tationally intractable as the vector dimension increases. In fact, it reduces to a

combinatorial search with a complexity exponential in M , where the number of

combination to test can be computed through the binomial coefficient.

To obtain a more tractable problem, a common technique known as convex relax-

ation [32] replaces the `0 pseudonorm with the `1 norm (see definitions in appendix

A.1). The `1 norm is the closest convex function to the `0 pseudonorm. The modified

constrained optimisation problem then becomes

min
s
‖s‖1 s.t. y = Θs. (3.17)

When noise is considered in the model, the problem can be written with a mixture

of `2 and `1 norms as

min
s
‖s‖1 s.t. ‖Θs− y‖22 ≤ ε, (3.18)

where ε is a small number that is generally set to the noise level. The unconstrained

(Lagrangian) form of (3.18) reads

min
s

1

2
‖Θs− y‖22 + α‖s‖1, (3.19)

where α represents the regularisation parameter. Unconstrained minimisation prob-

lems use the Lagrangian to basically convert a constrained problem into an uncon-

strained one. Constrained and unconstrained problems are equivalent in the sense

that for some specific values of ε and α, the two problems share the same solution

although the relationship is unknown. Finally, we have so far only formulated the

synthesis approach, where the aim is to reconstruct the sparse signal s. We should

55



Linear inverse problems

also mentioned the analysis approach which reconstructs x directly, although when

the sparsifying transform is unitary as in Eq. (3.11), analysis and synthesis problems

are similar.

Hence, various forms of CS optimisation problems exist depending on the con-

strained or unconstrained (Lagrangian) cases, and on the analysis or synthesis forms.

They are summarised as follows,

(Synthesis/Constrained) min
s
‖s‖1 s.t. ‖Θs− y‖22 ≤ ε (3.20a)

(Synthesis/Unconstrained) min
s

1

2
‖Θs− y‖22 + α‖s‖1 (3.20b)

(Analysis/Constrained) min
x
‖Ψx‖1 s.t. ‖Φx− y‖22 ≤ ε (3.20c)

(Analysis/Unconstrained) min
x

1

2
‖Φx− y‖22 + α‖Ψx‖1. (3.20d)

For the specific case of CS MRI [33,34], the sensing matrix corresponds to the MRI

encoding matrix E that models both the random sub-Nyquist sampling and Fourier

operation (E = AF), so that Θ = EΨH and y = EΨHs = Ex. We obtain these

various forms of CS MRI optimisation problems,

(Synthesis/Constrained) min
s
‖s‖1 s.t. ‖EΨHs− y‖22 ≤ ε (3.21a)

(Synthesis/Unconstrained) min
s

1

2
‖EΨHs− y‖22 + α‖s‖1 (3.21b)

(Analysis/Constrained) min
x
‖Ψx‖1 s.t. ‖Ex− y‖22 ≤ ε (3.21c)

(Analysis/Unconstrained) min
x

1

2
‖Ex− y‖22 + α‖Ψx‖1. (3.21d)

The reconstruction procedure in CS involves a nonlinear method that enforces

both sparsity and consistency with the acquired measurements, as opposed to a

linear reconstruction by cardinal sine interpolation in standard Nyquist-Shannon

sampling theory.

Finally, note that the use of `1 norm minimisation to obtain sparse signals can

be traced back much earlier than in the mid-2000s for CS. It was used for geophysics

problems in 1979 [35] and early 1980s [36,37], in the 1990s in the statistics community

under the name least absolute shrinkage and selection operator (LASSO) [38], and

in the signal processing community under the name basis pursuit [39].

3.3.2 Low-rank matrix recovery

An intuitive interpretation of the rank of a real or complex-valued matrix is given

by the singular value decomposition (SVD) in the sense that a R-rank matrix will

have exactly R nonzeros singular values. Any matrix can be decomposed using the

SVD, which is a factorisation of a real or complex-valued M × N matrix X such
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that

X =

min(M,N)∑
n=1

σnunv
H
n = UΣVH, (3.22)

where U contains the left singular vectors (real or complex unitary square matrix),

Σ = diag(σn) is a diagonal matrix with nonnegative real-valued decreasing singular

values σn on its diagonal, and VH contains the right singular vectors (real or complex

unitary square matrix). The rank of the M × N matrix X can be considered low

when

rank(X)� min(M,N). (3.23)

An important theorem that relates the rank and SVD is the Eckart-Young theorem

[40] which states that the matrix

Y =
K∑
n=1

σnunv
H
n , (3.24)

where K ≤ R is the optimal K-rank approximation of X in the Frobenius norm

sense and assuming σn are decreasing singular values. Note that the SVD has a

close relation with the Karhunen–Loève transform (KLT) and principal component

analysis (PCA). In the context of 2D image processing, Gerbrands [41] showed that

the three transforms are very similar if one single matrix is considered.

The low-rank matrix recovery problem is about reconstructing the low-rank ma-

trix X from the measurement vector y according to

y = A(X), (3.25)

where the linear map A : CM×N → CP with P � MN represents the sampling

operator1. A naive approach is to consider the affine rank minimisation problem [42],

min
X

rank(X) s.t. y = A(X). (3.26)

In words, one tries to find a matrix of minimum rank that satisfies a given system

of linear equality constraints. However, the rank minimisation problem is compu-

tationally intractable as the dimension of the problem increases. Similarly to CS,

a convex relaxation technique can be employed where the rank penalty is replaced

by the nuclear norm, the closest convex surrogate of the matrix rank [42] which is

defined as the sum of singular values (see appendix A.1),

‖X‖∗ =

min (M,N)∑
n

σn. (3.27)

1Note that the linear map A can be written with a matrix representation as A(X) = A vec(X),
where A ∈ CP×MN and vec(X) ∈ CMN denotes the vectorisation of X.
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3.3.3 Recovery guarantees

Recovery guarantees for sparse signal recovery can be obtained using the notion

of coherence [43], restricted isometry properties [31], or null space properties [44].

Low-rank matrix recovery guarantees can be obtained using the generalisation of

restricted isometry property to matrices [45] or null space conditions [46]. In what

follows, we focus on recovery guarantees derived from the restricted isometry prop-

erty.

Consider the model y = Ax with x a K-sparse vector and the sampling matrix

A ∈ RM×N (M < N) and recall the RIP for sparse signal recovery. For integers

1 ≤ K ≤ N , define the isometry constant δA
K to be the smallest nonnegative number

such that

(1− δA
K)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δA

K)‖x‖22 (3.28)

for all K-sparse vectors x.

The RIP was also generalised to matrices by Recht et al. [45]. Consider the

model y = A(X) where X is a R-rank matrix and A : RM×N → RP is a linear

operator with P < MN . For integers 1 ≤ R ≤ min (M,N), define the isometry

constant δAR to be the smallest nonnegative number such that

(1− δAR)‖X‖2F ≤ ‖A(X)‖2F ≤ (1 + δAR)‖X‖2F (3.29)

for all R-rank matrices X.

Several conditions on the restricted isometry constants for exact recovery of both

sparse signals and low-rank matrices have been proved by researchers. For example,

the recovery of a K-sparse signal is guaranteed via `1 minimisation if the isometry

constants of the measurement matrix A satisfy

δA
2K <

√
2− 1, (3.30)

a sufficient condition proved by Candès [47] in 2008. More recently, Tai and Zhang

[48] have established the following sharp conditions on the RIP. For sparse signal

recovery, the theorem states that if the measurement matrix A satisfies

δA
K <

1

3
(3.31)

for some integer 2 ≤ K ≤ N , the minimiser of the constrained `1 norm minimisation

problem,

x? = arg min
x
{‖x‖1 : y = Ax}, (3.32)

recovers the K-sparse vector x exactly. For low-rank matrix recovery, the theorem
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states that if the measurement operator A satisfies

δAR <
1

3
(3.33)

for some integer 2 ≤ R ≤ min (M,N), the minimiser of the constrained nuclear

norm minimisation problem,

X? = arg min
X
{‖X‖∗ : y = A(X)}, (3.34)

recovers the R-rank matrix X exactly. The above recovery guarantees hold for the

noiseless case; the reader is referred to Ref. [48] for noisy signals.

However, coherence, RIP or NSP are not particularly convenient in practice. For

example, the lower bound of the coherence in CS limits the performance analysis

of recovery algorithms to relatively small sparsity levels as noted by Foucart and

Rauhut [49]. Similarly, direct construction of a measurement matrix satisfying the

RIP is computationally difficult due to the combinatorial nature of the problem.

These limitations can be overcome by using random matrices. For example, Candès

and Tao [50] have shown that the RIP in CS is satisfied with high probability for

random Gaussian matrices of specific dimensions, i.e. if the entries of the matrix are

independent Gaussian random variables. More generally, random matrices satisfy

the RIP with high probability if their entries are chosen according to subgaussian

distribution (which includes Gaussian and Bernoulli distributions). This has been

shown independently by Mendelson et al. [51] and Baraniuk et al. [52]. For low-rank

matrix recovery, it can also be shown that if linear mappings A are sampled from

certain class of probability distributions (such as i.i.d. Gaussian), they satisfy the

RIP for matrices with high probability [45].

3.3.4 Low-rank plus sparse matrix decomposition

The low-rank plus sparse decomposition (L+S) model [53–57], also sometimes re-

ferred to as robust principal component analysis (RPCA) or principal component

pursuit (PCP) due to the paper by Candès et al. [56], is concerned with the exact

decomposition of a given matrix into low-rank L and sparse S components. Consid-

ering a matrix X, RPCA can be formulated as the following minimisation problem,

min
L,S
‖L‖∗ + λ‖S‖1 s.t. X = L + S. (3.35)

This convex problem employs both the nuclear and `1 norms to respectively enforce

a low-rank and a sparse matrix subject to data constraints.

A related problem referred to as compressive principal component pursuit is when
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only partial observations are considered, i.e.

min
L,S
‖L‖∗ + λ‖S‖1 s.t. y = A(L + S), (3.36)

where A represents a sampling operator. It has been shown in multiple studies

[56,58–62] that it is possible under some assumptions to recover both low-rank and

sparse components from only a fraction of observations. The RPCA model will be

further discussed in chapter 6.

3.3.5 Low-rank tensor recovery

A tensor X is a multidimensional array of the form X ∈ RN1×N2×...×NQ where Q

represents the order of the tensor, also referred to as Q-mode or Q-way tensor. A

second-order tensor is a matrix and a first-order tensor is a vector. A fiber of X is a

column vector defined by fixing every index of X but one. Fibers are higher-order

generalisation of matrix rows and columns.

The mode-q unfolding of a tensor X , also called matricisation or flattening, are

denoted X(q) and are obtained by arranging the mode-q fibers to be the columns

of the resulting matrix. As an example, Kolda and Bader [63] consider a 3-mode

tensor X ∈ RN1×N2×N3 with N1 = 3, N2 = 4 and N3 = 2. Consider that X has the

frontal slices

X1 =

1 2 3 4

5 6 7 8

9 10 11 12

 , X2 =

13 14 15 16

17 18 19 20

21 22 23 24

 . (3.37)

The unfolding modes of X are

X(1) =

1 2 3 4 13 14 15 16

5 6 7 8 17 18 19 20

9 10 11 12 21 22 23 24

 , (3.38)

X(2) =


1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

 , (3.39)

X(3) =

[
1 2 3 4 · · · 10 11 12

13 14 15 16 · · · 22 23 24

]
. (3.40)

However, the specific permutation of columns is generally not important as long as

it is consistent across related calculations as Kolda and Bader [63] remark.

To define the rank of a tensor, we need first to introduce the definition of a rank-
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one tensor. A Q-order tensor is rank-one if it can be written as the outer product

of Q vectors,

X = a(1) ◦ a(2) ◦ . . . ◦ a(Q), (3.41)

where ◦ is the vector outer product and a(q) ∈ RNq , q = 1, . . . , Q. The rank of tensor

X is defined as the smallest number of rank-one tensors that generate X as their

sum [63]. In mathematical terms

rank(X ) ≡ min
R∈N

{
∃a(q)

r , τr | X =

R∑
r=1

τra
(1)
r ◦ a(2)

r ◦ . . . ◦ a(Q)
r

}
, (3.42)

where τr ∈ R and a
(q)
r ∈ RNq for r = 1, . . . , R. For a third-order tensor X ∈

RN1×N2×N3 , Kolda and Bader [63] note that only the following weak upper bound

on its maximum rank is known,

rank(X ) ≤ min{N1N2, N1N3, N2N3}. (3.43)

Kolda and Bader [63] also note that the rank of a real-valued tensor may be different

over R and C and that there is no straightforward algorithm to determine the rank

of a tensor.

For this reason, if is often considered instead the q-rank of tensors, which is also

known as Tucker rank because it finds its foundation in the Tucker decomposition.

The q-rank of X is much easier to compute than rank(X ) because it is simply defined

as the rank of the mode-q unfolding X(q). In other words, the q-rank of Q-order

tensor X is the Q-dimensional vector whose qth entry is the rank of the mode-q

unfolding,

q-rank(X ) ≡
(

rank(X(1)), . . . , rank(X(Q))
)
. (3.44)

This definition implies that a low q-rank tensor is a tensor whose mode-q unfoldings

are low-rank matrices. A more practical use of the q-rank is the sum of ranks of the

mode-q unfoldings, i.e.
∑Q

q=1 rank(X(q)).

Low-rank tensor recovery refers to a generalisation of low-rank matrix recovery

to tensor, as higher-order generalisation of matrices. This topic has been mainly

investigated through convex optimisation in the past [64–66]. The low-rank tensor

recovery problem can be expressed as

min
X

Q∑
q=1

rank(X(q)) s.t. y = A(X ), (3.45)

where A is a sampling operator. Similar to sparse signal and low-rank matrix recov-

ery, convex relaxation can be used to overcome intractability. The convex q-rank,

61



Linear inverse problems

denoted c-q-rank, can be defined using the nuclear norm,

c-q-rank(X ) =

Q∑
q=1

‖X(q)‖∗. (3.46)

A tractable low-rank tensor recovery problem can then be written as

min
X

Q∑
q=1

αq‖X(q)‖∗ s.t. y = A(X ), (3.47)

where the αq’s represent weights. Problem (3.47) can be interpreted as the nuclear

norm minimisations of multiple reorderings of the tensor into matrices.

3.4 Sub-Nyquist dynamic MRI

The motivations for accelerating MRI scans and in particular dynamic MRI have

been explained in section 1.1. Many approaches have been proposed to reduce

acquisition time from different perspectives. For example, echo planar imaging [67]

and fast low-angle shot imaging [68] use specific pulse sequences, while parallel MR

imaging uses multiple receiver coils.

In this thesis, the main approach we have taken to speed up scan time is based

on violating the Nyquist criterion by skipping measurements that would be normally

acquired in a standard MRI procedure. When the Nyquist criterion is not satisfied,

we have seen that the discrete inverse problem is typically ill-posed because it lacks

a unique solution. From an imaging aspect, this translates into the introduction of

undesirable artefacts in the reconstructed images when the most basic reconstruction

technique, the minimum norm, is used. Thus, the aim is to develop methods that

can remove these artefacts and provide physiologically representative and accurate

images in agreement with the measurements. In what follows, we briefly review

some of these reconstruction techniques from undersampled (k, t)-space that have

been proposed so far.

3.4.1 Temporal and spatio-temporal interpolation

One of the first technique proposed to reconstruct dynamic MRI data from partial

(k, t)-space samples is the sliding window method. The most basic version of sliding

window is the zeroth-order hold technique [69] which simply estimates the missing

k-space samples at time frame t with the latest data point at time frame t− 1 from

the same k-space location.

A more sophisticated approach was proposed in 1999 called unaliasing by Fourier-

encoding the overlaps using the temporal dimension (UNFOLD) [70]. This technique
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uses a lattice undersampling scheme that produces aliasing artefacts that can be eas-

ily removed with simple filtering in the temporal Fourier domain.

In 2003, Tsao et al. [71] proposed an approach called broad-use linear acquisi-

tion speed-up technique (k-t BLAST). This method uses a variable-density sampling

scheme, which is a combination of acquired random k-space lines (called undersam-

pled dataset) with sampling of central part of the k-space (called training dataset).

These datasets are converted into the temporal Fourier domain, and respectively

contain aliasing artefacts and a low-spatial resolution estimate. k-t BLAST uses the

training dataset to guide the reconstruction and removes artefacts in the undersam-

pled dataset.

3.4.2 Compressed sensing

In 2006, Lustig et al. [72] proposed k-t SPARSE, a compressed sensing method for

dynamic MR imaging that uses a sparsifying transform adapted for dynamic MR

imaging, random undersampling and `1 norm reconstruction. k-t SPARSE solves

the convex optimisation problem

min
x
‖Ψx‖1 s.t. ‖Ex− y‖2 ≤ ε, (3.48)

where Ψx represents the sparse signal with Ψ being a sparsifying transform, E is

the MRI encoding operator modelling both the random sub-Nyquist sampling pro-

cess and Fourier transform and y is the stacked (k, t)-space measurements vector.

The sparsifying transform Ψ represents in k-t SPARSE a Fourier transform in the

temporal direction and a wavelet transform in the spatial direction. The temporal

Fourier transform is further discussed in section 3.4.5. Formulation (3.48) is of Mo-

rozov type as shown in (3.7) with the constraint representing the data fidelity term.

A nonlinear conjugate gradient descent algorithm with backtracking line search is

used to solve the unconstrained (Lagrangian) version of problem (3.48). In this

method described in Ref. [33], the absolute values of the `1 norm are approximated

by smooth (differentiable) functions.

Later, Jung et al. proposed k-t FOCUSS [73–75] which is based on the focal

underdetermined system solver (FOCUSS) [76], a general estimation method to find

localised energy solution from limited data that employs successive quadratic opti-

misation to obtain sparse solutions. More specifically, k-t FOCUSS first estimates

a low-resolution version of the (y-f)-space signal and performs a FOCUSS recon-

struction to recover it. The (y-f)-space signal is the dynamic MRI signal in the

temporal Fourier domain (see section 3.4.5) which proves to be sparse. Hence, k-t

FOCUSS addresses the CS dynamic MRI problem (`1 minimisation) by recovering

directly the dynamic signal in the temporal Fourier domain using a specific quadratic
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optimisation technique. Consider the equation

y = Ex (3.49)

where y and x represent respectively the undersampled (k, t)-space measurement

vector and the sparse (y-f)-space image, and E = AFyFt is the MRI encoding

operator modelling the random sub-Nyquist sampling (A), the Fourier transform

along the y direction (Fy) and the temporal Fourier transform (Ft). The solution

of Eq. (3.49) is not unique, and the minimum norm solution is unlikely to give a

sparse reconstruction. Standard CS dynamic MRI methods solve

min
x
‖x‖1 s.t. ‖y −Ex‖2 ≤ ε. (3.50)

Instead, consider the weighted minimum norm problem

find x = Wq,

where q : min
q
‖q‖2 s.t. ‖y −EWq‖2 ≤ ε,

(3.51)

and where W is a weighting matrix. In its Lagrangian (unconstrained) form, the

problem can also be written

min
q
‖y −EWq‖22 + λ‖q‖2 (3.52)

which has the following closed form solution

q? = WHEH(EWWHEH + λI)−1y. (3.53)

Hence, the solution of problem (3.51) is

x? = Wq? = ΛEH(EΛEH + λI)−1y (3.54)

where Λ = WWH. Now consider x = x̃ + Wq where x̃ represents a low-resolution

estimate of the (y-f)-space, then k-t FOCUSS solves a slightly modified version of

problem (3.52),

min
q
‖y −Ex̃−EWq‖22 + λ‖q‖2 (3.55)

which has the closed form solution

x? = x̃ + ΛEH(EΛEH + λI)−1(y −Ex̃). (3.56)

Hence, at each iteration, k-t FOCUSS essentially updates the weighting matrix Wk
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according to

Wk =


|xk−1

1 |p 0 · · · 0

0 |xk−1
2 |p · · ·

...
...

. . .
...

0 0 · · · |xk−1
N |p

 , 1/2 ≤ p ≤ 1, (3.57)

where

xk−1 = [xk−1
1 , xk−1

2 , . . . , xk−1
N ]

>
(3.58)

is the N -dimensional (y-f)-space vector estimate at k − 1, and then computes xk

according to Eq. (3.56). For a weighting matrix power factor of p = 1/2 in W,

the authors of k-t FOCUSS showed that the FOCUSS solution is asymptotically

equivalent to the `1 minimisation. One of the major advantage of k-t FOCUSS over

k-t SPARSE is that it is computationally much more efficient since it uses quadratic

(`2 norm) optimisation technique.

An improvement over k-t SPARSE called k-t group SPARSE was proposed by

Usman et al. [77] in 2011, which exploits the fact that the sparse coefficients in the

temporal Fourier domain typically form a group structure. An overview of some of

these previously described methods can be found in the review paper by Tsao and

Kozerke [69].

3.4.3 Low-rank

More recently, researchers have also looked at exploiting low-rank property of matri-

ces in dynamic MRI, instead of simply vector sparsity as in CS. Consider a sequence

of Nt images of dimensions Nx × Ny. Approaches based on low-rank matrix re-

covery are usually based on the formulation of the Casorati matrix, a matrix of

dimensions NxNy × Nt whose columns represent vectorised MR images of the dy-

namic sequence [78,79]. Formally if we denote x1,x2, . . . ,xNt the Nt vectorised MR

images, the Casorati matrix takes the form

X = [x1, . . . ,xNt ] ∈ CNxNy×Nt . (3.59)

This matrix is very likely to be approximately low-rank with only a few significant

singular values because of the high correlation between images in time.

Methods have been proposed in 2010 by Haldar and Liang [79] and by Zhao et

al. [80] to consider low-rank constraints for dynamic MRI reconstruction problems.

Both methods solve the following problem

min
X
‖E(X)− y‖22 s.t. rank(X) ≤ C (3.60)
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where E : CNxNy×Nt → CM is the MRI encoding operator modelling both the random

sub-Nyquist sampling and Fourier transform with M � NxNyNt. Both methods

are based on the incremented-rank PowerFactorization (IRPF) algorithm [81] which

is an alternating least squares approach that makes use of a matrix factorisation of

X to enforce C-rank structure implicitly.

Note that in problem (3.60), we have used the linear operator notation E instead

of E. In this thesis, we will in general use linear operators (e.g. E,Ψ) instead

of matrices (e.g. E,Ψ) to lighten the notations since we will handle both vector

and matrix variables. In both cases linear operators can be written with a matrix

representation as explained in the footnote of section 3.3.2.

3.4.4 Low-rank and sparsity

During this thesis, the combination of both low-rank and sparsity has also received

interests by other researchers. More specifically, Lingala et al. [82] proposed in 2011

k-t SLR (sparsity and low-rank structure). The idea was to jointly use a nonconvex

Schatten ”norm” for the low-rank part and the spatio-temporal total variation (TV)

for the sparsity part. The following minimisation problem is considered in k-t SLR,

min
X
‖E(X)− y‖22 + α‖X‖p + β TV(X), (3.61)

where ‖.‖p is the nonconvex Schatten ”p-norm” with p = 0.1 (see appendix A.1) and

TV(X) is the spatio-temporal TV operator. In mathematical terms, TV(X) is the

`1 norm of the gradient in directions x, y and t approximated by finite differences,

TV(X) =
∥∥∥√|∇x(X)|2 + |∇y(X)|2 + |∇t(X)|2

∥∥∥
1
. (3.62)

To solve (3.61), the authors in Refs. [82,83] proposed to majorise the penalty terms

by quadratic functions of X. A simplified objective function is then defined using

the majorisations, and the minimisation of this objective function is performed via

a three-step alternating scheme. The three steps involve respectively a quadratic

optimisation problem, the generalised singular value soft thresholding operator for

nonconvex rank constraint [84, 85] and the multidimensional shrinkage operator for

the spatio-temporal total variation prior. In addition, a continuation strategy is

implemented to overcome the trade-off between computational complexity and ac-

curacy.

In 2012, Zhao et al. [86] proposed a technique named partial separability-sparse

(PS-Sparse) to also exploit both the low-rank and sparsity a priori information

using respectively the partial separability model and a temporal Fourier transform.

A notable feature of this work lies in a single formulation of both constraints using

a sparsity constraint to regularise the PS model, although the method do require
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both the order of the PS model (rank) and the sparsity regularisation parameter.

In PS-Sparse, the Casorati matrix is expressed as a matrix factorisation X = UV

where U represents a basis for spatial subspace of X, and V represents a basis for

temporal subspace of X. The basis V is estimated prior to image reconstruction

and the basis for spatial subspace is estimated via the minimisation problem

min
U
‖E(UV)− y‖22 + α‖UVf‖1 (3.63)

where Vf represents the temporal Fourier transform of each row of V and ‖UVf‖1
is the `1 norm of UVf viewed as a vector. An algorithm based on half-quadratic

regularisation [87, 88] with continuation is used to solve the optimisation problem

(3.63).

More recently, Otazo et al. [89] proposed a reconstruction method for dynamic

MRI using a low-rank plus sparse approach. The optimisation problem is

min
L,S
{F (L,S) ≡ ‖L‖∗ + λ‖Ft(S)‖1} s.t. E(L + S) = y, (3.64)

where Ft is the temporal Fourier transform operator. This method is an adapta-

tion for dynamic MRI of the model discussed earlier in section 3.3.4. It considers

a decomposition of X into a linear combination of a low-rank L and sparse S com-

ponents, which is different than considering jointly X as low-rank and sparse as in

k-t SLR and PS-Sparse. Authors proposed a proximal gradient method to solve

the unconstrained version of problem (3.64) by considering the objective function

as F
([L

S

])
instead of F (L,S). We will further discuss this model in chapter 6 and

the connections with our work [90] that was published simultaneously.

3.4.5 On the temporal Fourier transform

In a continuous setting, the temporal Fourier transform or similarly the Fourier

transform along the time direction, can be defined as

I(r, f) =

∫
I(r, t)e−i2πtfdt = Ft{I(r, t)}, (3.65)

where I(r, t) represents the spatio-temporal image function. This operator is denoted

by the symbol Ft and its matrix version by Ft. The temporal Fourier domain is also

often referred to as (x, f)-space or (y, f)-space.

In this thesis, we will mainly consider the temporal Fourier transform as spar-

sifying transform for dynamic MR imaging. The frequent use of this sparsifying

transform in dynamic MR reconstruction methods [70–73] can be explained for the

following reasons. To obtain a sparse signal in dynamic MRI, the temporal Fourier
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Figure 3.2: Illustration of the temporal Fourier transform for two typical dynamic
MRI datasets. Time frame images from the sequence (left), temporal profiles along the
dashed lines (middle) and Fourier transform along the temporal direction resulting in
sparse (x-f)-space signals (right). Note the specific colour mappings to highlight the
sparsity.

transform is particularly adequate because the spatio-temporal signal very often

presents some periodicity in the time domain. In addition, this transform is unitary

and it can be computed with the FFT algorithm which makes it one of the most

efficient sparsifying transform in terms of computational cost. An illustration of a

temporal Fourier transform is shown in figure 3.2.

3.5 Inverse crimes

Inverse crimes arise when the same model is used to generate the test data and to

compute the reconstruction. They are intrinsically related to the process of convert-

ing an infinite-dimensional quantity to a finite-dimensional approximation necessi-

tated by numerical processing. This has been highlighted in the inverse problem

community [27,91] and more recently in compressed sensing [92].

Inverse crimes are particularly widespread in the MR reconstruction literature
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where the same discrete model is used both for simulation and reconstruction. Sur-

prisingly, researchers in the MR community have only started recently to work out

this problem. A notable approach has been proposed by Guerquin-Kern et al. [93]

in 2012 who have developed an analytical phantom that can be defined with Bézier

curve instead of rasterised image. This allows to take into consideration the contin-

uous nature of data, providing more realistic reconstruction simulations.

Note that in this dissertation, we will also use the same discrete model for both

simulation and reconstruction in numerical experiments. It should be acknowledged

that it will result in artificially better reconstructions because the continuous nature

of the data will not be taken into account.

3.6 Conclusion

In this chapter, we have reviewed linear discrete inverse problems. We have discussed

important concepts such as ill-posedness, optimisation and regularisation in inverse

problems. This chapter has mainly focused on signal recovery methods from partial

data. These inverse problems can be solved using low-dimensional signal models by

promoting low-complexity regularisation prior because most of the time signals lie

in much lower dimensional spaces than their original domain. We have provided an

overview of state of art reconstruction methods for sub-Nyquist dynamic MRI and

briefly discussed inverse crimes.

69



Linear inverse problems

70



Chapter 4

Optimisation framework:

proximal splitting methods
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4.1 Introduction

In this chapter, we introduce proximal splitting methods, a general framework to

solve various convex optimisation problems.

Convex optimisation1 [94–96] has increasingly gained in importance in recent

years. One of the reason that explains this popularity is that even when the prob-

lem dimensions get large (roughly the number of variables and constraints), convex

optimisation problems are still relatively easy to solve in contrast to nonconvex prob-

lems. In fact, although a common view is to generally interpret linear problems as

easy and nonlinear ones as difficult, Rockafellar in his book Lagrange multipliers and

1We refer the reader to appendix A.2 for a brief review of some convex optimisation concepts.
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optimality (1993) noted ”In fact the great watershed in optimization isn’t between

linearity and nonlinearity, but convexity and non-convexity”. The popularity of con-

vex optimisation methods can also be explained thanks to the availability of efficient

minimisation algorithms to compute globally optimal solutions, the increase in com-

puter power in the past decades (Moore’s law), and the significant impact on the

resolution of difficult problems when formulated with the help of convex relaxation

(i.e. `1 and nuclear norm problems).

For these reasons, optimisation problems expressed as the minimisation of con-

vex functionals are now ubiquitous in various areas such as in inverse problems [97],

signal and image processing [98] or machine learning [99], and thus there is a huge

interest in developing robust, fast and efficient algorithms for convex optimisation.

However, difficulties arise when optimisation problems include nonsmooth and large-

scale properties. Proximal splitting methods [100, 101] are first-order iterative al-

gorithms for solving such convex optimisation problems. They operate by splitting

the convex objective function to minimise which generates individual convex sub-

problems. These sub-problems are evaluated easily via proximal operators, a gener-

alisation of the projection operator. Proximal splitting methods offer a number of

interesting properties that are particularly adapted for the work presented in this

thesis:

• Convergence. Most of the proximal algorithms that we will describe in sec-

tion 4.3 have convergence guarantees and/or potentially quantified competitive

convergence rates.

• Computational speed. First-order methods are well suited for large-scale prob-

lems, mainly because iterations of typical first-order methods in the large-scale

case remains cheap to evaluate (compared to interior-point methods for exam-

ple). In the context of `1 and nuclear norms, first-order methods also possess

nearly dimension-independent convergence rates as discussed by Nesterov and

Nemirovski [102].

• Simplicity. These algorithms are in general short (a few lines) and easy to

implement with minimal storage requirement.

• Flexibility. These algorithms can handle various general convex problems (po-

tentially nonsmooth) and as such are flexible as long as the proximal operators

can be evaluated easily. Due to the splitting approach, they also naturally fit

the distributed and parallel computation framework [103].

This chapter is organised as follows. In section 4.2, we define the notion of

proximal operator and give the analytical solutions of proximal operators relevant

to this thesis. We review some proximal algorithms in section 4.3, and apply some

of these algorithms in the context of compressed sensing MRI in section 4.4. We
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also comment on nonconvex and greedy approaches in section 4.5, before concluding

this chapter in section 4.6.

4.2 Proximal operators

4.2.1 Definition

The notion of proximal operator is best described by defining first the notion of

the projection operator. The projection operator of z onto the closed convex subset

C ⊆ RN , denoted projC(z), is the solution to the following problem

projC(z) = arg min
x∈C

1

2
‖x− z‖22. (4.1)

Consider the characteristic function of C, defined as

1C(x) =

{
0 if x ∈ C

+∞ if x /∈ C
, (4.2)

which indicates the membership or nonmembership of a given element in that set.

Then, the projection operator can be expressed with the characteristic function as

projC(z) = arg min
x∈RN

1

2
‖x− z‖22 + 1C(x). (4.3)

The projection operator is used in the projection onto convex sets (POCS) algorithm

to solve problems with simultaneous convex constraints. The POCS method is one

of the first widely used convex optimisation technique and has been popularised in

particular by Youla and Webb [104] in 1982.

The proximal (or proximity) operator was introduced by Moreau in 1962 [105]

and further developed in 1965 [106]. He proposed to define the proximal operator of

g, denoted proxg : RN → RN , as a generalisation of the convex projection operator.

The characteristic function 1C in (4.3) is replaced by an arbitrary convex function

g,

proxg(z) = arg min
x∈RN

1

2
‖x− z‖22 + g(x). (4.4)

A proximal operator of g with parameter ρ can also be defined as

proxρg(z) = arg min
x∈RN

1

2
‖x− z‖22 + ρg(x)

= arg min
x∈RN

1

2ρ
‖x− z‖22 + g(x).

(4.5)

Note that in this thesis, given the nature of complex-valued data in MRI, the prox-

imal operator will be defined over convex functions of complex-valued variables, i.e.

73



Optimisation framework: proximal splitting methods

 0

 2

 4

 6

 8

 10

 12

-8 -6 -4 -2  0  2  4  6  8

Figure 4.1: Graphs of functions f(x) = 1
2 (x − z)2 + α|x| with α = 1 and z = −3

(blue), z = 0 (red) and z = 5 (green). Using the soft thresholding operator as defined
in Eq. (4.7), we obtain Sr1(−3) = −2, Sr1(0) = 0 and Sr1(5) = 4.

proxg : CN → CN .

4.2.2 Absolute value and `1 norm

Consider the proximal mapping of the absolute value function g(x) = |x| with x ∈ R,

proxα|.|(z) = arg min
x∈R

{1

2
(x− z)2 + α|x|

}
. (4.6)

Although the absolute value is not differentiable at zero, a closed form solution for

this proximal operator exists. It is given by the real-valued soft thresholding operator

denoted Srα,

Srα(z) =


z − α if z ≥ α

0 if |z| ≤ α
z + α if z ≤ −α

. (4.7)

This follows from the subdifferential of the absolute value function. This is illustrated

in figure 4.1.

In case where x ∈ C,

proxα|.|(z) = arg min
x∈C

{1

2
|x− z|2 + α|x|

}
, (4.8)

the proximal operator is given by the complex-valued soft thresholding operator [49]

denoted Scα,

Scα(z) =

{
sgn(z)(|z| − α) if |z| ≥ α

0 otherwise
, (4.9)
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Figure 4.2: The soft thresholding operator applied on a complex-valued random signal.
The resulting signal (in red) is shrunk, hence the alternative ”shrinkage” name.

where sgn denotes the complex sign function,

sgn(z) =
z

|z|
, ∀z ∈ C, (4.10)

except for z = 0 + i0 where sgn(0 + i0) = 0.

The soft thresholding operator can be defined more generally for the vector case

with either real or complex-valued entries. We denote it simply Sα and it is defined

element-wise as

Sα(z) = {Sα(zn)}Nn=1 =
zn
|zn|

max(|zn| − α, 0)

= sgn(zn) max(|zn| − α, 0)

= sgn(zn)(|zn| − α)+,

(4.11)

where sgn denotes the complex sign function. This operator thus defined is the

solution to the proximal operator of the `1 norm,

proxα‖.‖1(z) = arg min
x

{1

2
‖x− z‖22 + α‖x‖1

}
= Sα(z).

(4.12)

Note the soft thresholding operator is also sometimes referred to as the shrinkage

operator ; see figure 4.2.

Finally, consider a unitary sparsifying transform operator Ψ (i.e. Ψ∗Ψ = I).

Then, the proximity operator proxα‖Ψ(.)‖1(z) can be defined as

proxα‖Ψ(.)‖1(z) = arg min
x

1

2
‖x− z‖22 + α‖Ψ(x)‖1

= Ψ∗{Sα(Ψ(z))}.
(4.13)

75



Optimisation framework: proximal splitting methods

4.2.3 Nuclear norm

The proximal operator of the nuclear norm, the closest convex approximation of

the rank function, has a closed-form solution given by the singular value (soft)

thresholding (SVT) operator [107] that we denote SVTS,

proxα‖.‖∗(Z) = arg min
X∈CM×N

1

2
‖X− Z‖2F + α‖X‖∗

= SVTSα(Z)

= U diag(Sα(diag(Σ)))VH,

(4.14)

where UΣVH represents the singular value decomposition of Z and Sα is the soft

thresholding operator defined as in Eq. (4.11). Note that in this case we have

X ∈ CM×N , thus the proximal operator is defined over complex-valued matrix

variables, i.e. proxα‖.‖∗ : CM×N → CM×N .

4.3 Proximal splitting algorithms

4.3.1 Proximal gradient methods

Sum of two convex functions

The following optimisation problem is first considered,

min
x∈CN

F (x) ≡ f(x) + g(x), (4.15)

where it is assumed that f : CN → R is a continuously differentiable (C1) con-

vex function and g : CN → R is a convex function possibly nondifferentiable (see

appendix A.3).

The proximal gradient method [108] to solve (4.15), also known as forward-

backward splitting, is defined as the following iterative procedure

xk+1 ← proxρg(x
k − ρ∇f(xk)), (4.16)

where ρ > 0 is the step size (constant for all k or determined by line search). It is

called forward-backward because at each iteration it uses the forward gradient step

on f followed by a backward step on g, as the following decomposition suggests

xk+1/2 ←xk − ρ∇f(xk)

xk+1 ←proxρg(x
k+1/2).

(4.17)

When ∇f is Lipschitz continuous with constant L (see appendix A.3), this method

has been shown to converge for a fixed step size ρ ∈ (0, 2/L), see Ref. [108]. Note that
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the proximal gradient method can be seen as a generalisation of other algorithms:

when g = 1C , the method reduces to the projection onto C,

xk+1 ← projC(xk − ρ∇f(xk)), (4.18)

and is known as projected gradient method ; when g = 0, the method reduces to the

standard gradient descent,

xk+1 ← xk − ρ∇f(xk). (4.19)

Finally, it reduces to the proximal point algorithm when f = 0,

xk+1 ← proxρg(x
k), (4.20)

which is also known as proximal iteration.

Since the proximal gradient method is slow in general, various methods have been

proposed to accelerate it in particular by Nesterov [109] and Beck and Teboulle [110].

When the function f has a Lipschitz continuous gradient with constant L, these

methods enjoy a fast rate of convergence on the objective function, i.e. F (xk)−F (x?)

decreases at least as fast as 1/k2 with a fixed step size ρ = 1/L or suitable line search,

although the actual convergence of sequences produced by these schemes is no longer

guaranteed [100]. The fast proximal gradient method of Beck and Teboulle [110]

known as fast iterative shrinkage-thresholding algorithm (FISTA) is

xk+1 ←proxρg(w
k − ρ∇f(wk)) (4.21a)

tk+1 ←1

2
(1 +

√
1 + 4(tk)2) (4.21b)

wk+1 ←xk+1 +
tk − 1

tk+1
(xk+1 − xk) (4.21c)

where ρ = 1/L. In this case the major difference with the proximal gradient method

is that the proximal step is not just used on the previous point xk, but at a point wk

that uses a specific linear combination of the previous two points {xk+1,xk}. Note

that the specific steps (4.21b) and (4.21c) emerge from the analysis of the rate of

convergence of FISTA. We refer the reader to Ref. [111] for more details. A simpler

alternative identified by Vandenberghe [112] reads

xk+1 ← proxρg(w
k − ρ∇f(wk))

wk+1 ←xk+1 +
k − 2

k + 1
(xk+1 − xk)

(4.22)

for k ≥ 1.

Initially, FISTA was developed for `1 norm problems as a faster version of ISTA,
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hence the presence of shrinkage-thresholding in the technique’s name. The class

of IST algorithms can be seen as an extension of the classical Donoho–Johnstone

shrinkage method [113]. As described here and later on by the same authors in Ref.

[111], the method can be generalised using the proximal formalism and is generally

referred to as fast proximal gradient (FPG) or accelerated proximal gradient (APG)

method.

Sum of multiple convex functions

We are now interested in the case of multiple convex functions with potentially more

than two functions. The following optimisation problem is considered,

x? = arg min
x∈CN

{
F (x) ≡ f(x) +

J∑
j=1

gj(x)
}
, (4.23)

where it is assumed that f : CN → R is a continuously differentiable convex function

and gj : CN → R are convex functions possibly nondifferentiables. The formulation

of such objective functions enables the combination of multiple regularisation terms.

Huang et al. [114] have proposed in 2011 a method for minimising the sum of

convex functions named fast composite splitting (FCS) algorithm. In practice, only

a simplified version of FCS can be used which consists of the following iterations,

uk+1
j ← proxJρgj (w

k − ρ∇f(wk)) (4.24a)

xk+1 ← 1

J

J∑
j=1

uk+1
j (4.24b)

tk+1 ←1

2
(1 +

√
1 + 4(tk)2) (4.24c)

wk+1 ←xk+1 +
tk − 1

tk+1
(xk+1 − xk) (4.24d)

assuming ∇f is L-Lipschitz continuous and ρ = 1/L. This algorithm averages

proximal gradient steps in (4.24b) and contains an acceleration strategy borrowed

from FISTA. While the above described algorithm is very similar to FISTA, it has

not been strictly proved to have the same convergence rate as FISTA.

More recently, Raguet et al. [115] have introduced the generalised forward-

backward splitting (GFBS) method that minimises the sum of multiple convex func-

tions. The algorithm consists of the following iterations

wk+1
j ←wk

j + proxJρgj (2xk −wk
j − ρ∇f(xk)− xk)

xk+1 ← 1

J

J∑
j=1

wk+1
j .

(4.25)
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When ∇f is L-Lipschitz, the method has been shown to converge when ρ < 2/L.

As the name suggests it, this method can be seen as a generalisation of the forward-

backward algorithm: for J = 1, this method simplifies to the forward-backward

step (4.16).

4.3.2 Alternating direction method of multipliers

The alternating direction method of multipliers (ADMM) is a method for solving

problems of the form

min
x,y
{F (x,y) ≡ f(x) + g(y)} s.t. Ax + By = b, (4.26)

where both f and g are assumed to be convex functions and A and B are general

matrices.

ADMM finds its origins in the mid-1970s from papers by Gabay and Mercier [116]

and Glowinski and Marroco [117]. ADMM has regained interest in the past few years

and has been used extensively in compressed sensing and inverse problems, see for

example Refs. [118–122]. This method is in fact closely related to various other algo-

rithms and has been rediscovered many times under different names. For example,

split Bregman [118] has been shown to be very close to ADMM for linear con-

straints, and ADMM can be interpreted as the Douglas-Rachford splitting method

on the dual. See the work of Esser [123] for further connections. ADMM can be seen

in the more general framework of proximal splitting methods, and it proves to be

a particularly suitable algorithm for matrix decomposition problems such as robust

principal component analysis (RPCA) due to the fact that in RPCA a separable

structure appears in both the objective function and the constraint. This will be

further discussed in chapter 6. Finally, note that the convergence of ADMM has

been proved in various papers. A summary of different proofs is given in Ref. [103].

The method is briefly described hereinafter, inspired by the review paper from

Boyd et al. [103]. It is useful to recall the precursor techniques of dual ascent and

the method of multipliers (MM) by considering first the linear equality-constrained

optimisation problem

min
x
f(x) s.t. Ax = b, (4.27)

where f is a convex function. Real-valued variables are considered to simplify nota-

tions.

Dual ascent

The associated Lagrangian function of problem (4.27) is

L(x, z) = f(x) + z>(Ax− b), (4.28)
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where z is the Lagrange multiplier. The dual problem consists of

max
z
{g(z) ≡ inf

x
L(x, z)}, (4.29)

where g(z) is the Lagrange dual function and inf denotes the infimum. The dual

ascent method solves the dual problem using a gradient ascent step,

zk+1 ← zk + ρk∇g(zk), (4.30)

with ρk the step size and where ∇g(zk) = Ax̃− b with

x̃ = arg min
x

L(x, zk). (4.31)

Hence, the dual ascent iterations reads

xk+1 ← arg min
x

L(x, zk) (4.32a)

zk+1 ←zk + ρk(Axk+1 − b). (4.32b)

Method of multipliers

Consider now the augmented Lagrangian (AL) function of (4.27) which is the La-

grangian function augmented,

LAδ (x, z) = f(x) + z>(Ax− b) +
δ

2
‖Ax− b‖22, (4.33)

where δ is called the penalty parameter. The method of multipliers (MM), also

known as augmented Lagrangian method (ALM), consists in these iterations

xk+1 ← arg min
x

LAδ (x, zk)

zk+1 ←zk + δ(Axk+1 − b).
(4.34)

Clearly, this is very close to the dual ascent algorithm, except that the augmented

Lagrangian is used and the penalty parameter δ plays the role of the step size ρk.

The MM can be interpreted as a more robust version of the dual ascent in terms of

convergence.

ADMM

We now return to the original problem (4.26). The associated augmented Lagrangian

function is

LAδ (x,y, z) = f(x) + g(y) + z>(Ax + By − b) +
δ

2
‖Ax + By − b‖22. (4.35)
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The MM (or ALM) takes the following form,

(xk+1,yk+1)← arg min
x,y

LAδ (x,y, zk) (4.36a)

zk+1 ←zk + δ(Axk+1 + Byk+1 − b), (4.36b)

where in step (4.36a), the minimisation is performed simultaneously with respect to

both x and y. In contrast, ADMM consists in

xk+1 ← arg min
x

LAδ (x,yk, zk)

yk+1 ← arg min
y

LAδ (xk+1,y, zk)

zk+1 ←zk + δ(Axk+1 + Byk+1 − b).

(4.37)

Clearly, the difference with the MM is that variables x and y are updated in an

alternating way, hence the name alternating direction method of multipliers.

If we write (4.37) explicitly, we obtain

xk+1 ← arg min
x

{
f(x) + (zk)

>
Ax +

δ

2
‖Ax + Byk − b‖22

}
yk+1 ← arg min

y

{
g(y) + (zk)

>
By +

δ

2
‖Axk+1 + By − b‖22

}
zk+1 ←zk + δ(Axk+1 + Byk+1 − b).

(4.38)

Usually, the linear and quadratic terms in the minimisations of the AL functions in

(4.38) are combined to produce this more convenient form sometimes referred to as

the scaled form,

xk+1 ← arg min
x

{
f(x) +

δ

2
‖Ax + Byk − b + uk‖22

}
yk+1 ← arg min

y

{
g(y) +

δ

2
‖Axk+1 + By − b + uk‖22

}
uk+1 ←uk + Axk+1 + Byk+1 − b,

(4.39)

where uk = (1/δ)zk is called the scaled dual variable.

Proximal version

In case where A = B = I in problem (4.26), we have

xk+1 ← arg min
x

{
f(x) +

δ

2
‖x− [b− yk − uk]‖22

}
yk+1 ← arg min

y

{
g(y) +

δ

2
‖y − [b− xk+1 − uk]‖22

}
uk+1 ←uk + xk+1 + yk+1 − b.

(4.40)

81



Optimisation framework: proximal splitting methods

Using the definition (4.4) of the proximal operator, it is straightforward to derive

the proximal version of the scaled form of ADMM,

xk+1 ←proxf/δ(b− yk − uk)

yk+1 ←proxg/δ(b− xk+1 − uk)

uk+1 ←uk + xk+1 + yk+1 − b.

(4.41)

Interpretation as variable splitting plus AL method

ADMM is sometimes interpreted as a method based on variable splitting combined

with the augmented Lagrangian method. Indeed, consider the minimisation of two

convex functions

min
x
{F (x) ≡ f(x) + g(x)}. (4.42)

To solve this with ADMM, the problem is reformulated as a constrained one using

the variable splitting procedure which simply consists in introducing a new variable,

min
x,y
{F (x,y) ≡ f(x) + g(y)} s.t. x = y. (4.43)

Based on the associated AL function of this modified problem,

LAδ (x,y, z) = f(x) + g(y) + z>(x− y) +
δ

2
‖x− y‖22, (4.44)

the scaled form of ADMM reads

xk+1 ← arg min
x

{
f(x) +

δ

2
‖x− [yk − uk]‖22

}
yk+1 ← arg min

y

{
g(y) +

δ

2
‖y − [xk+1 + uk]‖22

}
uk+1 ←uk + xk+1 − yk+1,

(4.45)

where uk = (1/δ)zk, and the proximal version is

xk+1 ← proxf/δ(y
k − uk)

yk+1 ← proxg/δ(x
k+1 + uk)

uk+1 ←uk + xk+1 − yk+1.

(4.46)

4.4 Compressed sensing MRI example

In this section, we compare proximal gradient (PG), fast proximal gradient (FPG)

and alternating direction method of multipliers (ADMM) in a simple compressed

sensing MRI context.

Suppose we want to recover a sparse signal s ∈ CN from only partial Fourier sam-
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ples. The complex-valued sparse signal s consists in randomly setting two nonzero

values equal to one on both the real and imaginary parts. We construct the model

y = Es + n where y ∈ CM represents the observations corrupted by the complex-

valued Gaussian noise vector n with zero mean and a standard deviation σ = 0.01.

E ∈ CM×N represents the random partial Fourier matrix and models the loss of

information as well as the MRI encoding. We choose N = 512 and M = 64, i.e. the

measurement vector y observes only 12.5% of the data. The optimisation problem

consists in

min
s∈CN

{
F (s) ≡ 1

2
‖Es− y‖22 + α‖s‖1

}
. (4.47)

The proximal gradient to solve the sparsity-regularised problem (4.47) is the

following simple step,

sk+1 ← proxρα‖.‖1(sk − ρ∇f(sk)). (4.48)

Algorithm 4.1 hence consists of only one line. Based on the proximal gradient algo-

rithm, the fast proximal gradient can be easily derived by integrating the acceleration

scheme as outlined in algorithm 4.2.

Algorithm 4.1 Compressed sensing MRI via proximal gradient

Input: y, α ≥ 0, ρ > 0
Initialise: k = 0, s0 = 0
while stopping criterion is not met do

sk+1 ← Sρα(sk − ρEH(Esk − y))
end while
Output: ŝ = sk

Algorithm 4.2 Compressed sensing MRI via fast proximal gradient

Input: y, α ≥ 0, ρ > 0
Initialise: k = 0, s0 = w0 = 0, t0 = 1
while stopping criterion is not met do

sk+1 ← Sρα(wk − ρEH(Ewk − y))

tk+1 ← 1
2(1 +

√
1 + 4(tk)2)

wk+1 ← sk+1 + tk−1
tk+1 (sk+1 − sk)

end while
Output: ŝ = sk

In ADMM, the problem must be reformulated by introducing a new variable,

min
s,b∈CN

{
F (s,b) ≡ 1

2
‖Es− y‖22 + α‖b‖1

}
s.t. s = b. (4.49)
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The associated AL function is

LAδ (s,b, z) =
1

2
‖Es− y‖22 + α‖b‖1 + <{zH(s− b)}+

δ

2
‖s− b‖22, (4.50)

and the scaled form of ADMM reads

sk+1 ← arg min
s

{1

2
‖Es− y‖22 +

δ

2
‖s− bk + uk‖22

}
(4.51a)

bk+1 ← arg min
b

{α
δ
‖b‖1 +

1

2
‖sk+1 − b + uk‖22

}
(4.51b)

uk+1 ←uk + sk+1 − bk+1. (4.51c)

By developing the analytical expressions in (4.51), we obtain algorithm 4.3.

Algorithm 4.3 Compressed sensing MRI via alternating direction method of mul-
tipliers

Input: y, α ≥ 0, δ > 0
Initialise: k = 0, s0 = b0 = u0 = 0
while stopping criterion is not met do

sk+1 ← (EHE + δI)−1(EHy + δ(bk − uk))
bk+1 ← Sα/δ(s

k+1 + uk)

uk+1 ← uk + sk+1 − bk+1

end while
Output: ŝ = sk

The step size ρ must be chosen as ρ ∈ (0, 2/L) for the proximal gradient, and

ρ = 1/L for the fast proximal gradient. As shown in appendix (A.3), the Lipschitz

constant is L = 1, so that the step size is chosen as ρ = 1 for both PG and FPG.

For ADMM, the penalty parameter is chosen as δ = 1 which similarly plays the role

of the step size. The regularisation parameter is set to α = 0.01. Algorithms are

stopped if a maximum number of 200 iterations is reached, or if the corresponding

objective function F does not decrease significantly any more, i.e. when [F (sk+1)−
F (sk)]/F (sk) ≤ 10−7.

Convergence of algorithms is shown in figure 4.3, and signal reconstructions are

shown in figure 4.4. Table 4.1 provides some other quantitative results. The com-

putational time for ADMM is significantly larger than PG and FPG due to the step

(4.51a) which solves a system of linear equations explicitly in this implementation.

Note that the behaviour of these algorithms changes depending on the regularisation

parameter α, the step size ρ and the penalty parameter δ.

4.5 On nonconvex optimisation and greedy approaches

While convex optimisation has been adopted in this thesis for signal recovery, non-

convex approaches have been shown to provide superior solutions in some cases, e.g.
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Figure 4.3: Convergence of algorithms.

PG FPG ADMM

Iterations 145 83 160
Time (sec) 0.06 0.04 3.51
Abs. error 5.71× 10−2 5.69× 10−2 5.69× 10−2

Table 4.1: Number of iterations, execution times and absolute reconstruction errors
for the CS algorithms.
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Figure 4.4: Original sparse signal, minimum norm solution as in Eq. (3.3) and the
compressed sensing reconstructions (PG, FPG, ADMM). Both real and imaginary parts
are shown as this is a complex-valued signal.
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see Refs. [124] in CS, Refs. [84, 125] in CS MRI and Ref. [85] for the low-rank plus

sparse model. For example in Ref. [124], Chartrand showed that fewer measurements

were required to compute a sparse solution when using the nonconvex `p norm with

p < 1 instead of p = 1. Trzasko et al. [125] have shown similar results in CS MRI

based on homotopic approximation of the `0 norm. Major disadvantages of these

methods are that achieving a global minimum is never guaranteed, and that they

generally require higher computational costs than standard convex optimisation.

An alternative to convex or nonconvex optimisation principles is the greedy ap-

proach. Greedy methods operate directly on the signal coefficients in an iterative

manner. For example, a basic greedy method is orthogonal matching pursuit [126].

Some greedy methods are particularly attractive in signal recovery from partial

data because they also provide theoretical recovery guarantees that can rival with

convex optimisation methods. Two important algorithms of this class include iter-

ative hard thresholding (IHT) [127,128] and compressive sampling matching pursuit

(CoSaMP) [129]. IHT algorithms make use of the hard thresholding operator Hα, a

nonlinear operator that sets all but the α largest entries (in magnitude) to zero,

Hα(z) = {Hα(zn)}Nn=1 =

{
zn if |zn| > α

0 otherwise
. (4.52)

For example, considering the low-rank matrix completion problem (3.26) and defin-

ing the singular value hard thresholding operator as

SVTHα(Z) = UHα(diag(Σ))VH, (4.53)

where UΣVH represents the SVD of Z, a simple IHT algorithm called singular value

projection [130] is

Xk+1 ← SVTHρα(Xk − ρA∗(A(Xk)− y)), (4.54)

where ρ is a constant step size. Other greedy approaches for low-rank matrix recov-

ery with performance guarantees include atomic decomposition for minimum rank

approximation (ADMiRA) [131] and normalised IHT [132]. For the low-rank plus

sparse decomposition problem, Waters et al. [59] have proposed sparse and low

rank decomposition via compressive sensing (SpaRCS) that combines the aspects of

CoSaMP and ADMiRA.

4.6 Conclusion

In this chapter, we have outlined the optimisation framework used in this thesis,

which is based on convex optimisation and the proximal splitting framework. We
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have introduced the definition of the proximal operator and given the solution of

proximal operators that are of interests in this thesis, namely low-rank and sparsity

problems. We have described in details two important proximal algorithms, proximal

gradient methods and alternating direction method of multipliers. We have provided

a basic example of these algorithms in a compressed sensing setting. We finally have

mentioned nonconvex and greedy alternatives in the last section.
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Fast proximal gradient methods
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5.1 Introduction

This chapter develops and characterises computational tools based on proximal gra-

dient methods to reconstruct dynamic MR images from a limited amount of noisy

Fourier samples using sparse and rank deficiency assumptions.

The use of sparsity prior has been largely investigated in MRI in the last past

decade due to the compressed sensing theory. More recently, exploiting low-rank

structure has been proposed as an alternative to sparse approaches following im-

portant theoretical and algorithmic developments in low-rank matrix recovery. The

combination of both low-rank and sparse assumptions has also attracted interest in

the MR community [82, 83, 86, 89, 133, 134], where problems are formulated as the

minimisation of an objective function that includes multiple penalty terms.

Classical optimisation techniques can be employed to minimise the corresponding

objective functions, but it generally requires their modification to avoid nondifferen-

tiability and other problems. Although leading to feasible schemes, these techniques

often result in computationally-intensive optimisation problems. This chapter is

motivated by a gap in the literature in providing simple and flexible algorithms to

solve sparse, low-rank, and jointly sparse and low-rank problems in MRI. The choice

of proximal splitting methods and convex optimisation was justified in chapter 4.

The choice of proximal gradient methods over the alternating direction method of

multipliers (ADMM) in this chapter is mainly motivated by the following facts,

• in the objective functions, the data fidelity term is differentiable and can be

evaluated at little cost, so this information should be exploited,

• fast optimisation scheme with attractive rate of convergence have been devel-

oped for proximal gradient methods (i.e., FISTA [110], Nesterov’s scheme [109]

as described in section 4.3.1),

• as opposed to ADMM, there is no need to reformulate problems by introduc-

ing new variables and/or to establish the associated augmented Lagrangian

function,

• although ADMM can also be developed for more than two convex functions,

multiple penalty terms naturally fit proximal gradient methods.

The major contribution of this work is to develop and evaluate fast (convex)

proximal gradient algorithms for sparse, low-rank and simultaneously sparse and

low-rank priors for dynamic MRI reconstruction. In this work, the temporal Fourier

transform is used as the sparsifying transform, and low-rank constraints are pro-

moted via nuclear norm as described in more details in chapters 3 and 4. In ad-

dition, the developed algorithms are compared with three state of the art methods

that were described in 3.4, k-t FOCUSS with temporal average [73–75] that exploits

90



Method

sparsity in the temporal Fourier domain and two state of the art techniques that

exploit both low-rank and sparsity, k-t SLR [82] and PS-Sparse [86]. In the process

of developing these algorithms for low-rank and sparsity problems, we eventually

provide a method that not only consistently offers higher reconstruction accuracy,

but also proves to be highly competitive in terms of computational times. Another

interesting aspect of this work is to assess reconstruction algorithms in the context

of different types of datasets (phantom, invivo) and various characteristics such as

complex-valued, noisy, motion-included and undersampled data, which are rarely

evaluated all together in the literature. Parts of this chapter have been previously

published in Refs. [135,136].

This chapter is organised as follows. Section 5.2 describes the general method-

ology, that is proximal gradient algorithms and the sampling strategy employed to

satisfy both MR and signal recovery constraints. Section 5.3 presents numerical

simulations with a description of the various datasets used in this chapter and the

reconstruction results. We discuss various aspects in section 5.4, related works in

section 5.5 and conclude this chapter in section 5.6.

5.2 Method

5.2.1 Proximal gradient optimisation

We are interested in this chapter in minimisation problems of the form

x? = arg min
x

{
F (x) ≡ f(x) +

J∑
j=1

gj(x)
}
, (5.1)

where the objective function F is formulated as composite convex functions with

data fidelity term f and regularisation priors gj . The function f is assumed to be

a differentiable convex function with L-Lipschitz continuous gradient (see appendix

A.3), and functions gj are assumed to be convex but not necessary differentiable.

5.2.2 Sparse signal recovery

We consider a vector x ∈ CNxNyNt that consists of Nt images of dimension Nx×Ny.

The finite-dimensional forward MRI model adopted is

y = E(x) + n, (5.2)

where y ∈ CM is the stacked (k, t)-space measurements vector, E : CNxNyNt →
CM represents the MRI encoding operator modelling both the random sub-Nyquist

sampling process and Fourier transform with M � NxNyNt and n ∈ CM is the

complex-valued Gaussian noise vector.
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We consider first the sparsity-regularised inverse problem

x? = arg min
x∈CNxNyNt

{
F (x) ≡ 1

2
‖E(x)− y‖22 + α‖Ft(x)‖1

}
, (5.3)

where Ft represents the temporal Fourier transform as described in section 3.4.5.

This can be solved efficiently with a simple proximal gradient step,

xk+1 ← proxρα‖Ft(.)‖1(xk − ρ∇f(xk)). (5.4)

Developing this expression leads to the following iteration,

xk+1 ← Ft
∗{Sρα(Ft(x

k − ρE∗(E(xk)− y)))}. (5.5)

Based on this result, a fast proximal gradient (FPG) is derived in algorithm 5.1 that

is referred to as sparse signal recovery via fast proximal gradient (S-FPG).

Algorithm 5.1 Sparse signal recovery via fast proximal gradient (S-FPG)

Input: y, α ≥ 0, ρ > 0
Initialise: k = 0, x0 = w0 = 0, t0 = 1
while stopping criterion is not met do

xk+1 ← Ft
∗{Sρα(Ft(w

k − ρE∗(E(wk)− y)))}
tk+1 ← 1

2(1 +
√

1 + 4(tk)2)

wk+1 ← xk+1 + tk−1
tk+1 (xk+1 − xk)

end while
Output: x̂ = xk

5.2.3 Low-rank matrix recovery

In this section, we consider the use of low-rank as a regularisation prior. First, the

Casorati matrix is formed so that each column represents a vectorised MR image of

the sequence, see Eq. (3.59). This matrix is approximately low-rank with only a few

significant singular values due to the correlation between images in time.

The finite-dimensional discrete model is

y = E(X) + n, (5.6)

where in this case E : CNxNy×Nt → CM is the MRI encoding operator modelling both

the random sub-Nyquist sampling and Fourier transform with M � NxNyNt, and

X ∈ CNxNy×Nt represents the matrix to recover.

We consider the convex minimisation problem using the nuclear norm,

X? = arg min
X∈CNxNy×Nt

{
F (X) ≡ 1

2
‖E(X)− y‖22 + α‖X‖∗

}
. (5.7)
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The proximal mapping of the nuclear norm is known and has been described in sec-

tion 4.2.3. Hence, this problem can be solved efficiently with the proximal gradient

step

Xk+1 ← proxρα‖.‖∗(X
k − ρ∇f(Xk)). (5.8)

Developing this expression leads to the following iteration,

Xk+1 ← SVTSρα(Xk − ρE∗(E(Xk)− y)), (5.9)

where SVTS denotes the singular value soft thresholding operator defined as in

Eq. (4.14). Based on the algorithm by Toh and Yun [137] which itself was inspired

by FISTA from Beck and Teboulle [110], we propose to use the fast proximal gradient

of the nuclear norm problem for solving the low-rank MRI reconstruction problem

(algorithm 5.2). The algorithm is named low-rank matrix recovery via fast proximal

gradient (LR-FPG).

Algorithm 5.2 Low-rank matrix recovery via fast proximal gradient (LR-FPG)

Input: y, α ≥ 0, ρ > 0
Initialise: k = 0, X0 = W0 = 0, t0 = 1
while stopping criterion is not met do

Xk+1 ← SVTSρα(Wk − ρE∗(E(Wk)− y))
tk+1 ← 1

2(1 +
√

1 + 4(tk)2)

Wk+1 ← Xk+1 + tk−1
tk+1 (Xk+1 −Xk)

end while
Output: X̂ = Xk

5.2.4 Simultaneously low-rank matrix and sparse signal recovery

We finally consider the combination of both low-rank and sparsity priors to evalu-

ate the potential benefit of joint regularisation. We consider the following convex

minimisation problem,

X? = arg min
X∈CNxNy×Nt

{
F (X) ≡ 1

2
‖E(X)− y‖22 + α‖X‖∗ + β‖Ft(X)‖1

}
, (5.10)

where f(X) = 1
2‖E(X) − y‖22 represents the data fidelity term, g1(X) = α‖X‖∗ is

the low-rank prior and g2(X) = β‖Ft(X)‖1 is the sparsity prior with the temporal

Fourier transform. This formulation generalises the previous problems since for α =

0 it corresponds to the `1 norm regularised problem, and for β = 0, it corresponds

to the nuclear norm regularised problem.

To minimise the objective function in (5.10), we propose to derive two algorithms.

The first one is based on fast composite splitting and named low-rank matrix and

sparse signal recovery via fast composite splitting (LRS-FCS). It is described in algo-
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rithm 5.3. We also derive a method based on generalised forward-backward splitting

(GFBS) (algorithm 5.4) that is referred to as low-rank matrix and sparse signal re-

covery via generalised forward-backward splitting (LRS-GFBS). Both methods were

described previously in section 4.3.1 in a more general setting.

Algorithm 5.3 Low-rank matrix and sparse signal recovery via fast composite
splitting (LRS-FCS)

Input: y, α ≥ 0, β ≥ 0, ρ > 0
Initialize: k = 0, X0 = W0 = 0, t0 = 1
while stopping criterion is not met do

Hk+1
1 ← SVTS2ρα(Wk − ρE∗(E(Wk)− y))

Hk+1
2 ← Ft

∗{S2ρβ(Ft(W
k − ρE∗(E(Wk)− y)))}

Xk+1 ← 1
2(Hk+1

1 + Hk+1
2 )

tk+1 ← 1
2(1 +

√
1 + 4(tk)2)

Wk+1 ← Xk+1 + tk−1
tk+1 (Xk+1 −Xk)

end while
Output: X̂ = Xk

Algorithm 5.4 Low-rank matrix and sparse signal recovery via generalised forward-
backward splitting (LRS-GFBS)

Input: y, α ≥ 0, β ≥ 0, ρ > 0
Initialize: k = 0, X0 = H0

1 = H0
2 = 0

while stopping criterion is not met do
Hk+1

1 ← Hk
1 + SVTS2ρα(2Xk −Hk

1 − ρE∗(E(Xk)− y)−Xk)
Hk+1

2 ← Hk
2 + Ft

∗{S2ρβ(Ft(2Xk −Hk
2 − ρE∗(E(Xk)− y)−Xk)}

Xk+1 ← 1
2(Hk+1

1 + Hk+1
2 )

end while
Output: X̂ = Xk

5.2.5 Sampling considerations

Constraints

Notions of coherence, RIP or null space property are necessary to derive recovery

guarantees in sparse signal and low-rank matrix recovery, as we have explained in

section 3.3.3. However, these notions are not particularly convenient to design prac-

tical sampling strategies. Instead, random matrices or random sampling operators

are used to implicitly achieve these properties. In particular, it has been shown that

certain random matrices such as random Gaussian matrices satisfy the RIP with

high probability.

However, sampling a truly random set of k-space samples is generally impractical

in MRI because sampling patterns must also respect MR physics constraints [34].

A fundamental constraint is that gradient magnetic fields can only generate k-space

trajectories that follow relatively continuous lines and curves. Consequently, the
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Figure 5.1: Polynomial variable density sampling pattern adapted for acquiring (k, t)-
space samples. Left figure shows the probability density function and right figure
presents the (ky,t) sampling pattern.

design of sampling patterns in MRI are generally not created with incoherence or

RIP in mind, but rather with MR constraints and prior knowledge about the fact

that MRI samples are acquired in the Fourier space. Even if incoherence property

or RIP are not exactly satisfied in practice, it has been shown that signals could still

be reconstructed with good fidelity.

Sampling schemes

Since a conventional strategy to acquire Fourier samples in MRI is along parallel

equispaced k-space lines onto a Cartesian grid, a convenient way to achieve random

undersampling is to randomly select fewer lines. However, since the energy distri-

bution of MR images in k-space is known to be concentrated close to the center, a

common strategy consists of densely sampling central k-space lines and randomly

selecting lines elsewhere. Although selection of random lines can be drawn from a

simple uniform probability distribution, a better approach is to give lower probabili-

ties to the selection of lines nearer to the k-space edges in order to take into account

the energy distribution and also because it may overcome coherence problems at

low spatial frequencies for some sparsifying transforms [92]. This sampling strategy

is often referred to as polynomial variable density (PVD) sampling [33]. Here, a

similar sampling strategy is adapted to dynamic imaging, where the PVD sampling

is applied for each acquisition time frame as shown in figure 5.1.

In this chapter, we will also use non-Cartesian sampling schemes. We will use

pseudo-radial sampling with 2D projections at the same angle (equispaced) and

2D projections at different angles based on the golden angle ratio. In contrast to
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Figure 5.2: Equispaced and golden angle radial sampling with random rotations of
the whole pattern for each time frame.

equispaced angle radial lines, the golden angle method selects a projection based

on the golden angle, where a new projection is determined from the previous one

by applying an anticlockwise rotation of the golden angle, equal to 180◦/1+
√

5
2 ≈

111.25◦. Golden angle radial sampling has been shown to be appealing in dynamic

MRI [138] and to demonstrate good results from a compressive sensing perspective

[139]. The latter can be justified by the fact that higher spatial and temporal

incoherence may be achieved due to unequally spaced angles. Since we deal with

dynamic imaging, a form of randomness must also be present in time. We employ a

simple strategy with random rotations of the whole sampling pattern between each

frame. Figure 5.2 shows equispaced and golden angle radial sampling schemes.

Note that these undersampling strategies can be achieved easily by omitting

readouts from conventional Cartesian or radial acquisitions, which makes them par-

ticularly suitable and inexpensive from an MR acquisition point of view since only

minor pulse sequence modifications are required. In this thesis however, datasets are

either directly created in the image domain (for simulated data) or obtained from

an MRI scanner using standard imaging sequences at the Nyquist rate (for in vivo

data). Datasets are then retrospectively undersampled to evaluate reconstruction

methods. This offers two major advantages: a ground truth is accessible for com-

parison, and multiple sampling schemes can be investigated without requiring a new

acquisition on a real MR scanner.

96



Numerical simulations

5.3 Numerical simulations

5.3.1 Framework

We use the following numerical phantoms and in vivo cardiac datasets in this work:

• Breath-hold Shepp-Logan based numerical phantom (”SL phantom”).

A numerical phantom based on the Shepp-Logan phantom (dimensions Nx =

Ny = 128, Nt = 80). This phantom includes local intensity changes and pe-

riodic local motion in magnitude images and a spatially-smooth phase that

slowly varies in time randomly. This phantom is referred to later on by ”SL

phantom”.

• Free-breathing numerical phantom (”PINCAT phantom”). The free-

breathing physiologically improved non-uniform cardiac torso (PINCAT) phan-

tom (dimensions Nx = Ny = 128, Nt = 50). The PINCAT phantom is an

adaptation to MR of the NCAT phantom in CT and was proposed by Sharif

and Bresler [140] for evaluating cardiac MR imaging schemes and reconstruc-

tion methods in MRI. The version we use has been modified by Lingala et

al. [82] to include intensity changes (simulating perfusion dynamics) and res-

piratory motion. We further modified it to produce a complex-valued signal

by adding a spatially-smooth phase that slowly varies in time. This phantom

is referred to later on by ”PINCAT phantom”.

• Breath-hold cardiac. A complex-valued breath-hold cardiac dataset (dimen-

sions Nx = 128, Ny = 128, Nt = 50) which was acquired with a steady-state

free precession sequence at Nyquist rate with a Cartesian sampling scheme on

a Philips 1.5T MRI scanner.

• Free-breathing cardiac. A free-breathing cardiac dataset (dimensions Nx =

Ny = 128, Nt = 90) from a 3T MRI scanner. This dataset is based on noisy

magnitude-reconstructed images from an MR scanner and as such was initially

real-valued without any phase information available. As with the numerical

phantoms, a spatially-smooth phase that slowly varies in time is added post-

acquisition.

The spatially-smooth and slowly time-varying phase added on some of these datasets

is generated for each time frame independently and was adapted from Ref. [141].

It is illustrated in figure 5.3. The reason to add a time-varying random phase is

to obtain more realistic experiments by simulating complex-valued signal. Intensity

of all datasets were normalised between values 0 and 255 in magnitude prior to

any processing. Gaussian noise was added explicitly on each real and imaginary

channel with a standard deviation σ = 5, except for the breath-hold cardiac dataset
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Figure 5.3: Spatially-smooth and slowly time-varying phase generated for three time
frames.

 

Figure 5.4: SL phantom showing magnitude (top) and phase (bottom) time frames as
well as associated x-t and y-t temporal profiles along the dashed lines. Left: noiseless,
right: noisy.

which already contained noise in both real and imaginary channels. For the free-

breathing cardiac dataset, supplementary noise was added in both channels even if

some noise was originally present in magnitude-reconstructed images. Note that for

in vivo datasets, the ground truth without noise is not known, hence in this case the

ground truth will refer to the noisy signal. The numerical phantoms are shown in

figures 5.4 (SL phantom) and 5.5 (PINCAT phantom). Cardiac datasets are shown

in figures 5.6 (breath-hold) and 5.7 (free-breathing).

The motivations in testing these four datasets are to characterise and evaluate

the performance of reconstruction methods in different states of dynamic imaging:

(i) phantom signals with and without global motion, (ii) real data with and without

global motion. The presence of the global (respiratory-like) motion will generally

deteriorate the reconstruction quality and as such it is interesting to see how meth-

ods perform in more difficult conditions. Similarly, reconstruction quality can vary

depending on the nature of the input signal, i.e. numerical phantoms versus real
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Figure 5.5: PINCAT phantom showing magnitude (top) and phase (bottom) time
frames as well as associated x-t and y-t temporal profiles along the dashed lines. Left:
noiseless, right: noisy.

Figure 5.6: Breath-hold cardiac dataset showing magnitude (left) and phase (right)
time frames as well as associated x-t and y-t temporal profiles along the dashed lines.

Figure 5.7: Free-breathing cardiac showing magnitude (left) and phase (right) time
frames as well as associated x-t and y-t temporal profiles along the dashed lines.

99



Fast proximal gradient methods

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Noiseless

 

 

SL phantom

PINCAT phantom

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Noisy

 

 

SL phantom

PINCAT phantom

Breath−hold cardiac

Free−breathing cardiac

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0 10 20 30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

Figure 5.8: Singular values (normalised) for the dynamic MRI datasets with zoom-in
graphs (bottom).

‖.‖1 ‖Ft(.)‖1 Decrease (%)

SL phantom 7.18e+07 1.79e+07 25.0
PINCAT phantom 4.33e+07 1.62e+07 37.4

Breath-hold cardiac 1.45e+07 4.97e+06 34.2
Free-breathing cardiac 5.71e+07 2.01e+07 35.2

Table 5.1: Sparsity characterisation of the different datasets. Right column represents
the decreasing amount of sparsity in percentage, e.g. the PINCAT phantom benefits
most from the temporal Fourier transform.

data. Datasets are characterised by their singular values and their sparseness re-

spectively in figure 5.8 and table 5.1 to give some intuition about their sparsity levels

and ranks. We also show intensity profiles in figure 5.9.

Numerical simulations are performed in Matlab on a Linux platform. We refer

the reader to appendix B for the error metrics used to evaluate the performance of the

reconstructions. For reference, we compute the zero-filled inverse Fourier transform

(ZF-IDFT) and a very basic sliding window reconstruction (zeroth-order). We also

compare our method with three state of the art methods, k-t FOCUSS with temporal

average [73–75] and two low-rank and sparse techniques, k-t SLR [82] and PS-Sparse

[86]. These methods were described in section 3.4. k-t FOCUSS is implemented

with a maximum of 40 inner iterations (conjugate gradient step), 2 outer iterations

(FOCUSS step) and weighting matrix power factor of p = 0.5 (cf. section 3.4.2).

The low-resolution initial estimate is obtained by using a zero-filled inverse Fourier

transform using the low-frequency samples (figure 5.10). k-t SLR is implemented

with penalty parameters set to β1 = β2 = 10−7 for Schatten and TV norms and
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Figure 5.9: Intensity profiles along lines taken in the middle of the images.

Figure 5.10: Sampling patterns used in this study, showing here only one acquisition
time frame. From left to right, PVD (Cartesian sampling), equispaced and golden angle
radial sampling schemes. The red contours show the fully (or almost fully) sampled
(k, t)-space sets that are used in k-t FOCUSS and PS-Sparse respectively to obtain the
low-resolution estimate and to evaluate the basis for the temporal subspace.

their respective incrementation parameters are set to 25. A maximum number of 50

inner and 9 outer iterations is chosen. PS-Sparse is implemented with the maximum

number of iterations of 5 for outer loop and 100 for inner loop, the tolerance is set

to 10−5 and the initial value of continuation parameter to 1000. Note that initially

PS-Sparse has been designed with random Cartesian undersampling in mind with

a subdivision of the sampling pattern into two sets, where one set corresponds to

the fully sampled central lines of the k-space to estimate the basis for the temporal

subspace. We have adapted PS-Sparse to handle radial sampling trajectories so

that the fully sampled (k, t)-space part corresponds to the fully sampled centre of

the radial sampling pattern. This is illustrated in figure 5.10.

For the numerical simulations, different sampling schemes described in section

5.2.5 are tested (PVD, equispaced angle radial and golden angle radial) with an ac-

celeration factor of about 10, which means that only about 10% of (random) Fourier

samples are acquired. In this context, note that reconstructions are particularly

challenging because we are dealing with complex-valued, noisy, motion-included and

undersampled data. Note that most of the time reconstruction techniques are rarely

evaluated with all these characteristics together.

The regularisation parameter for each algorithm is tested for a range of different

values and the best one is selected in terms of reconstruction quality according to

101



Fast proximal gradient methods

Reconstruction time (sec)
0 100 200 300 400 500

R
e

c
o

n
s
tr

u
c
ti
o

n
 p

e
rf

o
rm

a
n

c
e

 (
d

B
)

12

14

16

18

20

22

24

26

28

k-t FOCUSS

k-t SLR

PS-Sparse

S-FPG

LR-FPG

LRS-FCS

LRS-GFBS

Reconstruction time (sec)
0 10 20 30 40 50 60

R
e

c
o

n
s
tr

u
c
ti
o

n
 p

e
rf

o
rm

a
n

c
e

 (
d

B
)

12

14

16

18

20

22

24

26

Figure 5.11: Comparison of the different methods in terms of reconstruction perfor-
mance versus reconstruction time. Each point represents a computed reconstruction
from table 5.2. Right figure is a close-up of the left figure.

Eq. (B.2). The set of regularisation parameters tested is

{0, 10k : k ∈ Z;−4 ≤ k ≤ 3}. (5.11)

For multiple priors, the best combination of regularisation parameters is selected.

For PS-Sparse (see Eq. (3.63)), the set of regularisation parameters tested is different

because the PS model order directly relates to the rank of the reconstructed data.

The PS model order range tested is {0, 2, 4, 8, 16, 32}.
The step sizes for the proximal gradient methods are chosen as ρ = 1/L with

L = 1 according to appendix A.3. The stopping criterion for the proximal gradient

algorithms is defined as follows. Algorithms are stopped if a maximum number

of 100 iterations is reached, or if the corresponding objective function F does not

decrease significantly any more, i.e. when

F (xk+1)− F (xk)

F (xk)
≤ tol, (5.12)

where tol is the tolerance set to 10−5.

5.3.2 Quantitative reconstruction results

Reconstruction results are reported in table 5.2 and should be interpreted in decibels

as they have been computed with Eq. (B.2). To complement this table, we also show

• in figure 5.11, the reconstruction times needed for algorithms to achieve the

reconstruction results of table 5.2,

• in figure 5.12, the reconstruction performance as a function of the computa-

tional time for each algorithm in the case of SL phantom and PVD sampling,
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SL phantom PVD Equi. angle Golden angle

ZF-IDFT 14.2 15.7 15.2
Sliding window 19.5 20.2 20.0

k-t FOCUSS [73–75] 22.5 26.0 25.9
k-t SLR [82] 22.2 25.6 25.6

PS-Sparse [86] 21.0 22.7 22.5
S-FPG 20.9 22.7 22.7

LR-FPG 22.2 24.1 24.2
LRS-FCS 23.1 26.8 26.8

LRS-GFBS 22.5 26.4 26.5

(a) SL phantom.

PINCAT phantom PVD Equi. angle Golden angle

ZF-IDFT 12.0 12.6 12.3
Sliding window 13.2 13.5 13.2

k-t FOCUSS [73–75] 15.4 17.5 17.3
k-t SLR [82] 17.2 18.7 18.8

PS-Sparse [86] 15.8 17.2 17.2
S-FPG 14.4 15.6 15.6

LR-FPG 17.4 19.5 19.6
LRS-FCS 17.5 20.0 20.0

LRS-GFBS 17.1 19.6 19.8

(b) PINCAT phantom.

Breath-hold cardiac PVD Equi. angle Golden angle

ZF-IDFT 8.5 7.0 6.6
Sliding window 11.8 11.8 11.7

k-t FOCUSS [73–75] 13.5 16.1 15.7
k-t SLR [82] 13.5 15.3 15.2

PS-Sparse [86] 12.5 13.8 13.5
S-FPG 13.2 16.1 15.9

LR-FPG 13.3 15.3 15.0
LRS-FCS 13.7 16.9 16.8

LRS-GFBS 13.5 16.7 16.5

(c) Breath-hold cardiac.

Free-breathing cardiac PVD Equi. angle Golden angle

ZF-IDFT 8.6 10.1 9.8
Sliding window 12.0 13.2 13.0

k-t FOCUSS [73–75] 14.6 16.3 16.2
k-t SLR [82] 14.3 15.3 16.4

PS-Sparse [86] 13.0 15.4 15.4
S-FPG 13.0 14.1 14.2

LR-FPG 14.8 17.4 17.4
LRS-FCS 15.0 17.6 17.6

LRS-GFBS 14.4 17.5 17.5

(d) Free-breathing cardiac.

Table 5.2: Quantitative reconstruction results (in dB).
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Figure 5.12: Comparison of the different methods in term of reconstruction perfor-
mance versus computational time for SL phantom and PVD sampling. Right figure is
a close-up of the left figure.
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Figure 5.13: Normalised mean square error at each time frame for the different
datasets using equispaced angle radial sampling.
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• in figure 5.13, the normalised mean square error at each time frame as in

Eq. (B.3) in the case of equispaced angle radial sampling to obtain more insight

of the reconstruction performance of each methods per time frame.

From these results, first note that as expected, sliding window reconstructions

provide improved reconstruction quality results over standard inverse Fourier recon-

structions (ZF-IDFT). However, while the overall reconstruction performances of

sliding window are higher than ZF-IDFT reconstructions, the sliding window recon-

struction obtains inconsistent errors in time and presents important error differences

from one time frame to the next one as observed in figure 5.13 for the PINCAT

phantom. This can be explained by the fact that the PINCAT phantom presents

considerable motion in between time frames, and because our sliding window recon-

struction is of zeroth-order (the missing k-space points are estimated based only on

the previous k-space time frame).

In these experiments, PS-Sparse did not show any major advantages as recon-

struction results were often of lower quality than other state of the art methods (k-t

FOCUSS, k-t SLR). k-t SLR provided superior results compared to PS-Sparse in

almost every cases but surprisingly k-t FOCUSS provided consistently very close or

better results than k-t SLR in 3 out of 4 datasets tested. Perhaps more importantly,

k-t SLR was shown to suffer from much longer computational times compared to

other methods due to the optimisation scheme employed.

These simulations indicate that LRS-FCS systematically produces higher recon-

struction quality results than all other methods, in very competitive computational

times. Figure 5.12 shows that LRS-FCS converges faster to a solution of higher

quality than other methods. In fact, figures 5.11 and 5.12 make it clear that fast

proximal gradient methods (S-FPG, LR-FPG, LRS-FCS) can rival with k-t FO-

CUSS, which is arguably one of the fastest state of the art method in dynamic MR

reconstruction.

Comparing the two proximal gradient algorithms combining low-rank and spar-

sity prior (LRS-FCS, LRS-GFBS), it seems to indicate that LRS-FCS is consistently

faster while obtaining slightly better reconstruction results. These two algorithms

minimise the same functional (5.10) and are not drastically different. LRS-GFBS

is mathematically more rigorous because the actual convergence of the sequence

has been proved. LRS-FCS is shown to converge faster because of the accelerating

scheme borrowed from FISTA as shown clearly in figure 5.12. LRS-GFBS still pro-

vides enhanced reconstruction quality results than most other methods but since it

takes longer computational times than LRS-FCS, we will not discuss this algorithm

hereinafter.

Interestingly, it should be noted that reconstructions using the convex nuclear

norm as regularisation (LR-FPG) almost consistently yield superior reconstruction

results than using the convex `1 norm using the temporal Fourier domain as sparsi-
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Figure 5.14: Singular values (normalised, zoom-in) for the different methods using
equispaced radial sampling.

fying transform (S-FPG). This seems to indicate that the convex low-rank constraint

itself is a serious alternative to standard compressed sensing techniques using convex

sparsity constraint for dynamic MR imaging. This was one of our conclusion in our

conference paper [135].

Finally, we show in figure 5.14 the Casorati matrix singular values of the various

reconstruction methods for the different datasets in the case of equispaced angle

radial sampling. Although singular values on their own are not an indicator of a

good reconstruction, this figure mainly shows the difference between PS-sparse that

severely enforces the matrix rank through its partial separable model order selection,

and other methods that result in ”naturally” closer singular values to the original

signal.

5.3.3 Qualitative reconstruction results

We first present some qualitative results for the SL phantom with the golden angle

radial sampling in figure 5.15. This figure does not show reconstructed images but

error images in order to better evaluate the different reconstruction methods. Error
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Figure 5.15: Error (×5) magnitude images for the SL phantom in the case of golden
angle radial sampling. One frame and x-t and y-t profiles are shown for each method.
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ZF-IDFT Sliding window k-t FOCUSS k-t SLR

PS-Sparse S-FPG LR-FPG LRS-FCS

ZF-IDFT Sliding window k-t FOCUSS k-t SLR PS-Sparse S-FPG LR-FPG LRS-FCS

Figure 5.16: Reconstruction of the PINCAT phantom with equispaced angle sampling.
Top figures show extracted magnitude and phase images from the sequence. Bottom
figures show x-t and y-t profiles.
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Figure 5.17: The influence of the sampling patterns with breath-hold cardiac recon-
structions and LRS-FCS algorithm. Left figures show magnitude and phase images
extracted from the reconstructed sequences, right figure shows the NMSE.

images (multiplied by a factor to amplify the differences) are simply computed by

taking the absolute value of the difference between ground truth images and recon-

structed images. Figure 5.15 supports numerical results obtained in the previous

section, where good reconstruction results were obtained by k-t FOCUSS, k-t SLR

and LRS-FCS. Finally, observe how S-FPG provides a denoising where no signal

but only noise is present, while LR-FPG minimises the error more globally. The

combination of S-FPG and LR-FPG results in LRS-FPG that takes the best of both

worlds.

In figure 5.16, we show magnitude and phase images reconstruction of the PIN-

CAT phantom with equispaced radial sampling. We also show image time profiles

of the reconstructions. These images are to be compared with the ground truth

images that were shown in figure 5.5. Although it might be difficult to see in the

first instance, a careful inspection of both magnitude and phase images generally

reveals that LRS-FPG provides better reconstruction in small details (e.g. less noisy

and blurry) compared to other methods.

5.3.4 Radial sampling

Table 5.2 and figure 5.17 reveals that radial-based sampling schemes offer higher

reconstruction results than Cartesian sampling, both quantitatively and from visual

inspection. For example in figure 5.17 Cartesian random sampling shows blurring

artefacts in the magnitude reconstructed image. This may be attributed to the

fact that radial-based patterns sample more closely to the energy distribution in

the Fourier space as most of the energy is situated in the centre of the k-space.

While we could intuitively expect better results from the golden angle scheme due

to potentially more ”incoherency” provided by a non equispaced angle sampling,

it is actually difficult to draw a definitive conclusion on the best choice between

equispaced and golden angle radial patterns.
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Figure 5.18: Influence of randomness in time for radial-based sampling schemes.
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In this study, random rotation angles were chosen uniformly between [−20◦; +20◦]

to rotate radial sampling patterns across each acquisition frames. The influence of

this random rotation angle on the reconstruction quality is an interesting question.

In figure 5.18, we show the reconstruction results for various ranges of rotation angles

using the SL phantom dataset. More specifically, reconstructions were computed for

the different methods from no rotation (i.e. 0◦ which means no randomness and the

sampling trajectory being consistent in time) to rotation angles chosen uniformly

in the range [−30◦; +30◦]. This figure suggests there do not seem to be a range

of rotation angles for which the reconstructions are higher: as long as the range is

chosen equal or superior to about [−6◦; +6◦], methods perform similarly (although

for k-t SLR, this is more contestable as it slightly varies over the different ranges).

This figure also seems to indicate that the influence of randomness in time is more

important for methods that are based on low-rank and the Casorati matrix formula-

tion than sparsity-based only methods. Indeed, the reconstruction result for S-FPG

with no rotation (i.e. 0◦) is 21dB and 22.7dB when rotation angles are superior to

about [−6◦; +6◦]. For LR-FPG, the reconstruction result is 15.7dB at 0◦ but 24dB

when rotation angles are superior to [−6◦; +6◦]. The randomness of the sampling

pattern seems to play a more important role in the latter case.

5.3.5 Nonconvex and hard thresholding approaches

As briefly discussed in section 4.5, nonconvex approaches have been shown to obtain

higher results in CS. In this section, we examine nonconvex and greedy approaches

against convex low-rank regularisation.

For the convex case, we use the low-rank regularisation method based on fast

proximal gradient (algorithm 5.2). This method is based on the nuclear norm and the

singular value soft thresholding operator SVTS which consists in soft thresholding

the singular values.

For the nonconvex case, we are interested in the nonconvex problem

X? = arg min
X∈CNxNy×Nt

{
F (X) ≡ 1

2
‖E(X)− y‖22 + α‖X‖p

}
, (5.13)

for 0 < p < 1 where ‖.‖p refers to the Schatten p-norm as defined in Eq. (A.8)

(although for p < 1 this is not a norm anymore). The generalisation of the soft

thresholding (or shrinkage) operator for various p was proposed by Chartrand in

Refs. [84, 85] based on the generalisation of the Huber function. We denote it S
p
α

and it is defined element-wise as,

Spα(z) = {Spα(zn)}Nn=1 = sgn(zn)(|zn| − α|zn|p−1)+. (5.14)

Note that for p = 1, this is equivalent to Sα as defined in Eq. (4.11). Following
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SL phantom PINCAT Cardiac (BH) Cardiac (FB)

ZF-IDFT 16.7 13.6 7.6 10.8
Convex 24.1 20.2 15.1 17.9

Nonconvex, p = 0.1 22.1 19.1 11.9 14.8
Nonconvex, p = 0.5 24.3 19.7 14.8 17.4
Nonconvex, p = 0.9 24.7 19.7 13.8 17.6
Hard thresholding 21.0 14.1 10.5 14.3

Table 5.3: Reconstruction results (in dB) using Eq. (B.2) for low-rank regularisation
via convex, nonconvex and hard thresholding approaches. ZF-IDFT reconstructions are
reported for reference.

the above definition, the generalised singular value soft thresholding operator can

be expressed as

SVTS
p
α(Z) = USpα(diag(Σ))VH. (5.15)

where UΣVH represents the singular value decomposition of Z. We outline a simple

algorithm to solve (5.13) with the following iteration,

Xk+1 ← SVTS
p
ρα(Xk − ρE∗(E(Xk)− y)). (5.16)

The step size is chosen as ρ = 1 and the algorithm is stopped if a maximum number

of 100 iterations is reached, or if Eq. (5.12) is satisfied.

Finally for the greedy approach, a simple iterative hard thresholding (IHT) al-

gorithm named singular value projection as seen in Eq. (4.54),

Xk+1 ← SVTHρα(Xk − ρE∗(E(Xk)− y)), (5.17)

where SVTH is the hard thresholding operator defined as in Eq. (4.53) and the step

size is chosen as ρ = 1. The algorithm is stopped if a maximum number of 100

iterations is reached, or if the estimated matrix does not decrease significantly any

more compared to the previous iteration, i.e. when (Xk+1 −Xk)/Xk ≤ 10−5.

For this experiment, we use 8-fold acceleration and equispaced radial sampling.

Regularisation parameters were tested for the set defined as in (5.11) but extended to

larger values after preliminary simulations with nonconvex and greedy approaches.

Table 5.3 reports the reconstruction results for the three methods and the different

datasets. This table shows that in general, the convex approach performs better over

other methods. Interestingly, these results also seem to indicate that nonconvex

optimisation offers higher reconstruction results as p → 1, that is as convexity is

approached. The IHT algorithm can be shown to improve a standard inversion

using a zero-filled Fourier transform, but it does not offer superior reconstruction

results compared to other methods.
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5.3.6 Local low-rank matrix recovery

Another possibility for low-rank matrix recovery is to impose low-rank locally instead

of globally. This was suggested by Trzasko and Manduca [142] in the context of

dynamic MRI denoising. The idea is to exploit the fact that parts of the image

sequence are more likely to be stronger rank-deficient locally than globally. This

is particularly true for breath-hold sequences that can feature motionless subparts,

and which are expected to be rank-1 or approximately rank-1. Locally low-rank can

also remediate problems appearing when only a small number of temporal frames is

considered. Indeed, if this is the case, the rank of the Casorati matrix NxNy × Nt

may not be sufficiently small to consider the matrix as low-rank since Nt � NxNy.

This approach is studied here for undersampled dynamic MRI reconstruction by

solving a slightly modified version of optimisation problem (5.7),

X? = arg min
X∈CNxNy×Nt

{
F (X) ≡ 1

2
‖E(X)− y‖22 + α

∑
ω∈Ω

‖Rω(X)‖∗
}
, (5.18)

where Rω is an operator that extracts local blocks of the Casorati matrix X, and

Ω represents the set of all blocks. To minimise the functional in Eq. (5.18), we

propose a fast proximal gradient method outlined in algorithm 7.1. The blockwise

singular value soft thresholding operator BSVTS consists in applying the solution of

the proximal operator of the nuclear norm individually to each block in the set Ω

using the extracting operator Rω.

Algorithm 5.5 Local low-rank matrix recovery via fast proximal gradient (LLR-
FPG)

Input: y, α ≥ 0, ρ > 0, Ω > 0
Initialise: k = 0, X0 = W0 = 0, t0 = 1
while stopping criterion is not met do

Xk+1 ← BSVT
Sρα
ω∈Ω(Wk − ρE∗(E(Wk)− y))

tk+1 ← 1
2(1 +

√
1 + 4(tk)2)

Wk+1 ← Xk+1 + tk−1
tk+1 (Xk+1 −Xk)

end while
Output: X̂ = Xk

Reconstructions of the SL phantom (figure 5.4) from noisy, highly undersampled

(k, t)-space samples (acceleration factor of 10) using radial equispaced angle trajec-

tory were conducted using (global) low-rank regularisation (LR-FPG, algorithm 5.2)

and locally low-rank regularisation with |Ω| = {4, 16} (LLR-FPG, algorithm 5.5).

Figure 5.19 shows both magnitude images and NMSE errors with a distinct

advantage for low-rank promoted locally. Note that we can perceive the blocks that

were soft thresholded in the image for Ω = 16 (bottom right). Observe the superior

reconstruction results for blocks that are motionless and present only noise with no
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Figure 5.19: Extracted magnitude images from the reconstructed sequences (left), and
NMSE (right). Note the specific colour mapping to highlight the effect of blockwise SVT
(pixels with zero value have a clearly distinct colour).

signal in the original data, i.e. blocks at the corner of the image sequence. This

effect is due to the fact that in this experiment we have chosen non-overlapping

blocks for simplicity, but this is likely to disappear when using overlapping blocks

with averaging. In this method, the number of blocks is an important question that

impacts the reconstruction performance, and the best choice is yet to be determined.

Computational times for LLR-FPG were as competitive as LR-FPG due to the fast

optimisation scheme in algorithm 5.5 and because the blockwise SVT operator calls

SVD routines on smaller matrices (although many more times than in globally low-

rank). While this example clearly illustrates the advantage of encouraging low-rank

locally, it should be kept in mind that higher reconstruction results may not be

as substantial for dynamic sequences presenting important motion such as free-

breathing data.

5.4 Discussion

5.4.1 Sparsity and low-rank prior

The Fourier transform along the temporal dimension as the sparsifying transform

was chosen in this study. This transform is particularly adequate because most of the

time dynamic MR signals exhibit periodicity in time. This transform is also simple

to implement and very attractive computationally due to the FFT algorithm. This

explains why this transform has also been used many times in other reconstruction

methods.

Further work is needed to determine which sparsifying transform sparsify the

most dynamic MR signals in the case of breath-hold and free-breathing data. Al-

though various other sparsifying transforms have been used such as wavelet in

time [72] or spatio-temporal total variation as in k-t SLR, a consistent compari-
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son do not exist to our knowledge. All these transforms can be classified as fixed

bases approaches because their bases are not variable, but recently, there has been

interest in developing adaptive sparsifying transforms i.e., learnt from the data it-

self [143, 144]. The study of these adaptive sparsifying transforms in combination

with low-rank prior could be of interest.

Another aspect is to think about how the low-rank prior can be exploited differ-

ently to enable better reconstruction. As we have shown in section 5.3.6, the idea

of Trzasko and Manduca [142] about promoting locally low-rank instead of globally

is particularly powerful. Further work in this direction should be addressed, first to

combine this approach with sparsity for example using the LRS-FCS algorithm, and

second to similarly find out other low-rank structures that could exhibit stronger

low-rank assumption than the standard Casorati matrix.

5.4.2 Flexibility and computational times

Throughout this study, proximal gradient methods have revealed to be a flexible

algorithmic framework, since they can solve efficiently sparse, low-rank and joint

sparse/low-rank problems. They exploit the fact that the objective function can be

split into a differentiable data fidelity term whose gradient is known and regularisa-

tion penalties whose proximal operators can be computed easily.

In this work, we have used fast proximal gradient methods which were based on

acceleration schemes proposed by Beck and Teboulle [110] and Nesterov [109]. Thus,

the developed algorithms enjoy attractive rates of convergence on the objective func-

tion, and although the actual convergence of sequence produced by these schemes is

not known [100], these algorithms have been shown to converge empirically. Since

these algorithms converge rapidly, they have highly competitive execution times as

it has been shown in figures 5.11 and 5.12. The computational advantage would

be even more attractive for imaging in higher dimensions, such as four-dimensional

imaging where a volume is imaged in time.

5.4.3 Alternatives to convex optimisation

Nonconvex approaches are often motivated by the fact that they can theoretically

provide better reconstruction results in contrast to convex relaxation of nonconvex

problems. However, we did not make such observations in this study. Additionally,

we have found nonconvex methods more difficult to handle because it is not possible

to tell whether the method is performing at its best or not, since it can be stuck

in local minima. This is in contrast to convex optimisation that is guaranteed to

approach a global solution when the functional is minimised.

The basic greedy approach based on an iterative hard thresholding did not par-

ticularly show higher reconstruction results, although further investigation would be
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needed to fully address a proper comparison.

5.4.4 Regularisation parameters

In this study, ground truths were accessible and the reconstructions were based on

the minimum error according to Eq. (B.2), i.e. from a range of different regularisa-

tion parameters we have selected the reconstruction that returned the best quality.

The influence of the regularisation parameters on the reconstructions is shown in

figure 5.20 for the different methods. This figure gives some insights about the per-

formance of the methods regarding the choice of regularisation parameters. In the

case where multiple priors are used, these figures also show which prior help the

most the reconstruction. Note that a finer selection of these parameters can poten-

tially give different reconstruction results. In this sense, all these methods suffer

from sensitivity of regularisation parameters. Automatic selection of the best regu-

larisation parameters is still an open problem, although there has been recent work

trying to tackle this for specific problems using the Stein’s unbiased risk estimate,

see Refs. [141,145].

5.5 Related works

For the historical aspects, we recall that the use of accelerated gradient techniques as

a faster way to solve linear discrete inverse problems with `1 minimisation through

iterative soft thresholding was proposed by Beck and Teboulle with FISTA [110] in

2009. In fact, Nesterov had previously proposed a somehow more general method for

minimising composite convex functions in an unpublished manuscript [109] that was

proven to converge in function values with the same rate of convergence as FISTA.

Following developments in low-rank matrix recovery, Toh and Yun [137] proposed

in 2010 to adapt the FISTA scheme for nuclear norm minimisation. Combettes and

Pesquet made a significant contribution by proposing the proximal splitting meth-

ods [100], as a generalised framework to solve similar type of convex optimisation

problems.

To our knowledge, the use of fast proximal gradient methods for low-rank and/or

sparsity reconstruction in dynamic imaging has received limited attention in the

MR community. Many proposed MRI reconstruction algorithms for low-rank and

sparsity rely on other optimisation techniques which have been described in section

3.4.

5.6 Conclusion

In this chapter, we have primarily provided simple, efficient and fast algorithms

to solve low-rank and sparse MRI reconstruction problems via convex optimisation
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Figure 5.20: Influence of the regularisation parameters for the different methods,
showing here the SL phantom and golden angle radial sampling.
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and proximal gradient methods. We also have provided numerous comparisons in

terms of datasets, sampling patterns and state of the art reconstruction methods.

We have confirmed previous studies showing that exploiting simultaneously low-

rank and sparsity could benefit the reconstruction of dynamic MR images from

partial data compared to individually sparse or low-rank, but this study has also

revealed that low-rank matrix recovery on its own could be a serious alternative to

sparse minimisation. Additionally, the developed algorithms were all training-free,

i.e. no training set or low-resolution estimate (as in k-t FOCUSS or PS-sparse) were

required to reconstruct data.

One of the developed convex algorithm that exploits both low-rank structure and

sparseness in the the temporal Fourier domain (LRS-FCS) has proved to consistently

generate higher quality results in much more competitive running times than state of

art low-rank and sparse reconstruction methods. Having both strong reconstruction

accuracy and low computational costs, this method reveals to be a highly competitive

reconstruction algorithm against state of the art methods.
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Chapter 6

Joint reconstruction–separation

via matrix decomposition
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6.1 Introduction

In this chapter, we introduce a joint reconstruction–separation method from par-

tial (k, t)-space measurements that reconstructs and inherently separates into two

components the information in the dynamic scene.
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The reconstruction is based on the low-rank plus sparse (L+S) matrix decom-

position model, also known as robust principal components analysis (RPCA). The

motivations for using this model are twofold. First, RPCA applied to a set of dy-

namic images results in two distinct low-rank and sparse components that capture

respectively the background and dynamic information [56]. Second, it has been

shown in multiple studies [56,58–62] that it is possible to recover both low-rank and

sparse components from only a fraction of observations under some specific assump-

tions. In our proposed approach, we assume that the Casorati matrix formulation of

the dynamic MRI sequence can be expressed as a linear combination of a low-rank

plus sparse component, and at the same time that this prior information is strong

enough to be able to reconstruct images from partial (k, t)-space samples.

The contribution of this work is to propose a joint reconstruction–separation

method from sub-Nyquist (k, t)-space samples that intrinsically reconstructs and

separates data through the L+S matrix decomposition model. In some sense, this

approach goes beyond traditional reconstruction techniques for accelerated MRI

because it is a first step towards methods that could anticipate or help in the in-

terpretation of images directly from the reconstruction procedure. The method is

named k-t RPCA, since it involves the reconstruction of images from partial ac-

quired (k, t)-space samples using the RPCA model. Work presented in this chapter

has been previously published in Refs. [90, 146].

This chapter is organised as follows. The proposed method is presented in section

6.2 where we also briefly review the robust principal component analysis method.

Numerical simulations are shown in section 6.3. Sections 6.4, 6.5 and 6.6 respectively

present the discussion, related works and the conclusion of this study.

6.2 Method

6.2.1 Robust principal component analysis

Robust principal component analysis (RPCA) [55–57], also referred to as low-rank

plus sparse (matrix) decomposition (L+S), was initially motivated by the fact that

the matrix representation of some system in many applications can be characterised

as being composed of a low-rank and a sparse matrix.

More formally, the goal of RPCA is to decompose a given matrix X ∈ RM×N

into its low-rank L and sparse S components such that X = L + S, as illustrated in

figure 6.1. In other words, one wants to find the lowest rank of L that could have

generated the observed data, subject to the constraint that S is sparse and naturally

that L + S = X. This can be expressed as a minimisation problem,

min
L,S

rank(L) + λ‖S‖0 s.t. L + S = X. (6.1)
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Figure 6.1: Schematic RPCA decomposition. Given a matrix X that is neither low-
rank nor sparse, RPCA estimates low-rank L and sparse S matrices such that X = L+S.

As it has been explained in chapter 3, problem (6.1) is intractable due to the rank

operator and `0 pseudonorm. The convex relaxation technique can be used by

employing instead respectively the nuclear and `1 norms,

min
L,S
‖L‖∗ + λ‖S‖1 s.t. L + S = X. (6.2)

Solving the above problem can be interpreted as an attempt to make a more ro-

bust version of the standard principal component analysis (PCA) regarding grossly

corrupted observations (outliers), since the sparse component will tend to capture

these outliers. Note that the low-rank plus sparse decomposition is not unique if

the given matrix is both low-rank and sparse, since both components would be seen

interchangeably as either low-rank or sparse in this case (for example, a matrix that

has only one nonzero element).

RPCA is solved efficiently via the alternating direction methods of multipliers

(ADMM) (as described in section 4.3) because of the intrinsic separable structure

that appears in both the objective function and the constraint. First, the augmented

Lagrangian function of (6.2) must be expressed,

LAδ (L,S,Z) = ‖L‖∗ + λ‖S‖1 + 〈Z,L + S−X〉+
δ

2
‖L + S−X‖2F , (6.3)

where 〈., .〉 denotes the trace inner product, Z is the Lagrange multiplier of the linear

constraint and δ is the penalty parameter. ADMM can be formulated as

Lk+1 ← arg min
L

LAδ (L,Sk,Zk)

Sk+1 ← arg min
S

LAδ (Lk+1,S,Zk)

Zk+1 ←Zk + δ(Lk+1 + Sk+1 −X).

(6.4)
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The scaled form of ADMM can also be derived,

Lk+1 ← arg min
L

1

δ
‖L‖∗ +

1

2
‖L− [X− Sk −Uk]‖2F (6.5a)

Sk+1 ← arg min
S

λ

δ
‖S‖1 +

1

2
‖S− [X− Lk+1 −Uk]‖2F (6.5b)

Uk+1 ←Uk + Lk+1 + Sk+1 −X, (6.5c)

where Uk = (1/δ)Zk. Since (6.5a) and (6.5b) are proximal operators of respectively

the nuclear norm and `1 norm evaluated at X − Sk − Uk and X − Lk+1 − Uk, a

proximal version can be established that is described in algorithm 6.1. The penalty

parameter δ can be fixed to the specific value δ = (MN)/(4‖X‖1) as suggested in

Refs. [56, 57] although another strategy is to update it dynamically [53].

Algorithm 6.1 Robust principal component analysis (RPCA)

Input: X, λ > 0
Initialize: k = 0, S0 = U0 = 0, δ = 1

4
MN
‖X‖1

while stopping criterion is not met do
Lk+1 ← prox(1/δ)‖.‖∗(X− Sk −Uk)

Sk+1 ← prox(λ/δ)‖.‖1(X− Lk+1 −Uk)

Uk+1 ← Uk + Lk+1 + Sk+1 −X
end while
Output: L̂ = Lk, Ŝ = Sk

The parameter λ in (6.2) plays the important role of a trade-off between how

much the low-rank component gets ”low-rank” and how much the sparse component

gets ”sparse”. Candès et al. [56] suggested the theoretically supported value

λ = max(M,N)−1/2. (6.6)

Note this value depends on the dimensions of the original matrix X ∈ RM×N . In

general, this choice offers a reasonable separation in between low-rank and sparse

components, although multiplying this value by a scaling factor can help to tailor the

separation to a given application. For that reason, we define the following expression

that we will use later,

λρ = ρmax(M,N)−1/2 (6.7)

where ρ > 0 is the scaling factor.

To apply RPCA on a dynamic MRI sequence of dimensions Nx × Ny with Nt

frames, the Casorati matrix whose columns represent vectorised MR images of the

sequence must be formed, see Eq. (3.59). An example of RPCA applied to a breath-

hold cardiac MRI sequence is shown in figure 6.2 for a specific value of λρ. Phys-

iologically, the low-rank part appears as a static component (background) while

the sparse component captures dynamics (motion), in this particular case mostly
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heartbeats.

6.2.2 Joint reconstruction–separation

In this work, we are interested in the the low-rank plus sparse decomposition not only

from the separation aspect, but also from a reconstruction perspective. Thus, we

formulate RPCA for undersampled dynamic MRI as the following convex problem,

min
L,S
‖L‖∗ + λρ‖Ft(S)‖1 s.t. E(L + S) = y, (6.8)

where E : CNxNy×Nt → CM represents the MRI encoding operator modelling both

the random sub-Nyquist sampling and Fourier transform, Ft denotes the Fourier

transform operator along the temporal dimension as in Eq. (3.65), λρ is the decom-

position parameter1 as defined in Eq. (6.7), and y ∈ CM represents the (k, t)-space

undersampled data.

The above formulation assumes that the dynamic imaging data have the prop-

erty of being separable into an approximately low-rank and approximately sparse

components. The additional operator Ft applied to the sparse component can be

justified by the fact that the proposed method deals with the reconstruction of un-

dersampled data: the temporal Fourier transform is known to improve sparsity in

many dynamic reconstruction methods (e.g. Refs. [72, 73]). This is beneficial since

it is assumed in such studies that the more the signal is sparse, the higher the

undersampling ratio can be. An illustration is provided in figure 6.3.

Note that the associated AL function of problem (6.8) is

LAδ (L,S,Z) = ‖L‖∗+λρ‖Ft(S)‖1 +<{〈Z,E(L + S)−y〉}+ δ

2
‖E(L + S)−y‖22, (6.9)

and the ADMM takes the following formulation,

Lk+1 ← arg min
L

LAδ (L,Sk,Zk) (6.10a)

Sk+1 ← arg min
S

LAδ (Lk+1,S,Zk) (6.10b)

Zk+1 ←Zk + δ(E(Lk+1 + Sk+1)− y). (6.10c)

However, alternating steps (6.10a) and (6.10b) cannot be solved easily in particular

due to the presence of the MRI operator E. Indeed, developing step (6.10a) for

1The decomposition parameter can be seen interchangeably as either λρ or ρ. In the following,
we will mainly refer to it as ρ because it is easier to interpret since it can be seen as a scaling
parameter that does not depend on the matrix dimensions.
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Figure 6.2: RPCA on a breath-hold cardiac cine MRI sequence with Nt = 30 (showing
only a single frames from the sequence on the top figure). Algorithm 6.1 with ρ = 0.5 in
Eq. (6.7) was used to generate figures in this example. The decomposition resulted in a
rank-1 matrix for the low-rank part as shown by the only nonzero singular value, while
the sparse component does not have a low rank because most of its singular values are
not close to zero. It can be seen on the corresponding images and histograms that the
sparse component is much more sparse than the low-rank one.
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Figure 6.3: Effect of the additional temporal Fourier transform on the sparse compo-
nent using different decomposition parameter ρ. Gray curve shows the normalised `1
norm of temporal Fourier transform of the sparse component (‖Ft(S)‖1/‖S‖F ), black
curve shows the normalised `1 norm of the sparse component (‖S‖1/‖S‖F ). The addi-
tional temporal Fourier operator can generally help sparsifying the signal when S is not
particularly sparse, e.g. ρ ∈ (0, 1.2]. This figure has been generated using algorithm
6.1 and the numerical phantom with a combination of motion and intensity changes
(section 6.3.2).
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example leads to

Lk+1 ← arg min
L

LAδ (L,Sk,Zk)

← arg min
L

{
‖L‖∗ + <{ZkH

(E(L + Sk)− y)}+
δ

2
‖E(L + Sk)− y‖22

}
← arg min

L

{
‖L‖∗ + <{ZkH

E(L + Sk)} − <{ZkH
y}+

δ

2
‖E(L + Sk)− y‖22

}
← arg min

L

{
‖L‖∗ + <{ZkH

E(L + Sk)}+
δ

2
‖E(L + Sk)− y‖22

}
,

(6.11)

which is a minimisation problem difficult to solve. To overcome this, image re-

construction is first reformulated as an unconstrained minimisation of the convex

objective function F (L,S) : CNxNy×Nt × CNxNy×Nt → R,

{L?,S?} = arg min
L,S

{
F (L,S) ≡ 1

2
‖E(L+S)−y‖22 +µ

(
‖L‖∗+λρ‖Ft(S)‖1

)}
, (6.12)

where µ represents the regularisation parameter.

6.2.3 Image reconstruction algorithm

To minimise F (L,S) as defined in (6.12), an algorithm is derived based on ADMM.

First, the variable splitting procedure is used,

min
P,Q,L,S

1

2
‖E(L + S)− y‖22 + µ(‖P‖∗ + λρ‖Q‖1) s.t. P = L,Q = Ft(S). (6.13)

The associated AL function reads

LAδ1,δ2(P,Q,L,S) =
1

2
‖E(L + S)− y‖22 + µ‖P‖∗ + µλρ‖Q‖1

+ <{〈Z1,L−P〉}+
δ1

2
‖L−P‖22

+ <{〈Z2,Ft(S)−Q〉}+
δ2

2
‖Ft(S)−Q‖22,

(6.14)

where Zi are Lagrangian multipliers. Combining the linear and quadratic terms in

the augmented Lagrangian function and ignoring constants irrelevant to optimisa-

tion, Eq. (6.14) can also be written as

LAδ1,δ2(P,Q,L,S) =
1

2
‖E(L + S)− y‖22 + µ‖P‖∗ + µλρ‖Q‖1

+
δ1

2
‖L + δ−1

1 Z1 −P‖22 +
δ2

2
‖Ft(S) + δ−1

2 Z2 −Q‖22.
(6.15)
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ADMM minimises LAδ1,δ2 over P,Q,L and S separately, which leads to this iterative

procedure,

Pk+1 ← arg min
P

LAδ1,δ2(P,Qk,Lk,Sk)

Qk+1 ← arg min
Q

LAδ1,δ2(Pk+1,Q,Lk,Sk)

Lk+1 ← arg min
L

LAδ1,δ2(Pk+1,Qk+1,L,Sk)

Sk+1 ← arg min
S

LAδ1,δ2(Pk+1,Qk+1,Lk+1,S)

Zk+1
1 ←Zk1 + δ1(Lk+1 −Pk+1)

Zk+1
2 ←Zk2 + δ2(Ft(S

k+1)−Qk+1).

(6.16)

These sub-problems result either in proximal operators that we have encountered in

chapter 4, or quadratic problems leading to linear system of equations,

Pk+1 ← arg min
P

1

2
‖Lk + δ−1

1 Zk1 −P‖22 +
µ

δ1
‖P‖∗ (6.17a)

←proxµ/δ1‖.‖∗(L
k + δ−1

1 Zk1) (6.17b)

←SVTSµ/δ1 (Lk + δ−1
1 Zk1) (6.17c)

Qk+1 ← arg min
Q

1

2
‖Ft(Sk) + δ−1

2 Zk2 −Q‖22 +
µλρ
δ2
‖Q‖1 (6.17d)

←prox(µλρ)/δ2‖.‖1(Ft(S
k) + δ−1

2 Zk2) (6.17e)

←S(µλρ)/δ2(Ft(S
k) + δ−1

2 Zk2) (6.17f)

Lk+1 ← arg min
L

1

2
‖E(L + Sk)− y‖22 +

δ1

2
‖L + δ−1

1 Zk1 −Pk+1‖22 (6.17g)

←(E∗E + δ1I)−1(E∗y + δ1P
k+1 − Zk1 − E∗ESk) (6.17h)

Sk+1 ← arg min
S

1

2
‖E(Lk+1 + S)− y‖22 +

δ2

2
‖Ft(S) + δ−1

2 Zk2 −Qk+1‖22 (6.17i)

←(E∗E + δ2I)−1(E∗y + Ft
∗(δ2Q

k+1 − Z2)− E∗ELk+1). (6.17j)

Based on these closed-form solutions, the image reconstruction procedure is derived

in algorithm 6.2. Some additional modifications include the penalty parameters

δ1 and δ2 which are both set and fixed to 1 (although as in standard RPCA they

could be updated dynamically) and the re-enforcement of the decomposition at the

beginning of the iterative process: the term Lk in (6.17c) is replaced by Xk−Sk, and

similarly the term Sk in (6.17f) is replaced by Xk−Lk. The latter modification is also

useful to reduce the number of iterations needed to obtain a satisfying decomposition.

The algorithm is stopped if a maximum number of 200 iterations is reached or if

the estimated matrix does not change significantly any more between two iterations,

i.e. if
‖Xk+1 −Xk‖F
‖Xk‖F

≤ tol, (6.18)
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where tol is the tolerance set to a small value such as 10−6. Another possibil-

ity would be to stop the algorithm when the objective function does not decrease

significantly any more, as in Eq. (5.12).

Algorithm 6.2 Dynamic MR image reconstruction–separation via low-rank plus
sparse prior (k-t RPCA)

Input: y, µ, λρ > 0
Initialize: k = 0, X0 = L0 = E∗(y), S0 = Z0

i = 0
while stopping criterion is not met do

Pk+1 ← SVTSµ(Xk − Sk + Zk1)
Qk+1 ← Sµλρ(Ft(X

k − Lk) + Zk2)
Lk+1 ← (E∗E + I)−1(E∗(y) + Pk+1 − Zk1 − E∗(E(Sk)))
Sk+1 ← (E∗E + I)−1(E∗(y) + Ft

∗(Qk+1 − Zk2)− E∗(E(Lk+1)))
Zk+1

1 ← Zk1 + Lk+1 −Pk+1

Zk+1
2 ← Zk2 + Ft(S

k+1)−Qk+1

Xk+1 ← Lk+1 + Sk+1

end while
Output: L̂ = Lk, Ŝ = Sk

6.2.4 Sampling considerations

In section 5.2.5 we have explained that sampling patterns in MRI are subject to

hardware constraints. For this study, we use and compare two sampling strategies

based on polynomial variable density sampling and pseudo-radial sampling. An

illustration of these sampling patterns is shown in figure 6.4.

6.3 Numerical simulations

6.3.1 Framework

Experiments were run in Matlab on a Linux platform. Intensity of data were nor-

malised between values 0 and 255 prior to any processing. Simulated data were

created directly in the image domain and in vivo data were based on magnitude-

reconstructed images from an MR scanner. Datasets were then undersampled ret-

rospectively using a polynomial variable density or pseudo-radial sampling schemes

as shown in figure 6.4. To obtain more realistic simulations, Gaussian noise was

added explicitly on each real and imaginary channel of the undersampled data in

all experiments with zero mean and a standard deviation σ = 3. We refer the

reader to appendix B for the error metrics used to evaluate the performance of the

reconstructions.

A zero-filled inverse Fourier transform and a sliding window reconstruction us-

ing a zeroth-order hold technique [69] are included, mainly to illustrate the level
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Figure 6.4: (a) One time frame acquisition pattern for polynomial variable density
sampling and (b) the (ky, t)-space sampling pattern (left) with its associated probabil-
ity density function (right). (c) One time frame acquisition pattern for pseudo-radial
sampling and (d) the (random) angles of rotation in time (left) with the associated
uniform probability density function (right).

129



Joint reconstruction–separation via matrix decomposition

0 10 20 30 40 50 60 70 80
120

140

160

180

200

220

240

260

 

 

Noiseless
Noisy

Figure 6.5: Modelling local intensity changes (showing here pixel intensity values in
time) as the uptake and washout of a contrast agent using the modified Tofts model.

of undersampling. Comparisons with dynamic MR reconstruction methods k-t FO-

CUSS [73–75] and k-t SLR [82] are provided. These methods were described previ-

ously in section 3.4. k-t FOCUSS is implemented with 40 inner iterations (conjugate

gradient step), 2 outer iterations (FOCUSS step) and weighting matrix power factor

of 0.5 (cf. section 3.4.2). The low-resolution initial estimate is obtained by using a

zero-filled inverse Fourier transform using the low-frequency samples. For k-t SLR,

there are parameters to tune related to the continuation strategy of the optimisation

algorithm that are used to improve the convergence rate. These parameters are set

to suggested values provided in the k-t SLR package (penalty parameters β1 = β2

= 10−7 for Schatten and TV norms; penalty parameters incrementation both set to

25 in the outer loop; maximum number of 50 inner and 9 outer iterations).

In k-t FOCUSS, one regularisation parameter can be tuned to control the sta-

bility of the solution under noisy conditions. Here, reconstructions with a different

regularisation parameter selected from a range of values are computed and the best

one is selected in accordance with Eq. (B.2). In k-t SLR, different regularisation

parameters α and β for respectively the Schatten norm and spatio-temporal TV

norm are tested, and the best reconstruction is selected according to Eq. (B.2). A

similar strategy for k-t RPCA is employed by varying both the regularisation µ and

decomposition ρ parameters. Note that ρ can be fixed to obtain a specific type of

decomposition, although it should be noted that it may also affect the reconstruction

results, which is discussed in section 6.4.

6.3.2 Reconstruction results

This section presents reconstruction results where the separation is not of particular

interest, but proves to be a strong enough a priori information to remain compet-

itive against state of the art methods. In these experiments, ρ in k-t RPCA is

automatically selected to return the best reconstruction.
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Ground truth Noisy ZF-IDFT Sliding window k-t FOCUSS k-t SLR k-t RPCA
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Figure 6.6: Qualitative results for phantom with a combination of intensity and mo-
tion (Cartesian sampling). (a) Magnitude images (b) Zoom-in magnitude images (cor-
responding to the red square on the ground truth image) (c) Phase images (d) x-t
temporal profiles and (e) y-t temporal profiles (according to the dotted lines on the
ground truth image). The time frames shown in the first three rows correspond to the
frames selected on the dotted lines on the temporal profiles. Left color mappings refer
to magnitude images, right color mapping refers to phase images.
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Ground truth Sliding window k-t FOCUSS k-t SLR k-t RPCA
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Figure 6.7: (a,c) x-t temporal profiles and (b,d) y-t temporal profiles of various re-
construction methods for (a,b) intensity only phantom and (c,d) motion only phantom
(Cartesian sampling).
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Intensity only Motion only Combination

Rank 2 11 21
‖Ft(X)‖1/‖X‖F 79.7 96.5 98.9
TV(X)/‖X‖F 47.4 60.1 60.7

Table 6.1: Characteristics of the different noiseless phantoms. The spatio-temporal
TV operator is computed as defined in Eq. (3.62).

Phantom simulations

First experiments are conducted on a numerical phantom of dimensions Nx = Ny =

128, Nt = 80. This phantom is created to model typical dynamic MRI sequences with

different types of time-varying components. Specifically, it can include periodic local

and global motion, and localised changes of intensity. Local motion simulates moving

organs (such as the beating heart) while global motion simulates respiratory-like

movement imitating free-breathing imaging. Motion is modelled using trigonometric

functions with varying frequencies and amplitudes. Local intensity changes mimic a

contrast enhanced signal, i.e. the uptake and washout of a contrast agent using the

modified Tofts model [147] as shown in figure 6.5. This is typical in dynamic contrast

enhanced MRI studies. While simplistic, the major advantage of this phantom is

the full control over motion and intensity parameters to make fine adjustments, and

the availability of a reference noiseless signal (ground truth).

To evaluate the performance of the different reconstruction algorithms, the same

phantom with different time-varying elements is used. Reconstruction methods are

tested when the phantom has only intensity changes (no motion), periodic motion

(no intensity changes) and with a combination of the two. Table 6.1 provides some

characteristics of the three phantoms in the noiseless case, i.e. the rank, `1 norm of

the Fourier transform along the time dimension and `1 norm of the gradient in x, y,

t directions approximated by finite differences. Note that noiseless (ground truth)

matrices are of dimensions 1282 × 80 with various ranks depending on whether

intensity/motion is present. However, noisy matrices are full-rank (80) because of

the presence of noise, although they remain approximately low-rank with a number

of significant singular values about equivalent to their noiseless counterpart.

In these experiments, the acceleration factor is approximately 10 (about 10%

of acquired samples). Quantitative results are reported for Cartesian sampling and

pseudo-radial sampling in tables 6.2 and 6.3. Reconstruction errors are shown in

decibels and have been computed as in Eq. (B.2) with associated regularisation

parameter(s) for the different methods in brackets. For k-t SLR, they refer to [α;β]

and for k-t RPCA to [µ; ρ]. Visual evaluations are provided in figures 6.6 and

6.7. Figure 6.6 shows magnitude images, phase images and temporal profiles for

the phantom with a combination of intensity and motion. Figure 6.7 presents time
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Intensity only Motion only Combination

ZF-IDFT 14.5 14.6 14.5
Sliding window 21.3 16.9 16.9
k-t FOCUSS 25.9 [0.1] 20.7 [0.1] 20.6 [0.1]

k-t SLR 25.7 [0;1] 24.3 [1;1] 24.2 [1;1]
k-t RPCA 24.5 [200;2] 21.7 [500;0.25] 21.5 [500;0.25]

Table 6.2: Reconstruction results (in dB) using Eq. (B.2) for numerical phantoms
with Cartesian sampling. Numbers in brackets refer to regularisation parameters.

Intensity only Motion only Combination

ZF-IDFT 15.8 15.9 15.9
Sliding window 23.8 17.3 17.3
k-t FOCUSS 31 [0.1] 22.7 [0.01] 22.6 [0.01]

k-t SLR 29.9 [10;1] 28.2 [10;1] 28.2 [10;1]
k-t RPCA 28.1 [500;2] 23.8 [500;0.5] 23.6 [500;0.5]

Table 6.3: Reconstruction results (in dB) using Eq. (B.2) for numerical phantoms
with pseudo-radial sampling. Numbers in brackets refer to regularisation parameters.

profiles of reconstructions for the phantom with only intensity and with only motion.

From these results, there is no indication in which k-t RPCA might have a pref-

erence for a certain type of dynamic phantom. In fact, it can be observed that k-t

RPCA has a similar behaviour as k-t SLR, although k-t SLR consistently provides

better reconstructions than k-t RPCA itself. Both k-t SLR and k-t RPCA outper-

form k-t FOCUSS when motion is present, and when a combination of intensity and

motion is present. When only intensity is present however, k-t FOCUSS seems to

have a slight advantage over both k-t SLR and k-t RPCA.

The general good performance of k-t SLR over other methods can possibly be

attributed to the fact that the phantom is a piecewise constant signal. A spatio-

temporal total variation prior is particularly efficient for this type of signal, since TV

penalises oscillatory information while allowing jumps. In other words, this means

that solutions obtained by k-t SLR are rather due to the sparsity prior than the low-

rank one. For example, it can be seen that the low-rank structure is not exploited at

all in the reconstruction of the phantom with only intensity for Cartesian sampling

since α was selected equal to zero (table 6.2, ”Intensity only” column).

Tables 6.2 and 6.3 show that all reconstruction methods benefit from the pseudo-

radial sampling, whether they are based only on sparsity or both low-rank and spar-

sity prior. This could be be expected because it can be seen that a simple zero-filled

inverse Fourier transform already gives an improved reconstruction performance

when a pseudo-radial sampling pattern is employed in contrast to a Cartesian sam-

pling pattern.
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Ground truth

Noisy
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Figure 6.8: Visual comparison of reconstruction methods for cardiac MRI data show-
ing one time frame magnitude image (frame number n = 40). First row corresponds to
Cartesian sampling, second row to pseudo-radial sampling.

Cartesian sampling Pseudo-radial sampling

ZF-IDFT 9.5 11.0
Sliding window 13.8 14.9
k-t FOCUSS 17.2 [0.01] 18.5 [0.01]

k-t SLR 17.8 [100;0.1] 19.2 [200;0.1]
k-t RPCA 17.5 [100;2] 19.4 [100;2]

Table 6.4: Reconstruction results (in dB) using Eq. (B.2) for cardiac MRI data with
Cartesian and pseudo-radial sampling.

Cardiac MRI

The second experiment is conducted on in vivo data with a free-breathing cardiovas-

cular dataset of dimensions Nx = Ny = 128, Nt = 90 acquired on a 3T MRI scanner.

Apart from motion such as heartbeats and large breathing movements, this dataset

has complex anatomical features that makes it more challenging to reconstruct than

the numerical phantom. An acceleration factor of approximately 8 is chosen, which

corresponds to about 12.5% of acquired samples. Note that it is necessary to add

noise to in vivo data because the original noise in the magnitude image becomes

part of the apparent signal when retrospectively undersampled.

Time frames extracted from the different reconstruction methods are shown in
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Figure 6.9: NMSE at each time frame for cardiac MRI data with Cartesian sampling
(left) and pseudo-radial sampling (right).
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figure 6.8, although it is visually difficult to claim objectively which method is the

best. Quantitative results are given in table 6.4 for the different sampling strategies.

Additionally, NMSE at each time frame are shown in figure 6.9 for both Cartesian

and pseudo-radial sampling. Based on these results, all methods performed similarly

using the polynomial variable density sampling, and a slight advantage can be seen

for both k-t SLR and k-t RPCA when pseudo-radial sampling is used. In k-t RPCA,

the selected reconstructions were chosen with ρ = 2 (table 6.4), which means that

the selected reconstructions have favoured the low-rank part rather than the sparse

part. k-t SLR did not successfully manage to obtain much better reconstruction

results over other existing methods as it previously did on the first experiment. One

of the possible reasons can be attributed to the fact that the cardiac MRI dataset did

not have a particularly sparse gradient in space and time compared to the numerical

phantoms.

6.3.3 Exploiting the separation

In this section, the utility of the intrinsic separation of the reconstructed data into

low-rank and sparse components is demonstrated in the context of motion estimation

in dynamic contrast enhanced (DCE) MRI.

In DCE MRI, acquisition of multiple MR images is taken continuously before,

during, and after the administration of a contrast agent. The uptake and washout of

the contrast agent concentration over time in the body corresponds to local changes

of intensity in the MR images. Pharmacokinetic analysis can then be used to relate

to tissue characteristics [147]. However, patient motion during acquisition (such as

heartbeats, breathing or involuntary movements) produces inter-frame misalignment

and complicates the estimation of the rate of the uptake by the tissue. Image

registration can be used to solve this problem, but the presence of the contrast

enhanced images interferes with the registration procedure because conventional

algorithms can interpret local intensity changes as motion.

As it has been demonstrated for RPCA in figure 6.2, the proposed k-t RPCA

approach is also expected to separate slow time-varying elements (background) from

more abrupt changes due to the embedded separation. We show in figure 6.10 the

different decompositions obtained with various ρ using the numerical phantom of

the previous section that includes a combination of local intensity changes and slow

varying motion. This figure demonstrates that it is possible to some degree to

separate local changes of intensity in the sparse component from the background

for an appropriate ρ parameter. To help in motion estimation, the idea is then

to register low-rank images that will include most of the slow varying motion and

less local intensity changes provoked by the contrast agent. The displacement field

obtained from registering only the low-rank images (without interference from local

intensity changes) is likely to be closer to the ”ground truth displacement field”,
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ρ  = 0.5 ρ = 1.5 ρ = 2 ρ = 3.5

a
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c
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Figure 6.10: Different types of separation into low-rank and sparse components using
k-t RPCA with different decomposition parameters ρ. It can be observed that this
parameter acts as a trade-off between the two components. The undersampling rate
is 0.25. (a) Low-rank time frames (b) Sparse time frames (c) x-t temporal profiles of
low-rank component (d) x-t temporal profiles of sparse component.
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Ground truth Noisy with CE k-t FOCUSS k-t SLR k-t RPCA k-t RPCA (L) k-t RPCA (S)

Figure 6.11: x-t temporal profiles used in the registration procedure. For the reg-
istration of k-t RPCA, only the low-rank part is used which mostly contains images
without contrast enhancement (CE) thanks to the separation process.

that is the displacement field from the same MR signal without contrast enhanced

images. This displacement field can then be employed for more accurate motion

correction as it has been shown in Ref. [148].

As a proof of concept, the numerical phantom of the previous section (combina-

tion of local intensity changes and motion) is used for the purpose of demonstration

with an acceleration factor of 4 using the pseudo-radial sampling. k-t FOCUSS and

k-t SLR are reconstructed as previously, using the best regularisation parameters.

However, k-t RPCA reconstruction is now explicitly selected with ρ = 1.5 to end

up with mostly the local intensity changes in the sparse part, and motion in the

low-rank part. Reconstruction errors for k-t FOCUSS, k-t SLR and k-t RPCA were

respectively 25.3dB, 31.1dB and 26.3dB.

A sequential registration of each frame of k-t FOCUSS, k-t SLR and the low-rank

part of k-t RPCA is performed with NiftyReg [149], an efficient C++ implementation

of a parallel formulation of the free-form deformation (FFD) algorithm [150] based on

cubic B-splines. Local normalised cross correlation is used as measure of similarity

(standard deviation of the Gaussian kernel set to 5 pixels for all time points) and a

control point spacing of 2 pixels in all directions. The time profiles of the different

reconstruction methods along the ground truth are shown in figure 6.11. Note the

ground truth was obtained with the noiseless phantom created without intensity

changes but with the same motion. The reference images taken for registration were

the last time frame images in the respective dynamic reconstructed sequences.

In the registration procedure, we also compute the displacement fields of the

image sequence (which is called optical flow in computer vision) via NiftyReg. This

results in displacement fields Dx and Dy, respectively along the x direction and y

direction. Displacement vector fields from one time frame to the next time frame are

shown (in blue) in figure 6.12 with source images used for registration in the back-

ground. The definition of the Jacobian J(x, y) in 2D depends on the displacement

fields Dx and Dy,

J(x, y) =

[
∂Dx
∂x

∂Dy
∂x

∂Dx
∂y

∂Dy
∂y ,

]
(6.19)
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a b c d e

Figure 6.12: Displacement fields (zoom-in) over source images used for registration.
Table 6.5 provides the associated quantitative results. (a) Ground truth noiseless phan-
tom (b) Noisy phantom with local intensity changes (c) k-t FOCUSS (d) k-t SLR (e)
k-t RPCA, low-rank part. It can be seen that the displacement field is better estimated
in the region with local changes of intensity in k-t RPCA.

Noisy phantom with local intensity changes 11.0
k-t FOCUSS 10.4

k-t SLR 14.6
k-t RPCA – Low-rank component 15.2

Table 6.5: Displacement fields results in the region of interest with local inten-
sity changes. Quantities are in dB and have been computed using the Jacobian and
Eq. (B.2).

and in particular its determinant is given by

|J(x, y)| = ∂Dx

∂x

∂Dy

∂y
− ∂Dx

∂y

∂Dy

∂x
. (6.20)

The metric defined in Eq. (B.2) can then be used to compute the displacement fields

errors based on the Jacobian. Results are reported in table 6.5 and show a slight

improvement for k-t RPCA over other methods.

6.4 Discussion

6.4.1 Prior assumptions and regularisation parameters

Experiments suggest that from a reconstruction point of view, the prior assumption

made in k-t RPCA is strong enough to remain competitive with state of the art

methods. The prior assumption in k-t FOCUSS is that the (x, f)-space is a sparse

signal, which is appropriate with dynamic datasets that exhibit periodicity in time.

k-t SLR performed well over other methods for phantom simulations, but was not

so successful for the in vivo cardiac dataset.

Generally, regularisation parameters affect directly the reconstruction results,

and selecting the right one is challenging in most inverse problems. In k-t FOCUSS

and k-t SLR, the best reconstructions were selected by testing a range of different

regularisation parameters. Two strategies for the choice of ρ in k-t RPCA have

been adopted. If interested in obtaining the best reconstruction, the choice of ρ
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Figure 6.13: Influence of regularisation parameters on the reconstruction error (in dB)
for k-t SLR and k-t RPCA. Numerical phantom simulations with 10-fold acceleration
and Cartesian sampling. For k-t SLR, α and β refers respectively to the nonconvex
Schatten norm and spatio-temporal gradient. For k-t RPCA, µ and ρ refers to (6.12).

should be selected such that the best reconstruction is returned. However, ρ can

also be forced to a specific value to obtain a desirable decomposition. Figure 6.13

presents reconstruction errors (in dB) using different regularisation parameters for

k-t SLR and k-t RPCA. This figure and previous experiments using the phantom

suggest that the low-rank a priori information in k-t SLR is not playing an important

role in this case. When α = 0, it is observed that a good reconstruction can be

obtained using only the sparsity a priori information (spatio-temporal TV). This

can be attributed to the fact that piecewise constant signal such as the phantom

is very sparse when the `1 norm of the gradient is computed. For k-t RPCA, the

regularisation parameter µ is a trade-off between data consistency and the low-rank

plus sparse decomposition. As shown in figure 6.13, the solution is not regularised

when µ = 0 and an appropriate value must be selected to obtain a good regularised

solution. The decomposition parameter ρ can be varied, although it also affects the

reconstruction results.

Note that the selection of regularisation parameters was optimised but this is an

unrealistic strategy since the ground truth is not available in a practical scenario.

However, methods can be adapted to find ideal regularisation parameters such as

the discrepancy principle if noise properties are known, and for example L-curve or

generalised cross-validation methods if not (see Ref. [151]).

6.4.2 Decomposition

While a separation into low-rank and sparse components is easy to see mathemati-

cally, it may be difficult to interpret physiologically what it represents in a dynamic

MRI context. One of the reasons is that the decomposition depends on the type of

dynamic data. Further work in this direction is needed to understand more deeply
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how it can be interpreted physiologically.

Generally, the decomposition provides a separation into two components that

have different characteristics. The low-rank component will tend to have slow time-

varying elements while the sparse component will capture more abrupt changes, but

ρ can be modified to balance between the two parts.

In the simulations, a specific example has been shown where partial isolation of

local changes of intensity in the sparse component from the general motion leads

to a better estimation of the displacement field. Departing from this example, it

is likely that this combined reconstruction–separation approach offers further appli-

cations that could be investigated. For example, motion-related applications where

sparse and localised motion elements interfere with the general background signal,

or artefacts removal where the outlier component would cause undesired alterations

of data. In the latter case, an artefact correction algorithm for RF spike noise has

been proposed based on RPCA as a post-processing technique [152].

6.4.3 Noise

This study has included complex-valued noise to simulate more realistic experi-

ments. However, this study has not evaluated the reconstruction (and separation)

performance of the proposed approach as a function of added noise. Generally in

k-t RPCA, increased noise is inclined to interfere with the sparse component. Both

k-t FOCUSS and k-t SLR may be relatively more robust to noise regarding recon-

structed data, since in k-t FOCUSS the noise in (x, f)-space will generally not be

represented by highly sparse coefficients, and the spatio-temporal total variation

norm will tend to smooth a noisy solution in k-t SLR.

6.4.4 Acquisition and sampling

Two strategies to undersample the (k, t)-space, a Cartesian and pseudo-radial sam-

pling patterns, have been used. These were respectively based on polynomial variable

density and random rotations across each acquisition frame to produce incoherent

sampling artefacts. From the experiment section, in particular tables 6.2, 6.3 and

6.4, it is suggested that the pseudo-radial undersampling strategy provides better

reconstruction results for all methods either based on only sparsity as k-t FOCUSS,

or based on low-rank and sparse prior information (k-t SLR, k-t RPCA). However,

these sampling strategies were based on retrospectively undersampling the (k, t)-

space and they would ideally need to be validated using prospectively undersampled

data from an MRI scanner.
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6.4.5 Computational times

The purpose of this paper was not to focus on computational aspects of the different

reconstruction methods. The different algorithms used were implemented in Matlab

but not optimised. However, it should be noted that during our simulations, k-

t FOCUSS reconstructions could be obtained in less than a minute, whereas k-t

SLR and k-t RPCA could require several minutes of computation in contrast (' 10

minutes).

6.5 Related works

The proposed method was inspired by using initially the L+S model for dynamic

MRI as a post-processing technique [153]. Gao et al. have applied a similar ap-

proach for dynamic computed tomography [154], cardiac cine MRI [133, 155, 156]

and diffusion MRI [157] where low-rank plus sparsity is used as a prior, but they do

not emphasise or show the potential role of the separation.

In contrast, recent work by Otazo et al. [89, 158] have also highlighted the role

of the low-rank plus sparse separation. In fact, they have published almost simul-

taneously the same model in Ref. [89]. Some key differences are as follows: (i) they

combine the technique with parallel dynamic MRI, (ii) their algorithm is based on

proximal gradient instead of ADMM in our case, (iii) they provide more clinical

examples with retrospective and true undersampling whereas we have focused only

on retrospective undersampling, (iv) the separation is shown to be useful in the case

of time-resolved angiography (background suppression) and DCE MRI (separation

of contrast-enhanced information from non-enhanced background); in our case we

have shown a potential application for motion estimation of DCE MRI sequences,

(v) they provide comparisons with standard CS reconstruction and simultaneous

low-rank and sparsity only by modifying the manner in which the constraints are

enforced in their optimisation algorithm, whereas we have provided comparisons

with two state of the art techniques using the original algorithms of k-t FOCUSS

and k-t SLR.

6.6 Conclusion

In this chapter, we have presented a method termed k-t RPCA that jointly recon-

structs and separates dynamic MR data from partial measurements by employing a

low-rank plus sparse regularisation prior. While providing a competitive reconstruc-

tion method for accelerated dynamic MRI as the comparison with state of the art

methods have shown, this technique also provides a separation into two components

having different characteristics that can have potential when tailored to the right
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application. Here, the decomposition was used to partially separate the contrast

enhanced region in a simulated DCE sequence and help in motion estimation.

Interestingly, the proposed reconstruction–separation approach suggests a method

that is not only about finding the closest representation of the true object, but is

also a step towards methods that would directly infer relevant characteristics from

limited measurements.

143



Joint reconstruction–separation via matrix decomposition

144



Chapter 7

Low-rank based recovery for

dynamic parallel imaging
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7.1 Introduction

In this chapter, we investigate the combination of dynamic parallel MR imaging

with methods based on low-rank structure.

Parallel MR imaging (PMRI) uses multiple coils that receive data simultaneously

(i.e. in parallel) to reconstruct a signal from undersampled k-space data by using

information about coil sensitivities. PMRI, also referred to as multichannel or mul-

ticoil MRI, is the most used technique in clinical practice to obtain accelerated scan

times. PMRI has been combined with complementary acceleration approaches such

as compressed sensing because both techniques reduce sampling based on different

types of information, i.e. sparseness for CS and coil sensitivities for PMRI.
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The contribution of this work is to further investigate low-rank based recovery

methods in the context of dynamic parallel MR imaging. We mainly focus on low-

rank promotion due to the novelty of this prior in PMRI and because of the overall

good reconstruction performances that were obtained using low-rank regularisation

alone in chapter 5. We develop and characterise low-rank based methods for PMRI

such as low-rank regularised SENSE, coil-by-coil low-rank reconstruction, and the

low-rank tensor approach as recently suggested by Trzasko and Manduca [159] to

exploit the low-rank property in multiple dimensions of the data. Formulated convex

optimisation problems are solved with proximal gradient algorithms. Content of this

chapter has not been published.

This chapter is organised as follows. We recall some fundamental principles of

PMRI and describe the proposed low-rank based methods for dynamic PMRI in

section 7.2. Numerical simulations are presented in section 7.3. The discussion,

related works and conclusion are presented in sections 7.4, 7.5 and 7.6.

7.2 Method

7.2.1 Dynamic parallel MRI

The use of multiple detectors in NMR (originally called phased array imaging) can

be traced back to the late 1980s [160] and early 1990s [161] but it was only in the

late 1990s that it was first used successfully to accelerate MRI.

The idea behind PMRI is to reconstruct a signal from undersampled k-space

data by using multiple coils that receive data in parallel. Each coil provides full

FOV images but with artefacts because of the sub-Nyquist sampling. However, the

MR image can be reconstructed from multichannel k-space data sampled at the

sub-Nyquist rate due to the availability of multiple independent receiver coils with

distinct sensitivities. In theory, the acceleration factor can be up to the number of

coils, but in practice it is limited by noise and imperfect coil geometry.

The aim of PMRI is to reconstruct images by exploiting coil sensitivity profiles

and sub-Nyquist k-space samples. Since this step can be performed either directly in

k-space or in the image domain, PMRI methods have been traditionally categorised

into Fourier domain (k-space) and image domain approaches depending on the data

representation used to perform the reconstruction: SMASH [162] and GRAPPA [163]

are Fourier domain based, whereas SENSE [164] is image domain based. The various

PMRI methods also differ in the manner in which they use sensitivity information:

SMASH and SENSE assume that the sensitivity profiles from each coil are known

while GRAPPA does not. In practice, sensitivity calibration is achieved by a pre-scan

but it may be difficult to obtain sensitivity profiles with high accuracy due to motion.

When techniques do not need to know them, they are referred to as autocalibrating
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Figure 7.1: The concept of dynamic parallel MRI illustrated with 4 coils (Nc = 4) in
the image domain (magnitude). For illustration purpose, sampling is at the Nyquist rate
here but in practice it would be at sub-Nyquist rate and images would show artefacts.
Each coil signal exhibit high correlation in time. SSoS stands for square root of sum of
squares.

or calibrationless methods. In clinical practice, SENSE and GRAPPA are the two

most popular PMRI methods.

The parallel imaging technique for dynamic MRI is illustrated with 4 coils in

figure 7.1. In practice, it is possible to have access to coil arrays with much more

than 4 channels (such as 64). Standard methods to reconstruct data from multiple

coil signals can be done in various ways, such as simple complex sum, sum of squares,

sensitivity-weighted sum, or square root of sum of squares (SSoS). More formally,

the multicoil spatio-temporal imaging equation can be expressed as

Sj(k, t) =

∫
RD

I(r, t)Γj(r, t)e
−i2π(r·k)dr +Nj(k, t), (7.1)

where Sj refers to the (k, t)-space signal for coil j with sensitivity profile Γj , I refers

to the spatio-temporal image function, Nj is the spatio-temporal coil-dependent

Gaussian noise function and r, k, t represent respectively the coordinates of spatial

positions, the coordinates of spatial frequencies, and the time variable.
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7.2.2 Sensitivity encoding reconstructions

The equivalent finite-dimensional model of Eq. (7.1) can be written

y = EΓ(x) + n. (7.2)

In this model, EΓ : CNxNyNt → CM represents the parallel MRI encoding operator

modelling sub-Nyquist sampling (not necessary random here), Fourier transform

and coil sensitivities Γj , y ∈ CM is the stacked (k, t)-space measurements vector for

each coil and n ∈ CM is the stacked normally distributed noise vector for each coil.

Eq. (7.2) represents the standard sensitivity encoding (SENSE) MRI model [164]

within a dynamic imaging context.

k-t SENSE

The reconstruction of dynamic PMRI data using coil sensitivities information can

be done by solving

min
x∈CNxNyNt

1

2
‖EΓ(x)− y‖22, (7.3)

which is equivalent in the literature to k-t SENSE [71]. Although problem (7.3)

has a closed form solution, in practice it is generally computed through iterative

methods and not explicitly.

Regularised k-t SENSE

A notable work combining dynamic PMRI and compressed sensing (sparsity) is k-t

SPARSE-SENSE proposed by Otazo et al. [165]. This method considers the k-t

SENSE problem (7.3) with an additional sparsity prior. The optimisation problem

considered is

min
x∈CNxNyNt

1

2
‖EΓ(x)− y‖22 + α‖Ft(x)‖1, (7.4)

where in this case EΓ models random undersampling and Ft is the temporal Fourier

transform. The combination of PMRI and CS has been shown to improve recon-

struction results compared to using these techniques alone.

In this work, one of the contributions is to also consider k-t low-rank SENSE, i.e.

the minimisation of the low-rank regularised k-t SENSE to exploit both low-rank a

priori and coil sensitivities,

min
X∈CNxNy×Nt

1

2
‖EΓ(X)− y‖22 + α‖X‖∗. (7.5)

There is no closed form solution for both problems (7.4) and (7.5), but minimi-

sations of these functionals are possible under the proximal splitting framework and

in particular using the fast proximal gradient algorithms.
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7.2.3 Calibrationless approaches

We now describe other methods to reconstruct dynamic parallel MRI data without

the need of incorporating coil sensitivity maps into the model. These methods can

be considered calibrationless because they do not require coil sensitivity calibration

and they only exploit coil sensitivities implicitly.

Coil-by-coil reconstructions

A basic method to reconstruct data without modelling coil sensitivities in the model

would be to promote sparsity structure for each coil. This can be done by considering

these Nc minimisation problems,

min
xj∈CNxNyNt

{
F (xj) ≡

1

2
‖E(xj)− yj‖22 + α‖Ψ(xj)‖1

}
, ∀j = 1, . . . , Nc. (7.6)

Once a solution vector x̂j has been found for each coil j, the single dynamic sequence

can be obtained using a standard method to reconstruct data from multiple channels

such as SSoS.

Similarly, each coil signal can be seen as a NxNy × Nt Casorati matrix which

is very likely, as in single coil dynamic MRI, to have only few significant singular

values due to high correlation in time (see figure 7.1). Thus, low-rank structure can

also be promoted for each coil by considering the Nc minimisation problems

min
Xj∈CNxNy×Nt

{
F (Xj) ≡

1

2
‖E(Xj)− yj‖22 + α‖Xj‖∗

}
, ∀j = 1, . . . , Nc, (7.7)

where Xj ∈ CNxNy×Nt represents the Casorati matrix for coil j to recover.

Note that in both problems (7.6) and (7.7), the MRI encoding operator E does

not model coil sensitivity maps. These methods are respectively referred to as ”coil-

by-coil sparse” and ”coil-by-coil low-rank” hereinafter.

Low-rank tensor reconstruction

Another calibrationless method is to consider dynamic parallel MRI within a low-

rank tensor framework which was suggested in a short abstract by Trzasko and

Manduca [159]. Low-rank tensor recovery can be seen as an extension of low-rank

matrix recovery as it has been explained in section 3.3.5. The low-rank tensor

framework enables the exploitation of low-rank structure in multiple dimensions of

the data, which is generally desirable from an inverse problem point of view since

additional a priori information is used.

Trzasko and Manduca [159] have suggested that dynamic PMRI data could be

viewed as a tensor X of order Q = 3 of the form ”Space × Time × Coils”, or

more formally as X ∈ CNxy×Nt×Nc where we adopt the notation Nxy = NxNy. The
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Notation Dimensions Meaning

X Nxy ×Nt ×Nc Space × Time × Coils
X(1) Nxy ×NtNc Space × Time-Coils

X(2) Nt ×NxyNc Time × Space-Coils

X(3) Nc ×NxyNt Coils × Space-Time

Table 7.1: The third-order tensor X and its mode-q unfolding X(q).

tensor-based forward MRI model can be written

y = E(X ) + n, (7.8)

where y ∈ CM is the stacked (k, t)-space measurements vector for each coil, E :

CNxy×Nt×Nc → CM represents the MRI encoding operator modelling the random

sub-Nyquist sampling (M � NxyNcNt) and Fourier transform for each coil in the

spatial tensor dimension only, and n ∈ CM is the normally distributed noise vector.

The tensor X can be unfolded in the different modes as shown in table 7.1.

Unfolding a tensor of order Q is also called matricisation because it results in Q

matrices, as it was explained in more details in section 3.3.5. Figure 7.2 shows the

singular values of the different unfolding modes for a typical dynamic parallel MRI

dataset of dimensions NxNy = 1282, Nt = 40, Nc = 16. Table 7.1 and figure 7.2

highlight the fact that the tensor framework for dynamic PMRI can be seen as a

generalisation of the Casorati matrix that has been considered so far. When only

one coil is considered (Nc = 1), the mode-1 unfolding matrix X(1) is equivalent to

the Casorati matrix defined as in Eq. (3.59) for single coil time-series images.

To exploit the rank deficiency in the multiple unfolding modes, one can naturally

consider the low-rank tensor recovery problem that uses the convex q-rank as in

Eq. (3.47),

X ? = arg min
X

{
F (X ) ≡ 1

2
‖E(X )− y‖22 +

Q∑
q=1

αq‖X(q)‖∗
}
. (7.9)

In this minimisation problem, the low-rank property is assumed jointly in all unfold-

ing modes of the tensor, but the parameters αq’s can be individually tuned in order

to provide regularisation weights to the nuclear norms. This method is referred to

as ”low-rank tensor” hereinafter.

We introduce the fast proximal gradient algorithm 7.1 to solve the unconstrained

problem (7.9), inspired by algorithms proposed in Refs. [66,114]. The principal step

in this algorithm is the singular value soft thresholding of the mode-q unfolding of

the tensor. The unfolding operation UnFold(.) consists in obtaining the different

matrices from the tensor, while the folding operation Fold(.) consists in reconstruct-

ing the original tensor from the different matrices. To lighten the notation, we use
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Figure 7.2: Singular values of the unfolding modes X(q). These figures were generated
with a signal of dimensions NxNy = 1282, Nt = 40, Nc = 16. All unfolding modes have
only a few significant singular values, although to different levels. Second row shows
graphs in logarithmic scale.

Algorithm 7.1 Low-rank tensor recovery for dynamic parallel MR imaging via fast
proximal gradient

Input: y, αq ≥ 0, ρ > 0
Initialise: k = 0, X 0 = W0 = 0
while stopping criterion is not met do

Wk
(q) ← UnFold(Wk)

for q = 1, . . . , Q do
Xk+1

(q) ← SVTSραq (Wk
(q) − ρE

∗(E(Wk
(q))− y))

end for
X k+1 ← 1

Q

∑Q
q Fold(Xk+1

(q) )

Wk+1 ← X k+1 + k−2
k+1(X k+1 −X k)

end while
Output: X̂ = X k
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Figure 7.3: The dynamic PMRI phantom used for numerical simulations with artifi-
cially simulated sensitivity maps. Dimensions are Nx = Ny = 128, Nt = 40, Nc = 16.

the same MRI encoding operators E,E∗ for the different unfolding modes.

7.3 Numerical simulations

7.3.1 Framework

A synthetic, complex-valued, numerical phantom is used with simulated coil sensi-

tivity maps. We use a numerical phantom based on the Shepp-Logan phantom with

a combination of local and global motion (to simulate free-breathing data) and with

local intensity changes. The dimensions of the phantom are Nx = Ny = 128, Nt =

40, Nc = 16. Spatially smooth coil sensitivity profiles are generated artificially. This

enables us to have access to a noiseless reference signal as well as coil sensitivities

profiles without doing a pre-scan for sensitivity calibration. The dataset along with

coil sensitivity profiles are shown in figure 7.3.

We use retrospectively radial-based (equispaced angle) undersampling with an

acceleration factor of 8 due to the superior performance of this sampling strategy

for both sparse signal and low-rank matrix recovery as shown by results reported in

section 5.3.2. Intensity of the phantom is normalised between values 0 and 255 in

magnitude prior to any processing. Gaussian noise is added explicitly on each real

and imaginary channel with a standard deviation σ = 5. The set of regularisation

parameters tested is {0, 10k : k ∈ Z;−4 ≤ k ≤ 3}. For all algorithms, the step size

is chosen as ρ = 1 and they are stopped if a maximum number of 100 iterations is

reached, or if F (xk+1)− F (xk)/F (xk) is less or equal to 10−5.
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Method Reconstruction Regularisation
performance parameter(s)

ZF-IDFT 17.0 -

k-t SENSE [71] 20.8 -
k-t SPARSE-SENSE [165] 22.0 α = 0.01

k-t low-rank SENSE 21.8 α = 10

Coil-by-coil sparse 22.0 α = 0.01
Coil-by-coil low-rank 20.6 α = 1

Low-rank tensor 18.7 α1,2,3 = 10
Low-rank tensor 20.4 α1 = 10, α2,3 = 0
Low-rank tensor 16.7 α2 = 10, α1,3 = 0
Low-rank tensor 16.7 α3 = 10, α1,2 = 0

Table 7.2: Reconstruction results (in dB) using Eq. (B.2). Note that k-t SENSE, k-t
SPARSE-SENSE and k-t low-rank SENSE require an estimation of the coil sensitivity
profiles, in contrast to coil-by-coil sparse, coil-by-coil low-rank and low-rank tensor
reconstructions that make use of implicit coil sensitivities. The notation α1,2,3 = 10
means that α1, α2 and α3 are all set to 10.

7.3.2 Reconstruction results

The following reconstruction methods are evaluated:

• k-t SENSE [Eq. (7.3)],

• k-t SPARSE-SENSE [Eq. (7.4)],

• k-t low-rank SENSE [Eq. (7.5)],

• coil-by-coil sparse [Eq. (7.6)],

• coil-by-coil low-rank [Eq. (7.7)],

• low-rank tensor [Eq. (7.9)].

The k-t SENSE reconstruction is computed with either k-t SPARSE-SENSE or k-

t low-rank SENSE by setting regularisation parameter α to zero. Reconstruction

results (in dB) are reported in table 7.2 with the regularisation parameters that

provided the best reconstructions.

First, these results confirm that sparsity regularised SENSE (k-t SPARSE-SENSE)

and low-rank regularised SENSE (k-t low-rank SENS) reconstructions perform bet-

ter than SENSE alone. This is because PMRI and low-dimensional signal recovery

methods are complementary acceleration approaches to each other. A slight advan-

tage can be observed for the sparsity-based regularisation.

The good performance of coil-by-coil reconstructions (and in particular coil-by-

coil sparse) may be explained by the nature of the dataset and coil sensitivity maps

used in these simulations. Indeed, the numerical phantom possesses both global
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and local periodic motions, which is particularly adequate for the temporal Fourier

transform. Additionally, the coil sensitivity maps that were generated artificially

can be qualified as simplistic as shown in figure 7.3.

Finally, observe that we have computed different low-rank tensor reconstructions

by varying the regularisation parameters αq in Eq. (7.9) in order to understand which

unfolding has more importance. As it is suggested by the results, not all unfolding

modes are actually helpful, since surprisingly the best reconstruction is obtained

when both α2 and α3 are set to zero. While figure 7.2 shows that all unfolding

modes have only a few significant singular values, not all unfolding matrices X(q)

can be qualified as low-rank. The reason is that one dimension of the unfolding

matrix is too small compared to the other dimension. For instance, if we consider

the matrix X(3) ∈ CNc×NxyNt , we know that

rank(X(3)) ≤ min(Nc, NxyNt). (7.10)

In general, we expect to have NxyNt > Nc in a typical dynamic PMRI scenario, so

that rank(X(3)) ≤ Nc. The matrix X(3) may have only a few significant singular

values, but it is likely that it cannot be qualified as low-rank simply because

rank(X(3)) ≤ Nc � NxyNt. (7.11)

This emphasises the fact that there is an important distinction to make for a matrix

in having only a few significant singular values and being characterised as low-rank.

7.3.3 Local low-rank tensor reconstruction results

The limitation of the low-rank tensor approach can be overcome by promoting low-

rank locally instead of globally in the image domain as suggested by Trzasko and

Manduca [142, 159]. We have shown the clear advantage of this approach in terms

of reconstruction results in section 5.3.6 for single coil undersampled dynamic MRI.

To promote low-rank locally within the tensor framework, only a slight modification

of the problem (7.9) is needed, which can be written

X ? = arg min
X

{
F (X ) ≡ 1

2
‖E(X )− y‖22 +

Q∑
q=1

αq
∑
ω∈Ω

‖Rω(X(q))‖∗
}
, (7.12)

where Rω is an operator that extracts local blocks of the Casorati matrix of the

mode-q unfolding X(q) and Ω represents the set of all blocks. Algorithm 7.1 is

modified to compute blockwise soft thresholding instead of global soft thresholding

for the different unfolding modes.

Reconstruction results are summarised in table 7.3 where we have tested different

sets of nonoverlapping blocks. Note the improvement of reconstruction results as
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Reconstruction Reconstruction
Ω performance (dB) time (min)

1 18.7 32.4
4 18.9 26.3
16 20.2 25.6
64 21.4 11.6

Table 7.3: Reconstruction results (in dB) using Eq. (B.2) for locally low-rank tensor
recovery with α1 = α2 = α3 = 10 and different Ω.
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Figure 7.4: Values of penalty terms (normalised) in the objective function (7.9) (low-
rank tensor, left figure) and in the objective function (7.12) (local low-rank tensor with
Ω = 64, right figure).
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the set of blocks Ω is increased. Also, observe the decrease in reconstruction times

as the number of blocks Ω increases, which is due to performing SVD on smaller

matrices.

In figure 7.4, we illustrate the behaviours of the penalty terms for low-rank tensor

(Ω = 1) and local low-rank tensor with a number of blocks Ω = 64. More specifically,

the left figure shows the value per iterations of the penalty terms for low-rank tensor,

i.e. α1‖X(1)‖∗, α2‖X(2)‖∗ and α3‖X(3)‖∗. The right figure shows the value per

iterations of penalty terms for local low-rank tensor, i.e. α1
∑

ω∈Ω ‖Rω(X(1))‖∗,
α2
∑

ω∈Ω ‖Rω(X(2))‖∗ and α3
∑

ω∈Ω ‖Rω(X(3))‖∗. Observe the increase of α1‖X(1)‖∗
and α2‖X(2)‖∗ for low-rank tensor, while it decreases for local low-rank tensor.

This figure illustrates the fact that matrices X(2) and X(3) cannot be considered

properly as low-rank (while having only a few significant singular values) in contrast

to submatrices Rω(X(2)) and Rω(X(3)) .

7.4 Discussion

Parallel MRI is implemented on most commercial scanners, and it is the most widely

used technique to reduce MRI acquisition time in clinical practice. Thus, it is not

only interesting but highly recommended to evaluate the combination of comple-

mentary acceleration methods with parallel imaging.

The use of proximal splitting algorithms in this study was particularly helpful

because dynamic PMRI generates a much higher volume of data than single coil dy-

namic MRI. Fast convergent optimisation algorithms lower the number of iterations

needed and thus reduce the general computational cost of the algorithm.

A limitation of this work is to only have used a numerical phantom, although

this dataset was relatively realistic because of complex-valued noisy data and the

presence of motion. Sensitivity maps were assumed to be known within SENSE re-

constructions, but in practice only an estimation is possible. In a real scenario

where a good estimation of the sensitivity maps may be difficult to obtain for

various reasons, it will affect the reconstruction quality of approaches based on

sensitivity encoding. Similarly, note that we have used a dataset of dimensions

NxNy = 1282, Nt = 40, Nc = 16 in these simulations. We have chosen these dimen-

sions to reflect typical values of dynamic PMRI data. However, results may also

vary depending on the number of time frames or the number of coils used, especially

for the low-rank tensor approach that uses matrices (unfoldings) based on these

dimensions.
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7.5 Related works

In a nondynamic context, notable techniques that combine PMRI with sparsity

prior include CS-SENSE [166] and wavelet-based regularised SENSE [167]. Similarly

in a nondynamic context, a method that combines parallel imaging with low-rank

structure is SAKE by Shin et al. [168]. This calibrationless method uses the singular

value hard thresholding operator SVTH on a matrix that is formed by taking the

multichannel k-space data which proves to have Hankel structure and a low-rank

property.

In a dynamic context, apart from the k-t SPARSE-SENSE [165], there has been

recent works that combine dynamic parallel imaging and both low-rank and sparse

constraints such as Refs. [169] and [134]. These works basically extend previous

developed methods using low-rank and sparse constraints for single coil dynamic

MRI by integrating coil sensitivity information with the standard SENSE model. In

Ref. [169], Lingala et al. proposed a direct extension of the k-t SLR formulation as

in Eq. (3.61) but with coil sensitivities modelling, i.e.

min
X
‖EΓ(X)− y‖22 + α‖X‖0.1 + β TV(X). (7.13)

In Ref. [134], the authors proposed a model that integrates low-rank constraint

within the partial separability model (as in PS-Sparse), group sparsity sparse con-

straint using the `1,2 norm, and sensitivity encoding.

The tensor framework for dynamic parallel MRI has not received so much atten-

tion so far to our knowledge, apart from the original idea proposed by Trzasko and

Manduca in Ref. [159].

7.6 Conclusion

In this chapter, we have extended low-rank based recovery methods for dynamic

parallel imaging.

We have shown that the low-rank structure could be exploited differently in

dynamic multicoil MRI, within low-rank matrix recovery techniques but also con-

sidering data within a tensor framework. We have extended and developed fast

proximal gradient algorithms to solve various forms of problems combining multicoil

dynamic MR imaging and low-rank based constraints.
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Chapter 8

Summary and perspectives
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8.1 Contributions

Magnetic resonance imaging is a mature medical imaging technology based on the

nuclear magnetic resonance phenomenon that is increasingly used in hospitals to

study and interpret the human body, and provide diagnosis of various diseases.

During its advancement, MRI has also lead to the development of specific appli-

cations such as dynamic, functional or diffusion MRI that enable a more profound

exploration and interpretation of the human body. Although tremendous progress

has been made since the first MRI pictures were produced in the early 1970s, MRI

and its applications still remain limited in many aspects. In particular, the full po-

tential of MRI has not yet been exploited due to fundamental limits in how magnetic

resonance imaging collects and reconstructs data.

In this thesis, we have focused on the development of mathematical and com-

putational methods for inverse problems in magnetic resonance imaging, mainly to

address the acquisition time constraints of the MRI procedure. This work was pri-

marily inspired by significant developments both from theory and practice in signal

recovery techniques from partial data that have emerged in the last past decade in

the fields of signal processing and information theory. We have more specifically

shown how prior information based on low-dimensional signal models such as low-

rank structure and sparseness could help in the reconstruction of spatio-temporal

MR images from sub-Nyquist samples arising from a nuclear magnetic resonance

experiment. The major contributions of this thesis are as follows.

• The development and characterisation of fast and efficient computational tools
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for sub-Nyquist dynamic MRI using convex low-rank and sparse constraints

via proximal gradient methods (chapter 5). We have provided important

progress in terms of algorithmic developments and performance of these meth-

ods through undersampled MRI datasets with relatively realistic characteris-

tics and comparative study of state of the art methods. The proposed prox-

imal gradient framework has proved to provide a flexible computational tool

for MRI reconstruction that necessitates to handle nonsmooth penalties in a

relatively large-scale setting. We have also shown that while the combination

of low-rank structure and sparseness will generally offer superior reconstruc-

tion results than using individual constraint, low-rank a priori only is a serious

alternative to standard sparse approach for dynamic imaging.

• The development and characterisation of a novel joint reconstruction-separation

method via the low-rank plus sparse matrix decomposition technique (chapter

6). This technique goes further than standard reconstruction methods whose

principal goals are generally only to recover data the closest possible to the true

signal. With the proposed approach, we have departed from such methods to

jointly reconstruct and separate data based on their intrinsic characteristics.

We have shown this decomposition could be used in a simulated dynamic con-

trast enhanced sequence where intensity changes over time, to help in motion

estimation. While further work is necessary to validate this approach more

deeply, this is a first step towards methods that combine directly in the recon-

struction process other tasks that can help in the interpretation of images.

• The development and characterisation of rank constraint recovery methods

with dynamic parallel MRI (chapter 7). We have extended previous developed

method to handle dynamic multicoil imaging and have shown how the low-rank

structure could be exploited and combined with dynamic PMRI in different

ways.

8.2 Limitations and further directions

There are several limitations of the work presented in this thesis. First, we are guilty

of having committed inverse crimes, because we have used finite-dimensional signals

as references to solve infinite-dimensional inverse problems. Hence, the continuous

nature of data has not been taken into account as pointed out in section 3.5. In

practice, this omission is largely widespread in the MRI reconstruction literature,

and it is surprisingly only recently that researchers have started to look out for

solutions of this problem (see for example Ref. [93]). However, since all methods

were evaluated within the same framework, these experiments and comparisons are

still valuable. In the future though, taking this step into account would better
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characterise the behaviour of these algorithms in a more realistic scenario.

Another limitation of this work is that we have mainly used data which were

retrospectively undersampled. The reasons we have followed this approach were

twofold. First, this allows to have access to a reference signal, the ”ground truth”,

which is extremely helpful to further compare reconstruction algorithms. Second,

retrospectively undersampling makes it possible to generate as many sampling tra-

jectories as necessary without the need of requiring a real scanning procedure, which

saves a lot of time. Of course, the downside of this approach is that these sampling

strategies are only approximate, but these are largely overwhelmed with the afore-

mentioned benefits. Prospectively undersampling is generally more difficult because

of limitations on commercial scanners to directly produce undersampled data. How-

ever, it gives insights on the true performance of reconstruction algorithms in a

realistic procedure and for this reason should not be neglected.

While the image reconstruction literature in MRI has remarkably grown over

recent years, there is still an important lack of standard numerical phantoms and

common datasets to evaluate MRI reconstruction algorithms from which this the-

sis may have suffered. Similarly, not all reconstruction algorithms are being made

available to the community which complicates reproducible research and generally

results in techniques not being evaluated or not being implemented in clinical proto-

cols to be further validated. A positive trend can be observed in the last few years,

and notable initiatives have been proposed recently such as

• the design and availability of a realistic cardiac MRI phantom1 based on XCAT

by Wissmann et al. [170],

• the creation of a platform2 to share fully and undersampled MRI datasets by

Lustig and Vasanawala,

• the development of a vendor-independent format data3 (ISMRMRD) as a pre-

requisite to share MRI algorithms and codes.

These kind of initiatives can greatly contribute to better shared and reproducible

research in the MRI reconstruction community in the future.

In this thesis, we have opted for convex optimisation which has been increasingly

used for regularised linear inverse problems. More specifically in signal recovery tech-

niques, convex optimisation is generally employed as a surrogate to solve intractable

problems that involve difficult penalties such as the `0 pseudonorm and/or rank

constraints. Convex relaxation hence relies on solving a convex program that only

approximates the original problem, although under some assumptions exact signal

1http://www.biomed.ee.ethz.ch/research/bioimaging/cardiac/mrxcat.
2http://mridata.org.
3http://ismrmrd.sourceforge.net.
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recovery may actually be possible. There are multiple other approaches that could

be examined, first within the proximal splitting framework such as recently devel-

oped second-order proximal Newton methods [171] or simply other more standard

proximal splitting algorithms as listed in Ref. [100]. Standard convex optimisation

alternatives to proximal splitting methods that can handle nonsmooth penalties,

such as subgradient and interior point methods, are however limited respectively

because of slow global convergence rate and expensive iteration cost as the dimen-

sion of the problem increases. More recently, there has been renewed interest in

conditional gradient method for problems with `1 and nuclear norms. This method

is also known as Frank-Wolf algorithm [172] and can be traced back to the mid-

1950s. In contrast to first-order methods which solve a projection problem at each

iteration, conditional gradient algorithms easily solve a linearisation of the objective

function over the feasible set at each iteration. Finally, further investigation would

be needed to evaluate greedy approaches for low-rank and sparse reconstruction.

A limitation of iterative optimisation algorithms is the choice of regularisation pa-

rameters to provide the adequate trade-off between data fidelity and penalty terms.

Since in a practical scenario, the ground truth or reference signal is not available, it

will in general only be possible to find a correct regularisation parameter through

many trials and visual inspection. Some methods have been developed to overcome

this problem such as L-curve or generalised cross-validation methods, but they sim-

ilarly require to compute multiple solutions of minimisation problems by varying

the regularisation parameters. Automatic selection of the right regularisation pa-

rameter has been proposed recently based on Stein’s unbiased risk estimate, see

Refs. [141, 145, 173], but it is limited to specific inverse problems and therefore re-

mains an open issue in the general case.

Methods developed in this thesis were based on regularisation prior promot-

ing low-complexity models. The main justification is that very often, the under-

lying information of high-dimensional data can actually lie in a much lower di-

mensional space. We have specifically investigated sparseness and low-rankdness

(matrix and tensors), but there are other potential low-dimensional signal models

that could be examined. In particular, methods and algorithms developed in this

thesis were training-free, but important advancements could be made by learning

low-dimensional signal models, although as of today these methods are still compu-

tationally expensive. We should also expect to see more work that could be referred

to as intelligent reconstruction that goes in the line of the joint reconstruction-

separation approach of chapter 6, where advanced interpretation tasks such as seg-

mentation, classification, or registration are more tightly connected together within

the reconstruction process itself.

In this thesis, we have also combined complementary acceleration approaches.

We have mainly shown how we could combine parallel MRI technique that uses
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coil sensitivity informations with a low-dimensional signal model based on low-rank

structure. A direction for future work would be to study the influence of both low-

rank and sparse constraints within the parallel MRI framework, whether using the

SENSE model or the low-rank tensor framework. Recently, Goldfarb and Qin [174]

have proposed the robust low-rank tensor recovery, an extension of RPCA as in

Eq. (6.2) within the tensor framework. The tensor to recover is assumed to be the

sum of a low-rank tensor plus a sparse one, i.e. X = L + S. This could be another

interesting direction for future work, where the convex higher-order RPCA problem

for undersampled multichannel dynamic MRI could be written as

min
L,S

{ Q∑
q=1

αq
∑
ω∈Ω

‖Rω(L(q))‖∗ + ‖S‖1
}

s.t. E(L + S) = y, (8.1)

where the low-rank part is promoted locally. This model may prove useful for

example to isolate remaining noise artefacts in the sparse tensor component and

hence potentially obtain higher reconstruction results through better denoising.

Although the design and inclusion of regularisation priors that better reflect the

data are desirable, note that a priori information about the structure only is generally

not sufficient to transform the problem into a well-posed one. Sparse and low-rank

based signal recovery guarantees also rely on specific sensing procedures with notions

such as low coherence or restricted isometry property. In this thesis, these concepts

were empirically achieved using an MRI encoding operator that was designed to

sample randomly the Fourier space in accordance with the energy distribution. A

limitation of this thesis is that we have not much focused our attention on the relation

between sampling strategies and theoretical recovery guarantees. We have chosen

heuristic (k, t)-space sampling trajectories that prove to be both feasible from an

MRI acquisition scenario and satisfying regarding empirical reconstruction results

from partial data, instead of nonrealistic approaches that maximise the probability

of compressed sensing recovery guarantees.

Most important MRI problems are not specific to MRI itself or even medical

imaging. For example, MR image analysis and reconstruction share fundamen-

tally similar mathematical open problems that can be found in many other areas.

Therefore, research in magnetic resonance imaging enjoys multidisciplinary contri-

butions from various communities such as medicine, physics, computer science or

electrical engineering. Continuous developments from multiple fields are expected

to constantly improve MR imaging systems, producing images that will maximise

the quantity, accuracy and precision of information, thus enabling superior under-

standing of biological systems and extending human knowledge.
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Appendix A

Mathematical background

This appendix briefly reviews some relevant mathematical concepts. We refer the

reader to Refs. [95, 96,175] for more details.

A.1 Vector spaces

In this dissertation, functions that represent a mathematical description of a physical

process (i.e. signals) can be regarded as vectors, and as such they lie in a vector

space. Formally, a vector space is a set of elements called vectors together with

two operations, addition and scalar multiplication, that are assumed to satisfy some

properties (axioms) such as commutative, associative or distributive laws.

Typical examples of vector spaces used in this thesis are the N -dimensional

Euclidean space RN and the space of complex-valued N -dimensional vectors CN .

Finite-dimensional and discrete signals can be though as vectors in RN or CN com-

posed of the samples of the (continuous) function they represent.

Two important geometric notions can be defined on vector spaces: norm and

inner product. A normed vector space is a vector space on which there is defined a

real-valued function called the norm which maps each elements of the vector space

into a real number called the norm. The norm must satisfy some specific axioms

(positive definiteness, homogeneity and triangle inequality) and can be interpreted

as an abstraction of the concept of length. By introducing this measure of distance,

topological concepts such as openness, closure or convergence can be defined. A

vector space equipped with an inner product is called an inner product space. Since

an inner product naturally induces a norm, inner product spaces are also normed

vector spaces. The inner product on a vector space is a real or complex-valued

function that must satisfy some axioms (distributivity, linearity in the first argument,

Hermitian symmetry, positive definiteness). Inner products are particularly useful

to define the notion of orthogonality for example.

The standard norm on CN is the Euclidean (or `2) norm. Consider x ∈ CN , the
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`2 norm of x is defined as

‖x‖2 =

√√√√ N∑
n=1

|xn|2, (A.1)

and the standard inner product on CN between x and y is defined as

〈x,y〉 = xHy =
N∑
n=1

xny
∗
n. (A.2)

More generally, we can define the `p norm as

‖x‖p =

( N∑
n=1

|xn|p
)1/p

(A.3)

for p ∈ [1,∞). For p = 1, this yield the `1 norm

‖x‖1 =

N∑
n=1

|xn|, (A.4)

and for p =∞, the `∞ norm is defined as

‖x‖∞ = max
n=1...N

|xn|. (A.5)

When 0 < p < 1, these functions are called quasinorms because positive definite-

ness and homogeneity properties hold, but the triangle inequality is replaced by a

(weaker) quasitriangle inequality. When p = 0, it is neither a norm nor a quasinorm,

but it is sometimes referred to as a pseudonorm. It is defined as

‖x‖0 = #{n : xn 6= 0}, (A.6)

which is the number of nonzero elements in x. Consider the unit ball of the `p

function defined by

Bp = {x ∈ R2 : ‖x‖p ≤ 1}. (A.7)

Figure A.1 illustrates the shape of such balls for various p in R2 and shows that

norms are convex functions while quasinorms are not (reflecting the violation of the

triangle inequality). This figure also shows that the `1 norm is the closest convex

norm to the `0 pseudonorm.

For M ×N matrices, the Schatten p-norm is defined as

‖X‖p =

min (M,N)∑
n=1

σpn

1/p

(A.8)
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Figure A.1: Unit balls for `p functions in R2 for various p.

for p ∈ [1,∞), where σn denotes the nth singular value of X. Important cases are

p = 2 which yields the Frobenius norm,

‖X‖F =

√√√√min (M,N)∑
n=1

σ2
n =

√√√√ M∑
m=1

N∑
n=1

|xmn|2, (A.9)

and p = 1 which defines the nuclear norm (also known as trace norm),

‖X‖∗ =

min (M,N)∑
n

σn. (A.10)

The nuclear norm can be regarded as the `1 norm of the vector of singular values,

and it is the convex envelope of the matrix rank [42,45].

We conclude this brief review with the notion of Hilbert and Banach spaces.

A normed vector space that is complete is called a Banach space, and a normed

vector space with an inner product that is complete is called an Hilbert space. In

short, completeness means that every Cauchy sequence in the vector space converges

to a vector. For example, it can be shown that the space of complex-valued N -

dimensional vectors CN is a complete vector space. Equipped with the `2 norm and

an inner product, such a vector space in an Hilbert space.

A.2 Convex optimisation

Although we use real vector spaces in the following definitions, sets in and functions

on CN can be identified with R2N .
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A.2.1 Convex sets

A subset C ⊆ RN is said to be convex if we have

∀x,y ∈ C, ∀θ ∈ [0, 1], θx + (1− θ)y ∈ C. (A.11)

This means that given two points in C, the line segment between them lies in C.

A.2.2 Convex functions

The domain of a function f : RN → R is the set dom f ⊆ RN over which f is

well-defined, i.e.

dom f ≡ {x ∈ RN : −∞ < f(x) < +∞}. (A.12)

A function f : RN → R is convex if dom f is a convex set and if

∀x,y ∈ dom f, ∀θ ∈ [0, 1], f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y). (A.13)

The function f is called stricly convex if

∀x 6= y, ∀θ ∈ (0, 1), f(θx + (1− θ)y) < θf(x) + (1− θ)f(y). (A.14)

The convexity of the function can also be defined using the epigraph, which is

intuitively the domain of the function ”above the graph”: the function f is convex

if and only if its epigraph is a convex set. The epigraph makes the connection

between convex sets and convex functions. Alternative ways to define convexity of

a function is to use first-order (gradient) or second-order condition (Hessian). If f

is differentiable, the function f is convex if

∀x,y ∈ dom f, f(y) ≥ f(x) +∇f(x)>(y − x), (A.15)

and strictly convex if

∀x,y ∈ dom f,x 6= y, f(y) > f(x) +∇f(x)>(y − x). (A.16)

If f is twice differentiable, then the function f is convex if and only if its Hessian

∇2f(x) is positive semidefinite everywhere on dom f , i.e.

∀x ∈ dom f, ∇2f(x) � 0, (A.17)

where � denotes the componentwise inequality. (For strict convexity, � is replaced

by �.)

An intuitive way to understand convexity is graphically by considering a function

of one variable f : R → R, as illustrated in figure A.2. The function f is convex if
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Stricly convex,

unique minimiser

Nonstrictly convex, 

unique minimiser

Nonstrictly convex, 

nonunique minimiser

Nonstrictly convex, 

nonunique minimiser
Nonconvex

Figure A.2: Illustration of convex and nonconvex real-valued functions of one variable.
For the strictly convex function (top left), the epigraph is shown in gray.

the line segment connecting any two points on the graph of f lies above the graph.

For strict convexity, the line segment connecting any two points on the graph of f

lies strictly above the graph (i.e. there is always a gap between the function graph

and the line segment connecting two points on the graph).

A.2.3 Convex optimisation problems

Formally, a convex optimisation problem is one of the form

min
x
f0(x) s.t.

{
fj(x) ≤ 0, j = 1, . . . , J,

hk(x) = 0, k = 1, . . . ,K,
(A.18)

where x ∈ RN is the optimisation variable, f0 : RN → R is the convex objective

function, fj : RN → R are convex inequality constraint functions, and hk : RN → R
are affine equality constraint functions.

A point x is said feasible if it satisfies the constraints. A feasible point for which

the minimum is attained is called a minimiser or an optimal point. It is usually

denoted by x?, and thus f0(x?) is the optimal value. For convex problems, any

locally optimal point is globally optimal. Note that to have a unique minimiser, a

convex optimisation problem should in general be strictly convex. A simple example

of a convex function having multiple minimisers is a constant function as shown in

figure A.2.
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Convex optimisation problems include linear programming problems of the form

min
x
f0(x) s.t. fj(x) ≤ 0, j = 1, . . . , J, (A.19)

where the objective function f0 and the inequality constraints functions fj are all

affine. Convex optimisation problems also include quadratic programming problems

of the form

min
x
f0(x) ≡ c>x + x>Qx s.t. fj(x) ≤ 0, j = 1, . . . , J, (A.20)

for c ∈ RN , where Q is a positive semidefinite matrix (to ensure the function f0 is

convex) and fj are affine inequality constraints functions.

A.2.4 Gradient method

To minimise a convex differentiable function, one of the most simple algorithm is

the gradient method. It consists in trying to decrease the value of the function by

taking a step in the direction of the negative gradient, i.e.

xk+1 ← xk − ρk∇f(xk) (A.21)

where ρk is the step size and ∇f is the gradient of f .

Gradient methods suffer from slow convergence, so more sophisticated techniques

have been developed such as quasi-Newton, conjugate gradient and accelerated gra-

dient methods. Similarly, since classical gradient methods cannot handle nonsmooth

problems, techniques have been developed such as subgradient, smoothing or prox-

imal gradient methods. A notable use of the smoothing technique to handle the

nondifferentiability of the `1 norm is to replace it by the Huber function, a differen-

tiable function that is close to the absolute value function.

A.3 Differentiability, smoothness and Lipschitz conti-

nuity

We recall that a function f is said to be of class Ck if the derivatives up to the

kth order exist and are continuous. The class C0 denotes the space of continuous

functions, and the class C1 the space of continuously differentiable functions. The

class C∞ refers to functions that have derivatives of all orders.

A function f is generally referred to as smooth when it is differentiable (up to

some desired order) with continuous derivatives. Nonsmooth optimisation problems

for example refer to problems that include at least one nondifferentiable function.

When a (differentiable) function f : CN → R is assumed to belong to the class of
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Lipschitz continuous gradient functions, it means that the gradient ∇f is Lipschitz

continuous with some constant L > 0, i.e. it satisfies

‖∇f(x)−∇f(z)‖2 ≤ L‖x− z‖2, ∀x, z ∈ CN . (A.22)

This class of functions is often denoted C1,1
L where the second ”1” in the superscript

refers to the order of the derivative that is L-Lipschitz continuous. When f is twice

differentiable, an equivalent of this definition is that the largest eigenvalue of the

Hessian ∇2f(x) is upper bounded by L.

For the linear and Gaussian case as in MRI, the data fidelity term is f(x) =
1
2‖Ex− y‖22, whose gradient ∇f(x) = EH(Ex− y) satisfies

‖∇f(x)−∇f(z)‖2 = ‖EHE(x− z))‖2 ≤ ‖E‖22‖x− z‖2, ∀x, z ∈ CN , (A.23)

so that ∇f is Lipschitz continuous with constant

L ≤ ‖E‖22, (A.24)

where ‖E‖2 denotes the spectral norm of E. The spectral norm is equal to the

largest singular value of E or equivalently the square root of the largest eigenvalue

λmax of the positive-semidefinite matrix EHE, i.e.

‖E‖2 = σmax(E) =
√
λmax(EHE), (A.25)

assuming σi and λi represents respectively the singular values and eigenvalues. The

largest singular value of a normalised orthogonal discrete Fourier matrix is one,

which means that the Lipschitz constant should be chosen as

L ≤ 1 (A.26)

in our MRI reconstruction problems. The Lipschitz constant is useful because when

known, the step size in proximal optimisation algorithms can be easily determined

to achieve convergence, although strategies exist when it is not computable.
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Appendix B

Error metrics

In this thesis, performance of reconstruction methods are often quantified using the

following expression

− 10 log10

(‖x̂− x‖22
‖x‖22

)
, (B.1)

where x (resp. x̂) represents the reference noiseless signal (resp. estimated signal).

When considering matrices, the Frobenius norm instead of the `2 norm can be used

equivalently,

− 10 log10

(‖X̂−X‖2F
‖X‖2F

)
, (B.2)

where X (resp. X̂) represents the ground truth noiseless matrix (resp. estimated

matrix). These quantities are expressed in decibels for convenience.

In the case of dynamic imaging, the above expressions consider both space and

time informations. An alternative error metric is the normalised mean square error

(NMSE) computed at each time frame n,

‖x̂n − xn‖22
‖xn‖22

, (B.3)

where xn (resp. x̂n) represents the reference noiseless image (resp. estimated image)

at time frame n.

173



Error metrics

174



Bibliography

[1] E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan. Magnetic

resonance imaging: Physical principles and sequence design. Wiley-Liss, 1999.

33, 46

[2] Z.-P. Liang and P. C. Lauterbur. Principles of magnetic resonance imaging:

A signal processing perspective. IEEE Press, 2000. 33, 41, 42

[3] D. W. McRobbie, E. A. Moore, M. J. Graves, and M. R. Prince. MRI: From

picture to proton. Cambridge University Press, 2006. 33

[4] P. C. Lauterbur. Image formation by induced local interactions: examples

employing nuclear magnetic resonance. Nature, 242:190–191, 1973. 39

[5] S. Ljunggren. A simple graphical representation of Fourier-based imaging

methods. Journal of Magnetic Resonance, 54(2):338–343, September 1983. 40

[6] D. B. Twieg. The k-trajectory formulation of the NMR imaging process with

applications in analysis and synthesis of imaging methods. Medical Physics,

10(5), 1983. 40

[7] J. B. Weaver, Y. Xu, D. M. Healy, and J. R. Driscoll. Wavelet-encoded MR

imaging. Magnetic Resonance in Medicine, 24:275–87, April 1992. 41

[8] D. M. Healy and J. B. Weaver. Two applications of wavelet transforms in

magnetic resonance imaging. IEEE Transactions on Information Theory,

38(2):840–860, 1992. 41

[9] G. P. Zientara, L. P. Panych, and F. A. Jolesz. Dynamically adaptive MRI with

encoding by singular value decomposition. Magnetic Resonance in Medicine,

32(2):268–74, August 1994. 41

[10] Y. Cao and D. N. Levin. On the relationship between feature-recognizing MRI

and MRI encoded by singular value decomposition. Magnetic Resonance in

Medicine, 33(1):140–2, January 1995. 41

[11] J. A. Fessler. Reconstruction from Fourier samples (gridding and alternatives).

In Image reconstruction: Algorithms and analysis. Unpublished book draft. 41

175



Bibliography

[12] C. L. Epstein. Introduction to the mathematics of medical imaging. SIAM,

2008. 42

[13] C. E. Shannon. A mathematical theory of communication. Bell System Tech-

nical Journal, 27(3):379–423, 1948. 42

[14] C. E. Shannon. Communication in the presence of noise. Proceedings of the

IRE, 37(1):10–21, 1949. 42
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