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1. Introduction
Empirical work on comparative patterns of economic growth and development have

suggested the existence of multiple equilibria, i.e. cases where economies with similar sets
of economic and social characteristics may end up on long-run growth paths with markedly
different levels of per capita income or other important indicators of social welfare. The
possibility of such cases was long known in the theoretical literature (e.g. Solow(1956)).
Recent theoretical work has revisited this past literature and focussed on the dynamics
which would generate such multiplicity of outcomes, together with the appraisal of such
concepts as global, conditional and club convergence. The construction of models which
have multiple equilibria raises the question of equilibrium selection; and it is on this prob-
lem of how equilibrium selection is undertaken that this paper focusses.

At first sight, there may appear little new to be said on the appropriate equilibrium se-
lection methodology. In deterministic models the equilibrium selection process appears
reasonably straightforward; the equilibrium growth points will have ’’basins of attraction’’,
any initial set of conditions lying within the ’’basin of attraction’’ of a particular equilibrium
point will converge to that point. Different initial conditions lying in different ’’basins of
attractions’’ will converge to different equilibria. Equilibrium selection will thus depend
on the set of initial conditions. The growth theory literature on selection thus focusses on
the nature of the models that will generate multiplicity of outcome, particular attention be-
ing paid to aspects of technology, income distribution and savings, or other factors which
generate multiple equilibria; little or no consideration is then given to how selection is un-
dertaken; the ’’basins of attraction’’ approach is almost universally taken as embodying the
correct methodology.( e.g. Barro and Sala-i-Martin(1992), Galor(1996), Azariades(2001))

Recent work undertaken for the equilibrium selection process in the literature on mul-
tiple equilibria in games however suggests an approach that may have some relevance for
the study of growth equilibria. (Foster and Young (1990), Kandori,Malaith and Rob(1993),
Binmore,Samuelson and Vaughan(1995)). In the case where the development of the economies
are not solely determined by initial conditions but may also be influenced by stochastic
events, then convergence to the equilibrium determined by presence within a particular
’’basin of attraction’’ may not occur. In general we will find economies wandering in and
out of different basins dependent on the influence of the stochastic shocks affecting the
economy.

The paper establishes primacy in the determination of equilibrium to what may be
termed the ’’growth potential function’’; it is the maximum value of this function that de-
termines the long run growth path of the economy. The role of ’’initial conditions’’ and
therefore the concept of ’’basins of attractions’’, are absent from determining equilibrium
selection.

If the present methodology is accepted there are different implications regarding the role
of economic policy in relation to switching between equilibria. In particular, the approach
of the ’’big push’’ literature, emphasising the role of capital transfers as leading to switching
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between equilibria in the long run may be somewhat misplaced.
In order to pursue this alternative methodology, we take as given that the models in-

vestigated will generate multiple equilibria; we can thus focus on the alternative solution
concept proposed for which standard solutions are well known in the literature. The solu-
tion concepts adopted however are of much wider generality, and interested readers may be
referred to the relevant game theory literature.(op. cit.)

2. Stochastic Growth Models
In order to differentiate the different equilibrium solution concepts as between solu-

tions arising from the ’’basins of attraction’’, and ’’potential function’’ approaches, we take
as an example the fundamental theory of growth focusing attention on the growth of the
per capita capital stock.(amongst the first papers which had a technical formulation of this
problem we may note Bourguignon(1974), and Merton(1975)).It should be noted that the
majority of these early models concerned the stochastic growth of a single economy, with
worked examples focusing on the Cobb-Douglas/ constant savings function model and sin-
gle equilibria. However we believe the approach adopted here is sufficiently general to
cover applications to more modern concerns relating to multiple equilibria, including those
of endogenous growth.

The generic equation of stochastic growth will be taken to be of the form,

dk = G(k)dt + ¾(k)dz (1)
where k denotes the per capita capital stock; G(k) is the growth function, which is further
defined below, and ¾2(k) denotes the variance of the change in per capita capital. The
properties of these coefficients will depend upon the precise nature of the economic model
to be specified. dz is assumed to be a Weiner process of unit variance.

Associated with the s.d.e. (1) there is an equation governing the evolution of the fre-
quency distribution function of k; letting p(k; t) denote this frequency distribution, then we
have;

@p(k; t)
@t

¡ = ¡
@
@k

(G(k)p(k; t)) +
1
2

@2

@k2 ((¾2(k)p(k; t)) (2)
the Fokker-Planck or Kolmogorov forward equation (see Appendix 1). The problem then
is to solve for p(k; t), t > 0; subject to an initial condition, the distribution p(k;0), and the
appropriate boundary conditions. Boundary conditions in this case relate to conditions on
the solution p(k; t), e.g. if the economy reaches k = 0, and transitions to negative values
of k are prohibited; or to the value of p(k; t) for very large values of k. If discontinuities
in G(k) and ¾(k) are allowed then additional interface conditions have to be imposed, as
the economy traverses from one regime to another; these will be discussed further below.

In specifying boundary conditions it is useful to introduce the notion of probability flow
in terms of the distribution p(k; t), defined as,

F(k; t) = G(k)p(k; t) ¡
1
2

@
@k

(¾2(k)p(k; t)) (3)
If the economy cannot cross a particular boundary k¤, then the probability flow at that

point must equal zero; thus the boundary conditions that we find it appropriate to impose
are,
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F(0; t) = 0 (4)
i.e. the economy cannot have negative values of k; whilst probability is conserved over all
possible non-negative values of k, for which we impose the upper boundary condition,

lim
k ! 1 F(k; t) = 0 (5)

The complete statement of the problem is therefore to find p(k; t) for t > 0, which
satisfies the FPE (2), the initial condition p(k; 0), together with the appropriate boundary
conditions, (4),(5), and the normalization condition,

Z k=1

k=0
p(k; t) = 1 (6)

In Fig.1 we have illustrated the case where three stationary points of G(k) exist; k1 and
k3 denote the two stable equilibria, whilst k2 denotes the unstable equilibria.

Fig.1

The basin of attraction for k1 is therefore the set of points of k lying below k2. whilst
the basin of attraction for k3 is the set of points lying above k2:

In order to determine the long run growth path of the economy therefore one has to
determine the basin of attraction within which the current capital per capita lies. Trans-
ference between the two basins of attraction is not possible, unless a sufficient amount of
capital were gifted to or removed from the economy. In the deterministic case equilibrium
selection, where multiple equilibria exist, is therefore straightforwardly determined by the
basin of attraction within which the current per capita capital stock of the economy lies.
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In the case where the growth equation is subject to a stochastic perturbation then ques-
tions arise as to the analysis of the equilibrium that is selected. A number of definitions of
equilibrium selection may be applied in this context; one such concept is the so-called low
noise limit selection process under which the stochastic perturbation of the growth equation
is taken uniformly to zero. In such cases the low noise limit selects the equilibrium for the
economy. Since the economy is subject to random shocks and never settles to a stationary
equilibrium, then one can also ask questions as to what is the most likely equilibrium that
will be observed.

3. The Ergodic Distribution
In the present paper our main interest will centre on the limiting distribution,

lim
t!1

p(k; t) = p¤(k) (7)
The distribution is deemed to be ergodic if it is independent of the initial distribution

p(k;0). An ergodic distribution may not always exist, however assumptions sufficient to
guarantee ergodicity standard in the literature are:

(A1) The boundary conditions are reflecting,
(A2) G(k) is bounded on the real line, and ¾2(k) > 0 on the real line.
Such assumptions are also sufficient to guarantee uniqueness of p(k; t) on the real line,

t > 0. Existence of p¤(k) is usually shown by construction; the conditions for unique-
ness are well known in the literature (see e.g. Friedman(1964), Risken(1984)). For the
remainder of this section we shall assume that (A1) and (A2) hold.

The determination of the functional form which satisfies the condition of time invari-
ance is relatively easy to determine from the flow condition (3). If p¤(k) is independent of
t, then in equilibrium p¤(k) must satisfy,

F(k; t) = G(k)p¤(k) ¡
1
2

@
@k

(¾2(k)p¤(k)) = 0 (8)
i.e. stationarity of the distribution must imply a zero probability flow not only at the bound-
aries of 0 · k < 1 but also at every point in its interior.

Solving (8) for p¤(k) we thus have,

p¤(k) =
C

¾2(k)
e'(k) (9)

where,

'(k) = 2
Z k

k0

G(x)
¾2(x)

dx (10)

k0 < k is an arbitrary constant, however upon integrating (10), and subst. into (9), this
constant can be subsumed in the constant of integration C; which will be determined by
the normalization condition (6) i.e.

C = [
Z k=1

k=0

e'(k)

¾2(k)
]¡1 (11)

The function '(k) has an important role in linking the stochastic dynamics to the equi-
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librium distribution eventually generated; in the statistical and physical sciences literature
'(k) is called the potential function.

In the case where the variance ¾2(k) is assumed to be constant over the interval of k, the
relationship between the distribution p¤(k) and the properties of the deterministic dynam-
ical system are particularly straightforward. Letting ¾2(k) = V > 0, and differentiating
(9) successively w.r.t. k we have,

@p¤(k)
@k

= p¤(k)'0(k) =
C
V

e'(k)'0(k) (12)

@2p¤(k)
@k2 = p¤(k)['00(k) + ('0(k))2 (13)

Now from (10) we have,

'0(k) = 2G(k)=V (14)

'00(k) = 2G0(k)=V (15)
When G(k) = 0 we have a rest point of the original deterministic system, and these

rest points correspond to stationary points of '(k) and p¤(k). Further, from (13) and (15)
we note that at these stationary points of p¤(k),

@2p¤(k)
@k2 = p¤(k)'00(k) = (2p¤(k)G0(k))=V (16)

and for p¤(k) strictly positive at the stationary points, unstable rest points of G(k); G0(k) >
0, correspond to the minima of p¤(k); whilst stable rest points, G0(k) < 0 correspond to
the maxima of p¤(k).

As an example consider the dynamics of the standard growth model, where G(k) is
assumed to have three roots at which the growth rate is zero. Thus with a constant ¾2(p) =
V , such a relationship is represented by Fig 2.

We may note that: (a) The positions of the stationary points of '(k) and p¤(k) are
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unaffected by the value of V ; this follows from eqs. (14) and (12). (b) The ranking by
value of '(k) and hence p¤(k) at these stationary points are unaffected by the value of
V . This follows from taking the quotient of (9) defined at any two stationary points with
constant variance. (c) The absolute values of '(k) and hence p¤(k) will vary with V .
Apparent from (8) and (9).

In the case of a non-constant variance, the equivalence between rest points of the deter-
ministic growth system, and maxima and minima of the equilibrium distribution no longer
holds. We assume that ¾2(k) > 0.over the unit interval for k.

We then have, differentiating equation (9),

@p¤(k)
@k

= p¤(k)['0(k) ¡
1

¾2(k)
@¾2(k)

@k
] (17)

and,
@2p¤(k)

@k2 = p¤(k)['0(k) ¡
1

¾2(k)
@¾2(k)

@k
]2 + p¤(k)['00(k) ¡

@
@k

(
1

¾2(k)
@¾2(k)

@k
)] (18)

whereas from (18),

'0(p) = 2G(p)=¾2(p) (19)

'00(p) = [2=¾2(p)][
@G(p)

@p
¡

G(p)
¾2(p)

@¾2(p)
@p

] (20)

Stationary points of f¤(p) thus occur either when f¤(p) = 0 or when,

'0(p) ¡
1

¾2(p)
@¾2(p)

@p
= 0 (21)

i.e. subst. (19) into (21), when,

G(p) = (1=2)
@¾2(p)

@p
(22)

The second order condition for a maximum, f¤(p) > 0; requires, from (18) and (20),that,

[2=¾2(p)][
@G(p)

@p
¡

G(p)
¾2(p)

@¾2(p)
@p

] ¡
@
@p

[
1

¾2(p)
@¾2(p)

@p
] < 0 (23)

Thus the maxima of p¤(k) cannot be determined solely in reference to the deterministic
dynamics as reflected in G(k) but also on ¾2(k). Indeed, by an appropriate choice of
¾2(k) the maxima of p¤(k) can be shifted.

We now however have to consider the low noise limit. Again we assume that ¾2(k) can
be written in the form,

¾2(k) = ¯V 2(k) (24)
where letting ¯ ! 0 we take the variance uniformly to zero over the unit interval. From
equation (17) we see the reappearance of the coincidence of the roots of G(k), the determin-
istic equation of growth with the maxima and minima of the potential function , provided
¯ @V 2(k)

@k ! 0 as ¯ ! 0:
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4. The Equilibrium Selection Process
Equilibrium selection would imply that the distribution function p(k) converges to a

single point on the interval [0; 1). Provided the assumptions (A1) and (A2) hold, conver-
gence to such a single point is not possible for the system (2)-(6). However, if we take the
limit of the distribution p¤(k) as the stochastic term ¾2(k) ! 0, then the distribution does
collapse, either to a single or multiple points.

We return to the case where ¾2(k) is allowed to vary over k, but still retain the assump-
tion that ¾2(k) > 0: We propose to determine what happens to p¤(k) as ¾2(k) uniformly
tends to zero. We therefore assume that ¾2(k) can be represented in the form,

¾2(k) = ¯V 2(k) (25)
where ¯ > 0 is some constant.

We are then interested in,

lim
¯!0p

¤(k) =lim
¯!0

C
¯V 2(k)

eÃ(p)=¯ (26)

where,

¯'(k) = Ã(k) = 2
Z k

0

G(x)
V 2(x)

dx (27)

The basic theorem relating to (26) appears to have originated with Pontryagin, Andronov
and Witt(1934).

Theorem 1. Distributional Dominance.
If p¤(k) exists and if Ã(k) attains a unique maximum at k¤ in the interval [0; 1) then,

lim
¯!0p

¤(k) = p¤(k¤) (28)
where p¤(k¤) is the distribution centred on k¤, such that for any " > 0; p¤(k¤) = 0 for
k > k¤ + ", and k < k¤ ¡ ".

Proof: Appendix 2.

Corollary 1.
If p¤(k) exists and Ã(k) attains n maxima in the interval [0; 1) at points k¤

i such that
Ã(k¤

i ) = Ã¤ for i = 1; : : : ; n ; then,

lim
¯!0p

¤(k) = p¤¤(k) (29)
where p¤¤(k) is a function such that p¤¤(k¤

i ) = p¤¤(k¤
j ) all i; j = 1; ::; n; and for any

" > 0; p¤¤(k) = 0 for k > k¤
i + ", and k < k¤

i ¡ " for all i = 1; : : : ; n.

5. Growth Models with Multiple Equilibria
We now turn to the application of the above methodology to models of growth with

multiple equilibria. Let us consider the case where the deterministic growth dynamics are
such that two possible stable equilibria exist, at k1 and k3 . An economy will therefore
converge to that equilibrium depending upon the basin of attraction in which its initial per
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capita capital stock is positioned. In this instance the basin of attraction for k1, as shown
in Fig.2 is [0; k2] ; whilst the basin of attraction for k is the interval [k2; 1]. The growth
process is quite clearly history dependent.

However, when the stochastic formulation is used then movement between the two
basins is possible. The question that now occupies us is the nature of the probability distrib-
ution for k, that arises; and the form that this distribution takes as the stochastic component
tends to disappear. One of the interesting questions that may be asked is the role of the
basin of attraction in determining the most probable k that is achieved by the economy in
steady growth. One intuitive may run along the lines that it is that equilibrium k which has
the largest basin of attraction, and therefore the most likely observation is that an economy
is to be found in proximity to this equilibrium.

In fact this observation may be confounded. As should be apparent from the theory
outlined in Sect.4 it is not the size of the basin of attraction that is relevant in determining
the most probable configuration, but the relative magnitudes of the potential function at the
stable equilibria points. Applying theorem 1 to the points k1 and k3 , we therefore make
the comparison,

p¤(k1) 7 p¤(k3) (30)
depends upon whether,

'(k1) 7 '(k3) (31)
Remembering that,

'(k) = 2
Z k

k0

G(x)
¾2(x)

dx (32)

then the criterion may be written as,
Z k1

k0

G(x)dx ¡
Z k3

k0

G(x)dx =
Z k1

k3

G(x)dx 7 0 (33)

Thus the evaluation may either be stated in terms of the potential function or in terms
of the integral of the growth function,

Thus in terms of fig.2 the most probable location of the economy is determined by the
relative magnitude of the areas abc cde.

Although what appears to be a relatively minor change without regard to the specifica-
tion of the growth model, quite substantive differences exist with regard to the qualitative
implications of certain policy implications.

Assume that Fig.2 applies, that the potential function is highest at k1: Consider the first
a change in endowment which moves the economy from basin of k1 to the basin of k2: Such
may arise as the result of a sufficiently large capital donation. Now, in the non-stochastic
version of the model, such would be sufficient to place the economy on a growth path that
leads eventually to the high level steady state k3 . Thus. the argument that a relatively large
quantity of foreign aid might allow an economy to escape from a ’’poverty trap’’ at k1:
However, we can now see that the most probable value for this economy does not change,
it remains at k1 . Indeed, the potential function is not altered by the change in the current
endowment of the economy; the implication is clear, if policy measures are to permanently
affect the most probable configuration of the economy, these should be directed to changing
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the potential function not the current endowment.
Changing the potential function has two major effects, firstly it changes the position of

the growth equilibria, secondly it changes the importance of these two equilibria, in relation
to the magnitude of the potential function , and hence the most probable configuration for
the economy. The two effects can most clearly be seen by example. Assume that the G(k)
function is represented by the simple neoclassical relationship,

G(k) = sf(k)=k ¡ (n + ±) (34)
and that the economy’s initial value of s, and the other parameters was sufficient to ensure
that the potential function was at it’s highest at k3, the high value path; and that the economy
was in long run equilibrium at k3: Now consider a fall in the savings rate, such that the
potential function of the equilibrium switch values such that k1 becomes the higher. Now
in the case of the non-stochastic growth model, the economy may expect to find that the
value of the upper steady state value of k, k3 has declined, but that movement from k3 to a
nearby k¤

3 is the only consequence. Now we have the additional implication that the most
probable steady state value that the economy faces is not at k¤

3 but at k1:
Similar arguments apply to the effects of transitory changes in the savings rate. Let

us assume that the economy is initially in the basin of k1. An increase in the savings rate
occurs so that k surpasses k2 and enters the basin of attraction of k3: Under the traditional
story, even if the savings rate relapses to its old level , the economy will still now stay at the
high equilibrium, k3: However, with a relapse to the old savings level, if the potential value
now switches the highest value from k3 to k1; then the transitory change in the savings
propensity will have no effect on the long-run most probable state if the economy.

6. Discontinuities in the Growth Function

The above analysis is not restricted to the case where G(k) is a differentiable or con-
tinuous function. The model we take to illustrate discontinuities in the growth factor, and
consequent multiple stable equilibria, is where a discontinuity in technology occurs at some
value of per capita capital. In Fig.3 such a discontinuity occurs at point kI .

Which is the most probable equilibria that will be observed in long-run equilibrium?
Intuitively it will depend on a comparison of areas under the growth function between the
lower and upper equilibria (k1and k3) and the point of disjunction, kI . Thus if an equi-
librium is relatively closer to the growth disjunction it is that equilibria which will be less
likely to be observed in practice. It is interesting to note the quite radical difference between
this prediction and that associated with the basin of attraction; the basin of attraction of the
upper equilibrium is infinite compared to the finite basin of the lower equilibrium however
a prediction that the upper equilibria is the most likely to be observed is not necessarily cor-
rect; indeed it is the ’’half-basin’’ lying between the two equilibria which is important; and
even knowledge of this basin may give inaccurate predictions without knowledge of the
potential function.(An example of a deterministic model where a disjunction in the growth
function is provided by the analysis of Azariadis and Drazen (1990).
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Fig.3

Within each region of k a different production function applies, transition across the in-
terface kI results in a discrete change in the growth rate and consequent movement towards
a new equilibria.

In order to proceed to the solution, let us set up the model The growth process is gov-
erned by the following sde’s

dk = G1(k)dt + ¾1(k)dz for 0 · k · kI (35)

dk = G2(k)dt + ¾2(k)dz for kI < k < 1 (36)
with corresponding FPE’s,

@p1(k; t)
@t

= ¡
@
@k

(F1(k; t)) for 0 · k · kI (37)

@p2(k; t)
@t

= ¡
@
@k

(F2(k; t)) for kI < k < 1 (38)
where,

(F1(k; t) = ¡(G1(k)p1(k; t)) +
1
2

@
@k

(¾2
1(k)p(k; t)) for 0 · k · kI (39)

(F2(k; t) = ¡(G2(k)p1(k; t)) +
1
2

@
@k

(¾2
2(k)p(k; t)) for kI < k < 1 (40)

Boundary conditions are such that,

F1(0; t) = lim
k!1

F2(k; t) (41)

In addition we require a condition on the interface of the two regimes. We shall assume
that the flow from Regime I equals the flow into Regime II; of course this flow may be
positive, negative or zero.Thus we require,
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F1(kI ; t) = F2(kI ; t) (42)
Further we shall assume that the probability distribution function is continuous on the

real line, and so,

p1(kI ; t) = p2(kI ; t) (43)
The solutions for the distributions in each regime are therefore, defined by,

p¤
1(k) =

C1

¾2
1(k)

e'1(k) (44)

p¤
2(k) =

C2

¾2
2(k)

e'2(k) (45)

where,

'i(k) = 2
Z k

ki0

Gi(x)
¾2

i (x)
dx i = 1;2 (46)

ki0 < k are arbitrary constants, however upon integrating as can be seen there now appear
to be four arbitrary constants; however the constants ki0 can be subsumed within the con-
stants C1 and C2 . These constants may then be determined by the normalization condition
requiring that,

Z kI

0
p¤
1(k) +

Z 1

kI

p¤
1(k) = 1 (47)

together with the interface condition.
In order to determine the relative heights of the probability distribution at the equilibria

k1 and k3 , we consider the ratio,

p¤
1(k1)

p¤
1(k3)

(48)

i.e.,

f
C1

¾2
1(k1)

e'1(k1)g=f
C2

¾2
2(k3)

e'2(k3)g =
C1

C2

¾2
2(k3)

¾2
1(k1)

e'1(k1)¡'2(k3) (49)

Now from the interface condition,

C1

¾2
1(kI)

e'1(kI) =
C2

¾2
2(kI)

e'2(kI) (50)

i.e.

C1

C2
=

¾2
1(kI )

¾2
2(kI )

e'2(kI)¡'1(kI) (51)

and so the evaluation criteria is,

¾2
1(kI)

¾2
2(kI)

¾2
2(k3)

¾2
1(k1)

e'1(k1)¡'2(k3)+'2(kI)¡'1(kI) T 1 (52)
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If the ratio exceeds unity, then the lower equilibrium at k1 has the highest potential, and
vice versa. The criteria has a simple geometric interpretation when variances are assumed
equal and constant over both regimes. In this case the criteria can be written,

e'1(k1)¡'2(k3)+'2(kI)¡'1(kI) T 1 (53)
.

7. Conclusion

The aim of this paper was to suggest a alternative methodological approach to the equi-
librium selection problem as found in the economic growth and development literature.
The application of the ’’basin of attraction’’ to equilibrium selection may be found to be
inappropriate where a substantive stochastic component may be found in equations which
model the economy. The appropriate methodology we suggest for such cases is the use
of the potential function. The use of the potential function allows the construction of the
appropriate probability function which is appropriate for the study if the long term growth
path of the economy. The policy implications associated with the use of the potential func-
tion are quite profound, insofar as attempting to shift economies onto new growth paths
simply by changing the ’’initial conditions’’ from one ’’basin to attraction’’ to another will
not result in a shift to a new long run path. In order for this to be accomplished policy mea-
sures should be related to those factors which shift the maxima of the potential function. In
such a respect the ’’potential function’’ truly reflects the potential for growth.

What role then do the initial conditions and ’’basins of attraction’’ perform. By changing
initial conditions, for example, a grant of capital economies can be shifted such that the
transition times to one or other of the different equilibria can be affected. This requires a
new methodology for the calculation of transition times between equilibria compared to
traditional approaches (e.g. ). Thus we suggest the following tests to determine which type
of policy will lead to the desired outcome for growth which generates maximal wealth.
Consider the case of two stable equilibrium paths; equilibrium 2 has a higher per capita
welfare level than equilibrium 1; the economy currently lies within the ’’basin of attraction’’
of equilibrium 1. In order to seek a long run equilibrium path mainly in the region of
equilibrium 2 then it is first necessary to check the potential value at both these points.
If the potential at equilibrium 2 is the greater, then a ’’big push’’ policy structure would
succeed in getting the economy onto a path around the highest welfare growth equilibrium.
If equilibrium 2 has the lowest potential, then policies should be adopted which change, the
relative potential as between the two equilibria in favour of equilibrium 2, then ’’big push’’
policies may be more likely to ensure a satisfactory long run growth path.
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Appendix 1. Derivation of the Equation Governing the Evolution of the Probability
Distribution Function f(p; t).

Let p(k; t) denote the probability distribution function resulting from the stochastic dy-
namics implied by (3). In order to derive the equation governing the evolution of p(k; t)
we proceed as follows:

Let,

H(k; t) =
Z k

0
p(x; t)dx (1.1)

i.e. the probability mass at or below k at time t; i.e. the normal definition of the cumulative
distribution function of k. We assume that within a given interval of time ±t, changes in
p(k; t) are determined by the transition kernel, ¡(k; k¤; ±t; t); defining the proportion of
probability mass at k¤ at time t, which at the end of period ±t ends up at or below k.

The equation governing the evolution of H(k; t) is then given by,

H(k; t + ±t) =
Z +1

¡1
p(k¤; t)¡(k; k¤; ±t; t)dk¤ =

Z 1

0
h(p¤; t)¡(p; p¤; ±t; t)dp¤ (1.2)

Note that at this stage of the process k is not restricted to the interval [0; 1); restrictions
on k are specified in terms of the boundary conditions defining the solution. Note further,
that k T k¤, i.e. that the transition kernel may induce zero, positive or negative jumps.

Equation (54) is the well known Chapman-Kolmogorov equation; the Fokker-Planck
or diffusion equation may be derived by taking a Taylor series expansion of (54) around
(k; t).

Expanding H(k; t) in a Taylor series about the point (k; t), then differentiating with
respect to k, we arrive at,

@p(k; t)
@t

±t = ¡p(k; t) +
Z

p(k¤; t)°(k; k¤; ±t; t)dk¤ + o(±t) (1.3)

where °(k; k¤; ±t; t) = @¡(k; k¤; ±t; t)=@k; and o(±t) represents a series of terms in ±t
such thatlim±t!0o(±t)=±t = 0:

Equivalently, (54) may be written in terms of the size of the jump in k; letting q = k¡k¤,
we have,

@p(k; t)
@t

±t = ¡p(k; t) +
Z

p(k ¡ q; t)°¤(k; k ¡ q; ±t; t)dq + o(±t) (1.4)

Expanding p(k ¡ q; t) and °¤(k; k ¡ q; ±t; t) in Taylor series about the points (k; t) and
(q; k) respectively, and letting,

¹j =
Z +1

¡1
qj°¤(q; k; ±t; t)dq; j = 1;2; : : : : (1.5)

i.e. the jth moment of the jump function, we may show,

Z +1

¡1
f(k ¡ q; t)°¤(q; k ¡ q; ±t; t)dq = p(k; t) +

1X

j=1

[
(¡1)j

j!
@j

@kj (¹jp(k; t))] (1.6)
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Hence substituting (54) in (54) we have,

@p(k; t)
@t

±t =
1X

j=1

[
(¡1)j

j!
@j

@kj (¹jp(k; t))] + o(±t) (1.7)

The particular case of (54) we consider is where we assume °¤(q; k; ±t; t) to be a normal
distribution in the size of the jump, q, with mean and second moment defined respectively
as,

¹1 = u(k; t)±t ; ¹2 = ¾2(k; t)±t (1.8,1.9)
Since °¤(q; k; ±t; t) is assumed normal, all odd moments higher than the first are zero;
whilst for the even moments we have,

¹2j =
(2j)!
j!2j (¹2)j ; (1.10)

j = 1; 2; ::::::
Hence all moments of °¤(q; k; ±t; t) higher than the second are either identically zero,

or of order o(±t). Dividing through both sides of (1.7) by ±t, and letting ±t ! 0; we arrive
at the Fokker-Planck equation (5) with appropriate definitions for the mean and variance.
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APPENDIX 2

Theorem 1. Distributional Dominance .
If p¤(k) as defined by (17) exists and if '(k); as defined by (18) attains a unique max-

imum at k¤ in the interval [0;1) then,

lim
¾2(k)!0p

¤(k) = ±(k ¡ k¤) (2.1)
where ± is the Dirac delta function, i.e. ±(k ¡ k¤) = 1 if k = k¤; and ±(k ¡ k¤) = 0 if
k 6= k¤.

Proof
We have in equilibrium,

G(k)p(k; t) =
1
2

@
@k

(¾2(k)p(k; t)) (2.2)
and thus the equilibrium distribution,

p¤(k) =
C

¾2(k)
e'(k) (2.3)

where C is the normalization constant, and,

'(k) = 2
Z k

0

G(x)
¾2(x)

dx (2.4)

What happens to p¤(k) as ¾2(k) decreases uniformly ? Let ¾2(k) = ¯V 2(k) where ¯ is a
parameter which we shall allow to tend to zero. Then,

p¤(k) =
C

¯V 2(k)
eÃ(k)=¯ (2.5)

where,

Ã(k) = 2
Z k

0

G(x)
V 2(x)

dx (2.6)

We also have the normalization condition,
Z +1

¡1
p¤(x)dx = 1 (2.7)

Thus subst. (54) in (54) we have,

¯
C

=
Z +1

¡1

1
V 2(x)

eÃ(x)=¯dx (2.8)

and so,

p¤(k) = eÃ(p)=¯=V 2(k)
Z +1

¡1

1
V 2(x)

eÃ(x)=¯dx (2.9)

Let Ã(k) attain a unique maximum at k¤; and let Ã(k¤) = J ; then we can define Ã¤(k) =
Ã(k) ¡ J , and note that,

p¤(k) = eÃ(k)=¯=V 2(k)
Z +1

¡1

1
V 2(x)

eÃ(x)=¯dx
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= e(Ã(k)¡J)=¯=V 2(k)
Z +1

¡1

1
V 2(x)

e(Ã(x)¡J)=¯dx

= eÃ¤(k)=¯=V 2(k)
Z +1

¡1

1
V 2(x)

e(Ã¤(x))=¯dx (2.10)

and we thus ensure that at k¤; Ã¤(k¤) = 0: In order to continue we require Lemma 1 ;

Lemma 1
lim
¯!0

Z +1

¡1

1
V 2(x)

e(Ã¤(x))=¯dx = B(¯) (2.11)

where ¯1=nA(k00=M2 · B(¯) · ¯1=nA(k0)=M2; M = Min V 2(p) and A(k00); A(k0) are
constants independent of ¯.

Proof
Z +1

¡1

1
V 2(x)

eÃ¤(x)=¯dx =
Z p¤+h

p¤¡h

1
V 2(x)

eÃ¤(x)=¯dx +
Z p¤¡h

¡1

1
V 2(x)

eÃ¤(x)=¯dx

+
Z +1

p¤+h

1
V 2(x)

eÃ¤(x)=¯dx (2.12)

where h is some small positive constant. The maximum of Ã¤(k) occurs at k¤ when
Ã¤(k¤) = 0; thus the first integral on the R.H.S. of (54) contains a term which is inde-
pendent of ¯. Outside the interval [k¤ +h; k¤ ¡h] we have Ã¤(k) < 0; and thus each term
in the second and third integrals on the R.H.S. of (54) tend to zero as ¯ tends to zero; thus,

lim
¯!0

Z +1

¡1

1
V 2(x)

eÃ¤(x)=¯dx =
Z p¤+h

p¤¡h

1
V 2(x)

eÃ¤(x)=¯dx (2.13)

Now consider the function Ã¤(k) in the interval [k¤ ¡ h; k¤ + h]; the function is such that
we can choose positive integers K1; K2, and an even integer n, such that,

¡ K1(k ¡ k¤)n ¸ Ã(k) ¸ K2(k ¡ k¤)n (2.14)
where K2 > K1 > 0: Thus,

1
V 2(k)

e¡K1(k¡k¤)n=¯ ¸
1

V 2(k)
eÃ¤(k)=¯ ¸

1
V 2(k)

e¡K2(k¡k¤)n=¯ (2.15)

Now,
Z +1

¡1

1
V 2(x)

e¡K1(k¡k¤)n=¯dx =
Z k¤+h

k¤¡h

1
V 2(x)

e¡K1(k¡k¤)n=¯dx

+
Z k¤¡h

¡1

1
V 2(x)

e¡K1(k¡k¤)n=¯dx +
Z +1

k¤+h

1
V 2(x)

e¡K1(k¡k¤)n=¯dx (2.16)

The last two integrals on the R.H.S. of (54) tend to zero as ¯ tends to zero, and therefore,

lim
¯!0

Z +1

¡1

1
V 2(x)

e¡K1(k¡k¤)n=¯dx =
Z k¤+h

k¤¡h

1
V 2(x)

e¡K1(k¡k¤)n=¯dx (2.17)

Let M2 = Min V 2(k) > 0; then,
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Z +1

¡1

1
V 2(x)

e¡K1(k¡k¤)n=¯dx ·
1

M2

Z +1

¡1
e¡K1(k¡k¤)n=¯dx (2.18)

Letting z = (x ¡ k¤)=¯1=n then,
Z +1

¡1
e¡K1(x¡k¤)n=¯dx = ¯1=n

Z +1

¡1
e¡K1zn

dz = ¯1=nA(K1) (2.19)

and so,
Z k¤+h

k¤¡h

1
V 2(x)

e¡K1(k¡k¤)n=¯dx =
Z +1

¡1

1
V 2(x)

e¡K1(k¡k¤)n=¯dx

· ¯1=nA(K1)=M2 (2.20)
We may similarly show that,

Z k¤+h

k¤¡h

1
V 2(x)

e¡K1(k¡k¤)n=¯dx ¸ ¯1=nA(K2)=M2 (2.21)

and so,

lim
¯!0

Z +1

¡1

1
V 2(x)

eÃ¤(x)=¯dx = B(¯) (2.22)

where¯1=nA(K2)=M2 · B(¯) · ¯1=nA(K1)=M2; M = Min V 2(p) and A(K2); A(K1)
are constants independent of ¯. Thus,

p¤(k) = eÃ¤(k)=¯=V 2(k)B(¯) (2.23)
will tend to zero as ¯ ! 0 for every value of k except k = k¤, when it will become
infinitely large. From the normalization condition

R
p¤(k) = 1; therefore we characterise,

lim
¾2(k)!0p

¤(k) = ±(k ¡ k¤) (2.24)
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