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Abstract 

Gastrointestinal stimulator implants have recently shown positive results in treating obesity. 

However, the implantation currently requires an invasive surgical procedure. Endoscopy could be 

used to place the gastric stimulator in the stomach, hence avoiding the riskier surgery. The implant 

then needs to go through the oesophagus and be located inside the stomach, which imposes new 

design constraints, such as miniaturization and protecting the electronic circuit against the highly 

acidic environment of the stomach. We propose to protect the implant by encapsulation with 

silicone rubber. This paper lists the advantages of this method compared to the more usual 

approach of a hermetic enclosure, then presents a method to evaluate the underwater adhesive 

stability of six adhesive/substrate couples; using repeated lap-shear tests and an elevated 

temperature to accelerate the aging process. The results for different adhesive/substrate couples 

tested, presented on probability plots, show that FR4 and alumina substrates with MED4-4220 

silicone rubber are suitable for a first implantable prototype. We then compare these with the 

predicted lifetimes of bonds between historical standard silicone rubber DC3140 and different 

substrates, and describe the encapsulation of our gastrostimulator. 

Keywords 

Gastric electrical stimulation; endoscopic implantation; obesity; encapsulation; 

packaging; lap-shear test; silicone rubber; accelerated testing. 
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Introduction 

Obesity has reached epidemic proportions throughout the world, with more than 

500 million adults affected [15]. It is commonly associated with various health 

issues such as cardiovascular diseases, diabetes and musculoskeletal disorders 

[38]. Obesity also has important economical consequences both for the obese 

patients and for society [38]. 

Bariatric surgery, mainly recommended to patients with a body mass index (BMI) 

ranging between 30 and 50, is one of the most common techniques used to induce 

weight loss [21]. Although effective, it suffers from important drawbacks such as 

its considerable costs and invasiveness, as well as long term weight regain [20]. 

Gastric electrostimulation, a recent technique aiming to induce satiety by applying 

current pulses to the stomach, has shown promising results in terms of 

effectiveness [19]. However, as laparoscopy is used to implant the 

gastrostimulator, those improvements are somewhat limited as the method is still 

invasive. In this regard, placing the gastrostimulator using endoscopic techniques 

is highly attractive because it would be reversible, less invasive and less 

expensive [21]. Being more affordable and less risky, the technique could be 

offered to a greater number of obese persons.  

Challenges of endoscopically implantable stimulator 

Endoscopically implanted gastrostimulators are however very challenging to 

design [25]. First, due to the passage through the oesophagus, we estimate, based 

on previous experimental studies and existing endoscopic devices [21], that the 

device cannot exceed a maximum volume of 5 cm3 and a diameter of 18 mm. The 

large housings commonly used for implantable electronic devices (such as the 

pacemaker) are therefore unsuitable. Second, the device needs to have adequate 

anchoring in the stomach to avoid migration or detachment and withstand 

stomach contractions. Third, the device needs to be easily secured using 

endoscopic tools. Fourth, the power supply should neither be cumbersome nor 

require too regular endoscopies to replace the implant. Fifth, the device packaging 

must resist the acidic stomach environment, as described hereunder.  
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Implant packaging 

The implant packaging is of major importance as it protects the implant from the 

humid and acidic stomach environment (the pH in the stomach can be as low as 1 

[3]). Packaging prevents corrosion and provide some mechanical protection to the 

components of the electronic circuit, therefore preventing functional failure or 

erratic behaviour of the implant that could present a risk to the patient. The 

material used for the packaging should obviously be biocompatible. 

The most popular packaging method consists in using hermetically sealed 

housings, generally made of metal, ceramic or glass with hermetic feedthroughs. 

The well-known pacemaker has proven that such protections do last for decades. 

However, hermetic hard shells present various drawbacks:  

- They tend to be heavy and bulky, yet, the most popular designs, which were 

initially conceived 50 or more years ago, have reached the limits of 

miniaturisation achievable. This is becoming increasingly relevant with the 

trends towards implant miniaturisation driven by the development of new 

applications, such as gastric implants and others (e.g. retinal and spinal 

stimulation).  

- The manufacturing processes rely on expensive tooling, often build 

specifically to a part’s dimensions, which is a considerable financial burden 

for the production of very small batches, typical of the early prototyping 

stages of a product development.  

- They require feedthrough, since most implants are to interact in some way 

with the human body (recoding, simulation, etc.). Therefore, a further 

protection level is also needed for all conductive parts outside the protective 

shell. This is often achieved with silicone rubber encapsulation. Note that 

some designs use the substrate as a part of the hermetic enclosure [17], 

achieving this way higher feedthrough density, but still requiring silicone 

rubber encapsulation.  

- Hermeticity tests, needed to assess the hard shell’s and seal’s hermeticity, are 

unreliable for implants with a small internal volume [22, 35]. Again, this is 

becoming increasingly problematic since recent implant designs require such 

small dimensions.  

- Hermetic packages often use materials that affect RF communication. 

Although some attempts were made to design a transparent window for RF 
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communication [1, 40, 41], the procedure is very expensive and the resulting 

designs were large.  

Therefore, this protection method is not suitable for many applications, including 

ours.  

Another way of protecting the implant consists in encapsulating all the 

components with silicone rubber. This method is used in commercial applications 

and gives implant lifetimes of several decades [2]. It was briefly reviewed by 

Vanhoestenberghe et al. [36] and the two methods are illustrated in Fig. 1. The 

key to the success of this method is an appreciation that while silicone rubber is 

highly permeable to water vapour [33], its presence over a substrate can prevent 

the formation of liquid water, hence avoiding the formation of conductive paths 

between conductors, and corrosion. Therefore, it is crucial that the silicone rubber 

should strongly adhere to the substrate, and that the manufacturing method should 

prevent the creation of any voids that would lead to water condensation over 

electrical pads. If there is no loss of adhesion between the encapsulant and all the 

surfaces, there will be no corrosion inducing a potential failure. The implant life 

can thus be related to the life of the adhesive joint in situ. It is therefore critical to 

evaluate the long-term stability of the adhesive bond, between the encapsulant and 

the surfaces it covers, under operating conditions. Various silicone rubbers and 

substrates have already been tested in earlier experiments [9–11]. However, to the 

best of our knowledge, no studies have assessed their behaviour in the acidic 

environment of the stomach.  

Further, silicone rubber has already been used to encapsulate a gastrostimulator. 

However, no information were presented justifying the choice of material, and the 

device was removed after two hours in vivo, so that no information regarding 

long-term adhesion, or general efficiency of the protection method, could be 

deduced [5]. 

In this article, we describe the method we use to evaluate the long-term stability 

of the adhesive bond between several couples of substrate and silicone rubber. 

Although not novel, it has never been described fully in a publication. It is based 

on a survival analysis, using a Weibull distribution, of lap-shear samples aged at 

an increased temperature to accelerate the failure rate. We also discuss, for the 

first time, how to interpret the results in a general context, and offer an illustration 

with materials specifically selected for our application. Two adhesive silicone 
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rubbers are tested in vitro on typical implant substrates at worst-case stomach pH. 

The best one is proposed for a gastric implant and compared with historical 

standards.  

Methods 

This section describes the material selection, sample preparation, accelerated 

aging, event recording and standardized lap-shear method, statistical analysis and 

interpretation.  

Material selection 

The selected silicone rubbers are Dow Corning DC3140 and Nusil MED4-4220 

(see Table 1 for major properties). The selected substrates are glass, alumina and 

glass-reinforced epoxy (FR4).  

DC3140 was chosen because of its good adhesion to alumina [9, 10] and its wide 

use in the literature. It has long been considered the most suitable of 1-part 

silicone rubbers, amongst other because its cure evolves an alcohol, while most 1-

part silicone rubbers evolve acetic acid that may contribute to the corrosion of 

underlying metal surfaces. It is, however, not indicated for medical use and its 

cure requires atmospheric moisture, making it unsuitable for moulding [6]. 

Biocompatible MED4-4220 was developed by Nusil for encapsulating and was 

chosen as a newer silicone rubber presenting interesting properties such as a high 

tensile modulus and a wide range of cure temperatures and times (see Table 1). 

While 2-part silicone rubbers are suitable for moulding, they are unfortunately 

more sensitive to contamination than 1-part rubbers. Indeed, the platinum catalyst 

used for 2-part adhesives is very sensitive to contamination [27]. This can impede 

the chemical reactions between the two parts of the silicone rubber and prevent a 

complete cure, the resulting product remaining tacky at best. The catalysts used in 

1-part rubbers are less sensitive to poisoning. 

The adherent materials FR4 and alumina were chosen because they are typically 

used as electronic circuit substrates. Glass was also considered because its 

performance, with DC3140 as an adherent, in previous experiments at pH 4 was 

remarkable, and because the bonds of various silicone rubbers, including DC3140, 

to both glass and alumina have already been showed to be satisfactory [9, 10].  
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Sample assembly and cleaning 

All substrates measure 25.4 mm by 25.4 mm. Those dimensions were chosen to 

allow easy comparison with previous studies. The thickness was 1 mm for glass, 

0.7 mm for alumina and 1.6 mm for FR4. The impact of the substrate thickness on 

the long-term stability of the adhesive bond is unlikely to be significant. The 

water vapour will permeate through the silicone rubber in a matter of minutes to 

hour [33] while the water vapour permeability of the three substrate materials 

tested is comparatively much higher.  

The FR4 pieces were immersed in overactivated ferric chloride solution to remove 

the copper layer. This method is commonly used to remove copper from FR4 

when etching printed circuit boards.  

The substrates were cleaned with an alkaline cleaning solution containing 10 ml 

of Teepol and 250 g of Na3PO4 diluted in deionized water to 2 l. All parts were 

then rinsed in flowing deionized water until the conductivity of the rinse water, 

120 nS/cm at the output of the deionizer, was lower than 300 nS/cm when 

measured at the output of the rinsing bath.  

Each sample was built with two adherent pieces, bonded with silicone rubber. The 

adhesive layer had a 500 µm thickness and a 25.4 by 3 mm area (Fig. 2). Three 

different joining jigs were built, to accommodate for the different substrate 

thicknesses while keeping the adhesive layer thickness constant at 500 µm (Fig. 

3). The adhesive layer was first applied with a gun on the lower substrate (on the 

right side of the Fig. 2), before carefully laying the second substrate above. The 

bonded samples were then cured at 60° C overnight. 

Accelerated aging 

All samples were immersed in a simulated gastric fluid (DMC030-06 Simulated 

Gastric Fluid from ProSense B.V., Netherlands) at 100° C. It is the first time that 

such tests were performed in a simulated physiological fluid instead of distilled 

water.  

Working at this elevated temperature, much higher than that of the body, 

accelerates the failure rate. It does not however, to the best of our knowledge, 

introduce new failure modes not present at the operating temperature. We are 

therefore only studying the adhesive failures that would occur in use. 
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PEK Donaldson studied the underwater stability of the adhesive joints between 1 

and 2-part silicone rubbers and several adherents. He showed that the failure rate 

follows an Arrhenius relationship with temperature [12]. An acceleration factor, 

A, comparing the failure rates at two temperatures T and T+ΔT, can then be 

calculated using the following equation:  

      
    

   
              (1) 

where k is the Boltzmann constant and Ea the activation energy of the joint failure.  

The activation energy depends on the adhesive/substrate couple tested, as well as, 

to a lesser extend, the relative humidity and temperature [36]. Based on PEK 

Donaldson’s results for DC3140 on alumina at pH 7 between 70 and 100°C, an 

activation energy of 0.7 eV was used when calculating the acceleration factor (see 

section “Results”). 

Timing of lap-shear tests and recording of failures 

Lap-shear tests, pulling with a 5 kg force, were performed periodically. The 

intervals between the tests were defined as one tenth of the time from the 

beginning of the experiment or daily, whichever was the longer, meaning for 

example that until the 20th day, the samples were tested daily. It is worth noting 

that to keep a manageable number of samples, they were not removed after each 

“pull” but re-immersed in the gastric liquid, potentially accelerating further their 

failure rate. Consequently, the calculated survival rate is underestimated compared 

to an ideal case with removal of every sample tested.  

A test can have either of the three outcomes listed below. 

(a) The sample is intact, it is then returned to the boiler.  

(b) The adhesion between the silicone rubber and the substrate fails, an adhesive 

failure is recorded.  

(c) The sample fails in any other way (broken substrate, cohesive failure within 

the silicone rubber,...). The sample is excluded from further testing. This is 

recorded as a right-censored event. As the sample failed in a way that is not 

relevant to the study, it should not be excluded from the population. Right-

censorship allows us to consider the period it did survive, until it could no longer 

be tested, when computing the survival probability. The term right-censorship is 

best understood when imagining an axis of time, with the past to the left and the 
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future to the right. If a sample is excluded before the failure mode under study is 

observed, only an aborted survival time (left of the exclusion day) is known. The 

actual failure day would have occurred to the right of the exclusion day, hence the 

event is right-censored. 

Statistical analysis and interpretation 

We use a two-parameter Weibull distribution to represent the sample population 

[30]. This distribution is common in reliability analysis and its merits have been 

discussed elsewhere [26]. 

The probability density function (pdf), Eq. (2), gives the probability of a sample 

failing on a given day d (d>0). The cumulative density function (cdf), F(T), gives 

the probability of a sample having failed by time T (T>0). It can be used to 

calculate the probability of a sample surviving past T days. This last function is 

known as the reliability or survival function, commonly denoted by the letter R or 

S as in Eq. (3). 

     (  
  )           ( 
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β is the shape parameter or Weibull modulus, and η is the scale parameter and 

both are positive. The mean and standard deviation of the distribution, Eq. (4) and 

(5) respectively, are related to the gamma function. 

        [   
 
]         (4) 

       { [   
 
]   [   

 
]
 
}
 
 
     (5) 

Figure 4 depicts the gamma function Γ(x) and the Weibull distribution pdf. Γ(x) is 

1 for x=1 and x=2, has a minimum at xmin = 1.4616 where Γ(xmin) = 0.8856 and 

is > 1 for 0 < x < 1 and x > 2, as seen in Fig. 4a. Therefore, for β > 1, the Gamma 

function is between its minimum (0.89) and 1, and the mean of the distribution 

E(T) is such that 0.89 ∗ η ≤ E(T) ≤ η. The scale parameter (η) gives an 

approximation of the mean time to failure (MTF), hence η is sometimes called the 

characteristic life. The significance of the shape parameter (β) is illustrated in Fig. 

4b, showing Weibull pdfs, with the same scale parameter but different shape 
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parameters, all > 1. The higher the shape parameter, the higher the probability that 

the samples will fail at a time η and the narrower the standard deviation for a 

given η. Practically, β > 1 indicates wear out failures, for β = 1 the failure rate is 

independent of the time and for β < 1 it decreases with time.  

The data were analyzed using Matlab R2010. Maximum likelihood estimates 

(MLE) of the two parameters were calculated using the function wblfit, taking the 

right-censored data into account. The function also returns upper and lower 

bounds for the parameters, with a confidence index α which, unless otherwise 

stated, was 95 % for all data presented in this paper. The mean time to failure and 

standard deviation (std) for the population were then estimated (function wblstat 

or Eq. (4) and (5)), as well as the time by which there is an n % chance that a joint 

would have failed (and corresponding confidence interval CI). This last value is 

known as the nth percentile and denoted yn. 

The cdf of the distribution with the estimated parameters was then used to 

estimate the cumulative failure probabilities corresponding to the days at which 

failures were recorded. These probabilities and times to failure were plotted on 

probability axes, and the correlation coefficient and p-value calculated. Several 

data sets were plotted on the same graph for comparison (Fig. 5). The probability 

plots allow a visual inspection of the data sets to check if the assumption of a 

single failure mode is met. The data points should appear to be on a single line, 

without noticeable inflection (possibly indicative of a lognormal distribution) or 

corners, indicating a mixed failure modes situation.  

The MTF and std of the distribution, plus scale parameter (η) and shape parameter 

(β), and the R and p-value for all the sets tested are presented in Table 2. 

Results 

Figure 5 depicts the samples failure probability versus time for each 

adhesive/substrate couple at pH 1.  

The results are summarized in Table 2. The MTF ranges from 3.8 days (CI = 3.2 

days – 4.4 days) to 30.1 days (CI = 24.8 days – 36.5 days) depending on the 

adhesive/substrate couple. The MED4-4220/alumina couple offers the best 

adhesion with an MTF of 30.1 days. The MED4-4220/FR4 couple also has a high 

MTF (25.1 days with CI = 20.4 days – 30.9 days) but the Weibull shape parameter 

(β) is higher for MED4-4220/alumina (3.2) than for MED4-4220/FR4 (2.9). The 
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predicted MTF of the adhesive bonds at working temperature was estimated using 

an acceleration factor of 84 (Eq. (1)). The expected MTF at 37°C ranges from 

10.6 months (CI = 9 months – 12.3 months) to 7 years (5.8 years – 8.5 years) 

depending on the adhesive/substrate couple (see Table 3 for values extrapolated at 

37°C).  

Figure 6 compares the samples failure probability versus time for the MED4-

4220/alumina couple at pH 1 and pH 7, showing the impact of the acidity. The 

MTF value is 13.7 times lower at pH 1 (30.1 days) than at pH 7 (412.9 days).  

The standard 5 kg lap-shear test method was used to allow comparison with 

results from other studies. PEK Donaldson assessed the adhesive bond between 1-

part DC3140 and alumina at pH 4 and pH 7 [9]. We have calculated the MTFs 

and Weibull shape parameters from these published data and compared them to 

our results at pH 1. Figure 6 shows the influence of the acidic environment. The 

MTF values are respectively 94.1 at pH 7, 30.5 at pH 4 and 3.8 at pH 1 while the 

shape parameters are 5.5, 7.2 and 4.2, respectively. The MTF is thus 24.8 times 

lower at pH 1 than at pH 7 for the DC3140/alumina couple. This ratio is much 

higher than that of the MED4-4220/alumina couple (13.7 times lower at pH 1 than 

at pH 7; Fig. 6). Figure 6 also shows that the MTF is higher for the MED4-

4220/alumina couple than for the DC3140/alumina couple, both at pH 7 (4.4 times 

higher) and at pH 1 (7.9 times higher).  

Discussion 

Material selection for a gastric stimulator implant 

We have studied the long-term stability of the adhesive bond between several 

couples of substrate and adhesive in simulated gastric liquid. Two silicone rubbers 

were tested on typical implant substrates at worst-case stomach pH. The MED4-

4220/alumina couple offered the best adhesion with a MTF of 30 days at 100°C, 

resulting in a large predicted MTF at body temperature (7 years). The shape 

parameter was large and the cumulative failure probability for this couple reached 

10% at 17 days, meaning that there is only a 10 % chance that a sample will fail 

during the first 17 days. This corresponds to 3.9 years at 37°C, sufficient for a first 

implantable prototype (see Table 3 for values extrapolated at 37°C).  
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Comparison with gastric balloons 

Gastric balloons are interesting to compare to our gastric stimulators for at least 

two reasons: i) both devices aim to fight obesity (hence are competitors) and ii) 

both should resist the gastric environment (as discussed in the next section). 

Gastric balloons are typically used to fight obesity though with limited efficiency. 

Some of their major shortcomings include gastric ulceration, intolerance, 

difficulty in inflating or deflating the balloon, and spontaneous deflation of the 

balloon causing subsequent obstruction and complications during balloon 

withdrawal [4, 14, 32, 39]. Since some of these complications have been 

associated with prolonged gastric implantation times [4] [28], the manufacturers 

typically recommend removal of gastric balloons six months after implantation [4, 

14]. Therefore, the extrapolated MTF of 7 years and a 10th percentile at 3.9 years, 

reported in this paper, are sufficient to propose gastrostimulator implants as 

advantageous alternatives to gastric balloons.  

The role of lipids and compression forces in the degradation of 
silicone rubbers 

We used a commercial simulated gastric fluid in our tests. Its composition is 

proprietary but the manufacturer confirmed that it is a mix of hydrochloric acid 

and sodium chloride without lipids or enzymes. While this choice follows industry 

standards [24], the gastric implant will be in contact with various other substances 

present in the food ingested by the patient. Lipids, for instance, are known to alter 

the cohesive strength of silicone rubbers [34, 37]. Gastric balloons are typically 

made of silicone elastomer [13, 31]. One of their modes of failure is related to the 

gastric environment weakening the material [4, 16], which can lead to 

spontaneous deflation and resultant bowel obstruction [14]. This type of failure is 

related to the cohesive deterioration of the silicone elastomer while our study 

focuses on the adhesion between the silicone rubber and the substrate. The 

presence of lipids in the simulated gastric fluid would most certainly affect the 

bulk of the adhesive, resulting in cohesive failures, or right-censored events. 

However, cohesive strength is not a predictor of adhesive quality [7–9, 11]. 

Hence, while we cannot exclude that the lipids may also have an impact on the 

adhesive strength, we believe that the material selection method, and the results, 

presented here remain valid.  
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Furthermore, gastric balloons are also subject to compression forces (natural 

peristalsis) when the stomach attempts to move them downstream. These 

compression forces combined with the presence of lipids could lead to a 

premature failure of the silicone rubber. In the case of our device, because of its 

smaller size and way of anchoring to the stomach wall (see following section), 

such compressions are not applied to it. This also argues in favour of our device.  

Considerations for the manufacture of a gastric stimulator implant 

Our group is currently developing a gastric stimulator prototype (Fig. 7). Based on 

the results of this study, alumina was chosen for the substrate and MED4-4220 for 

the adhesive. The device’s physical design was conceived to permit anchoring by 

endoscopy. It is patented (Priority Date: 2009/05/08; Application number: 

PCT/EP2010/056378) and has been described elsewhere [25]. The electronic 

design and stimulation protocol are also described in [25].  

For our prototype, as for any implant using silicone rubber encapsulation, the 

adhesive bond degradation could be quicker than predicted for various reasons. 

When encapsulating in silicone rubber an implant that includes soldered 

components, the solder should also be considered. The adhesive bond to solder is 

generally weaker than to the substrates tested [12] and the presence of flux can 

drive corrosion. 

Cleanliness before encapsulation will also strongly influence the implant's lifetime 

[36]. Briefly, the cleaner the whole circuit and the substrate, the higher the 

osmotic gradient, should water vapour, which will rapidly permeate the 

encapsulation layer, find a condensation site. Liquid water formation would 

therefore be limited, and what would form would be highly resistive, hence 

limiting further loss of adhesion, and corrosion. 

On our prototypes, we used a water soluble flux and the devices, after population, 

were thoroughly cleaned. After a rapid rinse in deionized water to flush the water 

soluble flux, they were immersed for several minutes in chloroform while a visual 

inspection, under a microscope, was conducted to identify any residual flux. After 

drying in air, the samples were cleaned in iso-propanol, and finally in the alkaline 

solution described before. None of the cleaning stages were precisely timed as we 

relied on visual inspection of critical points to assess the efficacy of the procedure. 

Eventually, the samples were rinsed three times in deionized water before a final 
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rinse in flowing deionized water until the conductivity of the water flowing from 

the rinsing chamber reached an average value of 300 nS/cm. 

The presence of voids or air bubbles in the encapsulant may also negatively affect 

the implant's lifetime. Using the silicone rubber straight from the cartridge, 

without pre-processing, results in a surprisingly large number of small bubbles in 

the bulk of the silicone, as seen on the photograph of Fig. 8. Voids in the bulk of 

the silicone rubber, that are not in contact with the substrate or any part of the 

circuit, are not such a concern. If the substrate is thoroughly cleaned, the bubbles 

will become rapidly saturated with water vapour. Yet, as explained previously, 

even if some of it condenses, the osmotic gradient will drive it out of the bubble. 

Voids at the interface however are more troublesome as they decrease the overall 

surface area available for the silicone rubber to bond to the substrate. They also 

provide relatively large condensation sites for water vapour, where, if there is 

even minimal ionic contamination, the liquid water may support corrosion. 

In this respect, our tests samples were sub-optimal. This may have accelerated the 

failure rate, hence our results may underestimate the survival rate that could be 

achieved with bubble-free adhesive. We have adapted our method to prevent the 

formation of these voids and air bubbles in our prototypes. 

The MED4-4220 is degazed in a vacuum centrifuge for not more than 5 minutes 

at 25 mbar before being poured in the reservoir of the mould. After centrifugal 

casting during 2 to 5 minutes, the filled mould is cured in an oven during 2 hours 

minimum, sufficient to crosslink the silicone rubber. 

A final consideration when designing an implant is that the failure rate of 

electronic devices protected by silicone rubber encapsulation is proportional to the 

field-strength between exposed conductors. We have taken care, during the 

electronic design, to minimise these fields.  

Other applications in implanted devices 

Besides the direct benefit for gastric implants, our research also has implications 

for various other applications. Due to the current manufacturing bottleneck in 

implanted device protection (see introduction), silicone rubber encapsulation has 

recently received an increased interest [35, 36]. A manufacturing breakthrough is 

needed to enable technical applications requiring small dimensions and high 

reliability [18, 42]. Most of them fall into the area of electrical stimulation, one of 
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the fastest-growing areas of medicine, improving the lives of hundreds of 

thousands of patients with various disorders [23]. Visual prostheses are perhaps 

the most striking example with clear space constraints for which the current 

protection methods are not suitable [29]. 

Silicone rubber encapsulation offers a simple yet reliable way to protect implants. 

Using this method, prototypes using discrete components may be designed and 

developed rapidly. Besides prototypes, implants encapsulated with silicone rubber 

have been in use, in patients, for decades, demonstrating the suitability of the 

method for commercial production [2]. 

Conclusion 

We have presented a method to select a silicone rubber for the encapsulation of an 

electronics circuit to provide long-term protection for implantation. We have 

presented the event recording and failure analysis in depth. In this paper we have 

used the method to identify a suitable silicone rubber/substrate couple for the 

production of an implantable gastrostimulator.  

Compared to previous publications, this study is of major importance for two 

reasons. First, the samples were immersed in a pH equivalent to the stomach 

environment, which is lower than the acidity levels previously tested. Second, a 

new rubber was introduced and tested.  

This study shows that this promising technique is also suitable for devices 

operating in highly acidic environments. In particular, the combination of alumina 

with MED4-4220 may provide up to 3.9 years at body temperature with less than 

10% failed devices, hence is suitable for most gastrostimulator applications. This 

is of major importance in the fight against obesity as these implants could 

improve the well-being of obese patients during and after their medical 

intervention. Further work will include implanting stimulators in animal models to 

improve the endoscopic attachment method and assess the weight loss during 

stimulation at the pylorus. It will also include an analysis of the impact of various 

substances present in the food to complement the results presented here. 
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Figure captions 

Fig. 1 Sketches comparing examples of the encapsulation (a) and hermetic packaging (b) as 

methods of protecting an IC for human implantation  

Fig. 2 Two adherent pieces bonded with an adhesive layer of silicone rubber. The thickness is 500 

µm thickness and the area is 25.4 mm per 3 mm  

Fig. 3 Joining jig and its dimensions allowing the correct thickness of the adhesive layer 

Fig. 4 (a) Gamma function (b) Weibull distribution pdf with the same scale parameter and 

different shape parameters : squares are for beta = 10, mean = 9.5135, std = 1.1446, crosses are for 

beta = 4, mean = 9.064, std = 2.5429, triangles are for beta = 2, mean = 8.8623, std = 4.6325, 

circles are for beta = 1.1, mean = 9.6491, std = 8.7828 

Fig. 5 Weibull plots for the different couples tested at pH 1: asterisks are for DC3140/alumina, 

open circles are for DC3140/FR4, crosses are for MED4-4220/glass, squares are for 

DC3140/glass, triangles are for MED4-4220/FR4, closed circles are for MED4-4220/alumina  

Fig. 6 Influence of the acidic environment: asterisks are for DC3140/alumina at pH 1, closed 

circles are for MED4-4220/alumina at pH 1, triangles are for DC3140/alumina at pH 4, crosses are 

for DC3140/alumina at pH 7, squares are for MED4-4220/alumina at pH 7 

Fig. 7 Illustration of our first prototype of an encapsulated gastrostimulator 

Fig. 8 Illustration (optical photograph) of water bubbles between the substrate and the silicone 

after an adhesive failure (top view) 
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Tables 

Table 1. Main properties of DC3140 and MED4-4220 

 DC3140 MED4-4220 

Manufacturer Dow Corning Nusil 

Cure system Alkoxy Platinum 

Work time 25 min 25 min 

Mix ratio 1-part 2-part 1:1 

Cure time 72 h @ RT 15 min @ 150°C 

24 h @ RT 

Durometer Hardness Shore A 32 17 

Tensile modulus (MPa) 0.7  

Tensile strength (Mpa) 3.1 4.5 

Tear strength (kN/m) 3.6 5.3 

Uncured viscosity (mPa.s) 35950 20500 

 

  



Encapsulation for gastrostimulator  Page nr. 21 of 22 

21 

Table 2. Results (samples bathed at 100°C) 

 Scale 

parameter 

(η) [days] 

Shape 

parameter 

(β) [ ] 

MTF 

[days] 

Std of 

cdf 

[days] 

Pr<0.1 

[days] 

R 

[ ] 

P value 

[ ] 

DC3140/Al2O3  

(pH 1) 

4.1 4.2 3.8 1 2.4 0.83 48.44 

e-05 

DC3140/FR4  

(pH 1) 

9.7 3.2 8.7 2.9 4.8 0.86 7.09 

e-05 

DC3140/Glass  

(pH 1) 

16 2.6 14.2 5.9 6.7 0.97 3.53 

e-07 

MED4-4220/Al2O3  

(pH 1) 

33.6 3.2 30.1 10.3 16.6 0.93 5.44 

e-06 

MED4-4220/FR4  

(pH 1) 

28.1 2.9 25.1 9.3 13 0.98 2.31 

e-09 

MED4-4220/Glass  

(pH 1) 

9.4 10.4 9 1 7.6 0.94 4.37 

e-07 

DC3140/Al2O3 

(pH 4) 

32.5 7.2 30.5 5 23.8 0.91 57.21 

e-05 

DC3140/Al2O3 

(pH 7) 

101.9 5.5 94.1 19.8 67.6 0.94 20.05 

e-05 

MED4-4220/Al2O3 

(pH 7) 

451.4 1.4 412.9 305.3 87.1 0.95 4.57 

e-07 
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Table 3. Results at 100°C and extrapolated values at 37°C 

 Results at 100°C Extrapolated values at 37°C 

 MTF  

[days] 

Pr<0.1 

[days] 

MTF 

[years] 

Pr<0.1 

[years] 

DC3140/Al2O3  

(pH 1) 

3.8  2.4  0.9 0.6 

DC3140/Glass  

(pH 1) 

14.2  6.7  3.3  1.6  

DC3140/FR4  

(pH 1) 

8.7  4.8  2  1.1  

MED4-4220/Al2O3  

(pH 1) 

30.1  16.6  7  3.9  

MED4-4220/Glass  

(pH 1) 

9  7.6  2.1  1.8  

MED4-4220/FR4  

(pH 1) 

25.1  13  5.9  3  

DC3140/Al2O3 

(pH 4) 

30.5  23.8  7.1  5.6  

DC3140/Al2O3 

(pH 7) 

94.1  67.6  22  15.8  

MED4-4220/Al2O3 

(pH 7) 

412.9  87.1  96.3  20.3  
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