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Abstract 

Polycystic kidney diseases (PKD) are genetic disorders characterised by progressive 

epithelial cyst growth leading to destruction of normal functioning renal tissue. Current 

therapies have focussed on the cyst epithelium and little is known about how the blood and 

lymphatic microvasculature may modulate cystogenesis. In hypomorphic Pkd1nl/nl mice 

cystogenesis was associated with a disorganised pericystic network of vessels expressing 

platelet/endothelial cell adhesion molecule 1 and vascular endothelial growth factor (VEGF) 

receptor 3. The major ligand for VEGFR3 is VEGFC and we found reduced production of 

Vegfc mRNA within the kidneys during the early stages of cystogenesis in seven day old 

postnatal Pkd1nl/nl kidneys. We therefore treated the mice with exogenous VEGFC on the 

premise that this would remodel both the VEGFR3+ pericystic vascular network and larger 

renal lymphatics which may also impact on the severity of PKD. VEGFC enhanced VEGFR3 

phosphorylation in the kidney, normalised the pattern of the pericystic network of vessels, 

widened the large lymphatics and this was associated with a significant reduction in cystic 

disease, blood urea nitrogen and serum creatinine. Furthermore, VEGFC reduced M2 

macrophage pericystic infiltrate which has been implicated in the progression of PKD. 

VEGFC administration also improved cystic disease in Cys1cpk/cpk mice, a model of 

autosomal recessive PKD, leading to a modest but significant increase in lifespan. Overall, 

this study highlights VEGFC as a potential new treatment for some aspects of PKD, with the 

potential for synergy with current epithelial–targeted approaches.  
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Polycystic kidney diseases (PKDs) are genetic disorders, usually caused by mutations 

affecting proteins located in primary cilia and other regions within epithelial cells.1 Epithelial 

turnover, adhesion, secretion, polarity and ciliary functions are altered in PKDs and therapies 

have predominantly targeted these proceses.1 Much less is known about how the blood and 

lymphatic microvasculature surrounding kidney tubules might modulate cystogenesis. Prior 

studies using corrosion casting and angiography showed that the vessels surrounding cysts 

in patients with autosomal dominant (AD)PKD are tortuous, abnormally patterned and 

dilated.2,3 Two further studies have blocked vascular endothelial growth factor A (VEGFA) 

signalling, a potent pro-angiogenic factor, in a non-orthologous rat PKD model but gave 

contradictory results and did not examine the effect of this intervention on the 

microvasculature.4,5 

 

We examined the blood and lymphatic microvasculature in Pkd1nl/nl mice, which carry two 

hypomorphic alleles of Pkd16 the mouse homologue of the gene most commonly mutated in 

human ADPKD. Small cysts were found in one day old Pkd1nl/nl kidneys which become more 

prominent one week postnatally; larger cysts were observed at three weeks which reach a 

maximum at five weeks of age (Figure 1A-E). In wild-type mice, there was a fine reticular 

network of vessels around kidney tubules as identified by immunohistochemistry for a pan-

endothelial marker, platelet/endothelial cell adhesion molecule 1 (CD31) (Figure 1F,J). In 

one day old littermate Pkd1nl/nl mice there was an increase in the CD31+ area of non-cystic 

renal tissue (25.7%±4.9 and 38.9±0.7 in Pkd1wt/wt and Pkd1nl/nl, p<0.05, n=4/group) but no 

changes in the pattern of these vessels compared with Pkd1wt/wt mice (Figure 1G). At three 

weeks of age, the pattern of CD31+ vessels was disrupted in Pkd1nl/nl mice, with clusters of 

tortuous vessels around cysts (Figure 1K) and an increased percentage area compared with 

Pkd1wt/wt animals (Table S1). Despite the increased relative area occupied by the vessels, 

proliferating (CD31+/Ki67+) endothelial cells per unit area were significantly reduced in PKD 

kidneys (Table S1). 
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Lymphatics were identified using a panel of markers including VEGF receptor 3 (VEGFR3), 

podoplanin (PDPN), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1) and 

prospero homeobox 1 (PROX1). All 4 proteins co-localised in large intrarenal periarterial 

lymphatics in both wild-type and Pkd1nl/nl three week old kidneys and there was no change in 

transverse areas with PKD (Figure S1, Table S1). Intriguingly, we noted a second 

population of VEGFR3+ vessels that were negative for LYVE1, PDPN and PROX1. These 

were widely distributed in peritubular areas in wild-type mice (Figure 1H,L). In one day 

postnatal Pkd1nl/nl kidneys, the VEGFR3+ area of non-cystic renal tissue was increased 

(18.7%±1.9 and 27.4±3.7 in Pkd1wt/wt and Pkd1nl/nl, p<0.05, n=4/group) but with no apparent 

changes in the pattern of the vessels compared with Pkd1wt/wt mice (Figure 1I). At three 

weeks of age, the pattern of the peritubular VEGFR3+ vessels in Pkd1nl/nl was disorganised 

(Figure 1M) with increased percentage area (Table S1). The VEGFR3+ patterns mimicked 

the CD31+ distribution pattern and using double labelling we demonstrated co-localisation of 

CD31 and VEGFR3 in the same vessels in three week old wild-type and cystic mice (Figure 

1N-U). We postulate that these CD31+/VEGFR3+ vessels may be a kidney-equivalent to 

specialised capillaries seen in endocrine glands,7,8 with molecular features shared with 

lymphatic endothelia and high permeability facilitating the reabsorption of glomerular filtrate 

into the circulation in healthy kidneys.9  

 

Subsequently, we hypothesised that targeting the microvasculature may alter PKD. We 

decide to focus on VEGFC, which enhances growth, survival and migration of adult 

lymphatic endothelia through actions on VEGFR3 with lesser effects on blood vessels via 

VEGFR2.10-12 VEGFC would not only target the disorganised VEGFR3+ pericystic vessels 

but also the larger VEGFR3+ lymphatics allowing us to modulate both of these vessel types. 

Firstly, we examined endogenous Vegfc in Pkd1nl/nl kidneys and found a significant decrease 

in Vegfc mRNA levels at day 7 (p<0.01) but no difference at day 14 or 21 compared with 

Pkd1wt/wt mice (Figure 2A). We then provided exogenous VEGFC to seven day old Pkd1wt/wt 

mice by administering 100 ng/g body weight of recombinant VEGFC or vehicle 
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intraperitionally every day for two weeks (Figure 2B), a period where there is rapid growth in 

the size of Pkd1nl/nl kidneys. (Figure S2). This dose has been used for VEGFA to promote 

renal angiogenesis13 and a higher dose (200 ng/g body weight) of VEGFC enhances 

VEGFR3 phosphorylation in-vivo.14 We found that VEGFC administration enhanced tyrosine 

phosphorylation of VEGFR3 in Pkd1nl/nl kidneys versus those administered PBS (Figure 2C). 

VEGFC treated Pkd1nl/nl mice had reduced severity of PKD as assessed by the external 

appearance of kidneys at autopsy (Figure 2D) and a significant approximate halving in 

kidney/body weight ratio (Figure 2E). Pkd1nl/nl mice receiving VEGFC had similar body 

weights to those administered vehicle but their absolute kidney weights were about half that 

of the untreated PKD littermates (1.2g±0.3 and 0.6±0.2 in Pkd1nl/nl administered PBS and 

VEGFC, p<0.05). Kidneys of VEGFC treated animals contained less prominent cysts by 

histology (Figure 2F-I) with significantly smaller average cyst size (Figure 2J). VEGFC did 

not alter blood urea nitrogen (BUN) and creatinine (Figure 2K-L) concentrations in Pkd1wt/wt 

animals; both of these parameters were strikingly increased in Pkd1nl/nl administered PBS 

which was attenuated by VEGFC treatment. As a potential confounder, BUN can be lowered 

if there is liver damage but VEGFC did not affect plasma alanine aminotransferase levels 

(Figure 2M). In addition, VEGFC administration did not alter the histology of the heart, lung, 

liver and spleen (Figure 2N-U).  

 

VEGFC therapy had two effects on the vasculature in Pkd1nl/nl mice. Firstly, it increased the 

numbers of VEGFR3+/Ki67+ and CD31+/Ki67+ proliferating endothelial cells per unit area 

(Table S1). The pattern (Figure 3A-F) and percentage area (Table S1) of the CD31+ and 

VEGFR3+ vessels in Pkd1nl/nl treated with VEGFC was more like that observed in normal 

kidneys. Secondly, VEGFC significantly increased the transverse area of the larger 

LYVE1+/Prox1+ lymphatics in the kidney (Table 1). However, VEGFC treatment did not 

significant alter endogenous kidney mRNA levels of Vegfa, Vegfc, Vegfr2 or Vegfr3 or 

protein levels of VEGFC (Figure S3). 
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Next, we examined if these changes in the blood and lymphatic microvasculature might 

correlate with the inflammatory milieu in PKD by examining CD206/Mrc1+ alternatively 

activated macrophages (M2) which have been functionally implicated in PKD cyst 

growth15,16. VEGFC significantly reduced these cells in Pkd1nl/nl mice (Figure 3G-J). 

Treatment also led to significantly lower renal Mrc1 levels in Pkd1nl/nl mice (Figure 3K) 

although the reduction of another M2 marker, arginase 1 (Arg1), did not reach significance 

(Figure 3L). In contrast, none of the M1 macrophage markers tested were affected by 

VEGFC administration (Figure 3M,N). Similarly, the extent of fibrosis was unaffected, as 

assessed by mRNA for collagen type III, alpha 1 (Col3a1) (Figure 3O).  

 

The normalisation of the pericystic network of vessels alongside reduced inflammatory 

macrophages suggest the microvasculature is the prime target of VEGFC therapy, but the 

same results might be generated as secondary effects if the growth factor acted directly on 

cystic epithelia. However, VEGFC did not alter proliferation in small cysts (< 0.01 mm2; 29 ± 

6 versus 33 ± 3 proliferating nuclei/500 cells in Pkd1nl/nl administered PBS and VEGFC) with 

few Ki67+ cells detected in cysts larger than this in all experimental groups. In contrast to 

previous reports,3,4,17 we could not detect the VEGFC receptors, VEGFR2 or VEGFR3, on 

the cyst epithelia by immunohistochemistry in multiple animals; contrasting markedly with 

clear expression in vessels on the same section (Figure 3P,Q). Hence, we conclude that the 

prime effects of VEGFC are likely to be vascular-targeted, although we cannot fully rule 

epithelial effects which could be evaluated using isolated cyst models. It will be worth re-

examining the VEGFA pathway in future experiments too. Previous studies were done in 

Han:SPRD rats, a model which does not harbour a human PKD-relevant mutation,18 with 

anti-VEGFA antibody causing worse renal function and enhanced kidney injury in one 

laboratory5 whereas ribozymes to block VEGFR1 and VEGFR2 reducing cyst volume 

density and improved renal function in another.4 An explanation for these findings is that 

simply blocking VEGFA is known to cause profound glomerular changes19 and the effects on 

cystic tubules could be secondary to these. The blockade of VEGFR2 by ribozymes may 
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favour endogenous VEGFC binding to VEGFR3+ vessels which our study has shown to be 

beneficial. 

 

We questioned whether the positive effects of VEGFC are specific for Pkd1 mutants or have 

more widespread effects on cystogeneis by using congenital polycystic kidney (Cys1cpk/cpk) 

mice. This model is non-orthologous, but provides a rapid phenocopy of the pathology of 

human autosomal recessive (AR)PKD with massive collecting duct cystogenesis leading to 

uremic death by 3 weeks of age.20 Firstly, we examined 2 week old Cys1cpk/cpk mice and 

found that the CD31+ and VEGFR3+ pericystic network of vessels were also disorganised 

compared with Cys1+/+ mice and that both markers co-localised (Figure S4). The relative 

area occupied by the VEGFR3+ vessels was significantly increased in Cys1cpk/cpk mice 

compared with wild-type littermates with a tendency for this to be the case for CD31+ vessels 

(Table S2). VEGFC was again provided daily from postnatal day seven to fourteen (Figure 

4A); a phase where there is rapid growth in the size of Cys1cpk/cpk kidneys (Figure S3). 

VEGFC administration to Cys1cpk/cpk mice led to an improvement in gross morphology 

(Figure 4B) and a significant reduction in kidney/body weight ratio compared with those 

administered PBS (Figure 4C). Cys1cpk/cpk receiving VEGFC had similar body weights to 

those administered PBS but had a significantly lower kidney weight (0.6g±0.1 and 0.5±0.1 in 

Cys1cpk/cpk administered PBS and VEGFC, p<0.05). VEGFC treatment, did not, however, 

affect blood urea nitrogen concentration (Figure 4D). Kidneys of VEGFC treated Cys1cpk/cpk 

mice had less prominent cysts (Figure 4E-H) with a significantly smaller average cyst size 

(Figure 4I). VEGFC increased the number of proliferating CD31+ and VEGFR3+ vessels in 

Cys1cpk/cpk mice (Table S2) which was associated with a reduction in the VEGFR3+ 

percentage area (Table S2). VEGFC administration did not alter the average cross-sectional 

area of the larger LYVE1+/Prox1+ lymphatics in Cys1cpk/cpk mice. Finally, VEGFC treatment 

led to a modest but significantly extended survival of one week in Cys1cpk/cpk mice (Figure 

4J). 
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In conclusion, this study shows that an abnormal pericystic network of vessels is present 

from the early stages of PKD and becomes more disorganised as cystogenesis progresses. 

We have shown that intervening with VEGFC enhances the phosphorylation of VEGFR3 

which has been shown to lead to the proliferation, migration and rearrangement of vessels.21 

VEGFC treatment also reduces the severity of PKD which is associated with improving the 

pattern of the pericystic vascular network, widening the large lymphatics and clearing 

inflammatory cells. The combination of these effects may have the potential to reduce 

edema which is a regular feature of PKD.22 We do not yet understand why the kidney 

microvasculature is abnormal in PKD. One reason is that the vessels are simply distorted as 

cysts grow. Alternatively, there may be intrinsic defects in the vasculature, as has been 

reported in the skin lymphatics in Pkd1- and Pkd2-null mice22 which may explain why the 

effects of VEGFC are more prominent in Pkd1nl/nl mice than Cys1cpk/cpk. Other studies have 

also demonstrated a role for Pkd1 in zebrafish lymphatic vessel morphogenesis23  

 

Future experiments should investigate VEGFC and other vascular growth factors perhaps in 

combination with epithelial-targeted treatments. Ideally, these studies should include a slow-

onset orthologous PKD1 model such as the Pkd1RC/RC mouse,24 since both of the models 

examined here progress very quickly which did not allow the examination of multiple stages 

of cyst initiation, progression and end-stage PKD. In addition, detailed studies need to be 

performed to determine optimal doses and timing periods for VEGFC treatment. Combining 

epithelial and endothelial therapies may generate the effective treatments urgently needed 

for these important human diseases. 
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Concise Methods 

Animal models 

Cys1cpk/+ (Jackson Laboratories, Bar Harbor, ME20 and Pkd1nl/wt heterozygous mice6 were 

bred to generate wild-type and homozygous littermates for analysis. Cys1cpk/+ were 

maintained on the C57BL/6J background for at least 25 generations and Pkd1nl/wt on CD1 

background for more than 10 generations. In some experiments, wild-type and homozygous 

Cys1 and Pkd1 mice were injected with either 100 ng/g body weight of recombinant VEGFC 

(R&D Systems Europe, Abingdon, UK) or vehicle (phosphate buffered saline) 

intraperitoneally daily. The daily volume administered was 20 µl, equivalent to providing 200 

ml PBS to an adult human per day, or to an infant 20 ml/day. All animal procedures were 

approved by the UK Home Office. 

 

Assessment of Renal Function 

Blood was collected and blood urea nitrogen assessed using a commercially available assay 

kit, validated in mice.25 Creatinine concentration was measured using isotope dilution 

electrospray mass spectrometry. Alanine aminotransferase was assessed using the Vitros 

5600 clinical chemistry analyser (Ortho Clinical Diagnostics, High Wycombe, UK). 

 

Histological Analysis and Immunohistochemistry 

After anaesthesia, the vasculature was perfused to ensure optimal tissue preservation and 

maintain vessel patency with 1% paraformaldehyde (PFA) in PBS from a cannula inserted 

through the left ventricle into the aorta. Tissues were removed, fixed further by immersion in 

1% PFA for another 1 hour, washed in PBS, dehydrated and embedded in wax; then five µm 

sections were cut. Some sections were stained with periodic acid Schiff reagent and 

haematoxylin to assess the overall histology. Pictures of whole stained kidneys were taken 

at low magnification under a dissecting microscope and the average area of individual cysts 

(defined as dilated tubules > 0.01 mm2 in cross-sectional area) determined using ImageJ 

particle analysis (http://rsbweb.nih.gov.ij/).26 Immunohistochemistry was performed for 

http://rsbweb.nih.gov.ij/
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CD206 (MCA2235T, AdB Serotec, Oxford, UK) with appropriate secondary antibodies 

conjugated to horseradish peroxidase and detected by 3,3’-diaminobenzidine with the colour 

development performed for the same duration of time for each sample. Negative controls 

consisted of omission of primary antibodies or substitution with preimmune serum. 

Photomicrographs of 20 sequential fields using a ×20 objective were taken and the area of 

the kidney cortex containing positive immuno-reactivity was analysed as a percentage of the 

whole image using ImmunoRatio and Image J software.27 To circumvent any effects of cyst 

area on the analyses, the area occupied by dilated tubules > 0.01 mm2 was subtracted from 

each analysed image. 

 

In some cases following perfusion, kidneys were prepared for cryosectioning by fixing in 1% 

PFA, placing samples in 30% sucrose in PBS and embedding in Tissue-Tek optimal cutting 

temperature compound (Sakura Finetek, Torrance, CA). Ten µm sections were 

permeabilised in PBS containing 0.03% Triton and then incubated in PBS-Triton containing 

10% normal donkey serum (Jackson ImmunoResearch Laboratories Inc., West Grove, PA), 

0.2% bovine serum albumin, and 0.1% sodium azide for 1 hour at room temperature to block 

non-specific antibody binding. Sections were incubated with 1 or more of the following 

primary antibodies overnight at room temperature: CD31 (MA3105, Thermo Fisher Scientific, 

Waltham, MA),28,29 galectin-3 (sc-20517, Santa Cruz Biotechnology, Inc., Dallas, Texas),30 

Ki67 (ab6155, Abcam, Cambridge, UK),29 LYVE1 (AF2125, R&D Systems Europe),31 PDPN 

(ab11936, Abcam),32 PROX1 (11-022, AngioBio, Del Mar, CA),28 VEGFR2 (AF644 R&D 

Systems Europe),33 VEGFR3 (AF743, R&D Systems Europe).28 Serial sections were used to 

determine co-localisation of vascular and lymphatic markers. After washing in PBS-Triton, 

sections were incubated with appropriate Cy3, AlexaFluor594 and AlexaFluor488 secondary 

antibodies and visualised by confocal microscopy. Images of whole kidney sections from 

fluorescent-labelled slides were obtained using an Axio Scan.Z1 (Carl Zeiss, Munich, 

Germany) and were then quantified in ImageJ. The area of the kidney sections positive for 

vascular markers was calculated as a percentage of the total DAPI+ area to circumvent any 
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effects of cysts on the analyses. The numbers of proliferating CD31+ and VEGFR3+ vessels 

were counted and expressed as positive cell numbers/cm2 of DAPI area. To measure 

epithelial proliferation the number of Ki67+ cells were determined per 500 in at least 50 small 

cysts < 0.01 mm2; larger cysts > 0.01 mm2 were also assessed. The average area occupied 

by LYVE1+/Prox1+ vessels was measured by analysing at least 20 vessels in each sample. 

 

Immunoprecipitation and Western blotting 

500 g of protein from kidneys of Pkd1nl/nl mice that were given vehicle or VEGFC was 

isolated using RIPA buffer and incubated with Dynabead Protein G (Life Technologies, 

Paisley, UK) and 5 µg of VEGFR3 (R&D Systems Europe) antibody. Bound protein was 

eluted, denatured and separated on sodium dodecyl sulfate-8% polyacrylamide gels. 

Following electroblotting, proteins were detected using antibodies for phosphotyrosine (05-

321, Merck Millipore, Billerica, MA) or VEGFR3 (R&D Systems Europe). For the detection of 

endogenous VEGFC, 50 µg of kidney protein was separated, electroblotted and probed 

using a VEGFC antibody (sc-1881, Santa Cruz Biotechnology); -tubulin was used as a 

house-keeping protein and densitometry analysis performed. 

 

Real-Time Polymerase Chain Reaction (RT-PCR) 

RNA was extracted using the RNeasy kit (Qiagen, Crawley, West Sussex, UK) from whole 

kidneys. 500 ng of RNA was used to prepare cDNA and quantitative RT-PCR was performed 

for Arg1, Cd206, Col3a1, iNOS, Mcp1, Vegfa, Vegfc, Vegfr2 and Vegfr3 on an CFX96 Touch 

Real-Time PCR Detection System (Bio-Rad Laboratories, Hemel Hempstead, UK) using 

SsoAdvanced Supermix (Bio-Rad Laboratories) with hypoxanthine-guanine 

phosphoribosyltransferase (Hprt) as a house-keeping gene. Fold-changes in gene 

expression were determined by the 2−ΔΔCT method. Primer details are available on request. 

 

Statistics 
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All samples were assessed blinded to treatment. Data were presented as means ± standard 

error of the mean (SEM). In experiments when differences between two groups were 

evaluated data was analysed by Mann-Whitney U-test (SPSS, Chicago, IL). When three or 

more groups were assessed one-way ANOVA with least square difference post-hoc test 

(SPSS) was used. Survival analysis was presented using the Kaplan-Meier estimate and 

assessed by the log rank test. Statistical significance was accepted at p <0.05. 
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Figure Legends 

Figure 1. Disorganisation of the renal microvasculature in Pkd1nl/nl mice.  

(A-E) Histology of kidneys obtained from Pkd1wt/wt and Pkd1nl/nl mice. Representative images 

of immunohistochemical staining for CD31 in the kidney of a one day old Pkd1wt/wt (F) and 

Pkd1nl/nl (G) mouse showing the microvasculature surrounding the tubules (*). Staining for 

VEGFR3 in one day old Pkd1wt/wt (H) and Pkd1nl/nl (I) mouse kidneys. Note that the CD31 and 

VEGFR3 frames shown for Pkd1wt/wt and Pkd1nl/nl mice are not of the same section. (J-M) 

Representative images of CD31 and VEGFR3 immunohistochemistry in three week old 

Pkd1wt/wt and Pkd1nl/nl mouse kidneys. (N-U) Double-labelling for CD31 and VEGFR3 in the 

same sections of Pkd1wt/wt and Pkd1nl/nl mice demonstrated co-localisation of both markers 

on vessels surrounding the kidney tubules. Bar is 50 µm in each panel, g = glomerulus. 

 

Figure 2. Administration of VEGFC to Pkd1nl/nl mice improves kidney histology and 

function 

(A) qRT-PCR comparing mRNA levels of Vegfc in Pkd1wt/wt and Pkd1nl/nl mouse kidneys at 7, 

14 and 21 days after birth. All data is presented relative to levels in Pkd1wt/wt kidney at day 7 

where average expression was given an arbitrary value of 1. (B) Outline of experimental 

strategy. (C) VEGFR3 phosphorylation levels in the kidneys of Pkd1nl/nl mice administered 

either vehicle or VEGFC. (D) Representative images showing overall appearance of kidneys 

from Pkd1wt/wt and Pkd1nl/nl mice administered either vehicle or VEGFC. Bar is 0.5 cm for 

each panel. (E) Assessment of kidney/body weight ratio. (F-I) Representative images of 

periodic-acid Schiff stained kidney sections obtained from Pkd1wt/wt and Pkd1nl/nl mice 

administered either vehicle or VEGFC, g = glomerulus, * = tubule (J) Analysis of average 

area of individual cysts. (K) Assessment of blood urea nitrogen, creatinine concentration (L) 

and serum alanine aminotransferase (M). (N-U) Histology of the heart, lung, liver and spleen 

from Pkd1nl/nl mice administered either vehicle or VEGFC. n= 4-8 in each group and 

analyses, data is presented as mean ± SEM. * = p <0.05, ** = p <0.01 and *** = p <0.001 

between groups. Bar is 50 µm in each panel. 
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Figure 3. VEGFC administration modulates the renal vasculature and reduces 

inflammation in Pkd1nl/nl mice 

Pkd1wt/wt mice contained CD31+ and VEGFR3+ vessels arranged in a delicate linear network 

surrounding kidneys tubules (indicated by * (A,B)); these vessels were disrupted in untreated 

Pkd1nl/nl (C,D) whilst VEGFC administration to Pkd1nl/nl mice normalised these aberrant 

patterns (E,F). (G-I) Immunostaining for CD206 positive cells revealed prominent expression 

in the interstitial tissue surrounding cysts (*), but not in glomeruli (g) in Pkd1nl/nl mice which 

was diminished following VEGFC therapy. Quantification of CD206 (J) positive cells, n = 5-8 

in each group. mRNA levels of Mrc1 (K), Arg1 (L), iNOS (M), Mcp1 (N) and Col3a1 (O) 

assessed by quantitative real-time PCR and presented relative to levels in Pkd1wt/wt kidneys, 

n=4 in each group (P, Q). Double-labelling in three week old Pkd1nl/nl mice administered 

vehicle with antibodies to detect either VEGFR2 or VEGFR3 and galectin-3, a marker for 

cyst epithelial cells derived from the collecting duct (arrows). All data is presented as mean ± 

SEM. * = p <0.05, ** = p <0.01, *** = p <0.001 between groups. Bar is 50 µm in each panel. 

 

Figure 4. VEGFC treatment improves kidney histology and survival in Cys1cpk/cpk mice 

(A) Outline of experimental strategy. (B) Representative images showing overall appearance 

of kidneys from Cys1+/+ and Cys1cpk/cpk mice administered either vehicle or VEGFC. Bar is 

0.5 cm for each panel. (C) Assessment of kidney/body weight ratio and (d) blood urea 

nitrogen concentration. (E-H) Representative images of periodic-acid Schiff stained kidney 

sections obtained from Cys1+/+ and Cys1cpk/cpk mice administered either vehicle or VEGFC. 

Bar is 50 µm in each panel, g= glomerulus, * = dilated tubule. (I) Image J particle analysis of 

images of whole kidneys under a dissection microscope to determine the average area of 

individual cysts. (J) Survival analysis of Cys1cpk/cpk mice administered either vehicle or 

VEGFC. n = 7-11 in each group for a-i, n = 6 for j, data is presented as mean ± SEM, * = p 

<0.05, ** = p <0.01, *** = p <0.001 between groups. 



20 
 

 



21 
 

 



22 
 

 



23 
 

 



24 
 

 

 

Supplementary Figure 1. Expression of lymphatic markers in Pkd1wt/wtmice 

VEGFR3 (B), PDPN (C), LYVE1 (D) and PROX1 (E) co-localised to the larger lymphatics (l) 

in the kidneys of three week old Pkd1wt/wt mice. None of the markers were detected in the 

arteries (a) of the kidney. Bar is 50 µm in all panels. 
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Supplementary Figure 2. Percentage of kidney weight/body weight in Pkd1nl/nl and 

Cys1cpk/cpk mice 

The kidneys of Pkd1nl/nl mice grew rapidly during 1 to 3 weeks of age, the period when 

VEGFC treatment was provided, with only a modest growth in Pkd1wt/wt kidney (n=4-9 in 

each group and time-point). Rapid kidney growth occurred during weeks 1 to 2 of age in 

Cys1cpk/cpk when VEGFC was administered, with no change in Cys1+/+ mice during this 

period (n=13-17 in each group and time-point). All data is presented as mean ± SEM. ** = p 

<0.01, *** = p <0.001 between groups. 
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Supplementary Figure 3. Endogenous Vegfa, Vegfc, Vegfr2 and Vegfr3 levels were not 

altered in the kidneys of Pkd1nl/nl mice following VEGFC treatment 

qRT-PCR comparing mRNA levels of Vegfa (A), Vegfc (B), Vegfr2 (C) and Vegfr3 (D) in 

Pkd1nl/nl mouse kidneys following either vehicle (PBS) or VEGFC treatment (n=4 in each 

group). (E) Western blotting for VEGFC in Pkd1nl/nl mouse kidneys following either vehicle 

(PBS) or VEGFC treatment (n=3 in each group). Densitometry was performed (F) using -

tubulin as a house-keeping protein. All data is presented as mean ± SEM and presented 

relative to levels in Pkd1nl/nl kidneys administered PBS where average expression was given 

an arbitrary value of 1. 
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Supplementary Figure 4. Disorganisation of the renal microvasculature in Cys1cpk/cpk 

mice.  

(A-D) Histology of kidneys obtained from Cys1+/+ and Cys1cpk/cpk mice. Representative 

images of immunohistochemical staining for CD31 in the kidney of a two week old Cys1+/+ 

(E) and Cys1cpk/cpk (F) mouse showing the positive vessels surrounding the tubules (*). 

Staining for VEGFR3 in two week old Cys1+/+ (G) and Cys1cpk/cpk (H) mouse kidneys. Note 

that the CD31 and VEGFR3 frames shown for Cys1+/+ and Cys1cpk/cpk mice are not of the 

same section. (I-P) Double-labelling for CD31 and VEGFR3 in the same sections of Cys1+/+ 

and Cys1cpk/cpk mice demonstrated co-localisation of both markers on vessels surrounding 
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the kidney tubules. Bar is 50 µm in each panel, g = glomerulus.
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Supplementary Table 1: Quantification of vascular parameters in the kidneys of 

Pkd1wt/wt and Pkd1nl/nl mice administered PBS or VEGFC. 

 

 Pkd1wt/wt Pkd1nl/nl PBS Pkd1nl/nl VEGFC 

% area positive for CD31  32.0 ± 1.5 44.2 ± 1.8a 33.5 ± 2.4b 

CD31+ Ki67+ cells/cm2 of DAPI 

area  

48.7± 6.0 13.9 ± 1.5a 38.4 ± 4.9b 

Average size of LYVE1+
 

Prox1+ (µm2) 

6.8 ± 0.4 7.0 ± 0.9 9.1 ± 0.6b 

% area positive for VEGFR3 19.8 ± 2.1 38.4 ± 1.3a 24.4 ± 2.0b 

VEGFR3+ Ki67+ cells/cm2 of 

DAPI area 

44.9 ± 3.7 17.0 ± 1.6a 54.1 ± 13.4b 

 

Data is presented as mean ± SEM. n=3-6 three week old mice per group. a = p <0.05 

comparing Pkd1wt/wt with Pkd1nl/nl mice administered PBS, b = p <0.05 comparing Pkd1nl/nl 

mice administered PBS or VEGFC. 
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Supplementary Table 2: Quantification of vascular parameters in the kidneys of 

Cys1+/+ and Cys1cpk/cpk mice administered PBS or VEGFC. 

 

 Cys1+/+ Cys1cpk/cpk PBS Cys1cpk/cpk 

VEGFC 

% area positive for CD31 40.8 ± 1.8 44.6 ± 0.3 41.3 ± 1.2 

CD31+ Ki67+ cells/cm2 of DAPI 

area 

66.4 ± 6.4 20.3 ± 4.8a 40.9 ± 5.2b 

Average area of LYVE1+ 

Prox1+ vessels (µm2) 

2.9 ± 0.3 4.0 ± 0.5 5.0 ± 0.2 

% area positive for VEGFR3 35.3 ± 2.2 43.1 ± 0.4a 38.7 ± 1.6b 

VEGFR3+ Ki67+ cells/cm2 of 

DAPI area 

54.8 ± 5.6 22.7 ± 3.0a 38.8 ± 2.5b 

 

Data is presented as mean ± SEM. n=3-5 two week old mice per group. a = p <0.05 

comparing Cys1+/+ with Cys1cpk/cpk mice administered PBS, b = p <0.05 comparing Cys1cpk/cpk 

mice administered PBS or VEGFC. 

 

 

 

 


