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ABSTRACT

The rodent brief-access taste aversion (BATA) model is an efficient in vivo screening tool for

taste assessment. A new Emax (maximum effect attributable to the drug) model was developed

and further investigated in comparison to three previously published models for analysing the

rodent BATA data; the robustness of all the models was discussed.

The rodent BATA data were obtained from a series of experiments conducted with a bitter

reference compound, quinine hydrochloride dihydrate (QHD). A new Emax model that could

be applied to both “lick numbers” and “lick ratios” was built and three published models that

used lick ratios were employed for analysing the BATA data. IC50, the concentration that

inhibits 50% of the maximum lick numbers, quantified the oral aversiveness of QHD. One

thousand bootstrap datasets were generated from the original data. All models were applied to

estimate the confidence intervals of the IC50s without symmetric assumption.

The IC50 value obtained from the new Emax model was 0.0496 mM (95% CI 0.0297-0.0857)

using the lick numbers for analysis, while an IC50 of 0.0502 mM (95% CI 0.0267-0.0859)

was acquired with the lick ratios. Except from one published model, the IC50 values have a

similar range for the 95% CI.
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The new Emax model enabled the analysis of both “lick numbers” and “lick ratios” whereas

other models could only handle data presented as “lick ratios”.  IC50s obtained with these two

types of datasets showed similarity among all models thereby justified the robustness of the

new Emax model.

KEY WORDS

Brief-access taste aversion, lickometer, bitterness, Emax model, NONMEM

INTRODUCTION

Taste assessment has become an important element of pharmaceutical drug development after

the release of the European Medicines Agency (EMA) “Reflection Paper on the Formulations

of Choice for Children” (2006) (1). Pharmaceutical research laboratories and industry invest

their funds and time for optimising the taste of drug formulations to increase patient

acceptability hence compliance to the treatment, especially for patients with a chronic disease

who need to take regular medication and for the paediatric population expressing more

sensitive to unpleasant taste. Evaluating the taste of different derivatives of new chemical

entities  (NCE)  such  as  their  salts  and  formulations  at  early  stage  of  the  drug  development

process is therefore essential to achieve appropriate taste-masking which will potentially

increase the acceptability for the patient.

Several in vivo and in vitro techniques such as human taste panels, e-tongue and

animal preference tests are currently available to assess the taste of APIs (2).  Among these

approaches, the rodent BATA model has a great potential and has already shown very

promising results comparable to human panel data (3,4). The BATA model has been widely

used and documented in the literature for different purposes (3–9). In this animal model,

rodents such as mice or rats, are mildly water-deprived and then put into a “lickometer”

which records the number of “licks” that the rodents make to different concentrations of the



  

compound under test samples presented in several sipper tubes. Animals only have a very

short period of time (between 5 and 10 sec) to lick each solution. Typically, a low number of

licks compared to water will indicate an aversive taste. With this procedure, full aversion-

concentration curves of lick rate can be obtained with very few animals. The comparison of

the curves of several taste samples enables the determination of the compound with the least

aversive taste.

In order to assess the taste of an active pharmaceutical ingredient (API) or to compare

the taste of several compounds accurately, the determination of the concentration which

suppresses  50%  of  the  licks  compared  to  water  (IC50 value)  is  often  taken  as  the  key

parameter for comparison. The data set chosen and the equation fitting the data are therefore

very important for the determination of this parameter. Building a model which accurately

matches the data points is a primordial step in data analysis as the acquisition of inadequate

parameters could lead to different interpretations of the taste assessment results.

Though several models have been introduced for the analysis of BATA data, so far no

standard model has been identified and the model chosen is based on practical considerations

rather than any rationale mechanism. The lack of consensus in analysing the data can cause

inconsistencies in explaining and comparing the results. As the data is interpreted in different

ways among published studies,  the comparison of IC50 data obtained from different models

and/or different data treatments is difficult. Since these models can only handle data

presented in the form of “lick ratios”, the information of the baseline could be lost; therefore

the IC50 obtained could not be accurate. Thus, a robust model is required to analyse the

results acquired from BATA experiments.

A minimum number of licks was observed in the majority of rats tested,  even when

the drug concentration was extremely high. This indicated that there was a maximum effect

of  QHD  in  BATA  experiments  suggesting  an  Emax model is ideal to fit this kind of dose-



  

response relationship. The present study aims to introduce a new Emax model to analyse both

“lick numbers” and “lick ratios” obtained from eight BATA experiments using a compound

with well-known unpleasant taste as a bitter reference, quinine hydrochloride dihydrate.

Three published models were also applied to analyse the same data. A non-parametric

bootstrap analysis was conducted to estimate the confidence intervals of all models'

parameters without symmetric assumption. All models were then compared and discussed.

MATERIALS AND METHODS

Taste solutions

Quinine hydrochloride dihydrate was purchased from Sigma Aldrich (Sigma Aldrich, Dorset,

UK). All the solutions were prepared identically prior the experiment in deionised water and

used at room temperature (23°C).

Animals

Ten adult male Sprague-Dawley rats (Charles-River, Kent, UK) were used. Rats were housed

in pairs in standard cages in a room that was maintained at 21 ± 2°C with 55 ± 10% humidity

and with a 12:12h light/dark cycle. All training and testing occurred during the light phase of

the cycle. Animals had free access to chow (Harlan, Oxon, UK) and tap water except for

training and testing periods where a water-restriction schedule occurred (see BATA

procedure). Throughout the experiment, daily food and water consumption were monitored.

As a safety and welfare measure it was checked that their weight did not drop below 85% of

their free-feeding weight. All the procedures were carried out in accordance with Animals

(Scientific Procedures) Act 1986 (Project Licence PPL 70/7668).



  

BATA procedure

The commercially available lickometer “Davis MS-160” from DiLog Instruments

(Tallahassee, Florida, USA) previously described elsewhere was used for this experiment

(10). Each rat was water-deprived for 22 hours before each session (training and testing) and

was then placed in the lickometer for a maximum session-length of 40 minutes. After each

session,  the  rodents  received  tap  water  for  rehydration.  The  first  days  of  the  protocol  were

dedicated to training: on the first training day the shutter was continually open, presenting a

single tube containing deionised water; on the second training session the sixteen tubes

contained deionised water. The training was followed by two or three testing days during

which each rat was presented with different sipper tubes containing either deionised water or

one  of  the  six  concentrations  of  QHD  (0.01,  0.03,  0.1,  0.3,  1  and  3  mM).  The  trial  began

when the rat took its first lick from the sipper tube, and ended few seconds later when the

shutter closed. A different sipper tube was positioned behind the shutter in preparation for the

next trial during the inter-trial interval. Each trial was intercepted by a water rinse to

minimise carry over effects from the previous solution tested. The order of presentation of the

sipper tubes was randomised and each concentration was presented 4 times per session. The

experiments were repeated on 8 different weeks intercepted by a one-week washout period.



  

Data treatment and model development

Figure 1 represents the work flow for data analysis.
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Figure 1: Workflow for data analysis



  

Data treatment

The “lick numbers” obtained for deionised water and six concentrations of QHD solution

were recorded. “Lick ratios” (% inhibition of licking compared to deionised water) were

calculated by dividing the number of licks of the test solution (QHD solution) by the average

number of licks for deionised water. No data recorded were discarded.

݅ݐܽݎ	݈݇ܿ݅ =
݊݅ݐݑ݈ݏ	ݐݏ݁ݐ	ℎܿܽ݁	ݐ	ݏ݈݇ܿ݅	݂	ݎܾ݁݉ݑ݊

ݎ݁ݐܽݓ	ݐ	ݏ݈݇ܿ݅	݂	ݎܾ݁݉ݑ݊	݊ܽ݁݉ ∗ 100%

Emax model

Based on the boxplots (Fig. 2) representing “lick numbers” (Model 1) and “lick ratios”

(Model 2) versus QHD concentrations, the new Emax model was applied to describe both

types of data change with concentration:

ݕ = ܮܤ ∗ (1 − ௫ܧ ∗
ܺ

ହܥܫ + ܺ)

where	y represents either “lick numbers” or “lick ratios”, X is the QHD concentration,	BL is

the number of licks from deionised water, IC50 represents the concentration of QHD that

produced the half-maximum response (i.e., a 0.5 “lick ratio” value or 50% suppression of

“lick numbers”), and Emax is the maximum fraction of BL when the concentration is

extremely high. For “lick ratios”, the BL was set to 1.

Other models published in existing literature

“Lick ratios” were fitted with three published models (11–13):

Model 3: Sigmoidal three-parameter function:

ݕ =
1 − ݀

1 + ( ݔ
ହܥܫ

)
+ ݀



  

Model 4:  Sigmoidal two-parameter logistic function:

ݕ =
1

1 + ( ݔ
ହܥܫ

)

where x is the QHD concentration, b	is the slope, IC50 represents the QHD concentration that

evoked the half-maximal response, and d is the asymptotic minimum.

Model 5:  Logistic function:

ݕ =
ܽ

1 + 10൫௫ିଵఱబ൯

where x represents log10 of QHD concentration,	a is the asymptotic lick response adjusted

for water, b is  the  slope  and IC50 is the QHD concentration that evoked the half-maximal

response.

Statistical Model

Between subject variability (BSV) associated with all parameters for all models was tested

using an exponential function as follow:

ߠ = ௧݁ఎߠ

where	θi is the parameter for the ith subject, θt is the typical value of the parameter in all rats,

and ηi is a BSV with a mean of 0 and a variance of ω2.

An additive residual error structure was employed for all models as follow:

ݕ = ߝ+

where y and ˆyij represent the jth	observed and predicted response (“lick numbers” or “lick

ratios”) respectively for the ith subject, and εij is  the  residual  random  effect  assumed  to  be

normally distributed with a mean of 0 and a variance of σ2.

Bootstrap evaluation



  

All models were evaluated using a non-parametric bootstrap method. One thousand replicate

bootstrap datasets were generated by random sampling with replacement from the

corresponding original analysed dataset. IC50s for each dataset were obtained from each

model. The robustness of the model was expressed as 95% CI of the estimate, by observing

the 0.025th and 0.975th quantiles of the resulting bootstrap parameters’ distributions from runs

with successful convergence (14).

Software

The non-linear mixed effects modelling was performed using the software NONMEM®

(ICON, Ellicott City, Maryland, version 7.3) in conjunction with a gfortran (64-bit) compiler

using Perl-Speaks NONMEM® (PSN, version 4.2.0) as an interface to run NONMEM®. The

first order conditional estimation with interaction (FOCEI) method was used throughout the

model analyses. R (version 3.0.2) was used for plots.

Results

The water-deprivation length of 22 hours chosen for the experiments was adequate to

motivate adult rats to drink from the different sipper tubes in the lickometer without any

major sign of stress and dehydration. The rats did not show a decrease in the motivation to

drink from the tubes during the 40-minute session over days or over weeks. Moreover, they

did not lose more than 5.7 % of their  initial  weight after having being placed on the water-

restriction schedule and always recovered their weight after the rehydration period and

continue  to  grow normally.  The  training  sessions  were  all  successful  and  suggested  a  good

confidence from the rats to drink in the lickometer and ensured they remembered the

procedure over weeks.



  

Quinine is well known to be orally aversive to rats and humans and is generally used in taste

studies as a bitter reference compound. Therefore, this compound was our model drug to

describe the trend generally obtained in BATA experiments with drugs and formulations

eliciting a bitter taste: a decrease of the number of licks when the concentration increases.

A total number of 5400 licks recorded for deionised water and 6 QHD concentrations were

obtained from 10 rats. After averaging the values from deionised water, 4320 “lick ratios” for

QHD solutions were calculated. As expected, the licking response to QHD produced

monotonic decreases in rats' licking with increasing concentration of the bitter compound

during each session. The concentrations chosen for QHD produced the full concentration-

response curve (Fig 2). However, a large variability was also shown in both “lick numbers”

and “lick ratios” plots since all the records were included.

The data were successfully fitted to all models and all resulting IC50 values (Table 1) were

within the range of 0.03-0.1mM, which was in accordance with the boxplots shown in Fig.2.

The IC50 values  from  the  two  Emax models were 0.0496 and 0.0502 mM for Model 1 and

Model 2, respectively. Except Model 5, all the IC50 values were in the range [0.0488, 0.0539]

mM. Among all  IC50 pairwise  comparisons,  the  values  from the  two Emax models were the

closest  pairs.  Moreover,  these  two models  had  the  same Emax value of 0.957, which means

that 95.7% of the lick activities would be inhibited when the QHD concentration is extremely

high.

All bootstrap datasets for the five models successfully converged. Table 1 included the results

of the bootstrap analysis for the IC50s of  each  model.  The  means  of  IC50 values  from  the

bootstrap  re-samples  were  similar  to  the  estimations  from  the  original  dataset  in  all  the

models. Except model 5, the 95% bootstrapped confidence intervals of the IC50s from the



  

other models were relatively small and similar. These narrow intervals indicated that these

models have a good precision and robustness.



  

Figure 2: Boxplots of “lick numbers” (A) and “lick ratios” (B) from BATA experiments

A

B



  

Table 1: IC50 values and 1000 bootstrap results from 5 models

Model expression IC50 (mM) Bootstrap mean (mM) and 95% CI

Model 1 ݕ = ܮܤ ∗ (1− ௫ܧ ∗
ܺ

ହܥܫ + ܺ) 0.0496 0.0517 (0.0297, 0.0857)

Model 2 ݕ = 1 − ௫ܧ ∗
ܺ

ହܥܫ + ܺ
0.0502 0.0510 (0.0267, 0.0859)

Model 3 ݕ =
1− ݀

1 + ( ܺ
ହܥܫ

)
+ ݀ 0.0488 0.0517 (0.0288, 0.0848)

Model 4 ݕ =
1

1 + ( ܺ
ହܥܫ

)
0.0539 0.0562 (0.0325, 0.0894)

Model 5 ݕ =
ܽ

1 + 10(ିଵఱబ)
್

  0.0864 0.0877 (0.0533, 0.120)

Discussion

Presently a new Emax model was introduced and was able to handle different types of

data, namely “lick numbers” and “lick ratios”, in order to obtain reliable IC50 values resulting

from rat BATA experiments. A reference drug for bitterness, quinine hydrochloride

dihydrate, was used. For comparison, the results from three other published models

commonly used to process data from BATA experiments were also shown. The precision and

robustness of all the models were evaluated and compared by one thousand bootstrap

analyses. Our model appropriately fitted the concentration-response curves from both “lick

numbers” and “lick ratios”.

The data treatment prior to calculation of the important parameters resulting from

BATA experiments e.g. IC50 values might differ from one study to another. For example, in



  

some studies trials with two licks or less were disregarded (9) whereas in other works only

licks equal to zero were excluded from the dataset (12); in other investigations all the data

were taken into account (or not mentioned in the paper otherwise). This was done to avoid to

falsely register licks or failure to taste the sample. However, a number of licks equal to 0 or 1

is not often due to the reasons cited above. A very aversive taste and/or odour of the

compound being assessed could also lead to no licking. It is difficult to distinguish between

the different reasons mentioned above. In our study, a compound perceived very aversive by

the rats might not be licked at all from the sipper tube upon a second presentation during the

same session. Consequently, the dataset chosen is of high importance, mainly for accurate

comparisons across several studies as depending on the data selected, results will vary to a

greater or lesser degree. In our analysis we took into consideration all the records obtained

from the experiments.

Data from BATA experiments are generally displayed by concentration-response

curves representing the means of the number of licks or “lick ratios” as a function of the

concentrations of the compound tested and the standard error (SE) or standard deviation (SD)

obtained with a number n of rats (3,5,7,8,11,12,15–18). This way of presenting the results can

give a good overview of the results’ trend; however, it can result in some misleading in the

interpretation, as it does not show the variability of the records. Moreover, the data recorded

for each concentration group does not follow a normal distribution; therefore displaying the

records’ means for each concentration group is not statistically appropriate. Boxplots (Fig. 2)

are a more appropriate way of depicting the BATA concentration-responses, as more

information is represented and available at one glance.

The existing literature often used “lick ratios” (calculated by dividing the lick

numbers obtained from each concentration by the mean number of licks from water) into data

analysis models. Since the “lick numbers” from water were not normally distributed (Fig.



  

1A), the average values did not represent their true central tendency. Moreover, “lick ratios”

were based on the average values from water; thus, the variability from water was lost. In

some articles it is even more inappropriate when the “lick ratios” were calculated by dividing

the mean number of licks from each concentration by the mean number of licks from water

(7,11,12,19,20).

The statistical tests that are usually undertaken to analyse BATA data e.g. Analysis of

Variance (ANOVA) are used without always meeting all the assumptions required to run

these  tests  such  as  a  normal  distribution  of  the  data  for  each  concentration  group  and  the

equality of group variances. Non-parametric tests can be more adequate to rigorously proceed

to the analysis of the data. However, statistical tests can only be used to compare groups of

the same experiment. Consequently, when the taste intensity of different compounds is

compared, another method should be employed since statistical tests are not suitable to

compare them from different experiments. For our research purposes, a parameter such as the

IC50 enables to directly compare the bitterness intensity from several drugs. Furthermore,

when the model was built, the results from other concentrations could be predicted.

  Although some published models exist to analyse the BATA data, these models can

only handle data presented in the form of “lick ratios” and most of their parameters are not

interpretable. As shown in the results, the proposed Emax model can analyse both “lick

numbers” and “lick ratios” and the model parameters from these two kinds of data were

similar. Since “lick ratios” would lose information from water (the baseline) and then

introduce some bias to the results, a model that can handle the original “lick numbers” is

necessary. Nonetheless, if the results obtained with the “lick numbers” are close to the ones

obtained with the “lick ratios”, it is more appropriate. Not only similar IC50s were found from

the Emax models when treating two kinds of data, but also IC50s close to those from the other

three published models were obtained. Moreover, every parameter from the new Emax model



  

had its own meaning and was easy to understand. The meaning of the parameter IC50 was the

same as the one from other models. The baseline corresponds to the “lick numbers” only

from water  and  the  Emax refers to the maximum fraction of the baseline inhibited from the

extremely high concentrations. Bootstrap analysis also demonstrated that the precision and

the robustness of the new Emax model were also similar to, if not better than, those from other

models.

Conclusion

In this study, the proposed Emax model successfully fitted two types of data, “lick numbers”

and “lick ratios” obtained from rat BATA experiments. It was found that both types of data

could be treated with Emax model to acquire the “bitterness equivalency” value, IC50, thereby

assess the taste and compare the taste intensity of different drugs. Emax model generated

similar values to the ones reported in three other published models. Moreover, the new Emax

model also showed good robustness from bootstrap analysis. In conclusion the new Emax

model is proposed as a reference tool to bring a consistent approach for analysis of the data

obtained from BATA studies.
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