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1. Introduction

When working with compact pseudo-differential operators it is often important to
know how fast their singular values (or eigenvalues) decay. These properties are con-
veniently stated in terms of the classical Schatten–von Neumann classes Sp, p > 0, or
even more general ideals Sp,q, p, q > 0. We refer to [3,4,9,24] for information on compact
operator ideals.

The Schatten–von Neumann properties of pseudo-differential operators are often de-
termined by smoothness of their symbols. The first bound in the trace class S1 was
obtained in [23], and later reproduced in [22, Proposition 27.3], and [18, Theorem II-49],
see also [13]. Some useful S1-bounds were obtained in the much more recent paper [21].
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More general ideals including Sp were studied e.g. in [1,6,7,10,11,19], and there one can
find further references. The fundamental paper [3] contains Sp,q-estimates for integral
operators in terms of smoothness of their kernels.

In spite of a relatively large number of available results, they are not always practi-
cally useful since in applications one often needs more detailed information. In this paper
we obtain some explicit bounds for Schatten–von Neumann norms of various pseudo-
differential operators aiming at applications in semi-classical analysis. Let p = p(x,y, ξ),
x,y, ξ ∈ R

d, d � 1, be a smooth amplitude. For any α > 0 introduce the standard
notation for the pseudo-differential operator with amplitude p:

(
Opa

α(p)
)
u(x) =

(
α

2π

)d¨
eiα(x−y)ξp(x,y, ξ)u(y) dy dξ, (1.1)

for any Schwartz class function u. In the literature one uses more often the reciprocal
value α−1 which is interpreted as the Planck constant. It is natural for us to study a
somewhat more general variant of the operator (1.1). Let T = {tjk} be a non-degenerate
(2 × 2)-matrix with real-valued entries. We concentrate on the operators

{
Opa

α(pT), pT(x,y, ξ) = p(w, z, ξ),

with w = t11x + t12y, z = t21x + t22y.
(1.2)

This choice of the amplitude allows us to derive bounds for various standard quantiza-
tions of pseudo-differential operators. For a smooth symbol a = a(x, ξ) and a number
t ∈ [0, 1] we define the t-quantization as the pseudo-differential operator

(
Opα,t(a)u

)
(x) =

(
α

2π

)d¨
eiα(x−y)·ξa

(
(1 − t)x + ty, ξ

)
u(y) dy dξ, (1.3)

for any Schwartz class function u, see e.g. [18, Chapter 2, §4], [6] or [27]. It is clear that
this operator can be written as

Opα,t(a) = Opa
α(pT), with p(w, z, ξ) = a(w, ξ), T =

(
1 − t t

−1 1

)
. (1.4)

In this formula the choice of the second row in the matrix T is unimportant as long as T
remains non-degenerate. Note also that formally (Opα,t(a))∗ = Opα,1−t(a). The values
t = 0 and t = 1 give the standard “left”, or Kohn–Nirenberg, and “right” quantizations.
In these cases the operator (1.3) has the symbol a(x, ξ) (for t = 0) or a(y, ξ) (for
t = 1). In the literature one sometimes uses for them the notation Opl

α(a) and Opr
α(a)

respectively. Another important example is the Weyl quantization:

OpW
α (a) = Opα, 1 (a),
2
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which has the advantage that x and y enter the definition (1.3) symmetrically. If the
symbol a depends only on ξ then the operators (1.3) for different values of t coincide
with each other and we write simply Opα(a).

If the functions p and a above are sufficiently smooth and decay sufficiently fast at
infinity then the operators (1.2) and (1.3) belong to Sq with a suitable q > 0. The aim of
the paper is to study this property for q ∈ (0, 1]. Our results are divided in three groups.
First in Section 2 we obtain general estimates in Sq for α = 1, see Theorems 2.5 and 2.6.
The Sq-bounds for the operators (1.2) seem to be quite useful from the practical point
of view. In particular they allow us to study the operators of the form h1 Op1,t(a)h2,
t ∈ [0, 1] with the weights h1, h2 whose supports are disjoint, and to control explicitly the
dependence on the distance between the supports, see Theorem 2.6(2). Our approach
stems from a simple idea suggested in the paper [21] where trace class properties of
pseudo-differential operators were studied. In fact, our results can be viewed as quanti-
tative variants of Proposition 3.2 and Theorem 3.5 from [21], extended to the ideals Sq,
q � 1. As the classes Sq with q < 1 are not normed, the obtained Sq-estimates for
the operators (1.2) and (1.3) involve the so-called lattice quasi-norms (see (2.3)) for
the amplitudes/symbols and their derivatives (for q = 1 these quasi-norms are simply
L1-integral norms). The estimates in Sq with q > 1 are also of great interest, but they
are likely to be stated in different terms, cf. [1,6,27], and thus they are not discussed
here.

Sections 3 and 4 are devoted to applications. In Section 3 we use Theorems 2.5
and 2.6 to derive estimates for large values of the parameter α, which can be inter-
preted as the semi-classical regime. These results are stated in terms of the scaling
properties of the symbols which makes them flexible and convenient for applications.
Section 4 is concerned with semi-classical bounds for operators with discontinuous sym-
bols. We emphasize that the term “discontinuous symbol” is not understood literally:
we are interested in operators with smooth symbols a sandwiched between character-
istic functions χΛ(x) and χΩ(ξ) of some Lipschitz domains Λ and Ω. Precisely, we
derive Sq-semi-classical estimates for the Hankel-type operators χΛ Opα,t(a)(I − χΛ)
and χΛPΩ,α(I − χΛ), PΩ,α = Opα(χΩ), with a smooth symbol a. This study is moti-
vated by the trace asymptotics for Wiener–Hopf and Hankel operators, both classical,
see e.g. [16,28], and multi-dimensional, see [26,25]. The Schatten–von Neumann prop-
erties of classical Wiener–Hopf operators were also studied e.g. in [17]. Certain types
of Toeplitz and Hankel operators were considered in [2,15]. In the literature one also
finds results on the Schatten–von Neumann properties of the operators Opα,t(a) with
genuinely discontinuous symbols a. An interesting special case of such a symbol is the
characteristic function of a domain in R

d ×R
d. These issues are beyond the scope of the

present paper, and we refer to [10] and also to more recent paper [27] where one can find
further references.

A number of estimates similar to the ones in Sections 3 and 4 have been established
in [26] for the trace class S1. However some applications in Mathematical Physics, and
in particular in Quantum Information Theory, call for estimates in the classes of compact
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operators with a faster decay of the singular values, see [8,12]. This was the main incentive
for the current paper.

To conclude the Introduction we make some notational conventions. Throughout the
paper we denote by C or c with or without indices various positive constants whose value
is unimportant. The notation B(u, r) is used for the open ball in Rd, d � 1, of radius
r > 0 centred at the point u ∈ R

d. The characteristic function of the ball B(u, r) is
denoted by χu,r.

2. General estimates in Sq-ideals with q ∈ (0, 1]: smooth symbols

2.1. Ideals Sq

The notation Sq, q > 0, is standard for the set of all compact operators A on a Hilbert
space with singular values sk(A), k = 1, 2, . . . , for which the functional

‖A‖Sq
=

( ∞∑
k=1

sk(A)q
) 1

q

is finite. For q � 1 this functional defines a natural norm on Sq, whereas for q < 1 it
defines a quasi-norm. Nevertheless one has the triangle inequality of the form

‖A1 + A2‖qSq
� ‖A1‖qSq

+ ‖A2‖qSq
, 0 < q � 1, (2.1)

see [20] and [4, p. 262], and the following Hölder-type inequality:

‖A1A2‖Sq
� ‖A1‖Sq1

‖A2‖Sq2
, q−1 = q−1

1 + q−1
2 , 0 < q1, q2 � ∞, (2.2)

see [4, p. 262].
A crucial technical point in the study of the operators (1.2) is to estimate suitable

Sq-(quasi)-norms for the operators hOp1(a), h = h(x), a = a(ξ), which have been
studied quite extensively. We need the following estimate which is a slight generalization
of the bound found in [3, Theorem 11.1] (see also [5, Section 5.8]), and quoted in [24,
Theorem 4.5] for s ∈ [1, 2].

Let Cu ⊂ R
m be a cube centred at u ∈ R

m with the edge of unit length. For a function
h ∈ Lr

loc(Rm), r ∈ (0,∞), denote

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h r,δ =
[ ∑

n∈Zd

( ˆ

Cn

∣∣h(x)
∣∣r dx) δ

r
] 1

δ

, 0 < δ < ∞,

h r,∞ = sup
u∈Rd

( ˆ ∣∣h(x)
∣∣r dx) 1

r

, δ = ∞.

(2.3)
Cu
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These functionals are sometimes called lattice quasi-norms (norms for r, δ � 1). If
h r,δ < ∞ we say that h ∈ lδ(Lr)(Rm).

Proposition 2.1. Suppose that f ∈ lq(L2)(Rn) and g ∈ lq(L2)(Rm), with some q ∈ (0, 2].
Let K : L2(Rm) → L2(Rn) be the operator with the kernel

f(x)eix·Syg(y), x ∈ R
n, y ∈ R

m,

where S : Rm → R
n is a linear map. Then

‖K‖Sq
� Cq f 2,q g 2,q,

with a constant Cq = Cq(S) depending only on the number s0 in the bound maxjk |sjk| �
s0 for the entries sjk, j = 1, 2, . . . , n; k = 1, 2, . . . ,m, of the matrix S.

We do not give the proof as it repeats that of [3, Theorem 11.1] almost word for word.

2.2. Estimates for the operators (1.2)

Now we need to specify the conditions on the matrix T = {tjk}, j, k = 1, 2. The end
results require T to be non-degenerate, i.e. T ∈ GL(2,R). For convenience we sometimes
assume that

t11 + t12 = 1, (2.4)

and denote

τ = t21 + t22. (2.5)

Using the inverse of T, we can recover x and y from the vectors w and z defined in (1.2):
{

(detT)x = t22w − t12z, (detT)y = −t21w + t11z,

so (detT)(x − y) = τw − z.
(2.6)

We assume that

max
jk

|tjk| � t0, |detT| � δ0, (2.7)

with some fixed positive numbers t0, δ0. In the estimates below the constants may be
dependent on t0 and δ0. We provide appropriate comments in every instance.

Assuming that p(·,·, ξ) ∈ L1(R2d), introduce the “double” Fourier transform:

p̂(η,μ, ξ) = 1
(2π)d

¨
e−iw·η−iz·μp(w, z, ξ) dw dz.
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Lemma 2.2. Let T be an arbitrary (2 × 2)-matrix with real-valued entries. Suppose that
p(·,·, ξ) ∈ L1(R2d) for a.e. ξ ∈ R

d. Let h1, h2 ∈ l2q(L2)(Rd), and let p̂ ∈ lq(L1)(R3d) with
some q ∈ (0, 1]. Then the operator h1 Opa

1(pT)h2 belongs to Sq and
∥∥h1 Opa

1(pT)h2
∥∥
Sq

� Cq h1 2,2q h2 2,2q p̂ 1,q, (2.8)

with a constant Cq = Cq(t0).

Proof. Represent the amplitude a via its Fourier transform

p(w, z, ξ) = 1
(2π)d

¨
eiz·η+iw·μp̂(η,μ, ξ) dη dμ,

and rewrite A = h1 Opa
1(pT)h2 as follows:

A = B1B
∗
2 ,

where Bj : L2(R3d) → L2(Rd), j = 1, 2, are the operators with the kernels

b1(x;η,μ, ξ) = 1
(2π)dh1(x)eix·(ξ+t11η+t21μ)p̂(η,μ, ξ) 1

2 ,

b2(x;η,μ, ξ) = 1
(2π)dh2(x)eix·(ξ−t12η−t22μ)∣∣p̂(η,μ, ξ)∣∣ 1

2 ,

where z1/2 = z|z|−1/2 for any z �= 0. By Proposition 2.1,

‖Bj‖S2q � Cq(t0) |p̂|1/2 2,2q hj 2,2q, j = 1, 2.

Now (2.8) follows from (2.2). �
It is usually more convenient to write Sq-estimates in terms of the amplitudes them-

selves, and not their Fourier transforms. For m,n = 0, 1, . . . , let

Pn,m(w, z, ξ; p) = 1
1 + |z − τw|m

n∑
n1,n2=0

m∑
l=0

∣∣∇n1
w ∇n2

z ∇l
ξp(w, z, ξ)

∣∣, (2.9)

Qn,m(ξ; p) =
¨

Pn,m(w, z, ξ) dw dz. (2.10)

The parameter τ is defined in (2.5).

Corollary 2.3. Let the matrix T and the functions h1, h2 be as in Lemma 2.2, and let p
be such that Qn,m(p) ∈ lq(L1)(Rd) with some q ∈ (0, 1], and

n =
[
dq−1] + 1. (2.11)



5892 A.V. Sobolev / Journal of Functional Analysis 266 (2014) 5886–5911
Then
∥∥h1 Opa

1(pT)h2
∥∥
Sq

� Cq h1 2,2q h2 2,2q Qn,0(p) 1,q, (2.12)

with a constant Cq = Cq(t0).

Proof. Integrating by parts, we get

∣∣p̂(η,μ, ξ)∣∣ � C(n)
(
1 + |η|

)−n(1 + |μ|
)−n

n∑
n1,n2=0

¨ ∣∣∇n1
w ∇n2

z p(w, z, ξ)
∣∣ dw dz.

For n = [dq−1] + 1 the function on the right-hand side belongs to lq(L1)(R3d), and its
quasi-norm (2.3) does not exceed C Qn,0(p) 1,q. Now (2.12) follows from Lemma 2.2. �
Lemma 2.4. Suppose that T ∈ GL(2,R) satisfies (2.4). Let h1, h2 be as in Lemma 2.2,
and let p be such that Qn,m(p) ∈ lq(L1)(Rd) with some q ∈ (0, 1], with n satisfying (2.11),
and some m = 0, 1, . . . . Then

∥∥h1 Opa
1(pT)h2

∥∥
Sq

� Cq h1 2,2q h2 2,2q Qn,m(p) 1,q, (2.13)

with a constant Cq = Cq(t0).

Proof. Let

P(±)
x =

(
1 ± i(detT)2x · ∇ξ

)(
1 + (detT)2|x|2

)−1
.

Clearly, P(−)
x eiξ·x = eiξ·x, so integrating by parts m times, we get the following formula

for the kernel of the operator Opa
1(pT):

1
(2π)d

ˆ
eiξ·(x−y)p

(m)
T (x,y, ξ) dξ,

with

p
(m)
T (x,y, ξ) =

(
P

(+)
x−y

)m
pT(x,y, ξ),

so by (2.6)

p(m)(w, z, ξ) =
(
1 + |τw − z|2

)−m(
1 + i(detT)(τw − z) · ∇ξ

)m
p(w, z, ξ).

Now it is straightforward to see that

Pn,0
(
w, z, ξ; p(m)) � C(t0)Pn,m(w, z, ξ; p).

By Corollary 2.3 this implies the proclaimed result. �
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In the next theorem we replace the (2, 2q)-quasi-norms of functions h1, h2 by much
weaker ones.

Theorem 2.5. Suppose that T ∈ GL(2,R) satisfies (2.4). Let h1, h2 ∈ l∞(L2)(Rd), and
let p be such that Pn,m ∈ lq(L1)(R3d) with some q ∈ (0, 1], with n satisfying (2.11) and
some m = 0, 1, . . . . Then

∥∥h1 Opa
1(pT)h2

∥∥
Sq

� Cq,m h1 2,∞ h2 2,∞ Pn,m(p) 1,q, (2.14)

with a constant Cq,m = Cq,m(t0, δ0) depending on t0 and δ0.

Proof. Let us define a convenient partition of unity. The open balls B(j, 2
√
d ), j ∈ Z

d,
form a covering of Rd. Let {ψj} be an associated partition of unity such that

∣∣∇k
xψj(x)

∣∣ � Ck, k = 0, 1, . . . , (2.15)

uniformly in j ∈ Z
d. Let us consider the operator Opa

1(p
(j,s)
T ) with the amplitude

p(j,s)(w, z, ξ) = ψj(w)ψs(z)p(w, z, ξ).

Since w ∈ B(j, 2
√
d ), z ∈ B(s, 2

√
d ), we have

x ∈ B(l, R), y ∈ B(n, R), with R = 4t0
√
d

δ0
,

l = t22j − t21s
detT , n = −t21j + t11s

detT ,

see (2.6). Consequently

h1 Opa
1
(
p
(j,s)
T

)
h2 = h1χl,R Opa

1
(
p
(j,s)
T

)
h2χn,R,

and hence by Lemma 2.4,

∥∥h1 Opa
1
(
p
(j,s)
T

)
h2

∥∥
Sq

� Cq h1χl,R 2,2q h2χn,R 2,2q Qn,m

(
p(j,s))

1,q.

The first two factors are estimated by C h1 2,∞ and C h2 2,∞ respectively, with some
constant C = C(t0, δ0). Thus by the triangle inequality (2.1)

∥∥h1 Opa
1(pT)h2

∥∥q
Sq

�
∑
j,s

∥∥h1 Opa
1
(
p
(j,s)
T

)
h2

∥∥q
Sq

� Cq h1
q
2,∞ h2

q
2,∞

∑
Qn,m

(
p(j,s)) q

1,q.

j,s
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Remembering that the number of intersecting balls B(j, 2
√
d ) is uniformly bounded,

we can estimate the sum on the right-hand side by C̃ Pn,m(p) q
1,q. This completes the

proof. �
2.3. Estimates for the operators (1.3)

Theorem 2.5 allows amplitudes independent of z, e.g. it allows one to consider
t-pseudo-differential operators (1.3). We isolate this observation in a separate theorem.
For a symbol a = a(x, ξ) denote

F ◦
n,m(w, ξ; a) =

n∑
k=0

∣∣∇k
w∇m

ξ a(w, ξ)
∣∣,

Fn,m(w, ξ; a) =
m∑
l=0

F ◦
n,l(w, ξ; a), n,m = 0, 1, . . . . (2.16)

The constants in the next theorem are independent of t ∈ [0, 1].

Theorem 2.6. Let h1, h2 ∈ l∞(L2)(Rd), let n be as in (2.11), and q ∈ (0, 1].

(1) Suppose that Fn,n(a) ∈ lq(L1)(R2d). Then for any t ∈ [0, 1] we have

∥∥h1 Op1,t(a)h2
∥∥
Sq

� Cq h1 2,∞ h2 2,∞ Fn,n(a) 1,q. (2.17)

(2) Suppose that the distance between the supports of the functions h1, h2 is at least
r � 1. If F ◦

n,m(a) ∈ lq(L1)(R2d), m � n, then for any t ∈ [0, 1] we have

∥∥h1 Op1,t(a)h2
∥∥
Sq

� Cq,mr
d
q−m h1 2,∞ h2 2,∞ F ◦

n,m(a) 1,q. (2.18)

Proof. Use Theorem 2.5 with p(w, z, ξ) = a(w, ξ) and the matrix

T =
(

1 − t t

−1 1

)
, (2.19)

so that τ = 0, see (2.5). By definitions (2.9) and (2.16),

Pn,m(w, z, ξ; p) � Fn,m(w, ξ; a)
1 + |z|m .

To estimate Pn,m(p) 1,q write for any k, s, j ∈ Z
d:

ˆ ˆ ˆ
Pn,m(w, z, ξ; p) dw dz dξ � C

1
1 + |s|m

ˆ ˆ
Fn,m(w, ξ; a) dw dξ.
Ck Cs Cj Ck Cj
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Consequently,

Pn,m(p) q
1,q � C Fn,m(a) q

1,q

∑
s∈Zd

1
1 + |s|mq

� C ′ Fn,m(a) q
1,q.

Here we have used the fact that mq � nq > d. Now Theorem 2.5 with m = n im-
plies (2.17).

Proof of (2.18). Let ζ ∈ C∞(R) be a function such that 0 � ζ � 1 and

ζ(u) =
{

1, |u| � 1;

0, |u| � 1
2 .

(2.20)

Note that

h1 Op1,t(a)h2 = h1 Opa
1(gT)h2, g(w, z, ξ) = ζ

(
|z|r−1)a(w, ξ),

where the matrix T is defined as in (2.19). We use Theorem 2.5 again but in a slightly
different way than above – first we implement integration by parts similar to the one
done in the proof of Lemma 2.4. Let P(±)

z = (±iz ·∇ξ)|z|−2. Clearly, P(+)
z e−iξ·z = e−iξ·z,

so, integrating by parts m times, we get the following formula for the kernel of the
operator Opa

1(gT):

1
(2π)d

ˆ
eiξ·(x−y)g

(m)
T (x,y, ξ) dξ,

with

g(m)(w, z, ξ) =
(
P(−)

z
)m

g(w, z, ξ).

It is straightforward to see that

Pn,0
(
w, z, ξ; g(m)) � C

F ◦
n,m(w, ξ; a)
rm + |z|m ,

with a constant independent of r. Arguing as in the first part of the proof we get the
bound

Pn,0
(
g(m)) q

1,q � C F ◦
n,m(a) q

1,q

∑
s∈Zd

1
rmq + |s|mq

� C ′ F ◦
n,m(a) q

1,qr
d−mq.

Theorem 2.5 with m � n leads to (2.18). �
As the next theorem shows, in the case d = 1, when h1 and h2 have disjoint supports,

one can sometimes allow symbols a depending only on ξ. Here and below we use x and
ξ for one-dimensional variables.
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Theorem 2.7. Let h1, h2 ∈ l∞(L2)(R) be two functions such that

h1(x) = 0, a.e. x > −r

2 , h2(x) = 0, a.e. x <
r

2 ,

with some r � 1. Let q ∈ (0, 1] be some number, and let n = [q−1] + 1. Suppose that
a = a(ξ) satisfies the condition ∂ma ∈ lq(L1)(R), for some m � n. Then we have

∥∥h1 Op1(a)h2
∥∥
Sq

� Cq,mr
1
q−m h1 2,∞ h2 2,∞ ∂ma 1,q. (2.21)

Proof. As in the proof of the previous theorem,

h1 Op1(a)h2 = h1 Opa
1(g)h2, g(x, y, ξ) = ζ

(
|x− y|r−1)a(ξ),

where ζ is as defined in (2.20). Furthermore, integrating by parts m times we get the
following formula for the kernel:

1
2π

ˆ
eiξ(x−y)g(m)(x, y, ξ) dξ, g(m)(x, y, ξ) = im

∂ma(ξ)
(x− y)m .

By definition of h1, h2 we obtain

Pn,0
(
x, y, ξ; g(m)) � C

|∂ma(ξ)|
|x|m + |y|m + rm

.

Since m � n = [q−1]+1, the right-hand side belongs to lq(L1)(R3), and the quasi-norm is
bounded from above by ∂ma 1,q. Now the estimate (2.21) follows from Theorem 2.5. �
2.4. Trace-class estimates

For q = 1 the lattice quasi-norms in Theorems 2.5 and 2.6 coincide with the standard
L1-norms. Due to the relative simplicity of these bounds it seems appropriate to write
them out separately. Moreover making the change αξ = ξ′ we can immediately extend
them to all values α � 1:

Theorem 2.8. Suppose that T ∈ GL(2,R) satisfies (2.4). Let h1, h2 ∈ l∞(L2)(Rd), and
Pd+1,m ∈ L1(R3d), with some m = 0, 1, . . . . Then for any α � 1 we have

∥∥h1 Opa
α(pT)h2

∥∥
S1

� Cmαd h1 2,∞ h2 2,∞

×
d+1∑

n1,n2=0

m∑
l=0

˚ |∇n1
w ∇n2

z ∇l
ξp(w, z, ξ)|

1 + |τw − z|m dw dz dξ, (2.22)

with a constant Cm = Cm(t0, δ0).
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Theorem 2.9. Let h1, h2 ∈ l∞(L2)(Rd), and α � 1.

(1) Suppose that Fd+1,d+1(a) ∈ L1(R2d). Then for any t ∈ [0, 1] we have
∥∥h1 Opα,t(a)h2

∥∥
S1

� Cαd h1 2,∞ h2 2,∞

×
d+1∑
k,l=0

¨ ∣∣∇k
w∇l

ξa(w, ξ)
∣∣ dw dξ. (2.23)

(2) Suppose that the distance between the supports of the functions h1, h2 is at least
r � 1. If F ◦

d+1,m(a) ∈ L1(R2d), m � d + 1, then for any t ∈ [0, 1] we have

∥∥h1 Opα,t(a)h2
∥∥
S1

� Cm(αr)d−m h1 2,∞ h2 2,∞

d+1∑
k=0

¨ ∣∣∇k
w∇m

ξ a(w, ξ)
∣∣ dw dξ.

The constants C and Cm do not depend on t ∈ [0, 1].

For T = I and t = 0, 1 the above estimates were obtained in [26].
An estimate similar to (2.22) can be found in [21, Theorem 3.5]. The estimate (2.23)

for h1 = h2 = 1, t = 0 (with larger number of derivatives) has been known since [23].

3. Semi-classical estimates

3.1. Compactly supported amplitudes/symbols

Now we proceed to estimates for arbitrary q ∈ (0, 1] for the operators containing the
parameter α > 0. Due to the nature of the bounds derived in the previous section we
do not expect the semi-classical bounds to look as simple as in Theorems 2.8 and 2.9.
Thus we do not try to find integral bounds but instead we concentrate on the scaling
properties of the Sq-estimates. For arbitrary numbers 
 > 0 and ρ > 0 introduce the
following norms:

N(n1,n2,m)(p; 
, ρ) = max sup
w,z,ξ


n+kρr
∣∣∇n

w∇k
z∇r

ξp(w, z, ξ)
∣∣, (3.1)

where the maximum is taken over all 0 � n � n1, 0 � k � n2 and 0 � r � m. We say
that p belongs to the class S(n1,n2,m) if the norm (3.1) is finite for some (and hence for
all) positive 
, ρ. For a symbol a = a(w, ξ) (resp. function a = a(ξ)) we use the notation
N(n,m)(a; 
, ρ) (resp. N(m)(a; ρ)). Accordingly, we define classes S(n,m) and S(m). The
presence of the parameters 
, ρ allows one to consider amplitudes and symbols with
different scaling properties.

Let U� be the unitary operator on L2(Rd) defined by

(U�u)(x) = 

d
2 u(
x).
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Then a straightforward calculation gives for any 
, ρ > 0 the following unitary equiva-
lence:

U� Opa
α(pT)U−1

� = Opa
β

(
p
(�,ρ)
T

)
, p(�,ρ)(w, z, ξ) = p(
w, 
z, ρξ), β = α
ρ. (3.2)

The norms (3.1) are also invariant:

N(n1,n2,m)(p; 
, ρ) = N(n1,n2,m)(p(�1,ρ1); 

−1
1 , ρρ−1

1
)
, (3.3)

for arbitrary positive 
, 
1, ρ, ρ1.
The operators Opa

α(pT) transform in a standard way under Euclidean isometries (i.e.
orthogonal transformations and shifts), their norms (3.1) remain invariant. We use these
facts regularly without introducing formal notation for these transformations.

All the Sq-bounds below will be derived under the following conditions on the ampli-
tudes or symbols. For the operator Opa

α(pT) we assume that

the support of p = p(w, z, ξ) is contained in B(u, 
) × R
d ×B(μ, ρ), (3.4)

with some u,μ ∈ R
d and some 
 > 0, ρ > 0. For the t-operators Opα,t(a) we assume

that

the support of a = a(w, ξ) is contained in B(u, 
) ×B(μ, ρ). (3.5)

In what follows most of the bounds are obtained under the assumption that α
ρ � 
0
with some fixed positive number 
0. The constants featuring in all the estimates below
are independent of the symbols involved as well as of the parameters u,μ, α, 
, ρ but may
depend on the constant 
0.

Theorem 3.1. Let T ∈ GL(2,R) be a matrix satisfying (2.4), and let s, t ∈ [0, 1]. Let
q ∈ (0, 1] and α
ρ � 
0. Let p ∈ S(n,n,n), with n defined in (2.11), be an amplitude
satisfying the condition (3.4), and let a ∈ S(n,n) be a symbol satisfying the condition (3.5).
Then Opa

α(pT) ∈ Sq, Opα,t(a) ∈ Sq, and

∥∥Opa
α(pT)

∥∥
Sq

� Cq(α
ρ)
d
q N(n,n,n)(p; 
, ρ), (3.6)

with a constant Cq = Cq(t0, δ0) (see (2.7)), and

∥∥Opα,t(a)
∥∥
Sq

� Cq(α
ρ)
d
q N(n,n)(a; 
, ρ), (3.7)

with a constant Cq independent of t. If, in addition a ∈ S(n,n+1) then

∥∥Opα,t(a) − Opα,s(a)
∥∥
Sq

� Cq(α
ρ)
d
q−1N(n,n+1)(a; 
, ρ), (3.8)

with a constant Cq independent of s, t.
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Proof. The estimate (3.7) is a special case of (3.6) with the matrix T defined in (1.4).
Without loss of generality we may assume that u = μ = 0. Furthermore, using (3.3)

and (3.2) with 
1 = (αρ)−1, ρ1 = ρ, we see that it suffices to prove the sought inequalities
for α = 1, ρ = 1 and arbitrary 
 � 
0 with a fixed 
0 > 0.

Proof of (3.6). We use Theorem 2.5 with h1 = h2 = 1 and m = n. Assume without
loss of generality that N(n,n,n)(p; 
, 1) = 1. As 
 � 
0, we have

Pn,n(w, z, ξ; p) � C
χ0,�(w)χ0,1(ξ)
1 + |τw − z|n ,

and hence, for any k, s, j ∈ Z
d we have

ˆ

Ck

ˆ

Cs

ˆ

Cj

Pn,n(w, z, ξ; p) dw dz dξ � C
χ0,R�(j)χ0,2

√
d(k)

1 + |τ j − s|n ,

where R = R(
0) = 
−1
0

√
d + 1. As a consequence,

Pn,m(p) 1,q � C

( ∑
|j|�R�

∑
s

1
1 + |τ j − s|nq

) 1
q

� C

d
q , C = C(
0),

as n = [dq−1] + 1 > dq−1. This leads to (3.6).
Proof of (3.8). We use Theorem 2.5 with h1 = h2 = 1 and m = n + 1. Without loss

of generality assume temporarily that N(n,n+1)(a) = 1. Rewrite the difference on the
left-hand side of (3.8) in the form

Opα,t(a) − Opα,s(a) = Opa
α(gS),

with g(w, z) = a(w, ξ) − a(z, ξ) and the matrix

S =
(

1 − t t

1 − s s

)
.

Note that detS = s− t, and assume that |s− t| � 1/4. For all n1, n2 � n, l � n + 1 we
have

∣∣∇n1
w ∇n2

z ∇l
ξg(w, z, ξ)

∣∣ � 
−n1−n2
(
χ0,�(w) + χ0,�(z)

)
χ0,1(ξ),∣∣∇l

ξg(w, z, ξ)
∣∣ � 
−1|w − z|

(
χ0,�(w) + χ0,�(z)

)
χ0,1(ξ).

Therefore

Pn,n+1(w, z, ξ; g) � C
−1 (χ0,�(w) + χ0,�(z))χ0,1(ξ)
n

.
1 + |w − z|
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Arguing as in the first part of the proof we arrive at the estimate

Pn,n+1(g) 1,q � C

d
q−1, C = C(
0),

which implies (3.8) by virtue of Theorem 2.5. As we have assumed that |detS| � 1/4,
the constant in (3.8) does not depend on s, t.

If |s−t| < 1/4, then we choose a number u ∈ [0, 1] such that |s−u| � 1/4, |t−u| � 1/4,
apply the estimate obtained in the first part of the proof to Opα,s(a) − Opα,u(a) and
Opα,t(a) − Opα,u(a), and use the triangle inequality (2.1). �
Theorem 3.2. Let q ∈ (0, 1], α
ρ � 
0 and R � 
. Let h1, h2 ∈ L∞(Rd) be two functions
such that the distance between their supports is at least R. Let a ∈ S(n,m),m � n, be a
symbol satisfying the condition (3.5). Then for any t ∈ [0, 1] we have

∥∥h1 Opα,t(a)h2
∥∥
Sq

� Cq,m‖h1‖L∞‖h2‖L∞(αRρ)
d
q−mN(n,m)(a; 
, ρ),

with a constant Cq,m independent of t.

Proof. Using (3.3) and (3.2) with 
1 = 
, ρ1 = (α
)−1, we see that it suffices to prove the
sought inequality for α = 1, 
 = 1, and arbitrary ρ � 
0 and R � 1. Again, without loss
of generality assume that u = μ = 0, ‖h1‖L∞ = ‖h2‖L∞ = 1, and N(n,m)(a; 1, ρ) = 1.
Use Theorem 2.6(2) with r = R. It is straightforward to see that

F ◦
n,m(w, ξ; a) � Cχ0,1(w)χ0,ρ(ξ)ρ−m,

see (2.16) for definition, so that

F ◦
n,m(a) q

1,q � Cqρ
d−mq.

By (2.12),
∥∥h1 Op1,t(a)h2

∥∥
Sq

� Cq(Rρ)
d
q−m,

which leads to the sought estimate. �
3.2. Symbols with non-compact support

Here we illustrate the use of the obtained estimates and derive a semi-classical bound
for the t-pseudo-differential operators whose symbols are not necessarily compactly sup-
ported. Suppose that for some constant A > 0, and some number q ∈ (0, 1] the symbol a
satisfies the bound

max
0�k�n
0�l�n

∣∣∇k
w∇l

ξa(w, ξ)
∣∣ � A

(
1 + |w|

)−γ1(1 + |ξ|
)−γ2

, γ1, γ2 > dq−1, (3.9)

where n is as in (2.11).
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Theorem 3.3. Let the symbol a satisfy (3.9), and let q ∈ (0, 1]. Then

∥∥Opα,t(a)
∥∥
Sq

� CqAα
d
q ,

with a constant Cq independent of t ∈ [0, 1].

Proof. As in the proof of Theorem 2.5 cover R
d with open balls B(j, 2

√
d ), j ∈ Z

d. Let
ψj ∈ C∞

0 (Rd), j ∈ Z
d, be an associated partition of unity satisfying (2.15). Consider the

symbols

a(j,s)(w, ξ) = ψj(w)ψs(ξ)a(w, ξ).

These symbols are compactly supported and

N(n,n)(a(j,s); 1, 1
)
� CA

(
1 + |j|

)−γ1(1 + |s|
)−γ2

.

By (3.7),

∥∥Opα,t

(
a(j,s))∥∥q

Sq
� CAqαd

(
1 + |j|

)−γ1q(1 + |s|
)−γ2q

.

By the triangle inequality (2.1) we have

∥∥Opα,t(a)
∥∥q
Sq

� CAqαd
∑

j,s∈Zd

(
1 + |j|

)−γ1q(1 + |s|
)−γ2q � C ′Aqαd,

as claimed. �
4. Estimates for operators with non-smooth symbols

4.1. Admissible domains

Here we obtain Sq-estimates for operators with symbols having jump discontinuities.
The discontinuities are introduced via the projections χΛ and/or PΩ,α = Opα(χΩ) where
Λ and Ω are some suitable domains whose properties are specified in the next definition.

Definition 4.1. Let d � 2. We say that Λ ⊂ R
d is a basic domain if there exists a

Lipschitz function Φ = Φ(x̂), x̂ ∈ R
d−1, such that with a suitable choice of the Cartesian

coordinates x = (x̂, xd), x̂ = (x1, x2, . . . , xd−1) the domain Λ is represented as

Λ =
{
x ∈ R

d: xd > Φ(x̂)
}
. (4.1)

It is assumed that the function Φ is uniformly Lipschitz, i.e. the constant
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M = MΦ = sup
x̂,ŷ,
x̂ �=ŷ

|Φ(x̂) − Φ(ŷ)|
|x̂ − ŷ| (4.2)

is finite. In this case we use the notation Λ = Γ (Φ). A domain Λ is said to be admissible
if locally it can be represented by basic domains, i.e. for any z ∈ R

d there is a radius
r > 0 such that B(z, r) ∩ Λ = B(z, r) ∩ Λ0 with some basic domain Λ0 = Λ0(z).

Let d = 1. Then Λ is said to be a basic domain if Λ is either (0,∞) or (−∞, 0).
A domain Λ is said to be admissible if Λ = (0, L) with some L ∈ (0,∞).

This definition allows us to state the results for the cases d � 2 and d = 1 simultane-
ously.

Our objective is to obtain semi-classical Sq-estimates for the Hankel-type operators
χΛ Opα,t(a)(I−χΛ), PΩ,α Opα,t(a)(I−Pα,Ω) and χΛPα,Ω(I−χΛ), with suitable admis-
sible domains Λ, Ω and suitable symbols a. We work either with t = 0 or t = 1. First we
establish the sought estimates for basic domains Λ and Ω, and then extend the result to
the general bounded admissible ones using appropriate partitions of unity.

For d � 2 all the Sq-estimates obtained for the basic domains are uniform in the
Lipschitz constants MΦ and MΨ satisfying the condition

max(MΦ,MΨ ) � M, (4.3)

with some constant M . Needless to say, the choice of the coordinates for which Λ or Ω

have the form (4.1) does not have to be the same for the domains Λ and Ω.
As in the previous section we assume as a rule that the symbols are compactly sup-

ported and satisfy the condition (3.5). The constants in the obtained estimates will be
independent of the symbols, and of u, μ and 
, ρ but may depend on the constant 
0
in the bound α
ρ � 
0, and, for d � 2, on M . As mentioned in the Introduction some
estimates were obtained in [26] for the class S1. Note also that for d � 2 the results
of [26] require C1-smoothness of the domains Λ, Ω whereas in the current paper the
Lipschitz property suffices.

We obtain consecutively estimates of two types. First we study the operators

χΛ Opα,t(a)(I − χΛ) and PΩ,α Opα,t(a)(I − PΩ,α).

Since these operators contain only one characteristic function we refer to this case as
the case of discontinuity in one variable. Next we look at the operators of the form
χΛ Opα,t(a)PΩ,α(I − χΛ) which is naturally referred to as the case of discontinuity in
two variables.

It is useful to remark on the scaling properties of basic domains in d � 2. Apply-
ing (3.2) to the characteristic function χΛ, Λ = Γ (Φ), we observe that under scal-
ing U� the domain Λ transforms into Γ (Φ̃), where Φ̃(x̂) = 
Φ(
−1x̂). It is obvious that
MΦ̃ = MΦ.
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Let Λ = Γ (Φ) ⊂ R
d, d � 2, be a basic domain. By definition (4.2),

∣∣xd − Φ(x̂) −
(
yd − Φ(ŷ)

)∣∣ � 〈M〉|x − y|, 〈M〉 :=
√

1 + M2

for all x,y ∈ R
d, so that

|x − y| � 1
〈M〉

(
xd − Φ(x̂)

)
, for all x ∈ Λ, y /∈ Λ. (4.4)

In the case d = 1, for a basic domain Λ the same type of bound is obvious:

|x− y| � |x|, x ∈ Λ, y /∈ Λ. (4.5)

4.2. Discontinuity in one variable

Here we study the combinations involving an operator with a smooth symbol and one
of the operators χΛ or PΩ,α.

Theorem 4.2. Let Λ and Ω be basic domains. Let q ∈ (0, 1], α
ρ � 
0, n be as in (2.11),
and let

m =
[
(d + 1)q−1] + 1. (4.6)

Suppose that the symbol a ∈ S(n,m) satisfies (3.5). Then for t = 0 or 1 we have
∥∥χΛ Opα,t(a)(1 − χΛ)

∥∥
Sq

� Cq(α
ρ)
d−1
q N(n,m)(a; 
, ρ), (4.7)∥∥PΩ,α Opα,t(a)(1 − PΩ,α)

∥∥
Sq

� Cq(α
ρ)
d−1
q N(m,n)(a; 
, ρ). (4.8)

Proof. The bound (4.8) follows from (4.7) upon exchanging the roles of the variables x
and ξ. Thus it suffices to prove (4.7).

Proof of (4.7). Assume without loss of generality that N(n,m)(a; 
, ρ) = 1. We
prove (4.7) for the operator Opα,0(a) only, the case t = 1 is done in the same way.

Let d � 2. We use the same scaling argument as in the proof of Theorem 3.1, and
the fact that the Lipschitz constant of the domain Λ does not change under scaling,
see the remark at the end of Section 4.1. Thus it suffices to prove (4.7) for α = ρ = 1
and arbitrary 
 � 
0 with an 
0 > 0. Moreover without loss of generality assume that
u = μ = 0.

Choose the coordinates in such a way that Λ is represented as in (4.1). Denote

Λs =
{
x ∈ R

d: xd > Φ(x̂) + s
}
, s ∈ R.

By virtue of (4.4),

|x − y| � s + |xd − Φ(x̂) − s|
, ∀x ∈ Λs, y /∈ Λ, s > 0.
〈M〉
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Cover the closure Λ with open balls of radius 2
√
d centred at the lattice points j ∈ Z

d.
Let R = 4〈M〉

√
d and denote

Σ =
{
j ∈ Z

d: B(j, 2
√
d ) ∩ Λ �= ∅

}
, Σ0 =

{
j ∈ Z

d: j ∈ ΛR

}
, Σ1 = Σ \Σ0.

These definitions ensure that

dist
{
B(j, 2

√
d ), �Λ

}
� 2

√
d + |jd − Φ(̂j) −R|

〈M〉 , for all j ∈ Σ0,

where �Λ = R
d \ Λ. Let ψj, j ∈ Σ, be a smooth partition of unity subordinate to the

introduced covering, such that
∣∣∇k

xψj(x)
∣∣ � Ck, k = 0, 1, . . . ,

uniformly in j ∈ Σ. Denote Λj = Λ ∩B(j, 2
√
d ), and

Tj = χΛj
Op1,0(ψja)(I − χΛ).

Since N(n,m)(a; 1, 1) � CN(n,m)(a, 
, 1) � C, by Theorem 3.2 we obtain

‖Tj‖qSq
� C

(
2
√
d + |jd − Φ(̂j) −R|

〈M〉

)d−mq

, j ∈ Σ0.

By the triangle inequality (2.1),

∥∥∥∥∑
j∈Σ0

Tj

∥∥∥∥
q

Sq

� C
∑

|̂j|�C�

∑
jd∈Z

(
2
√
d + |jd − Φ(̂j) −R|

〈M〉

)d−mq

� C ′
d−1, (4.9)

where we have used the fact that qm > d + 1, see (4.6). For j ∈ Σ1 we use the bound

‖Tj‖Sq
�

∥∥Op1,0(ψja)
∥∥ � C,

which follows from (3.7). As #Σ1 � C
d−1, C = C(
0), with the help of the triangle
inequality we obtain

∥∥∥∥∑
j∈Σ1

Tj

∥∥∥∥
q

Sq

� C
∑
j∈Σ1

1 � C ′
d−1.

Together with (4.9) this leads to
∥∥χΛ Op1,0(a)(I − χΛ)

∥∥q
Sq

� C
d−1.

As explained earlier this bound implies (4.7).
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The proof in the case d = 1 is a simplified version of that for d � 2. In particular,
instead of (4.4) one uses (4.5). We omit the details. �
Remark 4.3. It is immediate to obtain from Theorem 4.2 estimates of the form (4.7) and
(4.8) for the commutators [Opα,t, χΛ] and [Opα,t(a), PΩ,α]. Indeed, recall that [A,Π] =
(I −Π)AΠ −ΠA(I −Π) for any bounded operator A and any projection Π, and that
(Opα,t(a))∗ = Opα,1−t(a). Thus for t = 0 or 1 it follows from (4.7) that

∥∥[Opα,t(a), χΛ

]∥∥
Sq

� Cq(α
ρ)
d−1
q N(n,m)(a; 
, ρ),

and the same estimate holds for the commutator with PΩ,α.

The corollary below extends Theorem 4.2 to arbitrary bounded admissible domains.

Corollary 4.4. Let Λ and Ω be bounded admissible domains. Let q ∈ (0, 1], α
ρ � 
0, n, m
be as in (2.11) and (4.6) respectively. Suppose that the symbol a ∈ S(n,m) satisfies (3.5).
Then for t = 0 or 1 we have

∥∥χΛ Opα,t(a)(1 − χΛ)
∥∥
Sq

� Cq(α
ρ)
d−1
q N(n,m)(a; 
, ρ), (4.10)∥∥PΩ,α Opα,t(a)(1 − PΩ,α)

∥∥
Sq

� Cq(α
ρ)
d−1
q N(m,n)(a; 
, ρ). (4.11)

The constant Cq in the above estimates may depend on the domains Λ, Ω.

Proof. In the proof there is no difference between the cases d = 1 and d � 2. As
in Theorem 4.2 the bound (4.11) follows from (4.10). Cover Λ with finitely open
balls B(zj , r), j = 1, 2, . . . , J where r is chosen in such a way that for each j we
have B(zj , 4r) ∩ Λ = B(zj , 4r) ∩ Λ0 with some basic domain Λ0 = Λ0(j). Let {φj},
j = 1, 2, . . . , J , be a finite partition of unity subordinate to the above covering. Due to
the triangle inequality (2.1) it suffices to obtain the bound (4.20) for the operators of
the form

Tα = χΛ Opα,t(b)(1 − χΛ),

where b(w, ξ) = φ(w)a(w, ξ), and φ is an element of the partition above supported in
the ball B(z, r). Here we have omitted the index j for brevity. If Λ had been a basic
domain then the required bound would have followed from (4.16). Let Λ0 be a basic
domain such that

B(z, 4r) ∩ Λ = B(z, 4r) ∩ Λ0. (4.12)

By construction,

Tα = χΛ0 Opα,t(b)(I − χΛ).
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Now we need to show that the estimate (4.10) is preserved if one replaces Λ with Λ0 in
the last bracket on the right-hand side. Let ζ ∈ C∞(Rd) be as defined in (2.20), and let
h(x) = ζ((|x− z|(4r)−1)), h̃ = 1− h. Observe that the distance between the supports of
φ and h is at least r. Thus by Theorem 3.2 we have

∥∥χΛ0 Opα,t(b)(I − χΛ)
∥∥q
Sq

�
∥∥Opα,t(b)h

∥∥q
Sq

+
∥∥χΛ0 Opα,t(b)h̃(I − χΛ)

∥∥q
Sq

� Cm(αr)d−mq +
∥∥χΛ0 Opα,t(b)h̃(I − χΛ0)

∥∥q
Sq

.

Here we have used (4.12). The last term on the right-hand side is bounded by

∥∥χΛ0 Opα,t(b)(I − χΛ0)
∥∥q
Sq

.

Since Λ0 is a basic domain we can use (4.7) to obtain (4.10) for the symbol b. As explained
earlier, this leads to (4.10) for the symbol a. �
4.3. Discontinuity in two variables

In this subsection we prove analogues of Theorem 4.2 and Corollary 4.4 with the
smooth symbol a replaced by the symbol a(x, ξ)χΩ(ξ). Now we need a partition of unity
of a special type which is described in [14, Chapter 1].

Proposition 4.5. Let τ = τ(ξ) > 0 be a Lipschitz function on R
d such that

∣∣τ(ξ) − τ(η)
∣∣ � κ|ξ − η|, (4.13)

for all ξ,η ∈ R
d with some κ ∈ [0, 1). Then there exists a set ξj ∈ R

d, j ∈ N such
that the balls B(ξj , τ(ξj)) form a covering of R

d with the finite intersection property,
i.e. each ball intersects no more than N = N(κ) < ∞ other balls. Furthermore, there
exist non-negative functions ψj ∈ C∞

0 (Rd), j ∈ N, supported in B(ξj , τ(ξj)) such that

∑
j

ψj(ξ) = 1,

and

∣∣∇mψj(ξ)
∣∣ � Cmτ(ξ)−m,

for all m uniformly in j.

Assume that Λ,Ω ⊂ R
d are basic domains. For d � 2 we choose the coordinates in

such way that
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Ω =
{
ξ = (ξ̂, ξd) ∈ R

d: ξd > Ψ(ξ̂)
}
,

with a Lipschitz function Ψ . For our purposes the convenient choice of τ(ξ) for all ξ ∈ R
d

is

τ(ξ) = 1
32〈M〉

((
ξd − Ψ(ξ̂)

)2
+ + α−2) 1

2 , (4.14)

with the number M as in (4.3). Since |∇τ | � 1/16, the condition (4.13) is satisfied with
κ = 1/16.

In the case d = 1 we let

τ(ξ) = 1
32

(
|ξ|2 + α−2) 1

2 . (4.15)

Theorem 4.6. Let Λ and Ω be basic domains. Let q ∈ (0, 1], n be as in (2.11), and let m
be as in (4.6). Suppose that the symbol a ∈ S(n,m) satisfies (3.5). Assume that α
ρ � 2.
Then for t = 0 or 1 we have

∥∥χΛ Opα,t(a)PΩ,α(1 − χΛ)
∥∥
Sq

� Cq

(
(α
ρ)d−1 log(α
ρ)

) 1
q N(n,m)(a; 
, ρ). (4.16)

Proof. Suppose that d � 2. Without loss of generality suppose that N(n,m)(a; 
, ρ) = 1
and μ = 0. It suffices to prove the formula (4.16) for 
 = ρ = 1 and arbitrary α � 2.
Denote

Tα = χΛ Opα,t(a)PΩ,α(1 − χΛ).

Let ψj , j = 1, 2, . . . , be a partition of unity associated with the function (4.14). Let
τj = τ(ξj) be the radii defined in Proposition 4.5. Then

Tα =
∑
j

T (j)
α , T (j)

α = χΛ Opα,t(aψj)PΩ,α(1 − χΛ). (4.17)

Note that N(n,m)(aψj ; 1, τj) � C and ατj � (32〈M〉)−1 uniformly in j. We split the set
of indices j in the sum (4.17) into two disjoint parts:

Σ0 =
{
j ∈ N: suppψj ∩ ∂Ω ∩B(0, 1) �= ∅

}
,

Σ1 =
{
j ∈ N: χΩψj = ψj , suppψj ∩B(0, 1) �= ∅

}
.

First assume that j ∈ Σ0. By (4.14) we have cα−1 � τj � Cα−1 with some constants c, C.
Thus by (3.7),

∥∥T (j)
α

∥∥ �
∥∥Opα,t(aψj)

∥∥ � C(ατj)
d
q � C̃,
Sq Sq
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uniformly in j. Since the boundary ∂Ω is Lipschitz, it is clear that #Σ0 � Cαd−1, and
hence by triangle inequality (2.1),

∥∥∥∥∑
j∈Σ0

T (j)
α

∥∥∥∥
q

Sq

�
∑
j∈Σ0

∥∥T (j)
α

∥∥q
Sq

� Cαd−1. (4.18)

Let us turn to the remaining indices, i.e. to j ∈ Σ1. By definition of Σ1 we have T
(j)
α =

χΛ Opα,t(aψj)(I − χΛ), j ∈ Σ1, and hence by Theorem 4.2,

∥∥T (j)
α

∥∥
Sq

� C(ατj)
d−1
q , j ∈ Σ1.

Let us sum up all the contributions using the triangle inequality (2.1):

∥∥∥∥∑
j∈Σ1

T (j)
α

∥∥∥∥
q

Sq

�
∑
j∈Σ1

∥∥T (j)
α

∥∥q
Sq

� Cqα
d−1

∑
j:|ξj |<2

τd−1
j

� C̃qα
d−1

ˆ

ξ∈Ω, |ξ|�2

τ(ξ)−1 dξ. (4.19)

Here we have used the finite intersection property stated in Proposition 4.5 and the
bounds

(1 + κ)−1τ(ξ) � τ(ξj) � (1 − κ)−1τ(ξ), ξ ∈ B
(
ξj , τ(ξj)

)
.

The integral on the right-hand side of (4.19) does not exceed

C

ˆ

|ξ̂|�2

ˆ

ξd>Ψ(ξ̂),
|ξd|�2

1√
α−2 + (ξd − Ψ(ξ̂))2

dξd dξ̂ � C ′
4ˆ

0

1√
t2 + α−2

dt � C ′′ log(α + 1).

Together with (4.18) this leads to

‖Tα‖qSq
� Cαd−1 logα,

which implies (4.16).
For d = 1 the proof follows the same line argument and is somewhat simpler. We omit

the details. �
Just as before, using an appropriate partition of unity one can deduce the follow-

ing.
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Corollary 4.7. Let Λ and Ω be bounded admissible domains, and let q ∈ (0, 1]. Then for
any α � 2,

∥∥χΛPΩ,α(1 − χΛ)
∥∥
Sq

� Cq

(
αd−1 logα

) 1
q . (4.20)

The constant Cq may depend on the domains Λ,Ω.

Proof. The proof is similar to that of Corollary 4.4. Cover Λ with finitely open balls
B(zj , r), j = 1, 2, . . . , J where r is chosen in such a way that for each j, B(zj , 4r)∩Λ =
B(zj , 4r)∩Λ0 with some basic domain Λ0 = Λ0(j). Let {B(μk, r)}, k = 1, 2, . . . ,K be a
covering of Ω with the same properties. Let {φk} and {ψj} be finite partitions of unity
subordinate to the above coverings. Due to the triangle inequality (2.1) it suffices to
obtain the bound (4.20) for the operators of the form

Tα = χΛ Opα,0(b)PΩ,α(1 − χΛ),

where b(x, ξ) = φ(x)ψ(ξ), and φ, ψ are elements of the partitions above supported in
the balls B(z, r) and B(μ, r). We omit the indices j, k for brevity. If Λ and Ω had been
basic domains then the required bound would have followed from (4.16). Let Λ0 and Ω0

be basic domains such that

B(z, 4r) ∩ Λ = B(z, 4r) ∩ Λ0, B(μ, 4r) ∩Ω = B(μ, 4r) ∩Ω0. (4.21)

By construction,

Tα = χΛ0 Opα,0(b)PΩ0,α(I − χΛ).

Now we show that the estimate (4.20) is preserved if one replaces Λ with Λ0 in the last
bracket. By (4.8),

‖Tα‖qSq
�

∥∥[PΩ0,α,Opα,0(b)
]∥∥q

Sq
+
∥∥χΛ0PΩ0,α Opα,0(b)(I − χΛ)

∥∥q
Sq

� Cαd−1 +
∥∥χΛ0PΩ0,α Opα,0(b)(I − χΛ)

∥∥q
Sq

. (4.22)

In order to estimate the last term on the right-hand side let ζ ∈ C∞(Rd) be as defined
in (2.20), and let h(x) = ζ((|x−z|(4r)−1)), h̃ = 1−h. Observe that the distance between
the supports of φ and h is at least r. Thus by Theorem 3.2, for any m � [dq−1] + 1 we
have

∥∥χΛ0PΩ0,α Opα,0(b)(I − χΛ)
∥∥q
Sq

�
∥∥Opα,0(b)h

∥∥q
Sq

+
∥∥χΛ0PΩ0,α Opα,0(b)h̃(I − χΛ)

∥∥q
Sq

� Cm(αr)d−mq +
∥∥χΛ0PΩ0,α Opα,0(b)h̃(I − χΛ0)

∥∥q .

Sq
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Here we have used (4.21). Reversing the argument for the last term on the right-hand
side we arrive at the bound

‖Tα‖qSq
� Cαd−1 +

∥∥χΛ0 Opα,0(b)PΩ0,α(I − χΛ0)
∥∥q
Sq

.

Both domains Λ0, Ω0 are basic, and hence we can use (4.16) for the right-hand side. As
explained earlier, this leads to (4.20). �
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