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Abstract

We introduce a simple adaptive rule where agents choose a coop-

erative e�ort on a grid. Agents can adjust this e�ort step by step and

Gains and Losses Adjust Directions. We show that this process con-

verges to the cooperative outcome in a two-person Prisoners' Dilemma

game, and we provide simulations showing that the results also holds

with a larger number of agents.

PACS codes: 87.23.Ge, 89.65.Gh.

Keywords: cooperation, prisoners' dilemma, adaptive dynamics.

�Financial support from DFG grants HU 787/1-1 and OE 198/1-1 is gratefully

acknowledged.
yDepartment of Economics & ELSE, University College London, Gower Street, London

WC1E 6BT, UK, email s.huck@ucl.ac.uk, phone +44 20 7679 5895, fax +44 20 7916 2774.

1



1 Introduction

Cooperative behavior is widespread among both, humans and animals, and

has even been documented among viruses [20]. Models explaining the emer-

gence of cooperation range from models of direct reciprocity (variations

of \tit-for-tat") [1, 2, 6, 10, 12, 21, 22] via indirect reciprocity models

[13, 14] and models of spatial interaction [8, 9, 18] to aspiration-based mod-

els [7, 15, 16, 17, 11]. Most of these models view behavior as adaptive and

rules driving adaptation typically require substantial cognitive capabilities.

Reciprocity, for example, requires that individuals have an understanding

of how others a�ect their payo�, i.e., they require that individuals have a

mental model of the world [19].

Here we introduce an adaptive rule (GLAD) that is much simpler and

could help to explain why cooperation is observed in non-human species. In

particular, GLAD does not require any knowledge about how own payo�s

depend on others. In fact, it does not even require knowledge about the

existence of others. Yet, it does yield cooperation. GLAD prescribes that

individuals who choose a cooperative e�ort, increase (decrease) their e�ort

step by step as long as their payo� increases. If it decreases, the direction of

adjustments is reversed. This process converges to cooperation in dilemma

games.

Players engage in a symmetric game in which the strategy space can be

ordered along one dimension. This could be the \degree" or \intensity" of

cooperation but, in general, it could also be something which a�ects the

degree of cooperation only indirectly, for example, the time spent hunting
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or caring for members of a group. As in the case of time, the action variable

might be continuous but we assume that chosen actions are taken from a

grid (that can be arbitrarily �ne though). Actions are adjusted by moving

either one step up or down the grid (in discrete time). The adaptive rule we

introduce prescribes the direction of adjustments. It says: Go another step

in the same direction if the last step increased your payo�. If not, switch

directions.

As Gains and Losses A�ect the Direction of adjustments we shall call

the rule GLAD. GLAD is related to (aspiration-based) win-stay, lose-shift

strategies that implement Pavlovian ideas [11].1 If recent payo�s are above

a certain threshold, a win-stay, lose-shift rule prescribes to repeat the same

action again. If recent payo�s are below the threshold, the rule prescribes to

shift to another action (which, if there is more than one alternative, may be

chosen randomly). Our rule works similarly. But instead of implementing

the win-stay, lose-shift principle on the domain of actions, it implements the

principle on the domain of adaptations. If the last adaptation was successful,

pick the same change again. If not, shift back.

Our model is related to models by Fort [4, 5] who also studies agents who

increase of decrease their level (here a probability) of cooperation depend-

ing on how good the last payo� was in comparison to some other variable.

However, in Fort's models the comparison variable is not the previously

obtained payo� but a payo� expectation based on the assumption that all

1Pavlovian strategies that can induce cooperation are also discussed by Brauchli et al.

[3] who �nd that they do particularly well in spatially structured populations.
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other agents use the same probability of cooperation. Insofar, Fort's mod-

els require far more sophisticated agents than ours. Moreover, our agents

achieve higher levels of cooperation than Fort's.

2 The model

To analyze how GLAD induces cooperation we introduce a simple contin-

uous n-person prisoners'-dilemma (PD) game (though our �ndings can be

extended to a larger class of games). In our model each individual i chooses

an e�ort xi � 0 which directly bene�ts all other players j 6= i. However,

player i has to incur costs of �x�i with � � 1; 0 < � � 1 and � < 1 if � = 1.

Thus, a player's payo� function can be written as

�i(x1; :::; xn) =
X
j 6=i

xj � �x�i ;

and the non{cooperative (Nash) equilibrium is clearly given by zero coop-

eration, i.e., by xNi = 0 for all i. The cooperative solution is found by

maximizing
nX
i=1

�i(x1; :::; xn) =
nX
i=1

nX
j 6=i

xj � �
nX
i=1

x�i

with respect to all xi's. An interior solution exists for all � > 1 and is given

by xci =
h
n�1
��

i1=(��1)
for all i.

As a special case our continuous prisoners' dilemma (PD) contains the

usual PD by setting � = 1; n = 2 and letting players choose strategies

from f0; 1g, where 1 stands for cooperate and 0 for defect. This yields the
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following two{player game.

C D

C 1� �; 1� � ��; 1

D 1;�� 0; 0

For � = 1; � < 1; n = 2; and xi 2 [0; 1]; our game reduces to the Wahl

and Nowak's [21] continuous PD where the cooperative solution is on the

boundary, xci = 1.

Individuals choose their actions as multiples of � with � > 0 being the

arbitrarily small grid size. For convenience, we assume that the cooperative

action is a multiple of �. Our rule is formalized as follows. Let �ti be an

indicator for success of individual i in period t,

�ti :=

8<: 1 if �ti ��t�1i � 0

�1 if �ti ��t�1i < 0
:

The process is speci�ed by xt+1i = max
�
0; xti + �s

t
i

	
where the direction

of movement sti is s
t
i := �

t
isign(x

t
i�xt�1i ). Given some initial conditions spec-

ifying for each player i a tuple (x0i ; s
0
i ), we can now determine the complete

path of the adaptive dynamics.

Consider �rst what happens when both individuals move up by �: Indi-

vidual i will improve his payo� (and will, therefore, repeat this direction) if

and only if ��i = � � �(xi + �)� + �x�i � 0 or

� + �x�i � �(xi + �)�: (1)

For � = 1 and � < 1, (1) is satis�ed independently of xi. For � > 1, consider

a Taylor expansion of the right hand side of (1) at � = 0. We see that (1)
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holds for small � if and only if ��(xi + �)
��1 � 1 or xi < (��)�1=(��1) � �:

That is, when both individuals move up, the payo� for i increases if and only

if xj is below x
c
j � �: Likewise, it can be shown that when both individuals

move down, i's payo� increases if and only if xj > x
c
j + �. To complete the

picture we only have to note that if one player moves up while the other

moves down, the former always decreases his payo� while the latter increases

it, which results in both moving down one period later.

<Figure 1>

Figure 1 is drawn according to this logic (for the case of � > 1). The

strategy space in Figure 1 is partitioned into four large regions and two

\corridors" meeting at the cooperative outcome. In Region A both players

are below the critical value of xcj � �. Denoting by (+�) a move up by

the �rst player and a move down by the second, etc., we get the following

transitions

(+�)! (��) (�+)

#

(++)	

Thus, in Region A, players continuously increase their degree of cooperation.

Just the opposite happens in Region C where both players decrease their

cooperation levels. For Region B it is easy to derive the following transitions.

(+�)! (��)� (�+)

"

(++)
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Thus, the process zigzags as indicated in Figure 1. In the mirror image

Region D zigzagging occurs between (��) and (+�). It remains to consider

the movements inside the two corridors. Straightforward analysis shows that

the process moves inside the corridors in the direction of xc and eventually

falls into a cycle at the intersection of the two corridors.

Intuitively, a similar logic should apply for larger number of players

n > 2. However, obviously we cannot use the same techniques for showing

the convergence to the cooperative outcome for arbitrary n. Instead we use

simulations to study the behavior of GLAD for larger n.

<Figure 2>

Figure 2 shows the results of simulations for the parameters � = 10�3;

� = 2; � = 1=2 and n 2 f2; 3; 4; 5; 6g: Each simulation starts by assigning

a random initial conditions for each player i; (x0i ; s
0
i ); where x

0
i 2 [0; 2n� 2]

and s0i 2 f�1; 1g: Then the GLAD adjustment process was triggered. The

simulations stopped when the process had converged2 to the cooperative

solution which is xci = n� 1 for the above parameters.

The simulations show that the GLAD process does converge to the co-

operative solution for n > 2. Depending on the initial conditions, xi often

monotonically move towards xci but non{monotonicities do occur. In the

simulations with n � 4 shown in the �gure, once players have reached xci
they stayed there independently of the actions of the other players. With

n 2 f5; 6g more complicated patterns occured.
2Convergence was given in round t if

��xki � xki �� < n�; 8k 2 ft � 100; :::; tg, where

xki =
1
100

�km=k�100x
m
i :
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3 Conclusion

We have introduced a simple adaptive rule where agents choose a cooperative

e�ort on a grid. Agents can adjust this e�ort step by step and Gains and

Losses Adjust Directions. We have shown that this process converges to the

fully cooperative outcome in an n-person Prisoners' Dilemma game.

There are a number of interesting open questions. First of all, how

robust is this result? Does GLAD also achieve cooperation in other games?

To that question we have at least a partial answer. Whenever there is a

fully cooperative outcome and agents use GLAD there exists a cooperative

cycle. To see this, suppose all players are one grid point below xci and,

next, move upwards. Then, clearly, all players' payo�s will increase. Hence,

they will increase their degree of cooperation again. Now, however, all

players' payo�s will decrease as they have moved beyond the optimal level

of cooperation and now waste resources. Given our adaptive rule, all players

will now reverse their direction. Hence, they will be back in the cooperative

outcome in the next period which means that payo�s will have increased

again. Accordingly, each player will further reduce their level xi. This, now

will reduce all players payo�s and they will go up again. And so forth. It is

clear that such a cycle always exists|regardless of the actual payo� function

and this alone seems an intriguing property of our rule.

A further question concerns how well GLAD would do against other

strategies. For thinking about this question it seems worthwhile to make a

couple of observations about how GLAD performs in simple (non-stochastic)

optimization problems. There it is straightforward to see that an individual
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relying on this rule will converge to the neighborhood of a local maximum

where it will cycle around it. If the pro�t function is concave, the individual

will converge to the global maximum. While these observation may seem

utterly trivial, they might be important from the evolutionary perspective.

A simple rule that helps individuals to solve maximization problems and,

additionally, induces cooperation in dilemmata seems predestined to evolu-

tionary success.
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Figure 2: Simulations 
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