
Strategic Delay and Efficiency in Global Games

Nathan Larson
Centre for Economic Learning and Social Evolution

University College London
Gower Street, London WC1E 6BT

Email: n.larson@ucl.ac.uk

July 29, 2003

Abstract

The global games literature shows that perturbing a complete information coordination
game with correlated private information unleashes strategic uncertainty that can act, in
domino fashion, to rule out all but a single dominance-solvable equilibrium. We show
(in a two-player model) that when players also have the option to delay acting, the domino
chain is broken, and multiple equilibria resurface. Furthermore, the combination of strategic
uncertainty and the option to delay can have a salubrious effect — inefficiency in all equilibria
is lower than without delay and vanishes as the delay cost goes to zero.

1 Introduction

Games in which payoffs are complementary in the actions of several agents often admit mul-
tiple Nash equilibria if those actions must be chosen simultaneously. When this is true, each
equilibrium is supported by a different set of (correct) beliefs about how other agents will play.
Because the Nash concept is silent about which set of beliefs, if any, will arise, considerable
effort has been devoted to equilibrium refinements that select unique beliefs in a plausible way.
For games with common interests, this has led to a fork in the road: refinements that empha-
size uncertainty in agents’ beliefs tend to pick the risk dominant equilibrium, while refinements
that expand agents’ action sets (for example, by allowing pre-play communication) tend to
focus beliefs on the Pareto optimal equilibrium. One naturally wonders who will win the arms
race when both belief uncertainty and agents’ attempts to surmount it are factors. This paper
explores this question by relaxing the assumption that agents must act simultaneously in a game
that is perturbed away from complete information in the manner of Carlsson and Van Damme
(1993). It turns out that the option of delaying one’s play, if it is not too costly, helps to
prune away inefficient equilibria, even in the presence of incomplete information. When delay
is costless, only Pareto optimal equilibria survive. However, the perturbation to information is
not innocuous — if delay is costly, then inefficient equilibria are played with positive probability
even in the complete information limit.

A simple stylized example may help to convey the intuition behind the results. Suppose
Anne and Bob have a tentative plan to go to the theater on Saturday night. After observing
different noisy signals about the play’s quality (they read the reviews in different papers) on
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Friday morning, each must decide independently whether to purchase a ticket or commit to an
alternative plan for the evening that does not involve the other one. Suppose that both Anne
and Bob prefer seeing the play together rather than alone. Furthermore, suppose that if the
quality of the play is good enough (a “triumph”), either agent would prefer to see it regardless
of whether the other one goes, and that if the quality is bad enough (a “fiasco”), both would
prefer their outside options regardless of what the other one does. The interesting question is
what they will do when their signals about the quality of the play are between these extremes,
when each would like to go to the play, but only if the other does as well.

The global games literature suggests that this situation can be analyzed via iterated dom-
inance. Suppose Anne’s review says that the play is mediocre. She reasons that there is a
reasonable chance that Bob has gotten a fiasco review and will take his outside option for sure.
Since she would buy a ticket only if she were almost certain that Bob would do the same, she
must take her outside option. But then if Bob’s review says that the play is average, he must
worry that Anne may have gotten a mediocre review — if the chance of this is high enough, he
should take his outside option too. This process also works from the other end — when Anne
reads that the play is merely good, she should nonetheless buy a ticket for sure if the chance
that Bob has seen a triumphant review is high enough. Applying iterated dominance from both
ends may yield a unique threshold signal above which Anne and Bob buy tickets. Although it
would be efficient for them to go to the play whenever it is not a fiasco, under the equilibrium
threshold they will go to the play only when the quality is substantially higher. However, as
long as the noise in their signals is fairly low, Anne and Bob manage to avoid miscoordination
most of the time — only for signals close to the threshold do they face a substantial amount of
uncertainty about how the other will act.

Now suppose that there is an additional option to purchase tickets at the door on Saturday,
at a slightly higher price. To keep things symmetric, suppose that Anne and Bob can delay
committing to their outside options until Saturday for the same incremental cost. Furthermore,
Anne and Bob will have a chance to talk on Friday night. If the cost of delay is not too high,
then when Anne sees a review near her threshold, she may decide to delay her decision until
Saturday in order to see what Bob has chosen. If Bob could be sure that she would delay,
then he could lower his threshold substantially, buying tickets for all but the fiascos on Friday,
with confidence that she would follow his lead on Saturday. In fact, he will not be quite this
sure, but even the possibility is enough to encourage him to reduce his threshold a little bit.
This in turn will encourage Anne to reduce her threshold a bit as well. After playing out this
cycle of threshold reductions, Anne and Bob will be able to coordinate on efficient play-going
considerably more often than they could without the option of delay. In fact, we will show that
as noise vanishes and as the cost of delay becomes negligible, they always coordinate efficiently.

The next section describes the formal models first without, and then with, the option of
delay, and in the latter case derives conditions under which all equilibria exhibit delay. In such
an equilibrium, there is a positive probability that both agents delay their decisions. When this
happens, it becomes common knowledge that the dominance arguments above do not apply,
and so the potential for multiple equilibria re-emerges. Section 3 characterizes two prominent
equilibria: an “optimistic” equilibrium in which the agents expect to coordinate on the efficient
action in the continuation after both have delayed, and a “pessimistic” equilibrium in which
they expect coordination on the inefficient action. In both cases, the gap between equilibrium
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play and efficient play vanishes as the cost of delay shrinks, but in the “optimistic” equilibrium,
convergence to efficiency is at a faster rate. Section 4 provides a similar convergence result for
all equilibria. The value-added in the general result is that it places no a priori restrictions on
the form of strategies; in particular, threshold strategies are not assumed. Section 5 concludes
with a discussion of these results in the context of other recent work on strategic timing in
games with complementarities.

2 The Model

Before developing the full model, we begin by introducing a simpler version without delay
called the benchmark game and sketch how iterated dominance can be applied to identify a
unique equilibrium of this game. Then we add the delay option to the model and establish a
preliminary result showing that this option will be used in equilibrium.

2.1 The Benchmark Model

The benchmark game (BG) that we will look at is a special case of a global game as defined
by Carlsson and Van Damme. It is essentially the same as the game that has been used by
Morris and Shin (1998) among others to study currency attacks. There are two agents who
simultaneously decide whether to invest (I) or not (N). An agent who invests incurs a cost of a
and earns a return of vH if the other agent also invests and vL if he does not, with vH > vL > 0.
An agent who does not invest always earns 0. Under complete information, this situation is
summarized by the following game form.

I N

I vH − a, vH − a vL − a, 0
N 0, vL − a 0, 0

For moderate investment costs (a ∈ (vL, vH)), this game has two strict pure strategy Nash
equilibia: the Pareto optimal one in which both agents invest, and another one in which
neither does.

Next we introduce incomplete information about the investment cost. Assume that it
is common knowledge that the investment cost is a random variable ã, with realization a,
distributed uniformly on [vL− ε, vH + ε]. Each agent receives a private noisy signal of the cost
ai = a + εhi, where h1 and h2 are independent draws from a symmetric, strictly increasing,
atomless distribution H with mean zero and support on [−1, 1]. Write A = [vL − 2ε, vH + 2ε]
for the space of possible signals, and observe that a strategy for agent i now must specify an
action for each signal he might receive.1 We call this environment the benchmark game.

We will show that BG has a unique symmetric Nash equilibrium that can be identified by
iterated.dominance. The argument goes as follows. Define thresholds ai and āi to be the highest
signal below which agent i always chooses I and the smallest signal above which i always chooses
N respectively. These thresholds must exist because for small (large) enough ai, investing (not
investing) is a dominant strategy. Now consider agent 1’s expected payoff to investing when

1To be more precise, a strategy associates a probability distribution over actions with each signal, but in all
of the equilibria, agents will play pure strategies almost everywhere.
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he receives the signal a1 = ā2. Because of the symmetry of the error distributions, he believes
it equally likely that agent 2’s signal is higher or lower than his. Since agent 2 never invests
for a2 > ā2, agent 1 expects agent 2 to invest with probability no greater than 1

2 . Thus his
expected profit upon investing is

π1(I | a1 = ā2) = Pr(2 invests)vH + (1− Pr(2 invests))vL − ā2
≤ (vH + vL)/2− ā2

Furthermore, agent 1’s expected profit from investing with signals higher than ā2 is certainly
less than this, as the expected cost will be higher and the probability of co-investment lower. If
(vH+vL)/2−ā2 < 0, this means that agent 1’s expected profit from investing is strictly negative
for all a1 ≥ ā2. We can conclude then that if ā2 > v̄ = (vH + vL)/2, then ā1 < ā2. However, by
switching the agents in this argument, it is also true that if ā1 > v̄, then ā2 < ā1. This leads to
a contradiction if ā1 and ā2 are both greater than v̄, so in a symmetric equilibrium, we must
have ā1 = ā2 ≤ v̄.

Next consider agent 1’s expected payoff to investing when his signal is a1 = a2. In this
case, he expects co-investment with probability at least 1

2 since agent 2 always invests when
a2 < a2. Thus his expected payoff to investing is at least v̄ − a2. Since this is strictly positive
when v̄ > a2, by reasoning parallel to that above, we can conclude that v̄ > a2 implies a1 > a2.
Reversing the agents again, we also have v̄ > a1 implies a2 > a1. To avoid a contradiction,
we must have a1 = a2 ≥ v̄ in a symmetric equilibrium. But then because the lower threshold
cannot be greater than the upper threshold, we must have ai = āi = v̄. Thus the (iterated)
dominance regions for N and I completely partition the set of signals, and the equilibrium is
unique: invest if and only if the cost signal ai is less than v̄.2

Several points are worth noting. First, as ε vanishes, the agents coordinate with probability
1. Moreover, they coordinate on the equilibrium that is risk-dominant given the cost realization,
so the effect of strategic uncertainty persists even as that uncertainty vanishes. Moreover, this
effect depends crucially on the fact that no matter how small ε is, it is never common knowledge
that both equilibria are possible (i.e., that neither strategy is dominant).

2.2 The Model with Delay

In this section, the benchmark model is augmented by assuming that agents need not always act
simultaneously. Now an agent may either pick an action immediately or defer the decision until
later. The timing is as follows. First, agents observe their private signals. Then, in period 0,
the agents simultaneously decide whether to invest, not invest, or wait (W ). If neither agent
waits, the game ends immediately, with payoffs as before. Otherwise, each agent choosing to
wait incurs a cost of c and the game moves to period 1. In period 1, the agents who have
waited observe the actions taken in period 0 and choose either I or N (simultaneously, if both
have waited). As soon as both players have chosen an action from {I,N} payoffs are realized
as before. Call this the asynchronous game (AG).

Two points are worth emphasizing. First, the actions N and W are not equivalent because
an agent choosing N does not preserve the option of choosing I later. For this reason, it may
be best to think of N as a commitment to invest in an alternative project with constant payoff

2Of course equilibrium actions will not be uniquely determined at the threshold signal.
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0. When we refer to “not investing” in the sequel, this interpretation should be borne in mind.
Second, payoffs are realized once and for all (not period by period) and depend only on the final
actions taken by the agents and any relevant waiting costs. To fix ideas, one may think of two
firms positioning themselves to enter one of two markets (I or N) that will open in period 1.
Committing to one of the markets in period 0 allows a firm to spread out the investment costs
associated with entry, saving c, but a firm can also delay its choice until period 1. Profit flows
are realized once and for all when the markets open at period 1 and depend only on whether
both firms are in market I (but not on when they decided to enter).

It is clear that if the waiting cost is large enough that delay is a dominated strategy, then
the equilibria of AG and BG coincide. The next result establishes a rough converse: delay
always occurs when it is relatively costless. For brevity, define ∆v = vH − vL.

Proposition 1 If c < ∆v/4, then every sequential equilibrium of AG has a positive probability
of delay.

Proof. Suppose to the contrary that there is an equilibrium in which each player chooses I
or N in period 0 for every signal. Then the same argument used to establish the BG equilibrium
implies that each agent invests precisely when his signal is greater than v̄. Thus, the payoff to
agent 1 when his signal is a1 = v̄ is 0. Were he to wait, he would observe 2 choosing either I
(if a2 < v̄) or N (if a2 > v̄), events he believes to be equally likely. By waiting and mimicking
2, he earns 12 · 0 + 1

2(vH − E(ã | a2 < a1 = v̄)) − c > (vH − v̄)/2 − c = ∆v/4 − c, a profitable
deviation.

This proposition underscores the fact that uncertainty about one’s opponent’s action has
two effects: it encourages the choice of “safe” actions, but it also creates an option value to
delaying one’s decision until the uncertainty is resolved. The BG equilibrium compresses all
strategic uncertainty into a small region around the threshold signal, creating strong incentives
for agents with signals in that region to wait. On the other hand, agents with extreme signals
are sufficiently sure of how their opponents will act that waiting is not worthwhile. In the sequel,
we assume that c < ∆v/4 and show that equilibria exist in strategies with two thresholds for
period 0 action: a signal below which the investment is immediately made and a signal above
which the decision not to invest is made immediately, with waiting in the intermediate region.

3 Simple Equilibria

One implication of Proposition 1 is that in a symmetric equilibrium, there is a positive chance
that both agents wait in period 0. We will refer to the pair of strategies in period 1 after both
agents have waited in period 0 as the continuation game. A key observation is that it must
be common knowledge in the continuation game that neither agent’s signal is too extreme.
For example, if the equilibrium specifies that each agent always plays I (N) immediately for
signals less than a (greater than ā), then upon arriving in the continuation game it is common
knowledge that both signals lie in [a, ā]. If this is a subset of [vL, vH ], then it is common
knowledge that neither agent believes either strategy to be ruled out by dominance. As a
result, the continuation game will typically have multiple equilibria. This casts some doubt on
whether it will be possible to make sharp predictions about outcomes of AG.
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The equilibria constructed below go some way toward answering this question. Both are
characterized by simple threshold strategies (a, ā) under which an agent invests immediately for
cost signals below a, chooses N immediately for cost signals above ā, and waits for intermediate
signals. The first equilibrium assumes an “optimistic” continuation game in which the agents
coordinate on investment after both wait, while the second assumes a “pessimistic” continuation
in which there is no investment. The equilibria share certain qualitative features. In both cases,
the waiting region shrinks as signals grow more precise, with immediate coordination in the
noiseless limit. Furthermore, in both cases this coordination is more and more frequently on
the efficient investment I as the cost of waiting becomes small.

3.1 An “Optimistic” Equilibrium

We will look for a symmetric equilibrium in threshold strategies as described above. In addition
to the thresholds (ai, āi), a full strategy description must specify the action taken in period 1
by an agent with signal ai who has observed his opponent choose S ∈ {I,N,W} in period 0.

As a first step, observe that an agent who has waited and observed his opponent choose I
or N in period 0 will always follow suit. To see why, suppose that in some equilibrium, agent
1 were to choose N after observing 2’s choice of I in period 0. This can only happen if 1’s
posterior belief about ã, revised to incorporate the fact that a2 ≤ a2, makes N a dominant
strategy for him. However, 2’s choice of I is the most favorable news about I that 1 could
possibly receive, so he must expect to play N regardless of what he observes in period 0 after
waiting. In this case, he is better off playing N immediately and saving the waiting cost. The
same is true for the opposite case.

Now consider the situation in which both agents have waited until period 1. At this point,
it is common knowledge that a1 ∈ W 1 = [a1, ā1] and a2 ∈ W 2 = [a2, ā2]. Furthermore,
it is common knowledge that 1’s expectation of ã is less than E(ã | a1 = ā1, a2 ∈ W 2), so
whenever ā1 ≤ vH and ā2 ≤ vH , it is common knowledge that 1 does not believe N to be a
strictly dominant strategy. Extending this argument, when W i ∈ [vL, vH ] for i ∈ {1, 2}, it is
common knowledge that neither player believes either strategy to be strictly dominant.3 For
the time being, we will assume that this condition holds. Consequently, dominance arguments
do not restrict the set of equilibrium outcomes in this continuation game. Here we focus on the
optimistic continuation in which both agents always choose to invest in period 1 after (W,W )
is played in period 0.

Next we turn to identifying optimal period 0 thresholds (a, ā) given this continuation. To-
ward this end, let us suppose that agent 2 uses the strategy (a, ā) and consider agent 1’s best
response. In a symmetric equilibrium, we will need agent 1 to be indifferent between I and W
when a1 = a and to be indifferent between W and N when a1 = ā. This pair of indifference
conditions will pin down the equilibrium thresholds. Before jumping into the analysis, it will
be helpful to define the distribution of the difference between the errors in the agents’ signals G
(normalized by ε); that is, h1 − h2 ˜G. The symmetry of H implies that G is symmetric with
mean 0. We let φ(k) = 1−G(k) be the probability that the difference in the errors exceeds kε.
Given the agents’ uniform prior over ã, we can then express the probability that agent 1 places

3This is not a tight bound - the sets Wi can spill a little bit outside of [vL, vH ] without upsetting things.
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on agent 2 having received a signal substantially higher or lower than his own signal4:

Pr(a2 < a1 − kε | a1) = φ(k)

Pr(a2 > a1 + kε | a1) = φ(k)

In particular, Pr(a2 < a1 | a1) = Pr(a2 > a1 | a1) = φ(0) = 1/2.
Now we turn to agent 1’s best response. Regardless of his signal, he can earn 0 by choosing

N . Let us write πI(a1) and πW (a1) for the expected payoff he earns by choosing I or W
respectively when his signal is a1. If he chooses I, he will succeed in coordinating with agent 2
whenever agent 2 chooses I or W — that is, whenever a2 < ā. He will fail if agent 2 chooses N ,
which happens when a2 > ā. The probability of this latter event is Pr(a2 > a1+(ā−a1) | a1) =
φ(k), where k = (ā− a1)/ε. Thus, the expected payoff to choosing I is

πI(a1) = (1− φ(k))(vH −E(ã | a1; a2 < ā)) + φ(k)(vL −E(ã | a1; a2 > ā))
= vH − φ(k)∆v −E(ã | a1)

Alternatively, if agent 1 were to choose W , he would still end up coordinating on I whenever
agent 2 chooses I or W . (In the first case he would follow agent 2’s action, and in the sec-
ond case we have assumed an optimistic continuation.) The difference is that he can avoid
miscoordinating when agent 2 chooses N . His expected payoff is

πW (a1) = (1− φ(k))(vH −E(ã | a1; a2 < ā)) + φ(k )(0)− c
= (1− φ(k))(vH −E(ã | a1; a2 < ā))− c

where the second term in the first line is written explicitly to emphasize the case in which agent
1 avoids miscoordinating by waiting. Now we would like to show that there exist (a, ā) such
that agent 1’s best response to (a, ā) is (a, ā). Essentially, this is a matter of showing that
Figure 1 accurately represents the relationship between πI(a1), πW (a1), and 0. More formally,
we need to show that there exist (a, ā) such that

1. πI(a1) is strictly decreasing.

2. πW (a1) is strictly decreasing and crosses 0 at ā < vH

3. πI(a1)− πW (a1) is strictly decreasing and crosses 0 at a, with vL < a < ā.

These claims are verified in the appendix for sufficiently small noise. Observing that φ (0) = 1
2 ,

the indifference condition πW (ā) = 0 yields

1

2
(vH −E(ã | a1 = ā, a2 < ā)) = c (1)

while the condition that πI(a) = πW (a) gives us

φ(k̄)(E(ã | a1 = a, a2 > ā)− vL) = c (2)
4To be more precise, these expressions are valid for signals in the range [vL, vH ]. Boundary effects start to

become relevant closer to the edges of the support of ã, but the equilibrium thresholds will never lie above vH
or below vL.
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Figure 1: Equilibrium configuration of πI , πW , and πN

where k̄ = (ā− a)/ε.

This construction allows us to state the following result.

Proposition 2 When c < ∆v/4 and ε < 2c, a (symmetric) sequential equilibrium of AG exists
with threshold strategies defined by (1) and (2) and an optimistic continuation.

The condition on ε is imposed to ensure that the waiting region (a, ā) lies strictly within
(vL, vH). For positive ε, there is a chance that an agent whose signal lies just outside (vL, vH)
will have her beliefs about ã shifted into (vL, vH) by her opponent’s period 0 action. Thus,
her option value of waiting is positive; if the waiting cost is sufficiently low, she will not act
immediately. With a bit more work one can show that the equilibrium we have constructed
does not change much in this case, but we will not present this since the emphasis later will
be on limiting equilibria with vanishing noise and finite waiting costs. In order to illustrate
the intuition behind conditions (1) and (2), we present an example in which the waiting region
(a, ā) can be explicitly characterized.

Example 1 Uniform noise

Suppose that H is a uniform distribution on [−1, 1]. Then the distribution of the difference
in signals will have a triangular density with support on [−2ε, 2ε]. One can show that E(ã | a1 =
ā, a2 < ā) = ā− ε/3, so using (1), the upper threshold is simply ā = vH − 2c+ ε/3. In other
words, the range of signals for which an agent immediately chooses not to invest despite believing
that joint investment is Pareto optimal, [vH − 2c+ ε/3, vH ], is positive and shrinks as the cost
of waiting declines. This range also shrinks as uncertainty about the cost of investing grows;
this is because greater uncertainty about one’s opponent’s signal results in greater uncertainty
about his action, increasing the option value of waiting. Because the outcomes of I and W
coincide except when one’s opponent chooses N , the lower threshold depends on the probability
of this happening. Here the expressions are more complicated:

Pr(a2 > ā | a1 = a) = φ(k̄ | a) = 1

8
(2− k̄)2

E(ã | a1 = a, a2 > ā) = a+
4/3− k̄2(1− k̄/3)

(2− k̄)2 ε
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and the equilibrium a solves a cubic equation. The important point though, is that an agent
with signal a must expect his opponent to choose N with strictly positive probability, φ(k̄) —
otherwise there would be no option value to waiting and he would do strictly better by investing
immediately. Thus, k̄ = (ā − a)/ε < 2, so the width of the waiting region cannot be greater
than 2ε.

The Noiseless Limit
Now consider what happens upon approaching the complete information limit, holding the

waiting cost fixed. As ε→ 0, (2) goes to

1

8
(2− k̄)2(vL − a) = c

so in the limit, k̄ must be less than 2, and ā−a = k̄ε must go to 0. In other words, because the
width of the waiting region is constrained by the noise in the signals for the reasons discussed
above, the waiting region must vanish along with that noise. Then, in the limit, a = ā = vH−2c,
and the agents always coordinate immediately — on (I, I) when a < vH−2c, and on (N,N) when
a > vH−2c. Even though the option to wait is not exercised in the complete information limit,
its influence does not disappear: as the waiting costs shrinks from ∆v/4 to 0, the threshold
between coordination regimes grows from v̄, its level in the benchmark game, to vH . If we let
both the noise and the delay costs vanish (with the former going to zero first), then the agents
coordinate on immediate investment whenever it is efficient to do so.

Furthermore, the limiting behavior of this equilibrium does not depend on the distribution
of the noise; for general H we have the same result.

Proposition 3 In the limit as ε → 0 of the symmetric equilibrium described above, (I, I) is
played immediately if a < vH − 2c and (N,N) is played immediately otherwise. As c → 0,
(I, I) is played whenever it is efficient.

Proof. Fix a positive c. As in the case where H is uniform, we refer to conditions (1) and
(2). As ε → 0, a1 and a2 converge to a, so E(ã | a1 = ā, a2 < ā) → ā. Then (1) implies that
ā → vH − 2c. Next, if ā and a were to differ by more than 2ε, the probability of observing
signals more than ā− a apart would be 0, as would be the left-hand side of (2). Since this is
inconsistent with (2), ā− a must go to 0 with ε.

The form of this particular equilibrium is not entirely robust when limits are taken in the
opposite order. To see why, refer to the case with uniform noise. Fixing ε and taking c to 0, the
equilibrium conditions give us ā = vH+ε/3, or in other words, there are agents who believeN to
be a dominant strategy but nonetheless wait. By itself this does not pose a problem; it is simply
a statement that the option value of waiting is positive. However, the equilibrium conditions
ensure that E(ã | a1 = ā, a2 < ā) = vH — that is, with a zero waiting cost, an agent who is just
indifferent between N and waiting expects the value of joint investment to be zero conditional
on it occurring. The event he conditions on is a2 < ā because he expects joint investment to
occur whenever 2 does not choose N immediately. However, upon arriving at period 1, he has
additional information about 2’s action in period 0. His revised expectation of the investment
cost is either E(ã | a1 = ā, a2 < a) < vH after observing I or E(ã | a1 = ā, a2 ∈ [a, ā]) > vH if 2
waited. Thus he is ex post unwilling to play I after observing the (relatively) bad news that
his opponent waited also, and the optimistic continuation cannot be sustained.
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This equilibrium could be patched up to be robust to the order of limits, but it would
still suffer from the criticism that assuming an optimistic continuation after both agents wait is
arbitrary. The next section investigates whether any of the flavor of this equilibrium is preserved
when the assumption of an optimistic continuation is dropped.

3.2 A “Pessimistic” Equilibrium

The construction is very similar to the previous one with the following exception: now when
both agents have waited in period 0, the continuation strategies will specify that they both
choose N in period 1. This will change the indifference conditions that determine the waiting
region.

First consider the upper threshold. In the optimistic equilibrium, if agent 1 chooses to wait
he can expect the final outcome to be (I, I) if a2 < a or a2 ∈ (a, ā) and (N,N) if a2 > ā. With
a pessimistic continuation, he expects (I, I) only if a2 < a and (N,N) otherwise. This makes
waiting less attractive and changes the indifference condition between W and N to

φ(k̄)(vH −E(ã | a1 = ā, a2 < a)) = c (3)

The effect will be to tend to push down ā relative to the optimistic case.
Next we look at the lower threshold. If agent 1 invests, he expects the outcome to be (I, I)

if a2 < ā and (I,N) otherwise. Alternatively, if he waits, he expects (I, I) if a2 < a and (N,N)
otherwise. Noting that Pr(a2 < ā | a1 = a) = 1 − φ(k̄) and Pr(a2 < a | a1 = a) = 1

2 , the
condition for indifference between I and W becomes

(1− φ(k̄))vH + φ(k̄)vL −E(ã | a1 = a) =
1

2
(vH −E(ã | a1 = a, a2 < a))− c

φ(k̄)∆v − 1
2
(vH −E(ã | a1 = a, a2 > a)) = c (4)

(The second step applies the law of iterated expectations to E(ã | a1 = a).) For the pessimistic
equilibrium, an additional regularity condition on the distribution of the noise is needed.

Condition 1 G is weakly log-concave.

Proposition 4 A (symmetric) sequential equilibrium of AG exists with threshold strategies
defined by (3) and (4) and a pessimistic continuation.

Proof. The proof, which is in the appendix, involves showing first that thresholds satisfying
(3) and (4) exist and are unique, and then that using these thresholds is optimal for each agent.

As before, the extent of delay is limited by the degree of uncertainty about the investment
cost: at each threshold, an agent will only be indifferent between acting immediately and
waiting if there is a positive probability that his opponent will take the opposite action to the
one he is considering; consequently, the size of the waiting region ā−a is bounded above by the
magnitude of the signal noise. (That is, φ(k̄ | a) > 0, and so ā− a < 2ε.) The limit properties
of this equilibrium hinge, as earlier, on this fact.
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The Noiseless Limit
Because of the bound above, ā − a → 0 as ε → 0, so in the limit as the noise in signals

vanishes, the equilibrium strategies can be characterized by a single threshold ā. To find this
limit threshold, we take the limit of conditions (3) and (4) as ε→ 0, yielding

φ(k̄ | ā)(vH − ā) = c

φ(k̄ | ā)∆v − 1
2
(vH − ā) = c

Solving for the threshold produces

vH − ā =
p
c2 + 2c∆v − c (5)

It is worth pausing for a moment to compare the limit equilibria generated by optimistic and
pessimistic continuations. In both cases, there is immediate coordination with probability 1
as signal noise vanishes. Furthermore, in both cases, the range of costs (ā, vH) for which the
agents fail to coordinate on investment even though it would be Pareto optimal to do so shrinks
as the cost of delay declines. Finally, both cases are outcome equivalent to the benchmark game
when c ≥ ∆v/4 and produce fully efficient coordination as c→ 0.

However, they differ in the rate at which the rate at which inefficient coordination vanishes
with c. For the optimistic limit equilibrium, this region vanished at rate c, but for the pessimistic
limit equilibrium, (5) indicates that it shrinks at the slower rate c1/2. In understanding this
difference, it may be helpful to think about how these equilibria might arise out of a sequence
of deviations from strategies that do not use delay.

Start with the unique equilibrium of BG, in which I (N) is played for signals below (above)
v̄. For finite ε, these strategies leave agents with signals near v̄ uncertain about how their
opponents will play (as demonstrated in Proposition 1), giving them an incentive to wait. For
the sake of clarity, suppose that only agent 1 is allowed to wait. Then agent 1 should deviate
to waiting in some neighborhood of v̄. Now consider agent 2’s best response to this deviation.
Now when he chooses I, joint investment will occur more often than before, because there will
be some signals a1 > v̄ for which 1 previously would have played N , but now will wait and
follow 2. This makes I more attractive to agent 2, and she should react by shifting her threshold
between I and N upward, toward higher costs. But this in turn makes I more attractive to
agent 1, and he should respond by shifting his waiting region upward, thus eliciting another
response by agent 2, and so on. The upward march of the two agents’ thresholds will continue
as long as the option value to agent 1, minus c, is greater than zero (the payoff to choosing N).
This option value is roughly equal to the probability that agent 2 chooses I (˜12) times the gain
to coordinating on I (roughly vH − ā). Setting (vH − ā)/2 ≈ c yields ā ≈ vH − 2c.

The logic is similar when both agents can wait. With an optimistic continuation, the option
value to waiting at ā (relative to choosing N) is still roughly (vH − ā)/2 because the chance of
an opponent choosing either I or W is 12 and both lead to coordination on I. As with one-sided
waiting, this should lead to a threshold of roughly ā ≈ vH − 2c.

When conjectures are pessimistic, the option value to waiting at ā is lower. While the gain
to coordinating on I is still roughly (vH − ā), this will happen only when the opponent chooses
I (rather than I or W ), and the probability of this is less than 1

2 . To identify this probability,
call it p, more precisely, we can use information about the lower threshold a. At the lower
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threshold, choosing I rather than W leads to a gain of about vH − a ≈ vH − ā if the opponent
chooses W and a loss of a− vL if the opponent chooses N (call this latter chance q). As a and
ā increase, the gain vH − ā decreases. Since a− vL does not decrease, indifference requires that
q decreases at roughly the same rate as (vH − ā). But finally note that p and q are equal —
each is the probability that the opponent and own signals differ by more than ā − a. Going
back to where we started, this means that the option value to waiting at ā is on the order of
p(vH− ā) ≈ (vH− ā)2. This leads to a threshold that approaches vH more slowly (ā ≈ vH−

√
c)

as the cost of delay declines.

4 General Results

As we have seen, by adding delay to the benchmark game, we lose one of the major selling
points of the global game approach — the equilibrium prediction is no longer unique. A natural
concern is that the equilibrium set may be too large to make any robust predictions about
game outcomes. The examples in the last section provide some hope that there may be some
properties shared by all equilibria; this section will provide a general result that partially
confirms this hope. Before proceeding to the result, we offer two exemplary equilibria that
illustrate why general results may be difficult to obtain.

Example 2 “Non-monotonic” Equilibrium

Suppose that errors follow the same uniform distribution as in Example 1, and set the
model parameters to vH = 1, vL = 0, ε = .01, c = .02. Define the following partition of the
signal space into seven regions Ri = (αi−1,αi), with 0 = α0 < α1 < ... < α7 = 1. The other
region boundaries are presented below.

α1 = 0.813 83 α2 = 0.824 47 α3 = 0.836 87

α4 = 0.852 52 α5 = 0.94742 α6 = 0.96333

The following strategy specifying how to act depending on which region one’s signal falls in,
constitutes a symmetric equilibrium:5

R1 R2 R3 R4 R5 R6 R7
I WN N WI I WI N

In this table, WI is shorthand for “Wait in period 0. If the opponent waits as well, choose I in
period 1, otherwise follow the opponent’s action.” WN is defined similarly.

Figures 2 and 3 show the expected payoff to agent 1, as a function of his signal, for each
action when agent 2 is playing according to the strategy above. Figure 3 provides a closer look
at the “non-monotonic” interval R1 − R5 in which the best response is to invest for low and
high cost signals but choose N for intermediate signals.6

One can think of this as a regime-shifting equilibrium in which the agents coordinate on the
pessimistic equilibrium of 3.2 for low cost signals and coordinate on the optimistic equilibrium
of 3.1 for high cost signals. The two regimes are separated by a buffer region R4 of signals for

5The equilibrium was computed numerically. Details of the computation are available upon request.
6To avoid clutter, only the higher of the expected payoffs to WI and WN is presented. The kink is the point

at which WI overtakes WN .
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Figure 2: Non-monotonic equilibrium
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which the agents wait. By way of comparison, the complete information game (ε = 0, c > 0)
admits as a correlated equilibrium any arbitrary partition of the public signal a into sunspot
regions, with coordination on I or N depending on the region. Noise in the public signal (ε > 0)
disrupts the pinpoint precision required to sustain arbitrary sunspot regions as an equilibrium,
but the buffer provided by the waiting regions allows a certain degree of sunspottiness to survive.
To highlight one example of how this buffer operates, consider the border signals α4 and α5. At
both signals, an agent must be indifferent between investing immediately and waiting; however,
investing is less attractive at α5 because the cost is about 10% higher. Compensating for this is
the fact that the agent at α5 faces a smaller risk of being stranded by an opponent playing N
than an agent at α4. (The probabilities are 0.0209 and 0.0237 respectively.) This compensating
reduction in risk is made possible by the flexibility of the waiting regions: R6 provides a wider
buffer from the N−playing regions than R4 does.

Equilibria such as this one may offend our aesthetic taste for simplicity, and they are cer-
tainly tedious to compute; categorizing all the possibilities does not appear to be a practical
option. Whether we can afford to ignore this sort of equilibrium as a possible description of
reality is less clear. For example, financial professionals often claim that market dynamics are
characterized by resistance, barriers, and thresholds, terms that sometimes seem to describe
non-monotonic behavior and generally only make sense if sunspots are at work. The example is
constructed so that by excising the sunspot — that is assigning N to be played on {R4, ..., R7}
without making any changes to the strategy on {R1, R2, R3} — we arrive back at the pessimistic
equilibrium of Section 3.2. One might be led to conjecture from this that no equilibrium does
worse than the simple pessimistic equilibrium in generating investment; however, the next ex-
ample shows that this is incorrect.

Example 3 Partial coordination in the continuation game

All of the equilibria constructed thus far have specified full coordination on either I or N in
the continuation game in each waiting region. This example illustrates that partial coordination
is also a possibility. The setup is as in the previous example except that we will look at a wider
range of values for c and ε. The proposed strategy has the form

R1 R2 R3 R4
I WI WN N

where R1 = (0, a), R2 = (a, a∗), R3 = (a∗, ā), R4 = (ā, 1). Thus, after both agents have waited,
neither can be sure how the other will act. Agents with relatively low cost signals will invest,
those with high cost signals will choose N , and sometimes the agents will fail to coordinate.
There are now three equilibrium conditions: one at a, one at ā, and an equation determining
the threshold a∗ at which the agents switch from WI to WN . The condition at ā is identical
to the one for the pessimistic equilibrium (3). However, the condition at a differs from (4)
because the chance of co-investment when the opponent’s signal lies in R2 makes waiting more
attractive than it would be if WN were played on both R2 and R3. If we write k0 = (a∗− a)/ε,
so that Pr(a2 > a∗ | a1 = a) = φ(k0), then the condition at a becomes

φ(k̄)E(ã | a1 = a, a2 > ā)−
¡
φ(k0)− φ(k̄)

¢
= c
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Figure 4: Partial coordination equilibrium

At a∗ we must have indifference between WI and WN . The two strategies differ only in the
event that both agents wait. In this case, we can write p(a) = Pr(a2 ∈ R2 | a1 = a) for the
probability that agent 2 invests when a1 = a. Note that p(a) is decreasing in a. Furthermore,
we can write A(a) = E(ã | a1 = a, a2 ∈ {R1, R2}) for the expected cost incurred by investing
with signal a1 = a after both agents have waited — this is increasing in a. The threshold a∗

between WI and WN is defined by the unique solution to

(1− p(a))vL + p(a)vH −A(a) = 0, or

p(a) = A(a)

Expressions for p(a) and A(a) are derived in the appendix. Figure 4 presents the equilibrium
thresholds when the waiting cost is equal to the level of noise, computed for several values of
c = ε between zero and 0.2. The solid lines represent a and ā; the horizontal distance between
them is the waiting region R2 ∪ R3 for a particular level of c and ε. (The boundary between
R2 and R3 is omitted.) For comparison, the dashed lines indicate the corresponding waiting
region for the pessimistic equilibrium of Section 3.2. The two equilibria are quite close when
c and ε are large, but for small c and ε, the range of investment costs for which the partial
coordination equilibrium generates investment converges to [0, 1] more sluggishly than for the
pessimistic equilibrium. The problem begins with the lower threshold a, where a switch from
WN to WI on R2 tends to make waiting more attractive, pushing a down. This switch does not
have a first order effect at the upper threshold ā, as agents here never invest after waiting. The
second order effect of a shifting down is to make waiting less attractive at ā. (The chance of
observing the opponent choose I in period 0 declines.) This tends to push ā down. The overall
effect is to shift the entire waiting region down, toward lower investment costs.

In contrast with the earlier examples, the limiting behavior illustrated in Figure 4 applies
when c and ε go to zero at the same rate (rather than letting ε vanish first). Nonetheless, the
earlier result of convergence to investment for all a ∈ (0, 1) is still obtained, suggesting that the
prior results are not driven by the order of the limits. For technical reasons, the general result
below is developed for the ordered double limit (first ε→ 0, then c→ 0), but the fundamental
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logic of the proof appears to survive when c and ε vanish at the same rate.
In all of the equilibria we have presented, as noise vanishes, there is a threshold cost below

which investment always occurs, and this threshold approaches the efficient level vH as the
cost of waiting goes to zero. In the rest of this section, we prove that two broad classes of
equilibria of AG share this feature. We start with some notation. Let us denote by AG(ε, c)
the game with level of noise ε and cost of waiting c. We say that a strategy is a single waiting
region (SWR) strategy if it specifies some a and ā such that I is played below a, N is played
above ā, and some combination of WI and WN is played on (a, ā). A strategy is simple if every
contiguous region on which a version of W is played contains only WI or WN . The equilibrium
strategy of Example 2 is simple but not SWR, while the strategy of Example 3 is SWR but
not simple. The equilibrium strategies from Section 3 are both simple and SWR. Let Γcε (Ψ

c
ε)

be the set of symmetric, sequential simple (SWR) equilibria of AG(ε, c). Finally, let Γc be the
set all strategies γ that are limits of strategies in Γcε as the noise vanishes: γ ∈ Γc iff ∃{εi} and
{γεi} with γεi ∈ Γcεi , {εi}→ 0, and {γεi}→ γ. Define Ψc similarly. Notice that Γc and Ψc are
subsets of the set of equilibria of AG(0, c). We can then prove the following result.

Proposition 5 There exists a threshold a∗(c) such that
1. In every member of Γc and Ψc, investment occurs for all a < a∗(c).
2. vH − a∗(c)→ 0 (at least as fast as

√
c) as c→ 0. Thus, as c→ 0, every member of Γc

and Ψc involves coordination on investment if and only if it is efficient.

The intuition of the proof will be sketched here; the formal details are in the appendix.
The discussion below should also shed some light on why it is difficult to extend the result to
non-simple strategies with multiple waiting regions (or provide a counter-example). The basic
idea is to begin with an arbitrary strategy s and “shuffle” its constituent regions to generate
a different strategy s0 that has the form of either the pessimistic example (I −WN − N) or
the partial coordination example (I −WI −WN −N). Then, indifference relations that apply
in an equilibrium best response to s can be mapped into preference inequalities that apply to
a best response to s0. The advantage of this mapping is that the derived inequalities will be
substantially easier to characterize than the original indifference relations.

This approach is illustrated for a simple strategy in Figure 5. Part (a) depicts the equilibrium
strategy s. We draw attention to two points: aI is the highest signal below which I is always
played, and aN is the lowest signal for which N is ever played. Since s represents a symmetric
equilibrium, each agent must be indifferent between playing I and WI with signal aI , and
indifferent between N and WN with signal aN , if his opponent is playing s. Part (b) shows
a tweaked version s0 of s in which the entire strategy to the right of aN is replaced with N .
Increasing the chance of facing N tends to make WI more attractive relative to I, so if WI ˜ I

when facing s at aI , then we have WI º I when facing s0 at aI . Similarly, the shift from s to s0

can only reduce the chance of facing I at aN , so if N ˜WN when facing s at aN , then N ºWN

when facing s0 at aN . as well. We can now proceed with these two preference inequalities as
for the pessimistic equilibrium of Section 3.

Figure 6 shows the procedure for a SWR strategy. In this case, s0 involves shuffling the
interval (aI , aN) to shift all play of I (WN ) to the left (right). Strategy I does equally well
as WI against either I or WI but elicits full investment against WN , while WI does not. At
aI , an agent faces WN less often under s0 than under s, so if he is indifferent between I and
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Figure 5: Simple strategy

WI against s, he must prefer WI at aI when facing s0.7 Now consider aN . WN outperforms
N only when the opponent chooses I; otherwise both earn 0. An agent with signal aN faces I
less often under s0 than under s, so in the best response to s0, N º WN at aN . We are left in
a situation similar to the partial coordination equilibrium above. The first two constraints will
imply that if vH − aI fails to converge to 0 as c → 0, then the WI region must expand to fill
the entire interval (aI , aN ). But this would mean that the chance of facing N after both agents
have waited must go to 0. By appealing to a third constraint, that WN is preferred to WI at
aN . we arrive at a contradiction. This is also where the difficulty with extending the proof
to non-simple, multiple waiting region strategies lies. If WN were played on a region slightly
above aN , then the probability of facing N after both agents wait need not go to zero, even
if WI expands to fill (aI , aN). Thus, the contradiction needed to rule out the possibility that
vH − aI is positive in the limit cannot be established.

5 Discussion

We have shown that for a large class of equilibria, strategic uncertainty interacts with the
possibility of delay to restrict outcomes in a sensible way: investment occurs whenever it is
efficient and worth waiting for. Both strategic uncertainty and delay are necessary for this
result — the former provides an incentive for costly delay, and the latter provides a way to
break up inefficient equilibria. Furthermore, the form of the strategic uncertainty is crucial as
well; the correlation in the agents’ information and the “boundary conditions” imposed by the
dominance of each action in an extreme region mean that even as ε goes to zero, there is yet
some agent in some state of the world whose uncertainty about his opponent’s action is large.
It is the unraveling started by this agent’s decision to wait that generates the result.

7The fact that shifting regions toward aI means they are more likely to be faced by an agent with signal aI
follows from the fact that the error distributions are single-peaked.
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Figure 6: SWR strategy

Endogenous timing in coordination games has been well explored by Chamley and Gale
(1994) and Gale (1995) among others, but the study of how endogenous timing and global game-
style strategic uncertainty is less developed. In two recent papers, Chamley (2003a, 2003b)
develops dynamic models in which a continuum of investors must coordinate on a currency
attack. Under a different information structure than mine, he also concludes that multiple
equilibria can survive and explores policy interventions by a central bank that could rule out
“attack” equilibria. The closest paper to mine is Dasgupta (2001). It is worth taking some
time to outline the difference between the two approaches, as they are largely complementary.

Like Chamley, Dasgupta looks at a continuum of small agents, while I focus on the two
agent case. Both papers confront the possibility that sufficiently agents will delay that there is
no dominant strategy in the continuation game. Dasgupta solves this problem by introducing
uncertainty about how many agents have acted and how many have delayed, permitting a
second application of iterated dominance arguments to be applied. With a small number of
agents, as in my model, this assumption is less justified; instead I focus on characteristics of the
set of continuation equilibria. Finally, Dasgupta specializes to normally distributed noise and
focuses on monotonic equilibria, allowing him to derive extensive comparative statics results,
while I look for weaker results on a larger class of equilibria and for arbitrary specifications of
noise. Inter alia, he identifies a free-riding effect — if delay costs are too low, not enough agents
may be willing to step forward and lead with the efficient action. As a result, efficiency may
be highest with intermediate delay costs. With two agents, leadership involves less of a risk —
as long as the other agent has waited, he will follow suit — and consequently, lower delay costs
always improve welfare.

Coordination games have been widely used because they capture situations with comple-
mentarities in a simple way, but that simplicity is also their Achilles heel. It is well understood
that the outcomes of coordination games are not always robust when the games are enriched
in natural ways, as by introducing noise. We have argued that it is equally mistaken to ig-
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nore second-order refinements — in this case, when agents can respond to the introduction of
noise through delay, the outcomes can be quite different from those predicted by the original
model and the first-order refinement. This paper provides a taste for the variety spanned by
these possible outcomes and shows that some general predictions can still be made. However,
much more work remains to broaden these generalizations further and extend them to more
sophisticated models of timing.

6 Appendix

Verification of the claims leading to Proposition 1
Claim 1: πI(a1) is strictly decreasing.

Observe that πI(a1) = vH − φ((ā− a1)/ε)∆v −E(ã | a1). Both the second and third terms
are strictly decreasing in a1.

Claim 2: There exists ā < vH such that πW (a1) is strictly decreasing and crosses 0 at ā.
For the first part, fix an arbitrary ā < vH . Then πW (a1) = (1 − φ((ā − a1)/ε))(vH −

E(ã | a1; a2 < ā)) − c, where both terms in parentheses are positive and strictly decreasing in
a1 for a1 < vH . For the second part, substitute πW (ā) = 1

2(vH −E(ã | a1 = ā; a2 < ā))− c. At
ā = vH , this expression is less than 1

2(vH − (vH − ε)) − c = ε/2− c < 0. At ā = vL, πW (ā) is
greater than 1

2(vH − vL)− c > 0. By continuity, πW (ā) = 0 for some ā in (vL, vH).

Claim 3: πI(a1)− πW (a1) is strictly decreasing and crosses 0 at a, with vL < a < ā.
πI(a1)− πW (a1) = c−φ((ā− a1)/ε)(E(ã | a1; a2 > ā)− vL). The components of the second

term are both positive (the latter for a1 > vL) and increasing, so πI(a1) − πW (a1) is strictly
decreasing for a1 > vL. Furthermore,

πI(vL)− πW (vL) > c− φ((ā− vL)/ε)((vL + ε− vL) > c− ε/2 > 0

If we can show πI(ā)− πW (ā) < 0, then we are done. Toward this end, note that

πI(ā)− πW (ā) = c− (E(ã | a1 = ā; a2 > ā)− vL)/2
= (vH + vL)/2− (E(ã | a1 = ā; a2 > ā) +E(ã | a1 = ā; a2 < ā))/2
= v̄ − ā

The second line follows by adding the identity πW (ā) = 0. Furthermore, πW (ā) = 0 > (vH −
ā)/2− c = (∆v2 + v̄− ā)/2− c = (∆v/4− c)+ (v̄− ā). By assumption, the first term is positive,
so we must have ā > v̄. But then πI(ā)− πW (ā) < 0 as claimed, so there must be some a such
that πI(a)− πW (a) = 0 and vL < a < ā.

Proof of Proposition 4
Step 1: (3) and (4) have a unique solution.

Rewrite the equations in terms of k̄ and a, so (3) becomes

φ(k̄)(vH −E(ã | a1 = a+ k̄ε, a2 < a)) = c
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Note that the left-hand side of (4) is increasing in a, and for a fixed k̄ can be made larger than
c (for φ(k̄) > c/∆v) by taking a close to vH and smaller than c by taking a close to vL. Write
am(k̄) for the unique a that satisfies (4), given k̄. Because the left-hand side of (4) is decreasing
in k̄, am(k̄) is increasing.

Next, note that the left-hand side of (3) is decreasing in a. For a fixed k̄, it will be larger than
c (again, as long as φ(k̄) > c/∆v) for a near vL and smaller than c for a near vH . Write an(k̄) for
the a that solves (3), given k̄. LHS(3) decreasing in k̄ implies an(k̄) decreasing. Furthermore,
am(0) ≈ vL+2c < an(0) ≈ vH − 2c, and am(φ−1(c/∆v)) ≈ vH > an(φ−1(c/∆v)) ≈ vL, so there
is a unique k̄ such that am(k̄) = an(k̄).
Step 2: (a, ā) is a best response to (a, ā)

Suppose that 2 plays (a, ā). Clearly I is a best response for 1 for any signals that rule out
facing N , i.e., for a1 ≤ ā− 2ε. For a1 = a−x > ā− 2ε, the expected payoff difference between
I and W is

Pr(W )(vH −E(ã | a− x, a2 ∈ [a, ā]))− Pr(N)(E(ã | a− x, a2 > ā)− vL) + c
(φ(x)− φ(x+ k̄))(vH −E(ã | a− x, a2 ∈ [a, ā]))− φ(x+ k̄)(E(ã | a− x, a2 > ā)− vL) + c

φ(x)(vH − a0)− φ(x+ k̄)(∆v +∆a) + c

where a0 = E(ã | a−x, a2 ∈ [a, ā]) and ∆a = E(ã | a−x, a2 > ā)−E(ã | a−x, a2 ∈ [a, ā]). Both
a0 and ∆a are decreasing in x; for ∆a, this is a consequence of logconcavity of G. Furthermore,
logconcavity of φ implies that φ(x)/φ(x+ k̄) is increasing in x. Suppose that 1 were indifferent
between I and W for some positive x∗. Then φ(x)(vH − a0) − φ(x + k̄)(∆v +∆a) < 0 on a
neighborhood of x∗. But then the payoff difference can be written

φ(x+ k̄)(
φ(x)

φ(x+ k̄)
(vH − a0)− (∆v +∆a)) + c

The term in parentheses is negative near x∗ and increasing (becoming less negative) in x. It is
multiplied by a term that is positive and decreasing in x, so the entire expression is increasing
in x. That is, I (W ) is strictly preferred for signals in a neighborhood below (above) a− x∗.
This is true for any indifference point x∗ ≥ 0, including x∗ = 0, so I must be strictly preferred
for all signals below a. (Otherwise the expected payoff difference would have to cross 0 with
positive slope for some signal below a, a contradiction.) This argument extends directly to
show that W is strictly preferred to I for signals above a.

As for the upper threshold, N is a clear best response for signals large enough that there is
no hope (or fear) of facing I. The relative payoff toW (vs. N) is increasing in the probability of
facing I, which in turn increases as a1 decreases, so ā is unique, and N (W ) is strictly preferred
for higher (lower) signals.
Proof of Proposition 5

Let aI be the boundary below which I is always played and let aN be the boundary below
which N is never played, that is, aI = sup{aI0 : I is played at a ∀a ≤ aI0} and aN = sup{aN 0 : N

is never played at a∀a ≤ aN 0}. Suppose that aI = aN . Then continuity of payoffs requires that
I and N both have an expected payoff of 0 at aI . A deviation to waiting at aI has payoff at least
1
2(vH−E(ã | a1 = aI , a2 < aI))−c > 1

2(vH−aI)−c (because with probability 1/2 one’s opponent
has a lower signal for which I is always played). If aI < vH−2c, then this last term is positive,
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and waiting is strictly preferred at aI , and by continuity, in a neighborhood of aI , contradicting
the definitions of aI and aN . Thus it must be that aI ≥ vH − 2c ≥ vH − (

√
c2 + 2c∆v− c) (for

all c < ∆v/4), and so the proposition is satisfied.
Suppose instead that aI < aN . We will establish a bound for equilibria with pessimistic

conjectures about play after (W,W ) and then show that the bound can only be tighter for
other conjectures. We will write Pr(R | aR0) for the probability that 2 plays R conditional on
a1 = aR0 , R,R0 ∈ {I,N,W}. There are two cases to consider, depending on whether I is ever
played on the interior of [aI , aN ].

Case 1: Only W is played on [aI , aN ]
Then 1 must be indifferent between I and W at aI , so we have

Pr(N | aI)(E(ã | aI , 2 plays N)− vL)− Pr(W | aI)(vH −E(ã | aI , 2 plays W )) = c

The expectations of ã must lie within ε of aI , so

Pr(N | aI)(aI + ε− vL) > Pr(W | aI)(vH − (aI + ε)) + c

Pr(N | aI)∆v > (1− Pr(I | aI))(vH − (aI + ε)) + c

> (1− Pr(I | aI))(vH − aI) + c− ε

Pr(N | aI)∆v +Pr(I and a2 > aN | aI)(vH − aI) > (1− Pr(I and a2 < aN | aI))(vH − aI) + c− ε

(Pr(N | aI)∆v +Pr(I and a2 > aN | aI))∆v > (1− Pr(I and a2 < aN | aI))(vH − aI) + c− ε

Pr(a2 > aN | aI)∆v > (1− Pr(I and a2 < aN | aI))(vH − aI) + c− ε

Pr(a2 > aN | aI)∆v > (1− Pr(a2 < aI | aI))(vH − aI) + c− ε

Pr(a2 > aN | aI)∆v >
1

2
(vH − aI) + c− ε

φ(k̄) >
(vH − aI)/2 + c− ε

∆v

where k̄ = (aN − aI)/ε. The fact that Pr(a2 > aN | aI) > 0 establishes that k̄ < 2.
Next, 1 must be indifferent between N and W at aN , yielding

Pr(I | aN )(vH −E(ã | aN , 2 plays I)) = c

Pr(I | aN)(vH − aN − ε) < c

Pr(I and a2 < aI | aN)(vH − aN − ε) < c

φ(k̄)(vH − aN − ε) < c

φ(k̄)(vH − aI − 3ε) < c

φ(k̄) <
c

vH − aI − 3ε
Together, these imply

x/2 + c− ε

∆v
<

c

x− 3ε
letting x = vH − aI . We will return to this inequality after addressing Case 2.

Case 2: I is played somewhere on the interior of [aI , aN ]
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The logic of Case 1 hinged on two inequalities. In the latter, an agent who plays N at aN
must expect to see I sufficiently rarely. When I is never played on [aI , aN ] but always played
below aI , this bounds k̄ below. If I is also sometimes played on [aI , aN ], then in principle,
a tighter lower bound on k̄ could be applied. On the other hand, in the former inequality,
an agent who plays W at aI must expect to see N sufficiently often relative to W , putting an
upper bound on k̄ relative to how often W is seen. When I is played somewhere on [aI , aN ] it
displaces W , so this upper bound must become looser. The difficulty in Case 2 is in showing
that the tightening upper bound matters more than the loosening lower bound.

Suppose that σ is the measure of signals in the interval [aI , aN ] for which I is played.
Consider an alternative profile in which I is played everywhere on [aI , aI + σ] and W is played
everywhere on [aI+σ, aN ]. That is, all play of I is squeezed to the left end of the interval. The
strategy of the proof will be to show that the inequalities that must hold for the true profile
imply a set of inequalities for this alternative profile that can be treated in a way similar to
Case 1.

First consider indifference at aN . Just as before, we have

Pr(I | aN)(vH − aN − ε) < c

(Pr(I and a2 ∈ [aI , aN ] | aN ) + Pr(I and a2 < aI | aN ))(vH − aN − ε) < c

Now imagine squeezing all play of I to the left. Because the conditional distribution of a2 is
log-concave, the probability that a2 lies in [aI , aI + σ] conditional on a1 = aN is smaller than
the probability that a2 lies in any other measure σ subset of [aI , aN ] conditional on a1 = aN .
Thus we have Pr(a2 ∈ [aI , aI + σ] | aN) < Pr(I and a2 ∈ [aI , aN ] | aN), giving us

Pr(a2 < aI + σ | aN)(vH − aN − ε) < c

φ(k̄ − σ/ε)(vH − aN − ε) < c

φ(k̄ − σ/ε) <
c

vH − aI − 3ε (6)

Now consider aI . Picking up from the sixth line above,

Pr(a2 > aN | aI)∆v > (1− Pr(I and a2 < aN | aI))(vH − aI) + c− ε

Pr(a2 > aN | aI)∆v > (1
2
− Pr(I and a2 ∈ [aI , aN ] | aI))(vH − aI) + c− ε

Once again, imagine that all play of I occurs in [aI , aI + σ]. Again by log-concavity of
G, the probability that a2 lies in [aI , aI + σ], conditional this time on a1 = aI , is greater than
the probability that a2 lies in any other measure σ subset of [aI , aN ]. Consequently, Pr(I and
a2 ∈ [aI , aN ] | aI) < Pr(a2 ∈ [aI , aI + σ] | aI), so

Pr(a2 > aN | aI)∆v > (
1

2
− Pr(a2 ∈ [aI , aI + σ] | aI))(vH − aI) + c− ε

φ(k̄)∆v > φ(σ/ε)(vH − aI) + c− ε

φ(k̄)

φ(σ/ε)
>

vH − aI
∆v

+
c− ε

φ(σ/ε)∆v

φ(k̄)

φ(σ/ε)
>

vH − aI
∆v

+
2(c− ε)

∆v
(7)
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where the last step follows because φ(σ/ε) < 1/2 for σ > 0. As in Case 1, we would like to
compare lines (6) and (6); logconcavity of G permits this.

Lemma 1 For u, v > 0, φ(u)φ(v) ≥ φ(u+ v)/2.

Proof. Write ψ(x) = lnφ(x). Because ψ is concave (by logconcavity of G, which implies
logconcavity of φ), we have ψ(0) + ψ(u + v) ≤ ψ(0 + u) + ψ((u + v) − u) = ψ(u) + ψ(v).
Substituting φ(0) = 1/2 into this equation yields the result.

Applying this lemma to (6) and (6), we arrive at

c

vH − aI − 3ε >
vH − aI
2∆v

+
c− ε

∆v

just as in Case 1. Solving the resulting quadratic equation for x = vH − aI yields

x < −c+ 5
2
ε+

r
c2 + cε+

1

4
ε2 + 2c∆v

Taking limits as ε goes to 0 establishes the result that was claimed.
Finally, consider an equilibrium in which an arbitrary combination of I, WI , and WN are

played on [aI , aN ], where Ws refers to waiting and playing s if the other agent also waits. At
aN , N is at least weakly preferred to the more profitable of WI and WN , so we certainly have
N % WN . At aI , the better of WI and WN is weakly preferred to I. If this is WN , we have
WN % I at aI and N % WN at aN , and we can proceed just as in Case 2 above. Suppose
instead that I ∼ WI % WN at aI . Then we proceed with the two conditions WI % I at
aI and N % WN at aN . First note that, as before, if N is a better response than WN to
the true equilibrium strategy at aN , it will also be a better response to the strategy in which
N is always played to the right of aN (but which otherwise corresponds with the equilibrium
strategy). This is also true for WI % I at aI . Suppose that on the interval [aI , aN ], I is played
for a measure σε of signals and WI is played for a measure γε of signals. Similarly to Case 2,
we can construct an alternative profile in which all play of I is shifted to the left end of [aI , aN ]
and all play of WN is shifted to the right end of the interval. WI and I have different outcomes
only when N or WN are faced. At aI , this shift doesn’t affect the chance of facing N and
reduces the chance of facing WN (the situation in which I does better than WI), so the reply
preference WI % I at aI continues to hold. WN and N have different outcomes only when I is
faced (in which case WN is preferred to N). This shift reduces the chance of facing I at aN ,
so the reply preference N % WN at aN also continues to hold. To summarize, we have two
conditions on best replies to the adjusted profile in which I is played below aI +σ, N is played
above aN , WI is played on [aI + σε, aI + σε+ γε], and WN is played on [aI + σε+ γε, aN ]. As
above, the condition that N %WN at aN leads to the inequality

φ(k̄ − σ) <
c

vH − aI − 3ε
The condition WI % I at aI leads to the inequality

φ(k̄)(aI − vL +∆v + ε) > φ(σ + γ)∆v + c
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Thus, as ε→ 0, we have

φ(k̄ − σ) <
c

vH − aI (8)

φ(k̄)(aI − vL +∆v) > φ(σ + γ)∆v + c (9)

There are two subcases to consider. Suppose first that in the limit of the ε equilibria, WN is
preferred to WI at aN . Then WN will still be preferred under the shifted profile (as it makes
facing WI less likely). But this means that the probability of facing WN conditional on aN
and both agents waiting must be greater than p∗, where p∗ is defined by

(1− p∗)(vH − aI) + p∗(vL − aI) = 0

p∗ =
vH − aI
∆v

Under the shifted profile, this probability is just

p0 =
φ(0)− φ(k̄ − σ − γ)

φ(0)− φ(k̄ − σ)

Now we combine the first two ε→ 0 conditions with p0 ≥ p∗, and suppose toward a contradiction
that vH − aI were to converge to 0 more slowly that at rate

√
c as c→ 0. From (8), φ(k̄ − σ)

would have to go to 0 at a rate faster than
√
c. But then because φ(k̄) < φ(k̄ − σ), φ(k̄)→ 0

faster than
√
c as well. Then (9) means that φ(σ + γ) → 0 faster than

√
c. Together these

mean that k̄ → 2 and σ+γ → 2, so φ(k̄−σ−γ)→ φ(0) = 1/2. How quick is this convergence?
For c small, so k̄ and σ + γ near 2, φ(k̄ − σ − γ) → φ(0) faster than

√
cφ

0(k̄−σ−γ)
φ0(σ+γ) which is

greater than
√
c because φ is steeper near 0 than near its tails (because it is single-peaked).

Altogether, this means that p0 → 0 faster than
√
c, but then p0 ≥ p∗ means that vH − aI → 0

faster than
√
c, a contradiction.

Now consider the second subcase, in which WI is preferred to WN in the limit of the ε

equilibria. Then the probability of facing WI , conditional on aN and both agents waiting must
be greater than 1− p∗. Then the condition that N %WI at aN gives us

φ(k̄ − σ) + Pr(face WI) <
c

vH − aI
and Pr(face WI) > Pr(face W )(1−p∗). Furthermore, Pr(face W ) < 1/2−φ(k̄−σ), so we have

1

2
− vH − aI

∆v
(
1

2
− φ(k̄ − σ)) <

c

vH − aI
In this case, vH − aI must go to 0 at least at rate c. If it did not, the right hand side would
go to 0, so the left hand side would have to do so as well. This would only be possible with
φ(k̄ − σ) → 0 and aI → vL. But if aI (and hence aN) goes to vL, then choosing I would be
strictly better (with a payoff at least ∆v/2) at aN than N , another contradiction. Thus, in
every case, the limiting aI (as ε → 0) goes to vH as the waiting cost vanishes at rate

√
c or

faster.
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