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Abstract
Purpose:
Realistic modelling of soft-tissue biomechanics and mechanical interactions between tissues
is an important part of biomechanically-informed surgical image-guidance and surgical sim-
ulation. This submission details a contact modelling pipeline suitable for implementation in
explicit matrix-free FEM solvers. While these FEM algorithms have been shown to be very
suitable for simulation of soft tissue biomechanics and successfully used in a number of im-
age-guidance systems, contact modelling specifically for these solvers is rarely addressed,
partly because the typically large number of time steps required with this class of FEM
solvers has led to a perception of them being a poor choice for simulations requiring com-
plex contact modelling.
Methods:
The presented algorithm is capable of handling most scenarios typically encountered in im-
age-guidance. The contact forces are computed with an evolution of the Lagrange-multiplier
method first used by Taylor and Flanagan in PRONTO 3D extended with spatio-temporal
smoothing heuristics for improved stability and edge-edge collision handling, and a new
friction model. For contact search, a bounding-volume hierarchy (BVH) is employed that
is capable of identifying self collisions by means of the surface-normal bounding cone of
Volino and Magnenat-Thalmann, in turn computed with a novel formula. The BVH is further
optimised for the small time steps by reducing the number of bounding-volume refittings
between iterations through identification of regions with mostly rigid motion and negligible
deformation. Further optimisation is achieved by integrating the self-collision criterion in
the BVH creation and updating algorithms.
Results:
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The effectiveness of the algorithm is demonstrated on a number of artificial test cases and
meshes derived from medical image data. It is shown that the proposed algorithm reduces
the cost of BVH refitting to the point where it becomes a neglible part of the overall com-
putation time of the simulation. It is also shown that the proposed surface-normal cone
computation formula leads to about 40% fewer BVH subtrees that must be checked for self
collisions compared to the widely used method of Provot. The proposed contact-force for-
mulation and friction model are evaluated on artificial test cases that allow for a comparison
to a ground truth. The quality of the proposed contact forces is assessed in terms of trajecto-
ries and energy conservation; a less than 0.4% drop off in total energy and highly plausible
trajectories are found in the experiments. The friction model is evaluated through a bench-
mark problem with an analytical solution and a maximum displacement error of 8.2% and
excellent agreement in terms of the stick/slip boundary is found. Finally, we show with re-
alistic image-guidance examples that the entire contact modelling pipeline can be executed
within a timeframe that is of the same order of magnitude as that required for standard FEM
computations.

Keywords Contact modelling, collision detection, FEM, Total Lagrangian Explicit
Dynamics, soft-tissue biomechanics

1 Introduction

FEM modelling has for some time now played an important role in surgical simulation [1,
32], and is finding its way into surgical guidance [3,5]. Explicit FEM solvers, particularly
such based on the Total Lagrangian Explicit Dynamics (TLED), have been shown to provide
a versatile and realistic means of simulating soft-tissue solid dynamics which is at the core of
such guidance systems [26,32,19]. Their decoupling of the degrees of freedom also makes
them ideal candidates for parallelisation which in recent years with the advent of general-
purpose GPUs and multi-core mainstream CPUs has proved to be a great source of cost-
efficient execution speed [35,34].

They do, however, suffer from the inherent shortcoming of only allowing for small
time steps which can make simulations involving large-deformation contact modelling pro-
hibitively expensive mainly due to the costs associated with contact search. Another draw-
back is that, compared to implicit methods, little literature is available on contact modelling
for these solvers. The commonly encountered ones are the penalty-force and the Lagrange-
multiplier method of Taylor and Flanagan, and Heinstein et al. [14], among the force-based
methods [37], and kinematic contacts that rely on a direct correction of displacements and
are very efficient, but are only capable of modelling contacts between deformable and rigid
bodies [11]. All of these are typically implemented as node-segment contact algorithms only
capable of detecting penetration of mesh nodes into surfaces, which requires two detection
passes to achieve some degree of separation of the two surfaces in contact, and even with
those two passes mesh edges are still free to intersect. Node-segment methods must rely on
denser meshes to avoid the latter type of mesh intersection which in turn entails more and
computationally costlier time steps.

The algorithm presented in this paper was implemented as the general purpose contact
modelling component of the open-source1 TLED-based FEM solver package NiftySim [19].
It attempts to carry over some of the developments made in the context of implicit contact
modelling algorithms to explicit methods, such as being able to process contacts in a single

1 http://niftysim.sourceforge.net
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pass as with segment-segment methods [31], provided the meshes in contact have a simi-
lar resolution. Spatial smoothing, which attempts to alleviate the stability issues caused by
sudden changes in the direction of contact forces arising from the use of coarse, piece-wise
linear contact surfaces has found widespread adoption in implicit methods [38,30], is also
employed. Further stability improvement is achieved by gradually slowing down approach-
ing contact surfaces in close proximity, thus adding temporal smoothing to the method.

Another major area of focus in this work is the reduction of contact-search costs through
bounding volume hierarchies (BVH) with novel, time-saving update and self-collision de-
tection heuristics. For self-collision detection, we employ the surface-normal bounding-cone
heuristics developed by Volino and Magnenat-Thalmann [36]. New formulas for the com-
putation of the bounding cones, via Provot’s recursive algorithm [29], are introduced. An-
other novel aspect is how the self-collision criterion is deeply integrated in determining the
topology of the BVH and the decision on when to update BVH subtrees. The BVH updat-
ing algorithm is specialised for the typically small time-steps of explicit methods, in that
it comprises a method for the characterisation of the deformation the simulation geometry
has undergone and identification of areas of negligible deformation and rigid motion, and
updating of the BVH of the latter parts by means of rigid geometrical transforms.

The proposed method is further notable due to its versatility; it allows for modelling of
contacts between the surfaces of two solid meshes, self-collisions, contacts between solid
and membrane meshes, and deformable bodies interacting with moving or fixed rigid ones,
and a new, simple friction model is available, too.

This paper is organised as follows: After a brief overview of related previous work
(Sect. 2), Sect. 3.1 contains an introduction of the underlying FEM algorithm, the Total
Lagrangian Explicit Dynamics. This is followed by a detailed discussion of the contact mod-
elling pipeline that is subdivided into a relatively short part describing the contact surface
data structures (Sect. 3.3) and two larger sub-sections, the first of which deals with the con-
tact search (Sect. 3.4). Novel modifications to the self-collision detection method, and the
new BVH creation and update strategies are discussed in this order, in this part of the pa-
per. The contact model is developed in Sect. 3.5; it starts with a discussion of penetration
response forces for node-facet and edge-edge collisions, followed by a discussion of the
temporal smoothing and the friction model. In Sect. 4, the BVH algorithms are validated in
the order in which they are presented by comparison to some alternatives that swap out some
of the novel aspects for simpler or more established methods, on mostly synthetic test cases.
The contact model is validated in terms of energy and momentum conservation, and plau-
sibility of the trajectories resulting from impacts (Sect. 4.4). In Sect. 4.5, the friction model
is validated on a benchmark problem with an analytical ground truth taken from the litera-
ture. Finally, a demonstration of the entire pipeline’s performance on two image-guidance
problems is provided (Sect. 4.6).

2 Related Work

Classically, the algorithms for FEM contact modelling are node-segment approaches [37],
where one of the two surfaces in contact is assigned the role of the slave surface, the other is
called the master surface. The only type of mesh inter-penetration node-segment approaches
can resolve are those of the master surface by slave nodes which in turn necessitates two
contact search and resolution steps with alternating master-slave roles for every time step.
The underlying principle of mesh intersection handling with node-segment methods is to
project slave nodes onto the nearest facet of the master surface, and check the sign of the
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difference between the slave node position and its projection with respect to the master
surface normal. A contact response in direction of the master surface normal is then applied.
Since most FEM elements are only C0 continuous, this approach can also lead to sudden
jumps in the direction of the response experienced by a node sliding over the master surface,
in turn leading to instability of the algorithm. Smoothing node-segment methods, such as
the one by Wriggers and Krstulović-Opara [38] based on cubic Bézier polynomials, were
introduced to remedy this issue.

Segment-segment contact algorithms were devised to overcome the need for two passes
with the node-segment approach [31]. Mortar elements, originally developed for coupling
non-conforming meshes, were introduced to the field of contact modelling to also overcome
the various mathematical limitations of the early node-segment methods, mainly stability
problems with implicit methods arising from non-satisfaction of the Babuska-Brezzi con-
dition. In these methods the contacting meshes are pushed apart by a contact pressure that
is interpolated over the mortar mesh. The work of Puso and Laurensen [30] introduced a
mortar method for 3D and large deformations.

An interesting method suitable for any FEM or similar algorithm that assembles stiff-
ness matrices was developed by Duriez et al. [7]. Their contact model based on Signorini’s
law was primarily designed with haptics in mind, and computes contact forces from the
constitutive model of the bodies in contact.

An alternative to both node-segment and segment-segment methods, based on intersec-
tion volumes was devised by Heidelberger et al. [13], and significantly extended by Allard
et al. [2]. By employing layered depth images (LDI) for intersection volume computation,
they effectively solved collision detection and response calculation using the same method.
However, the method is limited in its application to volumetric meshes.

A notable development in the area of matrix-free explicit FEM algorithms came with the
Lagrange multiplier-based method employed in PRONTO 3D by Taylor and Flanagan [33],
and later extended by Heinstein et al. [14]. These methods, like the - probably most widely
adopted for explicit FEM - penalty method, resolve mesh intersection by applying forces
to the offending nodes. Unlike with penalty methods that contain an arbitrary non-physical
parameter, the forces with the Lagrange multiplier method arise directly from the discre-
tised equilibrium equation and lead to an immediate resolution of any mesh intersection
and do not affect the admissible time step size [4]. Cirak and West [6] devised a method
for simulating impact contacts with explicit solvers, based on an elaborate decomposition
of contact responses into mesh inter-penetration responses and momentum exchanges. In
terms of scope their work resembles ours strongly, with their ability to simulate membrane
and solid mesh contacts, frictional as well as frictionless contacts, and handling of both
edge-edge and node-facet collisions. Their resolution of mesh inter-penetration was based
on a unilateral projection of slave nodes onto the master surface, the consequences of which
on the energy balance of the simulated system they tried to minimise by establishing an
equation system incorporating both penetratration responses and momenta.

The range of contact search algorithms proposed for FEM contact modelling is as wide
as that of methods for their solution. We propose a bounding volume hierarchy (BVH) based
method. These methods are very versatile and used in a wide range of applications such
as cloth modelling [25], robot motion planning [10], ray tracing [20], and FEM contact
modelling [28,39]. What makes them interesting for the application with the relatively small
time steps required with explicit FEM solvers is the ability to take a more localised, selective
approach to collision detection and exploitation of temporal coherence. A further advantage
of employing a BVH is that it can also be used for other problems arising in surgical image
guidance, such as fast point location for point-set registration purposes.
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Early developments in the field of BVHs were limited to rigid or even static problems,
but since the 1990s there has been a growing interest in collision detection for simulation of
deformable bodies [24]. A key development came in 1994 with Volino and Magnenat-Thal-
mann’s method [36] for efficient self-collision detection. They established two conditions
under which a piece of simulated cloth could self-intersect: either the surface is folded onto
itself, i.e. it has surface normals pointing in opposite directions, or there are intersecting
boundary edges. Larsson and Akenine-Möller [21] devised a hybrid bottom-up/top-down
BVH strategy for detecting collisions between deformable bodies. Its purpose is to reduce
the number of bounding volume (BV) updates by only updating down to leaf level those
parts of the bodies’ BVHs that overlap. The method, however, was not adapted for self-
collision detection. They later [22] described a method for dynamically creating BVHs for
triangle soups particularly suitable for such resulting from fracturing of objects. They also
developed a variant of their algorithm incorporating a sweep and prune sort of all simulation
primitives suitable for detecting self-collisions.

3 Methods

3.1 Total Lagrangian Explicit Dynamics

The TLED class of FEM solvers are matrix-free solvers relying on explicit central-difference
time integration. They have enjoyed some success in the simulation of soft-tissue biome-
chanics thanks to their ability to simulate large deformations, the relative ease with which
complex material models can be implemented, and not least the possibility for very elegant
parallel implementations [26,35,34].

The discretised equilibrium equations of TLED, neglecting damping terms, read:

1

∆t2
M
(
U (t+∆t) − 2U (t) + U (t−∆t)

)
+ F (U (t)) = R(t) (1)

where U (t+∆t), U (t), U (t−∆t) denote the next, current, and previous time-step displace-
ments, respectively, ∆t is the time step size, R is the external load vector, and M is the
lumped (diagonal) mass matrix. The term F (U) represents the internal forces of the current
configuration. The evaluation of the latter term does not involve the assembly of a stiffness
matrix, instead internal forces are computed directly per element and subsequently accumu-
lated for all nodes. In this work, internal forces are modelled with the neo-Hookean material
model, whose strain-energy density function is given by

W =
G

2

(
I1 − 3

)
+
K

2
(J − 1)2 (2)

where G and K denote the shear and bulk modulus of the material, respectively, and I1 =
J−2/3(C11+C22+C33) with C denoting the left Cauchy-Green deformation tensor and J
is the determinant of the deformation gradient. Shell-element internal forces are computed
with the EBST shell triangle of Flores and Oñate [8].

3.2 Contact Algorithm Overview

The algorithm is of a predictor-corrector type that first evolves the displacements with the
standard TLED algorithm without any regard to contacts, then identifies intersecting or very
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close geometry and applies forces to correct the situation. The contact modelling pipeline
comprises three major groups of routines and data structures: The contact surfaces which
contain the geometry that is searched for collisions and some additional data required for
contact-force application, the BVHs employed in contact search, and finally the contact-
force computation algorithms.

A pseudo-code overview of the algorithm including the TLED-related computations is
given in appendix A.

3.3 Contact Surfaces

Contact surfaces are data structures central to the contact modelling algorithm that con-
sist of the geometric primitives -triangles are employed in the subsequent experiments and
some of the explanations- which are tested for collisions, and provide extended geometric
information required in contact search such as surface normals and projection operators.

The contact surfaces associated with fixed rigid geometry are static data structures for
which all normals, projection operators required for contact search and force calculation
are precomputed. Moving rigid contact surface data structures are identical to their spa-
tially fixed counterparts apart from possessing an update routine that applies the appropriate
translation and/or rotation to the precomputed normals and operators.

The most important type is the deformable contact surface obtained by extracting the
surface facets from the simulation solid mesh. Lazy evaluation with caches is employed for
normals, and other contact search related data such as projection operators, which allows the
algorithm to limit their re-computation to regions that are in contact with or close proximity
to other geometry. Contact forces which are calculated for a contact surface node are applied
to the corresponding FEM node via an index lookup table that is constructed together with
the surface mesh.

If the simulation contains membranes, these elements are included in the same contact
surface object as the solid mesh surface facets. To account for the thickness of the membrane,
two contact primitives are introduced for every membrane element, one for the top and one
for the bottom. The nodes associated with these membrane contact primitives are obtained
by offsetting the membrane nodes by half the thickness of the membrane in direction of the
normal and its opposite, for top and bottom respectively, yielding the sandwich structure
visible in Fig. 13. By having the entries in the contact-force index lookup table point to the
same FEM membrane node for the top and bottom node, it is ensured that contact forces are
correctly incorporated in the global force vector.

3.4 Contact Search

In the following, the algorithm is explained for BVHs that have a binary-tree structure and
axis-aligned bounding boxes (AABB) are used for illustrations. However, the presented
methods are not limited to this BVH-type.

At leaf level, the BVs bound one primitive each such that the primitive’s vertices at the
start of the time step as well as at the end of the predictor step are fully contained within
it. The leaf BVs are also fitted with a safety margin εBV which is uniform throughout the
BVH and defaults to 1

100 (hmax+hmin) in our implementation, with hmax, hmin being the
maximum and minimum initial-configuration surface facet diameters. The purpose of this
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Fig. 1 Surface-normal bounding cones for self-collision detection. Left: A patch of connected geometry
primitives defining a cone with the corresponding surface normals (red) and its AABB. Right: the corre-
sponding cone, the normals it bounds (red) and the cone axis (black).

ap = 1
||a1+a2|| (a1 + a2)

α1/2
β1

β2

α2/2

a1

a2
a2

a1

ap

Fig. 2 Provot’s NBC (left) and narrowest NBC (right). Child cones drawn with solid lines, parent NBC with
dashed lines.

margin is to allow for some geometry deformation without the need to refit the bounding
volume and to allow for the detection of primitives in close proximity.

All deformable geometry is contained in one BVH, rigid contact surfaces, moving or
fixed, each have each their own BVH.

3.4.1 Self-Collisions and Surface-Normal Bounding Cones

The surface-normal bounding cones (NBC) are a means for identifying BVH subtrees con-
taining connected geometry that is folded onto itself, i.e. has normals pointing in opposite
directions, and thus potentially self-colliding [36], and are illustrated in Fig. 1. Since we
mostly deal with solid elements, self-collisions resulting from intersecting mesh boundaries
as described by Mezger [25] are not considered, and we treat the NBC self-collision criterion

αVMT ≥ τVMT, τVMT ≤ π (3)

where αVMT is the cone opening angle and τVMT the threshold above which self-collision
tests are performed, as a necessary criterion for self-collision. The computation of this quan-
tity αVMT is done recursively as part of the BVH update with a method similar to that pro-
posed by Provot [29], starting with the facet normal of the bounded primitive and an opening
angle αVMT = 0, at leaf level, and creating NBCs for interior nodes by merging the cones
of their children. Unlike Provot’s algorithm that adopts for the parent cone’s axis the av-
erage of the child cones’ axes and then computes the opening angles such that the child
cones are fully contained, our approach computes the narrowest possible NBC from both
the child cones’ axes (a and a) and opening angles (α1 and α2), as illustrated in Fig. 2.
The computation of the parent axis is accomplished via two weights w1 > 0, w2 > 0:

e := a
Ta

β1 = (2 arccos(e)− (α1 − α2))/4, β2 = β − β1
w1 = cos(β1)− e cos(β2)−e cos(β1)

1−e2 , w2 = cos(β2)−e cos(β1)
1−e2

ap = 1
||w1a+w2a|| (w1a + w2a)

(4)
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A step-by-step derivation of this formula can be found in Appendix B.
The algorithm only performs these calculations after first checking whether one of the

child cones is fully contained in the other. If so, the containing cone is adopted as the parent
cone. It is therefore guaranteed that all quantities appearing in (4) lie within the valid range.

3.4.2 BVH Generation

Fig. 3 Illustration of the bottom-up BV merging process. The leftmost picture shows the initial state when
the AABBs contain only connected geometry. The next picture shows the state after the two boxes yielding
the smallest parent box have been merged. The last picture (rightmost) shows the BVH root bounding all
geometry. Meshes courtesy of IRCAD3.

Since the number of BVH subtrees that need to be tested for self-collisions is determined
by the NBCs, the same are used to influence how the BVH is generated and updated, so as to
reduce the number of BV intersection tests and updates. The generation process comprises
two main stages, in the first of which, disconnected geometry is identified and the top part
of the BVH is created from the boxes bounding these clusters, bottom-up (Fig. 3). The
second stage is the top-down division of the boxes bounding the connected primitives. In
order to be able to apply the NBC self-collision criterion, the division process makes sure
that the primitives contained in the newly created BVs remain connected. The cost function
governing the assignment of primitives to child BVs, eq. (5), consists of two quantities to be
minimised: the volume of the resulting BV and the opening angle of the NBC.

Bn+1
childi = B

n
childi ∪

{
arg min

T∈Bparent

V (Bnchildi ∪ {T})(1 + c · αVMT(Bnchildi ∪ {T}))
}

(5)

Bchildi , Bparent denote the primitive sets bounded by the new children and the parent BV being
split, respectively. T ∈ Bparent is any unassigned primitive from the parent-BV set, V (B) is
the volume of the BV bounding the primitive set B, αVMT(B) the opening angle of its NBC.
To be able to mix volumes and angles, we introduce the constant c for which we determined
2/π to be a good value. The child-primitive sets Bchildi are initialised with the two primitives
in the parent whose centroids are the farthest apart.

3.4.3 BVH Updating

The BVH updating algorithm only refits bounding volumes to accommodate the deformation
undergone by the geometry during a time step; it does not make any changes to the BVH
topology. This selective updating is achieved by means of update nodes (UN) carried over
from our previous work [18]. The UNs are defined as subtree roots in which the deformation
undergone by the bounded geometry is quantified to assess the need for an update of the

3 http://www.ircad.fr/softwares/3Dircadb/3Dircadb.php?lng=en
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respective BVH subtree before the next collision detection pass. An update of the subtree is
required, if 1) there are potential self-collisions in the subtree, or 2) the geometry has moved
so much that the bounds of the subtree’s BVs are no longer valid. The top part of the BVH,
i.e. the part above the UN, is updated in every time step.

In order to evaluate criterion 1), a bound on the non-rigid deformation the geometry can
undergo without causing an expansion of the NBC opening angle αVMT beyond the threshold
τVMT is required. The bound is given in (6) and derived in the appendix C.

τNR =
hmin

2
tan

τVMT − α(tU )
VMT

2
(6)

Where hmin is the minimum primitive diameter in the subtree. Finding it can be done recur-
sively as part of the subtree update and at virtually no cost. The computation of the actual
non-rigid displacement magnitude ||uNR|| requires Procrustes analysis and is significantly
more costly. However, the information obtained in the Procrustes analysis, can be used to
very cheaply update the subtree if update criterion 2) is satisfied but not 1), and the BV type
supports such rigid body transforms, as do, e.g., oriented bounding boxes [9]. This gives rise
to the update algorithm, Alg. 1. The term εr , appearing in the pseudo-code, will be explained
in section 3.5.

The UN role is assigned to BVs at the time of BVH creation. Since subtrees potentially
containing self collisions always have to be updated, it makes sense to place the update
nodes well below a point in the tree where αVMT > τVMT. The algorithm for the placing
is a greedy one, initialising the set of UNs with the leafs of the BVH. In every iteration, it
picks the two nodes whose parent has the narrowest NBC opening angle, and replaces them
with their parent in the intermediate set of update nodes. This procedure continues until the
minimum value of αVMT of the set of parent BVs of the current UN exceeds a threshold, set
to 1

2τVMT in the implementation.

3.4.4 Collision Detection

The broad-phase collision detection is performed by recursively checking BVH (sub-) trees
against each other until the bottom of the two BV trees is reached, i.e. the BVs bound-
ing individual geometrical primitives [25]. For self-collision detection the children of any
BVH node where Eq. (3) holds true need to be checked against each other. The subsequent
primitive-primitive test consists of one test for vertices against facets and one for edges
against edges. The node-facet test starts with the computation of an initial projection onto
the master surface and gap value,

(
ξ̃, η̃, g̃

)
, for the predicted position of the slave vertex

xs. The initial projection is obtained with Möller and Trumbore’s method [27] with the mi-
nor modification of employing normalised facet normals instead of unnormalised one. This
particular method is only applicable with triangular surface discretisations.

If the initial-guess projection (ξ̃, η̃) lies within the bounds of the master facet and the
initial guess for the gap value, |g̃|, is sufficiently close to the previously nearest projection,
it is improved upon with an iterative procedure that employs C0-continuous master facet
normals nm(ξ, η), computed from the vertex normals obtained by averaging the normals
of the incident facets. This yields the final penetration depth (gap function value), g, and
projection xm(ξ, η):

xm(ξ, η) :=
∑

i∈{master facet vertices}
bi(ξ, η)xi ⇒ g := nm

T(ξ, η)(xs − xm(ξ, η)) (7)
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Algorithm 1 BVH update algorithm
for all bvsub ∈ {Update nodes} do

if αVMT(bvsub) ≥ τVMT) then
{Subtree has potential self-collisions}
RefitTopDown(bvsub)
RefitBottomUp(bvsub)

xi
(tU ) ← xi

(t) {Update reference nodes}
else

c(t) ← 1
|N (bvsub)|

∑
i∈N (bvsub)

xi
(t) {Compute new centroid of bounded mesh nodes}

t← c(t) − c(tU ) {Compute subtree translation}
max ||uNT|| ← maxi∈N (bvsub)

||xi
(t) − xi

(tU ) − t|| {Compute maximum non-translational
motion}
if max ||uNT|| < τNR and max ||uNT||+ ||t|| < εBV − 2εr then
{Subtree inactive; motion insignificant, no update}
RefitBottomUp(bvsub)
continue

end if
if max ||uNT|| < τNR and max ||uNT|| < εBV − 2εr then
{Translational motion dominant}
ApplyTranslationTopDown(bvsub, t)

xi
(tU ) ← xi

(tU ) + t {Translate reference nodes}
RefitBottomUp(bvsub)
continue

end if
R ← Procrustes(xi

(tU ) − c(tU ),xi
(t) − c(t)) {Compute subtree rotation with Procrustes

analysis}
max ||uNR|| ← maxi∈N (bvsub)

||xi
(t) − c(t) −R(xi

(tU ) − c(tU ))|| {Compute max. non-rigid
deformation}
if DoesSupportRotation(bvsub) and max ||uNR|| < τNR and max ||uNR|| < εBV − 2εr
then
{Rigid motion}
ApplyTransformTopDown(bvsub, R, t)

xi
(tU ) ← R(xi

(tU ) − c(tU )) + c(t) {Transform reference nodes}
else

RefitTopDown(bvsub)

xi
(tU ) ← xi

(t) {Update reference nodes}
end if
RefitBottomUp(bvsub)

end if
end for

Where xi denotes the coordinates of the i-th master facet vertex, and bi(ξ, η) is the corre-
sponding standard 2D linear shape function.

This projection xm(ξ, η) is the virtual master-surface node based on which the contact
forces are computed (Sect. 3.5). For each slave node only the nearest projection onto a
master facet is stored.

The edge-edge collision detection is performed by determining for the potentially collid-
ing edge-edge pairs turned up by the broad-phase search the points on the two edges with the
smallest distance at the end of the time step. This yields the parameters q and r ∈ [0, 1] that
represent the position of the closest point on the slave and the master edge, respectively. The
difference between those closest points is subsequently projected onto the master surface
normal, resulting in the gap function for the edge-edge case:

g = nm
T(r)(xs

(t)(q)− xm(t)(r)) (8)
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3.5 Contact-Force Calculations

We distinguish two types of contact forces, penetration responses and gap rate-proportional
forces. The former come into effect if a predictor displacement configuration leads to inter-
sections of master and slave surfaces. The latter slow down approaching master and slave
surfaces before they can intersect. The derivation of the force formulations started from the
work of Heinstein et al. [14], modifications on the side of penetration responses include the
distribution of forces over the master surface, the extension to the edge-edge collision case,
the momentum-preserving gap-partitioning factor formulation, and the force consolidation
algorithm. The gap rate-proportional forces that in practice constitute the bulk of the contact
forces are a new formulation. Another major objective of the presented formulation is to,
as far as possible, enforce contact constraints one-by-one and avoid the introduction of any
matrix formulations in the force computation step, so as to keep the required communication
between workers processing individual contacts at a minimum.

3.5.1 Penetration Response Calculation

Penetrations are mathematically characterised by g < 0, i.e. situations where the slave node
lies behind the master-surface facet with respect to the master surface normal direction.
The penetration response force formulas arise directly from eq. (1) with the requirement of
immediate resolution of any mesh intersection and, for node-facet penetrations, are given by

fs = −n(ξ, η)βs msg
∆t2

(fm)i = n(ξ, η)βm
migγi(ξ,η)

∆t2 , i ∈ master facet
(9)

fs is the force applied to the penetrating slave node, (fm)i denotes the force applied to one
of the three vertices of the penetrated master-surface primitive. ms,mi are the masses of the
slave node and master-facet nodes, respectively.

The factor γi

γi(ξ, η) :=
bi(ξ, η)∑

j∈{master facet vertices} bj(ξ, η)
2
, i ∈ master facet (10)

distributes the gap function value over the master facet such that at the position xm the
fraction of the gap assigned to the master surface is recovered [23]:

βmg =
∑
i∈{master facet vertices} bi(ξ, η)γi(ξ, η)βmg (11)

The gap partitioning factor β, appearing in (9), controls how the response is split between
master and slave surfaces. For contacts between rigids and deformables it is set to 0 and 1
respectively. For inter-penetration of deformables it holds a value in ]0, 1[ that is computed
from the masses of the nodes involved in the contact:

βs =
mm

ms +mm
, βm = 1− βs =

ms

ms +mm
(12)

For the purpose of gap partitioning, the mass of the virtual master node mm is computed
with linear interpolation from the corresponding facet-vertex masses.

With these definitions, it holds at the point of contact on the master surface:

fm =
∑
i∈{master facet vertices} bi(ξ, η)(fm)i

= −fs = −λn
(13)
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where λ is the Lagrange-multiplier for the constraint.
Edge-edge penetration responses employ the same rationale that underlies eq. (9), ex-

cept that there are now two slave nodes and only two master nodes, and the 2D shape func-
tions of (9) are now 1D ones.

(fs)i = −nm(r)βs
miγi(q)g
∆t2 , i ∈ slave edge

(fm)i = nm(r)βm
miγi(r)g
∆t2 , i ∈ master edge

(14)

3.5.2 Gap Rate-Proportional Forces

The gap-rate proportional forces are employed to achieve a degree of temporal smoothing
in the contact forces and thus to improve stability. They come into effect when 0 ≤ g < εr
and the relative velocity between slave and master, in master normal direction, the gap rate,
is negative:

nm
T(vs − vm(ξ, η)) < 0

vs := (xs
(t) − xs(t−∆t))/∆t, vm(ξ, η) := (xm

(t)(ξ, η)− xm(t−∆t)(ξ, η))/∆t
(15)

The constant εr = 5
100·2 εBV is chosen such that any node at distance εr from a master

facet still lies within the safety margin of the BV and so close that any effects of the force
applications are not visible in the final configuration.

The force required for velocity matching of the slave node and the virtual master node
are derived from the forward-Euler increment of the velocity and momentum conservation
as follows:

nm
T [(vs − vm) + (∆vs −∆vm)]

!
= 0

∆vs = ∆t
ms
nmλ̇, ∆vm = −

∑
i∈master facet bi

∆t
mi
γinmλ̇

(16)

This gives rise to the following formula for the force’s magnitude λ̇

λ̇ = − nm
T(vs − vm)

∆t(1/ms +
∑
i biγi/mi)

(17)

The applied force gradually increases as the distance between the surfaces decreases, and
full velocity-matching is performed when there is zero distance between the slave node and
its projection onto the master surface

fs = (1− g/εr)n(ξ, η)λ̇, (fm)i = −(1− g/εr)n(ξ, η)λ̇γi (18)

The edge-edge contact formula for λ̇ reads:

λ̇ = − nm
T(vs − vm)

∆t
(∑

i∈master edge biγi/mi +
∑
i∈slave edge biγi/mi

) (19)
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3.5.3 Friction

Equation (17) can be used in Coulomb’s model to simulate friction by substituting the rel-
ative tangential velocity for the gap rate. Modelling friction only requires keeping track of
the active constraints in a given time step and the associated normal forces, and application
of the forces computed from

f =

{
−λT∆vT /||∆vT ||, if λT < µ||fN ||
µ||fN ||∆vT /||∆vT ||, otherwise

(20)

with µ being the friction coefficient, fN the normal forces applied to the corresponding
slave node, and

∆vT := (vs − vm)− nmT(vs − vm) · nm
λT := ||∆vT ||

∆t(1/ms+biγi/mi)

(21)

3.5.4 Contact-Force Consolidation

Since nodes can be involved in multiple contacts, e.g. multiple edge-edge contacts or master-
facet vertices being part of multiple node-facet contacts, the contact forces must be consol-
idated. This can be relatively easily accomplished if the indices subject contact constraints
are being kept track of as the responses are computed. The option chosen in our algorithm
is that of computing for every node with an active contact constraint the mean direction of
the contact forces and applying the maximum projection over all response forces in that
direction. Alg. 2 contains a pseudo-code description of the consolidation algorithm.

Algorithm 2 Algorithm for handling of redundant constraints.
for all n ∈ {nodes with contacts} do

f =
∑

f∈{contact forces applied to n} f/||
∑

f∈{contact forces applied to n} f || {Compute (weighted) mean
direction of contact forces}
fn ← maxf∈{contact forces applied to n} f

Tf {Compute maximum projection along mean direction}
fn ← fnf

end for

With the right data structures, this algorithm can be implemented with anO(Nnode-facet+
Nedge-edge) runtime complexity, where Nnode-facet and Nedge-edge are the number of node-facet
and edge-edge contacts, respectively.

4 Experiments

Our objective in this section is to show the inherent advantages of the individual heuris-
tics introduced in this paper over a number of alternatives. The subsequent evaluations are
based on a single-threaded C++ implementation of the algorithm described in the previous
section. The FEM calculations were done with NiftySim’s CPU solver [19]. The timings
were obtained on a workstation equipped with an Intel Core i7 2600K processor and 8GB
of RAM, by surrounding individual parts of the code representing the major stages of the
contact modelling pipeline with calls to the C clock function and accumulation.
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Zipper: “Zipper” geometry twisted and
compressed through force boundary conditions
(Fx = ±30, Fy = ±5, Fz = −10). Initial
configuration shown in left, final configuration

shown in right picture.
Dimensions: 35× 7× 12.5.

Mesh: 712 surf. facets, 358 surf. nodes, 1587
solid el’s, 485 solid nodes.

Material: G = 10, K = 40, ρ = 100.
Total time: T = 100.

Time step size: ∆t = 0.075.

C: C shape being closed by application of
displacement boundary conditions to upper part

of geometry (uz = −3.5).
Dimensions: 22.5× 10× 21.5.

Mesh: 960 surf. facets, 482 surf. nodes, 2320
solid el’s, 667 solid nodes.

Material: G = 10, K = 40, ρ = 1.
Total time: T = 2.

Time step size: ∆t = 0.001.

Fig. 4 Simulation geometry and settings used in validation of the proposed cone formula.

4.1 Self-Collision Detection Cones

The first two experiments are aimed at quantifying the effects of the formula for computation
of the NBCs described in Sect. 3.4.1. To this end, it is compared to the method of Provot [29].
The geometry and simulation settings of the simulations are given in Fig. 4. Due to the
artificial nature of the geometry, units have been omitted, but all parameter values can be
assumed to be specified in compatible units, e.g. m, s, Pa, etc. The geometry was generated
with AutoCAD4 and solid meshing was done with GMSH5. Most of the experiments are
once run with a binary AABB hierarchy (AABB2) and once with a 4-nary BVH (AABB4).

The results in terms of the average number of BVH subtrees that need checking for self-
collisions per time step, BV refittings, and the total time spent updating BVHs and searching
for contacts, for these two simulations are given in Tab. 1.

A reduction in the 40% ballpark in the number of BVH subtrees that need to be visited
for self-collision detection (first column in Tab. 1) is achieved with our proposed formula in
these two test cases. Further, since our BVH refitting and construction algorithms take into
account the NBC opening angle, the number of BVs that are refitted is about 10% lower with
our NBC computation method (second column in Tab. 1). The latter effect can mostly make
up for the slight increase in computational costs that comes with our formulation. These
findings are consistent across the two considered BVH orders.

4.2 BVH Refitting Strategy

The second set of experiments deals with the evaluation of the proposed BVH updating
strategy. Most of the geometry used in these experiments is again artificial and created with
Meshlab6, except the test case containing a liver and diaphragm whose geometry was ex-
tracted from volunteer MRI data with Slicer 3D7. The “C” test case from the previous section
is also used in these experiments. The new test simulations are summarised in Fig. 5.

4 http://usa.autodesk.com/autocad/
5 http://www.geuz.org/gmsh/
6 http://meshlab.sourceforge.net/
7 http://www.slicer.org/
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(a) Our cone method

Experiment

Avg. N. of
BVH subtrees
with potential
self-collisions

Avg. N. of refit-
ted BVs / time
step (tot. N. of
BVs)

Contact search
total time (s)

BVH update to-
tal time (s)

C AABB2 32.9 216.2 (1919) 4.35 0.129
C AABB4 17.4 101.4 (1410) 5.01 0.117

Zipper AABB2 50.3 229.4 (1423) 1.43 0.0936
Zipper AABB4 22.9 167.3 (1065) 1.49 0.1

(b) Provot’s method

Experiment

Avg. N. of
BVH subtrees
with potential
self-collisions

Avg. N. of refit-
ted BVs / time
step (tot. N. of
BVs)

Contact search
total time (s)

BVH update to-
tal time (s)

C AABB2 57.5 234.5 (1919) 5.04 0.113
C AABB4 28.5 121.3 (1410) 5.49 0.103

Zipper AABB2 87.7 254 (1423) 1.62 0.0823
Zipper AABB4 45.2 220.7 (1065) 1.72 0.0898

Table 1 Results from the comparison of our cone computation method with that of Provot.

Ball-slab: Ball being pushed against a
deformable slab through displacement boundary

conditions (vertically by uz = −0.4).
Dimensions: Ball radius = 1.2, slab:

3.15× 3.15× 1.2.
Mesh: 1500 surf. facets, 754 surf. nodes, 3284

solid el’s, 981 solid nodes.
Material: G = 100, K = 400, ρ = 20.

Time: T = 2, ∆t = 0.001.

Diaphragm/liver: Diaphragm pushed against
liver by displacement boundary conditions

(uz = −0.2).
Mesh: 2400 surf. facets, 1202 surf. nodes, 4921

solid el’s, 1448 solid nodes.
Material: G = 15, K = 50, ρ = 200.

Time: T = 1, ∆t = 0.0025

Two spheres: Two spheres pushed against a
membrane via force constraints (Fz = ±1),

leading to two-sided contact. Only membrane
mid-surface shown.

Dimensions: sphere radius = 0.7, membrane
dimensions = 2× 1× 0.15.

Mesh: 2× 700 sphere surf. facets, 2× 252
sphere surf. nodes, 2× 789 solid el’s, 2× 278

solid nodes, 400 membr. el’s, 231 membr. nodes.
Material: Gsphere = 200, Ksphere = 600,

Gmembrane = 1200, ρsphere = 25,
ρmembrane = 200; membrane is incompressible.

Time: T = 0.5,∆t = 10−4

Rigid bar: An irregularly shaped body (grey) is
pushed via displacement boundary conditions

(ux = 0.5) on its back against a rigid bar
(semi-transparent, blue).

Dimensions: 0.91× 1× 1.34 (deformable body
AABB), 0.5× 0.25× 0.25 (rigid body)

Mesh: 600 surf. facets, 302 surf. nodes, 1184
solid el’s, 359 solid nodes, 120 rigid facets, 83

rigid nodes.
Material: G = 0.05, K = 0.1, ρ = 0.5

Time: T = 2, ∆t = 0.0005

Fig. 5 Experiments used in BVH update-strategy validation.
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(a) Our update strategy

Experiment
Avg. number of refit-
ted BVs / time step
(tot. N. of BVs)

BVH update: avg.
time (ms) / time step

Total computation
time (s)

Ball-slab AABB2 111.9 (2999) 0.0433 2.91
Ball-slab AABB4 50.1 (2265) 0.0407 4.02

C AABB2 216.2 (1919) 0.0675 5.73
C AABB4 101.4 (1410) 0.0606 6.34

Liver-diaphragm AABB2 659.7 (4799) 0.202 1.65
Liver-diaphragm AABB4 412.4 (3659) 0.196 1.67

Two spheres AABB2 160.5 (3599) 0.0488 5.81
Rigid bar AABB2 75.3 (1199) 0.0229 1.15
Rigid bar AABB4 44.7 (904) 0.0228 1.14

(b) Larsson and Akenine-Möller’s update strategy

Experiment
Avg. number of refit-
ted BVs / time step
(tot. N. of BVs)

BVH update: avg.
time (ms) / time step

Total computation
time (s)

Ball-slab AABB2 898.9 (2999) 0.129 3.11
Ball-slab AABB4 581.9 (2265) 0.0973 4.14

Liver-diaphragm AABB2 2729.6 (4799) 0.430 1.77
Liver-diaphragm AABB4 2035.7 (3659) 0.348 1.67

Two spheres AABB2 1039.1 (3599) 0.143 6.31

(c) Exhaustive refitting

Experiment
Avg. number of refit-
ted BVs / time step
(tot. N. of BVs)

BVH update: avg.
time (ms) / time step

Total computation
time (s)

Ball-slab AABB2 2999 (2999) 0.301 3.49
Ball-slab AABB4 2265 (2265) 0.257 4.84

C AABB2 1919 (1919) 0.214 6.17
C AABB4 1410 (1410) 0.184 6.66

Liver-diaphragm AABB2 4799 (4799) 0.657 1.87
Liver-diaphragm AABB4 3659 (3659) 0.542 1.76

Two spheres AABB2 3599 (3599) 0.408 7.61
Rigid bar AABB2 1199 (1199) 0.146 1.65
Rigid bar AABB4 904 (904) 0.125 1.56

Table 2 Results of comparison of BVH update strategies.

The results for these experiments can be found in Tab. 2. No results are available for
Larsson and Akenine-Möller’s method on the “rigid bar” test case, since the method is not
defined for rigid-deformable contacts. Similarly, while technically it can be easily extended
to applications in self-collision detection, its inventors never intended for it to be used in that
way, and its performance is very poor and provides little insight in this context. Therefore,
there are no results for the “C” test case in Tab. 2(b), either.

The first observation that can be made from these results is that our proposed BVH
updating strategy leads to a general reduction in BV refitting and, ultimately, in overall
computation time, over both exhaustive refitting and Larsson and Akenine-Möller’s update
strategy. This effect is more pronounced on higher resolution meshes and problems not in-
volving self-collisions. The latter is most likely due to the dominant effect of contact search
on the overall compuation costs of self-collision problems. On the larger problems, the re-
duction in BVH refitting costs over exhaustive refitting approaches one order of magnitude



Explicit Soft-Tissue Contact Modelling 17

Fig. 6 Comparison of our method of NBC computation to that of Provot. Top: number of self-collision
candidate subtrees plotted against mesh resolution. Bottom: Corresponding contact modelling computation
time per time step.

with our method, despite the not insignificant computational overhead introduced by the
deformation analysis.

4.3 Scaling

The aim here is to show how the performance of our proposed NBC computation formula
and BVH update method change with increasing mesh resolution. To this end, the zipper
self-collision test case is taken and the mesh refined in 5 steps. The Zipper test case was
chosen for this experiment due to the relatively large deformation and because all deforma-
tion stems from force application, there is hence no bias towards translational movement of
geometry which might give our proposed method an unfair advantage.
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The first experiment looks at the NBCs. The same simulation is run once with Provot’s
method and once with ours and the average number of BVH subtrees that need checking for
self-collisions and the average time required for contact modelling operations per time step
are recorded. The results for binary and 4-nary AABB hierarchies can be found in Fig. 6.
The timing values include the time required for all BVH and contact surface-update, as well
as collision-detection and response computations.

There is a clear divergence in the number of sub-trees that need checking for self-
collisions between the two methods, with noticeably lower computation times for our method
at higher mesh resolutions. That the divergence in the time required for contact modelling
operations, in turn dominated by the contact search, does not diverge stronger can likely be
explained with the subtree pairs that need checking with both types of NBCs having their
roots higher up in the hierarchy and thus being more time-consuming to traverse.

The second experiment, looking at the proposed BVH update strategy, is mostly identi-
cal except what is recorded is the number of refitted BVs and the average per time-step BVH
refitting costs in milliseconds. The results for exhaustive refitting are included for reference.
The results for binary and 4-nary AABB hierarchies can be found in Fig. 7.

The most striking result is, as the number of surface primitives increases almost ten-
fold, the number of updated BVs remains almost constant with our strategy. This can be
explained with the UN being placed based purely on geometric criteria. Meanwhile, the
costs of exhaustively refitting the BVH approaches 50% of the total contact-modelling costs
observed for our algorithm in Fig. 6. From these plots it can also be seen that the savings
in terms of overall computation time with AABB4 over AABB2 and exhaustive refitting,
observable in Tab. 2, can be attributed only to the fewer refitted BVs with the higher order
BVH.

4.4 Contact Forces

The next two experiments look at the quality of the contact forces by considering two ge-
ometrically well defined benchmark problems. The first experiment simulates a Newton’s
cradle consisting of 4 elastic spheres (Fig. 8). All spheres are the same size (r = 1),
identically discretised (1004 nodes, 5101 tetrahedra), and have the same material param-
eters (G = 1000, K = 4000, ρ = 10). The leftmost ball is given an initial velocity
of v = (0.1, 0, 0)T, no other boundary conditions are applied. The simulation comprises
100,000 time steps of ∆t = 10−4 each for a total time of T = 10. The second one simu-
lates the breaking of a billiard rack. Again the system consists of 4 balls, one of which is
given an initial velocity of vx = 0.15 (Fig. 8), and identical material parameters are used
for all 4 balls in the experiment: G = K = 1, ρ = 5. The total simulated time is T = 20
with 20,000 time steps. To assess the energy conservation the time integration had to be
performed with NiftySim’s explicit Newmark time-ODE solver and without damping, since
central difference integration, even without damping, proved to be too dissipative.

The ball-centre (average node positions) trajectories and the corresponding energy bal-
ance of the system are given in Fig. 9 and Fig. 10 for the Newton’s cradle and the billiard
rack experiment, respectively. The strain energies in the plots are the sum of the internal
energies of all elements in the simulation and the kinetic energies are computed through the
inner product defined by the lumped mass matrix:

Ekin =
1

2∆t2
(U (t) − U (t−1))TM(U (t) − U (t−1)) (22)
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Fig. 7 Update strategy scaling behaviour: our method, and exhaustive refitting. Top: average number of
refitted BVs / time step. Bottom: average BVH update time / time step.

vx = 0.1

cball1 = (−2.5, 1) cball2 = (0, 1) cball3 = (2.02, 1) cball4 = (4.04, 1)

r = 1
vx = 0.15

cball1 = (−2.3, 1)

cball3 = (2.05, 2.025)

cball4 = (2.05,−0.025)

cball2 = (0, 1)
r = 1

Fig. 8 Left: Newton’s cradle with 4 balls; experiment initial configuration. Right: experimental setup: break-
ing of a 3-ball billiard rack.
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Fig. 9 Left: Ball-centre x-y-plane trajectories for the Newton’s cradle experiment. Right: Plot of kinetic,
strain, and total energy v. time for the Newton’s cradle experiment.

Fig. 10 Left: Ball-centre x-y-plane trajectories for the billiard experiment. Right: Plot of kinetic, strain, and
total energy against time for the billiard experiment.

In the Newton’s cradle experiment the ball-centre trajectories are all straight lines parallel
to the x axis. The standard deviations of the ball trajectories in the y and z directions satisfy
σ < 1.7 ·10−4. The mean velocity of ball 4 at the end of the simulation is v = (0.0996, 2.3 ·
10−4, 1.2·10−4). The total energy at the end of the simulation is 99.7% of the initial energy.
In the billiard experiment, the trajectories of ball 1 and 2 form straight lines with standard
deviations in the y and z directions satisfying σ < 4.35 · 10−4. For balls 3 and 4, symmetric
trajectories with slopes ±0.82 are found. The respective deviation of the trajectories from
that line are σball3 = 3.3 · 10−3 and σball4 = 3.3 · 10−3. The sum of all energy in the system
at the end of the simulation is equal to the initial kinetic energy of ball 1. Calculated using
a point mass approximation, the kinetic energy of balls 3 and 4 at the end of the simulation
amounts to 96% of the initial kinetic energy of ball 1, and 1.7% are stored as strain energy
in the balls.

In both experiments, the momentum and kinetic energy is almost fully transferred to the
last balls in the chain. The method’s ability to conserve momentum can be easily discerned
in the Newton’s cradle experiment, where the initial velocity of ball 1 is recovered in ball
4, at the end of the experiment. In the second experiment the expected symmetric, linear
trajectories for ball 3 and 4 are obtained. There is a small kink at the start of both trajectories
most likely caused by a short phase in the experiment during which strain energy stored in
ball 2 is converted back into kinetic energy and transferred to the last two balls and during
which the three balls remain in continuous contact. There is a minor increase in the total
energy during phases of conversion of kinetic energy into deformation. We experimentally
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constrained: ux = 0 pressure: p = 241kParigid floor

uz = −0.1016mm

L = 508mm h = 50.8mm

d = 25.4mm

Fig. 11 Top left: Experimental setup of the friction experiment. Top right: Result configuration of friction
experiment with ux colour mapped and exact ux value at centre of front face. Bottom left: Plot of accumu-
lated axial slip against nodal x coordinate. Bottom right: Corresponding plot of axial slip found with JAS3D
along with analytical solution, courtesy of ref. [15].

excluded the temporal smoothing heuristic and the time discretisation as the cause, but did
notice a correlation with the mesh density; a reduction in the number of elements per ball
from 5101 to 1289 led to an increase of the highest peak from 105% the initial energy to
109%, in the billiard experiment. In any case, since this excess energy is absorbed just as
smoothly as it arises and its magnitude in all experiments is in the single digits of per cents,
it can be assumed to be harmless. Especially considering that the experiments had to be run
with explicit Newmark time integration which the contact model wasn’t explicitly designed
for, these results are very satisfactory.

4.5 Friction

The following experiment is taken from ref. [15]. It is a quasi-static friction problem with
an analytical solution consisting of a bar being pushed down against a rigid surface, then
dragged along the same via an outward pressure applied to its front face. The geometry of
the experiment and location of boundary conditions is depicted in Fig. 11. The bar geometry
is discretised with an unstructured mesh consisting of 1678 nodes and 8419 tetrahedra and
the floor consists of 400 triangles and 231 nodes in a regular grid. The material of the bar is
characterised by a Young’s modulus of E = 68.947MPa and a Poisson ratio of ν = 0. The
displacement boundary condition is ramped up during the first 1% of the simulation time,
the pressure is applied subsequently and linearly ramped up over the 99% remaining time.
The friction coefficient between the bar and the rigid surface is µ = 0.1.

The final configuration is shown in Fig. 11. Fig. 11 also shows a plot of the accumulated
axial slip as a function of the corresponding point’s x coordinate, at multiple time points in
turn corresponding to different applied pressures. At most time points, the solutions for the
tip displacement agrees with the analytic solution up to 5%, a larger error of 8.2% occurs at
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Fig. 12 Top: Initial-configuration geometry of the prostate example. Prostate shown in purple, surrounding
tissue in blue, TRUS probe mesh in grey. Bottom left: Cutaway view of simulation final configuration. Bottom
right: prostate final-configuration posterior 3/4 view with initial configuration overlaid (wireframe).

t = 0.7 after all but the constrained nodes have started slipping. At the end of the simulation,
the measured peak displacement is ux = 1.287mm which is within 2% of the analytical
solution. If we set the displacement threshold to 0.005mm, the same value of 317.5mm is
recovered for the slip/stick boundary at t = 0.3, as found by Heinstein and Laursen [15].

Given the relative simplicity of the friction model, the numerical result shows good
agreement with the analytical solution. This result also provides evidence that the contact
model is able to accurately deal with sustained contacts.

4.6 Examples from Image-Guidance

In this section two quasi-static image-guidance examples of FEM contact modelling based
on actual patient data are presented with the primary aim of demonstrating the proposed al-
gorithm’s performance on high-resolution meshes encountered in TLED’s main application
area. The code is sequential and uses binary AABB hierarchies for contact search. The first
one is a reconstruction of the deformation caused to the prostate by the transrectal ultrasound
(TRUS) probe used in guidance of needle biopsy and ablation procedures of prostate cancer.
Being able to determine this deformation is crucial for the registration of the interventionally
acquired TRUS images to MR images acquired prior to the procedure [17].

The anatomical meshes were generated from a 320x320x15-voxel MR image with a
0.8x0.8x4mm resolution with experimental, semi-automatic segmentation software and AN-
SYS8. The deformable geometry of the simulation consists of two unconnected parts: the
prostate consisting of 22,705 tetrahedra and 4425 nodes (purple in Fig. 12), and a block rep-
resenting the surrounding tissue and the rectum consisting of 64,316 elements and 13,159

8 http://www.ansys.com/
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Fig. 13 Left: Initial configuration of the breast simulation with the skin contact assembly partially peeled
away for better visibility, showing the outer contact surface (red), midplane (grey, not used in contact mod-
elling), and the bottom part of the membrane contact assembly (blue), and the breast solid mesh (beige). The
red arrow indicates the direction of gravity. Centre: Inferior-medial view of solid mesh and skin mid-surface
final configurations with the skin mid-surface shown as wireframe mesh. Right: Frontal view of skinned
breast simulation final result with colour and opacity mapped distances to the result of the simulation without
skin.

nodes (semi-transparent, blue in Fig. 12). The TRUS probe mesh was created in Meshlab
and comprises 4886 triangular elements and 2445 nodes. Hu et al. [16] randomly sampled
their material parameters from ranges given by E ∈ [5, 150]kPa, ν ∈ [0.3, 0.4999] for the
prostate components and E ∈ [5, 100]kPa and ν ∈ [0.25, 0.499] for the surrounding tissue,
and used an inhomogeneous model for the prostate and the surrounding tissue. The param-
eter values chosen for this purely demonstrational simulation are identical for the prostate
and the other tissue and set to G = 1.8kPa, K = 6.9kPa. The front and back face of the
block are fixed in all spatial directions via displacement boundary conditions. The probe is
translated by (−0,−11.5, 5) mm from its initial to final position, in a linear motion. The
simulation runs for a total of 1000 time steps of ∆t = 10−3s, each.

The second example is motivated by the registration of preoperatively acquired prone
MR images used for planning of breast conserving cancer surgery to intra-operatively ac-
quired supine MR images [12]. Sliding between the skin and underlying tissues has been
observed but not properly quantified, having a method that allows for the modelling of this
behaviour could therefore be used in future biomechanics-based registration algorithms for
this type of application. In this example, the skin is modelled with a separate membrane
mesh. The solid mesh comprises 37,613 tetrahedral elements and 10,614 nodes, and was
generated from a 256x512x32-voxel MR image with a 0.7x0.7x3.7mm resolution with ex-
perimental segmentation software and TetGen9. The membrane mesh was generated by ex-
traction of the surface of the solid mesh, offsetting by 3mm, and performing a manual seg-
mentation; it has 4425 elements, 2283 nodes. The thickness of the shell elements is set to
5mm leaving a 0.5mm gap between the two meshes, that is quickly closed by the applied
gravity forces. The chest-wall side of the solid mesh is fully fixed. The skin mesh is only
held in the superior, lateral corner. The solid mesh is modelled as homogeneous transversely
isotropic neo-Hookean [12] with G = 3.57kPa, K = 16.67kPa, η = 37.71kPa10 and the
preferential direction coinciding with the ventro-dorsal axis. The skin’s material parameters
are E = 25kPa, ν = 0.4 for the membrane component, E = 5kPa, ν = 0.25 for the
bending stiffness. The simulation comprises 2500 time steps, representing 2.5 seconds. For
reference, an otherwise identical second simulation is run without the skin mesh to better

9 http://tetgen.berlios.de/
10 η controls the stiffness in the preferred material direction, details can be found in the NiftySim user

manual.
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Prostate Breast
BVH & contact surface update 0.3s 2.87s

Contact search 45.55s 119.71s
Response Computation 0.35s 0.09s
Other FEM operations 40.63s 57.58s

Total sim. computation time 86.83s 181.06s

Table 3 Computation times for the breast and prostate image guidance examples broken down into the major
stages of the contact-modelling pipeline

quantify the effects of the skinning. A colour map of the distance between the two results
can be seen in Fig. 13.

The deformation in the first experiment (Fig. 12) is, as can be expected, quite localised
with the TRUS probe penetrating into the block by about 1.1cm. In the process the prostate is
primarily rotated but also slightly bent with respect to its apex-base axis with the base being
displaced by about 4mm. Two small dents made by the surrounding tissue displaced by
the probe can also be seen on the prostate’s posterior surface, where the peak displacement
magnitude reaches 5.1mm. That the non-rigid deformation of the prostate isn’t larger can
probably be attributed to the mesh consisting of two parts that can slide relative to each
other.

The deformation of the solid mesh in the breast example (Fig. 13) is primarily a com-
pression in ventro-dorsal direction combined with a shift of a sizeable portion of the mass in
inferior and medial direction. The skin mesh is well held in place by the former despite there
only being displacement boundary conditions on one corner of the mesh. The mean solid-
mesh node distance between the results of the simulations with and without skin is 0.28mm
with a maximum of 8.61mm. Most of the large magnitude interaction between the the two
meshes appears to happen in the area surrounding the breast, although there is some evi-
dence of a constraining of the solid mesh’s expansion in the plane of the chest wall. Further,
due to the proximity of the skin and the solid mesh, roughly half of both the solid mesh and
skin contact surface can be assumed to be subject to contact constraints, or at least be turned
up as collision candidates by the broad-phase contact search, for most of the duration of the
simulation which is a larger fraction than in most simulations. Thus, it can be assumed that
particularly the contact search costs are higher in this simulation than in most simulations
with a comparable mesh resolution.

In any case, the sum of the timings (Tab. 3) obtained for all contact modelling related
operations is in both cases of the same magnitude as the time required for the basic FEM
modelling which due to the low computational costs associated with the matrix-free ap-
proach of TLED is quite challenging in its own right.

5 Conclusions

We have presented methods suitable for detecting and handling of contacts arising in explicit
FEM simulation of a range of scenarios: deformable geometry self-collisions, contacts be-
tween deformable solid and membrane meshes, and deformable geometry and a range of
rigid geometry. The contact search portion of the presented pipeline is optimised for the
typically small time-steps one has with explicit time integration in that it keeps the number
of BV refittings low by identifying the parts of the BVH where containment of the geometry
is ensured and self-collisions can be excluded. The success of this strategy can be seen in
the consistently low numbers of BV refittings.
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Further, in this paper, an improved formula for the computation, via Provot’s recursive
algorithm, of surface-normal bounding cones used for self-collision detection has been pre-
sented. We have demonstrated that the proposed formula leads to a marked reduction in the
number of BVH subtrees that must be checked for self-collisions, compared to the formula
originally proposed by Provot.

On the contact modelling side, we have presented a robust general-purpose method that
can deal with both geometric as well as temporal singularities via smoothing. Mathemati-
cally, the contact-force smoothing is, with respect to space, done by means of linearly inter-
polated surface normals, and with respect to time, by means of linearly increasing gap-rate
proportional forces. Despite these stability improving modifications, the results obtained
with the proposed contact model remain consistent with physics and accurate as has been
shown with transient impact and quasi-static, resting-contact friction experiments.

We have also shown that the entire proposed contact-modelling pipeline can be executed
within a time frame that is of the same order of magnitude as the time required for standard
TLED computations, in real-world image-guidance applications.
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A The Time Step Algorithm

t← t+∆t {Beginning of time-step}
R← UpdateExternalForces (t)

F ← UpdateInternalForces
(
U(t)

)
U(p) ← UpdateDisplacements(U(t), F,R) {Compute displacement prediction with eq. (1)}

C
(t)
def ← Update

(
C

(t−∆t)
def , U(p)

)
{Update deformable geometry contact surface Cdef}

BVH
(t)
def ← UpdateBVH

(
BVH

(t−∆t)
def , C

(t)
def

)
{Update def. geometry BVH with Alg. 1}

Cdd ← FindCollisions
(
C

(t)
def ,BVH

(t)
def

)
{Find deformable geometry contacts}

Fc ←
∑Cdd
c ComputeForces(c, C

(t)
def )

Fc ← ConsolidateForces(Fc, Cdd) {Correct for redundant constraints}
R← R+ Fc

C
(t)
movRig ← UpdateContactSurface

(
Ct−∆tmovRig, t

)
{Update moving rigid geometry C(t)

movRig}

BVH
(t)
movRig ← UpdateBVH

(
BVHt−∆tmovRig, C

(t)
movRig

)
{Update moving rigid-body BVHs}

Cdr ← FindCollisions
(
C

(t)
def , Crig, C

(t)
movRig,BVH

(t)
def ,BVHrig,BVH

(t)
movRig

)
{Find deformable-rigid

contacts}
Fc ←

∑Cdr
c ComputeForces(c, C

(t)
def )

Fc ← ConsolidateForces(Fc, Cdr)
R← R+ Fc
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u′

x0 x1

n(tU )

n(t)

hmin

∆α

Fig. 14 In 2D: Situation leading to the largest possible change to the primitive normal for a non-rigid defor-
mation of known magnitude ||u′||. The nodes of the example primitive have moved in opposite directions
perpendicular to the primitive’s previous plane.

Ut+∆t ← UpdateDisplacements(U(t), F,R) {Compute next time-step displacement}

B Derivation of the NBC Computation Formula

The quantities appearing in this derivation are illustrated in Fig. 2. The starting point for the derivation of our
NBC formula (4) is the realisation that an optimal parent axis ap does not only depend on the child-NBC
axes, a, a, but also their opening angles, α1, α2. If β denotes the angle between the two child axes and
β1, β2 their respective angles between them and the parent axis, the ideal opening angle of the parent NBC
αp satisfies:

αp = 2(β1 + α1/2) = 2(β2 + α2/2) (23)

Using this and the definition of β1, β2, it is obtained

β = β1 + β2 = arccos(a
Ta)

β1 = (2β − (α1 − α2))/4, β2 = β − β1
(24)

That in turn is used to obtain the desired weights w1, w2 for computation of the parent axis from the child
axes:

w1 = cos(β1)− e cos(β2)−e cos(β1)
1−e2 , where e := a

Ta

w2 =
cos(β2)−e cos(β1)

1−e2
ap = 1

||w1a+w2a||
(w1a + w2a)

(25)

C Derivation of the Non-Rigid Deformation Threshold for BVH Updating

A bound on the non-rigid deformation is required in the BVH updating algorithm to ensure the detection
of all self-collision candidates. I.e., if no self-collision was possible in a BVH subtree at the time of its last
update tU , meaning the root node’s NBC opening angle αVMT is smaller than the self-collision candidate
threshold τVMT, how much non-rigid deformation can the bounded geometry undergo without pushing αVMT
above the threshold τVMT and thus necessitating a full update the BVH subtree and check for self-collisions?

The bound introduced here, can be derived with a 2D sketch (Fig. 14): Assuming the maximum non-rigid
displacement u′NR,max of the bounded nodes is known, taking the smallest primitive diameter hmin in the
set of primitives bounded by the UN, it is found that the biggest change to the primitive’s normal (and thus
potentially all NBCs in which it is contained) occurs if the primitives vertices both move by ||u′NR,max|| in
opposite directions and perpendicularly to the plane of the primitive. The angular change to the normal ∆α
arising from such non-rigid deformation is

∆α = arctan
||u′NR,max||
hmin/2

(26)

The next step is to solve for ||u′NR,max|| by setting ∆α to (τVMT − α
(tU )
VMT )/2, i.e., determine a safe upper

bound for nodal displacement below which self-collisions can be excluded. This immediately yields the
formula:

||u′NR,max|| =
hmin

2
tan

τVMT − α
(tU )
VMT

2
(27)
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