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Abstract  

Clinical and epidemiological studies have established that people who were small at birth and had 

poor infant growth have an increased risk of adult cardiovascular and respiratory disease, 

particularly if their restricted early growth is followed by accelerated childhood weight gain. This 

relationship extends across the normal range of infant size in a graded manner. The ‘mismatch 

hypothesis’, proposes that ill health in later life originates through developmental plastic responses 

made by the fetus and infant; these responses increase the risk of adult disease if the environment 

in childhood and adult life differs from that predicted during early development. 



Introduction 

There is now substantial epidemiological evidence that environmental influences acting during 

development can induce plastic responses in the fetus and infant, predisposing to disease and ill 

health in later life. In this review we outline some of the evidence that ill health in adulthood 

originates from a mismatch between the developmental and later environments. We discuss 

common mechanisms by which maternal diet, body composition and lifestyle may affect 

cardiovascular and respiratory function. Finally, we consider the possibility of developing 

therapeutic interventions based upon the mismatch hypothesis. 

 

The ‘developmental origins of health and disease’ hypothesis originated from the observation that 

regions in the UK that had high infant mortality in the early twentieth century also had high death 

rates from coronary heart disease and respiratory disease sixty or so years later1. Follow up of 

individuals whose weight had been documented at birth led to the discovery of associations 

between lower birthweight and increased rates of cardiovascular and respiratory disease in 

adulthood2,3. These findingshave been extensively replicated worldwide4. Moreover, early life 

developmental processes are now held to contribute to other causes of chronic ill health, including 

type 2 diabetes, osteoporosis5, affective disorders6 and some forms of cancer7.  

 

The original association between lower birthweight and cardio-respiratory disease was graded 

across the normal range of birthweights and did not simply depend on infants born prematurely or 

those with intrauterine growth restriction2,3,8. Studies in laboratory and farm animals have provided 

clear evidence that the intrauterine environment influences the biology of the offspring and have 

advanced our understanding of the mechanisms underlying these phenomena9. The process 



whereby an early environmental influence induces metabolic or endocrine changes in later life is 

sometimes referred to as ‘programming’ or ‘developmental induction’. 

 

While initial work concentrated on fetal life, subsequent studies demonstrated that the sensitive 

periods during which the early environment can have long lasting effects on the offspring 

encompass the time from conception, through gestation and into postnatal life. People at particular 

risk of cardiovascular and metabolic disease in adult life are those in whom restricted fetal and 

infant growth was followed by accelerated childhood weight gain and upward crossing of weight 

centile lines10. 

 

Confounding influences and the size of the mismatch effect 

An early criticism of the developmental origins hypothesis was that the link between birthweight 

and adult disease could be explained by continuation into adulthood of the adverse events that had 

caused growth restriction. However, there is now strong evidence against this argument. In several 

studies, data on adult lifestyle factors, notably smoking, employment, diet, alcohol consumption 

and exercise were collected; allowing for these lifestyle factors had little effect on the association 

between birthweight and coronary heart disease11. It has also been argued that the associations 

between size at birth and later disease could primarily reflect genetic influences. However, birth 

size is principally determined by the quality of the intrauterine environment12. Finally, the strength 

of the relationship between birthweight and outcomes such as childhood blood pressure has been 

questioned; associations are, however, stronger for adult hypertension than they are for childhood 

blood pressure.13 Moreover, epidemiological and experimental evidence suggests that the factors 

that affect developmental plastic responses in  utero include maternal diet, body composition and 

endocrine status, and birthweight is a crude proxy for these exposures. . There is increasing 



evidence for transgenerational effects, whereby the mother’s own birthweight may influence the 

long-term health of her offspring14. 

 

Conceptual Basis 

The consistency of the long-term effects of developmental plastic responses across species and 

within the normal range of fetal growth suggests a physiological rather than a pathological basis to 

the developmental origins phenomenon. It has been proposed that the link between early life 

environment and adult disease may have an underlying evolutionary explanation. The predictive 

adaptive responses (PAR) hypothesis suggests that there is an evolutionary advantage if the 

developing organism can predict conditions in the postnatal environment and can then alter its 

development to optimise its survival in the predicted environment15. This approach may increase 

the chance of survival to reproductive age, even if there are adverse long-term health 

consequences. Data on human reproductive function support the PAR theory16.  

 

The PAR theory suggests that the long-term consequences may be especially harmful if there is a 

‘mismatch’ and the postnatal environment differs from that predicted (Figure 1). ‘Mismatch’ is a 

conceptually important link between maternal influences upon developmental plastic responses 

and the long-term health consequences for the fetus17. This may be a particular problem in 

societies where there is a rapid economic or social change. Inappropriate developmental 

adjustments may manifest following a rural to urban transition, for example, if there is a rapid 

change from a high exercise, low nutrition environment to one with low exercise and high nutrition8. 

Similarly, maternal disease or impaired placental function could lead the fetus to adjust its 

development inappropriately19,20. ‘Mismatch’ may occur between the fetal nutrient demand, largely 

determined by the early fetal growth trajectory, and the materno-placental capacity to meet this 



demand. Moreover, maternal influences may act via alterations in the fetal endocrine milieu or the 

placental vasculature, to effect developmental plastic responses, which effectively ‘mismatch’ the 

fetus to its adult environment. 

 

A fundamental tenet of the concept is that developmental mismatch will affect the responses of the 

offspring to a subsequent environmental challenge. This has been demonstrated in studies of 

sheep, in which poor antenatal nutrition induced a phenotype best suited to similar poor postnatal 

nutrition, suggesting that there was a prenatal “prediction” of the postnatal environment;21 if the 

antenatal prediction was not reflected in the postnatal environment, left ventricular hypertrophy and 

increased coronary artery vascular reactivity were induced in adult life.21 it is thought that fetal 

responses to changes in maternal nutrition may be of immediate benefit to the fetus, but the long-

term effects of these adaptations may prove detrimental if nutrition in postnatal life does not match 

that predicted by the fetus on the basis of its intrauterine environment.  

Mechanisms  

The mechanisms underlying the developmental mismatch hypothesis have been investigated using 

a variety of animal species. The advantages of animal experimentation are that a defined antenatal 

challenge can be administered and the offspring can be studied in utero or at various postnatal 

ages. The challenges used have largely been unbalanced maternal nutrition or glucocorticoid 

administration. The phenotypic outcomes resemble those reported in humans from epidemiological 

studies. These studies suggest that significant developmental mechanisms act at four broad levels: 

1) epigenetic processes, 2) mitochondrial function, 3) changes in the development of specific 

organs or tissues and 4) effects on homeostatic control systems. 

 



Epigenetic processes 

An epigenetic modification is one that does not alter the heritable DNA sequence but does affect 

gene expression. DNA methylation is the best understood epigenetic modification and maternal 

diet has been shown to cause specific changes in DNA methylation in the offspring. Maternal 

protein restriction in the rat alters DNA methylation of the glucocorticoid receptor and peroxisomal 

proliferator-activated receptor alpha (PPARα) genes in the offspring, changing their expression, 

and altering the expression of other genes controlled by these transcription factors (Figure 2)22. 

These genes are of particular interest because alteration of their expression is associated with 

perturbation of cardiovascular and metabolic control.23 The methylation changes are accompanied 

by alterations in histone methylation and acetylation, which similarly change gene expression. 

Maternal dietary folate supplementation prevents the epigenetic modification associated with 

maternal protein restriction in these rats22. 

  

During gametogenesis, and in the preimplantation embryo, there is considerable de-methylation 

and re-methylation, and these may be critical windows for the establishment of epigenetic 

modification. Furthermore, there are graded changes in the epigenetic control of some genes 

during development, providing the opportunity for environmental influences to act via them24. The 

DNA methylation and histone acetylation processes underlying epigenetic control of gene 

expression require the folate-dependent the transfer of one-carbon groups, predominantly from 

glycine, a non-essential amino acid but one for which the fetal requirements are very large in late 

gestation.  In pregnant rats fed a low protein diet, supplementation of the dam with glycine prevents 

hypertension and endothelial dysfunction in the offspring25. 

 



One of the most striking phenomena in this field is that phenotypic effects can be induced by 

nutritional and other environmental challenges in early gestation in a range of species26-29. Such 

effects underline the possible influence of epigenetic processes in the embryo, and also raise 

issues about the long-term consequences of assisted reproductive therapies in which a period of 

embryo culture in exogenous media occurs. 

 

Altered mitochondrial function 

Mitochondria are central to metabolic control and hence it is not surprising that mitochondrial 

function may be set to match the predicted later metabolic demands. Mitochondrial DNA is 

susceptible to environmental effects, which could produce changes in mitochondrial copy number. 

Such epigenetic effects may occur as a consequence of changes in mitochondrial DNA 

methylation, by the effects of pro-inflammatory cytokines, or via the effects of reactive oxygen 

species. Changes in mitochondrial DNA are passed via the female line to future generations, 

thereby offering the possibility of a trans-generational process for induction of phenotype. Support 

for this has recently been gained via studies in which animals were bred over 11 generations to 

select for reduced exercise tolerance. The animals then showed all the components of the human 

metabolic syndrome and underlying defects in mitochondrial function30. Impaired mitochondrial 

function in the offspring of rats fed a high fat diet during pregnancy is coupled with insulin and leptin 

resistance and relative insulin depletion of the pancreatic islets31. 

 

Organ structure and composition 

A range of experimental studies and human observations has shown that a severe reduction in 

nutrient and oxygen supply differentially affects the growth and development of organs and tissues. 

This may occur because those not essential to fetal survival are sacrificed.  Organs affected 



include the lungs, kidney, gut and liver32. However, in the face of a milder challenge changes in 

fetal tissue or organ development may occur as part of a strategy to tune phenotype to the 

predicted post-natal environment, based on nutritional and endocrine cues from the mother.  

Examples for which there is strong experimental and preliminary human evidence include 

reductions in capillary density, skeletal muscle growth and nephron number which would reduce 

nutrient demands postnatally17. The fetal strategy may include promoting the growth of other 

tissues, such as adipose tissue, to buffer anticipated nutrient scarcity33. 

 

Resetting of homeostatic control  

Clinical and experimental studies provide evidence for developmental changes in the homeostatic 

set-points for many hormones and for alterations in tissue sensitivity to these hormones. An 

example of resetting of homeostatic control with direct relevance to the developmental origins of 

cardiovascular disease is the influence of nutrition and stress on placental 11-hydroxysteroid 

dehydrogenase type 2 (11β-HSD2) activity. This enzyme plays an important role in protecting the 

fetus from high levels of circulating glucocorticoids in the mother. Mothers who report dieting before 

pregnancy have decreased placental 11β-HSD2 activity at term34. In rats, reduced placental 11β-

HSD2 activity is associated with increased blood pressure in the offspring during adult life20. In the 

rat, low placental 11β-HSD2 activity may lead to premature activation of the fetal hypothalamic-

pituitary-adrenal (HPA) axis. If a similar mechanism operates in human pregnancy, this could 

explain the relationship between maternal influences and alterations of adrenocortical function in 

the offspring.  

 

Alterations of the fetal HPA axis and sympathoadrenal responses are likely to be an important 

mechanism by which developmental exposures affect the subsequent responses of the offspring to 



stressful challenges. Lower birthweight has been linked with increased fasting cortisol 

concentrations in later adult life35. Moreover, studies of children whose antenatal growth was 

restricted demonstrate alteration of adrenocortical responses to stress in boys and basal 

adrenocortical activity in girls36. Similar gender differences in HPA responses have been reported 

in animals. Given the known associations between small alterations in adrenocortical activity and 

features of the metabolic syndrome, these effects may have important health implications.  The 

maternal influences underlying developmental effects on HPA and sympathoadrenal 

responsiveness remained to be defined, but there is evidence that both maternal diet (Figure 3) 

and stress in pregnancy may be important.37, 38 

 

Developmental origins of respiratory disease 

It has been hypothesised that subtle influences on fetal lung and immune development could have 

an important impact on the risk of asthma and chronic obstructive airways disease throughout life. 

Epidemiological studies provide strong evidence that a suboptimal intrauterine environment can 

affect postnatal respiratory health. Indeed chronic obstructive airways disease was one of the 

original disorders for which such studies suggested an important developmental influence3,7. 

Although difficult to separate from antenatal effects, adverse factors in the early postnatal 

environment, such as tobacco smoke, could additionally lead to persisting alterations in lung 

structure and function39, 40.  

 

Lung function 

It has been suggested that maternal smoking during pregnancy may cause impaired infant lung 

function41. There is reason to suspect that maternal diet and nutrition before and during pregnancy 

may also affect fetal lung development3. Independently of maternal smoking, children and adults 



who were small at birth tend to have reduced lung function and an increased risk of respiratory 

morbidity and mortality. Clinical studies have found that, independently of their current weight, 

infants who had a lower birthweight tend to have impaired lung function42. Moreover, greater 

postnatal weight gain is also associated with impaired infant lung function (Figure 4). Accelerated 

postnatal weight gain following lower birthweight may well translate into later obesity and explain 

the relationship between obesity and asthma. 

 

The mechanisms by which poor fetal growth affects lung function are open to conjecture, however, 

animal and human studies suggest that micronutrients may be important in airway development 

during fetal life and childhood. It is recommended that pregnant women avoid foods rich in vitamin 

A because of concerns about teratogenicity. However, this vitamin is involved in normal embryonic 

lung development, including alveolisation43, 44, and in maintenance of lung function45. Additionally, 

rats deficient in vitamin A develop respiratory problems in early life46. A reduction of between 30 

and 60 percent of blood retinol levels in rats leads to reduced surfactant phospholipid production47. 

This effect is thought to be due to impairment of surfactant protein gene expression48. Surfactant 

proteins serve to increase lung compliance and have an additional role in immune defence of the 

airway. If these roles also occur in humans then vitamin A deficiency may contribute to both 

respiratory distress syndrome and to an increased susceptibility to infection. Additionally, data from 

the ALSPAC birth cohort have suggested an association between low selenium status in utero and 

persistent wheeze in childhood49. 

 

Lung structure 

Although the mechanisms linking early lung development with lung function in later life are 

unknown, impaired airway and alveolar growth may be important. Airway branching is complete by 



16 weeks gestation, and alveolar formation begins before birth. Between birth and 18 months of 

age there is a rapid increase in alveolar number and size, whilst airway diameter continues to grow. 

Environmental influences during both antenatal and early postnatal life therefore have the potential 

to affect lung development.  

 

Atopy and asthma 

Normal pregnancy is characterised by a suppression of maternal cell-mediated responses to feto-

paternal antigens. This is predominantly effected by a switch to a dominant humoral immune 

response. Tissues of the feto-placental unit secrete cytokines similar to those associated with a T-

helper-2 (Th2) response. These cytokines promote ongoing pregnancy and are also thought to 

have additional properties in terms of promoting fetal growth50. Several studies have suggested 

that high rates of fetal growth are associated with the development of atopy51, 52, and a larger head 

circumference at birth and higher birthweight have been linked with elevated serum total IgE in 

adulthood53. It is possible that aspects of a woman’s nutrition, such as high fat mass and high 

vitamin D status, may alter fetal concentrations of growth factors, such IGFs, TGF- and EGF, so 

promoting both fetal growth and the development of atopy54. Many immune cells possess receptors 

for vitamin D and vitamin D biases the immune system towards a Th2 phenotype55. Moreover, 

polymorphisms in the vitamin D receptor gene have now been linked to asthma in two separate 

studies56,57. Preliminary evidence has also linked low maternal intake of the antioxidant vitamin E 

with elevated responsiveness of cord blood mononuclear cells to allergens58 and with both wheeze 

and eczema in the first two years of life59.  

 



Infants born to atopic mothers are much more likely to develop early onset atopic disease than 

those born to atopic fathers60. This effect could represent a predominantly epigenetic mechanism 

and there is strong evidence that the intrauterine environment of atopic mothers influences fetal 

immune development. It is known, for example, that the amniotic fluid of atopic mothers has higher 

levels of both IgE and the allergy associated cytokine IL10 than that of non-atopic mothers61.  

 

The past decade has seen the development of the ‘hygiene hypothesis’; this hypothesis explains 

asthma pathogenesis, and that of other atopic disorders, by attributing central importance to 

developmental processes. It provides another example of the mismatch concept by suggesting that 

a lack of exposure to infections and microbial products early in life changes the environment in 

which the immune system responds optimally, biasing it towards an IgE mediated response and 

thus predisposing to atopy62. 

 

Maternal influences 

Research to date has linked particular maternal influences with the later health of the offspring, 

notably transgenerational effects of the mother’s own intrauterine experience, and her body 

composition, dietary balance and endocrine status before and during pregnancy. Understanding 

maternal and early environmental influences on the offspring’s developmental plastic responses 

may allow the design of new interventions to optimise early development and thereby improve 

health throughout life. While it is too early to make specific recommendations, new public health 

interventions may arise from further studies examining maternal diet and lifestyle in relation to the 

offspring’s long-term health. 

 



High maternal weight and adiposity are associated with cardiovascular and metabolic disease in 

the offspring (Figure 5)8. There is also strong evidence that the children of mothers with a low body 

mass index are predisposed to insulin resistance in adult life63, 64. While body composition is 

something that is not easily changed, measurement of body composition may allow us to identify 

pregnancies that are at greater risk and raises the possibility of targeted interventions. 

 

There is increasing evidence that fetal development can be affected by nutritional variation even 

within the normal range of western diets, and the problem is compounded because many women 

constrain their weight by dieting or eat unbalanced diets. Evidence for long-term detrimental effects 

of an unbalanced high-protein, low-carbohydrate maternal diet has come from Motherwell, UK;  as 

adults, the offspring have elevated blood pressure and heightened cortisol responses to a stress 

challenge65. Apart from diet, there is evidence that maternal exercise, smoking and alcohol intake 

can have effects on both placental function and fetal development. In one controlled study, women 

who exercised in early but not late pregnancy had larger babies and elevated placental volume at 

mid-gestation and term66. In women who exercise heavily, the placenta may be able to sense 

maternal activity levels and adjust its growth to allow it to better compete for nutrients. Maternal 

smoking is well known to reduce fetal growth and has been shown to affect placental structure67. 

Maternal smoking also has adverse structural and functional effects on the developing fetus with 

important examples being bone density68 and lung function41.  

 

Medical interventions 

Where an adverse in utero environment cannot be prevented, it could be possible to treat children 

from high-risk pregnancies to ameliorate or prevent the long-term effects of such an environment. 

Rats whose mothers were undernourished during pregnancy have altered appetite regulation and 



became obese, an effect which disappears after a single postnatal treatment with leptin, even when 

the offspring are fed a high fat diet postnatally69. Importantly, the effects of leptin treatment on the 

epigenetic control of genes such as 11β-HSD2 and PPARα are dependent on the antenatal 

nutrition of the animals70, demonstrating how the phenotypic responses of the offspring are set in 

antenatal life.  This experiment demonstrates the potential for identifying and treating infants whose 

in utero environment was suboptimal. Although pharmacological intervention may be possible, it is 

hard to imagine how the safety of such an intervention could be demonstrated in humans and 

attention should be focused on lifestyle preventive strategies, allowing the development of public 

health interventions. 

 

We should also bear in mind that treatments currently in use could have unintended consequences 

in later life. In particular, there is evidence that antenatal steroids and assisted reproductive 

technologies have the potential to adversely affect the offspring. Antenatal steroids have obvious 

and immediate benefits in premature labor where the benefits outweigh concerns about possible 

increased risk of disease 60 years later. However, given that a single dose of antenatal steroids 

has been shown to affect glucose tolerance 30 years later, the potential risks of multiple doses of 

steroids should be kept in mind71, 72. Similarly, although the majority opinion is that assisted 

reproduction in humans is generally safe, not all are on agreement on this point and long-term 

follow up studies of the offspring should be undertaken.  

 

Practice points  

Strategies to improve the development of infants and young children may give the most immediate 

benefit but improving the intrauterine environment is an important long-term goal. We need to 

identify public health measures to improve women’s body composition before pregnancy, with 



avoidance of excessive thinness or overweight. Animal studies suggest that measures to improve 

maternal nutrition before and during pregnancy can improve the development of the offspring25, but 

as yet there is no compelling evidence of benefit from trials in human pregnancy. In infants we 

need to protect growth in weight, length and head circumference during the first year after birth by 

good infant feeding practices, avoidance of recurrent infections, and cognitive stimulation. We need 

to prevent accelerated weight gain among children especially those who were small or thin at birth 

or at one year. Such an approach may allow us to reduce the prevalence of major chronic diseases 

and diminish social inequalities in health. 

 

* Fetal growth restriction is a risk factor for cardiovascular and respiratory disease. The risk is 

graded across the whole range of normal birthweight. Growth restriction is also a risk factor for 

hypertension, type 2 diabetes, affective disorders, osteoporosis and some cancers in later life. 

* Accelerated childhood weight gain and adult obesity exacerbate this risk. 

* A woman’s diet and lifestyle may have significant long-term effects on the development and 

health of her offspring. These influences can operate before conception and in very early 

pregnancy, not just during the major period of growth in late gestation. 

* Before birth and during infancy the offspring alters its development in prediction of the 

environment it will face in later life. If the prediction is accurate it is more likely to remain healthy; if 

not, risk of disease increases. 

* Risk of cardiovascular and respiratory disease increases with a greater mismatch between the 

early and later life environments. Thus, it is greater in societies in rapid economic transition. 

* Animal studies have revealed mechanisms linking unbalanced maternal nutrition, body condition 

or stress to developmental plastic responses in the offspring. They also show how early 

interventions can prevent later pathophysiological changes. 



* Translating the mismatch concept into initiatives to both promote the health of women of 

reproductive age and the development of children, has the potential to have an enormous impact 

on the incidence of chronic non-communicable disease, in both developed and developing 

societies.  
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Figure caption list 

Figure 1.  Impaired cardiovascular structure and function result in the offspring if the post-

natal environment is mismatched to the phenotype induced in development, involving epigenetic 

modification of gene expression informed by cues from the mother’s body composition and diet. 

Figure 2. Compared with controls (C), rats whose mothers were fed a protein-restricted diet 

(R) had lower PPARα gene promoter methylation, associated with higher hepatic PPARα gene 

expression, and increased expression of Acyl CoA Oxidase, for which PPARα is a transcription 

factor (derived from reference 22). 

Figure 3. Men and women age 30 years have greater salivary cortisol responses to the Trier 

Social Stress Test if their mother’s consumed more meat and fish in late pregnancy (derived from 

reference 36a) 

 

Figure 4.  At age 4-8 weeks, forced expiratory volume in 0.4 sec (FEV0.4) is diminished in 

healthy infants that were smaller at birth and forced expiratory flow at functional residual capacity 

(VmaxFRC) is diminished in infants that had greater postnatal weight gain (n=131 Southampton 

Women’s Survey infants born at term) (derived from reference 39). 

 

Figure 5. Standardised mortality ratios (SMR) for coronary heart disease in offspring of 

mothers of below average height (n= 1690 men born in Helsinki University Central Hospital during 

1924-33 whose mothers were weighed on admission in labour)(derived from reference 8). 


